1
|
Chew AAN, Yap YZ, Poquita-Du RC, Huang D, Todd PA. Potential drivers of pocilloporid coral extirpations in Singapore. MARINE POLLUTION BULLETIN 2025; 214:117791. [PMID: 40088638 DOI: 10.1016/j.marpolbul.2025.117791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
The reason why four out of five historically recorded pocilloporid species in Singapore went extinct remains unclear. However, potential causes include urbanization-related stressors such as sedimentation and low light. In this study, we conducted two ex-situ experiments to examine the effects of light limitation and sediment load on the survival and health of two extirpated (Stylophora pistillata, and Seriatopora hystrix), one extant (Pocillopora acuta), and one regional (Pocillopora meandrina) pocilloporid species. All were able to photoacclimate to high sedimentation and low light conditions. However, P. acuta and Se. hystrix exhibited reduced growth under low light, and mortality was significantly higher under increased sedimentation, especially for St. pistillata. While our results indicate that sedimentation and low light characteristic in Singapore's urban reefs are unlikely to be the sole drivers of pocilloporid extirpations, these variables probably contributed to the overall stress burden, pushing already uncommon species into functional, and then actual, extinction.
Collapse
Affiliation(s)
- Annie Ann Nee Chew
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Yan Zhi Yap
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Rosa Celia Poquita-Du
- Senckenberg Biodiversity and Climate Research Center, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Danwei Huang
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Singapore; Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
| | - Peter Alan Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore.
| |
Collapse
|
2
|
Hoarau L, Guilhaumon F, Bureau S, Mangion P, Labarrère P, Bigot L, Chabanet P, Penin L, Adjeroud M. Marked spatial heterogeneity of macro-benthic communities along a shallow-mesophotic depth gradient in Reunion Island. Sci Rep 2024; 14:32021. [PMID: 39738407 PMCID: PMC11685504 DOI: 10.1038/s41598-024-83744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Mesophotic coral ecosystems (MCEs) have gained considerable attention this last decade but the paucity of knowledge on these ecosystems is pronounced, particularly in the Southwestern Indian Ocean region. We explore the spatial variation in macro-benthic and scleractinian communities along a wide depth gradient (15-95 m) and among contrasted sites around Reunion Island. Values for percent cover of macro-benthic and scleractinian communities varied significantly along depth, resulting in a vertical zonation of communities. We recorded a transition of light-dependent communities towards heterotrophic organisms between shallow and upper mesophotic zones at 30-45 m, and a community shift in the lower mesophotic zone at 75 m. Despite overlaps in scleractinian genera distribution along the depth gradient, predominant genera of shallow depths were in low abundance in MCEs (> 30 m). Our findings highlight the importance of MCEs as distinct ecosystems sheltering diverse, unique habitats and harboring abundant cnidarian-habitat forming organisms. Supporting the 'Deep Reef Refuge Hypothesis', 56% of scleractinian genera spanned shallow to mesophotic depths, while one-third were depth specialists, either shallow or mesophotic. This highlights the limited refuge potential of mesophotic reefs for Southwestern Indian Ocean coral communities. Our findings establish baseline data for monitoring and conserving Reunion Island's MCEs.
Collapse
Affiliation(s)
- Ludovic Hoarau
- UMR ENTROPIE (IRD, Université de La Réunion, CNRS, IFREMER, Université de Nouvelle-Calédonie), Saint-Denis, La Réunion, France.
- Grand Port Maritime De La Réunion, Le Port, La Réunion, France.
- Laboratoire d'Excellence CORAIL, Paris, France.
| | - François Guilhaumon
- UMR ENTROPIE (IRD, Université de La Réunion, CNRS, IFREMER, Université de Nouvelle-Calédonie), Saint-Denis, La Réunion, France
| | - Sophie Bureau
- UMR ENTROPIE (IRD, Université de La Réunion, CNRS, IFREMER, Université de Nouvelle-Calédonie), Saint-Denis, La Réunion, France
- Laboratoire d'Excellence CORAIL, Paris, France
| | - Perrine Mangion
- UMR ENTROPIE (IRD, Université de La Réunion, CNRS, IFREMER, Université de Nouvelle-Calédonie), Saint-Denis, La Réunion, France
| | | | - Lionel Bigot
- UMR ENTROPIE (IRD, Université de La Réunion, CNRS, IFREMER, Université de Nouvelle-Calédonie), Saint-Denis, La Réunion, France
- Laboratoire d'Excellence CORAIL, Paris, France
| | - Pascale Chabanet
- UMR ENTROPIE (IRD, Université de La Réunion, CNRS, IFREMER, Université de Nouvelle-Calédonie), Saint-Denis, La Réunion, France
- Laboratoire d'Excellence CORAIL, Paris, France
| | - Lucie Penin
- UMR ENTROPIE (IRD, Université de La Réunion, CNRS, IFREMER, Université de Nouvelle-Calédonie), Saint-Denis, La Réunion, France
- Laboratoire d'Excellence CORAIL, Paris, France
| | - Mehdi Adjeroud
- Laboratoire d'Excellence CORAIL, Paris, France
- UMR ENTROPIE (IRD, Université de La Réunion, CNRS, IFREMER, Université de Nouvelle-Calédonie), Perpignan, France
- PSL Université Paris, UAR 3278 CRIOBE - EPHE-UPVD-CNRS, 66860, Perpignan, France
| |
Collapse
|
3
|
Millán-Márquez AM, Velasco-Montoya DA, Terraneo TI, Benzoni F, Bocanegra-Castaño C, Zapata FA. Symbiodiniaceae diversity in Pocillopora corals in different environments of the Colombian Eastern Pacific: symbiont specificity in spite of coral-host flexibility. CORAL REEFS 2024; 43:1581-1597. [DOI: 10.1007/s00338-024-02552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/19/2024] [Indexed: 01/05/2025]
Abstract
AbstractReef-building corals live in close mutualism with dinoflagellate algae (family Symbiodiniaceae), which play key roles in coral physiological performance and survival. Association patterns between host species and endosymbiont algae and their significance are still not fully understood, but they seem to affect the ability of hosts to inhabit different environments and their resilience to climate change. In this work, we used next-generation sequencing of the Internal Transcribed Spacer 2 region of ribosomal DNA to determine the diversity and composition of the Symbiodiniaceae community in Pocillopora corals from Colombia, in the Eastern Tropical Pacific (ETP). We sampled 243 colonies from four localities characterized by distinct sea surface temperature, turbidity, and proximity to the coast. Two genera of Symbiodiniaceae, Durusdinium and Cladocopium were found associated with Pocillopora mitochondrial Open Reading Frame (mtORF) types. Cladocopium latusorum was highly specific to Pocillopora mtORF type 1, while C. pacificum was found exclusively associated with Pocillopora mtORF type 3. In contrast, Durusdinium glynnii was found in both Pocillopora mtORF types. Furthermore, a Cladocopium-dominated symbiont community occurred in cooler and less turbid localities, while a Durusdinium- dominated community was found in localities with high sea surface temperature and high water turbidity, irrespective of mtORF type. These results suggest that Pocillopora mtORF lineages associate with different Symbiodiniaceae genera in response to local environmental conditions. The ability to associate with a different partner under particular environmental conditions (Pocillopora-Durusdinium combination), and also maintain a specific partnership (Cladocopium species and Pocillopora mtORF types) may be key to understanding the resilience of the genus Pocillopora on ETP coral reefs.
Collapse
|
4
|
Rouzé H, Knowlton N, Anker A, Hurt C, Wirshing HH, Van Wormhoudt A, Leray M. An integrative phylogeography for inferring cryptic speciation in the Alpheus lottini species complex, an important coral mutualist. iScience 2024; 27:111034. [PMID: 39474063 PMCID: PMC11519463 DOI: 10.1016/j.isci.2024.111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/26/2024] [Accepted: 09/23/2024] [Indexed: 12/20/2024] Open
Abstract
We use molecular analyses, color patterns, and records of distribution of mating pairs to reconstruct the global phylogeography of Alpheus lottini, a complex of cryptic coral-associated snapping shrimp species. Molecular data support the delineation of ancestral clades A, B, and C, and suggest five additional subdivisions within clades A and B. Clades A, B1, B2, and C exhibit color pattern differences and/or evidence of assortative mating, and thus merit species-level recognition. There is no evidence for assortative mating within clades A and B1, with likely reproductive compatibility (i.e., fertile clutches) in areas of sympatry. The clade diversity peaks in the Mariana Islands and the early branching clade C is restricted to the northern periphery of the Central and Western Pacific suggesting a Pacific origin of this group outside of the Coral Triangle. These findings underscore the prevalence of allopatric processes with possible ecological or microallopatric speciation in areas where clades overlap.
Collapse
Affiliation(s)
- Héloïse Rouzé
- University of Guam, Marine Laboratory, Mangilao 96923, Guam
| | - Nancy Knowlton
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Arthur Anker
- Universidade Federal de Pelotas (UFPEL), Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Campus Universitário Capão do Leão, Capão do Leão, RS 96010-610, Brazil
| | - Carla Hurt
- Department of Biology, Tennessee Tech University, Cookeville, TN 38505, USA
| | - Herman H. Wirshing
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Alain Van Wormhoudt
- Station de Biologie Marine du Muséum National d’Histoire Naturelle, EPHE, Laboratoire Évolution Moléculaire et Adaptation 29900 Concarneau, France
| | - Matthieu Leray
- Smithsonian Tropical Research Institute, Smithsonian Institution, Panama City, Panama
| |
Collapse
|
5
|
Burgess SC, Turner AM, Johnston EC. Niche breadth and divergence in sympatric cryptic coral species ( Pocillopora spp.) across habitats within reefs and among algal symbionts. Evol Appl 2024; 17:e13762. [PMID: 39100752 PMCID: PMC11294925 DOI: 10.1111/eva.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024] Open
Abstract
While the presence of morphologically cryptic species is increasingly recognized, we still lack a useful understanding of what causes and maintains co-occurring cryptic species and its consequences for the ecology, evolution, and conservation of communities. We sampled 724 Pocillopora corals from five habitat zones (the fringing reef, back reef, and fore reef at 5, 10, and 20 m) at four sites around the island of Moorea, French Polynesia. Using validated genetic markers, we identified six sympatric species of Pocillopora, most of which cannot be reliably identified based on morphology: P. meandrina (42.9%), P. tuahiniensis (25.1%), P. verrucosa (12.2%), P. acuta (10.4%), P. grandis (7.73%), and P. cf. effusa (2.76%). For 423 colonies (58% of the genetically identified hosts), we also used psbA ncr or ITS2 markers to identify symbiont species (Symbiodiniaceae). The relative abundance of Pocillopora species differed across habitats within the reef. Sister taxa P. verrucosa and P. tuahiniensis had similar niche breadths and hosted the same specialist symbiont species (mostly Cladocopium pacificum) but the former was more common in the back reef and the latter more common deeper on the fore reef. In contrast, sister taxa P. meandrina and P. grandis had the highest niche breadths and overlaps and tended to host the same specialist symbiont species (mostly C. latusorum). Pocillopora acuta had the narrowest niche breadth and hosted the generalist, and more thermally tolerant, Durusdinium gynnii. Overall, there was a positive correlation between reef habitat niche breadth and symbiont niche breadth-Pocillopora species with a broader habitat niche also had a broader symbiont niche. Our results show how fine-scale variation within reefs plays an important role in the generation and coexistence of cryptic species. The results also have important implications for how niche differences affect community resilience, and for the success of coral restoration practices, in ways not previously appreciated.
Collapse
Affiliation(s)
- Scott C. Burgess
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Alyssa M. Turner
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Erika C. Johnston
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
- Present address:
Hawai‘i Institute of Marine BiologyKāne‘oheHawaiiUSA
| |
Collapse
|
6
|
Huang YY, Chen TR, Lai KP, Kuo CY, Ho MJ, Hsieh HJ, Hsin YC, Chen CA. Poleward migration of tropical corals inhibited by future trends of seawater temperature and calcium carbonate (CaCO 3) saturation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172562. [PMID: 38641098 DOI: 10.1016/j.scitotenv.2024.172562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Poleward range expansion of marine organisms is commonly attributed to anthropogenic ocean warming. However, the extent to which a single species can migrate poleward remains unclear. In this study, we used molecular data to examine the current distribution of the Pocillopora damicornis species complex in Taiwan waters and applied niche modeling to predict its potential range through the end of the 21st Century. The P. damicornis species complex is widespread across shallow, tropical and subtropical waters of the Indo-Pacific regions. Our results revealed that populations from subtropical nonreefal coral communities are P. damicornis, whose native geographical ranges are approximately between 23°N and 35°N. In contrast, those from tropical reefs are P. acuta. Our analysis of 50 environmental data layers demonstrated that the concentrations of CaCO3 polymorphs had the greatest contributions to the distributions of the two species. Future projections under intermediate shared socioeconomic pathways (SSP) 2-4.5 and very high (SSP5-8.5) scenarios of greenhouse gas emissions showed that while sea surface temperature (SST) isotherms would shift northwards, saturation isolines of two CaCO3 polymorphs, calcite (Ωcal) and aragonite (Ωarag), would shift southwards by 2100. Subsequent predictions of future suitable habitats under those conditions indicated that distinct delimitation of geographical ranges for the two species would persist, and neither would extend beyond its native geographical zones, indicating that tropical Taiwan waters are the northern limit for P. acuta. In contrast, subtropical waters are the southern limit for P. damicornis. We concluded that the decline in CaCO3 saturation would make high latitudes less inhabitable, which could be one of the boundary elements that limit poleward range expansion driven by rising SSTs and preserve the latitudinal diversity gradient (LDG) on Earth. Consequently, poleward migration of tropical reef corals to cope with warming oceans should be reevaluated.
Collapse
Affiliation(s)
- Ya-Yi Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ting-Ru Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Kim Phuong Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan; Faculty of Biology and Biotechnology, University of Science, Vietnam National University, Ho Chi Minh, Viet Nam
| | - Chao-Yang Kuo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Jay Ho
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan; Marine Science Center-Green Island Marine Research Station, Biodiversity Research Center, Academia Sinica, Taitung, Taiwan
| | - Hernyi Justin Hsieh
- Penghu Marine Biology Research Center, Fisheries Research Institute, Penghu, Taiwan
| | - Yi-Chia Hsin
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan.
| | - Chaolun A Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan; Department of Life Science, National Taiwan Normal University, Taipei, Taiwan; Department of Life Science, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
7
|
Poquita-Du RC, Huang D, Todd PA. Genome-wide analysis to uncover how Pocillopora acuta survives the challenging intertidal environment. Sci Rep 2024; 14:8538. [PMID: 38609456 PMCID: PMC11015029 DOI: 10.1038/s41598-024-59268-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Characterisation of genomic variation among corals can help uncover variants underlying trait differences and contribute towards genotype prioritisation in coastal restoration projects. For example, there is growing interest in identifying resilient genotypes for transplantation, and to better understand the genetic processes that allow some individuals to survive in specific conditions better than others. The coral species Pocillopora acuta is known to survive in a wide range of habitats, from reefs artificial coastal defences, suggesting its potential use as a starter species for ecological engineering efforts involving coral transplantation onto intertidal seawalls. However, the intertidal section of coastal armour is a challenging environment for corals, with conditions during periods of emersion being particularly stressful. Here, we scanned the entire genome of P. acuta corals to identify the regions harbouring single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) that separate intertidal colonies (n = 18) from those found in subtidal areas (n = 21). Findings revealed 74,391 high quality SNPs distributed across 386 regions of the P. acuta genome. While the majority of the detected SNPs were in non-coding regions, 12% were identified in exons (i.e. coding regions). Functional SNPs that were significantly associated with intertidal colonies were found in overrepresented genomic regions linked to cellular homeostasis, metabolism, and signalling processes, which may represent local environmental adaptation in the intertidal. Interestingly, regions that exhibited CNVs were also associated with metabolic and signalling processes, suggesting P. acuta corals living in the intertidal have a high capacity to perform biological functions critical for survival in extreme environments.
Collapse
Affiliation(s)
- Rosa Celia Poquita-Du
- Experimental Marine Ecology Laboratory, S3 Level 2, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
| | - Danwei Huang
- Lee Kong Chian Natural History Museum and Tropical Marine Science Institute, National University of Singapore, 2 Conservatory Drive, Singapore, 117377, Singapore
| | - Peter A Todd
- Experimental Marine Ecology Laboratory, S3 Level 2, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
8
|
Oury N, Magalon H. Investigating the potential roles of intra-colonial genetic variability in Pocillopora corals using genomics. Sci Rep 2024; 14:6437. [PMID: 38499737 PMCID: PMC10948807 DOI: 10.1038/s41598-024-57136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/14/2024] [Indexed: 03/20/2024] Open
Abstract
Intra-colonial genetic variability (IGV), the presence of more than one genotype in a single colony, has been increasingly studied in scleractinians, revealing its high prevalence. Several studies hypothesised that IGV brings benefits, but few have investigated its roles from a genetic perspective. Here, using genomic data (SNPs), we investigated these potential benefits in populations of the coral Pocillopora acuta from Reunion Island (southwestern Indian Ocean). As the detection of IGV depends on sequencing and bioinformatics errors, we first explored the impact of the bioinformatics pipeline on its detection. Then, SNPs and genes variable within colonies were characterised. While most of the tested bioinformatics parameters did not significantly impact the detection of IGV, filtering on genotype depth of coverage strongly improved its detection by reducing genotyping errors. Mosaicism and chimerism, the two processes leading to IGV (the first through somatic mutations, the second through fusion of distinct organisms), were found in 7% and 12% of the colonies, respectively. Both processes led to several intra-colonial allelic differences, but most were non-coding or silent. However, 7% of the differences were non-silent and found in genes involved in a high diversity of biological processes, some of which were directly linked to responses to environmental stresses. IGV, therefore, appears as a source of genetic diversity and genetic plasticity, increasing the adaptive potential of colonies. Such benefits undoubtedly play an important role in the maintenance and the evolution of scleractinian populations and appear crucial for the future of coral reefs in the context of ongoing global changes.
Collapse
Affiliation(s)
- Nicolas Oury
- UMR ENTROPIE (Université de La Réunion, IRD, IFREMER, Université de Nouvelle-Calédonie, CNRS), Université de La Réunion, 97744, St Denis Cedex 09, La Réunion, France.
- Laboratoire Cogitamus, Paris, France.
- KAUST Red Sea Research Center and Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| | - Hélène Magalon
- UMR ENTROPIE (Université de La Réunion, IRD, IFREMER, Université de Nouvelle-Calédonie, CNRS), Université de La Réunion, 97744, St Denis Cedex 09, La Réunion, France
- Laboratoire Cogitamus, Paris, France
- Laboratoire d'Excellence CORAIL, Perpignan, France
| |
Collapse
|
9
|
Longley R, Benucci GMN, Pochon X, Bonito G, Bonito V. Species-specific coral microbiome assemblages support host bleaching resistance during an extreme marine heatwave. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167803. [PMID: 37838063 DOI: 10.1016/j.scitotenv.2023.167803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Scleractinian assemblages are threatened by marine heat waves with coral survivorship depending on host genetics and microbiome composition. We documented an extreme marine heat wave in Fiji and the response of corals in two thermally stressed reef flats. Through high-throughput amplicon sequencing of 16S and ITS rDNA phylogenetic markers, we assessed coral microbiomes (Symbiodiniaceae, prokaryotes, fungi, and Apicomplexa) of paired bleached and unbleached colonies of four common coral species representative of dominant genera in the South Pacific. While all coral species exhibited one or more pathways to bleaching resistance, harboring assemblages composed primarily of thermally tolerant photosymbionts did not always result in host bleaching resistance. Montipora and Pocillopora species, which associate with diverse Symbiodiniaceae and vertically transmit their photosymbionts, fared better than Acropora, which acquire their photosymbionts from the environment, and Porites, which associate with a narrow photosymbiont assemblage. Prokaryotic and fungal beta diversity did not differ between bleached and unbleached conspecifics, however, the relative abundance of the fungus Malassezia globosa was significantly greater in unbleached colonies of Montipora digitata. Each coral species harbored distinct assemblages of Symbiodiniaceae, prokaryotes, and Apicomplexa, but not fungi, reiterating the importance of host genetics in structuring components of its microbiome. Terrestrial fungal and prokaryotic taxa were detected at low abundance across coral microbiomes, indicating that allochthonous microbial inputs occur, but that coral microbiomes remain dominated by marine microbial taxa. Our study offers valuable insights into the microbiome assemblages associated with coral tolerance to extreme water temperatures.
Collapse
Affiliation(s)
- Reid Longley
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, 48824, MI, USA
| | | | - Xavier Pochon
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand; Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Gregory Bonito
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, 48824, MI, USA; Plant, Soil and Microbial Science Department, Michigan State University, East Lansing, 48824, MI, USA; Coral Coast Conservation Center, Votua Village, Fiji.
| | - Victor Bonito
- Coral Coast Conservation Center, Votua Village, Fiji; Reef Explorer Fiji, Votua Village, Fiji
| |
Collapse
|
10
|
Brown KT, Genin A, Mello‐Athayde MA, Bergstrom E, Campili A, Chai A, Dove SG, Ho M, Rowell D, Sampayo EM, Radice VZ. Marine heatwaves modulate the genotypic and physiological responses of reef-building corals to subsequent heat stress. Ecol Evol 2023; 13:e10798. [PMID: 38099138 PMCID: PMC10719612 DOI: 10.1002/ece3.10798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Back-to-back marine heatwaves in 2016 and 2017 resulted in severe coral bleaching and mortality across the Great Barrier Reef (GBR). Encouragingly, some corals that survived these events exhibit increased bleaching resistance and may represent thermally tolerant populations that can better cope with ocean warming. Using the GBR as a natural laboratory, we investigated whether a history of minimal (Heron Island) or severe (Lizard Island) coral bleaching in 2016 and 2017 equates to stress tolerance in a successive heatwave (2020). We examined the genetic diversity, physiological performance, and trophic plasticity of juvenile (<10 cm) and adult (>25 cm) corals of two common genera (Pocillopora and Stylophora). Despite enduring greater cumulative heat stress (6.3°C week-1 vs. 5.6°C week-1), corals that experienced the third marine heatwave in 5 years (Lizard) exhibited twice as high survival and visual bleaching thresholds compared to corals that had not experienced significant bleaching in >10 years (Heron). Surprisingly, only one shared host-Symbiodiniaceae association was uncovered between locations (Stylophora pistillata-Cladocopium "C8 group") and there was no genetic overlap in Pocillopora-Cladocopium partnerships, suggesting turnover in species composition from recent marine heatwaves. Corals within the species complex Pocillopora that survived the 2016 and 2017 marine heatwaves at Lizard Island were the most resilient, exhibiting three times greater calcification rates than conspecifics at Heron Island. Further, surviving corals (Lizard) had distinct isotopic niches, lower host carbon, and greater host protein, while conspecifics that had not experienced recent bleaching (Heron) had two times greater symbiont carbon content, suggesting divergent trophic strategies that influenced survival (i.e., greater reliance on heterotrophy vs. symbiont autotrophy, respectively). Ultimately, while corals may experience less bleaching and survive repeated thermal stress events, species-specific trade-offs do occur, leaving open many questions related to the long-term health and recovery of coral reef ecosystems in the face of intensifying marine heatwaves.
Collapse
Affiliation(s)
- Kristen T. Brown
- School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Amatzia Genin
- The Interuniversity Institute for Marine Sciences of EilatThe Hebrew University of JerusalemEilatIsrael
| | | | | | - Adriana Campili
- Australian Institute of Marine ScienceTownsville Mail CentreTownsvilleQueenslandAustralia
| | - Aaron Chai
- Faculty of Science and EngineeringSouthern Cross UniversityEast LismoreNew South WalesAustralia
| | - Sophie G. Dove
- School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | | | - Devin Rowell
- School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Eugenia M. Sampayo
- School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Veronica Z. Radice
- School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
- Department of Biological SciencesOld Dominion UniversityNorfolkVirginiaUSA
| |
Collapse
|
11
|
Johnston EC, Burgess SC. Pocillopora tuahiniensis: a new species of scleractinian coral (Scleractinia, Pocilloporidae) from French Polynesia. Zootaxa 2023; 5369:117-124. [PMID: 38220724 DOI: 10.11646/zootaxa.5369.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Indexed: 01/16/2024]
Abstract
Pocillopora tuahiniensis sp. nov. is described based on mitochondrial and nuclear genomic data, algal symbiont genetic data, geographic isolation, and its distribution pattern within reefs that is distinct from other sympatric Pocillopora species (Johnston et al. 2022a, b). Mitochondrial and nuclear genomic data reveal that P. tuahiniensis sp. nov. is a unique species, sister to P. verrucosa, and in a clade different from that of P. meandrina (Johnston et al. 2022a). However, the gross in situ colony appearance of P. tuahiniensis sp. nov. cannot easily be differentiated from that of P. verrucosa or P. meandrina at Moorea. By sequencing the mtORF region, P. tuahiniensis sp. nov. can be easily distinguished from other Pocillopora species. Pocillopora tuahiniensis sp. nov. has so far been sampled in French Polynesia, Ducie Island, and Rapa Nui (Armstrong et al. 2023; Edmunds et al. 2016; Forsman et al. 2013; Glin et al. 2017; Mayfield et al. 2015; Oury et al. 2021; Voolstra et al. 2023). On the fore reefs of Moorea, P. tuahiniensis sp. nov. is very abundant 10 m and is one of the most common Pocillopora species at these depths (Johnston et al. 2022b). It can also be found at a much lower abundance at shallow depths on the fore reef and back reef lagoon. The holotype is deposited at the Smithsonian Institution as USNM-SI 1522390 and the mtORF Genbank accession number is OP418359.
Collapse
Affiliation(s)
- Erika C Johnston
- Department of Biological Science; Florida State University; 319 Stadium Drive; Tallahassee; FL; 32306-4296; USA. Hawaii Institute of Marine Biology; 46-007 Lilipuna Rd; Kneohe; HI; 96744; USA.
| | - Scott C Burgess
- Department of Biological Science; Florida State University; 319 Stadium Drive; Tallahassee; FL; 32306-4296; USA.
| |
Collapse
|
12
|
Fiesinger A, Held C, Schmidt AL, Putchim L, Melzner F, Wall M. Dominance of the coral Pocillopora acuta around Phuket Island in the Andaman Sea, Thailand. Ecol Evol 2023; 13:e10724. [PMID: 38020692 PMCID: PMC10643679 DOI: 10.1002/ece3.10724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Pocillopora damicornis (Linnaeus, 1758), a species complex, consists of several genetic lineages, some of which likely represent reproductively isolated species, including the species Pocillopora acuta Lamarck, 1816. Pocillopora acuta can exhibit similar morphological characteristics as P. damicornis, thus making it difficult to identify species-level taxonomic units. To determine whether the P. damicornis-like colonies on the reefs in the Andaman Sea (previously often identified as P. damicornis) consist of different species, we sampled individual colonies at five sites along a 50 km coastal stretch at Phuket Island and four island sites towards Krabi Province, Thailand. We sequenced 210 coral samples for the mitochondrial open reading frame and identified six distinct haplotypes, all belonging to P. acuta according to the literature. Recently, P. acuta was observed to efficiently recolonize heat-damaged reefs in Thailand as well as globally, making it a potentially important coral species in future reefs. Specifically in the light of global change, this study underscores the importance of high-resolution molecular species recognition, since taxonomic units are important factors for population genetic studies, and the latter are crucial for management and conservation efforts.
Collapse
Affiliation(s)
- Anna Fiesinger
- GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Christoph Held
- Alfred‐Wegener‐InstitutHelmholtz‐Zentrum für Polar‐ und MeeresforschungBremerhavenGermany
| | - Andrea L. Schmidt
- GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
- Cooperative Institute for Marine and Atmospheric ResearchUniversity of Hawai‘i at ManoaHonoluluHonoluluUSA
| | | | - Frank Melzner
- GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
| | - Marlene Wall
- GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
- Alfred‐Wegener‐InstitutHelmholtz‐Zentrum für Polar‐ und MeeresforschungBremerhavenGermany
| |
Collapse
|
13
|
Wang C, Zheng X, Kvitt H, Sheng H, Sun D, Niu G, Tchernov D, Shi T. Lineage-specific symbionts mediate differential coral responses to thermal stress. MICROBIOME 2023; 11:211. [PMID: 37752514 PMCID: PMC10521517 DOI: 10.1186/s40168-023-01653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Ocean warming is a leading cause of increasing episodes of coral bleaching, the dissociation between coral hosts and their dinoflagellate algal symbionts in the family Symbiodiniaceae. While the diversity and flexibility of Symbiodiniaceae is presumably responsible for variations in coral response to physical stressors such as elevated temperature, there is little data directly comparing physiological performance that accounts for symbiont identity associated with the same coral host species. Here, using Pocillopora damicornis harboring genotypically distinct Symbiodiniaceae strains, we examined the physiological responses of the coral holobiont and the dynamics of symbiont community change under thermal stress in a laboratory-controlled experiment. RESULTS We found that P. damicornis dominated with symbionts of metahaplotype D1-D4-D6 in the genus Durusdinium (i.e., PdD holobiont) was more robust to thermal stress than its counterpart with symbionts of metahaplotype C42-C1-C1b-C1c in the genus Cladocopium (i.e., PdC holobiont). Under ambient temperature, however, the thermally sensitive Cladocopium spp. exhibited higher photosynthetic efficiency and translocated more fixed carbon to the host, likely facilitating faster coral growth and calcification. Moreover, we observed a thermally induced increase in Durusdinium proportion in the PdC holobiont; however, this "symbiont shuffling" in the background was overwhelmed by the overall Cladocopium dominance, which coincided with faster coral bleaching and reduced calcification. CONCLUSIONS These findings support that lineage-specific symbiont dominance is a driver of distinct coral responses to thermal stress. In addition, we found that "symbiont shuffling" may begin with stress-forced, subtle changes in the rare biosphere to eventually trade off growth for increased resilience. Furthermore, the flexibility in corals' association with thermally tolerant symbiont lineages to adapt or acclimatize to future warming oceans should be viewed with conservative optimism as the current rate of environmental changes may outpace the evolutionary capabilities of corals. Video Abstract.
Collapse
Affiliation(s)
- Chenying Wang
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xinqing Zheng
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
- Observation and Research Station of Wetland Ecosystem in the Beibu Gulf, Ministry of Natural Resources, Beihai, 536015, China.
| | - Hagit Kvitt
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel
- Israel Oceanographic and Limnological Research, National Center for Mariculture, 88112, Eilat, Israel
| | - Huaxia Sheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Danye Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Gaofeng Niu
- Marine Genomics and Biotechnology Program, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Dan Tchernov
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel.
| | - Tuo Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Marine Genomics and Biotechnology Program, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510000, China.
| |
Collapse
|
14
|
Speelman PE, Parger M, Schoepf V. Divergent recovery trajectories of intertidal and subtidal coral communities highlight habitat-specific recovery dynamics following bleaching in an extreme macrotidal reef environment. PeerJ 2023; 11:e15987. [PMID: 37727686 PMCID: PMC10506583 DOI: 10.7717/peerj.15987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023] Open
Abstract
Coral reefs face an uncertain future punctuated by recurring climate-induced disturbances. Understanding how reefs can recover from and reassemble after mass bleaching events is therefore important to predict their responses and persistence in a rapidly changing ocean. On naturally extreme reefs characterized by strong daily temperature variability, coral heat tolerance can vary significantly over small spatial gradients but it remains poorly understood how this impacts bleaching resilience and recovery dynamics, despite their importance as resilience hotspots and potential refugia. In the macrotidal Kimberley region in NW Australia, the 2016 global mass bleaching event had a strong habitat-specific impact on intertidal and subtidal coral communities at our study site: corals in the thermally variable intertidal bleached less severely and recovered within six months, while 68% of corals in the moderately variable subtidal died. We therefore conducted benthic surveys 3.5 years after the bleaching event to determine potential changes in benthic cover and coral community composition. In the subtidal, we documented substantial increases in algal cover and live coral cover had not fully recovered to pre-bleaching levels. Furthermore, the subtidal coral community shifted from being dominated by branching Acropora corals with a competitive life history strategy to opportunistic, weedy Pocillopora corals which likely has implications for the functioning and stress resilience of this novel coral community. In contrast, no shifts in algal and live coral cover or coral community composition occurred in the intertidal. These findings demonstrate that differences in coral heat tolerance across small spatial scales can have large consequences for bleaching resilience and that spatial patchiness in recovery trajectories and community reassembly after bleaching might be a common feature on thermally variable reefs. Our findings further confirm that reefs adapted to high daily temperature variability play a key role as resilience hotspots under current climate conditions, but their ability to do so may be limited under intensifying ocean warming.
Collapse
Affiliation(s)
- P. Elias Speelman
- Institute for Biodiversity and Ecosystem Dynamics, Dept. of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Parger
- UWA Ocean Institute, The University of Western Australia, Perth, WA, Australia
| | - Verena Schoepf
- Institute for Biodiversity and Ecosystem Dynamics, Dept. of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam, The Netherlands
- UWA Ocean Institute, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
15
|
Chuang PS, Yamada Y, Liu PY, Tang SL, Mitarai S. Bacterial Community Shifts during Polyp Bail-Out Induction in Pocillopora Corals. Microbiol Spectr 2023; 11:e0025723. [PMID: 37378544 PMCID: PMC10433994 DOI: 10.1128/spectrum.00257-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Polyp bail-out constitutes both a stress response and an asexual reproductive strategy that potentially facilitates dispersal of some scleractinian corals, including several dominant reef-building taxa in the family Pocilloporidae. Recent studies have proposed that microorganisms may be involved in onset and progression of polyp bail-out. However, changes in the coral microbiome during polyp bail-out have not been investigated. In this study, we induced polyp bail-out in Pocillopora corals using hypersaline and hyperthermal methods. Bacterial community dynamics during bail-out induction were examined using the V5-V6 region of the 16S-rRNA gene. From 70 16S-rRNA gene libraries constructed from coral tissues, 1,980 OTUs were identified. Gammaproteobacteria and Alphaproteobacteria consistently constituted the dominant bacterial taxa in all coral tissue samples. Onset of polyp bail-out was characterized by increased relative abundance of Alphaproteobacteria and decreased abundance of Gammaproteobacteria in both induction experiments, with the shift being more prominent in response to elevated temperature than to elevated salinity. Four OTUs, affiliated with Thalassospira, Marisediminitalea, Rhodobacteraceae, and Myxococcales, showed concurrent abundance increases at the onset of polyp bail-out in both experiments, suggesting potential microbial causes of this coral stress response. IMPORTANCE Polyp bail-out represents both a stress response and an asexual reproductive strategy with significant implications for reshaping tropical coral reefs in response to global climate change. Although earlier studies have suggested that coral-associated microbiomes likely contribute to initiation of polyp bail-out in scleractinian corals, there have been no studies of coral microbiome shifts during polyp bail-out. In this study, we present the first investigation of changes in bacterial symbionts during two experiments in which polyp bail-out was induced by different environmental stressors. These results provide a background of coral microbiome dynamics during polyp bail-out development. Increases in abundance of Thalassospira, Marisediminitalea, Rhodobacteraceae, and Myxococcales that occurred in both experiments suggest that these bacteria are potential microbial causes of polyp bail-out, shedding light on the proximal triggering mechanism of this coral stress response.
Collapse
Affiliation(s)
- Po-Shun Chuang
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yosuke Yamada
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Po-Yu Liu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan (ROC)
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan (ROC)
| | - Satoshi Mitarai
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
16
|
Stephens TG, Strand EL, Putnam HM, Bhattacharya D. Ploidy Variation and Its Implications for Reproduction and Population Dynamics in Two Sympatric Hawaiian Coral Species. Genome Biol Evol 2023; 15:evad149. [PMID: 37566739 PMCID: PMC10445776 DOI: 10.1093/gbe/evad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/24/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Standing genetic variation is a major driver of fitness and resilience and therefore of fundamental importance for threatened species such as stony corals. We analyzed RNA-seq data generated from 132 Montipora capitata and 119 Pocillopora acuta coral colonies collected from Kāne'ohe Bay, O'ahu, Hawai'i. Our goals were to determine the extent of colony genetic variation and to study reproductive strategies in these two sympatric species. Surprisingly, we found that 63% of the P. acuta colonies were triploid, with putative independent origins of the different triploid clades. These corals have spread primarily via asexual reproduction and are descended from a small number of genotypes, whose diploid ancestor invaded the bay. In contrast, all M. capitata colonies are diploid and outbreeding, with almost all colonies genetically distinct. Only two cases of asexual reproduction, likely via fragmentation, were identified in this species. We report two distinct strategies in sympatric coral species that inhabit the largest sheltered body of water in the main Hawaiian Islands. These data highlight divergence in reproductive behavior and genome biology, both of which contribute to coral resilience and persistence.
Collapse
Affiliation(s)
- Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Emma L Strand
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
17
|
Connelly MT, Snyder G, Palacio-Castro AM, Gillette PR, Baker AC, Traylor-Knowles N. Antibiotics reduce Pocillopora coral-associated bacteria diversity, decrease holobiont oxygen consumption and activate immune gene expression. Mol Ecol 2023; 32:4677-4694. [PMID: 37317893 DOI: 10.1111/mec.17049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
Corals are important models for understanding invertebrate host-microbe interactions; however, to fully discern mechanisms involved in these relationships, experimental approaches for manipulating coral-bacteria associations are needed. Coral-associated bacteria affect holobiont health via nutrient cycling, metabolic exchanges and pathogen exclusion, yet it is not fully understood how bacterial community shifts affect holobiont health and physiology. In this study, a combination of antibiotics (ampicillin, streptomycin and ciprofloxacin) was used to disrupt the bacterial communities of 14 colonies of the reef framework-building corals Pocillopora meandrina and P. verrucosa, originally collected from Panama and hosting diverse algal symbionts (family Symbiodiniaceae). Symbiodiniaceae photochemical efficiencies and holobiont oxygen consumption (as proxies for coral health) were measured throughout a 5-day exposure. Antibiotics altered bacterial community composition and reduced alpha and beta diversity, however, several bacteria persisted, leading to the hypothesis that these bacteria are either antibiotics resistant or occupy internal niches that are shielded from antibiotics. While antibiotics did not affect Symbiodiniaceae photochemical efficiency, antibiotics-treated corals had lower oxygen consumption rates. RNAseq revealed that antibiotics increased expression of Pocillopora immunity and stress response genes at the expense of cellular maintenance and metabolism functions. Together, these results reveal that antibiotic disruption of corals' native bacteria negatively impacts holobiont health by decreasing oxygen consumption and activating host immunity without directly impairing Symbiodiniaceae photosynthesis, underscoring the critical role of coral-associated bacteria in holobiont health. They also provide a baseline for future experiments that manipulate Pocillopora corals' symbioses by first reducing the diversity and complexity of coral-associated bacteria.
Collapse
Affiliation(s)
- Michael T Connelly
- Department of Marine Biology and Ecology, University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, Miami, Florida, USA
| | - Grace Snyder
- Department of Marine Biology and Ecology, University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, Miami, Florida, USA
| | - Ana M Palacio-Castro
- University of Miami Cooperative Institute for Marine and Atmospheric Studies, Miami, Florida, USA
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, USA
| | - Phillip R Gillette
- Department of Marine Biology and Ecology, University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, Miami, Florida, USA
| | - Andrew C Baker
- Department of Marine Biology and Ecology, University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, Miami, Florida, USA
| | - Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, Miami, Florida, USA
| |
Collapse
|
18
|
Voolstra CR, Hume BCC, Armstrong EJ, Mitushasi G, Porro B, Oury N, Agostini S, Boissin E, Poulain J, Carradec Q, Paz-García DA, Zoccola D, Magalon H, Moulin C, Bourdin G, Iwankow G, Romac S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores M, Furla P, Galand PE, Gilson E, Lombard F, Pesant S, Reynaud S, Sullivan MB, Sunagawa S, Thomas OP, Troublé R, Thurber RV, Wincker P, Planes S, Allemand D, Forcioli D. Disparate genetic divergence patterns in three corals across a pan-Pacific environmental gradient highlight species-specific adaptation. NPJ BIODIVERSITY 2023; 2:15. [PMID: 39242808 PMCID: PMC11332039 DOI: 10.1038/s44185-023-00020-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/13/2023] [Indexed: 09/09/2024]
Abstract
Tropical coral reefs are among the most affected ecosystems by climate change and face increasing loss in the coming decades. Effective conservation strategies that maximize ecosystem resilience must be informed by the accurate characterization of extant genetic diversity and population structure together with an understanding of the adaptive potential of keystone species. Here we analyzed samples from the Tara Pacific Expedition (2016-2018) that completed an 18,000 km longitudinal transect of the Pacific Ocean sampling three widespread corals-Pocillopora meandrina, Porites lobata, and Millepora cf. platyphylla-across 33 sites from 11 islands. Using deep metagenomic sequencing of 269 colonies in conjunction with morphological analyses and climate variability data, we can show that despite a targeted sampling the transect encompasses multiple cryptic species. These species exhibit disparate biogeographic patterns and, most importantly, distinct evolutionary patterns in identical environmental regimes. Our findings demonstrate on a basin scale that evolutionary trajectories are species-specific and can only in part be predicted from the environment. This highlights that conservation strategies must integrate multi-species investigations to discern the distinct genomic footprints shaped by selection as well as the genetic potential for adaptive change.
Collapse
Affiliation(s)
| | - Benjamin C C Hume
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Eric J Armstrong
- PSL Research University, EPHE, CNRS, Université de Perpignan, Perpignan, France
| | - Guinther Mitushasi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Barbara Porro
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- French National Institute for Agriculture, Food, and Environment (INRAE), Université Côte d'Azur, ISA, France
| | - Nicolas Oury
- UMR 250/9220 ENTROPIE UR-IRD-CNRS-Ifremer-UNC, Laboratoire d'Excellence CORAIL, Université de la Réunion, St Denis de la Réunion, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - David A Paz-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. IPN 195, Col. Playa Palo de Santa Rita Sur, La Paz, 23096, Baja California Sur, México
| | - Didier Zoccola
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| | - Hélène Magalon
- UMR 250/9220 ENTROPIE UR-IRD-CNRS-Ifremer-UNC, Laboratoire d'Excellence CORAIL, Université de la Réunion, St Denis de la Réunion, France
| | - Clémentine Moulin
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75 012, Paris, France
| | - Guillaume Bourdin
- School of Marine Sciences, University of Maine, Orono, 04469, ME, USA
| | - Guillaume Iwankow
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France
| | - Sarah Romac
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Bernard Banaigs
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, 04469, ME, USA
| | - Chris Bowler
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Colomban de Vargas
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel Flores
- Weizmann Institute of Science, Department of Earth and Planetary Sciences, 76100, Rehovot, Israel
| | - Paola Furla
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Department of Medical Genetics, CHU Nice, Nice, France
| | - Fabien Lombard
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Laboratoire d'Océanographie de Villefranche, UMR 7093, Sorbonne Université, CNRS, 06230, Villefranche sur mer, France
- Institut Universitaire de France, 75231, Paris, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stéphanie Reynaud
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| | - Matthew B Sullivan
- Department of Microbiology and Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zurich, Switzerland
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, H91 TK33, Galway, Ireland
| | - Romain Troublé
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75 012, Paris, France
| | | | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France
| | - Denis Allemand
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| | - Didier Forcioli
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France.
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco.
| |
Collapse
|
19
|
Oury N, Noël C, Mona S, Aurelle D, Magalon H. From genomics to integrative species delimitation? The case study of the Indo-Pacific Pocillopora corals. Mol Phylogenet Evol 2023; 184:107803. [PMID: 37120114 DOI: 10.1016/j.ympev.2023.107803] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
With the advent of genomics, sequencing thousands of loci from hundreds of individuals now appears feasible at reasonable costs, allowing complex phylogenies to be resolved. This is particularly relevant for cnidarians, for which insufficient data is available due to the small number of currently available markers and obscures species boundaries. Difficulties in inferring gene trees and morphological incongruences further blur the study and conservation of these organisms. Yet, can genomics alone be used to delimit species? Here, focusing on the coral genus Pocillopora, whose colonies play key roles in Indo-Pacific reef ecosystems but have challenged taxonomists for decades, we explored and discussed the usefulness of multiple criteria (genetics, morphology, biogeography and symbiosis ecology) to delimit species of this genus. Phylogenetic inferences, clustering approaches and species delimitation methods based on genome-wide single-nucleotide polymorphisms (SNP) were first used to resolve Pocillopora phylogeny and propose genomic species hypotheses from 356 colonies sampled across the Indo-Pacific (western Indian Ocean, tropical southwestern Pacific and south-east Polynesia). These species hypotheses were then compared to other lines of evidence based on genetic, morphology, biogeography and symbiont associations. Out of 21 species hypotheses delimited by genomics, 13 were strongly supported by all approaches, while six could represent either undescribed species or nominal species that have been synonymised incorrectly. Altogether, our results support (1) the obsolescence of macromorphology (i.e., overall colony and branches shape) but the relevance of micromorphology (i.e., corallite structures) to refine Pocillopora species boundaries, (2) the relevance of the mtORF (coupled with other markers in some cases) as a diagnostic marker of most species, (3) the requirement of molecular identification when species identity of colonies is absolutely necessary to interpret results, as morphology can blur species identification in the field, and (4) the need for a taxonomic revision of the genus Pocillopora. These results give new insights into the usefulness of multiple criteria for resolving Pocillopora, and more widely, scleractinian species boundaries, and will ultimately contribute to the taxonomic revision of this genus and the conservation of its species.
Collapse
Affiliation(s)
- Nicolas Oury
- UMR ENTROPIE (Université de La Réunion, IRD, IFREMER, Université de Nouvelle-Calédonie, CNRS), Université de La Réunion, St Denis, La Réunion, France; Laboratoire Cogitamus, Paris, France.
| | - Cyril Noël
- IFREMER - IRSI - Service de Bioinformatique (SeBiMER), Plouzané, France
| | - Stefano Mona
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, EPHE-PSL, Université PSL, CNRS, SU, UA, Paris, France; EPHE, PSL Research University, Paris, France; Laboratoire d'Excellence CORAIL, Perpignan, France
| | - Didier Aurelle
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, EPHE-PSL, Université PSL, CNRS, SU, UA, Paris, France; Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Hélène Magalon
- UMR ENTROPIE (Université de La Réunion, IRD, IFREMER, Université de Nouvelle-Calédonie, CNRS), Université de La Réunion, St Denis, La Réunion, France; Laboratoire Cogitamus, Paris, France; Laboratoire d'Excellence CORAIL, Perpignan, France
| |
Collapse
|
20
|
Blandford MI, Hillcoat KB, Pratchett MS, Hoey AS. Effects of habitat fragmentation on the recruitment and early post-settlement survival of coral reef fishes. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105798. [PMID: 36401956 DOI: 10.1016/j.marenvres.2022.105798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The combined effects of global climate change and local anthropogenic stressors are leading to increasing loss and fragmentation of habitats. On coral reefs, habitat loss has been shown to influence the abundance and composition of associated fish assemblages, yet few studies have considered how habitat fragmentation may influence reef fish populations and assemblages. Herein, we compared survival, growth and recruitment of reef fish among experimental patches composed of six similar sized colonies of finely branching Pocillopora spp. but with different degrees of fragmentation: coral colonies were clumped (unfragmented), divided into two groups (low fragmentation), three groups (moderate fragmentation) or six groups (high fragmentation). Thirty settlement-stage Pomacentrus amboinensis were tagged, released onto each of the experimental patches, and their survival monitored daily for 11 days. Abundance and species richness of all reef fishes that subsequently recruited to the patches were also recorded, and used to analyse recruitment and community composition. There were no detectable differences among fragmentation treatments in the abundance or composition of reef fish assemblages that recruited to the patches, however, fragmentation influenced the survivorship of P. amboinensis. Highest survival of P. amboinensis was recorded on the unfragmented patches (61%.11 days-1) and highly fragmented habitat patches (54%.11 days-1) and lowest survival on low and moderate fragmentation treatments (47% and 48%.11 days-1, respectively). This suggests that there may be multiple competing processes that moderate mortality (e.g., predation) in unfragmented versus highly fragmented habitats, with moderate levels of habitat fragmentation having the greatest influence on the early post-settlement survival of corsal reef fish.
Collapse
Affiliation(s)
- M I Blandford
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville Q, 4811, Australia.
| | - K B Hillcoat
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville Q, 4811, Australia.
| | - M S Pratchett
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville Q, 4811, Australia.
| | - A S Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville Q, 4811, Australia.
| |
Collapse
|
21
|
Delgadillo-Ordoñez N, Raimundo I, Barno AR, Osman EO, Villela H, Bennett-Smith M, Voolstra CR, Benzoni F, Peixoto RS. Red Sea Atlas of Coral-Associated Bacteria Highlights Common Microbiome Members and Their Distribution across Environmental Gradients-A Systematic Review. Microorganisms 2022; 10:microorganisms10122340. [PMID: 36557593 PMCID: PMC9787610 DOI: 10.3390/microorganisms10122340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/12/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
The Red Sea is a suitable model for studying coral reefs under climate change due to its strong environmental gradient that provides a window into future global warming scenarios. For instance, corals in the southern Red Sea thrive at temperatures predicted to occur at the end of the century in other biogeographic regions. Corals in the Red Sea thrive under contrasting thermal and environmental regimes along their latitudinal gradient. Because microbial communities associated with corals contribute to host physiology, we conducted a systematic review of the known diversity of Red Sea coral-associated bacteria, considering geographic location and host species. Our assessment comprises 54 studies of 67 coral host species employing cultivation-dependent and cultivation-independent techniques. Most studies have been conducted in the central and northern Red Sea, while the southern and western regions remain largely unexplored. Our data also show that, despite the high diversity of corals in the Red Sea, the most studied corals were Pocillopora verrucosa, Dipsastraea spp., Pleuractis granulosa, and Stylophora pistillata. Microbial diversity was dominated by bacteria from the class Gammaproteobacteria, while the most frequently occurring bacterial families included Rhodobacteraceae and Vibrionaceae. We also identified bacterial families exclusively associated with each of the studied coral orders: Scleractinia (n = 125), Alcyonacea (n = 7), and Capitata (n = 2). This review encompasses 20 years of research in the Red Sea, providing a baseline compendium for coral-associated bacterial diversity.
Collapse
Affiliation(s)
- Nathalia Delgadillo-Ordoñez
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Inês Raimundo
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Adam R. Barno
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Eslam O. Osman
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Helena Villela
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Morgan Bennett-Smith
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Christian R. Voolstra
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Francesca Benzoni
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Raquel S. Peixoto
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- Correspondence:
| |
Collapse
|
22
|
Stephens TG, Lee J, Jeong Y, Yoon HS, Putnam HM, Majerová E, Bhattacharya D. High-quality genome assembles from key Hawaiian coral species. Gigascience 2022; 11:giac098. [PMID: 36352542 PMCID: PMC9646523 DOI: 10.1093/gigascience/giac098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/11/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Coral reefs house about 25% of marine biodiversity and are critical for the livelihood of many communities by providing food, tourism revenue, and protection from wave surge. These magnificent ecosystems are under existential threat from anthropogenic climate change. Whereas extensive ecological and physiological studies have addressed coral response to environmental stress, high-quality reference genome data are lacking for many of these species. The latter issue hinders efforts to understand the genetic basis of stress resistance and to design informed coral conservation strategies. RESULTS We report genome assemblies from 4 key Hawaiian coral species, Montipora capitata, Pocillopora acuta, Pocillopora meandrina, and Porites compressa. These species, or members of these genera, are distributed worldwide and therefore of broad scientific and ecological importance. For M. capitata, an initial assembly was generated from short-read Illumina and long-read PacBio data, which was then scaffolded into 14 putative chromosomes using Omni-C sequencing. For P. acuta, P. meandrina, and P. compressa, high-quality assemblies were generated using short-read Illumina and long-read PacBio data. The P. acuta assembly is from a triploid individual, making it the first reference genome of a nondiploid coral animal. CONCLUSIONS These assemblies are significant improvements over available data and provide invaluable resources for supporting multiomics studies into coral biology, not just in Hawai'i but also in other regions, where related species exist. The P. acuta assembly provides a platform for studying polyploidy in corals and its role in genome evolution and stress adaptation in these organisms.
Collapse
Affiliation(s)
- Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu, Buk-gu 41566, Korea
| | - YuJin Jeong
- Department of Oceanography, Kyungpook National University, Daegu, Buk-gu 41566, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Eva Majerová
- Hawaiʻi Institute of Marine Biology, Kāneʻohe, HI 96744, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
23
|
Johnston EC, Cunning R, Burgess SC. Cophylogeny and specificity between cryptic coral species (Pocillopora spp.) at Mo'orea and their symbionts (Symbiodiniaceae). Mol Ecol 2022; 31:5368-5385. [PMID: 35960256 PMCID: PMC9805206 DOI: 10.1111/mec.16654] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 01/09/2023]
Abstract
The congruence between phylogenies of tightly associated groups of organisms (cophylogeny) reflects evolutionary links between ecologically important interactions. However, despite being a classic example of an obligate symbiosis, tests of cophylogeny between scleractinian corals and their photosynthetic algal symbionts have been hampered in the past because both corals and algae contain genetically unresolved and morphologically cryptic species. Here, we studied co-occurring, cryptic Pocillopora species from Mo'orea, French Polynesia, that differ in their relative abundance across depth. We constructed new phylogenies of the host Pocillopora (using complete mitochondrial genomes, genomic loci, and thousands of single nucleotide polymorphisms) and their Symbiodiniaceae symbionts (using ITS2 and psbAncr markers) and tested for cophylogeny. The analysis supported the presence of five Pocillopora species on the fore reef at Mo'orea that mostly hosted either Cladocopium latusorum or C. pacificum. Only Pocillopora species hosting C. latusorum also hosted taxa from Symbiodinium and Durusdinium. In general, the Cladocopium phylogeny mirrored the Pocillopora phylogeny. Within Cladocopium species, lineages also differed in their associations with Pocillopora haplotypes, except those showing evidence of nuclear introgression, and with depth in the two most common Pocillopora species. We also found evidence for a new Pocillopora species (haplotype 10), that has so far only been sampled from French Polynesia, that warrants formal identification. The linked phylogenies of these Pocillopora and Cladocopium species and lineages suggest that symbiont speciation is driven by niche diversification in the host, but there is still evidence for symbiont flexibility in some cases.
Collapse
Affiliation(s)
- Erika C. Johnston
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Ross Cunning
- Daniel P. Haerther Center for Conservation and ResearchJohn G. Shedd AquariumChicagoIllinoisUSA
| | - Scott C. Burgess
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
24
|
Species and population genomic differentiation in Pocillopora corals (Cnidaria, Hexacorallia). Genetica 2022; 150:247-262. [PMID: 36083388 DOI: 10.1007/s10709-022-00165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/01/2022] [Indexed: 11/04/2022]
Abstract
Correctly delimiting species and populations is a prerequisite for studies of connectivity, adaptation and conservation. Genomic data are particularly useful to test species differentiation for organisms with few informative morphological characters or low discrimination of cytoplasmic markers, as in Scleractinians. Here we applied Restriction site Associated DNA sequencing (RAD-sequencing) to the study of species differentiation and genetic structure in populations of Pocillopora spp. from Oman and French Polynesia, with the objectives to test species hypotheses, and to study the genetic structure among sampling sites within species. We focused here on coral colonies morphologically similar to P. acuta (damicornis type β). We tested the impact of different filtering strategies on the stability of the results. The main genetic differentiation was observed between samples from Oman and French Polynesia. These samples corresponded to different previously defined primary species hypotheses (PSH), i.e., PSHs 12 and 13 in Oman, and PSH 5 in French Polynesia. In Oman, we did not observe any clear differentiation between the two putative species PSH 12 and 13, nor between sampling sites. In French Polynesia, where a single species hypothesis was studied, there was no differentiation between sites. Our analyses allowed the identification of clonal lineages in Oman and French Polynesia. The impact of clonality on genetic diversity is discussed in light of individual-based simulations.
Collapse
|
25
|
Juszkiewicz DJ, White NE, Stolarski J, Benzoni F, Arrigoni R, Baird AH, Hoeksema BW, Wilson NG, Bunce M, Richards ZT. Full Title: Phylogeography of recent Plesiastrea (Scleractinia: Plesiastreidae) based on an integrated taxonomic approach. Mol Phylogenet Evol 2022; 172:107469. [DOI: 10.1016/j.ympev.2022.107469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
|
26
|
Banc-Prandi G, Evensen NR, Barshis DJ, Perna G, Moussa Omar Y, Fine M. Assessment of temperature optimum signatures of corals at both latitudinal extremes of the Red Sea. CONSERVATION PHYSIOLOGY 2022; 10:coac002. [PMID: 35492414 PMCID: PMC9040280 DOI: 10.1093/conphys/coac002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/11/2021] [Accepted: 02/16/2022] [Indexed: 05/11/2023]
Abstract
Rising ocean temperatures are pushing reef-building corals beyond their temperature optima (Topt ), resulting in reduced physiological performances and increased risk of bleaching. Identifying refugia with thermally resistant corals and understanding their thermal adaptation strategy is therefore urgent to guide conservation actions. The Gulf of Aqaba (GoA, northern Red Sea) is considered a climate refuge, hosting corals that may originate from populations selected for thermal resistance in the warmer waters of the Gulf of Tadjoura (GoT, entrance to the Red Sea and 2000 km south of the GoA). To better understand the thermal adaptation strategy of GoA corals, we compared the temperature optima (Topt ) of six common reef-building coral species from the GoA and the GoT by measuring oxygen production and consumption rates as well as photophysiological performance (i.e. chlorophyll fluorescence) in response to a short heat stress. Most species displayed similar Topt between the two locations, highlighting an exceptional continuity in their respective physiological performances across such a large latitudinal range, supporting the GoA refuge theory. Stylophora pistillata showed a significantly lower Topt in the GoA, which may suggest an ongoing population-level selection (i.e. adaptation) to the cooler waters of the GoA and subsequent loss of thermal resistance. Interestingly, all Topt were significantly above the local maximum monthly mean seawater temperatures in the GoA (27.1°C) and close or below in the GoT (30.9°C), indicating that GoA corals, unlike those in the GoT, may survive ocean warming in the next few decades. Finally, Acropora muricata and Porites lobata displayed higher photophysiological performance than most species, which may translate to dominance in local reef communities under future thermal scenarios. Overall, this study is the first to compare the Topt of common reef-building coral species over such a latitudinal range and provides insights into their thermal adaptation in the Red Sea.
Collapse
Affiliation(s)
- Guilhem Banc-Prandi
- Corresponding author: The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel. Tel: +33 7 86 94 72 76.
| | - Nicolas R Evensen
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Daniel J Barshis
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Gabriela Perna
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Youssouf Moussa Omar
- Center for Studies and Scientific Research of Djibouti, Route de l’Aéroport, BP 1000, Djibouti
| | - Maoz Fine
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, 88103, Israel
| |
Collapse
|
27
|
Hayes JM, Abdul-Rahman NH, Gerdes MJ, Musah RA. Coral Genus Differentiation Based on Direct Analysis in Real Time-High Resolution Mass Spectrometry-Derived Chemical Fingerprints. Anal Chem 2021; 93:15306-15314. [PMID: 34761917 DOI: 10.1021/acs.analchem.1c02519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coral reefs are one of the most biologically diverse ecosystems, and the accurate identification of the species is essential for diversity assessment and conservation. Current genus determination approaches are time-consuming and resource-intensive and can be highly subjective. To explore the hypothesis that the small-molecule profiles of coral are genus-specific and can be used as a rapid tool to catalogue and distinguish between coral genera, the small-molecule chemical fingerprints of the species Acanthastrea echinata, Catalaphyllia jardinei, Duncanopsammia axifuga, Echinopora lamellosa, Euphyllia divisa, Euphyllia paraancora, Euphyllia paradivisa, Galaxea fascicularis, Herpolitha limax, Montipora confusa, Monitpora digitata, Montipora setosa, Pachyseris rugosa, Pavona cactus, Plerogyra sinuosa, Pocillopora acuta, Seriatopora hystrix, Sinularia dura, Turbinaria peltata, Turbinaria reniformis, Xenia elongata, and Xenia umbellata were generated using direct analysis in real time-high resolution mass spectrometry (DART-HRMS). It is demonstrated here that the mass spectrum-derived small-molecule profiles for coral of different genera are distinct. Multivariate statistical analysis processing of the DART-HRMS data enabled rapid genus-level differentiation based on the chemical composition of the coral. Coral samples were analyzed with no sample preparation required, making the approach rapid and efficient. The resulting spectra were subjected to kernel discriminant analysis (KDA), which furnished accurate genus differentiation of the coral. Leave-one-out cross-validation (LOOCV) was carried out to determine the classification accuracy of each model and confirm that this approach can be used for coral genus attribution with prediction accuracies ranging from 86.67 to 97.33%. The advantages and application of the statistical analysis to DART-HRMS-derived coral chemical signatures for genus-level differentiation are discussed.
Collapse
Affiliation(s)
- Jessica M Hayes
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Nana-Hawwa Abdul-Rahman
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Michael J Gerdes
- CapitalCorals Inc., 20 Colvin Avenue, Albany, New York 12206, United States
| | - Rabi A Musah
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
28
|
Soto D, De Palmas S, Ho M, Denis V, Allen Chen C. A molecular census of early-life stage scleractinian corals in shallow and mesophotic zones. Ecol Evol 2021; 11:14573-14584. [PMID: 34765126 PMCID: PMC8571570 DOI: 10.1002/ece3.8122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/06/2022] Open
Abstract
The decline of coral reefs has fueled interest in determining whether mesophotic reefs can shield against disturbances and help replenish deteriorated shallower reefs. In this study, we characterized spatial (horizontal and vertical) and seasonal patterns of diversity in coral recruits from Dabaisha and Guiwan reefs at Ludao, Taiwan. Concrete blocks supporting terra-cotta tiles were placed at shallow (15m) and mesophotic (40m) depths, during 2016-2018. Half of the tiles were retrieved and replaced biannually over three 6-month surveys (short-term); the remainder retrieved at the end of the 18-month (long-term) survey. 451 recruits were located using fluorescent censusing and identified by DNA barcoding. Barcoding the mitochondrial cytochrome oxidase I (COI) gene resulted in 17 molecular operational taxonomic units (MOTUs). To obtain taxonomic resolution to the generic level, Pocillopora were phylotyped using the mitochondrial open reading frame (ORF), resolving eight MOTUs. Acropora, Isopora, and Montipora recruits were identified by the nuclear PaxC intron, yielding ten MOTUs. Overall, 35 MOTUs were generated and were comprised primarily of Pocillopora and, in fewer numbers, Acropora, Isopora, Pavona, Montipora, Stylophora, among others. 40% of MOTUs recruited solely within mesophotic reefs while 20% were shared by both depth zones. MOTUs recruiting across a broad depth distribution appear consistent with the hypothesis of mesophotic reefs acting as a refuge for shallow-water coral reefs. In contrast, Acropora and Isopora MOTUs were structured across depth zones representing an exception to this hypothesis. This research provides an imperative assessment of coral recruitment in understudied mesophotic reefs and imparts insight into the refuge hypothesis.
Collapse
Affiliation(s)
- Derek Soto
- Biodiversity ProgramTaiwan International Graduate ProgramAcademia Sinica and National Taiwan Normal UniversityTaipeiTaiwan
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Stéphane De Palmas
- Biodiversity ProgramTaiwan International Graduate ProgramAcademia Sinica and National Taiwan Normal UniversityTaipeiTaiwan
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Ming‐Jay Ho
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
- Green Island Marine Research StationAcademia SinicaLudao, Taitung CountyTaiwan
| | - Vianney Denis
- Institute of OceanographyNational Taiwan UniversityTaipeiTaiwan
| | - Chaolun Allen Chen
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
- Department of Life ScienceTung Hai UniversityTaichungTaiwan
| |
Collapse
|
29
|
Afiq‐Rosli L, Wainwright BJ, Gajanur AR, Lee AC, Ooi SK, Chou LM, Huang D. Barriers and corridors of gene flow in an urbanized tropical reef system. Evol Appl 2021; 14:2502-2515. [PMID: 34745340 PMCID: PMC8549622 DOI: 10.1111/eva.13276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Information about the distribution of alleles among marine populations is critical for determining patterns of genetic connectivity that are essential in modern conservation planning. To estimate population connectivity in Singapore's urbanized equatorial reef system, we analysed single nucleotide polymorphisms (SNPs) from two species of reef-building corals with distinct life histories. For Porites sp., a broadcast-spawning coral, we found cryptic lineages that were differentially distributed at inshore and central-offshore sites that could be attributed to contemporary surface current regimes. Near panmixia was observed for Pocillopora acuta with differentiation of colonies at the farthest site from mainland Singapore, a possible consequence of the brooding nature and relatively long pelagic larval duration of the species. Furthermore, analysis of recent gene flow showed that 60-80% of colonies in each population were nonmigrants, underscoring self-recruitment as an important demographic process in this reef system. Apart from helping to enhance the management of Singapore's coral reef ecosystems, findings here pave the way for better understanding of the evolution of marine populations in South-East Asia.
Collapse
Affiliation(s)
- Lutfi Afiq‐Rosli
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Tropical Marine Science InstituteNational University of SingaporeSingaporeSingapore
| | - Benjamin John Wainwright
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Yale‐NUS CollegeNational University of SingaporeSingaporeSingapore
| | - Anya Roopa Gajanur
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Ai Chin Lee
- Tropical Marine Science InstituteNational University of SingaporeSingaporeSingapore
| | - Seng Keat Ooi
- Tropical Marine Science InstituteNational University of SingaporeSingaporeSingapore
| | - Loke Ming Chou
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Tropical Marine Science InstituteNational University of SingaporeSingaporeSingapore
| | - Danwei Huang
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Tropical Marine Science InstituteNational University of SingaporeSingaporeSingapore
- Centre for Nature‐based Climate SolutionsNational University of SingaporeSingaporeSingapore
| |
Collapse
|
30
|
Buitrago-López C, Mariappan KG, Cárdenas A, Gegner HM, Voolstra CR. The Genome of the Cauliflower Coral Pocillopora verrucosa. Genome Biol Evol 2021; 12:1911-1917. [PMID: 32857844 PMCID: PMC7594246 DOI: 10.1093/gbe/evaa184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Climate change and ocean warming threaten the persistence of corals worldwide. Genomic resources are critical to study the evolutionary trajectory, adaptive potential, and genetic distinctiveness of coral species. Here, we provide a reference genome of the cauliflower coral Pocillopora verrucosa, a broadly prevalent reef-building coral with important ecological roles in the maintenance of reefs across the Red Sea, the Indian Ocean, and the Pacific Ocean. The genome has an assembly size of 380,505,698 bp with a scaffold N50 of 333,696 bp and a contig N50 of 75,704 bp. The annotation of the assembled genome returned 27,439 gene models of which 89.88% have evidence of transcription from RNA-Seq data and 97.87% show homology to known genes. A high proportion of the genome (41.22%) comprised repetitive elements in comparison to other cnidarian genomes, in particular in relation to the small genome size of P. verrucosa.
Collapse
Affiliation(s)
- Carol Buitrago-López
- Red Sea Research Center, Division of Biological BESE, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kiruthiga G Mariappan
- Red Sea Research Center, Division of Biological BESE, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, Germany
| | - Hagen M Gegner
- Red Sea Research Center, Division of Biological BESE, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Centre for Organismal Studies (COS), University of Heidelberg, Germany
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological BESE, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, Germany
| |
Collapse
|
31
|
Pang HE, Poquita-Du RC, Jain SS, Huang D, Todd PA. Among-genotype responses of the coral Pocillopora acuta to emersion: implications for the ecological engineering of artificial coastal defences. MARINE ENVIRONMENTAL RESEARCH 2021; 168:105312. [PMID: 33848694 DOI: 10.1016/j.marenvres.2021.105312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Stony corals are promising transplant candidates for the ecological engineering of artificial coastal defences such as seawalls as they attract and host numerous other organisms. However, seawalls are exposed to a wide range of environmental stressors associated with periods of emersion during low tide such as desiccation and changes in salinity, temperature, and solar irradiance. All of these variables have known deleterious effects on coral physiology, growth, and fitness. In this study, we performed parallel experiments (in situ and ex situ) to examine among-genotype responses of Pocillopora acuta to emersion by quantifying growth, photophysiological metrics (Fv/Fm, non-photochemical quenching [NPQ], endosymbiont density, and chlorophyll [chl] a concentration) and survival, following different emersion periods. Results showed that coral fragments emersed for longer durations (>2 h) exhibited reduced growth and survival. Endosymbiont density and NPQ, but not Fv/Fm and chl a concentration, varied significantly among genotypes across different durations of emersion. Overall, the ability of P. acuta to tolerate emersion for up to 2 h suggests its potential to serve as a 'starter species' for transplantation efforts on seawalls. Further, careful characterisation and selection of genotypes with a high capacity to withstand emersion can help maximise the efficacy of ecological engineering using coral transplants.
Collapse
Affiliation(s)
- Hui En Pang
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Rosa Celia Poquita-Du
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore.
| | - Sudhanshi Sanjeev Jain
- Reef Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Danwei Huang
- Reef Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Peter A Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore.
| |
Collapse
|
32
|
Burgess SC, Johnston EC, Wyatt ASJ, Leichter JJ, Edmunds PJ. Response diversity in corals: hidden differences in bleaching mortality among cryptic Pocillopora species. Ecology 2021; 102:e03324. [PMID: 33690896 PMCID: PMC8244046 DOI: 10.1002/ecy.3324] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/05/2021] [Accepted: 02/05/2021] [Indexed: 01/21/2023]
Abstract
Variation among functionally similar species in their response to environmental stress buffers ecosystems from changing states. Functionally similar species may often be cryptic species representing evolutionarily distinct genetic lineages that are morphologically indistinguishable. However, the extent to which cryptic species differ in their response to stress, and could therefore provide a source of response diversity, remains unclear because they are often not identified or are assumed to be ecologically equivalent. Here, we uncover differences in the bleaching response between sympatric cryptic species of the common Indo-Pacific coral, Pocillopora. In April 2019, prolonged ocean heating occurred at Moorea, French Polynesia. 72% of pocilloporid colonies bleached after 22 d of severe heating (>8o C-days) at 10 m depth on the north shore fore reef. Colony mortality ranged from 11% to 42% around the island four months after heating subsided. The majority (86%) of pocilloporids that died from bleaching belonged to a single haplotype, despite twelve haplotypes, representing at least five species, being sampled. Mitochondrial (open reading frame) sequence variation was greater between the haplotypes that experienced mortality versus haplotypes that all survived than it was between nominal species that all survived. Colonies > 30 cm in diameter were identified as the haplotype experiencing the most mortality, and in 1125 colonies that were not genetically identified, bleaching and mortality increased with colony size. Mortality did not increase with colony size within the haplotype suffering the highest mortality, suggesting that size-dependent bleaching and mortality at the genus level was caused instead by differences among cryptic species. The relative abundance of haplotypes shifted between February and August, driven by declines in the same common haplotype for which mortality was estimated directly, at sites where heat accumulation was greatest, and where larger colony sizes occurred. The identification of morphologically indistinguishable species that differ in their response to thermal stress, but share a similar ecological function in terms of maintaining a coral-dominated state, has important consequences for uncovering response diversity that drives resilience, especially in systems with low or declining functional diversity.
Collapse
Affiliation(s)
- Scott C Burgess
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, Florida, 32306-4296, USA
| | - Erika C Johnston
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, Florida, 32306-4296, USA
| | - Alex S J Wyatt
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - James J Leichter
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA
| | - Peter J Edmunds
- Department of Biology, California State University, 18111 Nordhoff Street, Northridge, California, 91330-8303, USA
| |
Collapse
|
33
|
Roger LM, Reich HG, Lawrence E, Li S, Vizgaudis W, Brenner N, Kumar L, Klein-Seetharaman J, Yang J, Putnam HM, Lewinski NA. Applying model approaches in non-model systems: A review and case study on coral cell culture. PLoS One 2021; 16:e0248953. [PMID: 33831033 PMCID: PMC8031391 DOI: 10.1371/journal.pone.0248953] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Model systems approaches search for commonality in patterns underlying biological diversity and complexity led by common evolutionary paths. The success of the approach does not rest on the species chosen but on the scalability of the model and methods used to develop the model and engage research. Fine-tuning approaches to improve coral cell cultures will provide a robust platform for studying symbiosis breakdown, the calcification mechanism and its disruption, protein interactions, micronutrient transport/exchange, and the toxicity of nanoparticles, among other key biological aspects, with the added advantage of minimizing the ethical conundrum of repeated testing on ecologically threatened organisms. The work presented here aimed to lay the foundation towards development of effective methods to sort and culture reef-building coral cells with the ultimate goal of obtaining immortal cell lines for the study of bleaching, disease and toxicity at the cellular and polyp levels. To achieve this objective, the team conducted a thorough review and tested the available methods (i.e. cell dissociation, isolation, sorting, attachment and proliferation). The most effective and reproducible techniques were combined to consolidate culture methods and generate uncontaminated coral cell cultures for ~7 days (10 days maximum). The tests were conducted on scleractinian corals Pocillopora acuta of the same genotype to harmonize results and reduce variation linked to genetic diversity. The development of cell separation and identification methods in conjunction with further investigations into coral cell-type specific metabolic requirements will allow us to tailor growth media for optimized monocultures as a tool for studying essential reef-building coral traits such as symbiosis, wound healing and calcification at multiple scales.
Collapse
Affiliation(s)
- Liza M. Roger
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail: ,
| | - Hannah G. Reich
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Evan Lawrence
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Shuaifeng Li
- Aeronautics and Astronautics, University of Washington, Seattle, Washington, United States of America
| | - Whitney Vizgaudis
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | - Nathan Brenner
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | - Lokender Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | | | - Jinkyu Yang
- Aeronautics and Astronautics, University of Washington, Seattle, Washington, United States of America
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Nastassja A. Lewinski
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
34
|
Morphological stasis masks ecologically divergent coral species on tropical reefs. Curr Biol 2021; 31:2286-2298.e8. [PMID: 33811819 DOI: 10.1016/j.cub.2021.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/13/2021] [Accepted: 03/09/2021] [Indexed: 01/07/2023]
Abstract
Coral reefs are the epitome of species diversity, yet the number of described scleractinian coral species, the framework-builders of coral reefs, remains moderate by comparison. DNA sequencing studies are rapidly challenging this notion by exposing a wealth of undescribed diversity, but the evolutionary and ecological significance of this diversity remains largely unclear. Here, we present an annotated genome for one of the most ubiquitous corals in the Indo-Pacific (Pachyseris speciosa) and uncover, through a comprehensive genomic and phenotypic assessment, that it comprises morphologically indistinguishable but ecologically divergent lineages. Demographic modeling based on whole-genome resequencing indicated that morphological crypsis (across micro- and macromorphological traits) was due to ancient morphological stasis rather than recent divergence. Although the lineages occur sympatrically across shallow and mesophotic habitats, extensive genotyping using a rapid molecular assay revealed differentiation of their ecological distributions. Leveraging "common garden" conditions facilitated by the overlapping distributions, we assessed physiological and quantitative skeletal traits and demonstrated concurrent phenotypic differentiation. Lastly, spawning observations of genotyped colonies highlighted the potential role of temporal reproductive isolation in the limited admixture, with consistent genomic signatures in genes related to morphogenesis and reproduction. Overall, our findings demonstrate the presence of ecologically and phenotypically divergent coral species without substantial morphological differentiation and provide new leads into the potential mechanisms facilitating such divergence. More broadly, they indicate that our current taxonomic framework for reef-building corals may be scratching the surface of the ecologically relevant diversity on coral reefs, consequently limiting our ability to protect or restore this diversity effectively.
Collapse
|
35
|
Selmoni O, Lecellier G, Magalon H, Vigliola L, Oury N, Benzoni F, Peignon C, Joost S, Berteaux-Lecellier V. Seascape genomics reveals candidate molecular targets of heat stress adaptation in three coral species. Mol Ecol 2021; 30:1892-1906. [PMID: 33619812 PMCID: PMC8252710 DOI: 10.1111/mec.15857] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Anomalous heat waves are causing a major decline of hard corals around the world and threatening the persistence of coral reefs. There are, however, reefs that have been exposed to recurrent thermal stress over the years and whose corals appear to have been tolerant against heat. One of the mechanisms that could explain this phenomenon is local adaptation, but the underlying molecular mechanisms are poorly known. In this work, we applied a seascape genomics approach to study heat stress adaptation in three coral species of New Caledonia (southwestern Pacific) and to uncover the molecular actors potentially involved. We used remote sensing data to characterize the environmental trends across the reef system, and sampled corals living at the most contrasted sites. These samples underwent next generation sequencing to reveal single nucleotide polymorphisms (SNPs), frequencies of which were associated with heat stress gradients. As these SNPs might underpin an adaptive role, we characterized the functional roles of the genes located in their genomic region. In each of the studied species, we found heat stress-associated SNPs located in proximity of genes involved in pathways well known to contribute to the cellular responses against heat, such as protein folding, oxidative stress homeostasis, inflammatory and apoptotic pathways, and DNA damage-repair. In some cases, the same candidate molecular targets of heat stress adaptation recurred among species. Together, these results underline the relevance and the power of the seascape genomics approach for the discovery of adaptive traits that could allow corals to persist across wider thermal ranges.
Collapse
Affiliation(s)
- Oliver Selmoni
- Laboratory of Geographic Information Systems (LASIG, School of Architecture, Civil and Environmental Engineering (ENAC, Ecole Polytechnique Fédérale de Lausanne (EPFL, Lausanne, Switzerland.,UMR250/9220, ENTROPIE IRD-CNRS-Ifremer-UNC-UR, Labex CORAIL, Nouméa, France
| | - Gaël Lecellier
- UMR250/9220, ENTROPIE IRD-CNRS-Ifremer-UNC-UR, Labex CORAIL, Nouméa, France.,Université Paris-Saclay, UVSQ, Versailles, France
| | - Hélène Magalon
- UMR250/9220, ENTROPIE IRD-CNRS-Ifremer-UNC-UR, Labex CORAIL, St Denis de la Réunion, France
| | - Laurent Vigliola
- UMR250/9220, ENTROPIE IRD-CNRS-Ifremer-UNC-UR, Labex CORAIL, Nouméa, France
| | - Nicolas Oury
- UMR250/9220, ENTROPIE IRD-CNRS-Ifremer-UNC-UR, Labex CORAIL, St Denis de la Réunion, France
| | - Francesca Benzoni
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Christophe Peignon
- UMR250/9220, ENTROPIE IRD-CNRS-Ifremer-UNC-UR, Labex CORAIL, Nouméa, France
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG, School of Architecture, Civil and Environmental Engineering (ENAC, Ecole Polytechnique Fédérale de Lausanne (EPFL, Lausanne, Switzerland
| | | |
Collapse
|
36
|
Mason B, Cooke I, Moya A, Augustin R, Lin MF, Satoh N, Bosch TCG, Bourne DG, Hayward DC, Andrade N, Forêt S, Ying H, Ball EE, Miller DJ. AmAMP1 from Acropora millepora and damicornin define a family of coral-specific antimicrobial peptides related to the Shk toxins of sea anemones. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103866. [PMID: 32937163 DOI: 10.1016/j.dci.2020.103866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
A candidate antimicrobial peptide (AmAMP1) was identified by searching the whole genome sequence of Acropora millepora for short (<125AA) cysteine-rich predicted proteins with an N-terminal signal peptide but lacking clear homologs in the SwissProt database. It resembled but was not closely related to damicornin, the only other known AMP from a coral, and was shown to be active against both Gram-negative and Gram-positive bacteria. These proteins define a family of AMPs present in corals and their close relatives, the Corallimorpharia, and are synthesised as preproproteins in which the C-terminal mature peptide contains a conserved arrangement of six cysteine residues. Consistent with the idea of a common origin for AMPs and toxins, this Cys motif is shared between the coral AMPs and the Shk neurotoxins of sea anemones. AmAMP1 is expressed at late stages of coral development, in ectodermal cells that resemble the "ganglion neurons" of Hydra, in which it has recently been demonstrated that a distinct AMP known as NDA-1 is expressed.
Collapse
Affiliation(s)
- B Mason
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia; Molecular and Cell Biology, James Cook University, Townsville, 4811, Queensland, Australia
| | - I Cooke
- Molecular and Cell Biology, James Cook University, Townsville, 4811, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - A Moya
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia; Molecular and Cell Biology, James Cook University, Townsville, 4811, Queensland, Australia
| | - R Augustin
- Zoological Institute, Kiel University, Kiel, Germany
| | - M-F Lin
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia; Molecular and Cell Biology, James Cook University, Townsville, 4811, Queensland, Australia; Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495, Onna, Okinawa, Japan
| | - N Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495, Onna, Okinawa, Japan
| | - T C G Bosch
- Zoological Institute, Kiel University, Kiel, Germany
| | - D G Bourne
- Department of Marine Ecosystems and Impacts, James Cook University, Townsville, 4811, Queensland, Australia
| | - D C Hayward
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - N Andrade
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia
| | - S Forêt
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia; Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - H Ying
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - E E Ball
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia; Division of Ecology and Evolution, Research School of Biology, Australian National University, Acton, ACT 2601, Australia.
| | - D J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia; Molecular and Cell Biology, James Cook University, Townsville, 4811, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia; Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495, Onna, Okinawa, Japan.
| |
Collapse
|
37
|
Puisay A, Elleaume N, Fouqueau L, Lacube Y, Goiran C, Sidobre C, Metian M, Hédouin L. Parental bleaching susceptibility leads to differences in larval fluorescence and dispersal potential in Pocillopora acuta corals. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105200. [PMID: 33248410 DOI: 10.1016/j.marenvres.2020.105200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Coral reef ecosystems are declining at an alarming rate. Increasing seawater temperatures and occurrence of extreme warming events can impair sexual reproduction in reef-building corals and inhibit the ability for coral communities to replenish and persist. Here, we investigated the role of photophysiology on the reproductive ecology of Pocillopora acuta coral colonies by focusing on the impacts of bleaching susceptibility of parents on reproduction and larval performance, during an El Niño Southern Oscillation event in Mo'orea, French Polynesia. Elevated temperature conditions at that time induced bleaching phenotypic differences among P. acuta individuals: certain colonies became pale (from the loss of pigments and/or decline in symbiont cell density), while others remained pigmented (normal/high symbiont cell density). More specifically, we studied the impact of parental phenotypes on offspring's fluorescence by counting released larvae and sorting them by fluorescence types, we assessed survival to thermal stress, recruitment success and post-recruitment survival of released larvae from each fluorescent phenotype, during summer months (February to April 2016). Our results showed that red and green fluorescent larvae released by P. acuta had distinct physiological performances: red fluorescent larvae exhibited a higher survival into the pelagic phase regardless temperature conditions, with lower capacity to settle and survive post-recruitment, compared to green larvae that settle within a short period. Interestingly, pale colonies released two-to seven-fold more red fluorescent larvae than pigmented colonies did. In the light of our results, photophysiological profiles of the brooding P. acuta parental colonies may modulate the fluorescence features of released larvae, and thus influence the dispersal strategy of their offspring, the green fluorescent larval phenotypes being more performant in the benthic than pelagic phase.
Collapse
Affiliation(s)
- Antoine Puisay
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia
| | - Nicolas Elleaume
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia
| | - Louise Fouqueau
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia; CNRS, UMI 3614, Evolutionary Biology and Ecology of Algae, Roscoff, France
| | - Yann Lacube
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia
| | - Claire Goiran
- Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia; ISEA Institut de Sciences Exactes et Appliquées, Université de la Nouvelle-Calédonie, France
| | - Christine Sidobre
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia
| | - Marc Metian
- International Atomic Energy Agency, Environment Laboratories, 4a, Quai Antoine 1er, MC-98,000, Principality of Monaco, Monaco
| | - Laetitia Hédouin
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia.
| |
Collapse
|
38
|
Huang YL, Mayfield AB, Fan TY. Effects of feeding on the physiological performance of the stony coral Pocillopora acuta. Sci Rep 2020; 10:19988. [PMID: 33203892 PMCID: PMC7673984 DOI: 10.1038/s41598-020-76451-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022] Open
Abstract
Reef-building corals rely on both heterotrophy and endosymbiotic dinoflagellate autotrophy to meet their metabolic needs. Those looking to culture these organisms for scientific or industrial purposes must therefore consider both feeding regimes and the light environment. Herein the effects of three photosynthetically active radiation (PAR) levels were assessed in fed and unfed specimens of the model coral Pocillopora acuta that were cultured in a recirculating aquaculture system (RAS). Half of the corals were fed Artemia sp. brine shrimp in a separate feeding tank to prevent biofouling, and fragments were exposed to PAR levels of 105, 157, or 250 μmol quanta m-2 s-1 over a 12-h period each day. All cultured corals survived the 140-day treatment, and the physiological response variables assessed-buoyant weight, specific growth rate, linear extension, color, and Fv/Fm-were significantly influenced by feeding, and, to a lesser extent, light. Specifically, fed corals grew faster and larger, and presented darker pigmentation; corals fed at the highest light levels grew at the fastest rate (6 cm year-1 or 175 mg g-1 week-1). Given the high physiological performance observed, we advocate the active feeding of brine shrimp in RAS by those looking to cultivate P. acuta, and likely other corals, over long-term timescales.
Collapse
Affiliation(s)
- Yan-Leng Huang
- Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan, ROC
| | - Anderson B Mayfield
- National Museum of Marine Biology and Aquarium, Pingtung, 944, Taiwan, ROC
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, 33149, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, 33149, USA
| | - Tung-Yung Fan
- Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan, ROC.
- National Museum of Marine Biology and Aquarium, Pingtung, 944, Taiwan, ROC.
| |
Collapse
|
39
|
Becker DM, Silbiger NJ. Nutrient and sediment loading affect multiple facets of functionality in a tropical branching coral. J Exp Biol 2020; 223:jeb225045. [PMID: 32943577 DOI: 10.1242/jeb.225045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/08/2020] [Indexed: 01/01/2023]
Abstract
Coral reefs, one of the most diverse ecosystems in the world, face increasing pressures from global and local anthropogenic stressors. Therefore, a better understanding of the ecological ramifications of warming and land-based inputs (e.g. sedimentation and nutrient loading) on coral reef ecosystems is necessary. In this study, we measured how a natural nutrient and sedimentation gradient affected multiple facets of coral functionality, including endosymbiont and coral host response variables, holobiont metabolic responses and percent cover of Pocillopora acuta colonies in Mo'orea, French Polynesia. We used thermal performance curves to quantify the relationship between metabolic rates and temperature along the environmental gradient. We found that algal endosymbiont percent nitrogen content, endosymbiont densities and total chlorophyll a content increased with nutrient input, while endosymbiont nitrogen content per cell decreased, likely representing competition among the algal endosymbionts. Nutrient and sediment loading decreased coral metabolic responses to thermal stress in terms of their thermal performance and metabolic rate processes. The acute thermal optimum for dark respiration decreased, along with the maximal performance for gross photosynthetic and calcification rates. Gross photosynthetic and calcification rates normalized to a reference temperature (26.8°C) decreased along the gradient. Lastly, percent cover of P. acuta colonies decreased by nearly two orders of magnitude along the nutrient gradient. These findings illustrate that nutrient and sediment loading affect multiple levels of coral functionality. Understanding how local-scale anthropogenic stressors influence the responses of corals to temperature can inform coral reef management, particularly in relation to the mediation of land-based inputs into coastal coral reef ecosystems.
Collapse
Affiliation(s)
- Danielle M Becker
- Department of Biology, California State University, Northridge, CA 91330, USA
| | - Nyssa J Silbiger
- Department of Biology, California State University, Northridge, CA 91330, USA
| |
Collapse
|
40
|
Population genetics of the brooding coral Seriatopora hystrix reveals patterns of strong genetic differentiation in the Western Indian Ocean. Heredity (Edinb) 2020; 126:351-365. [PMID: 33122855 DOI: 10.1038/s41437-020-00379-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/08/2022] Open
Abstract
Coral reefs provide essential goods and services but are degrading at an alarming rate due to local and global anthropogenic stressors. The main limitation that prevents the implementation of adequate conservation measures is that connectivity and genetic structure of populations are poorly known. Here, the genetic diversity and connectivity of the brooding scleractinian coral Seriatopora hystrix were assessed at two scales by genotyping ten microsatellite markers for 356 individual colonies. S. hystrix showed high differentiation, both at large scale between the Red Sea and the Western Indian Ocean (WIO), and at smaller scale along the coast of East Africa. As such high levels of differentiation might indicate the presence of more than one species, a haploweb analysis was conducted with the nuclear marker ITS2, confirming that the Red Sea populations are genetically distinct from the WIO ones. Based on microsatellite analyses three groups could be distinguished within the WIO: (1) northern Madagascar, (2) south-west Madagascar together with one site in northern Mozambique (Nacala) and (3) all other sites in northern Mozambique, Tanzania and Kenya. These patterns of restricted connectivity could be explained by the short pelagic larval duration of S. hystrix, and/or by oceanographic factors, such as eddies in the Mozambique Channel (causing larval retention in northern Madagascar but facilitating dispersal from northern Mozambique towards south-west Madagascar). This study provides an additional line of evidence supporting the conservation priority status of the Northern Mozambique Channel and should inform coral reef management decisions in the region.
Collapse
|
41
|
Mason RAB, Wall CB, Cunning R, Dove S, Gates RD. High light alongside elevated P CO2 alleviates thermal depression of photosynthesis in a hard coral ( Pocillopora acuta). ACTA ACUST UNITED AC 2020; 223:223/20/jeb223198. [PMID: 33087470 DOI: 10.1242/jeb.223198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/12/2020] [Indexed: 11/20/2022]
Abstract
The absorbtion of human-emitted CO2 by the oceans (elevated P CO2 ) is projected to alter the physiological performance of coral reef organisms by perturbing seawater chemistry (i.e. ocean acidification). Simultaneously, greenhouse gas emissions are driving ocean warming and changes in irradiance (through turbidity and cloud cover), which have the potential to influence the effects of ocean acidification on coral reefs. Here, we explored whether physiological impacts of elevated P CO2 on a coral-algal symbiosis (Pocillopora acuta-Symbiodiniaceae) are mediated by light and/or temperature levels. In a 39 day experiment, elevated P CO2 (962 versus 431 µatm P CO2 ) had an interactive effect with midday light availability (400 versus 800 µmol photons m-2 s-1) and temperature (25 versus 29°C) on areal gross and net photosynthesis, for which a decline at 29°C was ameliorated under simultaneous high-P CO2 and high-light conditions. Light-enhanced dark respiration increased under elevated P CO2 and/or elevated temperature. Symbiont to host cell ratio and chlorophyll a per symbiont increased at elevated temperature, whilst symbiont areal density decreased. The ability of moderately strong light in the presence of elevated P CO2 to alleviate the temperature-induced decrease in photosynthesis suggests that higher substrate availability facilitates a greater ability for photochemical quenching, partially offsetting the impacts of high temperature on the photosynthetic apparatus. Future environmental changes that result in moderate increases in light levels could therefore assist the P. acuta holobiont to cope with the 'one-two punch' of rising temperatures in the presence of an acidifying ocean.
Collapse
Affiliation(s)
- Robert A B Mason
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, PO Box 1346, Kāne'ohe, HI 96744, USA .,ARC Centre of Excellence for Coral Reef Studies, and Centre for Marine Science, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Christopher B Wall
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, PO Box 1346, Kāne'ohe, HI 96744, USA.,Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Ross Cunning
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, PO Box 1346, Kāne'ohe, HI 96744, USA.,Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL 60605, USA
| | - Sophie Dove
- ARC Centre of Excellence for Coral Reef Studies, and Centre for Marine Science, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Ruth D Gates
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, PO Box 1346, Kāne'ohe, HI 96744, USA
| |
Collapse
|
42
|
Underwood JN, Richards Z, Berry O, Oades D, Howard A, Gilmour JP. Extreme seascape drives local recruitment and genetic divergence in brooding and spawning corals in remote north-west Australia. Evol Appl 2020; 13:2404-2421. [PMID: 33005230 PMCID: PMC7513722 DOI: 10.1111/eva.13033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Management strategies designed to conserve coral reefs threatened by climate change need to incorporate knowledge of the spatial distribution of inter- and intra-specific genetic diversity. We characterized patterns of genetic diversity and connectivity using single nucleotide polymorphisms (SNPs) in two reef-building corals to explore the eco-evolutionary processes that sustain populations in north-west Australia. Our sampling focused on the unique reefs of the Kimberley; we collected the broadcast spawning coral Acropora aspera (n = 534) and the brooding coral Isopora brueggemanni (n = 612) across inter-archipelago (tens to hundreds of kilometres), inter-reef (kilometres to tens of kilometres) and within-reef (tens of metres to a few kilometres) scales. Initial analysis of A. aspera identified four highly divergent lineages that were co-occurring but morphologically similar. Subsequent population analyses focused on the most abundant and widespread lineage, Acropora asp-c. Although the overall level of geographic subdivision was greater in the brooder than in the spawner, fundamental similarities in patterns of genetic structure were evident. Most notably, limits to gene flow were observed at scales <35 kilometres. Further, we observed four discrete clusters and a semi-permeable barrier to dispersal that were geographically consistent between species. Finally, sites experiencing bigger tides were more connected to the metapopulation and had greater gene diversity than those experiencing smaller tides. Our data indicate that the inshore reefs of the Kimberley are genetically isolated from neighbouring oceanic bioregions, but occasional dispersal between inshore archipelagos is important for the redistribution of evolutionarily important genetic diversity. Additionally, these results suggest that networks of marine reserves that effectively protect reefs from local pressures should be spaced within a few tens of kilometres to conserve the existing patterns of demographic and genetic connectivity.
Collapse
Affiliation(s)
- Jim N Underwood
- Australian Institute of Marine Science Indian Oceans Marine Research Centre, Crawley Perth WA Australia
- Western Australian Marine Science Institution Indian Ocean Marine Research Centre Crawley WA Australia
| | - Zoe Richards
- Western Australian Marine Science Institution Indian Ocean Marine Research Centre Crawley WA Australia
- Trace and Environmental DNA Laboratory School of Molecular and Life Sciences Curtin University Bentley WA Australia
- Department of Aquatic Zoology Western Australian Museum Welshpool WA Australia
| | - Oliver Berry
- Western Australian Marine Science Institution Indian Ocean Marine Research Centre Crawley WA Australia
- CSIRO Oceans and Atmosphere Indian Oceans Marine Research Centre, Crawley Perth WA Australia
| | - Daniel Oades
- Bardi Jawi Rangers Kimberley Land Council Broome WA Australia
| | - Azton Howard
- Bardi Jawi Rangers Kimberley Land Council Broome WA Australia
| | - James P Gilmour
- Australian Institute of Marine Science Indian Oceans Marine Research Centre, Crawley Perth WA Australia
- Western Australian Marine Science Institution Indian Ocean Marine Research Centre Crawley WA Australia
| |
Collapse
|
43
|
Gene Expression and Photophysiological Changes in Pocillopora acuta Coral Holobiont Following Heat Stress and Recovery. Microorganisms 2020; 8:microorganisms8081227. [PMID: 32806647 PMCID: PMC7463449 DOI: 10.3390/microorganisms8081227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/25/2022] Open
Abstract
The ability of corals to withstand changes in their surroundings is a critical survival mechanism for coping with environmental stress. While many studies have examined responses of the coral holobiont to stressful conditions, its capacity to reverse responses and recover when the stressor is removed is not well-understood. In this study, we investigated among-colony responses of Pocillopora acuta from two sites with differing distance to the mainland (Kusu (closer to the mainland) and Raffles Lighthouse (further from the mainland)) to heat stress through differential expression analysis of target genes and quantification of photophysiological metrics. We then examined how these attributes were regulated after the stressor was removed to assess the recovery potential of P. acuta. The fragments that were subjected to heat stress (2 °C above ambient levels) generally exhibited significant reduction in their endosymbiont densities, but the extent of recovery following stress removal varied depending on natal site and colony. There were minimal changes in chl a concentration and maximum quantum yield (Fv/Fm, the proportion of variable fluorescence (Fv) to maximum fluorescence (Fm)) in heat-stressed corals, suggesting that the algal endosymbionts’ Photosystem II was not severely compromised. Significant changes in gene expression levels of selected genes of interest (GOI) were observed following heat exposure and stress removal among sites and colonies, including Actin, calcium/calmodulin-dependent protein kinase type IV (Camk4), kinesin-like protein (KIF9), and small heat shock protein 16.1 (Hsp16.1). The most responsive GOIs were Actin, a major component of the cytoskeleton, and the adaptive immune-related Camk4 which both showed significant reduction following heat exposure and subsequent upregulation during the recovery phase. Our findings clearly demonstrate specific responses of P. acuta in both photophysiological attributes and gene expression levels, suggesting differential capacity of P. acuta corals to tolerate heat stress depending on the colony, so that certain colonies may be more resilient than others.
Collapse
|
44
|
Li Y, Han T, Bi K, Liang K, Chen J, Lu J, He C, Lu Z. The 3D Reconstruction of Pocillopora Colony Sheds Light on the Growth Pattern of This Reef-Building Coral. iScience 2020; 23:101069. [PMID: 32504876 PMCID: PMC7276440 DOI: 10.1016/j.isci.2020.101069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/09/2019] [Accepted: 04/13/2020] [Indexed: 11/27/2022] Open
Abstract
Coral reefs are formed by living polyps, and understanding the dynamic processes behind the reefs is crucial for marine ecosystem restoration. However, these processes are still unclear because the growth and budding patterns of living polyps are poorly known. Here, we investigate the growth pattern of a widely distributed reef-building coral Pocillopora damicornis from Xisha Islands using high-resolution computed tomography. We examine the corallites in a single corallum of the species in detail, to interpret the budding, growth, and distribution pattern of the polyps, to reconstruct the growth pattern of this important reef-building species. Our results reveal a three-stage growth pattern of P. damicornis, based on different growth bundles that are secreted by polyps along the dichotomous growth axes of the corallites. Our work on the three-dimensional reconstruction of calice and inter-septal space structure of P. damicornis sheds lights on its reef-building processes by reconstructing the budding patterns. We use high-resolution computed tomography to investigate coral forming and polyp budding processes The calice reconstruction shows coral growth patterns and budding information Our work visualizes the growth pattern of Pocillopora damicornis High-resolution computed tomography is a method for future reef-building coral studies
Collapse
Affiliation(s)
- Yixin Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tingyu Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Kun Bi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Kun Liang
- Nanjing Institute of Paleontology and Geology, 39 East Beijing Road, Nanjing 210008, China
| | - Junyuan Chen
- Nanjing Institute of Paleontology and Geology, 39 East Beijing Road, Nanjing 210008, China
| | - Jing Lu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, PO Box 643, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China.
| | - Chunpeng He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
45
|
Oury N, Gélin P, Magalon H. Together stronger: Intracolonial genetic variability occurrence in Pocillopora corals suggests potential benefits. Ecol Evol 2020; 10:5208-5218. [PMID: 32607144 PMCID: PMC7319244 DOI: 10.1002/ece3.5807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 01/18/2023] Open
Abstract
We investigated the occurrence of intracolonial genetic variability (IGV) in Pocillopora corals in the southwestern Indian Ocean. Ninety-six colonies were threefold-sampled from three sites in Reunion Island. Nubbins were genotyped using 13 microsatellite loci, and their multilocus genotypes compared. Over 50% of the colonies presented at least two different genotypes among their three nubbins, and IGV was found abundant in all sites (from 36.7% to 58.1%). To define the threshold distinguishing mosaicism from chimerism, we developed a new method based on different evolution models by computing the number of different alleles for the infinite allele model (IAM) and the Bruvo's distance for the stepwise mutation model (SMM). Colonies were considered as chimeras if their nubbins differed from more than four alleles and if the pairwise Bruvo's distance was higher than 0.12. Thus 80% of the IGV colonies were mosaics and 20% chimeras (representing almost 10% of the total sampling). IGV seems widespread in scleractinians and beyond the disabilities of this phenomenon reported in several studies, it should also bring benefits. Next steps are to identify these benefits and to understand processes leading to IGV, as well as factors influencing them.
Collapse
Affiliation(s)
- Nicolas Oury
- UMR ENTROPIE (Université de La Réunion, IRD, CNRS)Université de La RéunionSt Denis, La RéunionFrance
| | - Pauline Gélin
- UMR ENTROPIE (Université de La Réunion, IRD, CNRS)Université de La RéunionSt Denis, La RéunionFrance
- Laboratoire d'Excellence CORAILPerpignanFrance
| | - Hélène Magalon
- UMR ENTROPIE (Université de La Réunion, IRD, CNRS)Université de La RéunionSt Denis, La RéunionFrance
- Laboratoire d'Excellence CORAILPerpignanFrance
| |
Collapse
|
46
|
Quek RZB, Jain SS, Neo ML, Rouse GW, Huang D. Transcriptome-based target-enrichment baits for stony corals (Cnidaria: Anthozoa: Scleractinia). Mol Ecol Resour 2020; 20:807-818. [PMID: 32077619 PMCID: PMC7468246 DOI: 10.1111/1755-0998.13150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/01/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023]
Abstract
Despite the ecological and economic significance of stony corals (Scleractinia), a robust understanding of their phylogeny remains elusive due to patchy taxonomic and genetic sampling, as well as the limited availability of informative markers. To increase the number of genetic loci available for phylogenomic analyses in Scleractinia, we designed 15,919 DNA enrichment baits targeting 605 orthogroups (mean 565 ± SD 366 bp) over 1,139 exon regions. A further 236 and 62 barcoding baits were designed for COI and histone H3 genes respectively for quality and contamination checks. Hybrid capture using these baits was performed on 18 coral species spanning the presently understood scleractinian phylogeny, with two corallimorpharians as outgroup. On average, 74% of all loci targeted were successfully captured for each species. Barcoding baits were matched unambiguously to their respective samples and revealed low levels of cross-contamination in accordance with expectation. We put the data through a series of stringent filtering steps to ensure only scleractinian and phylogenetically informative loci were retained, and the final probe set comprised 13,479 baits, targeting 452 loci (mean 531 ± SD 307 bp) across 865 exon regions. Maximum likelihood, Bayesian and species tree analyses recovered maximally supported, topologically congruent trees consistent with previous phylogenomic reconstructions. The phylogenomic method presented here allows for consistent capture of orthologous loci among divergent coral taxa, facilitating the pooling of data from different studies and increasing the phylogenetic sampling of scleractinians in the future.
Collapse
Affiliation(s)
- Randolph Z. B. Quek
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Sudhanshi S. Jain
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Mei Lin Neo
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Tropical Marine Science InstituteNational University of SingaporeSingaporeSingapore
| | - Greg W. Rouse
- Scripps Institution of OceanographyUniversity of California San DiegoSan DiegoCAUSA
| | - Danwei Huang
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Tropical Marine Science InstituteNational University of SingaporeSingaporeSingapore
| |
Collapse
|
47
|
Bahr KD, Tran T, Jury CP, Toonen RJ. Abundance, size, and survival of recruits of the reef coral Pocillopora acuta under ocean warming and acidification. PLoS One 2020; 15:e0228168. [PMID: 32017776 PMCID: PMC6999881 DOI: 10.1371/journal.pone.0228168] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Ocean warming and acidification are among the greatest threats to coral reefs. Massive coral bleaching events are becoming increasingly common and are predicted to be more severe and frequent in the near future, putting corals reefs in danger of ecological collapse. This study quantified the abundance, size, and survival of the coral Pocillopora acuta under future projections of ocean warming and acidification. Flow-through mesocosms were exposed to current and future projections of ocean warming and acidification in a factorial design for 22 months. Neither ocean warming or acidification, nor their combination, influenced the size or abundance of P. acuta recruits, but heating impacted subsequent health and survival of the recruits. During annual maximum temperatures, coral recruits in heated tanks experienced higher levels of bleaching and subsequent mortality. Results of this study indicate that P. acuta is able to recruit under projected levels of ocean warming and acidification but are susceptible to bleaching and mortality during the warmest months.
Collapse
Affiliation(s)
- Keisha D. Bahr
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, United States of America
- * E-mail:
| | - Tiana Tran
- Hawaiʻi Institute of Marine Biology, University of Hawaiʻi at Mānoa, Kāneʻohe, Hawaii, United States of America
| | - Christopher P. Jury
- Hawaiʻi Institute of Marine Biology, University of Hawaiʻi at Mānoa, Kāneʻohe, Hawaii, United States of America
| | - Robert J. Toonen
- Hawaiʻi Institute of Marine Biology, University of Hawaiʻi at Mānoa, Kāneʻohe, Hawaii, United States of America
| |
Collapse
|
48
|
Damjanovic K, Menéndez P, Blackall LL, Oppen MJH. Mixed‐mode bacterial transmission in the common brooding coral
Pocillopora acuta. Environ Microbiol 2019; 22:397-412. [DOI: 10.1111/1462-2920.14856] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/14/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Katarina Damjanovic
- School of BioSciences, The University of Melbourne Parkville Vic 3010 Australia
- Australian Institute of Marine Science PMB No 3, Townsville, MC 4810 Qld Australia
| | - Patricia Menéndez
- Australian Institute of Marine Science PMB No 3, Townsville, MC 4810 Qld Australia
- Department of Econometrics and Business Statistics Monash University Vic 3800 Australia
| | - Linda L. Blackall
- School of BioSciences, The University of Melbourne Parkville Vic 3010 Australia
| | - Madeleine J. H. Oppen
- School of BioSciences, The University of Melbourne Parkville Vic 3010 Australia
- Australian Institute of Marine Science PMB No 3, Townsville, MC 4810 Qld Australia
| |
Collapse
|
49
|
Ishida‐Castañeda J, Pizarro V, López‐Victoria M, Zapata FA. Coral reef restoration in the Eastern Tropical Pacific: feasibility of the coral nursery approach. Restor Ecol 2019. [DOI: 10.1111/rec.13047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Mateo López‐Victoria
- Department of Natural Sciences and MathematicsPontificia Universidad Javeriana Cali 760008 Colombia
| | | |
Collapse
|
50
|
Fong J, Lim ZW, Bauman AG, Valiyaveettil S, Liao LM, Yip ZT, Todd PA. Allelopathic effects of macroalgae on Pocillopora acuta coral larvae. MARINE ENVIRONMENTAL RESEARCH 2019; 151:104745. [PMID: 31229278 DOI: 10.1016/j.marenvres.2019.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/06/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Allelopathy has been proposed as a key mechanism mediating coral-algal interactions; however, few studies have tested macroalgal allelochemicals on coral larvae. In this study, we examined the effects of crude extracts from four macroalgal species on Pocillopora acuta larvae under different exposure conditions. Larval mortality increased considerably with increasing concentrations of Bryopsis sp., Endosiphonia horrida, and Lobophora sp. extracts. Increasing E. horrida and Lobophora sp. extract concentrations also substantially decreased larval settlement. No detectable effects on larvae were observed in Hypnea pannosa extracts. Further, while larval mortality increased with exposure duration to Lobophora sp. extracts, larval settlement was enhanced at 12 h exposure, but reduced at shorter and longer durations. Our results emphasize that macroalgal chemical effects are highly dependent on macroalgal species and exposure conditions. On reefs dominated by allelopathic macroalgae, the survivorship and settlement of coral larvae are potentially constrained, thereby limiting the recovery of degraded reefs.
Collapse
Affiliation(s)
- Jenny Fong
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
| | - Zi Wei Lim
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Andrew G Bauman
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Suresh Valiyaveettil
- Materials Research Laboratory, Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Lawrence M Liao
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | - Zhi Ting Yip
- Reef Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Peter A Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
| |
Collapse
|