1
|
Coggan JS, Shichkova P, Markram H, Keller D. Seizure and redox rescue in a model of glucose transport deficiency. PLoS Comput Biol 2025; 21:e1012959. [PMID: 40184423 PMCID: PMC12002639 DOI: 10.1371/journal.pcbi.1012959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 04/16/2025] [Accepted: 03/12/2025] [Indexed: 04/06/2025] Open
Abstract
Disruptions of energy supply to the brain are associated with many neurodegenerative pathologies and are difficult to study due to numerous interlinked metabolic pathways. We explored the effects of diminished energy supply on brain metabolism using a computational model of the neuro-glia-vasculature ensemble, in the form of a neuron, an astrocyte and local blood supply. As a case study, we investigated the glucose transporter type-1 deficiency syndrome (GLUT1-DS), a childhood affliction characterized by impaired glucose utilization and associated with phenotypes including seizures. Compared to neurons, astrocytes exhibited markedly higher metabolite concentration variabilities for all but a few redox species. This effect could signal a role for astrocytes in absorbing the shock of blood nutrient fluctuations. Redox balances were disrupted in GLUT1-DS with lower levels of reducing equivalent carriers NADH and ATP. The best non-glucose nutrient or pharmacotherapies for re-establishing redox normalcy involved lactate, the keto-diet (β-hydroxybutyrate), NAD and Q10 supplementation, suggesting a possible glucose sparing mechanism. GLUT1-DS seizures resulted from after-discharge neuronal firing caused by post-stimulus ATP reductions and impaired Na+/K+-ATPase, which can be rescued by restoring either normal glucose or by relatively small increases in neuronal ATP.
Collapse
Affiliation(s)
- Jay S. Coggan
- Blue Brain Project, EPFL: École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Polina Shichkova
- Blue Brain Project, EPFL: École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Biognosys AG, Schlieren, Switzerland
| | - Henry Markram
- Blue Brain Project, EPFL: École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Daniel Keller
- Blue Brain Project, EPFL: École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| |
Collapse
|
2
|
Chen X, Zhu X. Lactate: Beyond a mere fuel in the epileptic brain. Neuropharmacology 2025; 266:110273. [PMID: 39719259 DOI: 10.1016/j.neuropharm.2024.110273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/08/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Epilepsy, a prevalent neurological disorder characterized by spontaneous recurrent seizures, significantly impacts physiological and cognitive functions. Emerging evidence suggests a crucial role for metabolic factors, particularly lactate, in epilepsy. We discuss the applicability of the astrocyte-neuron lactate shuttle (ANLS) model during acute seizure events and examine lactate's metabolic adaptation in epilepsy progression. Additionally, the roles of lactate metabolism in microglia and oligodendrocytes are considered, aiming to supplement our understanding of neuro-glial metabolic interactions as extensions of the ANLS model. Additionally, lactate modulates neuronal excitability via its interaction with hydroxycarboxylic acid receptor 1 (HCAR1), alongside additional mechanisms involving acid-sensing ion channels (ASICs) and ATP-sensitive potassium (KATP) channels, which contribute as secondary modulatory pathways. In conclusion, we propose that lactate functions as more than a mere fuel source in the epileptic brain, offering potential insights into new therapeutic targets for seizure control.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
3
|
Carvalhas-Almeida C, Sehgal A. Glia: the cellular glue that binds circadian rhythms and sleep. Sleep 2025; 48:zsae314. [PMID: 39812780 PMCID: PMC11893543 DOI: 10.1093/sleep/zsae314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/19/2024] [Indexed: 01/16/2025] Open
Abstract
Glia are increasingly appreciated as serving an important function in the control of sleep and circadian rhythms. Glial cells in Drosophila and mammals regulate daily rhythms of locomotor activity and sleep as well as homeostatic rebound following sleep deprivation. In addition, they contribute to proposed functions of sleep, with different functions mapping to varied glial subtypes. Here, we discuss recent findings in Drosophila and rodent models establishing a role of glia in circadian or sleep regulation of synaptic plasticity, brain metabolism, removal of cellular debris, and immune challenges. These findings underscore the relevance of glia for benefits attributed to sleep and have implications for understanding the neurobiological mechanisms underlying sleep and associated disorders.
Collapse
Affiliation(s)
- Catarina Carvalhas-Almeida
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Amita Sehgal
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Mitra S, Chen B, Shelton JM, Nitschke S, Wu J, Covington L, Dear M, Lynn T, Verma M, Nitschke F, Fuseya Y, Iwai K, Evers BM, Minassian BA. Myofiber-type-dependent 'boulder' or 'multitudinous pebble' formations across distinct amylopectinoses. Acta Neuropathol 2024; 147:46. [PMID: 38411740 DOI: 10.1007/s00401-024-02698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
At least five enzymes including three E3 ubiquitin ligases are dedicated to glycogen's spherical structure. Absence of any reverts glycogen to a structure resembling amylopectin of the plant kingdom. This amylopectinosis (polyglucosan body formation) causes fatal neurological diseases including adult polyglucosan body disease (APBD) due to glycogen branching enzyme deficiency, Lafora disease (LD) due to deficiencies of the laforin glycogen phosphatase or the malin E3 ubiquitin ligase and type 1 polyglucosan body myopathy (PGBM1) due to RBCK1 E3 ubiquitin ligase deficiency. Little is known about these enzymes' functions in glycogen structuring. Toward understanding these functions, we undertake a comparative murine study of the amylopectinoses of APBD, LD and PGBM1. We discover that in skeletal muscle, polyglucosan bodies form as two main types, small and multitudinous ('pebbles') or giant and single ('boulders'), and that this is primarily determined by the myofiber types in which they form, 'pebbles' in glycolytic and 'boulders' in oxidative fibers. This pattern recapitulates what is known in the brain in LD, innumerable dust-like in astrocytes and single giant sized in neurons. We also show that oxidative myofibers are relatively protected against amylopectinosis, in part through highly increased glycogen branching enzyme expression. We present evidence of polyglucosan body size-dependent cell necrosis. We show that sex influences amylopectinosis in genotype, brain region and myofiber-type-specific fashion. RBCK1 is a component of the linear ubiquitin chain assembly complex (LUBAC), the only known cellular machinery for head-to-tail linear ubiquitination critical to numerous cellular pathways. We show that the amylopectinosis of RBCK1 deficiency is not due to loss of linear ubiquitination, and that another function of RBCK1 or LUBAC must exist and operate in the shaping of glycogen. This work opens multiple new avenues toward understanding the structural determinants of the mammalian carbohydrate reservoir critical to neurologic and neuromuscular function and disease.
Collapse
Affiliation(s)
- Sharmistha Mitra
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA.
| | - Baozhi Chen
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - John M Shelton
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9148, USA
| | - Silvia Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Lindsay Covington
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9148, USA
| | - Mathew Dear
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Tori Lynn
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Mayank Verma
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Felix Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Yasuhiro Fuseya
- Department of Molecular and Cellular Physiology, Kyoto University School of Medicine, Kyoto, 606-8501, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Kyoto University School of Medicine, Kyoto, 606-8501, Japan
| | - Bret M Evers
- Departments of Pathology and Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9073, USA
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA.
| |
Collapse
|
5
|
Cantando I, Centofanti C, D’Alessandro G, Limatola C, Bezzi P. Metabolic dynamics in astrocytes and microglia during post-natal development and their implications for autism spectrum disorders. Front Cell Neurosci 2024; 18:1354259. [PMID: 38419654 PMCID: PMC10899402 DOI: 10.3389/fncel.2024.1354259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by elusive underlying mechanisms. Recent attention has focused on the involvement of astrocytes and microglia in ASD pathology. These glial cells play pivotal roles in maintaining neuronal homeostasis, including the regulation of metabolism. Emerging evidence suggests a potential association between ASD and inborn errors of metabolism. Therefore, gaining a comprehensive understanding of the functions of microglia and astrocytes in ASD is crucial for the development of effective therapeutic interventions. This review aims to provide a summary of the metabolism of astrocytes and microglia during post-natal development and the evidence of disrupted metabolic pathways in ASD, with particular emphasis on those potentially important for the regulation of neuronal post-natal maturation by astrocytes and microglia.
Collapse
Affiliation(s)
- Iva Cantando
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | - Cristiana Centofanti
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | - Giuseppina D’Alessandro
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed Via Atinese 18, Pozzilli, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed Via Atinese 18, Pozzilli, Italy
| | - Paola Bezzi
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
6
|
Kotchetkov P, Blakeley N, Lacoste B. Involvement of brain metabolism in neurodevelopmental disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:67-113. [PMID: 37993180 DOI: 10.1016/bs.irn.2023.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Neurodevelopmental disorders (NDDs) affect a significant portion of the global population and have a substantial social and economic impact worldwide. Most NDDs manifest in early childhood and are characterized by deficits in cognition, communication, social interaction and motor control. Due to a limited understanding of the etiology of NDDs, current treatment options primarily focus on symptom management rather than on curative solutions. Moreover, research on NDDs is problematic due to its reliance on a neurocentric approach. However, recent studies are broadening the scope of research on NDDs, to include dysregulations within a diverse network of brain cell types, including vascular and glial cells. This review aims to summarize studies from the past few decades on potential new contributions to the etiology of NDDs, with a special focus on metabolic signatures of various brain cells. In particular, we aim to convey how the metabolic functions are intimately linked to the onset and/or progression of common NDDs such as autism spectrum disorders, fragile X syndrome, Rett syndrome and Down syndrome.
Collapse
Affiliation(s)
- Pavel Kotchetkov
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nicole Blakeley
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
7
|
Khadka N, Poon C, Cancel LM, Tarbell JM, Bikson M. Multi-scale multi-physics model of brain interstitial water flux by transcranial Direct Current Stimulation. J Neural Eng 2023; 20:10.1088/1741-2552/ace4f4. [PMID: 37413982 PMCID: PMC10996349 DOI: 10.1088/1741-2552/ace4f4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
Objective. Transcranial direct current stimulation (tDCS) generates sustained electric fields in the brain, that may be amplified when crossing capillary walls (across blood-brain barrier, BBB). Electric fields across the BBB may generate fluid flow by electroosmosis. We consider that tDCS may thus enhance interstitial fluid flow.Approach. We developed a modeling pipeline novel in both (1) spanning the mm (head),μm (capillary network), and then nm (down to BBB tight junction (TJ)) scales; and (2) coupling electric current flow to fluid current flow across these scales. Electroosmotic coupling was parametrized based on prior measures of fluid flow across isolated BBB layers. Electric field amplification across the BBB in a realistic capillary network was converted to volumetric fluid exchange.Main results. The ultrastructure of the BBB results in peak electric fields (per mA of applied current) of 32-63Vm-1across capillary wall and >1150Vm-1in TJs (contrasted with 0.3Vm-1in parenchyma). Based on an electroosmotic coupling of 1.0 × 10-9- 5.6 × 10-10m3s-1m2perVm-1, peak water fluxes across the BBB are 2.44 × 10-10- 6.94 × 10-10m3s-1m2, with a peak 1.5 × 10-4- 5.6 × 10-4m3min-1m3interstitial water exchange (per mA).Significance. Using this pipeline, the fluid exchange rate per each brain voxel can be predicted for any tDCS dose (electrode montage, current) or anatomy. Under experimentally constrained tissue properties, we predicted tDCS produces a fluid exchange rate comparable to endogenous flow, so doubling fluid exchange with further local flow rate hot spots ('jets'). The validation and implication of such tDCS brain 'flushing' is important to establish.
Collapse
Affiliation(s)
| | - Cynthia Poon
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, United States of America
| | - Limary M Cancel
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, United States of America
| | - John M Tarbell
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, United States of America
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, United States of America
| |
Collapse
|
8
|
Kumar BS, O'Herron PJ, Kara P, Chakravarthy VS. The development of bi-directionally coupled self-organizing neurovascular networks captures orientation-selective neural and hemodynamic cortical responses. Eur J Neurosci 2023; 57:1929-1946. [PMID: 37070156 DOI: 10.1111/ejn.15993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Networks of neurons are the primary substrate of information processing. Conversely, blood vessels in the brain are generally viewed to have physiological functions unrelated to information processing, such as the timely supply of oxygen, and other nutrients to the neural tissue. However, recent studies have shown that cerebral microvessels, like neurons, exhibit tuned responses to sensory stimuli. Tuned neural responses to sensory stimuli may be enhanced with experience-dependent Hebbian plasticity and other forms of learning. Hence, it is possible that the microvascular network might also be subject to some form of competitive learning rules during early postnatal development such that its fine-scale structure becomes optimized for metabolic delivery to a given neural micro-architecture. To explore the possibility of adaptive lateral interactions and tuned responses in cerebral microvessels, we modelled the cortical neurovascular network by interconnecting two laterally connected self-organizing networks. The afferent and lateral connections of the neural and vascular networks were defined by trainable weights. By varying the topology of lateral connectivity in the vascular network layer, we observed that the partial correspondence of feature selectivity between neural and hemodynamic responses could be explained by lateral coupling across local blood vessels such that the central domain receives an excitatory drive of more blood flow and a distal surrounding region where blood flow is reduced. Critically, our simulations suggest a new role for feedback from the vascular to the neural network because the radius of vascular perfusion determines whether the cortical neural map develops into a clustered vs. salt-and-pepper organization.
Collapse
Affiliation(s)
- Bhadra S Kumar
- Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, India
| | | | - Prakash Kara
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - V Srinivasa Chakravarthy
- Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, India
- Center for Complex Systems and Dynamics, Indian Institute of Technology Madras (IITM), Chennai, India
| |
Collapse
|
9
|
Immunosenescence and Aging: Neuroinflammation Is a Prominent Feature of Alzheimer's Disease and Is a Likely Contributor to Neurodegenerative Disease Pathogenesis. J Pers Med 2022; 12:jpm12111817. [PMID: 36579548 PMCID: PMC9698256 DOI: 10.3390/jpm12111817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic multifactorial and complex neuro-degenerative disorder characterized by memory impairment and the loss of cognitive ability, which is a problem affecting the elderly. The pathological intracellular accumulation of abnormally phosphorylated Tau proteins, forming neurofibrillary tangles, and extracellular amyloid-beta (Aβ) deposition, forming senile plaques, as well as neural disconnection, neural death and synaptic dysfunction in the brain, are hallmark pathologies that characterize AD. The prevalence of the disease continues to increase globally due to the increase in longevity, quality of life, and medical treatment for chronic diseases that decreases the mortality and enhance the survival of elderly. Medical awareness and the accurate diagnosis of the disease also contribute to the high prevalence observed globally. Unfortunately, no definitive treatment exists that can be used to modify the course of AD, and no available treatment is capable of mitigating the cognitive decline or reversing the pathology of the disease as of yet. A plethora of hypotheses, ranging from the cholinergic theory and dominant Aβ cascade hypothesis to the abnormally excessive phosphorylated Tau protein hypothesis, have been reported. Various explanations for the pathogenesis of AD, such as the abnormal excitation of the glutamate system and mitochondrial dysfunction, have also been suggested. Despite the continuous efforts to deliver significant benefits and an effective treatment for this distressing, globally attested aging illness, multipronged approaches and strategies for ameliorating the disease course based on knowledge of the underpinnings of the pathogenesis of AD are urgently needed. Immunosenescence is an immune deficit process that appears with age (inflammaging process) and encompasses the remodeling of the lymphoid organs, leading to alterations in the immune function and neuroinflammation during advanced aging, which is closely linked to the outgrowth of infections, autoimmune diseases, and malignant cancers. It is well known that long-standing inflammation negatively influences the brain over the course of a lifetime due to the senescence of the immune system. Herein, we aim to trace the role of the immune system in the pathogenesis of AD. Thus, we explore alternative avenues, such as neuroimmune involvement in the pathogenesis of AD. We determine the initial triggers of neuroinflammation, which is an early episode in the pre-symptomatic stages of AD and contributes to the advancement of the disease, and the underlying key mechanisms of brain damage that might aid in the development of therapeutic strategies that can be used to combat this devastating disease. In addition, we aim to outline the ways in which different aspects of the immune system, both in the brain and peripherally, behave and thus to contribute to AD.
Collapse
|
10
|
Luo M, Zeng Q, Jiang K, Zhao Y, Long Z, Du Y, Wang K, He G. Estrogen deficiency exacerbates learning and memory deficits associated with glucose metabolism disorder in APP/PS1 double transgenic female mice. Genes Dis 2022; 9:1315-1331. [PMID: 35873026 PMCID: PMC9293702 DOI: 10.1016/j.gendis.2021.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 11/27/2022] Open
Abstract
Alterations in glucose metabolism occur in the brain in the early stage of Alzheimer's disease (AD), and menopausal women have more severe metabolic dysfunction and are more prone to dementia than men. Although estrogen deficiency-induced changes in glucose metabolism have been previously studied in animal models, their molecular mechanisms in AD remain elusive. To investigate this issue, double transgenic (APP/PS1) female mice were subjected to bilateral ovariectomy at 3 months of age and were sacrificed 1 week, 1 month and 3 months after surgery to simulate early, middle and late postmenopause, respectively. Our analysis demonstrated that estrogen deficiency exacerbates learning and memory deficits in this mouse model of postmenopause. Estrogen deficiency impairs the function of mitochondria in glucose metabolism. It is possible that the occurrence of AD is associated with the aberrant mitochondrial ERβ-mediated IGF-1/IGF-1R/GSK-3β signaling pathway. In this study, we established a potential mechanism for the increased risk of AD in postmenopausal women and proposed a therapeutic target for AD due to postmenopause.
Collapse
Affiliation(s)
- Min Luo
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China.,Department of Pathology, Suining Municipal Hospital of TCM, Suining, Sichuan 629000, PR China
| | - Qinghua Zeng
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China.,Department of Anatomy, Chongqing Medical University, Chongqing 400016, PR China
| | - Kai Jiang
- Department of Gastroenterology, Suining Central Hospital, Suining, Sichuan 629000, PR China
| | - Yueyang Zhao
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhimin Long
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China.,Department of Anatomy, Chongqing Medical University, Chongqing 400016, PR China
| | - Yexiang Du
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Kejian Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China.,Department of Anatomy, Chongqing Medical University, Chongqing 400016, PR China
| | - Guiqiong He
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China.,Department of Anatomy, Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
11
|
Xue X, Liu B, Hu J, Bian X, Lou S. The potential mechanisms of lactate in mediating exercise-enhanced cognitive function: a dual role as an energy supply substrate and a signaling molecule. Nutr Metab (Lond) 2022; 19:52. [PMID: 35907984 PMCID: PMC9338682 DOI: 10.1186/s12986-022-00687-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/18/2022] [Indexed: 11/12/2022] Open
Abstract
Lactate has previously been considered a metabolic waste and is mainly involved in exercise-induced fatigue. However, recent studies have found that lactate may be a mediator of the beneficial effects of exercise on brain health. Lactate plays a dual role as an energy supply substrate and a signaling molecule in this process. On the one hand, astrocytes can uptake circulating glucose or degrade glycogen for glycolysis to produce lactate, which is released into the extracellular space. Neurons can uptake extracellular lactate as an important supplement to their energy metabolism substrates, to meet the demand for large amounts of energy when synaptic activity is enhanced. Thus, synaptic activity and energy transfer show tight metabolic coupling. On the other hand, lactate acts as a signaling molecule to activate downstream signaling transduction pathways by specific receptors, inducing the expression of immediate early genes and cerebral angiogenesis. Moderate to high-intensity exercise not only increases lactate production and accumulation in muscle and blood but also promotes the uptake of skeletal muscle-derived lactate by the brain and enhances aerobic glycolysis to increase brain-derived lactate production. Furthermore, exercise regulates the expression or activity of transporters and enzymes involved in the astrocyte-neuron lactate shuttle to maintain the efficiency of this process; exercise also activates lactate receptor HCAR1, thus affecting brain plasticity. Rethinking the role of lactate in cognitive function and the regulatory effect of exercise is the main focus and highlights of the review. This may enrich the theoretical basis of lactate-related to promote brain health during exercise, and provide new perspectives for promoting a healthy aging strategy.
Collapse
Affiliation(s)
- Xiangli Xue
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China.,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Beibei Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China.,Department of Clinical Medicine, Weifang Medical College, Weifang, 261053, Shandong, China
| | - Jingyun Hu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Xuepeng Bian
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Shujie Lou
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China. .,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
12
|
Henkel ND, Wu X, O'Donovan SM, Devine EA, Jiron JM, Rowland LM, Sarnyai Z, Ramsey AJ, Wen Z, Hahn MK, McCullumsmith RE. Schizophrenia: a disorder of broken brain bioenergetics. Mol Psychiatry 2022; 27:2393-2404. [PMID: 35264726 DOI: 10.1038/s41380-022-01494-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
A substantial and diverse body of literature suggests that the pathophysiology of schizophrenia is related to deficits of bioenergetic function. While antipsychotics are an effective therapy for the management of positive psychotic symptoms, they are not efficacious for the complete schizophrenia symptom profile, such as the negative and cognitive symptoms. In this review, we discuss the relationship between dysfunction of various metabolic pathways across different brain regions in relation to schizophrenia. We contend that several bioenergetic subprocesses are affected across the brain and such deficits are a core feature of the illness. We provide an overview of central perturbations of insulin signaling, glycolysis, pentose-phosphate pathway, tricarboxylic acid cycle, and oxidative phosphorylation in schizophrenia. Importantly, we discuss pharmacologic and nonpharmacologic interventions that target these pathways and how such interventions may be exploited to improve the symptoms of schizophrenia.
Collapse
Affiliation(s)
- Nicholas D Henkel
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| | - Xiajoun Wu
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sinead M O'Donovan
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Emily A Devine
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jessica M Jiron
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zoltan Sarnyai
- Laboratory of Psychiatric Neuroscience, Australian Institute for Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Amy J Ramsey
- Department of Pharmacology and Toxicology, Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Margaret K Hahn
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert E McCullumsmith
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| |
Collapse
|
13
|
Tomba C, Migdal C, Fuard D, Villard C, Nicolas A. Poly-l-lysine/Laminin Surface Coating Reverses Glial Cell Mechanosensitivity on Stiffness-Patterned Hydrogels. ACS APPLIED BIO MATERIALS 2022; 5:1552-1563. [PMID: 35274925 DOI: 10.1021/acsabm.1c01295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Brain tissues demonstrate heterogeneous mechanical properties, which evolve with aging and pathologies. The observation in these tissues of smooth to sharp rigidity gradients raises the question of brain cell responses to both different values of rigidity and their spatial variations, in dependence on the surface chemistry they are exposed to. Here, we used recent techniques of hydrogel photopolymerization to achieve stiffness texturing down to micrometer resolution in polyacrylamide hydrogels. We investigated primary neuron adhesion and orientation as well as glial cell proliferative properties on these rigidity-textured hydrogels for two adhesive coatings: fibronectin or poly-l-lysine/laminin. Our main observation is that glial cell adhesion and proliferation is favored on the stiffer regions when the adhesive coating is fibronectin and on the softer ones when it consists of poly-l-lysine/laminin. This behavior was unchanged by the presence or the absence of neuronal cells. In addition, glial cells were not confined by sharp, micron-scaled gradients of rigidity. Our observations suggest that rigidity sensing could involve adhesion-related pathways that profoundly depend on surface chemistry.
Collapse
Affiliation(s)
- Caterina Tomba
- Univ. Grenoble Alps, CNRS, LTM, 38000 Grenoble, France.,Univ. Grenoble Alps, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Camille Migdal
- Univ. Grenoble Alps, CNRS, LTM, 38000 Grenoble, France.,Univ. Grenoble Alps, CEA, CNRS, Inserm, BIG-BCI, 38000 Grenoble, France.,Univ. Grenoble Alps, CEA, Inserm, BIG-BGE, 38000 Grenoble, France
| | - David Fuard
- Univ. Grenoble Alps, CNRS, LTM, 38000 Grenoble, France
| | - Catherine Villard
- Univ. Grenoble Alps, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Alice Nicolas
- Univ. Grenoble Alps, CNRS, LTM, 38000 Grenoble, France
| |
Collapse
|
14
|
Renormalization of metabolic coupling treats age-related degenerative disorders: an oxidative RPE niche fuels the more glycolytic photoreceptors. Eye (Lond) 2022; 36:278-283. [PMID: 34974542 PMCID: PMC8807833 DOI: 10.1038/s41433-021-01726-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
Retinitis pigmentosa is characterized by a dysregulation within the metabolic coupling of the retina, particularly between the glycolytic photoreceptors and the oxidative retina pigment epithelium. This phenomenon of metabolic uncoupling is seen in both aging and retinal degenerative diseases, as well as across a variety of cell types in human biology. Given its crucial role in the health and maintenance of these cell types, the metabolic pathways involved present a suitable area for therapeutic intervention. Herein, this review covers the scope of this delicate metabolic interplay, its dysregulation, how it relates to the retina as well other cell types, and finally concludes with a summary of various strategies aimed at reinstating normal metabolic coupling within the retina, and future directions within the field.
Collapse
|
15
|
Gorina YV, Salmina AB, Erofeev AI, Can Z, Bolshakova AV, Balaban PM, Bezprozvanny IB, Vlasova OL. Metabolic Plasticity of Astrocytes. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Ahluwalia M, Kumar M, Ahluwalia P, Rahimi S, Vender JR, Raju RP, Hess DC, Baban B, Vale FL, Dhandapani KM, Vaibhav K. Rescuing mitochondria in traumatic brain injury and intracerebral hemorrhages - A potential therapeutic approach. Neurochem Int 2021; 150:105192. [PMID: 34560175 PMCID: PMC8542401 DOI: 10.1016/j.neuint.2021.105192] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are dynamic organelles responsible for cellular energy production. Besides, regulating energy homeostasis, mitochondria are responsible for calcium homeostasis, signal transmission, and the fate of cellular survival in case of injury and pathologies. Accumulating reports have suggested multiple roles of mitochondria in neuropathologies, neurodegeneration, and immune activation under physiological and pathological conditions. Mitochondrial dysfunction, which occurs at the initial phase of brain injury, involves oxidative stress, inflammation, deficits in mitochondrial bioenergetics, biogenesis, transport, and autophagy. Thus, development of targeted therapeutics to protect mitochondria may improve functional outcomes following traumatic brain injury (TBI) and intracerebral hemorrhages (ICH). In this review, we summarize mitochondrial dysfunction related to TBI and ICH, including the mechanisms involved, and discuss therapeutic approaches with special emphasis on past and current clinical trials.
Collapse
Affiliation(s)
- Meenakshi Ahluwalia
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Manish Kumar
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Scott Rahimi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Raghavan P Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Fernando L Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
17
|
Cognitive and Imaging Differences After Proton and Photon Whole Brain Irradiation in a Preclinical Model. Int J Radiat Oncol Biol Phys 2021; 112:554-564. [PMID: 34509550 PMCID: PMC8748279 DOI: 10.1016/j.ijrobp.2021.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022]
Abstract
Purpose: Compared with photon cranial radiation therapy (X-CRT), proton cranial radiation therapy (P-CRT) offers potential advantages in limiting radiation-induced sequalae in the treatment of pediatric brain tumors. This study aims to identify cognitive, functional magnetic resonance and positron emission tomography imaging markers and molecular differences between the radiation modalities. Methods and Materials: Juvenile rats received a single faction of 10 Gy (relative biological effectiveness−weighted dose) delivered with 6 MV X-CRT or at the midspread out Bragg peak of a 100 MeV P-CRT beam. At 3, 6, and 12 months post-CRT, executive function was measured using 5-choice serial reaction time task. At ~12 months post-CRT, animals were imaged with 18F-Flurodeoxy-glucose positron emission tomography imaging followed by functional ex vivo magnetic resonance imaging and stained for markers of neuroinflammation. Results: Irradiated animals had cognitive impairment with a higher number of omissions and lower incorrect and premature responses compared with sham (P ≤ .05). The accuracy of the animals’ X-CRT was less than that of sham (P ≤ .001). No significant difference in rates of cognitive change were found between the radiation modalities. At 12 months post-CRT, glucose metabolism was significantly higher than sham in X-CRT (P = .04) but not P-CRT. Using diffusion tensor imaging, P-CRT brains were found to have higher white matter volume and fiber lengths compared with sham (P < .03). Only X-CRT animals had higher apparent diffusion coefficient values compared with sham (P = .04). P-CRT animals had more connectomic changes compared with X-CRT. Correlative analysis identified several imaging features with cognitive performance. Further-more, microgliosis (P < .05), astrogliosis (P < .01), and myelin thinning (P <.05) were observed in both radiation modalities, with X-CRT showing slightly more inflammation. Conclusions: Both P-CRT and X-CRT lead to neurocognitive changes compared with sham. Although no significant difference was observed in neuroinflammation between the irradiated groups, differences were found in late-term glucose metabolism and brain connectome. Our results indicate that despite relative biological effectiveness weighting of the proton dose there are still differential effects which warrants further investigation.
Collapse
|
18
|
Astrocytic contribution to glutamate-related central respiratory chemoreception in vertebrates. Respir Physiol Neurobiol 2021; 294:103744. [PMID: 34302992 DOI: 10.1016/j.resp.2021.103744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/18/2021] [Indexed: 12/24/2022]
Abstract
Central respiratory chemoreceptors play a key role in the respiratory homeostasis by sensing CO2 and H+ in brain and activating the respiratory neural network. This ability of specific brain regions to respond to acidosis and hypercapnia is based on neuronal and glial mechanisms. Several decades ago, glutamatergic transmission was proposed to be involved as a main mechanism in central chemoreception. However, a complete identification of mechanism has been elusive. At the rostral medulla, chemosensitive neurons of the retrotrapezoid nucleus (RTN) are glutamatergic and they are stimulated by ATP released by RTN astrocytes in response to hypercapnia. In addition, recent findings show that caudal medullary astrocytes in brainstem can also contribute as CO2 and H+ sensors that release D-serine and glutamate, both gliotransmitters able to activate the respiratory neural network. In this review, we describe the mammalian astrocytic glutamatergic contribution to the central respiratory chemoreception trying to trace in vertebrates the emergence of several components involved in this process.
Collapse
|
19
|
Kumar BS, Khot A, Chakravarthy VS, Pushpavanam S. A Network Architecture for Bidirectional Neurovascular Coupling in Rat Whisker Barrel Cortex. Front Comput Neurosci 2021; 15:638700. [PMID: 34211384 PMCID: PMC8241226 DOI: 10.3389/fncom.2021.638700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/10/2021] [Indexed: 01/01/2023] Open
Abstract
Neurovascular coupling is typically considered as a master-slave relationship between the neurons and the cerebral vessels: the neurons demand energy which the vessels supply in the form of glucose and oxygen. In the recent past, both theoretical and experimental studies have suggested that the neurovascular coupling is a bidirectional system, a loop that includes a feedback signal from the vessels influencing neural firing and plasticity. An integrated model of bidirectionally connected neural network and the vascular network is hence required to understand the relationship between the informational and metabolic aspects of neural dynamics. In this study, we present a computational model of the bidirectional neurovascular system in the whisker barrel cortex and study the effect of such coupling on neural activity and plasticity as manifest in the whisker barrel map formation. In this model, a biologically plausible self-organizing network model of rate coded, dynamic neurons is nourished by a network of vessels modeled using the biophysical properties of blood vessels. The neural layer which is designed to simulate the whisker barrel cortex of rat transmits vasodilatory signals to the vessels. The feedback from the vessels is in the form of available oxygen for oxidative metabolism whose end result is the adenosine triphosphate (ATP) necessary to fuel neural firing. The model captures the effect of the feedback from the vascular network on the neuronal map formation in the whisker barrel model under normal and pathological (Hypoxia and Hypoxia-Ischemia) conditions.
Collapse
Affiliation(s)
- Bhadra S. Kumar
- Computational Neuroscience Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Aditi Khot
- Department of Chemical Engineering, Purdue University, West Lafayette, IN, United States
| | - V. Srinivasa Chakravarthy
- Computational Neuroscience Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - S. Pushpavanam
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
20
|
Teixeira V, Maciel P, Costa V. Leading the way in the nervous system: Lipid Droplets as new players in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158820. [PMID: 33010453 DOI: 10.1016/j.bbalip.2020.158820] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022]
Abstract
Lipid droplets (LDs) are ubiquitous fat storage organelles composed of a neutral lipid core, comprising triacylglycerols (TAG) and sterol esters (SEs), surrounded by a phospholipid monolayer membrane with several decorating proteins. Recently, LD biology has come to the foreground of research due to their importance for energy homeostasis and cellular stress response. As aberrant LD accumulation and lipid depletion are hallmarks of numerous diseases, addressing LD biogenesis and turnover provides a new framework for understanding disease-related mechanisms. Here we discuss the potential role of LDs in neurodegeneration, while making some predictions on how LD imbalance can contribute to pathophysiology in the brain.
Collapse
Affiliation(s)
- Vitor Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade of Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vítor Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade of Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
21
|
Jha MK, Morrison BM. Lactate Transporters Mediate Glia-Neuron Metabolic Crosstalk in Homeostasis and Disease. Front Cell Neurosci 2020; 14:589582. [PMID: 33132853 PMCID: PMC7550678 DOI: 10.3389/fncel.2020.589582] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/09/2020] [Indexed: 12/28/2022] Open
Abstract
Research over the last couple of decades has provided novel insights into lactate neurobiology and the implications of lactate transport-driven neuroenergetics in health and diseases of peripheral nerve and the brain. The expression pattern of lactate transporters in glia and neurons has now been described, though notable controversies and discrepancies remain. Importantly, down- and up-regulation experiments are underway to better understand the function of these transporters in different systems. Lactate transporters in peripheral nerves are important for maintenance of axon and myelin integrity, motor end-plate integrity, the development of diabetic peripheral neuropathy (DPN), and the functional recovery following nerve injuries. Similarly, brain energy metabolism and functions ranging from development to synaptic plasticity to axonal integrity are also dependent on lactate transport primarily between glia and neurons. This review is focused on critically analysing the expression pattern and the functions of lactate transporters in peripheral nerves and the brain and highlighting their role in glia-neuron metabolic crosstalk in physiological and pathological conditions.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Brett M Morrison
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
22
|
Rezaie M, Nasehi M, Vaseghi S, Mohammadi-Mahdiabadi-Hasani MH, Zarrindast MR, Nasiri Khalili MA. The protective effect of alpha lipoic acid (ALA) on social interaction memory, but not passive avoidance in sleep-deprived rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2081-2091. [PMID: 32583046 DOI: 10.1007/s00210-020-01916-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/02/2020] [Indexed: 12/14/2022]
Abstract
Sleep is involved in maintaining energy, regulating heat, and recovering tissues. Furthermore, proper cognitive functions need sufficient sleep. Many studies have revealed the impairment effect of sleep deprivation (SD) on cognitive functions including learning and memory. Alpha lipoic acid (ALA) is a potent free radical scavenger, biological antioxidant, and neuroprotective agent. Furthermore, ALA improves learning and memory performance, decreases oxidative stress, and enhances antioxidant biomarkers. In this study, we aimed to investigate the effect of ALA on social interaction and passive avoidance memories in sleep-deprived rats. Total sleep deprivation (TSD) apparatus was used to induce SD (for 24 h). Three-chamber paradigm test and shuttle box apparatus were used to evaluate social interaction and passive avoidance memory, respectively. Rats' locomotor apparatus was used to assess locomotion. ALA was administered intraperitoneally at doses of 17 and 35 mg/kg for 3 consecutive days. The results showed SD impaired both types of memories. ALA at the dose of 35 mg/kg restored social interaction memory in sleep-deprived rats; while, at the dose of 17 mg/kg attenuated impairment effect of SD. Moreover, ALA at the dose of 35 mg/kg impaired passive avoidance memory in sham-SD rats and at both doses did not rescue passive avoidance memory in sleep-deprived rats. In conclusion, ALA showed impairment effect on passive avoidance memory, while improved social interaction memory in sleep-deprived rats.
Collapse
Affiliation(s)
- Maede Rezaie
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, P.O. Box: 13145-784, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Nasiri Khalili
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, P.O. Box: 13145-784, Tehran, Iran.
| |
Collapse
|
23
|
Steiner P. Brain Fuel Utilization in the Developing Brain. ANNALS OF NUTRITION AND METABOLISM 2020; 75 Suppl 1:8-18. [PMID: 32564020 DOI: 10.1159/000508054] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 11/19/2022]
Abstract
During pregnancy and infancy, the human brain is growing extremely fast; the brain volume increases significantly, reaching 36, 72, and 83% of the volume of adults at 2-4 weeks, 1 year, and 2 years of age, respectively, which is essential to establish the neuronal networks and capacity for the development of cognitive, motor, social, and emotional skills that will be continually refined throughout childhood and adulthood. Such dramatic changes in brain structure and function are associated with very large energetic demands exceeding by far those of other organs of the body. It has been estimated that during childhood the brain may account for up to 60% of the body basal energetic requirements. While the main source of energy for the adult brain is glucose, it appears that it is not sufficient to sustain the dramatic metabolic demands of the brain during its development. Recently, it has been proposed that this energetic challenge is solved by the ability of the brain to use ketone bodies (KBs), produced from fatty acid oxidation, as a complement source of energy. Here, we first describe the main cellular and physiological processes that drive brain development along time and how different brain metabolic pathways are engaged to support them. It has been assumed that the majority of energetic substrates are used to support neuronal activity and signal transmission. We discuss how glucose and KBs are metabolized to provide the carbon backbones used to synthesize lipids, nucleic acid, and cholesterol, which are indispensable building blocks of neuronal cell proliferation and are also used to establish and refine brain connectivity through synapse formation/elimination and myelination. We conclude that glucose and KBs are not only important to support the energy needs of the brain under development, but they are also essential substrates for the biosynthesis of macromolecules underlying structural brain growth and reorganization. We emphasize that glucose and fatty acids supporting the production of KBs are provided in complex food matrices, such as breast milk, and understanding how their availability impacts the brain will be key to promote adequate nutrition to support brain metabolism and, therefore, optimal brain development.
Collapse
Affiliation(s)
- Pascal Steiner
- Société des Produits Nestlé SA, Nestlé Research, Brain Health Department, Lausanne, Switzerland,
| |
Collapse
|
24
|
Wadhwa M, Prabhakar A, Anand JP, Ray K, Prasad D, Kumar B, Panjwani U. Complement activation sustains neuroinflammation and deteriorates adult neurogenesis and spatial memory impairment in rat hippocampus following sleep deprivation. Brain Behav Immun 2019; 82:129-144. [PMID: 31408672 DOI: 10.1016/j.bbi.2019.08.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND An association between neuroinflammation, reduced adult neurogenesis, and cognitive impairment has been established in sleep deprivation (SD). Complement receptors are expressed on neuronal and glial cells, thus, regulate the neuroinflammation, neurogenesis and learning/memory. However, understanding of the effect of SD on the brain-immune system interaction associated with cognitive dysfunction and its mechanisms is obscure. We hypothesized that complement activation induced changes in inflammatory and neurogenesis related proteins might be involved in the cognitive impairment during SD. METHODOLOGY Adult male Sprague Dawley rats were used. Rats were sleep deprived for 48 h using a novel automated SD apparatus. Dosage of BrdU (50 mg/kg/day, i.p. in 0.07 N NaOH), complement C3a receptor antagonist (C3aRA; SB290157; 1 mg/kg/day, i.p.) in 1.16% v/v PBS and complement C5a receptor antagonist (C5aRA; W-54011; 1 mg/kg/day, i.p.) in normal saline were used. Rats were subjected to spatial memory evaluation following SD. Hippocampal tissue was collected for biochemical, molecular, and immunohistochemical studies. T-test and ANOVA were used for the statistical analysis. RESULTS An up-regulation in the levels of complement components (C3, C5, C3a, C5a) and receptors (C3aR and C5aR) in hippocampus, displayed the complement activation during SD. Selective antagonism of C3aR/C5aR improved the spatial memory performance of sleep-deprived rats. C3aR antagonist (C3aRA) or C5aR antagonist (C5aRA) treatment inhibited the gliosis, maintained inflammatory cytokines balance in hippocampus during SD. Complement C3aR/C5aR antagonism improved hippocampal adult neurogenesis via up-regulating the BDNF level following SD. Administration of C3aRA and C5aRA significantly maintained synaptic homeostasis in hippocampus after SD. Gene expression analysis showed down-regulation in the mRNA levels of signal transduction pathways (Notch and Wnt), differentiation and axogenous proteins, which were found to be improved after C3aRA/C5aRA treatment. These findings were validated at protein and cellular level. Changes in the corticosterone level and ATP-adenosine-NO pathway were established as the key mechanisms underlying complement activation mediated consequences of SD. CONCLUSION Our study suggests complement (C3a-C3aR and C5a-C5aR) activation as the novel mechanism underlying spatial memory impairment via promoting neuroinflammation and adult neurogenesis decline in hippocampus during SD, thereby, complement (C3aR/C5aR) antagonist may serve as the novel therapeutics to improve the SD mediated consequences.
Collapse
Affiliation(s)
- Meetu Wadhwa
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, India
| | - Amit Prabhakar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, India
| | - Jag Pravesh Anand
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, India
| | - Koushik Ray
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, India
| | - Dipti Prasad
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, India
| | - Bhuvnesh Kumar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, India
| | - Usha Panjwani
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, India.
| |
Collapse
|
25
|
Mazur C, Powers B, Zasadny K, Sullivan JM, Dimant H, Kamme F, Hesterman J, Matson J, Oestergaard M, Seaman M, Holt RW, Qutaish M, Polyak I, Coelho R, Gottumukkala V, Gaut CM, Berridge M, Albargothy NJ, Kelly L, Carare RO, Hoppin J, Kordasiewicz H, Swayze EE, Verma A. Brain pharmacology of intrathecal antisense oligonucleotides revealed through multimodal imaging. JCI Insight 2019; 4:129240. [PMID: 31619586 DOI: 10.1172/jci.insight.129240] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/11/2019] [Indexed: 01/01/2023] Open
Abstract
Intrathecal (IT) delivery and pharmacology of antisense oligonucleotides (ASOs) for the CNS have been successfully developed to treat spinal muscular atrophy. However, ASO pharmacokinetic (PK) and pharmacodynamic (PD) properties remain poorly understood in the IT compartment. We applied multimodal imaging techniques to elucidate the IT PK and PD of unlabeled, radioactively labeled, or fluorescently labeled ASOs targeting ubiquitously expressed or neuron-specific RNAs. Following lumbar IT bolus injection in rats, all ASOs spread rostrally along the neuraxis, adhered to meninges, and were partially cleared to peripheral lymph nodes and kidneys. Rapid association with the pia and arterial walls preceded passage of ASOs across the glia limitans, along arterial intramural basement membranes, and along white-matter axonal bundles. Several neuronal and glial cell types accumulated ASOs over time, with evidence of probable glial accumulation preceding neuronal uptake. IT doses of anti-GluR1 and anti-Gabra1 ASOs markedly reduced the mRNA and protein levels of their respective neurotransmitter receptor protein targets by 2 weeks and anti-Gabra1 ASOs also reduced binding of the GABAA receptor PET ligand 18F-flumazenil in the brain over 4 weeks. Our multimodal imaging approaches elucidate multiple transport routes underlying the CNS distribution, clearance, and efficacy of IT-dosed ASOs.
Collapse
Affiliation(s)
- Curt Mazur
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Berit Powers
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | | | - Jenna M Sullivan
- Invicro, LLC, Boston, Massachusetts, USA.,Biogen, Cambridge, Masschusetts, USA
| | | | - Fredrik Kamme
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | | | - John Matson
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | | | | | | | | | | | | | | | | | | | | | - Louise Kelly
- University of Southampton, Hampshire, United Kingdom
| | | | | | | | - Eric E Swayze
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | | |
Collapse
|
26
|
Choi I, Rickert E, Fernandez M, Webster NJG. SIRT1 in Astrocytes Regulates Glucose Metabolism and Reproductive Function. Endocrinology 2019; 160:1547-1560. [PMID: 31127273 PMCID: PMC6542483 DOI: 10.1210/en.2019-00223] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/19/2019] [Indexed: 12/13/2022]
Abstract
Sirtuin 1 (Sirt1) is an NAD-dependent class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, evidence suggests that SIRT1 in neurons plays a role in the central regulation of energy balance and reproduction, but no studies have addressed the contribution of astrocytes. We show here that overexpression of SIRT1 in astrocytes causes markedly increased food intake, body weight gain, and glucose intolerance, but expression of a deacetylase-deficient SIRT1 mutant decreases food intake and body weight and improves glucose tolerance, particularly in female mice. Paradoxically, the effect of these SIRT1 mutants on insulin tolerance was reversed, with overexpression showing greater insulin sensitivity. The mice overexpressing SIRT1 were more active, generated more heat, and had elevated oxygen consumption, possibly in compensation for the increased food intake. The female overexpressing mice were also more sensitive to diet-induced obesity. Reproductively, the mice expressing the deacetylase-deficient SIRT1 mutant had impaired estrous cycles, decreased LH surges, and fewer corpora lutea, indicating decreased ovulation. The GnRH neurons were responsive to kisspeptin stimulation, but hypothalamic expression of Kiss1 was reduced in the mutant mice. Our results showed that SIRT1 signaling in astrocytes can contribute to metabolic and reproductive regulation independent of SIRT1 effects in neurons.
Collapse
Affiliation(s)
- Irene Choi
- VA San Diego Healthcare System, San Diego, California
| | - Emily Rickert
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Marina Fernandez
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Nicholas J G Webster
- VA San Diego Healthcare System, San Diego, California
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California
- Moores Cancer Center, University of California San Diego, La Jolla, California
- Correspondence: Nicholas J. G. Webster, PhD, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093. E-mail:
| |
Collapse
|
27
|
Fuente-Martín E, Mellado-Gil JM, Cobo-Vuilleumier N, Martín-Montalvo A, Romero-Zerbo SY, Diaz Contreras I, Hmadcha A, Soria B, Martin Bermudo F, Reyes JC, Bermúdez-Silva FJ, Lorenzo PI, Gauthier BR. Dissecting the Brain/Islet Axis in Metabesity. Genes (Basel) 2019; 10:genes10050350. [PMID: 31072002 PMCID: PMC6562925 DOI: 10.3390/genes10050350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
The high prevalence of type 2 diabetes mellitus (T2DM), together with the fact that current treatments are only palliative and do not avoid major secondary complications, reveals the need for novel approaches to treat the cause of this disease. Efforts are currently underway to identify therapeutic targets implicated in either the regeneration or re-differentiation of a functional pancreatic islet β-cell mass to restore insulin levels and normoglycemia. However, T2DM is not only caused by failures in β-cells but also by dysfunctions in the central nervous system (CNS), especially in the hypothalamus and brainstem. Herein, we review the physiological contribution of hypothalamic neuronal and glial populations, particularly astrocytes, in the control of the systemic response that regulates blood glucose levels. The glucosensing capacity of hypothalamic astrocytes, together with their regulation by metabolic hormones, highlights the relevance of these cells in the control of glucose homeostasis. Moreover, the critical role of astrocytes in the response to inflammation, a process associated with obesity and T2DM, further emphasizes the importance of these cells as novel targets to stimulate the CNS in response to metabesity (over-nutrition-derived metabolic dysfunctions). We suggest that novel T2DM therapies should aim at stimulating the CNS astrocytic response, as well as recovering the functional pancreatic β-cell mass. Whether or not a common factor expressed in both cell types can be feasibly targeted is also discussed.
Collapse
Affiliation(s)
- Esther Fuente-Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Jose M Mellado-Gil
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Nadia Cobo-Vuilleumier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Alejandro Martín-Montalvo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Silvana Y Romero-Zerbo
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, 29009 Málaga, Spain.
| | - Irene Diaz Contreras
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Abdelkrim Hmadcha
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Bernat Soria
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Francisco Martin Bermudo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Jose C Reyes
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Francisco J Bermúdez-Silva
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, 29009 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Petra I Lorenzo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Benoit R Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| |
Collapse
|
28
|
Li J, Liu B, Cai M, Lin X, Lou S. Glucose metabolic alterations in hippocampus of diabetes mellitus rats and the regulation of aerobic exercise. Behav Brain Res 2019; 364:447-456. [DOI: 10.1016/j.bbr.2017.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 12/17/2022]
|
29
|
Kilic K, Karatas H, Dönmez-Demir B, Eren-Kocak E, Gursoy-Ozdemir Y, Can A, Petit JM, Magistretti PJ, Dalkara T. Inadequate brain glycogen or sleep increases spreading depression susceptibility. Ann Neurol 2019; 83:61-73. [PMID: 29244233 DOI: 10.1002/ana.25122] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/23/2017] [Accepted: 12/12/2017] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Glycogen in astrocyte processes contributes to maintenance of low extracellular glutamate and K+ concentrations around excitatory synapses. Sleep deprivation (SD), a common migraine trigger, induces transcriptional changes in astrocytes, reducing glycogen breakdown. We hypothesize that when glycogen utilization cannot match synaptic energy demand, extracellular K+ can rise to levels that activate neuronal pannexin-1 channels and downstream inflammatory pathway, which might be one of the mechanisms initiating migraine headaches. METHODS We suppressed glycogen breakdown by inhibiting glycogen phosphorylation with 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) and by SD. RESULTS DAB caused neuronal pannexin-1 large pore opening and activation of the downstream inflammatory pathway as shown by procaspase-1 cleavage and HMGB1 release from neurons. Six-hour SD induced pannexin-1 mRNA. DAB and SD also lowered the cortical spreading depression (CSD) induction threshold, which was reversed by glucose or lactate supplement, suggesting that glycogen-derived energy substrates are needed to prevent CSD generation. Supporting this, knocking down the neuronal lactate transporter MCT2 with an antisense oligonucleotide or inhibiting glucose transport from vessels to astrocytes with intracerebroventricularly delivered phloretin reduced the CSD threshold. In vivo recordings with a K+ -sensitive/selective fluoroprobe, Asante Potassium Green-4, revealed that DAB treatment or SD caused a significant rise in extracellular K+ during whisker stimulation, illustrating the critical role of glycogen in extracellular K+ clearance. INTERPRETATION Synaptic metabolic stress caused by insufficient glycogen-derived energy substrate supply can activate neuronal pannexin-1 channels as well as lower the CSD threshold. Therefore, conditions that limit energy supply to synapses (eg, SD) may predispose to migraine attacks, as suggested by genetic studies associating glucose or lactate transporter deficiency with migraine. Ann Neurol 2018;83:61-73.
Collapse
Affiliation(s)
- Kivilcim Kilic
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Hulya Karatas
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Buket Dönmez-Demir
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Emine Eren-Kocak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Yasemin Gursoy-Ozdemir
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Current address for Dr Gursoy-Ozdemir: Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
| | - Alp Can
- Department of Histology and Embryology, School of Medicine, Ankara University, Ankara, Turkey
| | - Jean-Marie Petit
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital of the Canton of Vaud (CHUV), Prilly, Switzerland
| | - Pierre J Magistretti
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Brain Mind Institute, Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Turgay Dalkara
- Department of Neurology, Faculty of Medicine and Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
30
|
Panagiotou M, Deboer T. Chronic high-caloric diet accentuates age-induced sleep alterations in mice. Behav Brain Res 2019; 362:131-139. [PMID: 30639608 DOI: 10.1016/j.bbr.2019.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 11/15/2022]
Abstract
Obesity and sleep disturbances comprise major health problems which are likely interrelated. Diet-induced obesity in young mice has been demonstrated to lead towards an altered sleep homeostasis. In the current study, we investigated the effect of chronic (12 weeks) high-caloric diet (HCD, 45% fat) consumption on sleep and the sleep electroencephalogram (EEG) in young and older mice (6-month-old, n = 9; 18-month-old, n = 8 and 24-month-old, n = 4) and compared with age-matched controls on normal chow (n = 11, n = 9 and n = 9 respectively). Half of the 24-month-old mice did not cope well with HCD, therefore this group has a lower n and limited statistical power. We recorded EEG and the electromyogram for continuous 48-h and performed a 6-h sleep deprivation during the second day. In aged HCD fed mice (18 months old) compared to young, an aging effect was still evident, characterized by decreased waking and increased NREM sleep in the dark period, decreased REM sleep during the light period, as well as increased slow-wave-activity (SWA, EEG power in NREM sleep in 0.5-4.0 Hz). Additionally, aged HCD treated mice showed increased NREM sleep and decreased waking, compared to age-matched controls, denoting an enhanced aging phenotype in the sleep architecture. Notably, an overall increase was found in the slow component of SWA (0.5-2.5 Hz) in aged HCD fed mice compared to age-matched controls. Our data suggest that the effect of aging is the dominant variable irrespective of diet. However, a synergistic effect of aging and diet is noted indicating that chronic HCD consumption exacerbates age-associated sleep alterations.
Collapse
Affiliation(s)
- M Panagiotou
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | - T Deboer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
31
|
Abstract
The cellular mechanisms governing the expression, regulation, and function of sleep are not entirely understood. The traditional view is that these mechanisms are neuronal. An alternative view is that glial brain cells may play important roles in these processes. Their ubiquity in the central nervous system makes them well positioned to modulate neuronal circuits that gate sleep and wake. Their ability to respond to chemical neuronal signals suggests that they form feedback loops with neurons that may globally regulate neuronal activity. Their potential role in detoxifying the brain, regulating neuronal metabolism, and promoting synaptic plasticity raises the intriguing possibility that glia mediate important functions ascribed to sleep.
Collapse
Affiliation(s)
- Marcos G Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane, Spokane, WA, USA.
| |
Collapse
|
32
|
Lu WT, Sun SQ, Li Y, Xu SY, Gan SW, Xu J, Qiu GP, Zhuo F, Huang SQ, Jiang XL, Huang J. Curcumin Ameliorates Memory Deficits by Enhancing Lactate Content and MCT2 Expression in APP/PS1 Transgenic Mouse Model of Alzheimer's Disease. Anat Rec (Hoboken) 2018; 302:332-338. [PMID: 30312017 DOI: 10.1002/ar.23969] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 05/01/2018] [Accepted: 06/03/2018] [Indexed: 12/16/2022]
Abstract
Curcumin is a natural product with several anti-Alzheimer's disease (AD) neuroprotective properties. This study aimed to investigate the effects of curcumin on memory deficits, lactate content, and monocarboxylate transporter 2 (MCT2) in APP/PS1 mouse model of AD. APP/PS1 transgenic mice and wild-type (WT) C57BL/6J mice were used in the present study. Spatial learning and memory of the mice was detected using Morris water-maze test. Cerebral cortex and hippocampus lactate contents were detected using lactate assay. MCT2 expression in the cerebral cortex and hippocampus was examined by immunohistochemistry and Western blotting. Results showed that spatial learning and memory deficits were improved in curcumin-treated APP/PS1 mouse group compared with those in APP/PS1 mice group. Brain lactate content and MCT2 protein level were increased in curcumin-treated APP/PS1 mice than in APP/PS1 mice. In summary, our findings indicate that curcumin could ameliorate memory impairments in APP/PS1 mouse model of AD. This phenomenon may be at least partially due to its improving effect on the lactate content and MCT2 protein expression in the brain. Anat Rec, 302:332-338, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wei-Tian Lu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 40016, China.,Department of Anatomy, Chongqing Medical University, Chongqing, 40016, China
| | - Shan-Quan Sun
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 40016, China.,Department of Anatomy, Chongqing Medical University, Chongqing, 40016, China
| | - Yu Li
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 40016, China
| | - Shi-Ye Xu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 40016, China.,Department of Anatomy, Chongqing Medical University, Chongqing, 40016, China
| | - Sheng-Wei Gan
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 40016, China.,Department of Anatomy, Chongqing Medical University, Chongqing, 40016, China
| | - Jin Xu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 40016, China.,Department of Anatomy, Chongqing Medical University, Chongqing, 40016, China
| | - Guo-Ping Qiu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 40016, China
| | - Fei Zhuo
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 40016, China
| | - Si-Qin Huang
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, 40016, China
| | - Xu-Li Jiang
- Department of Anatomy, Science and Technology College of Hubei University for Nationalities, Enshi, 445000, China
| | - Juan Huang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 40016, China.,Department of Anatomy, Chongqing Medical University, Chongqing, 40016, China
| |
Collapse
|
33
|
Tian SW, Yu XD, Cen L, Xiao ZY. Glutamate transporter GLT1 inhibitor dihydrokainic acid impairs novel object recognition memory performance in mice. Physiol Behav 2018; 199:28-32. [PMID: 30389478 DOI: 10.1016/j.physbeh.2018.10.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022]
Abstract
Glutamate transporter GLT1 mediates glutamate uptake, and maintains glutamate homeostasis in the synaptic cleft. Previous studies suggest that blockade of glutamate uptake affects synaptic transmission and plasticity. However, the effect of GLT1 blockade on learning and memory still receives little attention. In the present study, we examined the effect of unilateral intracerebroventricular injection of dihydrokainic acid (DHK), a GLT-1 inhibitor, on novel object recognition (NOR) memory performance. The NOR task involved three sessions including habituation, sampling and test. In experiment 1, DHK injection 0.5 h pre-sampling impaired short-term NOR memory performance. In experiment 2, DHK injection 0.5 h pre-sampling impaired long-term NOR memory acquisition. In experiment 3, DHK injection immediately but not 6 h post-sampling impaired long-term NOR memory consolidation. In experiment 4, DHK injection 0.5 h pre-test impaired long-term NOR memory retrieval. Furthermore, DHK-induced memory performance impairment was not due to its effects on nonspecific responses such as locomotor activity and exploratory behavior. The current findings further extend previous studies on the effects of disruption of glutamate homeostasis on learning and memory.
Collapse
Affiliation(s)
- Shao-Wen Tian
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China.
| | - Xu-Dong Yu
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China.
| | - Lian Cen
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Zhi-Yong Xiao
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| |
Collapse
|
34
|
Stankoff B, Poirion E, Tonietto M, Bodini B. Exploring the heterogeneity of MS lesions using positron emission tomography: a reappraisal of their contribution to disability. Brain Pathol 2018; 28:723-734. [PMID: 30020560 PMCID: PMC8099240 DOI: 10.1111/bpa.12641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022] Open
Abstract
The biological mechanisms driving disability worsening in multiple sclerosis (MS) are only partly understood. Monitoring changes in lesion load on MRI has a limited predictive value on the progression of clinical disability, and there is an essential need for novel imaging markers specific for the main candidate mechanisms underlying neurodegeneration which include failing myelin repair, innate immune cell activation and gray matter neuronal damage. Positron Emission Tomography (PET) is an imaging technology based on the injection of radiotracers directed against specific molecular targets, which has recently allowed the selective quantification in-vivo of the key biological mechanisms relevant to MS pathophysiology. Pilot PET studies performed in patients with all forms of MS allowed to revisit the contribution of MS lesions to disability worsening and showed that the evolution of lesions toward chronic activation, together with their remyelination profile were relevant predictors of disability worsening. PET offers the opportunity to bridge a critical gap between neuropathology and in-vivo imaging. This technique provides an original approach to disentangle some of the most relevant pathological components driving MS progression, to follow-up their temporal evolution, to investigate their clinical relevance and to evaluate novel therapeutics aimed to prevent disease progression.
Collapse
Affiliation(s)
- Bruno Stankoff
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
- AP‐HPHôpital Saint‐AntoineParisFrance
| | - Emilie Poirion
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
| | - Matteo Tonietto
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
| | - Benedetta Bodini
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
- AP‐HPHôpital Saint‐AntoineParisFrance
| |
Collapse
|
35
|
Coggan JS, Keller D, Calì C, Lehväslaiho H, Markram H, Schürmann F, Magistretti PJ. Norepinephrine stimulates glycogenolysis in astrocytes to fuel neurons with lactate. PLoS Comput Biol 2018; 14:e1006392. [PMID: 30161133 PMCID: PMC6160207 DOI: 10.1371/journal.pcbi.1006392] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/27/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
The mechanism of rapid energy supply to the brain, especially to accommodate the heightened metabolic activity of excited states, is not well-understood. We explored the role of glycogen as a fuel source for neuromodulation using the noradrenergic stimulation of glia in a computational model of the neural-glial-vasculature ensemble (NGV). The detection of norepinephrine (NE) by the astrocyte and the coupled cAMP signal are rapid and largely insensitive to the distance of the locus coeruleus projection release sites from the glia, implying a diminished impact for volume transmission in high affinity receptor transduction systems. Glucosyl-conjugated units liberated from glial glycogen by NE-elicited cAMP second messenger transduction winds sequentially through the glycolytic cascade, generating robust increases in NADH and ATP before pyruvate is finally transformed into lactate. This astrocytic lactate is rapidly exported by monocarboxylate transporters to the associated neuron, demonstrating that the astrocyte-to-neuron lactate shuttle activated by glycogenolysis is a likely fuel source for neuromodulation and enhanced neural activity. Altogether, the energy supply for both astrocytes and neurons can be supplied rapidly by glycogenolysis upon neuromodulatory stimulus. Although efficient compared to computers, the human brain utilizes energy at 10-fold the rate of other organs by mass. How the brain is supplied with sufficient on-demand energy to support its activity in the absence of neuronal storage capacity remains unknown. Neurons are not capable of meeting their own energy requirements, instead energy supply in the brain is managed by an oligocellular cartel composed of neurons, glia and the local vasculature (NGV), wherein glia can provide the ergogenic metabolite lactate to the neuron in a process called the astrocyte-to-neuron shuttle (ANLS). The only means of energy storage in the brain is glycogen, a polymerized form of glucose that is localized largely to astrocytes, but its exact role and conditions of use are not clear. In this computational model we show that neuromodulatory stimulation by norepinephrine induces astrocytes to recover glucosyl subunits from glycogen for use in a glycolytic process that favors the production of lactate. The ATP and NADH produced support metabolism in the astrocyte while the lactate is exported to feed the neuron. Thus, rapid energy demands by both neurons and glia in a stimulated brain can be met by glycogen mobilization.
Collapse
Affiliation(s)
- Jay S. Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- * E-mail: (JSC); (PJM)
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Corrado Calì
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Heikki Lehväslaiho
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Felix Schürmann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Pierre J. Magistretti
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- * E-mail: (JSC); (PJM)
| |
Collapse
|
36
|
Gavrilov N, Golyagina I, Brazhe A, Scimemi A, Turlapov V, Semyanov A. Astrocytic Coverage of Dendritic Spines, Dendritic Shafts, and Axonal Boutons in Hippocampal Neuropil. Front Cell Neurosci 2018; 12:248. [PMID: 30174590 PMCID: PMC6108058 DOI: 10.3389/fncel.2018.00248] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/19/2018] [Indexed: 01/22/2023] Open
Abstract
Distal astrocytic processes have a complex morphology, reminiscent of branchlets and leaflets. Astrocytic branchlets are rod-like processes containing mitochondria and endoplasmic reticulum, capable of generating inositol-3-phosphate (IP3)-dependent Ca2+ signals. Leaflets are small and flat processes that protrude from branchlets and fill the space between synapses. Here we use three-dimensional (3D) reconstructions from serial section electron microscopy (EM) of rat CA1 hippocampal neuropil to determine the astrocytic coverage of dendritic spines, shafts and axonal boutons. The distance to the maximum of the astrocyte volume fraction (VF) correlated with the size of the spine when calculated from the center of mass of the postsynaptic density (PSD) or from the edge of the PSD, but not from the spine surface. This suggests that the astrocytic coverage of small and larger spines is similar in hippocampal neuropil. Diffusion simulations showed that such synaptic microenvironment favors glutamate spillover and extrasynaptic receptor activation at smaller spines. We used complexity and entropy measures to characterize astrocytic branchlets and leaflets. The 2D projections of astrocytic branchlets had smaller spatial complexity and entropy than leaflets, consistent with the higher structural complexity and less organized distribution of leaflets. The VF of astrocytic leaflets was highest around dendritic spines, lower around axonal boutons and lowest around dendritic shafts. In contrast, the VF of astrocytic branchlets was similarly low around these three neuronal compartments. Taken together, these results suggest that astrocytic leaflets preferentially contact synapses as opposed to the dendritic shaft, an arrangement that might favor neurotransmitter spillover and extrasynaptic receptor activation along dendritic shafts.
Collapse
Affiliation(s)
- Nikolay Gavrilov
- UNN Institute of Neuroscience, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Inna Golyagina
- UNN Institute of Neuroscience, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexey Brazhe
- Department of Biophysics, Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Annalisa Scimemi
- Department of Biology, University at Albany, The State University of New York (SUNY), Albany, NY, United States
| | - Vadim Turlapov
- Institute of Information Technologies, Mathematics and Mechanics, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexey Semyanov
- UNN Institute of Neuroscience, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| |
Collapse
|
37
|
Bourdon AK, Spano GM, Marshall W, Bellesi M, Tononi G, Serra PA, Baghdoyan HA, Lydic R, Campagna SR, Cirelli C. Metabolomic analysis of mouse prefrontal cortex reveals upregulated analytes during wakefulness compared to sleep. Sci Rep 2018; 8:11225. [PMID: 30046159 PMCID: PMC6060152 DOI: 10.1038/s41598-018-29511-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022] Open
Abstract
By identifying endogenous molecules in brain extracellular fluid metabolomics can provide insight into the regulatory mechanisms and functions of sleep. Here we studied how the cortical metabolome changes during sleep, sleep deprivation and spontaneous wakefulness. Mice were implanted with electrodes for chronic sleep/wake recording and with microdialysis probes targeting prefrontal and primary motor cortex. Metabolites were measured using ultra performance liquid chromatography-high resolution mass spectrometry. Sleep/wake changes in metabolites were evaluated using partial least squares discriminant analysis, linear mixed effects model analysis of variance, and machine-learning algorithms. More than 30 known metabolites were reliably detected in most samples. When used by a logistic regression classifier, the profile of these metabolites across sleep, spontaneous wake, and enforced wake was sufficient to assign mice to their correct experimental group (pair-wise) in 80-100% of cases. Eleven of these metabolites showed significantly higher levels in awake than in sleeping mice. Some changes extend previous findings (glutamate, homovanillic acid, lactate, pyruvate, tryptophan, uridine), while others are novel (D-gluconate, N-acetyl-beta-alanine, N-acetylglutamine, orotate, succinate/methylmalonate). The upregulation of the de novo pyrimidine pathway, gluconate shunt and aerobic glycolysis may reflect a wake-dependent need to promote the synthesis of many essential components, from nucleic acids to synaptic membranes.
Collapse
Affiliation(s)
- Allen K Bourdon
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States
| | - Giovanna Maria Spano
- Department of Psychiatry, University of Wisconsin, Madison, Madison, WI, United States
| | - William Marshall
- Department of Psychiatry, University of Wisconsin, Madison, Madison, WI, United States
| | - Michele Bellesi
- Department of Psychiatry, University of Wisconsin, Madison, Madison, WI, United States.,Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, Madison, WI, United States
| | - Pier Andrea Serra
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Helen A Baghdoyan
- Department of Anesthesiology and Psychology, University of Tennessee, Knoxville, TN, United States.,Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Ralph Lydic
- Department of Anesthesiology and Psychology, University of Tennessee, Knoxville, TN, United States.,Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States. .,Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN, United States.
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, Madison, WI, United States.
| |
Collapse
|
38
|
Maciel-Barón LÁ, Moreno-Blas D, Morales-Rosales SL, González-Puertos VY, López-Díazguerrero NE, Torres C, Castro-Obregón S, Königsberg M. Cellular Senescence, Neurological Function, and Redox State. Antioxid Redox Signal 2018; 28:1704-1723. [PMID: 28467755 DOI: 10.1089/ars.2017.7112] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Cellular senescence, characterized by permanent cell cycle arrest, has been extensively studied in mitotic cells such as fibroblasts. However, senescent cells have also been observed in the brain. Even though it is recognized that cellular energetic metabolism and redox homeostasis are perturbed in the aged brain and neurodegenerative diseases (NDDs), it is still unknown which alterations in the overall physiology can stimulate cellular senescence induction and their relationship with the former events. Recent Advances: Recent findings have shown that during prolonged inflammatory and pathologic events, the blood-brain barrier could be compromised and immune cells might enter the brain; this fact along with the brain's high oxygen dependence might result in oxidative damage to macromolecules and therefore senescence induction. Thus, cellular senescence in different brain cell types is revised here. CRITICAL ISSUES Most information related to cellular senescence in the brain has been obtained from research in glial cells since it has been assumed that the senescent phenotype is a feature exclusive to mitotic cells. Nevertheless, neurons with senescence hallmarks have been observed in old mouse brains. Therefore, although this is a controversial topic in the field, here we summarize and integrate the observations from several studies and propose that neurons indeed senesce. FUTURE DIRECTIONS It is still unknown which alterations in the overall metabolism can stimulate senescence induction in the aged brain, what are the mechanisms and signaling pathways, and what is their relationship to NDD development. The understanding of these processes will expose new targets to intervene age-associated pathologies.-Antioxid. Redox Signal. 28, 1704-1723.
Collapse
Affiliation(s)
- Luis Ángel Maciel-Barón
- 1 División de Ciencias Biológicas y de la Salud, Department Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa , Iztapalapa, México
| | - Daniel Moreno-Blas
- 2 Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Ciudad de México, México
| | - Sandra Lizbeth Morales-Rosales
- 1 División de Ciencias Biológicas y de la Salud, Department Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa , Iztapalapa, México
| | - Viridiana Yazmín González-Puertos
- 1 División de Ciencias Biológicas y de la Salud, Department Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa , Iztapalapa, México
| | - Norma Edith López-Díazguerrero
- 1 División de Ciencias Biológicas y de la Salud, Department Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa , Iztapalapa, México
| | - Claudio Torres
- 3 Department of Pathology and Laboratory Medicine, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Susana Castro-Obregón
- 2 Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Ciudad de México, México
| | - Mina Königsberg
- 1 División de Ciencias Biológicas y de la Salud, Department Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa , Iztapalapa, México
| |
Collapse
|
39
|
DISC1 regulates lactate metabolism in astrocytes: implications for psychiatric disorders. Transl Psychiatry 2018; 8:76. [PMID: 29643356 PMCID: PMC5895599 DOI: 10.1038/s41398-018-0123-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/11/2018] [Accepted: 02/18/2018] [Indexed: 12/31/2022] Open
Abstract
Our knowledge of how genetic risk variants contribute to psychiatric disease is mainly limited to neurons. However, the mechanisms whereby the same genetic risk factors could affect the physiology of glial cells remain poorly understood. We studied the role of a psychiatric genetic risk factor, Disrupted-In-Schizophrenia-1 (DISC1), in metabolic functions of astrocytes. We evaluated the effects of knockdown of mouse endogenous DISC1 (DISC1-KD) and expression of a dominant-negative, C-terminus truncated human DISC1 (DN-DISC1) on the markers of energy metabolism, including glucose uptake and lactate production, in primary astrocytes and in mice with selective expression of DN-DISC1 in astrocytes. We also assessed the effects of lactate treatment on altered affective behaviors and impaired spatial memory in DN-DISC1 mice. Both DISC1-KD and DN-DISC1 comparably decreased mRNA and protein levels of glucose transporter 4 and glucose uptake by primary astrocytes. Decreased glucose uptake was associated with reduced oxidative phosphorylation and glycolysis as well as diminished lactate production in vitro and in vivo. No significant effects of DISC1 manipulations in astrocytes were observed on expression of the subunits of the electron transport chain complexes or mitofilin, a neuronal DISC1 partner. Lactate treatment rescued the abnormal behaviors in DN-DISC1 male and female mice. Our results suggest that DISC1 may be involved in the regulation of lactate production in astrocytes to support neuronal activity and associated behaviors. Abnormal expression of DISC1 in astrocytes and resulting abnormalities in energy supply may be responsible for aspects of mood and cognitive disorders observed in patients with major psychiatric illnesses.
Collapse
|
40
|
Harder DR, Rarick KR, Gebremedhin D, Cohen SS. Regulation of Cerebral Blood Flow: Response to Cytochrome P450 Lipid Metabolites. Compr Physiol 2018; 8:801-821. [PMID: 29687906 DOI: 10.1002/cphy.c170025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
There have been numerous reviews related to the cerebral circulation. Most of these reviews are similar in many ways. In the present review, we thought it important to provide an overview of function with specific attention to details of cerebral arterial control related to brain homeostasis, maintenance of neuronal energy demands, and a unique perspective related to the role of astrocytes. A coming review in this series will discuss cerebral vascular development and unique properties of the neonatal circulation and developing brain, thus, many aspects of development are missing here. Similarly, a review of the response of the brain and cerebral circulation to heat stress has recently appeared in this series (8). By trying to make this review unique, some obvious topics were not discussed in lieu of others, which are from recent and provocative research such as endothelium-derived hyperpolarizing factor, circadian regulation of proteins effecting cerebral blood flow, and unique properties of the neurovascular unit. © 2018 American Physiological Society. Compr Physiol 8:801-821, 2018.
Collapse
Affiliation(s)
- David R Harder
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki VA Medical Center, Milwaukee, Wisconsin, USA
| | - Kevin R Rarick
- Department of Pediatrics, Division of Critical Care, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Debebe Gebremedhin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Susan S Cohen
- Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
41
|
Tsai SF, Chen YW, Kuo YM. High-fat diet reduces the hippocampal content level of lactate which is correlated with the expression of glial glutamate transporters. Neurosci Lett 2017; 662:142-146. [PMID: 29051084 DOI: 10.1016/j.neulet.2017.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/21/2017] [Accepted: 10/16/2017] [Indexed: 12/17/2022]
Abstract
Metabolic disorders hamper the brain metabolism and functions. The astrocytic glucose-derived lactate is known to fill the increased energy needs of neurons during synaptic transmission. However, whether systemic metabolism dysregulation affects the astrocytic lactate metabolism in the brain remain unexamined. To address this question, we adopt a 12-week high-fat diet to induce metabolic disorders in adult mice, and the effects of high-fat diet on the lactate metabolism in the hippocampus were examined. Results showed that a 12-week high-fat diet induced obesity and insulin resistance in mice. High-fat diet also decreased the lactate content levels and the expression of glial glutamate transporters, GLAST and GLT-1, in the hippocampus. Strong correlations between the lactate levels and the levels of GLAST and GLT-1 were evidenced. In conclusion, high-fat feeding induces metabolic disorders and disrupts lactate metabolism in the hippocampus. GLAST and GLT-1 may contribute to the HFD-induced abnormalities of the hippocampal lactate metabolism.
Collapse
Affiliation(s)
- Sheng-Feng Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yun-Wen Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
42
|
Halford J, Shen S, Itamura K, Levine J, Chong AC, Czerwieniec G, Glenn TC, Hovda DA, Vespa P, Bullock R, Dietrich WD, Mondello S, Loo JA, Wanner IB. New astroglial injury-defined biomarkers for neurotrauma assessment. J Cereb Blood Flow Metab 2017; 37:3278-3299. [PMID: 28816095 PMCID: PMC5624401 DOI: 10.1177/0271678x17724681] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/01/2017] [Accepted: 05/25/2017] [Indexed: 01/08/2023]
Abstract
Traumatic brain injury (TBI) is an expanding public health epidemic with pathophysiology that is difficult to diagnose and thus treat. TBI biomarkers should assess patients across severities and reveal pathophysiology, but currently, their kinetics and specificity are unclear. No single ideal TBI biomarker exists. We identified new candidates from a TBI CSF proteome by selecting trauma-released, astrocyte-enriched proteins including aldolase C (ALDOC), its 38kD breakdown product (BDP), brain lipid binding protein (BLBP), astrocytic phosphoprotein (PEA15), glutamine synthetase (GS) and new 18-25kD-GFAP-BDPs. Their levels increased over four orders of magnitude in severe TBI CSF. First post-injury week, ALDOC levels were markedly high and stable. Short-lived BLBP and PEA15 related to injury progression. ALDOC, BLBP and PEA15 appeared hyper-acutely and were similarly robust in severe and mild TBI blood; 25kD-GFAP-BDP appeared overnight after TBI and was rarely present after mild TBI. Using a human culture trauma model, we investigated biomarker kinetics. Wounded (mechanoporated) astrocytes released ALDOC, BLBP and PEA15 acutely. Delayed cell death corresponded with GFAP release and proteolysis into small GFAP-BDPs. Associating biomarkers with cellular injury stages produced astroglial injury-defined (AID) biomarkers that facilitate TBI assessment, as neurological deficits are rooted not only in death of CNS cells, but also in their functional compromise.
Collapse
Affiliation(s)
- Julia Halford
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Sean Shen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Kyohei Itamura
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jaclynn Levine
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Albert C Chong
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Gregg Czerwieniec
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Thomas C Glenn
- Department of Neurosurgery, Brain Injury Research Center, Department of Molecular and Medical Pharmacology
| | - David A Hovda
- Department of Neurosurgery, Brain Injury Research Center, Department of Molecular and Medical Pharmacology
| | - Paul Vespa
- Department of Neurology, UCLA-David Geffen School of Medicine, Los Angeles, CA, USA
| | - Ross Bullock
- Department of Neurological Surgery, Jackson Memorial Hospital, Miami, FL, USA
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, University of Miami-Miller School of Medicine, Miami, FL, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA Molecular Biology Institute, and UCLA/DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA, USA
| | - Ina-Beate Wanner
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| |
Collapse
|
43
|
Fernandez MO, Hsueh K, Park HT, Sauceda C, Hwang V, Kumar D, Kim S, Rickert E, Mahata S, Webster NJG. Astrocyte-Specific Deletion of Peroxisome-Proliferator Activated Receptor- γ Impairs Glucose Metabolism and Estrous Cycling in Female Mice. J Endocr Soc 2017; 1:1332-1350. [PMID: 29264458 PMCID: PMC5686676 DOI: 10.1210/js.2017-00242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/15/2017] [Indexed: 01/21/2023] Open
Abstract
Mice lacking peroxisome-proliferator activated receptor-γ (PPARγ) in neurons do not become leptin resistant when placed on a high-fat diet (HFD). In male mice, this results in decreased food intake and increased energy expenditure, causing reduced body weight, but this difference in body weight is not observed in female mice. In addition, estrous cycles are disturbed and the ovaries present with hemorrhagic follicles. We observed that PPARγ was more highly expressed in astrocytes than neurons, so we created an inducible, conditional knockout of PPARγ in astrocytes (AKO). The AKO mice had impaired glucose tolerance and hepatic steatosis that did not worsen with HFD. Expression of gluconeogenic genes was elevated in the mouse livers, as was expression of several genes involved in lipogenesis, lipid transport, and storage. The AKO mice also had a reproductive phenotype with fewer estrous cycles, elevated plasma testosterone levels, reduced corpora lutea formation, and alterations in hypothalamic and ovarian gene expression. Thus, the phenotypes of the AKO mice were very different from those seen in the neuronal knockout mice, suggesting distinct roles for PPARγ in these two cell types.
Collapse
Affiliation(s)
- Marina O Fernandez
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093.,Laboratory of Neuroendocrinology, Instituto de Biología y Medicina Experimental, CONICET. Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Katherine Hsueh
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Hyun Tae Park
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093.,Department of Obstetrics and Gynecology, Korea University Anam Hospital, Seoul 136-705, Korea
| | - Consuelo Sauceda
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Vicky Hwang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Deepak Kumar
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Sun Kim
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Emily Rickert
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Sumana Mahata
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Nicholas J G Webster
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093.,Medical Research Service, VA San Diego Healthcare System, San Diego, California 92161.,Moores Cancer Center, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
44
|
Role of astrocyte connexin hemichannels in cortical spreading depression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:216-223. [PMID: 28864364 DOI: 10.1016/j.bbamem.2017.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/08/2017] [Accepted: 08/23/2017] [Indexed: 11/21/2022]
Abstract
Cortical spreading depression (CSD) is an intriguing phenomenon consisting of massive slow brain depolarizations that affects neurons and glial cells. It has been recognized since 1944, but its pathogenesis has only been uncovered during the last decade. Acute brain injuries can be further complicated by CSD in >50% of severe cases. This phenomenon is repetitive and produces a metabolic overload that increments secondary damage. Propagation of CSD is known to be linked to excitotoxicity, but the mechanisms associated with its initiation remain less understood. It has been shown that CSD can be initiated by increases in extracellular [K+] ([K+]e), and animal models use high [K+]e to promote CSD. Connexin hemichannel activity increases due to high [K+]e and low extracellular [Ca2+], conditions that occur after brain injury. Moreover, glial cell gap junction channels are fundamental in controlling extracellular medium composition, particularly in maintaining normal extracellular glutamate and K+ concentrations through "spatial buffering". However, the role of astrocytic gap junctions under tissue stress can change to damage spread in the acute damage zone whereas the reduced communication in adjacent zone would reduce cell dead propagation. Here, we review the main findings associated with CSD, and discuss the possible involvement of astrocytic connexin-based channels in secondary damage propagation. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
|
45
|
Jha MK, Lee IK, Suk K. Metabolic reprogramming by the pyruvate dehydrogenase kinase-lactic acid axis: Linking metabolism and diverse neuropathophysiologies. Neurosci Biobehav Rev 2016; 68:1-19. [PMID: 27179453 DOI: 10.1016/j.neubiorev.2016.05.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that there is a complex interplay between metabolism and chronic disorders in the nervous system. In particular, the pyruvate dehydrogenase (PDH) kinase (PDK)-lactic acid axis is a critical link that connects metabolic reprogramming and the pathophysiology of neurological disorders. PDKs, via regulation of PDH complex activity, orchestrate the conversion of pyruvate either aerobically to acetyl-CoA, or anaerobically to lactate. The kinases are also involved in neurometabolic dysregulation under pathological conditions. Lactate, an energy substrate for neurons, is also a recently acknowledged signaling molecule involved in neuronal plasticity, neuron-glia interactions, neuroimmune communication, and nociception. More recently, the PDK-lactic acid axis has been recognized to modulate neuronal and glial phenotypes and activities, contributing to the pathophysiologies of diverse neurological disorders. This review covers the recent advances that implicate the PDK-lactic acid axis as a novel linker of metabolism and diverse neuropathophysiologies. We finally explore the possibilities of employing the PDK-lactic acid axis and its downstream mediators as putative future therapeutic strategies aimed at prevention or treatment of neurological disorders.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Division of Neuromuscular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
46
|
Agostini M, Romeo F, Inoue S, Niklison-Chirou MV, Elia AJ, Dinsdale D, Morone N, Knight RA, Mak TW, Melino G. Metabolic reprogramming during neuronal differentiation. Cell Death Differ 2016; 23:1502-14. [PMID: 27058317 PMCID: PMC5072427 DOI: 10.1038/cdd.2016.36] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/04/2016] [Accepted: 02/22/2016] [Indexed: 12/13/2022] Open
Abstract
Newly generated neurons pass through a series of well-defined developmental stages, which allow them to integrate into existing neuronal circuits. After exit from the cell cycle, postmitotic neurons undergo neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. Lack of a global metabolic analysis during early cortical neuronal development led us to explore the role of cellular metabolism and mitochondrial biology during ex vivo differentiation of primary cortical neurons. Unexpectedly, we observed a huge increase in mitochondrial biogenesis. Changes in mitochondrial mass, morphology and function were correlated with the upregulation of the master regulators of mitochondrial biogenesis, TFAM and PGC-1α. Concomitant with mitochondrial biogenesis, we observed an increase in glucose metabolism during neuronal differentiation, which was linked to an increase in glucose uptake and enhanced GLUT3 mRNA expression and platelet isoform of phosphofructokinase 1 (PFKp) protein expression. In addition, glutamate-glutamine metabolism was also increased during the differentiation of cortical neurons. We identified PI3K-Akt-mTOR signalling as a critical regulator role of energy metabolism in neurons. Selective pharmacological inhibition of these metabolic pathways indicate existence of metabolic checkpoint that need to be satisfied in order to allow neuronal differentiation.
Collapse
Affiliation(s)
- M Agostini
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK.,Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - F Romeo
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK.,Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Catanzaro 88100, Italy
| | - S Inoue
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | - M V Niklison-Chirou
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - A J Elia
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | - D Dinsdale
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - N Morone
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - R A Knight
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - T W Mak
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | - G Melino
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK.,Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy.,Biochemistry Laboratory IDI-IRCC, c/o Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| |
Collapse
|
47
|
Tsai SF, Chen PC, Calkins MJ, Wu SY, Kuo YM. Exercise Counteracts Aging-Related Memory Impairment: A Potential Role for the Astrocytic Metabolic Shuttle. Front Aging Neurosci 2016; 8:57. [PMID: 27047373 PMCID: PMC4801859 DOI: 10.3389/fnagi.2016.00057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/08/2016] [Indexed: 01/19/2023] Open
Abstract
Age-related cognitive impairment has become one of the most common health threats in many countries. The biological substrate of cognition is the interconnection of neurons to form complex information processing networks. Experience-based alterations in the activities of these information processing networks lead to neuroadaptation, which is physically represented at the cellular level as synaptic plasticity. Although synaptic plasticity is known to be affected by aging, the underlying molecular mechanisms are not well described. Astrocytes, a glial cell type that is infrequently investigated in cognitive science, have emerged as energy suppliers which are necessary for meeting the abundant energy demand resulting from glutamatergic synaptic activity. Moreover, the concerted action of an astrocyte-neuron metabolic shuttle is essential for cognitive function; whereas, energetic incoordination between astrocytes and neurons may contribute to cognitive impairment. Whether altered function of the astrocyte-neuron metabolic shuttle links aging to reduced synaptic plasticity is unexplored. However, accumulated evidence documents significant beneficial effects of long-term, regular exercise on cognition and synaptic plasticity. Furthermore, exercise increases the effectiveness of astrocyte-neuron metabolic shuttle by upregulation of astrocytic lactate transporter levels. This review summarizes previous findings related to the neuronal activity-dependent astrocyte-neuron metabolic shuttle. Moreover, we discuss how aging and exercise may shape the astrocyte-neuron metabolic shuttle in cognition-associated brain areas.
Collapse
Affiliation(s)
- Sheng-Feng Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Pei-Chun Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Marcus J Calkins
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Shih-Ying Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| |
Collapse
|
48
|
Jha MK, Lee WH, Suk K. Functional polarization of neuroglia: Implications in neuroinflammation and neurological disorders. Biochem Pharmacol 2015; 103:1-16. [PMID: 26556658 DOI: 10.1016/j.bcp.2015.11.003] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/02/2015] [Indexed: 12/15/2022]
Abstract
Recent neuroscience research has established the adult brain as a dynamic organ having a unique ability to undergo changes with time. Neuroglia, especially microglia and astrocytes, provide dynamicity to the brain. Activation of these glial cells is a major component of the neuroinflammatory responses underlying brain injury and neurodegeneration. Glial cells execute functional reaction programs in response to diverse microenvironmental signals manifested by neuropathological conditions. Activated microglia exist along a continuum of two functional states of polarization namely M1-type (classical/proinflammatory activation) and M2-type (alternative/anti-inflammatory activation) as in macrophages. The balance between classically and alternatively activated microglial phenotypes influences disease progression in the CNS. The classically activated state of microglia drives the neuroinflammatory response and mediates the detrimental effects on neurons, whereas in their alternative activation state, which is apparently a beneficial activation state, the microglia play a crucial role in tissue maintenance and repair. Likewise, in response to immune or inflammatory microenvironments astrocytes also adopt neurotoxic or neuroprotective phenotypes. Reactive astrocytes exhibit two distinctive functional phenotypes defined by pro- or anti-inflammatory gene expression profile. In this review, we have thoroughly covered recent advances in the understanding of the functional polarization of brain and peripheral glia and its implications in neuroinflammation and neurological disorders. The identifiable phenotypes adopted by neuroglia in response to specific insult or injury can be exploited as promising diagnostic markers of neuroinflammatory diseases. Furthermore, harnessing the beneficial effects of the polarized glia could undoubtedly pave the way for the formulation of novel glia-based therapeutic strategies for diverse neurological disorders.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
49
|
Saia-Cereda VM, Cassoli JS, Schmitt A, Falkai P, Nascimento JM, Martins-de-Souza D. Proteomics of the corpus callosum unravel pivotal players in the dysfunction of cell signaling, structure, and myelination in schizophrenia brains. Eur Arch Psychiatry Clin Neurosci 2015; 265:601-12. [PMID: 26232077 DOI: 10.1007/s00406-015-0621-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022]
Abstract
Schizophrenia is an incurable and debilitating mental disorder that may affect up to 1% of the world population. Morphological, electrophysiological, and neurophysiological studies suggest that the corpus callosum (CC), which is the largest portion of white matter in the human brain and responsible for inter-hemispheric communication, is altered in schizophrenia patients. Here, we employed mass spectrometry-based proteomics to investigate the molecular underpinnings of schizophrenia. Brain tissue samples were collected postmortem from nine schizophrenia patients and seven controls at the University of Heidelberg, Germany. Because the CC has a signaling role, we collected cytoplasmic (soluble) proteins and submitted them to nano-liquid chromatography-mass spectrometry (nano LC-MS/MS). Proteomes were quantified by label-free spectral counting. We identified 5678 unique peptides that corresponded to 1636 proteins belonging to 1512 protein families. Of those proteins, 65 differed significantly in expression: 28 were upregulated and 37 downregulated. Our data increased significantly the knowledge derived from an earlier proteomic study of the CC. Among the differentially expressed proteins are those associated with cell growth and maintenance, such as neurofilaments and tubulins; cell communication and signaling, such as 14-3-3 proteins; and oligodendrocyte function, such as myelin basic protein and myelin-oligodendrocyte glycoprotein. Additionally, 30 of the differentially expressed proteins were found previously in other proteomic studies in postmortem brains; this overlap in findings validates the present study and indicates that these proteins may be markers consistently associated with schizophrenia. Our findings increase the understanding of schizophrenia pathophysiology and may serve as a foundation for further treatment strategies.
Collapse
Affiliation(s)
- Verônica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Juliana S Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Andrea Schmitt
- Laboratório de Neurociências (LIM-27), Instituto de Psiquiatria, Universidade de São Paulo, São Paulo, Brazil
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Juliana M Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil.
- Laboratório de Neurociências (LIM-27), Instituto de Psiquiatria, Universidade de São Paulo, São Paulo, Brazil.
- UNICAMP's Neurobiology Center, Campinas, Brazil.
| |
Collapse
|
50
|
Bellesi M, de Vivo L, Tononi G, Cirelli C. Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. BMC Biol 2015; 13:66. [PMID: 26303010 PMCID: PMC4548305 DOI: 10.1186/s12915-015-0176-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022] Open
Abstract
Background Astrocytes can mediate neurovascular coupling, modulate neuronal excitability, and promote synaptic maturation and remodeling. All these functions are likely to be modulated by the sleep/wake cycle, because brain metabolism, neuronal activity and synaptic turnover change as a function of behavioral state. Yet, little is known about the effects of sleep and wake on astrocytes. Results Here we show that sleep and wake strongly affect both astrocytic gene expression and ultrastructure in the mouse brain. Using translating ribosome affinity purification technology and microarrays, we find that 1.4 % of all astrocytic transcripts in the forebrain are dependent on state (three groups, sleep, wake, short sleep deprivation; six mice per group). Sleep upregulates a few select genes, like Cirp and Uba1, whereas wake upregulates many genes related to metabolism, the extracellular matrix and cytoskeleton, including Trio, Synj2 and Gem, which are involved in the elongation of peripheral astrocytic processes. Using serial block face scanning electron microscopy (three groups, sleep, short sleep deprivation, chronic sleep restriction; three mice per group, >100 spines per mouse, 3D), we find that a few hours of wake are sufficient to bring astrocytic processes closer to the synaptic cleft, while chronic sleep restriction also extends the overall astrocytic coverage of the synapse, including at the axon–spine interface, and increases the available astrocytic surface in the neuropil. Conclusions Wake-related changes likely reflect an increased need for glutamate clearance, and are consistent with an overall increase in synaptic strength when sleep is prevented. The reduced astrocytic coverage during sleep, instead, may favor glutamate spillover, thus promoting neuronal synchronization during non-rapid eye movement sleep. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0176-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michele Bellesi
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI, 53719, USA.
| | - Luisa de Vivo
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI, 53719, USA.
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI, 53719, USA.
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI, 53719, USA.
| |
Collapse
|