1
|
Zhang Q, Niu Y, Li Y, Xia C, Chen Z, Chen Y, Feng H. Meningeal lymphatic drainage: novel insights into central nervous system disease. Signal Transduct Target Ther 2025; 10:142. [PMID: 40320416 PMCID: PMC12050339 DOI: 10.1038/s41392-025-02177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/04/2024] [Accepted: 02/06/2025] [Indexed: 05/08/2025] Open
Abstract
In recent years, increasing evidence has suggested that meningeal lymphatic drainage plays a significant role in central nervous system (CNS) diseases. Studies have indicated that CNS diseases and conditions associated with meningeal lymphatic drainage dysfunction include neurodegenerative diseases, stroke, infections, traumatic brain injury, tumors, functional cranial disorders, and hydrocephalus. However, the understanding of the regulatory and damage mechanisms of meningeal lymphatics under physiological and pathological conditions is currently limited. Given the importance of a profound understanding of the interplay between meningeal lymphatic drainage and CNS diseases, this review covers seven key aspects: the development and structure of meningeal lymphatic vessels, methods for observing meningeal lymphatics, the function of meningeal lymphatics, the molecular mechanisms of meningeal lymphatic injury, the relationships between meningeal lymphatic vessels and CNS diseases, potential regulatory mechanisms of meningeal lymphatics, and conclusions and outstanding questions. We will explore the relationship between the development, structure, and function of meningeal lymphatics, review current methods for observing meningeal lymphatic vessels in both animal models and humans, and identify unresolved key points in meningeal lymphatic research. The aim of this review is to provide new directions for future research and therapeutic strategies targeting meningeal lymphatics by critically analyzing recent advancements in the field, identifying gaps in current knowledge, and proposing innovative approaches to address these gaps.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Neurosurgery, The 961st Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Qiqihar Medical University, Qiqihar, 161000, Heilongjiang, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yin Niu
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yingpei Li
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chenyang Xia
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhi Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
2
|
Lim XR, Abd-Alhaseeb MM, Ippolito M, Koide M, Senatore AJ, Plante C, Hariharan A, Weir N, Longden TA, Laprade KA, Stafford JM, Ziemens D, Schwaninger M, Wenzel J, Postnov DD, Harraz OF. Endothelial Piezo1 channel mediates mechano-feedback control of brain blood flow. Nat Commun 2024; 15:8686. [PMID: 39375369 PMCID: PMC11458797 DOI: 10.1038/s41467-024-52969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
Hyperemia in response to neural activity is essential for brain health. A hyperemic response delivers O2 and nutrients, clears metabolic waste, and concomitantly exposes cerebrovascular endothelial cells to hemodynamic forces. While neurovascular research has primarily centered on the front end of hyperemia-neuronal activity-to-vascular response-the mechanical consequences of hyperemia have gone largely unexplored. Piezo1 is an endothelial mechanosensor that senses hyperemia-associated forces. Using genetic mouse models and pharmacologic approaches to manipulate endothelial Piezo1 function, we evaluated its role in blood flow control and whether it impacts cognition. We provide evidence of a built-in brake system that sculpts hyperemia, and specifically show that Piezo1 activation triggers a mechano-feedback system that promotes blood flow recovery to baseline. Further, genetic Piezo1 modification led to deficits in complementary memory tasks. Collectively, our findings establish a role for endothelial Piezo1 in cerebral blood flow regulation and a role in its behavioral sequelae.
Collapse
Affiliation(s)
- Xin Rui Lim
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Mohammad M Abd-Alhaseeb
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Michael Ippolito
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Masayo Koide
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Amanda J Senatore
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Curtis Plante
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Ashwini Hariharan
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Nick Weir
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Kathryn A Laprade
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - James M Stafford
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Dorothea Ziemens
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Jan Wenzel
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Dmitry D Postnov
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, 8200, Denmark
| | - Osama F Harraz
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
3
|
Woolley SA, Hopkins B, Khatkar MS, Jerrett IV, Willet CE, O’Rourke BA, Tammen I. A Splice Site Variant in ADAMTS3 Is the Likely Causal Variant for Pulmonary Hypoplasia with Anasarca in Persian/Persian-Cross Sheep. Animals (Basel) 2024; 14:2811. [PMID: 39409761 PMCID: PMC11475510 DOI: 10.3390/ani14192811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Pulmonary hypoplasia with anasarca, or hydrops fetalis, is characterized by stillbirth, diffuse oedema, and generalized lymph node hypoplasia. The enlarged fetus frequently causes dystocia. The disease has been reported in cattle and sheep as an inherited condition with a recessive mode of inheritance. This is the first report of the disease in Persian/Persian-cross sheep in Australia. Affected fetuses were reported from three flocks, and a total of eleven affected, eleven obligate carrier, and 188 related Persian/Persian-cross animals were available for analysis, as well as unrelated control animals. SNP genotyping revealed a region of homozygosity in affected animals on ovine chromosome six, which contained the functional candidate gene ADAMTS3. Whole genome sequencing of two affected fetuses and one obligate carrier ewe revealed a single nucleotide deletion, ENSOARG00000013204:g.87124344delC, located 3 bp downstream from a donor splice site region in the ADAMTS3 gene. Sanger sequencing of cDNA containing this variant further revealed that it is likely to introduce an early splice site in exon 14, resulting in a loss of 6 amino acids at the junction of exon 14 and intron 14/15. A genotyping assay was developed, and the ENSOARG00000013204:g.87124344delC segregated with disease in 209 animals, allowing for effective identification of carrier animals.
Collapse
Affiliation(s)
- Shernae A. Woolley
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Bethany Hopkins
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mehar S. Khatkar
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ian V. Jerrett
- Agriculture Victoria, AgriBio Centre, Bundoora, VIC 3083, Australia
| | - Cali E. Willet
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW 2006, Australia
| | - Brendon A. O’Rourke
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries and Regional Development, Menangle, NSW 2568, Australia;
| | - Imke Tammen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Kuck L, McNamee AP, Bordukova M, Sadafi A, Marr C, Peart JN, Simmonds MJ. Lysis of human erythrocytes due to Piezo1-dependent cytosolic calcium overload as a mechanism of circulatory removal. Proc Natl Acad Sci U S A 2024; 121:e2407765121. [PMID: 39207733 PMCID: PMC11388408 DOI: 10.1073/pnas.2407765121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Hematopoietic stem cells surrender organelles during differentiation, leaving mature red blood cells (RBC) devoid of transcriptional machinery and mitochondria. The resultant absence of cellular repair capacity limits RBC circulatory longevity, and old cells are removed from circulation. The specific age-dependent alterations required for this apparently targeted removal of RBC, however, remain elusive. Here, we assessed the function of Piezo1, a stretch-activated transmembrane cation channel, within subpopulations of RBC isolated based on physical properties associated with aging. We subsequently investigated the potential role of Piezo1 in RBC removal, using pharmacological and mechanobiological approaches. Dense (old) RBC were separated from whole blood using differential density centrifugation. Tolerance of RBC to mechanical forces within the physiological range was assessed on single-cell and cell population levels. Expression and function of Piezo1 were investigated in separated RBC populations by monitoring accumulation of cytosolic Ca2+ and changes in cell morphology in response to pharmacological Piezo1 stimulation and in response to physical forces. Despite decreased Piezo1 activity with increasing cell age, tolerance to prolonged Piezo1 stimulation declined sharply in older RBC, precipitating lysis. Cell lysis was immediately preceded by an acute reversal of density. We propose a Piezo1-dependent mechanism by which RBC may be removed from circulation: Upon adherence of these RBC to other tissues, they are uniquely exposed to prolonged mechanical forces. The resultant sustained activation of Piezo1 leads to a net influx of Ca2+, overpowering the Ca2+-removal capacity of specifically old RBC, which leads to reversal of ion gradients, dysregulated cell hydration, and ultimately osmotic lysis.
Collapse
Affiliation(s)
- Lennart Kuck
- Biorheology Research Laboratory, Griffith University, QLD4215, Australia
| | - Antony P. McNamee
- Biorheology Research Laboratory, Griffith University, QLD4215, Australia
| | - Maria Bordukova
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, Munich85764, Germany
- Department of Biology, Ludwig-Maximilians University Munich, Munich80539, Germany
- Data and Analytics, Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg82377, Germany
| | - Ario Sadafi
- Institute of AI for Health, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg85764, Germany
- Computer Aided Medical Procedures, Technical University of Munich 85748, Germany
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg85764, Germany
| | - Jason N. Peart
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast, QLD4215, Australia
| | | |
Collapse
|
5
|
Prudinnik DS, Kussanova A, Vorobjev IA, Tikhonov A, Ataullakhanov FI, Barteneva NS. Deformability of Heterogeneous Red Blood Cells in Aging and Related Pathologies. Aging Dis 2024; 16:1242-1264. [PMID: 39012672 PMCID: PMC12096920 DOI: 10.14336/ad.2024.0526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
Aging is interrelated with changes in red blood cell parameters and functionality. In this article, we focus on red blood cells (RBCs) and provide a review of the known changes associated with the characterization of RBC deformability in aging and related pathologies. The biophysical parameters complement the commonly used biochemical parameters and may contribute to a better understanding of the aging process. The power of the deformability measurement approach is well established in clinical settings. Measuring RBCs' deformability has the advantage of relative simplicity, and it reflects the complex effects developing in erythrocytes during aging. However, aging and related pathological conditions also promote heterogeneity of RBC features and have a certain impact on the variance in erythrocyte cell properties. The possible applications of deformability as an early biophysical biomarker of pathological states are discussed, and modulating PIEZO1 as a therapeutic target is suggested. The changes in RBCs' shape can serve as a proxy for deformability evaluation, leveraging single-cell analysis with imaging flow cytometry and artificial intelligence algorithms. The characterization of biophysical parameters of RBCs is in progress in humans and will provide a better understanding of the complex dynamics of aging.
Collapse
Affiliation(s)
- Dmitry S. Prudinnik
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan.
| | - Aigul Kussanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan.
| | - Ivan A. Vorobjev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan.
| | - Alexander Tikhonov
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan.
| | - Fazly I. Ataullakhanov
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Natasha S. Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan.
| |
Collapse
|
6
|
Ketchum EH, Groomes CL, Ghersi AN, Graziose BB, Wilson SC, Zven SE, Hicks RL, Langley WA, Reott MA, Schacht JP, Schulz EV, Curtis J. Congenital lymphatic dysplasia and severe bone disease in a term neonate with a novel homozygous PIEZO1 variant. Clin Case Rep 2024; 12:e9082. [PMID: 38883227 PMCID: PMC11176725 DOI: 10.1002/ccr3.9082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 02/27/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
We report a patient with nonimmune fetal hydrops and multiple pathologic fractures. RNA analysis revealed a novel PIEZO1 variant. This report is the first to elucidate PIEZO1's role as a critical regulator of bone mass and strength.
Collapse
Affiliation(s)
- Elizabeth H Ketchum
- Uniformed Services University Bethesda Maryland USA
- Walter Reed National Military Medical Center Bethesda Maryland USA
| | - Charles L Groomes
- Uniformed Services University Bethesda Maryland USA
- Walter Reed National Military Medical Center Bethesda Maryland USA
| | - Alexis N Ghersi
- Walter Reed National Military Medical Center Bethesda Maryland USA
| | - Brian B Graziose
- Walter Reed National Military Medical Center Bethesda Maryland USA
| | - Sharen C Wilson
- Walter Reed National Military Medical Center Bethesda Maryland USA
| | - Sidney E Zven
- Walter Reed National Military Medical Center Bethesda Maryland USA
| | - Rebecca L Hicks
- Walter Reed National Military Medical Center Bethesda Maryland USA
| | | | - Michael A Reott
- MNG Laboratories A Labcorp Company Burlington North Carolina USA
| | - John P Schacht
- Uniformed Services University Bethesda Maryland USA
- Walter Reed National Military Medical Center Bethesda Maryland USA
| | - Elizabeth V Schulz
- Uniformed Services University Bethesda Maryland USA
- Walter Reed National Military Medical Center Bethesda Maryland USA
| | - Jerri Curtis
- Uniformed Services University Bethesda Maryland USA
- Walter Reed National Military Medical Center Bethesda Maryland USA
| |
Collapse
|
7
|
Choi D, Park E, Choi J, Lu R, Yu JS, Kim C, Zhao L, Yu J, Nakashima B, Lee S, Singhal D, Scallan JP, Zhou B, Koh CJ, Lee E, Hong YK. Piezo1 regulates meningeal lymphatic vessel drainage and alleviates excessive CSF accumulation. Nat Neurosci 2024; 27:913-926. [PMID: 38528202 PMCID: PMC11088999 DOI: 10.1038/s41593-024-01604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024]
Abstract
Piezo1 regulates multiple aspects of the vascular system by converting mechanical signals generated by fluid flow into biological processes. Here, we find that Piezo1 is necessary for the proper development and function of meningeal lymphatic vessels and that activating Piezo1 through transgenic overexpression or treatment with the chemical agonist Yoda1 is sufficient to increase cerebrospinal fluid (CSF) outflow by improving lymphatic absorption and transport. The abnormal accumulation of CSF, which often leads to hydrocephalus and ventriculomegaly, currently lacks effective treatments. We discovered that meningeal lymphatics in mouse models of Down syndrome were incompletely developed and abnormally formed. Selective overexpression of Piezo1 in lymphatics or systemic administration of Yoda1 in mice with hydrocephalus or Down syndrome resulted in a notable decrease in pathological CSF accumulation, ventricular enlargement and other associated disease symptoms. Together, our study highlights the importance of Piezo1-mediated lymphatic mechanotransduction in maintaining brain fluid drainage and identifies Piezo1 as a promising therapeutic target for treating excessive CSF accumulation and ventricular enlargement.
Collapse
Affiliation(s)
- Dongwon Choi
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eunkyung Park
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joshua Choi
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Renhao Lu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jin Suh Yu
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chiyoon Kim
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Luping Zhao
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - James Yu
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brandon Nakashima
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sunju Lee
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dhruv Singhal
- Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joshua P Scallan
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Bin Zhou
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chester J Koh
- Division of Pediatric Urology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Young-Kwon Hong
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Aspelund A, Alitalo K. Yoda1 opens the lymphatic path for craniosynostosis therapy. J Clin Invest 2024; 134:e176858. [PMID: 38357924 PMCID: PMC10866666 DOI: 10.1172/jci176858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
The rediscovery of meningeal lymphatic vessels (MLVs) has sparked research interest in their function in numerous neurological pathologies. Craniosynostosis (CS) is caused by a premature fusion of cranial sutures during development. In this issue of the JCI, Matrongolo and colleagues show that Twist1-haploinsufficient mice that develop CS exhibit raised intracranial pressure, diminished cerebrospinal fluid (CSF) outflow, and impaired paravascular CSF-brain flow; all features that were associated with MLV defects and exacerbated pathology in mouse models of Alzheimer's disease. Activation of the mechanosensor Piezo1 with Yoda1 restored MLV function and CSF perfusion in CS models and in aged mice, opening an avenue for further development of therapeutics.
Collapse
Affiliation(s)
- Aleksanteri Aspelund
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Department of Ophthalmology, Helsinki University Hospital, Helsinki, Finland
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Du Y, Xu B, Li Q, Peng C, Yang K. The role of mechanically sensitive ion channel Piezo1 in bone remodeling. Front Bioeng Biotechnol 2024; 12:1342149. [PMID: 38390363 PMCID: PMC10882629 DOI: 10.3389/fbioe.2024.1342149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Piezo1 (2010) was identified as a mechanically activated cation channel capable of sensing various physical forces, such as tension, osmotic pressure, and shear force. Piezo1 mediates mechanosensory transduction in different organs and tissues, including its role in maintaining bone homeostasis. This review aimed to summarize the function and possible mechanism of Piezo1 in the mechanical receptor cells in bone tissue. We found that it is a potential therapeutic target for the treatment of bone diseases.
Collapse
Affiliation(s)
| | | | | | | | - Kai Yang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Liang P, Zhang Y, Wan YCS, Ma S, Dong P, Lowry AJ, Francis SJ, Khandelwal S, Delahunty M, Telen MJ, Strouse JJ, Arepally GM, Yang H. Deciphering and disrupting PIEZO1-TMEM16F interplay in hereditary xerocytosis. Blood 2024; 143:357-369. [PMID: 38033286 PMCID: PMC10862370 DOI: 10.1182/blood.2023021465] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023] Open
Abstract
ABSTRACT Cell-surface exposure of phosphatidylserine (PS) is essential for phagocytic clearance and blood clotting. Although a calcium-activated phospholipid scramblase (CaPLSase) has long been proposed to mediate PS exposure in red blood cells (RBCs), its identity, activation mechanism, and role in RBC biology and disease remain elusive. Here, we demonstrate that TMEM16F, the long-sought-after RBC CaPLSase, is activated by calcium influx through the mechanosensitive channel PIEZO1 in RBCs. PIEZO1-TMEM16F functional coupling is enhanced in RBCs from individuals with hereditary xerocytosis (HX), an RBC disorder caused by PIEZO1 gain-of-function channelopathy. Enhanced PIEZO1-TMEM16F coupling leads to an increased propensity to expose PS, which may serve as a key risk factor for HX clinical manifestations including anemia, splenomegaly, and postsplenectomy thrombosis. Spider toxin GsMTx-4 and antigout medication benzbromarone inhibit PIEZO1, preventing force-induced echinocytosis, hemolysis, and PS exposure in HX RBCs. Our study thus reveals an activation mechanism of TMEM16F CaPLSase and its pathophysiological function in HX, providing insights into potential treatment.
Collapse
Affiliation(s)
- Pengfei Liang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC
| | - Yang Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC
| | - Yui Chun S. Wan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC
| | - Shang Ma
- Children’s Research Institute, UT Southwestern Medical Center, Dallas, TX
| | - Ping Dong
- Department of Biochemistry, Duke University School of Medicine, Durham, NC
| | - Augustus J. Lowry
- Department of Biochemistry, Duke University School of Medicine, Durham, NC
| | - Samuel J. Francis
- Department of Surgery, Duke University School of Medicine, Durham, NC
| | - Sanjay Khandelwal
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Martha Delahunty
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Marilyn J. Telen
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - John J. Strouse
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | | | - Huanghe Yang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC
- Department of Neurobiology, Duke University School of Medicine, Durham, NC
| |
Collapse
|
11
|
Clapp A, Shawber CJ, Wu JK. Pathophysiology of Slow-Flow Vascular Malformations: Current Understanding and Unanswered Questions. JOURNAL OF VASCULAR ANOMALIES 2023; 4:e069. [PMID: 37662560 PMCID: PMC10473035 DOI: 10.1097/jova.0000000000000069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/13/2023] [Indexed: 09/05/2023]
Abstract
Background Slow-flow vascular malformations include venous, lymphatic, and lymphaticovenous malformations. Recent studies have linked genetic variants hyperactivating either the PI3K/AKT/mTOR and/or RAS/RAF/MAPK signaling pathways with slow-flow vascular malformation development, leading to the use of pharmacotherapies such as sirolimus and alpelisib. It is important that clinicians understand basic and translational research advances in slow-flow vascular malformations. Methods A literature review of basic science publications in slow-flow vascular malformations was performed on Pubmed, using search terms "venous malformation," "lymphatic malformation," "lymphaticovenous malformation," "genetic variant," "genetic mutation," "endothelial cells," and "animal model." Relevant publications were reviewed and summarized. Results The study of patient tissues and the use of primary pathogenic endothelial cells from vascular malformations shed light on their pathological behaviors, such as endothelial cell hyperproliferation and disruptions in vessel architecture. The use of xenograft and transgenic animal models confirmed the pathogenicity of genetic variants and allowed for preclinical testing of potential therapies. These discoveries underscore the importance of basic and translational research in understanding the pathophysiology of vascular malformations, which will allow for the development of improved biologically targeted treatments. Conclusion Despite basic and translation advances, a cure for slow-flow vascular malformations remains elusive. Many questions remain unanswered, including how genotype variants result in phenotypes, and genotype-phenotype heterogeneity. Continued research into venous and lymphatic malformation pathobiology is critical in understanding the mechanisms by which genetic variants contribute to vascular malformation phenotypic features.
Collapse
Affiliation(s)
- Averill Clapp
- Columbia University Vagelos College of Physicians & Surgeons, New York, NY
| | - Carrie J. Shawber
- Department of Obstetrics and Gynecology, Department of Surgery, Columbia University Irving Medical Center, New York, NY
| | - June K. Wu
- Department of Obstetrics and Gynecology, Department of Surgery, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
12
|
Kovesi T, Rojas SK, Boycott KM. Persistent chylothorax associated with lymphatic malformation type 6 due to biallelic pathogenic variants in PIEZO1. Am J Med Genet A 2023; 191:2188-2192. [PMID: 37159433 DOI: 10.1002/ajmg.a.63237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023]
Abstract
PIEZO1 is required for lymphatic valve formation, and several lymphatic abnormalities have been reported to be associated with autosomal recessive PIEZO1 pathogenic variants including neonatal hydrops, lymphedema involving various body regions, and chylothorax. Persistent or recurrent chylothorax has been infrequently described in association with pathogenic variants in the PIEZO1 gene. We present a 4-year-old female with bilateral pleural effusions detected prenatally, who was diagnosed with bilateral chylothoraces post-partum. She subsequently had recurrent pleural effusions involving both pleural cavities, which tended to improve with restriction of her fat intake, and, one occasion, subcutaneous octreotide. She also had bilateral calf, and intermittent cheek swelling. Genetic testing revealed two deleterious variants in PIEZO1: c.2330-2_2330-1del and c.3860G > A (p.Trp1287*), both of which were classified as likely pathogenic. This supported a diagnosis of Lymphatic Malformation Type 6 (OMIM 616843), also known as Hereditary Lymphedema Type III. Hereditary Lymphedema type III can be associated with persistent chylothorax that can vary in size over time.
Collapse
Affiliation(s)
- Thomas Kovesi
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Eastern Ontario, Canada
| | - Samantha K Rojas
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Eastern Ontario, Canada
| | - Kym M Boycott
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Eastern Ontario, Canada
| |
Collapse
|
13
|
Rogerson D, Alkelai A, Giordano J, Pantrangi M, Hsiao MC, Nhan-Chang CL, Motelow JE, Aggarwal V, Goldstein D, Wapner R, Shawber CJ. Investigation into the genetics of fetal congenital lymphatic anomalies. Prenat Diagn 2023; 43:703-716. [PMID: 36959127 PMCID: PMC10330091 DOI: 10.1002/pd.6345] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/10/2023] [Accepted: 03/12/2023] [Indexed: 03/25/2023]
Abstract
OBJECTIVE Congenital lymphatic anomalies (LAs) arise due to defects in lymphatic development and often present in utero as pleural effusion, chylothorax, nuchal and soft tissue edema, ascites, or hydrops. Many LAs are caused by single nucleotide variants, which are not detected on routine prenatal testing. METHODS Demographic data were compared between two subcohorts, those with clinically significant fetal edema (CSFE) and isolated fetal edema. A targeted variant analysis of LA genes was performed using American College of Medical Genetics criteria on whole exome sequencing (WES) data generated for 71 fetal edema cases who remained undiagnosed after standard workup. RESULTS CSFE cases had poor outcomes, including preterm delivery, demise, and maternal preeclampsia. Pathogenic and likely pathogenic variants were identified in 7% (5/71) of cases, including variants in RASopathy genes, RASA1, SOS1, PTPN11, and a novel PIEZO1 variant. Variants of uncertain significance (VOUS) were identified in 45% (32/71) of cases. In CSFEs, VOUS were found in CELSR1, EPHB4, TIE1, PIEZO1, ITGA9, RASopathy genes, SOS1, SOS2, and RAF1. CONCLUSIONS WES identified pathogenic and likely pathogenic variants and VOUS in LA genes in 51% of fetal edema cases, supporting WES and expanded hydrops panels in cases of idiopathic fetal hydrops and fluid collections.
Collapse
Affiliation(s)
- Daniella Rogerson
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Obstetrics and Gynecology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Anna Alkelai
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Jessica Giordano
- Department of Obstetrics and Gynecology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Madhulatha Pantrangi
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Meng-Chang Hsiao
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Chia-Ling Nhan-Chang
- Department of Obstetrics and Gynecology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Joshua E. Motelow
- Department of Pediatrics, Columbia University Vagelos College of Physicians andSurgeons, New York, New York, USA
| | - Vimla Aggarwal
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - David Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Ron Wapner
- Department of Obstetrics and Gynecology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Carrie J. Shawber
- Department of Obstetrics and Gynecology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
14
|
Karamatic Crew V, Tilley LA, Satchwell TJ, AlSubhi SA, Jones B, Spring FA, Walser PJ, Martins Freire C, Murciano N, Rotordam MG, Woestmann SJ, Hamed M, Alradwan R, AlKhrousey M, Skidmore I, Lewis S, Hussain S, Jackson J, Latham T, Kilby MD, Lester W, Becker N, Rapedius M, Toye AM, Thornton NM. Missense mutations in PIEZO1, which encodes the Piezo1 mechanosensor protein, define Er red blood cell antigens. Blood 2023; 141:135-146. [PMID: 36122374 PMCID: PMC10644042 DOI: 10.1182/blood.2022016504] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/28/2022] [Accepted: 08/15/2022] [Indexed: 01/17/2023] Open
Abstract
Despite the identification of the high-incidence red cell antigen Era nearly 40 years ago, the molecular background of this antigen, together with the other 2 members of the Er blood group collection, has yet to be elucidated. Whole exome and Sanger sequencing of individuals with serologically defined Er alloantibodies identified several missense mutations within the PIEZO1 gene, encoding amino acid substitutions within the extracellular domain of the Piezo1 mechanosensor ion channel. Confirmation of Piezo1 as the carrier molecule for the Er blood group antigens was demonstrated using immunoprecipitation, CRISPR/Cas9-mediated gene knockout, and expression studies in an erythroblast cell line. We report the molecular bases of 5 Er blood group antigens: the recognized Era, Erb, and Er3 antigens and 2 novel high-incidence Er antigens, described here as Er4 and Er5, establishing a new blood group system. Anti-Er4 and anti-Er5 are implicated in severe hemolytic disease of the fetus and newborn. Demonstration of Piezo1, present at just a few hundred copies on the surface of the red blood cell, as the site of a new blood group system highlights the potential antigenicity of even low-abundance membrane proteins and contributes to our understanding of the in vivo characteristics of this important and widely studied protein in transfusion biology and beyond.
Collapse
Affiliation(s)
- Vanja Karamatic Crew
- International Blood Group Reference Laboratory, NHS Blood and Transplant, Bristol, United Kingdom
| | - Louise A. Tilley
- International Blood Group Reference Laboratory, NHS Blood and Transplant, Bristol, United Kingdom
| | - Timothy J. Satchwell
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol, Bristol, United Kingdom
- Bristol Institute of Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom
| | - Samah A. AlSubhi
- International Blood Group Reference Laboratory, NHS Blood and Transplant, Bristol, United Kingdom
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Benjamin Jones
- International Blood Group Reference Laboratory, NHS Blood and Transplant, Bristol, United Kingdom
| | - Frances A. Spring
- National Institute for Health Research Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol, Bristol, United Kingdom
- Bristol Institute of Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom
| | - Piers J. Walser
- Clinical Biotechnology Centre, NHS Blood and Transplant, Bristol, United Kingdom
| | | | - Nicoletta Murciano
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Research and Development, Nanion Technologies, Munich, Germany
| | | | | | | | | | | | - Ian Skidmore
- Red Cell Immunohaematology, NHS Blood and Transplant, Birmingham, United Kingdom
| | - Sarah Lewis
- Red Cell Immunohaematology, NHS Blood and Transplant, Birmingham, United Kingdom
| | - Shimon Hussain
- Red Cell Immunohaematology, NHS Blood and Transplant, Birmingham, United Kingdom
| | - Jane Jackson
- Haematology Department at Birmingham Women’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, United Kingdom
| | - Tom Latham
- NHS Blood and Transplant, Bristol, United Kingdom
| | - Mark D. Kilby
- College of Medical & Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Fetal Medicine Centre, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - William Lester
- Haematology Department at Birmingham Women’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, United Kingdom
| | - Nadine Becker
- Research and Development, Nanion Technologies, Munich, Germany
| | - Markus Rapedius
- Research and Development, Nanion Technologies, Munich, Germany
| | - Ashley M. Toye
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol, Bristol, United Kingdom
- Bristol Institute of Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom
| | - Nicole M. Thornton
- International Blood Group Reference Laboratory, NHS Blood and Transplant, Bristol, United Kingdom
| |
Collapse
|
15
|
Song S, Zhang H, Wang X, Chen W, Cao W, Zhang Z, Shi C. The role of mechanosensitive Piezo1 channel in diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:39-49. [PMID: 35436566 DOI: 10.1016/j.pbiomolbio.2022.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Mechanotransduction is associated with organ development and homoeostasis. Piezo1 and Piezo2 are novel mechanosensitive ion channels (MSCs) in mammals. MSCs are membrane proteins that are critical for the mechanotransduction of living cells. Current studies have demonstrated that the Piezo protein family not only functions in volume regulation, cellular migration, proliferation, and apoptosis but is also important for human diseases of various systems. The complete loss of Piezo1 and Piezo2 function is fatal in the embryonic period. This review summarizes the role of Piezo1 in diseases of different systems and perspectives potential treatments related to Piezo1 for these diseases.
Collapse
Affiliation(s)
- Siqi Song
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Hong Zhang
- Department of Cardiac Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Xiaoya Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Wei Chen
- Department of Urology, The Affiliated Xinqiao Hospital, The Third Military Medical University, Chongqing, 400038, China
| | - Wenxuan Cao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Zhe Zhang
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong Province, China.
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China.
| |
Collapse
|
16
|
Touch-evoked itch pinned on Piezo1 ion-channel protein. Nature 2022; 607:36-37. [PMID: 35732710 DOI: 10.1038/d41586-022-01571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Reytan S, Henig NZ, Yinon Y, Avnet H, Kurolap A, Yaron Y, Feldman HB. Non-immune hydrops fetalis caused by PIEZO1 compound heterozygous deletions detected only by exome sequencing. Prenat Diagn 2022; 42:890-893. [PMID: 35393661 DOI: 10.1002/pd.6142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 11/06/2022]
Abstract
This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sivan Reytan
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Noa Zunz Henig
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yoav Yinon
- Fetal Medicine Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagai Avnet
- Fetal Medicine Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alina Kurolap
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yuval Yaron
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagit Baris Feldman
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Liu H, Hu J, Zheng Q, Feng X, Zhan F, Wang X, Xu G, Hua F. Piezo1 Channels as Force Sensors in Mechanical Force-Related Chronic Inflammation. Front Immunol 2022; 13:816149. [PMID: 35154133 PMCID: PMC8826255 DOI: 10.3389/fimmu.2022.816149] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mechanical damage is one of the predisposing factors of inflammation, and it runs through the entire inflammatory pathological process. Repeated or persistent damaging mechanical irritation leads to chronic inflammatory diseases. The mechanism of how mechanical forces induce inflammation is not fully understood. Piezo1 is a newly discovered mechanically sensitive ion channel. The Piezo1 channel opens in response to mechanical stimuli, transducing mechanical signals into an inflammatory cascade in the cell leading to tissue inflammation. A large amount of evidence shows that Piezo1 plays a vital role in the occurrence and progression of chronic inflammatory diseases. This mini-review briefly presents new evidence that Piezo1 responds to different mechanical stresses to trigger inflammation in various tissues. The discovery of Piezo1 provides new insights for the treatment of chronic inflammatory diseases related to mechanical stress. Inhibiting the transduction of damaging mechanical signals into inflammatory signals can inhibit inflammation and improve the outcome of inflammation at an early stage. The pharmacology of Piezo1 has shown bright prospects. The development of tissue-specific Piezo1 drugs for clinical use may be a new target for treating chronic inflammation.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaojin Feng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xifeng Wang
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Carrillo-Garcia J, Herrera-Fernández V, Serra SA, Rubio-Moscardo F, Vogel-Gonzalez M, Doñate-Macian P, Hevia CF, Pujades C, Valverde MA. The mechanosensitive Piezo1 channel controls endosome trafficking for an efficient cytokinetic abscission. SCIENCE ADVANCES 2021; 7:eabi7785. [PMID: 34714681 PMCID: PMC8555900 DOI: 10.1126/sciadv.abi7785] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Mechanical forces are exerted throughout cytokinesis, the final step of cell division. Yet, how forces are transduced and affect the signaling dynamics of cytokinetic proteins remains poorly characterized. We now show that the mechanosensitive Piezo1 channel is activated at the intercellular bridge (ICB) connecting daughter cells to regulate abscission. Inhibition of Piezo1 caused multinucleation both in vitro and in vivo. Piezo1 positioning at the ICB during cytokinesis depends on Pacsin3. Pharmacological and genetic inhibition of Piezo1 or Pacsin3 resulted in mislocation of Rab11-family-interacting protein 3 (Rab11-FIP3) endosomes, apoptosis-linked gene 2-interacting protein X (ALIX), and endosomal sorting complex required for transport III (ESCRT-III). Furthermore, we identified FIP3 as the link between Piezo1-generated Ca2+ signals and ALIX delivery to the ICB, where ALIX recruits the ESCRT-III component charged multivesicular body protein 4B, which promotes abscission. These results provide a different view of how mechanical forces participate in cytokinesis and identify Piezo1 as a key modulator of endosome trafficking.
Collapse
Affiliation(s)
- Julia Carrillo-Garcia
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Selma A. Serra
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Fanny Rubio-Moscardo
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Marina Vogel-Gonzalez
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Pablo Doñate-Macian
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Covadonga F. Hevia
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Miguel A. Valverde
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
20
|
Qin L, He T, Chen S, Yang D, Yi W, Cao H, Xiao G. Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues. Bone Res 2021; 9:44. [PMID: 34667178 PMCID: PMC8526690 DOI: 10.1038/s41413-021-00168-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Mechanotransduction is a fundamental ability that allows living organisms to receive and respond to physical signals from both the external and internal environments. The mechanotransduction process requires a range of special proteins termed mechanotransducers to convert mechanical forces into biochemical signals in cells. The Piezo proteins are mechanically activated nonselective cation channels and the largest plasma membrane ion channels reported thus far. The regulation of two family members, Piezo1 and Piezo2, has been reported to have essential functions in mechanosensation and transduction in different organs and tissues. Recently, the predominant contributions of the Piezo family were reported to occur in the skeletal system, especially in bone development and mechano-stimulated bone homeostasis. Here we review current studies focused on the tissue-specific functions of Piezo1 and Piezo2 in various backgrounds with special highlights on their importance in regulating skeletal cell mechanotransduction. In this review, we emphasize the diverse functions of Piezo1 and Piezo2 and related signaling pathways in osteoblast lineage cells and chondrocytes. We also summarize our current understanding of Piezo channel structures and the key findings about PIEZO gene mutations in human diseases.
Collapse
Affiliation(s)
- Lei Qin
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Sheng Chen
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dazhi Yang
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Weihong Yi
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
21
|
Martin-Almedina S, Mortimer PS, Ostergaard P. Development and physiological functions of the lymphatic system: insights from human genetic studies of primary lymphedema. Physiol Rev 2021; 101:1809-1871. [PMID: 33507128 DOI: 10.1152/physrev.00006.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Primary lymphedema is a long-term (chronic) condition characterized by tissue lymph retention and swelling that can affect any part of the body, although it usually develops in the arms or legs. Due to the relevant contribution of the lymphatic system to human physiology, while this review mainly focuses on the clinical and physiological aspects related to the regulation of fluid homeostasis and edema, clinicians need to know that the impact of lymphatic dysfunction with a genetic origin can be wide ranging. Lymphatic dysfunction can affect immune function so leading to infection; it can influence cancer development and spread, and it can determine fat transport so impacting on nutrition and obesity. Genetic studies and the development of imaging techniques for the assessment of lymphatic function have enabled the recognition of primary lymphedema as a heterogenic condition in terms of genetic causes and disease mechanisms. In this review, the known biological functions of several genes crucial to the development and function of the lymphatic system are used as a basis for understanding normal lymphatic biology. The disease conditions originating from mutations in these genes are discussed together with a detailed clinical description of the phenotype and the up-to-date knowledge in terms of disease mechanisms acquired from in vitro and in vivo research models.
Collapse
Affiliation(s)
- Silvia Martin-Almedina
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| | - Peter S Mortimer
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
- Dermatology and Lymphovascular Medicine, St. George's Universities NHS Foundation Trust, London, United Kingdom
| | - Pia Ostergaard
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
22
|
Vignes S, Kaltenbach S, Garçon L, Arrivé L, Asnafi V, Guitton C, Bouligand J, Delarue A, Picard V. PIEZO1-gene gain-of-function mutations with lower limb lymphedema onset in an adult: Clinical, scintigraphic, and noncontrast magnetic resonance lymphography findings. Am J Med Genet A 2021; 188:243-248. [PMID: 34477311 DOI: 10.1002/ajmg.a.62476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/16/2021] [Accepted: 08/05/2021] [Indexed: 11/10/2022]
Abstract
Primary lymphedema, a rare disease, has a genetic cause in ~40% of patients. Recently, loss-of-function mutations in PIEZO1, which encodes the mechanotransducer protein PIEZO1, were described as causing primary lymphedema, when gain-of-function PIEZO1 mutations were attributed to dehydrated hereditary stomatocytosis type-1 (DHS), a dominant red cell hemolytic disorder, with ~20% of patients having perinatal edema. Lymphedema was diagnosed in a 36-year-old man from a three-generation DHS family, with a PIEZO1-allele harboring 3 missense mutations in cis. Four affected family members had severe fetal and neonatal edema, most severe in the proband, whose generalized edema with prevailing ascites resolved after 8 months. Our patient's intermittent lower limb-lymphedema episodes during hot periods appeared at puberty; they became persistent and bilateral at age 32. Clinical Stemmer's sign confirmed lymphedema. Lower leg lymphoscintigraphy showed substantial dermal backflow in both calves, predominantly on the right. Noncontrast magnetic resonance lymphography showed bilateral lower limb lymphedema, dilated dysplastic lymphatic iliac, and inguinal trunks. Exome-sequencing analysis identified no additional pathogenic variation in primary lymphedema-associated genes. This is the first description of well-documented lymphedema in an adult with PIEZO1-DHS. The pathophysiology of PIEZO1-associated primary lymphedema is poorly understood. Whether it infers overlapping phenotypes or different mechanisms of gain- and loss-of-function PIEZO1 mutations deserves further investigation.
Collapse
Affiliation(s)
- Stéphane Vignes
- Unité de Lymphologie, Centre de Référence des Maladies Vasculaires Rares, Hôpital Cognacq-Jay, Paris, France
| | - Sophie Kaltenbach
- Université de Paris (Descartes), Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Paris, France.,Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (APHP), Hôpital Necker Enfants-Malades, Paris, France
| | - Loïc Garçon
- Equipe d'Accueil 4666 HEMATIM, Université de Picardie Jules-Verne, Amiens, France.,Département d'Hématologie, Centre Hospitalier Universitaire (CHU) d'Amiens, Amiens, France
| | - Lionel Arrivé
- Service de Radiologie, APHP, CHU Saint-Antoine, Paris, France
| | - Vahid Asnafi
- Université de Paris (Descartes), Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Paris, France.,Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (APHP), Hôpital Necker Enfants-Malades, Paris, France
| | - Corinne Guitton
- Service de Pédiatrie, APHP, CHU Bicêtre, Le Kremlin-Bicêtre, France
| | - Jérôme Bouligand
- Département de Génétique, APHP, CHU Bicêtre, Le Kremlin-Bicêtre, France
| | - Audrey Delarue
- Unité de Lymphologie, Centre de Référence des Maladies Vasculaires Rares, Hôpital Cognacq-Jay, Paris, France
| | - Véronique Picard
- Service d'Hématologie Biologique, APHP, CHU Bicêtre, Le Kremlin-Bicêtre, France.,Faculté de Pharmacie, Université Paris-Saclay, Chatenay-Malabry, France
| |
Collapse
|
23
|
Chen Y, Jiang Y, Chen B, Qian Y, Liu J, Yang M, Zhao B, Luo Q. Case Report: Whole Exome Sequencing Revealed Two Novel Mutations of PIEZO1 Implicated in Nonimmune Hydrops Fetalis. Front Genet 2021; 12:684555. [PMID: 34421994 PMCID: PMC8375471 DOI: 10.3389/fgene.2021.684555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Nonimmune hydrops fetalis (NIHF) is a serious and complex fetal condition. Prenatal diagnosis of hydrops fetalis is not difficult by ultrasound. However, determining the underlying etiology of NIHF remains a challenge which is essential to address for prenatal counseling. We extracted DNA from a proband prenatally diagnosed unexplained NIHF. Trio-whole exome sequencing (WES) was performed to filter candidate causative variants. Two gene mutations were identified as a compound heterozygous state in the proband. Both variants located on the PIEZO1 gene: c.3895C > T, a missense mutation in exon 27 paternally inherited; c.4030_4032del, a maternally inherited in-frame deletion in exon 28. Both variants were first reported to be related to NIHF. PIEZO1 gene mutations, leading to an autosomal recessive congenital lymphatic dysplasia, which can present as NIHF and partial or complete resolution postnatally. In conclusion, WES can aid in the elucidation of the genetic cause of NIHF and has a positive effect on the assessment of prognosis.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Jiang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bangwu Chen
- Department of Obstetrics, Ninghai Maternal and Child health Care Hospital, Ningbo, China
| | - Yeqing Qian
- Department of Reproductive Genetics, Women's Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Jiao Liu
- Department of Obstetrics, Lishui Maternal and Child Health Care Hospital, Lishui, China
| | - Mengmeng Yang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baihui Zhao
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiong Luo
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Jankovsky N, Caulier A, Demagny J, Guitton C, Djordjevic S, Lebon D, Ouled‐Haddou H, Picard V, Garçon L. Recent advances in the pathophysiology of PIEZO1-related hereditary xerocytosis. Am J Hematol 2021; 96:1017-1026. [PMID: 33848364 DOI: 10.1002/ajh.26192] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Hereditary xerocytosis is a rare red blood cell disease related to gain-of-function mutations in the FAM38A gene, encoding PIEZO1, in 90% of cases; PIEZO1 is a broadly expressed mechano-transducer that plays a major role in many cell systems and tissues that respond to mechanical stress. In erythrocytes, PIEZO1 adapts the intracellular ionic content and cell hydration status to the mechanical constraints induced by the environment. Until recently, the pathophysiology of hereditary xerocytosis was mainly believed to be based on the "PIEZO1-Gardos channel axis" in erythrocytes, according to which PIEZO1-activating mutations induce a calcium influx that secondarily activates the Gardos channel, leading to potassium and water efflux and subsequently to red blood cell dehydration. However, recent studies have demonstrated additional roles for PIEZO1 during early erythropoiesis and reticulocyte maturation, as well as roles in other tissues and cells such as lymphatic vessels, hepatocytes, macrophages and platelets that may affect the pathophysiology of the disease. These findings, presented and discussed in this review, broaden our understanding of hereditary xerocytosis beyond that of primarily being a red blood cell disease and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Nicolas Jankovsky
- UR4666 HEMATIM Université Picardie Jules Verne Amiens France
- Service d'Hématologie Clinique, CHU Amiens‐Picardie Amiens France
| | - Alexis Caulier
- UR4666 HEMATIM Université Picardie Jules Verne Amiens France
- Service d'Hématologie Clinique, CHU Amiens‐Picardie Amiens France
| | - Julien Demagny
- UR4666 HEMATIM Université Picardie Jules Verne Amiens France
- Service d'Hématologie Biologique, CHU Amiens‐Picardie Amiens France
| | - Corinne Guitton
- Service de Pédiatrie Générale, CHU Bicêtre Le Kremlin‐Bicêtre France
- Centre de référence des maladies constitutionnelles du globule rouge et de l'érythropoïèse (Filière MCGRE) Créteil France
| | | | - Delphine Lebon
- UR4666 HEMATIM Université Picardie Jules Verne Amiens France
- Service d'Hématologie Clinique, CHU Amiens‐Picardie Amiens France
| | | | - Véronique Picard
- Centre de référence des maladies constitutionnelles du globule rouge et de l'érythropoïèse (Filière MCGRE) Créteil France
- Service d'Hématologie Biologique, CHU Bicêtre Le Kremlin‐Bicêtre France
- Faculté de Pharmacie Université Paris Saclay Châtenay‐Malabry France
| | - Loïc Garçon
- UR4666 HEMATIM Université Picardie Jules Verne Amiens France
- Service d'Hématologie Biologique, CHU Amiens‐Picardie Amiens France
- Centre de référence des maladies constitutionnelles du globule rouge et de l'érythropoïèse (Filière MCGRE) Créteil France
| |
Collapse
|
25
|
Shinge SAU, Zhang D, Achu Muluh T, Nie Y, Yu F. Mechanosensitive Piezo1 Channel Evoked-Mechanical Signals in Atherosclerosis. J Inflamm Res 2021; 14:3621-3636. [PMID: 34349540 PMCID: PMC8328000 DOI: 10.2147/jir.s319789] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/03/2021] [Indexed: 12/18/2022] Open
Abstract
Recently, more and more works have focused and used extensive resources on atherosclerosis research, which is one of the major causes of death globally. Alongside traditional risk factors, such as hyperlipidemia, smoking, hypertension, obesity, and diabetes, mechanical forces, including shear stress, pressure and stretches exerted on endothelial cells by flow, is proved to be crucial in atherosclerosis development. Studies have recognized the mechanosensitive Piezo1 channel as a special sensor and transducer of various mechanical forces into biochemical signals, and recent studies report its role in atherosclerosis through different mechanical forces in pressure, stretching and turbulent shear stress. Based on our expertise in this field and considering the recent advancement of atherosclerosis research, we will be focusing on the function of Piezo1 and its involvement in various cellular mechanisms and consequent involvement in the development of atherosclerosis in this review. Also, we will discuss various functions of Piezo1 involvement in atherosclerosis and come up with new mechanistic insight for future research. Based on the recent findings, we suggest Piezo1 as a valid candidate for novel therapeutic innovations, in which deep exploration and translating its findings into the clinic will be a new therapeutic strategy for cardiovascular diseases, particularly atherosclerosis.
Collapse
Affiliation(s)
- Shafiu A Umar Shinge
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Daifang Zhang
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Clinical Research Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Tobias Achu Muluh
- Oncology Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yongmei Nie
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Fengxu Yu
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
26
|
Najafi K, Mehrjoo Z, Ardalani F, Ghaderi-Sohi S, Kariminejad A, Kariminejad R, Najmabadi H. Identifying the causes of recurrent pregnancy loss in consanguineous couples using whole exome sequencing on the products of miscarriage with no chromosomal abnormalities. Sci Rep 2021; 11:6952. [PMID: 33772059 PMCID: PMC7997959 DOI: 10.1038/s41598-021-86309-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/08/2021] [Indexed: 12/26/2022] Open
Abstract
Recurrent miscarriages occur in about 5% of couples trying to conceive. In the past decade, the products of miscarriage have been studied using array comparative genomic hybridization (a-CGH). Within the last decade, an association has been proposed between miscarriages and single or multigenic changes, introducing the possibility of detecting other underlying genetic factors by whole exome sequencing (WES). We performed a-CGH on the products of miscarriage from 1625 Iranian women in consanguineous or non-consanguineous marriages. WES was carried out on DNA extracted from the products of miscarriage from 20 Iranian women in consanguineous marriages and with earlier normal genetic testing. Using a-CGH, a statistically significant difference was detected between the frequency of imbalances in related vs. unrelated couples (P < 0.001). WES positively identified relevant alterations in 11 genes in 65% of cases. In 45% of cases, we were able to classify these variants as pathogenic or likely pathogenic, according to the American College of Medical Genetics and Genomics guidelines, while in the remainder, the variants were classified as of unknown significance. To the best of our knowledge, our study is the first to employ WES on the products of miscarriage in consanguineous families with recurrent miscarriages regardless of the presence of fetal abnormalities. We propose that WES can be helpful in making a diagnosis of lethal disorders in consanguineous couples after prior genetic testing.
Collapse
Affiliation(s)
- Kimia Najafi
- Genetic Research Center, National Reference Laboratory for Prenatal Diagnosis, University of Social Welfare and Rehabilitation Sciences, Koodakyar Avenue, Daneshjoo Blvd, Evin, Tehran, 1985713834, Iran
- Kariminejad-Najmabadi Pathology and Genetics Center, #2, West Side of Sanat Sq.-Metro Station, Shahrak Gharb, Tehran, 1466713713, Iran
| | - Zohreh Mehrjoo
- Genetic Research Center, National Reference Laboratory for Prenatal Diagnosis, University of Social Welfare and Rehabilitation Sciences, Koodakyar Avenue, Daneshjoo Blvd, Evin, Tehran, 1985713834, Iran
| | - Fariba Ardalani
- Genetic Research Center, National Reference Laboratory for Prenatal Diagnosis, University of Social Welfare and Rehabilitation Sciences, Koodakyar Avenue, Daneshjoo Blvd, Evin, Tehran, 1985713834, Iran
| | - Siavash Ghaderi-Sohi
- Kariminejad-Najmabadi Pathology and Genetics Center, #2, West Side of Sanat Sq.-Metro Station, Shahrak Gharb, Tehran, 1466713713, Iran
| | - Ariana Kariminejad
- Kariminejad-Najmabadi Pathology and Genetics Center, #2, West Side of Sanat Sq.-Metro Station, Shahrak Gharb, Tehran, 1466713713, Iran
| | - Roxana Kariminejad
- Kariminejad-Najmabadi Pathology and Genetics Center, #2, West Side of Sanat Sq.-Metro Station, Shahrak Gharb, Tehran, 1466713713, Iran
| | - Hossein Najmabadi
- Genetic Research Center, National Reference Laboratory for Prenatal Diagnosis, University of Social Welfare and Rehabilitation Sciences, Koodakyar Avenue, Daneshjoo Blvd, Evin, Tehran, 1985713834, Iran.
- Kariminejad-Najmabadi Pathology and Genetics Center, #2, West Side of Sanat Sq.-Metro Station, Shahrak Gharb, Tehran, 1466713713, Iran.
| |
Collapse
|
27
|
Mastromoro G, Guadagnolo D, Giancotti A, Di Gregorio MG, Marchionni E, Vena F, Lepri FR, Bargiacchi L, Ventriglia F, Di Gioia C, Novelli A, Pizzuti A. Recurrent prenatal PIEZO1-related lymphatic dysplasia: Expanding molecular and ultrasound findings. Eur J Med Genet 2020; 64:104106. [PMID: 33227434 DOI: 10.1016/j.ejmg.2020.104106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/24/2020] [Accepted: 11/15/2020] [Indexed: 12/16/2022]
Abstract
Generalized lymphatic dysplasia (GLD), characterized by lymphedema, lymphangiectasias, chylothorax, effusions, represents a recognized cause of fetal hydrops. We describe for the first time recurrent pregnancies showing different ultrasound presentations of lymphatic dysplasia. The first fetus displayed diffuse subcutaneous cysts and septations while the second one presented fetal hydrops. Exome sequencing results at 18 gestational weeks in the second pregnancy showed compound heterozygosity for two novel PIEZO1 variants, afterwards detected also in the first fetus and in the heterozygous parents. Both ultrasound and genetic findings expand the current knowledge of PIEZO1-related GLD. We suggest exome sequencing in hydropic fetuses with normal cytogenetics and in pregnancies with recurrent hydrops/lymphatic dysplasia.
Collapse
Affiliation(s)
- Gioia Mastromoro
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I Hospital, Rome, Italy.
| | - Daniele Guadagnolo
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I Hospital, Rome, Italy
| | - Antonella Giancotti
- Department of Maternal and Child Health and Urologic Science, Sapienza University of Rome, Policlinico Umberto I Hospital, Rome, Italy
| | | | - Enrica Marchionni
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I Hospital, Rome, Italy
| | - Flaminia Vena
- Department of Maternal and Child Health and Urologic Science, Sapienza University of Rome, Policlinico Umberto I Hospital, Rome, Italy
| | | | - Lavinia Bargiacchi
- Department of Radiological, Oncological and Pathological Sciences, Sapienza, University of Rome, Rome, Italy
| | - Flavia Ventriglia
- Department of Pediatrics, Sapienza University of Rome, Policlinico Umberto I Hospital, Rome, Italy
| | - Cira Di Gioia
- Department of Radiological, Oncological and Pathological Sciences, Sapienza, University of Rome, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I Hospital, Rome, Italy
| |
Collapse
|
28
|
Xiao B. Levering Mechanically Activated Piezo Channels for Potential Pharmacological Intervention. Annu Rev Pharmacol Toxicol 2020; 60:195-218. [DOI: 10.1146/annurev-pharmtox-010919-023703] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mechanically activated Piezo channels, including Piezo1 and Piezo2 in mammals, function as key mechanotransducers for converting mechanical force into electrochemical signals. This review highlights key evidence for the potential of Piezo channel drug discovery. First, both mouse and human genetic studies have unequivocally demonstrated the prominent role of Piezo channels in various mammalian physiologies and pathophysiologies, validating their potential as novel therapeutic targets. Second, the cryo-electron microscopy structure of the 2,547-residue mouse Piezo1 trimer has been determined, providing a solid foundation for studying its structure-function relationship and drug action mechanisms and conducting virtual drug screening. Third, Piezo1 chemical activators, named Yoda1 and Jedi1/2, have been identified through high-throughput screening assays, demonstrating the drugability of Piezo channels. However, the pharmacology of Piezo channels is in its infancy. By establishing an integrated drug discovery platform, we may hopefully discover and develop a fleet of Jedi masters for battling Piezo-related human diseases.
Collapse
Affiliation(s)
- Bailong Xiao
- State Key Laboratory of Membrane Biology; Tsinghua-Peking Joint Center for Life Sciences; IDG/McGovern Institute for Brain Research; Beijing Advanced Innovation Center for Structural Biology; and School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Affiliation(s)
- David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Bailong Xiao
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Brain Research Institute, Tsinghua University, Haidian District, Beijing, China
| |
Collapse
|
30
|
Moehring F, Halder P, Seal RP, Stucky CL. Uncovering the Cells and Circuits of Touch in Normal and Pathological Settings. Neuron 2019; 100:349-360. [PMID: 30359601 DOI: 10.1016/j.neuron.2018.10.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/18/2023]
Abstract
The sense of touch is fundamental as it provides vital, moment-to-moment information about the nature of our physical environment. Primary sensory neurons provide the basis for this sensation in the periphery; however, recent work demonstrates that touch transduction mechanisms also occur upstream of the sensory neurons via non-neuronal cells such as Merkel cells and keratinocytes. Within the spinal cord, deep dorsal horn circuits transmit innocuous touch centrally and also transform touch into pain in the setting of injury. Here non-neuronal cells play a key role in the induction and maintenance of persistent mechanical pain. This review highlights recent advances in our understanding of mechanosensation, including a growing appreciation for the role of non-neuronal cells in both touch and pain.
Collapse
Affiliation(s)
- Francie Moehring
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Priyabrata Halder
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
| | - Rebecca P Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, Pittsburgh, PA 15213, USA
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
31
|
Morley LC, Beech DJ, Walker JJ, Simpson NAB. Emerging concepts of shear stress in placental development and function. Mol Hum Reprod 2019; 25:329-339. [PMID: 30931481 PMCID: PMC6554190 DOI: 10.1093/molehr/gaz018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/03/2019] [Indexed: 12/17/2022] Open
Abstract
Blood flow, and the force it generates, is critical to placental development and function throughout pregnancy. This mechanical stimulation of cells by the friction generated from flow is called shear stress (SS) and is a fundamental determinant of vascular homeostasis, regulating remodelling and vasomotor tone. This review describes how SS is fundamental to the establishment and regulation of the blood flow through the uteroplacental and fetoplacental circulations. Amongst the most recent findings is that alongside the endothelium, embryonic stem cells and the villous trophoblast are mechanically sensitive. A complex balance of forces is required to enable effective establishment of the uteroplacental circulation, while protecting the embryo and placental villi. SS also generates flow-mediated vasodilatation through the release of endothelial nitric oxide, a process vital for adequate placental blood flow. The identification of SS sensors and the mechanisms governing how the force is converted into biochemical signals is a fast-paced area of research, with multiple cellular components under investigation. For example, the Piezo1 ion channel is mechanosensitive in a variety of tissues including the fetoplacental endothelium. Enhanced Piezo1 activity has been demonstrated in response to the Yoda1 agonist molecule, suggesting the possibility for developing tools to manipulate these channels. Whether such agents might progress to novel therapeutics to improve blood flow through the placenta requires further consideration and research.
Collapse
Affiliation(s)
- L C Morley
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, UK
| | - D J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, UK
| | - J J Walker
- Academic department of Obstetrics and Gynaecology, Level, Worsley Building, University of Leeds, UK
| | - N A B Simpson
- Academic department of Obstetrics and Gynaecology, Level, Worsley Building, University of Leeds, UK
| |
Collapse
|
32
|
Andolfo I, De Rosa G, Errichiello E, Manna F, Rosato BE, Gambale A, Vetro A, Calcaterra V, Pelizzo G, De Franceschi L, Zuffardi O, Russo R, Iolascon A. PIEZO1 Hypomorphic Variants in Congenital Lymphatic Dysplasia Cause Shape and Hydration Alterations of Red Blood Cells. Front Physiol 2019; 10:258. [PMID: 30930797 PMCID: PMC6428731 DOI: 10.3389/fphys.2019.00258] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/26/2019] [Indexed: 12/20/2022] Open
Abstract
PIEZO1 is a cation channel activated by mechanical force. It plays an important physiological role in several biological processes such as cardiovascular, renal, endothelial and hematopoietic systems. Two different diseases are associated with alteration in the DNA sequence of PIEZO1: (i) dehydrated hereditary stomatocytosis (DHS1, #194380), an autosomal dominant hemolytic anemia caused by gain-of-function mutations; (ii) lymphatic dysplasia with non-immune fetal hydrops (LMPH3, #616843), an autosomal recessive condition caused by biallelic loss-of-function mutations. We analyzed a 14-year-old boy affected by severe lymphatic dysplasia already present prenatally, with peripheral edema, hydrocele, and chylothoraces. By whole exome sequencing, we identified compound heterozygosity for PIEZO1, with one splicing and one deletion mutation, the latter causing the formation of a premature stop codon that leads to mRNA decay. The functional analysis of the erythrocytes of the patient highlighted altered hydration with the intracellular loss of the potassium content and structural abnormalities with anisopoikolocytosis and presence of both spherocytes and stomatocytes. This novel erythrocyte trait, sharing features with both hereditary spherocytosis and overhydrated hereditary stomatocytosis, complements the clinical features associated with loss-of-function mutations of PIEZO1 in the context of the generalized lymphatic dysplasia of LMPH3 type.
Collapse
Affiliation(s)
- Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate, Naples, Italy
| | - Gianluca De Rosa
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate, Naples, Italy
| | | | - Francesco Manna
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate, Naples, Italy
| | - Barbara Eleni Rosato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate, Naples, Italy
| | - Antonella Gambale
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate, Naples, Italy
| | - Annalisa Vetro
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Valeria Calcaterra
- Pediatric Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Gloria Pelizzo
- Department of Pediatric Surgery, Children's Hospital "G. Di Cristina", ARNAS Civico-Di Cristina-Benfretelli, Palermo, Italy
| | | | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Roberta Russo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate, Naples, Italy
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
33
|
Romero LO, Massey AE, Mata-Daboin AD, Sierra-Valdez FJ, Chauhan SC, Cordero-Morales JF, Vásquez V. Dietary fatty acids fine-tune Piezo1 mechanical response. Nat Commun 2019; 10:1200. [PMID: 30867417 PMCID: PMC6416271 DOI: 10.1038/s41467-019-09055-7] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/18/2019] [Indexed: 12/18/2022] Open
Abstract
Mechanosensitive ion channels rely on membrane composition to transduce physical stimuli into electrical signals. The Piezo1 channel mediates mechanoelectrical transduction and regulates crucial physiological processes, including vascular architecture and remodeling, cell migration, and erythrocyte volume. The identity of the membrane components that modulate Piezo1 function remain largely unknown. Using lipid profiling analyses, we here identify dietary fatty acids that tune Piezo1 mechanical response. We find that margaric acid, a saturated fatty acid present in dairy products and fish, inhibits Piezo1 activation and polyunsaturated fatty acids (PUFAs), present in fish oils, modulate channel inactivation. Force measurements reveal that margaric acid increases membrane bending stiffness, whereas PUFAs decrease it. We use fatty acid supplementation to abrogate the phenotype of gain-of-function Piezo1 mutations causing human dehydrated hereditary stomatocytosis. Beyond Piezo1, our findings demonstrate that cell-intrinsic lipid profile and changes in the fatty acid metabolism can dictate the cell's response to mechanical cues.
Collapse
Affiliation(s)
- Luis O Romero
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, 71S. Manassas St., Memphis, TN, 38163, USA
| | - Andrew E Massey
- Department of Pharmaceutical Sciences and Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave., Memphis, TN, 38163, USA
| | - Alejandro D Mata-Daboin
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, 71S. Manassas St., Memphis, TN, 38163, USA
| | - Francisco J Sierra-Valdez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, 71S. Manassas St., Memphis, TN, 38163, USA
- Centro de Investigación Biomédica, Hospital Zambrano Hellion, TecSalud, Ave. Batallon de San Patricio 112, 66278, San Pedro Garza García, Nuevo León, Mexico
- Tecnólogico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501 Sur, 64849, Monterrey, Nuevo León, Mexico
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave., Memphis, TN, 38163, USA
| | - Julio F Cordero-Morales
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, 71S. Manassas St., Memphis, TN, 38163, USA
| | - Valeria Vásquez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, 71S. Manassas St., Memphis, TN, 38163, USA.
| |
Collapse
|
34
|
Dehydrated Hereditary Stomatocytosis Presenting as Severe Perinatal Ascites and Cholestasis. J Pediatr Gastroenterol Nutr 2019; 68:e52-e53. [PMID: 29952828 DOI: 10.1097/mpg.0000000000002077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
35
|
Brea-Fernández A, Dacruz D, Eirís J, Barros F, Carracedo Á. Novel truncating variants expand the phenotypic spectrum of KAT6B-related disorders. Am J Med Genet A 2018; 179:290-294. [PMID: 30569622 DOI: 10.1002/ajmg.a.60689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/13/2018] [Accepted: 10/27/2018] [Indexed: 12/12/2022]
Abstract
Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS) and Genitopatellar syndrome (GTPTS) are very rare conditions caused by KAT6B truncating variants. Because of both syndromes often share common features the associated phenotypes are usually grouped under the term "KAT6B-related disorders." However, particular signs of each syndrome have been reported and their appearance seems to be dependent on where the KAT6B variant is located. Thus, whereas truncating variants associated with SBBYSS have their highest density in the distal part of exon 18, those resulting in GTPTS are distributed between the end of exon 17 and beginning of exon 18. Here, we reported two de novo heterozygous KAT6B truncating variants. The first variant (c.5802delA; p.A1935Pfs*16), identified in a boy with SSBYSS phenotype, resulting in the most distal KAT6B truncating variant reported up-to-date in the scientific literature. The second variant (c.3152delG; p.S1051Tfs*63), located in a region hitherto defined as specific of SBBYSS, seems to cause an overlapping SBBYSS/GTPTS phenotype. The clinical and genetic characterization of these patients could contribute to the understanding of the KAT6B-related disorders.
Collapse
Affiliation(s)
- Alejandro Brea-Fernández
- Grupo de Medicina Xenómica, Universidad de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - David Dacruz
- Complexo Hospitalario Universitario de Santiago de Compostela, Unidad de Neurología Pediátrica, Departamento de Pediatría, Santiago de Compostela, Spain
| | - Jesús Eirís
- Complexo Hospitalario Universitario de Santiago de Compostela, Unidad de Neurología Pediátrica, Departamento de Pediatría, Santiago de Compostela, Spain
| | - Francisco Barros
- Grupo de Medicina Xenómica, Universidad de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.,Fundación Pública Galega de Medicina Xenómica-SERGAS, Santiago de Compostela, Spain
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Universidad de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.,Fundación Pública Galega de Medicina Xenómica-SERGAS, Santiago de Compostela, Spain
| |
Collapse
|
36
|
Datkhaeva I, Arboleda VA, Senaratne TN, Nikpour G, Meyerson C, Geng Y, Afshar Y, Scibetta E, Goldstein J, Quintero-Rivera F, Crandall BF, Grody WW, Deignan J, Janzen C. Identification of novel PIEZO1 variants using prenatal exome sequencing and correlation to ultrasound and autopsy findings of recurrent hydrops fetalis. Am J Med Genet A 2018; 176:2829-2834. [PMID: 30244526 DOI: 10.1002/ajmg.a.40533] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/19/2018] [Accepted: 08/10/2018] [Indexed: 01/07/2023]
Abstract
Nonimmune hydrops fetalis (NIHF) is a rare disorder with a high perinatal mortality of at least 50%. One cause of NIHF is generalized lymphatic dysplasia (GLD), a rare form of primary lymphedema of the extremities and systemic involvement including chylothoraces and pericardial effusions. An autosomal recessive form of GLD has been described, caused by variants in the PIEZO1 gene. It has been reported clinically to cause NIHF and childhood onset of facial and limb lymphedema, most of which were diagnosed postnatally. We present a case of a woman with recurrent pregnancies affected by NIHF because of novel compound heterozygous variants in the PIEZO1 gene diagnosed prenatally using exome sequencing (ES). Two variants in PIEZO1 (c.3206G>A and c.6208A>C) were identified that were inherited from the father and mother, and are predicted to cause a nonsense and missense change, respectively, in the PIEZO1 subunits. Ultrasound demonstrated severe bilateral pleural effusions, whole body edema and polyhydramnios. Histopathology revealed an increased number of lymphatic channels, many of which showed failure of luminal canalization. Sanger sequencing confirmed the same variants in a prior fetal demise. We provide phenotypic correlation with ultrasound and autopsy finding, review PIEZO1 variants as a cause of GLD and discuss the uses of prenatal ES to date.
Collapse
Affiliation(s)
- Ilina Datkhaeva
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Valerie A Arboleda
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - T Niroshi Senaratne
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Gelareh Nikpour
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Cherise Meyerson
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Yipeng Geng
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Yalda Afshar
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Emily Scibetta
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jeffrey Goldstein
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Fabiola Quintero-Rivera
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Barbara F Crandall
- Department of Psychiatry, Prenatal Diagnosis Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Wayne W Grody
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Joshua Deignan
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Carla Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|