1
|
Silva-Cardoso GK, N'Gouemo P. Activation of anoctamin-1 calcium-activated chloride channels reduces voluntary alcohol consumption in rats. Neuropharmacology 2025; 275:110498. [PMID: 40324648 DOI: 10.1016/j.neuropharm.2025.110498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/18/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Repeated episodes of binge drinking can lead to an alcohol use disorder, yet the underlying pharmacological mechanisms are still not fully understood. Nevertheless, emerging evidence indicates that Ca2+-dependent signaling effectively reduces alcohol consumption without affecting water intake. Therefore, activating anoctamin1 (ANO1), a Ca2+-activated chloride channel and a component of Ca2+-dependent signaling, can similarly decrease alcohol drinking while maintaining normal water intake. This study investigates how activation of ANO1 channels with EACT affects voluntary alcohol consumption in male and female Sprague-Dawley rats using the intermittent alcohol access method in a two-bottle choice paradigm. Rats were trained to drink 7.5 % ethanol or water for four weeks before administering either EACT (2.5, 5, and 10 mg/kg). Afterward, their alcohol intake, preference, and water intake were systematically recorded 2 and 24 h after exposure to water and 7.5 % ethanol solution. The results indicated that female rats consumed more alcohol than males. Furthermore, activating ANO1 channels with EACT significantly decreased alcohol intake and preference in males, only at the 5 mg/kg dose; in females, this effect was observed as a linear response at both the 5 and 10 mg/kg doses, highlighting distinct sex-related differences. Additionally, the inhibitory effect of EACT on alcohol consumption was associated with increased water intake in females, suggesting a potential influence of EACT on thirst homeostasis. Collectively, these findings highlight the differential effects of EACT on alcohol intake, preference, and water intake based on sex, and underscore the complexity of consummatory behavior mechanisms.
Collapse
Affiliation(s)
- Gleice Kelli Silva-Cardoso
- Howard University College of Medicine, Department of Physiology and Biophysics, Washington, DC, 20059, United States of America
| | - Prosper N'Gouemo
- Howard University College of Medicine, Department of Physiology and Biophysics, Washington, DC, 20059, United States of America.
| |
Collapse
|
2
|
Zhang S, Luo S, Zhang H, Xiao Q. Transmembrane protein 16A in the digestive diseases: A review of its physiology, pharmacology, and therapeutic opportunities. Int J Biol Macromol 2025; 310:143598. [PMID: 40300686 DOI: 10.1016/j.ijbiomac.2025.143598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/14/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Transmembrane protein 16A (TMEM16A) is a Ca2+-activated Cl- channel that is widely expressed in the digestive system, and numerous compounds have been developed for targeting TMEM16A. This review summarizes the current state of knowledge of physiological and pathological roles of TMEM16A in the digestive system, and discuss the potential therapeutic uses and challenges of TMEM16A modulators, with a focus on their selectivity, potency and molecular mechanisms as well as off-target tissue effects. We propose that TMEM16A exerts physiological and pathological roles in a tissue-specific or disease-specific way, and try to establish the idea that TMEM16A modulators are promising for therapeutic uses in digestive diseases such as secretory diarrhea, gastrointestinal motility disorders, and hepatobiliary and pancreatic diseases, as well as various cancers.
Collapse
Affiliation(s)
- Shen Zhang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Gastroenterology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110031, China
| | - Shuya Luo
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Hong Zhang
- Department of Colorectal Oncology/General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
3
|
Al-Hosni R, Agostinelli E, Ilkan Z, Scofano L, Kaye R, Dinsdale RL, Acheson K, MacDonald A, Rivers D, Biosa A, Gunthorpe MJ, Platt F, Tammaro P. Pharmacological profiling of small molecule modulators of the TMEM16A channel and their implications for the control of artery and capillary function. Br J Pharmacol 2025; 182:1719-1740. [PMID: 39829151 DOI: 10.1111/bph.17383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND AND PURPOSE TMEM16A chloride channels constitute a depolarising mechanism in arterial smooth muscle cells (SMCs) and contractile cerebral pericytes. TMEM16A pharmacology is incompletely defined. We elucidated the mode of action and selectivity of a recently identified positive allosteric modulator of TMEM16A (PAM_16A) and of a range of TMEM16A inhibitors. We also explore the consequences of selective modulation of TMEM16A activity on arterial and capillary function. EXPERIMENTAL APPROACH Patch-clamp electrophysiology, isometric tension recordings, live imaging of cerebral cortical capillaries and assessment of cell death were employed to explore the effect of selective pharmacological control of TMEM16A on vascular function. KEY RESULTS In low intracellular free Ca2+ concentrations ([Ca2+]i), nanomolar concentrations of PAM_16A activated heterologous TMEM16A channels, while being almost ineffective on the closely related TMEM16B channel. In either the absence of Ca2+ or in saturating [Ca2+]i, PAM_16A had no effect on TMEM16A currents at physiological potentials. PAM_16A selectively activated TMEM16A currents in SMCs and enhanced aortic contraction caused by phenylephrine or angiotensin-II and capillary (pericyte) constriction evoked by endothelin-1 or oxygen-glucose deprivation (OGD) to simulate cerebral ischaemia. Conversely, selective TMEM16A inhibition with Ani9 facilitated aortic, mesenteric and pericyte relaxation, and protected against OGD-mediated pericyte cell death. Unlike PAM_16A and Ani9, a range of other available modulators were found to interfere with endogenous cationic currents in SMCs. CONCLUSIONS AND IMPLICATIONS Arterial tone and capillary diameter can be controlled with TMEM16A modulators, highlighting TMEM16A as a target for disorders with a vascular component, including hypertension, stroke, Alzheimer's disease and vascular dementia.
Collapse
Affiliation(s)
| | | | - Zeki Ilkan
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Lara Scofano
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Rachel Kaye
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Ria L Dinsdale
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Kathryn Acheson
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Andrew MacDonald
- Autifony Therapeutics Ltd, Stevenage Bioscience Catalyst, Stevenage, UK
| | - Dean Rivers
- Autifony Therapeutics Ltd, Stevenage Bioscience Catalyst, Stevenage, UK
| | - Alice Biosa
- Autifony Srl, Istituto di Ricerca Pediatrica Citta' della Speranza, Padua, Italy
| | | | - Frances Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Paolo Tammaro
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Radji C, Barrault C, Flausse R, Leveziel N, Cantereau A, Bur C, Terrasse G, Becq F. Modeling ocular surface ion and water transport by generation of lipid- and mucin-producing human meibomian gland and conjunctival epithelial cells. Am J Physiol Cell Physiol 2025; 328:C856-C871. [PMID: 39870373 DOI: 10.1152/ajpcell.00560.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/18/2024] [Accepted: 01/09/2025] [Indexed: 01/29/2025]
Abstract
Despite the importance of the ocular surface in human physiology and diseases, little is known about ion channel expression, properties, and regulation in ocular epithelial cells. Furthermore, human primary epithelial cells have rarely been studied in favor of rat, mouse, and especially rabbit animal models. Here, we developed primary human meibomian gland (hMGEC) and conjunctival (hConEC) epithelial cells. We show that hConEC and hMGEC produce MUC5AC and lipids, respectively. With cell cultures maintained at the air-liquid interface, we recorded transepithelial short-circuit currents (Isc) by the Ussing chamber method. We identified in the apical membrane Na+, Cl-, and K+ ion channels; amiloride-sensitive epithelial sodium channel (ENaC), cAMP-dependent CFTR, UTP-dependent TMEM16a, and chromanol 293B-sensitive KCNQ1. At the basolateral membrane, we identified bumetanide-sensitive NKCC and barium-sensitive K+ channels. We also found that vasoactive intestinal peptide, concentration-dependent (EC50 of 1-8 nM), stimulates the CFTR-dependent Isc in both cells. Western blot analysis confirms the expression in both cell cultures of βENaC subunit, CFTR, TMEM16a, and KCNQ1 proteins. We recorded water influx by quantitative phase microscopy and identified a cAMP-dependent and mercury-sensitive water flux and identified by Western blot AQP3 and AQP5 proteins in hConEC and hMGEC. Taken together, we propose a model of the ion transports of human conjunctival and meibomian gland epithelial cells that will set the stage for future molecular dissection of the regulation of these transport proteins in the context of tear secretion and related diseases.NEW & NOTEWORTHY We generated human meibomian gland and conjunctival epithelial cells producing lipids and mucins. We identified ion channels including ENaC, CFTR, TMEM16a, and KCNQ1, as well as NKCC. We found that electrolyte and water flux are regulated by signaling pathways mediated by purinergic and VIP receptors. Our findings provide valuable insights into epithelial ion and water transport in the human conjunctiva and meibomian gland, enhancing understanding of these processes in both physiological and disease states.
Collapse
Affiliation(s)
- Chloë Radji
- Laboratoire de Physiopathologie et Régulation des Transports Ioniques, Université de Poitiers, Poitiers, France
| | - Christine Barrault
- Laboratoire de Physiopathologie et Régulation des Transports Ioniques, Université de Poitiers, Poitiers, France
| | - Roxane Flausse
- Service d'ophtalmologie, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Nicolas Leveziel
- Service d'ophtalmologie, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Anne Cantereau
- Plateforme Image-UP, Université de Poitiers, Poitiers, France
| | | | | | - Frédéric Becq
- Laboratoire de Physiopathologie et Régulation des Transports Ioniques, Université de Poitiers, Poitiers, France
| |
Collapse
|
5
|
Kim H, Shim WS, Oh U. Anoctamin 1, a multi-modal player in pain and itch. Cell Calcium 2024; 123:102924. [PMID: 38964236 DOI: 10.1016/j.ceca.2024.102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
Anoctamin 1 (ANO1/TMEM16A) encodes a Ca2+-activated Cl- channel. Among ANO1's many physiological functions, it plays a significant role in mediating nociception and itch. ANO1 is activated by intracellular Ca2+ and depolarization. Additionally, ANO1 is activated by heat above 44 °C, suggesting heat as another activation stimulus. ANO1 is highly expressed in nociceptors, indicating a role in nociception. Conditional Ano1 ablation in dorsal root ganglion (DRG) neurons results in a reduction in acute thermal pain, as well as thermal and mechanical allodynia or hyperalgesia evoked by inflammation or nerve injury. Pharmacological interventions also lead to a reduction in nocifensive behaviors. ANO1 is functionally linked to the bradykinin receptor and TRPV1. Bradykinin stimulates ANO1 via IP3-mediated Ca2+ release from intracellular stores, whereas TRPV1 stimulates ANO1 via a combination of Ca2+ influx and release. Nerve injury causes upregulation of ANO1 expression in DRG neurons, which is blocked by ANO1 antagonists. Due to its role in nociception, strong and specific ANO1 antagonists have been developed. ANO1 is also expressed in pruritoceptors, mediating Mas-related G protein-coupled receptors (Mrgprs)-dependent itch. The activation of ANO1 leads to chloride efflux and depolarization due to high intracellular chloride concentrations, causing pain and itch. Thus, ANO1 could be a potential target for the development of new drugs treating pain and itch.
Collapse
Affiliation(s)
- Hyungsup Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Republic of Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Uhtaek Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Koskimäki S, Tojkander S. TRPV4-A Multifunctional Cellular Sensor Protein with Therapeutic Potential. SENSORS (BASEL, SWITZERLAND) 2024; 24:6923. [PMID: 39517820 PMCID: PMC11548305 DOI: 10.3390/s24216923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Transient receptor potential vanilloid (TRPV) channel proteins belong to the superfamily of TRP proteins that form cationic channels in the animal cell membranes. These proteins have various subtype-specific functions, serving, for example, as sensors for pain, pressure, pH, and mechanical extracellular stimuli. The sensing of extracellular cues by TRPV4 triggers Ca2+-influx through the channel, subsequently coordinating numerous intracellular signaling cascades in a spatio-temporal manner. As TRPV channels play such a wide role in various cellular and physiological functions, loss or impaired TRPV protein activity naturally contributes to many pathophysiological processes. This review concentrates on the known functions of TRPV4 sensor proteins and their potential as a therapeutic target.
Collapse
Affiliation(s)
- Sanna Koskimäki
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland;
| | | |
Collapse
|
7
|
Orfali R, AlFaiz A, Alanazi M, Alabdulsalam R, Alharbi M, Alromaih Y, Dallak I, Alrahal M, Alwatban A, Saud R. TRPV4 Channel Modulators as Potential Drug Candidates for Cystic Fibrosis. Int J Mol Sci 2024; 25:10551. [PMID: 39408877 PMCID: PMC11476765 DOI: 10.3390/ijms251910551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, resulting in defective chloride ion channels. This leads to thick, dehydrated mucus that severely disrupts mucociliary clearance in the respiratory system and triggers infection that eventually is the cause of death of CF patients. Current therapeutic strategies primarily focus on restoring CFTR function, blocking epithelial sodium channels to prevent mucus dehydration, or directly targeting mucus to reduce its viscosity. Among the ion channels expressed in ciliated bronchial epithelial cells, the transient receptor potential vanilloid 4 (TRPV4) channel emerges as a significant channel in CF pathogenesis. Activation of TRPV4 channels affects the regulation of airway surface liquid by modulating sodium absorption and intracellular calcium levels, which indirectly influences CFTR activity. TRPV4 is also involved in the regulatory volume decrease (RVD) process and enhances inflammatory responses in CF patients. Here, we combine current findings on TRPV4 channel modulation as a promising therapeutic approach for CF. Although limited studies have directly explored TRPV4 in CF, emerging evidence indicates that TRPV4 activation can significantly impact key pathological processes in the disease. Further investigation into TRPV4 modulators could lead to innovative treatments that alleviate severe respiratory complications and improve outcomes for CF patients.
Collapse
Affiliation(s)
- Razan Orfali
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Ali AlFaiz
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Madhawi Alanazi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Rahaf Alabdulsalam
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Meaad Alharbi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Yara Alromaih
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Ismail Dallak
- King Abdulaziz Medical City, Jeddah 9515, Saudi Arabia
| | - Marah Alrahal
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Abdulaziz Alwatban
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh 13317, Saudi Arabia
| | - Reem Saud
- General Education Department, Dar Al-Hikmah University, Jeddah 22246, Saudi Arabia
| |
Collapse
|
8
|
Genovese M, Galietta LJV. Anoctamin pharmacology. Cell Calcium 2024; 121:102905. [PMID: 38788257 DOI: 10.1016/j.ceca.2024.102905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
TMEM16 proteins, also known as anoctamins, are a family of ten membrane proteins with various tissue expression and subcellular localization. TMEM16A (anoctamin 1) is a plasma membrane protein that acts as a calcium-activated chloride channel. It is expressed in many types of epithelial cells, smooth muscle cells and some neurons. In airway epithelial cells, TMEM16A expression is particularly enhanced by inflammatory stimuli that also promote goblet cell metaplasia and mucus hypersecretion. Therefore, pharmacological modulation of TMEM16A could be beneficial to improve mucociliary clearance in chronic obstructive respiratory diseases. However, the correct approach to modulate TMEM16A activity (activation or inhibition) is still debated. Pharmacological inhibitors of TMEM16A could also be useful as anti-hypertensive agents given the TMEM16A role in smooth muscle contraction. In contrast to TMEM16A, TMEM16F (anoctamin 6) behaves as a calcium-activated phospholipid scramblase, responsible for the externalization of phosphatidylserine on cell surface. Inhibitors of TMEM16F could be useful as anti-coagulants and anti-viral agents. The role of other anoctamins as therapeutic targets is still unclear since their physiological role is still to be defined.
Collapse
Affiliation(s)
- Michele Genovese
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy; Department of Translational Medical Sciences (DISMET), University of Naples "Federico II", Italy.
| |
Collapse
|
9
|
Wang J, Luo J, Liu Y, Jiang Y, Qu X, Liu C, Xiang Y, Qin X. Stress stimulation promotes the injury repair process of airway epithelial cells through the [Cl -] i-FAK signaling axis. Respir Physiol Neurobiol 2024; 323:104237. [PMID: 38354845 DOI: 10.1016/j.resp.2024.104237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The airway epithelium serves as a critical interface with the external environment, making it vulnerable to various external stimuli. Airway epithelial stress acts as a catalyst for the onset of numerous pulmonary and systemic diseases. Our previous studies have highlighted the impact of acute stress stimuli, especially bacterial lipopolysaccharide (LPS) and hydrogen peroxide (H2O2), on the continuous elevation of intracellular chloride concentration ([Cl-]i). However, the precise mechanism behind this [Cl-]i elevation and the consequential effects of such stress on the injury repair function of airway epithelial cells remain unclear. Our findings indicate that H2O2 induces an elevation in [Cl-]i by modulating the expression of CF transmembrane conductance regulator (CFTR) and Ca-activated transmembrane protein 16 A (TMEM16A) in airway epithelial cells (BEAS-2B), whereas LPS achieves this solely through CFTR. Subsequently, the elevated [Cl-]i level facilitated the injury repair process of airway epithelial cells by activating focal adhesion kinase (FAK). In summary, the [Cl-]i-FAK axis appears to play a promoting effect on the injury repair process triggered by stress stimulation. Furthermore, our findings suggest that abnormalities in the [Cl-]i-FAK signaling axis may play a crucial role in the pathogenesis of chronic airway diseases. Therefore, controlling the structure and function of airway epithelial barriers through the modulation of [Cl-]i holds promising prospects for future applications in managing and treating such conditions.
Collapse
Affiliation(s)
- Jia Wang
- Hunan Provincial People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha 410016, China; Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Jinhua Luo
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Yanjuan Liu
- Hunan Provincial People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha 410016, China
| | - Yu Jiang
- Hunan Provincial People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha 410016, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Chi Liu
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China.
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China.
| |
Collapse
|
10
|
Ouyang X, Reihill JA, Douglas LEJ, Dunne OM, Sergeant GP, Martin SL. House dust mite allergens induce Ca 2+ signalling and alarmin responses in asthma airway epithelial cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167079. [PMID: 38367901 DOI: 10.1016/j.bbadis.2024.167079] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/15/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Type 2 inflammation in asthma develops with exposure to stimuli to include inhaled allergens from house dust mites (HDM). Features include mucus hypersecretion and the formation of pro-secretory ion transport characterised by elevated basal Cl- current. Studies using human sinonasal epithelial cells treated with HDM extract report a higher protease activated receptor-2 (PAR-2) agonist-induced calcium mobilisation that may be related to airway sensitisation by allergen-associated proteases. Herein, this study aimed to investigate the effect of HDM on Ca2+ signalling and inflammatory responses in asthmatic airway epithelial cells. Primary bronchial epithelial cells (hPBECs) from asthma donors cultured at air-liquid interface were used to assess electrophysiological, Ca2+ signalling and inflammatory responses. Differences were observed regarding Ca2+ signalling in response to PAR-2 agonist 2-Furoyl-LIGRLO-amide (2-FLI), and equivalent short-circuit current (Ieq) in response to trypsin and 2-FLI, in ALI-asthma and healthy hPBECs. HDM treatment led to increased levels of intracellular cations (Ca2+, Na+) and significantly reduced the 2-FLI-induced change of Ieq in asthma cells. Apical HDM-induced Ca2+ mobilisation was found to mainly involve the activation of PAR-2 and PAR-4-associated store-operated Ca2+ influx and TRPV1. In contrast, PAR-2, PAR-4 antagonists and TRPV1 antagonist only showed slight impact on basolateral HDM-induced Ca2+ mobilisation. HDM trypsin-like serine proteases were the main components leading to non-amiloride sensitive Ieq and also increased interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP) from asthma hPBECs. These studies add further insight into the complex mechanisms associated with HDM-induced alterations in cell signalling and their relevance to pathological changes within asthma.
Collapse
Affiliation(s)
- Xuan Ouyang
- School of Pharmacy, Queen's University Belfast, BT9 7BL, UK
| | | | | | - Orla M Dunne
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, Ireland
| | | |
Collapse
|
11
|
Pongkorpsakol P, Yimnual C, Satianrapapong W, Worakajit N, Kaewin S, Saetang P, Rukachaisirikul V, Muanprasat C. Discovery of Fungus-Derived Nornidulin as a Novel TMEM16A Inhibitor: A Potential Therapy to Inhibit Mucus Secretion in Asthma. J Exp Pharmacol 2023; 15:449-466. [PMID: 38026233 PMCID: PMC10657771 DOI: 10.2147/jep.s427594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Inhibition of Ca2+-activated transmembrane protein 16A (TMEM16A) Cl- channels has been proposed to alleviate mucus secretion in asthma. In this study, we identified a novel class of TMEM16A inhibitors from natural sources in airway epithelial Calu-3 cells and determine anti-asthmatic efficacy of the most potent candidate in a mouse model of asthma. Methods For electrophysiological analyses, IL-4-primed Calu-3 cell monolayers were mounted in Ussing chamber and treated with various fungus-derived depsidones prior to the addition of UTP, ionomycin, thapsigargin, or Eact to stimulate TMEM16A Cl- current. Ca2+-induced mucus secretion in Calu-3 cell monolayers was assessed by determining MUC5AC protein remaining in the cells using immunofluorescence staining. OVA-induced female BALB/c mice was used as an animal model of asthma. After the course of induction, cellular and mucus components in bronchoalveolar lavage were analyzed. Lungs were fixed and undergone with H&E and PAS staining for the evaluation of airway inflammation and mucus production, respectively. Results The screening of fungus-derived depsidones revealed that nornidulin completely abolished the UTP-activated TMEM16A current in Calu-3 cell monolayers with the IC50 and a maximal effect being at ~0.8 µM and 10 µM, respectively. Neither cell viability nor barrier function was affected by nornidulin. Mechanistically, nornidulin (10 µM) suppressed Cl- currents induced by ionomycin (a Ca2+-specific ionophore), thapsigargin (an inhibitor of the endoplasmic reticulum Ca2+ ATPase), and Eact (a putative TMEM16A activator) without interfering with intracellular Ca2+ ([Ca2+]i) levels. These results suggest that nornidulin exerts its effect without changing [Ca2+]i, possibly through direct effect on TMEM16A. Interestingly, nornidulin (at 10 µM) reduced Ca2+-dependent mucus release in the Calu-3 cell monolayers. In addition, nornidulin (20 mg/kg) inhibited bronchoalveolar mucus secretion without impeding airway inflammation in ovalbumin-induced asthmatic mice. Discussion and Conclusion Our study revealed that nornidulin is a novel TMEM16A inhibitor that suppresses mucus secretion without compromising immunologic activity. Further development of nornidulin may provide a new remedy for asthma or other diseases associated with allergic mucus hypersecretion without causing opportunistic infections.
Collapse
Affiliation(s)
- Pawin Pongkorpsakol
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Chantapol Yimnual
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | | | - Nichakorn Worakajit
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suchada Kaewin
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Praphatsorn Saetang
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Vatcharin Rukachaisirikul
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| |
Collapse
|
12
|
Oliver KE, Carlon MS, Pedemonte N, Lopes-Pacheco M. The revolution of personalized pharmacotherapies for cystic fibrosis: what does the future hold? Expert Opin Pharmacother 2023; 24:1545-1565. [PMID: 37379072 PMCID: PMC10528905 DOI: 10.1080/14656566.2023.2230129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF), a potentially fatal genetic disease, is caused by loss-of-function mutations in the gene encoding for the CFTR chloride/bicarbonate channel. Modulator drugs rescuing mutant CFTR traffic and function are now in the clinic, providing unprecedented breakthrough therapies for people with CF (PwCF) carrying specific genotypes. However, several CFTR variants are unresponsive to these therapies. AREA COVERED We discussed several therapeutic approaches that are under development to tackle the fundamental cause of CF, including strategies targeting defective CFTR mRNA and/or protein expression and function. Alternatively, defective chloride secretion and dehydration in CF epithelia could be restored by exploiting pharmacological modulation of alternative targets, i.e., ion channels/transporters that concur with CFTR to maintain the airway surface liquid homeostasis (e.g., ENaC, TMEM16A, SLC26A4, SLC26A9, and ATP12A). Finally, we assessed progress and challenges in the development of gene-based therapies to replace or correct the mutant CFTR gene. EXPERT OPINION CFTR modulators are benefiting many PwCF responsive to these drugs, yielding substantial improvements in various clinical outcomes. Meanwhile, the CF therapy development pipeline continues to expand with the development of novel CFTR modulators and alternative therapeutic strategies with the ultimate goal of providing effective therapies for all PwCF in the foreseeable future.
Collapse
Affiliation(s)
- Kathryn E. Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Marianne S. Carlon
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Center for Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
13
|
Yao Y, Borkar NA, Zheng M, Wang S, Pabelick CM, Vogel ER, Prakash YS. Interactions between calcium regulatory pathways and mechanosensitive channels in airways. Expert Rev Respir Med 2023; 17:903-917. [PMID: 37905552 PMCID: PMC10872943 DOI: 10.1080/17476348.2023.2276732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Asthma is a chronic lung disease influenced by environmental and inflammatory triggers and involving complex signaling pathways across resident airway cells such as epithelium, airway smooth muscle, fibroblasts, and immune cells. While our understanding of asthma pathophysiology is continually progressing, there is a growing realization that cellular microdomains play critical roles in mediating signaling relevant to asthma in the context of contractility and remodeling. Mechanosensitive pathways are increasingly recognized as important to microdomain signaling, with Piezo and transient receptor protein (TRP) channels at the plasma membrane considered important for converting mechanical stimuli into cellular behavior. Given their ion channel properties, particularly Ca2+ conduction, a question becomes whether and how mechanosensitive channels contribute to Ca2+ microdomains in airway cells relevant to asthma. AREAS COVERED Mechanosensitive TRP and Piezo channels regulate key Ca2+ regulatory proteins such as store operated calcium entry (SOCE) involving STIM and Orai channels, and sarcoendoplasmic (SR) mechanisms such as IP3 receptor channels (IP3Rs), and SR Ca2+ ATPase (SERCA) that are important in asthma pathophysiology including airway hyperreactivity and remodeling. EXPERT OPINION Physical and/or functional interactions between Ca2+ regulatory proteins and mechanosensitive channels such as TRP and Piezo can toward understanding asthma pathophysiology and identifying novel therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Niyati A Borkar
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Mengning Zheng
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Respiratory and Critical Care Medicine, Guizhou Province People’s Hospital, Guiyang, Guizhou, China
| | - Shengyu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth R Vogel
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - YS Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Blazer-Yost BL. Consideration of Kinase Inhibitors for the Treatment of Hydrocephalus. Int J Mol Sci 2023; 24:ijms24076673. [PMID: 37047646 PMCID: PMC10094860 DOI: 10.3390/ijms24076673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Hydrocephalus is a devastating condition characterized by excess cerebrospinal fluid (CSF) in the brain. Currently, the only effective treatment is surgical intervention, usually involving shunt placement, a procedure prone to malfunction, blockage, and infection that requires additional, often repetitive, surgeries. There are no long-term pharmaceutical treatments for hydrocephalus. To initiate an intelligent drug design, it is necessary to understand the biochemical changes underlying the pathology of this chronic condition. One potential commonality in the various forms of hydrocephalus is an imbalance in fluid–electrolyte homeostasis. The choroid plexus, a complex tissue found in the brain ventricles, is one of the most secretory tissues in the body, producing approximately 500 mL of CSF per day in an adult human. In this manuscript, two key transport proteins of the choroid plexus epithelial cells, transient receptor potential vanilloid 4 and sodium, potassium, 2 chloride co-transporter 1, will be considered. Both appear to play key roles in CSF production, and their inhibition or genetic manipulation has been shown to affect CSF volume. As with most transporters, these proteins are regulated by kinases. Therefore, specific kinase inhibitors are also potential targets for the development of pharmaceuticals to treat hydrocephalus.
Collapse
Affiliation(s)
- Bonnie L. Blazer-Yost
- Biology Department, Indiana University—Purdue University, 723 West Michigan Street, Indianapolis, IN 46202, USA
| |
Collapse
|
15
|
Genovese M, Buccirossi M, Guidone D, De Cegli R, Sarnataro S, di Bernardo D, Galietta LJV. Analysis of inhibitors of the anoctamin-1 chloride channel (transmembrane member 16A, TMEM16A) reveals indirect mechanisms involving alterations in calcium signalling. Br J Pharmacol 2023; 180:775-785. [PMID: 36444690 DOI: 10.1111/bph.15995] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Pharmacological inhibitors of TMEM16A (ANO1), a Ca2+ -activated Cl- channel, are important tools of research and possible therapeutic agents acting on smooth muscle, airway epithelia and cancer cells. We tested a panel of TMEM16A inhibitors, including CaCCinh -A01, niclosamide, MONNA, Ani9 and niflumic acid, to evaluate their possible effect on intracellular Ca2+ . EXPERIMENTAL APPROACH We recorded cytosolic Ca2+ increase elicited with UTP, ionomycin or IP3 uncaging. KEY RESULTS Unexpectedly, we found that all compounds, except for Ani9, markedly decreased intracellular Ca2+ elevation induced by stimuli acting on intracellular Ca2+ stores. These effects were similarly observed in cells with and without TMEM16A expression. We investigated in more detail the mechanism of action of niclosamide and CaCCinh -A01. Acute addition of niclosamide directly increased intracellular Ca2+ , an activity consistent with inhibition of the SERCA pump. In contrast to niclosamide, CaCCinh -A01 did not elevate intracellular Ca2+ , thus implying a different mechanism of action, possibly a block of inositol triphosphate receptors. CONCLUSIONS AND IMPLICATIONS Most TMEM16A inhibitors are endowed with indirect effects mediated by alteration of intracellular Ca2+ handling, which may in part preclude their use as TMEM16A research tools.
Collapse
Affiliation(s)
- Michele Genovese
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Daniela Guidone
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Sergio Sarnataro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Department of Translational Medical Sciences (DISMET), University of Naples "Federico II", Naples, Italy
| |
Collapse
|
16
|
Genovese M, Guidone D, Buccirossi M, Borrelli A, Rodriguez-Gimeno A, Bertozzi F, Bandiera T, Galietta LJV. Pharmacological potentiators of the calcium signaling cascade identified by high-throughput screening. PNAS NEXUS 2022; 2:pgac288. [PMID: 36712939 PMCID: PMC9830948 DOI: 10.1093/pnasnexus/pgac288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Pharmacological modulators of the Ca2+ signaling cascade are important research tools and may translate into novel therapeutic strategies for a series of human diseases. We carried out a screening of a maximally diverse chemical library using the Ca2+-sensitive Cl- channel TMEM16A as a functional readout. We found compounds that were able to potentiate UTP-dependent TMEM16A activation. Mechanism of action of these compounds was investigated by a panel of assays that looked at intracellular Ca2+ mobilization triggered by extracellular agonists or by caged-IP3 photolysis, PIP2 breakdown by phospholipase C, and ion channel activity on nuclear membrane. One compound appears as a selective potentiator of inositol triphosphate receptor type 1 (ITPR1) with a possible application for some forms of spinocerebellar ataxia. A second compound is instead a potentiator of the P2RY2 purinergic receptor, an activity that could promote fluid secretion in dry eye and chronic obstructive respiratory diseases.
Collapse
Affiliation(s)
- Michele Genovese
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, 80078 Naples, Italy
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, 80078 Naples, Italy
| | - Martina Buccirossi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, 80078 Naples, Italy
| | - Anna Borrelli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, 80078 Naples, Italy
| | | | - Fabio Bertozzi
- D3 PharmaChemistry, Italian Institute of Technology (IIT), Via Morego, 3016163, Genoa, Italy
| | - Tiziano Bandiera
- D3 PharmaChemistry, Italian Institute of Technology (IIT), Via Morego, 3016163, Genoa, Italy
| | - Luis J V Galietta
- To whom correspondence should be addressed. Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy.
| |
Collapse
|
17
|
Jimenez C, Hawn MB, Akin E, Leblanc N. Translational potential of targeting Anoctamin-1-Encoded Calcium-Activated chloride channels in hypertension. Biochem Pharmacol 2022; 206:115320. [PMID: 36279919 DOI: 10.1016/j.bcp.2022.115320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Calcium-activated chloride channels (CaCC) provide a depolarizing stimulus to a variety of tissues through chloride efflux in response to a rise in internal Ca2+ and voltage. One of these channels, Anoctamin-1 (ANO1 or TMEM16A) is now recognized to play a central role in promoting smooth muscle tone in various types of blood vessels. Its role in hypertension, and thus the therapeutic promise of targeting ANO1, is less straightforward. This review gives an overview of our current knowledge about the potential role ANO1 may play in hypertension within the systemic, portal, and pulmonary vascular systems and the importance of this information when pursuing potential treatment strategies. While the role of ANO1 is well-established in several forms of pulmonary hypertension, its contributions to both the generation of vascular tone and its role in hypertension within the systemic and portal systems are much less clear. This, combined with ANO1's various roles throughout a multitude of tissues throughout the body, command caution when targeting ANO1 as a therapeutic target and may require tissue-selective strategies.
Collapse
Affiliation(s)
- Connor Jimenez
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Matthew B Hawn
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Elizabeth Akin
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Normand Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA.
| |
Collapse
|
18
|
Rodenburg LW, Delpiano L, Railean V, Centeio R, Pinto MC, Smits SMA, van der Windt IS, van Hugten CFJ, van Beuningen SFB, Rodenburg RNP, van der Ent CK, Amaral MD, Kunzelmann K, Gray MA, Beekman JM, Amatngalim GD. Drug Repurposing for Cystic Fibrosis: Identification of Drugs That Induce CFTR-Independent Fluid Secretion in Nasal Organoids. Int J Mol Sci 2022; 23:12657. [PMID: 36293514 PMCID: PMC9603984 DOI: 10.3390/ijms232012657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Individuals with cystic fibrosis (CF) suffer from severe respiratory disease due to a genetic defect in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which impairs airway epithelial ion and fluid secretion. New CFTR modulators that restore mutant CFTR function have been recently approved for a large group of people with CF (pwCF), but ~19% of pwCF cannot benefit from CFTR modulators Restoration of epithelial fluid secretion through non-CFTR pathways might be an effective treatment for all pwCF. Here, we developed a medium-throughput 384-well screening assay using nasal CF airway epithelial organoids, with the aim to repurpose FDA-approved drugs as modulators of non-CFTR-dependent epithelial fluid secretion. From a ~1400 FDA-approved drug library, we identified and validated 12 FDA-approved drugs that induced CFTR-independent fluid secretion. Among the hits were several cAMP-mediating drugs, including β2-adrenergic agonists. The hits displayed no effects on chloride conductance measured in the Ussing chamber, and fluid secretion was not affected by TMEM16A, as demonstrated by knockout (KO) experiments in primary nasal epithelial cells. Altogether, our results demonstrate the use of primary nasal airway cells for medium-scale drug screening, target validation with a highly efficient protocol for generating CRISPR-Cas9 KO cells and identification of compounds which induce fluid secretion in a CFTR- and TMEM16A-indepent manner.
Collapse
Affiliation(s)
- Lisa W. Rodenburg
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Livia Delpiano
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Violeta Railean
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Raquel Centeio
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany
| | - Madalena C. Pinto
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Shannon M. A. Smits
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Isabelle S. van der Windt
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Casper F. J. van Hugten
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Sam F. B. van Beuningen
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| | - Remco N. P. Rodenburg
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Cornelis K. van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
| | - Margarida D. Amaral
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany
| | - Michael A. Gray
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Jeffrey M. Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| | - Gimano D. Amatngalim
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
19
|
Al-Hosni R, Ilkan Z, Agostinelli E, Tammaro P. The pharmacology of the TMEM16A channel: therapeutic opportunities. Trends Pharmacol Sci 2022; 43:712-725. [PMID: 35811176 DOI: 10.1016/j.tips.2022.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022]
Abstract
The TMEM16A Ca2+-gated Cl- channel is involved in a variety of vital physiological functions and may be targeted pharmacologically for therapeutic benefit in diseases such as hypertension, stroke, and cystic fibrosis (CF). The determination of the TMEM16A structure and high-throughput screening efforts, alongside ex vivo and in vivo animal studies and clinical investigations, are hastening our understanding of the physiology and pharmacology of this channel. Here, we offer a critical analysis of recent developments in TMEM16A pharmacology and reflect on the therapeutic opportunities provided by this target.
Collapse
Affiliation(s)
- Rumaitha Al-Hosni
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Zeki Ilkan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Emilio Agostinelli
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Paolo Tammaro
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
20
|
Zhang Y, Liang P, Yang L, Shan KZ, Feng L, Chen Y, Liedtke W, Coyne CB, Yang H. Functional coupling between TRPV4 channel and TMEM16F modulates human trophoblast fusion. eLife 2022; 11:e78840. [PMID: 35670667 PMCID: PMC9236608 DOI: 10.7554/elife.78840] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/05/2022] [Indexed: 11/15/2022] Open
Abstract
TMEM16F, a Ca2+-activated phospholipid scramblase (CaPLSase), is critical for placental trophoblast syncytialization, HIV infection, and SARS-CoV2-mediated syncytialization, however, how TMEM16F is activated during cell fusion is unclear. Here, using trophoblasts as a model for cell fusion, we demonstrate that Ca2+ influx through the Ca2+ permeable transient receptor potential vanilloid channel TRPV4 is critical for TMEM16F activation and plays a role in subsequent human trophoblast fusion. GSK1016790A, a TRPV4 specific agonist, robustly activates TMEM16F in trophoblasts. We also show that TRPV4 and TMEM16F are functionally coupled within Ca2+ microdomains in a human trophoblast cell line using patch-clamp electrophysiology. Pharmacological inhibition or gene silencing of TRPV4 hinders TMEM16F activation and subsequent trophoblast syncytialization. Our study uncovers the functional expression of TRPV4 and one of the physiological activation mechanisms of TMEM16F in human trophoblasts, thus providing us with novel strategies to regulate CaPLSase activity as a critical checkpoint of physiologically and disease-relevant cell fusion events.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biochemistry, Duke University Medical CenterDurhamUnited States
| | - Pengfei Liang
- Department of Biochemistry, Duke University Medical CenterDurhamUnited States
| | - Liheng Yang
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Ke Zoe Shan
- Department of Biochemistry, Duke University Medical CenterDurhamUnited States
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University Medical CentreDurhamUnited States
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua HospitalShanghaiChina
| | - Yong Chen
- Department of Neurology, Duke University Medical CenterDurhamUnited States
| | - Wolfgang Liedtke
- Department of Neurology, Duke University Medical CenterDurhamUnited States
- Department of Anesthesiology, Duke University Medical CenterDurhamUnited States
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
- College of Dentistry, Department of Molecular Pathobiology, NYUNew YorkUnited States
| | - Carolyn B Coyne
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
- Duke Human Vaccine Institute, Duke UniversityDurhamUnited States
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical CenterDurhamUnited States
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
21
|
Galietta LJ. TMEM16A (ANO1) as a therapeutic target in cystic fibrosis. Curr Opin Pharmacol 2022; 64:102206. [DOI: 10.1016/j.coph.2022.102206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/02/2023]
|
22
|
Lam AKM, Rutz S, Dutzler R. Inhibition mechanism of the chloride channel TMEM16A by the pore blocker 1PBC. Nat Commun 2022; 13:2798. [PMID: 35589730 PMCID: PMC9120017 DOI: 10.1038/s41467-022-30479-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
TMEM16A, a calcium-activated chloride channel involved in multiple cellular processes, is a proposed target for diseases such as hypertension, asthma, and cystic fibrosis. Despite these therapeutic promises, its pharmacology remains poorly understood. Here, we present a cryo-EM structure of TMEM16A in complex with the channel blocker 1PBC and a detailed functional analysis of its inhibition mechanism. A pocket located external to the neck region of the hourglass-shaped pore is responsible for open-channel block by 1PBC and presumably also by its structural analogs. The binding of the blocker stabilizes an open-like conformation of the channel that involves a rearrangement of several pore helices. The expansion of the outer pore enhances blocker sensitivity and enables 1PBC to bind at a site within the transmembrane electric field. Our results define the mechanism of inhibition and gating and will facilitate the design of new, potent TMEM16A modulators.
Collapse
Affiliation(s)
- Andy K M Lam
- Department of Biochemistry, University of Zurich, Winterthurer Str. 190, CH-8057, Zurich, Switzerland.
| | - Sonja Rutz
- Department of Biochemistry, University of Zurich, Winterthurer Str. 190, CH-8057, Zurich, Switzerland
| | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Winterthurer Str. 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
23
|
Polymodal Control of TMEM16x Channels and Scramblases. Int J Mol Sci 2022; 23:ijms23031580. [PMID: 35163502 PMCID: PMC8835819 DOI: 10.3390/ijms23031580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The TMEM16A/anoctamin-1 calcium-activated chloride channel (CaCC) contributes to a range of vital functions, such as the control of vascular tone and epithelial ion transport. The channel is a founding member of a family of 10 proteins (TMEM16x) with varied functions; some members (i.e., TMEM16A and TMEM16B) serve as CaCCs, while others are lipid scramblases, combine channel and scramblase function, or perform additional cellular roles. TMEM16x proteins are typically activated by agonist-induced Ca2+ release evoked by Gq-protein-coupled receptor (GqPCR) activation; thus, TMEM16x proteins link Ca2+-signalling with cell electrical activity and/or lipid transport. Recent studies demonstrate that a range of other cellular factors—including plasmalemmal lipids, pH, hypoxia, ATP and auxiliary proteins—also control the activity of the TMEM16A channel and its paralogues, suggesting that the TMEM16x proteins are effectively polymodal sensors of cellular homeostasis. Here, we review the molecular pathophysiology, structural biology, and mechanisms of regulation of TMEM16x proteins by multiple cellular factors.
Collapse
|
24
|
Hernandez A, Alaniz-Palacios A, Contreras-Vite JA, Martínez-Torres A. Positive modulation of the TMEM16B mediated currents by TRPV4 antagonist. Biochem Biophys Rep 2021; 28:101180. [PMID: 34917777 PMCID: PMC8646129 DOI: 10.1016/j.bbrep.2021.101180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
Calcium-activated chloride channels (CaCCs) play important roles in many physiological processes and their malfunction is implicated in diverse pathologies such as cancer, asthma, and hypertension. TMEM16A and TMEM16B proteins are the structural components of the CaCCs. Recent studies in cell cultures and animal models have demonstrated that pharmacological inhibition of CaCCs could be helpful in the treatment of some diseases, however, there are few specific modulators of these channels. CaCCs and Transient Receptor Potential Vanilloid-4 (TRPV4) channels are co-expressed in some tissues where they functionally interact. TRPV4 is activated by different stimuli and forms a calcium permeable channel that is activated by GSK1016790A and antagonized by GSK2193874. Here we report that GSK2193874 enhances the chloride currents mediated by TMEM16B expressed in HEK cells at nanomolar concentrations and that GSK1016790A enhances native CaCCs of Xenopus oocytes. Thus, these compounds may be used as a tool for the study of CaCCs, TRPV4 and their interactions.
Collapse
Affiliation(s)
- Adan Hernandez
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, 76230 Santiago de Querétaro, Querétaro, Mexico
| | - Alfredo Alaniz-Palacios
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, 76230 Santiago de Querétaro, Querétaro, Mexico
| | - Juan A Contreras-Vite
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, 76230 Santiago de Querétaro, Querétaro, Mexico
| | - Ataúlfo Martínez-Torres
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, 76230 Santiago de Querétaro, Querétaro, Mexico
| |
Collapse
|
25
|
Abstract
Chloride transport across cell membranes is broadly involved in epithelial fluid transport, cell volume and pH regulation, muscle contraction, membrane excitability, and organellar acidification. The human genome encodes at least 53 chloride-transporting proteins with expression in cell plasma or intracellular membranes, which include chloride channels, exchangers, and cotransporters, some having broad anion specificity. Loss-of-function mutations in chloride transporters cause a wide variety of human diseases, including cystic fibrosis, secretory diarrhea, kidney stones, salt-wasting nephropathy, myotonia, osteopetrosis, hearing loss, and goiter. Although impactful advances have been made in the past decade in drug treatment of cystic fibrosis using small molecule modulators of the defective cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, other chloride channels and solute carrier proteins (SLCs) represent relatively underexplored target classes for drug discovery. New opportunities have emerged for the development of chloride transport modulators as potential therapeutics for secretory diarrheas, constipation, dry eye disorders, kidney stones, polycystic kidney disease, hypertension, and osteoporosis. Approaches to chloride transport-targeted drug discovery are reviewed herein, with focus on chloride channel and exchanger classes in which recent preclinical advances have been made in the identification of small molecule modulators and in proof of concept testing in experimental animal models.
Collapse
Affiliation(s)
- Alan S Verkman
- Department of Medicine, University of California, San Francisco, California.,Department of Physiology, University of California, San Francisco, California
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
26
|
Laselva O, Guerra L, Castellani S, Favia M, Di Gioia S, Conese M. Small-molecule drugs for cystic fibrosis: Where are we now? Pulm Pharmacol Ther 2021; 72:102098. [PMID: 34793977 DOI: 10.1016/j.pupt.2021.102098] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 01/05/2023]
Abstract
The cystic fibrosis (CF) lung disease is due to the lack/dysfunction of the CF Transmembrane Conductance Regulator (CFTR), a chloride channel expressed by epithelial cells as the main regulator of ion and fluid homeostasis. More than 2000 genetic variation in the CFTR gene are known, among which those with identified pathomechanism have been divided into six VI mutation classes. A major advancement in the pharmacotherapy of CF has been the development of small-molecule drugs hitting the root of the disease, i.e. the altered ion and fluid transport through the airway epithelium. These drugs, called CFTR modulators, have been advanced to the clinics to treat nearly 90% of CF patients, including the CFTR potentiator ivacaftor, approved for residual function mutations (Classes III and IV), and combinations of correctors (lumacaftor, tezacaftor, elexacaftor) and ivacaftor for patients bearing at least one the F508del mutation, the most frequent mutation belonging to class II. To cover the 10% of CF patients without etiological therapies, other novel small-molecule CFTR modulators are in evaluation of their effectiveness in all the CFTR mutation classes: read-through agents for Class I, correctors, potentiators and amplifiers from different companies for Class II-V, stabilizers for Class VI. In alternative, other solute carriers, such as SLC26A9 and SLC6A14, are the focus of intensive investigation. Finally, other molecular targets are being evaluated for patients with no approved CFTR modulator therapy or as means of enhancing CFTR modulatory therapy, including small molecules forming ion channels, inhibitors of the ENaC sodium channel and potentiators of the calcium-activated chloride channel TMEM16A. This paper aims to give an up-to-date overview of old and novel CFTR modulators as well as of novel strategies based on small-molecule drugs. Further investigations in in-vivo and cell-based models as well as carrying out large prospective studies will be required to determine if novel CFTR modulators, stabilizers, amplifiers, and the ENaC inhibitors or TMEM16A potentiators will further improve the clinical outcomes in CF management.
Collapse
Affiliation(s)
- Onofrio Laselva
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stefano Castellani
- Department of Medical Sciences and Human Oncology, University of Bari, Bari, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
27
|
TMEM16A/ANO1: Current Strategies and Novel Drug Approaches for Cystic Fibrosis. Cells 2021; 10:cells10112867. [PMID: 34831090 PMCID: PMC8616501 DOI: 10.3390/cells10112867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is the most common of rare hereditary diseases in Caucasians, and it is estimated to affect 75,000 patients globally. CF is a complex disease due to the multiplicity of mutations found in the CF transmembrane conductance regulator (CFTR) gene causing the CFTR protein to become dysfunctional. Correctors and potentiators have demonstrated good clinical outcomes for patients with specific gene mutations; however, there are still patients for whom those treatments are not suitable and require alternative CFTR-independent strategies. Although CFTR is the main chloride channel in the lungs, others could, e.g., anoctamin-1 (ANO1 or TMEM16A), compensate for the deficiency of CFTR. This review summarizes the current knowledge on calcium-activated chloride channel (CaCC) ANO1 and presents ANO1 as an exciting target in CF.
Collapse
|
28
|
Bai W, Liu M, Xiao Q. The diverse roles of TMEM16A Ca 2+-activated Cl - channels in inflammation. J Adv Res 2021; 33:53-68. [PMID: 34603778 PMCID: PMC8463915 DOI: 10.1016/j.jare.2021.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Transmembrane protein 16A (TMEM16A) Ca2+-activated Cl- channels have diverse physiological functions, such as epithelial secretion of Cl- and fluid and sensation of pain. Recent studies have demonstrated that TMEM16A contributes to the pathogenesis of infectious and non-infectious inflammatory diseases. However, the role of TMEM16A in inflammation has not been clearly elucidated. Aim of review In this review, we aimed to provide comprehensive information regarding the roles of TMEM16A in inflammation by summarizing the mechanisms underlying TMEM16A expression and activation under inflammatory conditions, in addition to exploring the diverse inflammatory signaling pathways activated by TMEM16A. This review attempts to develop the idea that TMEM16A plays a diverse role in inflammatory processes and contributes to inflammatory diseases in a cellular environment-dependent manner. Key scientific concepts of review Multiple inflammatory mediators, including cytokines (e.g., interleukin (IL)-4, IL-13, IL-6), histamine, bradykinin, and ATP/UTP, as well as bacterial and viral infections, promote TMEM16A expression and/or activity under inflammatory conditions. In addition, TMEM16A activates diverse inflammatory signaling pathways, including the IP3R-mediated Ca2+ signaling pathway, the NF-κB signaling pathway, and the ERK signaling pathway, and contributes to the pathogenesis of many inflammatory diseases. These diseases include airway inflammatory diseases, lipopolysaccharide-induced intestinal epithelial barrier dysfunction, acute pancreatitis, and steatohepatitis. TMEM16A also plays multiple roles in inflammatory processes by increasing vascular permeability and leukocyte adhesion, promoting inflammatory cytokine release, and sensing inflammation-induced pain. Furthermore, TMEM16A plays its diverse pathological roles in different inflammatory diseases depending on the disease severity, proliferating status of the cells, and its interacting partners. We herein propose cellular environment-dependent mechanisms that explain the diverse roles of TMEM16A in inflammation.
Collapse
Affiliation(s)
- Weiliang Bai
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Mei Liu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
29
|
Abstract
TMEM16A Ca2+-activated chloride channels are involved in multiple cellular functions and are proposed targets for diseases such as hypertension, stroke, and cystic fibrosis. This therapeutic endeavor, however, suffers from paucity of selective and potent modulators. Here, exploiting a synthetic small molecule with a biphasic effect on the TMEM16A channel, anthracene-9-carboxylic acid (A9C), we shed light on sites of the channel amenable for pharmacological intervention. Mutant channels with the intracellular gate constitutively open were generated. These channels were entirely insensitive to extracellular A9C when intracellular Ca2+ was omitted. However, when physiological Ca2+ levels were reestablished, the mutants regained sensitivity to A9C. Thus, intracellular Ca2+ is mandatory for the channel response to an extracellular modulator. The underlying mechanism is a conformational change in the outer pore that enables A9C to enter the pore to reach its binding site. The explanation of this structural rearrangement highlights a critical site for pharmacological intervention and reveals an aspect of Ca2+ gating in the TMEM16A channel.
Collapse
|
30
|
Pinto MC, Silva IAL, Figueira MF, Amaral MD, Lopes-Pacheco M. Pharmacological Modulation of Ion Channels for the Treatment of Cystic Fibrosis. J Exp Pharmacol 2021; 13:693-723. [PMID: 34326672 PMCID: PMC8316759 DOI: 10.2147/jep.s255377] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel that transports chloride and bicarbonate across epithelia. Despite clinical progress in delaying disease progression with symptomatic therapies, these individuals still develop various chronic complications in lungs and other organs, which significantly restricts their life expectancy and quality of life. The development of high-throughput assays to screen drug-like compound libraries have enabled the discovery of highly effective CFTR modulator therapies. These novel therapies target the primary defect underlying CF and are now approved for clinical use for individuals with specific CF genotypes. However, the clinically approved modulators only partially reverse CFTR dysfunction and there is still a considerable number of individuals with CF carrying rare CFTR mutations who remain without any effective CFTR modulator therapy. Accordingly, additional efforts have been pursued to identify novel and more potent CFTR modulators that may benefit a larger CF population. The use of ex vivo individual-derived specimens has also become a powerful tool to evaluate novel drugs and predict their effectiveness in a personalized medicine approach. In addition to CFTR modulators, pro-drugs aiming at modulating alternative ion channels/transporters are under development to compensate for the lack of CFTR function. These therapies may restore normal mucociliary clearance through a mutation-agnostic approach (ie, independent of CFTR mutation) and include inhibitors of the epithelial sodium channel (ENaC), modulators of the calcium-activated channel transmembrane 16A (TMEM16, or anoctamin 1) or of the solute carrier family 26A member 9 (SLC26A9), and anionophores. The present review focuses on recent progress and challenges for the development of ion channel/transporter-modulating drugs for the treatment of CF.
Collapse
Affiliation(s)
- Madalena C Pinto
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Iris A L Silva
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miriam F Figueira
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
31
|
Mucus Release and Airway Constriction by TMEM16A May Worsen Pathology in Inflammatory Lung Disease. Int J Mol Sci 2021; 22:ijms22157852. [PMID: 34360618 PMCID: PMC8346050 DOI: 10.3390/ijms22157852] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Activation of the Ca2+ activated Cl− channel TMEM16A is proposed as a treatment in inflammatory airway disease. It is assumed that activation of TMEM16A will induce electrolyte secretion, and thus reduce airway mucus plugging and improve mucociliary clearance. A benefit of activation of TMEM16A was shown in vitro and in studies in sheep, but others reported an increase in mucus production and airway contraction by activation of TMEM16A. We analyzed expression of TMEM16A in healthy and inflamed human and mouse airways and examined the consequences of activation or inhibition of TMEM16A in asthmatic mice. TMEM16A was found to be upregulated in the lungs of patients with asthma or cystic fibrosis, as well as in the airways of asthmatic mice. Activation or potentiation of TMEM16A by the compounds Eact or brevenal, respectively, induced acute mucus release from airway goblet cells and induced bronchoconstriction in mice in vivo. In contrast, niclosamide, an inhibitor of TMEM16A, blocked mucus production and mucus secretion in vivo and in vitro. Treatment of airway epithelial cells with niclosamide strongly inhibited expression of the essential transcription factor of Th2-dependent inflammation and goblet cell differentiation, SAM pointed domain-containing ETS-like factor (SPDEF). Activation of TMEM16A in people with inflammatory airway diseases is likely to induce mucus secretion along with airway constriction. In contrast, inhibitors of TMEM16A may suppress pulmonary Th2 inflammation, goblet cell metaplasia, mucus production, and bronchoconstriction, partially by inhibiting expression of SPDEF.
Collapse
|
32
|
Lee HJ, Lee SY, Kim YK. Molecular characterization of transient receptor potential vanilloid 4 (TRPV4) gene transcript variant mRNA of chum salmon Oncorhynchus keta in response to salinity or temperature changes. Gene 2021; 795:145779. [PMID: 34144144 DOI: 10.1016/j.gene.2021.145779] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/03/2023]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is an osmosensory cation channel that respond to an increase in cell volume and participates in various physiological functions. Among organisms in aquatic environments, euryhaline teleost is are suitable experimental models to study ion channel proteins related to physiological functions involving osmosensing. Among the studies of various regulatory molecules that mediate osmotic regulation in fish, however, information is lacking, particularly on the TRP family. This study investigated the structural characteristics of theTRPV4 gene of chum salmon (Oncorhynchus keta) and their responses to changes in salinity and temperature. Interestingly, TRPV4 generates transcript variants of the intron-retention form through alternative splicing, resulting in a frameshift leading to the generation of transcripts of different structures. In particular, TRPV4 x1 and TRPV x2 mRNAs were predominant in the gill and skin including at the lateral line. The expression levels of chum salmon TRPV4 x1 were significantly increased with increase in salinity and temperature, whereas TRPV4 x2 mainly responded to temperature decrease. Overall, these results demonstrate for the first time the effects of salinity and temperature on the expression of two salmonid TRPV4 transcript variants, suggesting their contribution to the regulation of hydromineral balance.
Collapse
Affiliation(s)
- Hwa Jin Lee
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Sang Yoon Lee
- The East Coast Research Institute of Life Science, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Yi Kyung Kim
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung 25457, South Korea; The East Coast Research Institute of Life Science, Gangneung-Wonju National University, Gangneung 25457, South Korea.
| |
Collapse
|
33
|
Liu Y, Liu Z, Wang K. The Ca 2+-activated chloride channel ANO1/TMEM16A: An emerging therapeutic target for epithelium-originated diseases? Acta Pharm Sin B 2021; 11:1412-1433. [PMID: 34221860 PMCID: PMC8245819 DOI: 10.1016/j.apsb.2020.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Anoctamin 1 (ANO1) or TMEM16A gene encodes a member of Ca2+ activated Cl– channels (CaCCs) that are critical for physiological functions, such as epithelial secretion, smooth muscle contraction and sensory signal transduction. The attraction and interest in ANO1/TMEM16A arise from a decade long investigations that abnormal expression or dysfunction of ANO1 is involved in many pathological phenotypes and diseases, including asthma, neuropathic pain, hypertension and cancer. However, the lack of specific modulators of ANO1 has impeded the efforts to validate ANO1 as a therapeutic target. This review focuses on the recent progress made in understanding of the pathophysiological functions of CaCC ANO1 and the current modulators used as pharmacological tools, hopefully illustrating a broad spectrum of ANO1 channelopathy and a path forward for this target validation.
Collapse
Key Words
- ANO1
- ANO1, anoctamin-1
- ASM, airway smooth muscle
- Ang II, angiotensin II
- BBB, blood–brain barrier
- CAMK, Ca2+/calmodulin-dependent protein kinase
- CF, cystic fibrosis
- CFTR, cystic fibrosis transmembrane conductance regulator
- Ca2+-activated Cl– channels (CaCCs)
- CaCCinh-A01
- CaCCs, Ca2+ activated chloride channels
- Cancer
- Cystic fibrosis
- DRG, dorsal root ganglion
- Drug target
- EGFR, epidermal growth factor receptor
- ENaC, epithelial sodium channels
- ER, endoplasmic reticulum
- ESCC, esophageal squamous cell carcinoma
- FRT, fisher rat thyroid
- GI, gastrointestinal
- GIST, gastrointestinal stromal tumor
- GPCR, G-protein coupled receptor
- HNSCC, head and neck squamous cell carcinoma
- HTS, high-throughput screening
- ICC, interstitial cells of Cajal
- IPAH, idiopathic pulmonary arterial hypertension
- MAPK, mitogen-activated protein kinase
- NF-κB, nuclear factor κB
- PAH, pulmonary arterial hypertension
- PAR2, protease activated receptor 2
- PASMC, pulmonary artery smooth muscle cells
- PIP2, phosphatidylinositol 4,5-bisphosphate
- PKD, polycystic kidney disease
- T16Ainh-A01
- TGF-β, transforming growth factor-β
- TMEM16A
- VGCC, voltage gated calcium channel
- VRAC, volume regulated anion channel
- VSMC, vascular smooth muscle cells
- YFP, yellow fluorescent protein
Collapse
Affiliation(s)
- Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
| | - Zongtao Liu
- Department of Clinical Laboratory, Qingdao Third People's Hospital, Qingdao 266041, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
- Corresponding authors.
| |
Collapse
|
34
|
Hyperinflammation and airway surface liquid dehydration in cystic fibrosis: purinergic system as therapeutic target. Inflamm Res 2021; 70:633-649. [PMID: 33904934 DOI: 10.1007/s00011-021-01464-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE AND DESIGN The exacerbate inflammatory response contributes to the progressive loss of lung function in cystic fibrosis (CF), a genetic disease that affects the osmotic balance of mucus and mucociliary clearance, resulting in a microenvironment that favors infection and inflammation. The purinergic system, an extracellular signaling pathway characterized by nucleotides, enzymes and receptors, may have a protective role in the disease, through its action in airway surface liquid (ASL) and anti-inflammatory response. MATERIALS AND METHODS To make up this review, studies covering topics of CF, inflammation, ASL and purinergic system were selected from the main medical databases, such as Pubmed and ScienceDirect. CONCLUSION We propose several ways to modulate the purinergic system as a potential therapy for CF, like inhibition of P2X7, activation of P2Y2, A2A and A2B receptors and blocking of adenosine deaminase. Among them, we postulate that the most suitable strategy is to block the action of adenosine deaminase, which culminates in the increase of Ado levels that presents anti-inflammatory actions and improves mucociliary clearance. Furthermore, it is possible to maintain the physiological levels of ATP to control the hydration of ASL. These therapies could correct the main mechanisms that contribute to the progression of CF.
Collapse
|
35
|
Elevated Extracellular cGMP Produced after Exposure to Enterotoxigenic Escherichia coli Heat-Stable Toxin Induces Epithelial IL-33 Release and Alters Intestinal Immunity. Infect Immun 2021; 89:IAI.00707-20. [PMID: 33431701 PMCID: PMC8090939 DOI: 10.1128/iai.00707-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/05/2021] [Indexed: 01/13/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major diarrheal pathogen in children in low- to middle-income countries. Previous studies identified heat-stable enterotoxin (ST)-producing ETEC as a prevalent diarrheal pathogen in children younger than 5 years. Enterotoxigenic Escherichia coli (ETEC) is a major diarrheal pathogen in children in low- to middle-income countries. Previous studies identified heat-stable enterotoxin (ST)-producing ETEC as a prevalent diarrheal pathogen in children younger than 5 years. While many studies have evaluated the interaction of ETEC heat-labile enterotoxin (LT) with host epithelium and immunity, few investigations have attempted similar studies with ST. To further understand ST pathogenesis, we examined the impact of ST on cGMP localization, epithelial cell cytokine production, and antibody development following immunization. In addition to robust intracellular cGMP in T84 cells in the presence of phosphodiesterase inhibitors (PDEis) that prevent the breakdown of cyclic nucleotides, we found that prolonged ST intoxication induced extracellular cGMP accumulation in the presence or absence of PDEis. Further, ST intoxication induced luminal cGMP in vivo in mice, suggesting that secreted cGMP may have other cellular functions. Using transcriptome sequencing (RNA-seq) and quantitative PCR (qPCR), we demonstrated that ST intoxication, or treatment with the clinically used ST mimic linaclotide, altered inflammatory cytokine gene expression, including the interleukin 1 (IL-1) family member IL-33, which could also be induced by cell-permeative 8-Br-cGMP. Finally, when present during immunization, ST suppressed induction of antibodies to specific antigens. In conclusion, our studies indicate that ST modulates epithelial cell physiology and the interplay between the epithelial and immune compartments.
Collapse
|
36
|
Rimessi A, Vitto VAM, Patergnani S, Pinton P. Update on Calcium Signaling in Cystic Fibrosis Lung Disease. Front Pharmacol 2021; 12:581645. [PMID: 33776759 PMCID: PMC7990772 DOI: 10.3389/fphar.2021.581645] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder characterized by mutations in the cystic fibrosis transmembrane conductance regulator gene, which causes multifunctional defects that preferentially affect the airways. Abnormal viscosity of mucus secretions, persistent pathogen infections, hyperinflammation, and lung tissue damage compose the classical pathological manifestation referred to as CF lung disease. Among the multifunctional defects associated with defective CFTR, increasing evidence supports the relevant role of perturbed calcium (Ca2+) signaling in the pathophysiology of CF lung disease. The Ca2+ ion is a critical player in cell functioning and survival. Its intracellular homeostasis is maintained by a fine balance between channels, transporters, and exchangers, mediating the influx and efflux of the ion across the plasma membrane and the intracellular organelles. An abnormal Ca2+ profile has been observed in CF cells, including airway epithelial and immune cells, with heavy repercussions on cell function, viability, and susceptibility to pathogens, contributing to proinflammatory overstimulation, organelle dysfunction, oxidative stress, and excessive cytokines release in CF lung. This review discusses the role of Ca2+ signaling in CF and how its dysregulation in airway epithelial and immune cells contributes to hyperinflammation in the CF lung. Finally, we provide an outlook on the therapeutic options that target the Ca2+ signaling to treat the CF lung disease.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Veronica A M Vitto
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| |
Collapse
|
37
|
McMahon DB, Carey RM, Kohanski MA, Adappa ND, Palmer JN, Lee RJ. PAR-2-activated secretion by airway gland serous cells: role for CFTR and inhibition by Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2021; 320:L845-L879. [PMID: 33655758 DOI: 10.1152/ajplung.00411.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway submucosal gland serous cells are important sites of fluid secretion in conducting airways. Serous cells also express the cystic fibrosis (CF) transmembrane conductance regulator (CFTR). Protease-activated receptor 2 (PAR-2) is a G protein-coupled receptor that activates secretion from intact airway glands. We tested if and how human nasal serous cells secrete fluid in response to PAR-2 stimulation using Ca2+ imaging and simultaneous differential interference contrast imaging to track isosmotic cell shrinking and swelling reflecting activation of solute efflux and influx pathways, respectively. During stimulation of PAR-2, serous cells exhibited dose-dependent increases in intracellular Ca2+. At stimulation levels >EC50 for Ca2+, serous cells simultaneously shrank ∼20% over ∼90 s due to KCl efflux reflecting Ca2+-activated Cl- channel (CaCC, likely TMEM16A)-dependent secretion. At lower levels of PAR-2 stimulation (<EC50 for Ca2+), shrinkage was not evident due to failure to activate CaCC. Low levels of cAMP-elevating VIP receptor (VIPR) stimulation, also insufficient to activate secretion alone, synergized with low-level PAR-2 stimulation to elicit fluid secretion dependent on both cAMP and Ca2+ to activate CFTR and K+ channels, respectively. Polarized cultures of primary serous cells also exhibited synergistic fluid secretion. Pre-exposure to Pseudomonas aeruginosa conditioned media inhibited PAR-2 activation by proteases but not peptide agonists in primary nasal serous cells, Calu-3 bronchial cells, and primary nasal ciliated cells. Disruption of synergistic CFTR-dependent PAR-2/VIPR secretion may contribute to reduced airway surface liquid in CF. Further disruption of the CFTR-independent component of PAR-2-activated secretion by P. aeruginosa may also be important to CF pathophysiology.
Collapse
Affiliation(s)
- Derek B McMahon
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ryan M Carey
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael A Kohanski
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nithin D Adappa
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - James N Palmer
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Abdel Hameid R, Cormet-Boyaka E, Kuebler WM, Uddin M, Berdiev BK. SARS-CoV-2 may hijack GPCR signaling pathways to dysregulate lung ion and fluid transport. Am J Physiol Lung Cell Mol Physiol 2021; 320:L430-L435. [PMID: 33434105 PMCID: PMC7938641 DOI: 10.1152/ajplung.00499.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic, toward the host cells is determined, at least in part, by the expression and distribution of its cell surface receptor, angiotensin-converting enzyme 2 (ACE2). The virus further exploits the host cellular machinery to gain access into the cells; its spike protein is cleaved by a host cell surface transmembrane serine protease 2 (TMPRSS2) shortly after binding ACE2, followed by its proteolytic activation at a furin cleavage site. The virus primarily targets the epithelium of the respiratory tract, which is covered by a tightly regulated airway surface liquid (ASL) layer that serves as a primary defense mechanism against respiratory pathogens. The volume and viscosity of this fluid layer is regulated and maintained by a coordinated function of different transport pathways in the respiratory epithelium. We argue that SARS-CoV-2 may potentially alter evolutionary conserved second-messenger signaling cascades via activation of G protein-coupled receptors (GPCRs) or by directly modulating G protein signaling. Such signaling may in turn adversely modulate transepithelial transport processes, especially those involving cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial Na+ channel (ENaC), thereby shifting the delicate balance between anion secretion and sodium absorption, which controls homeostasis of this fluid layer. As a result, activation of the secretory pathways including CFTR-mediated Cl− transport may overwhelm the absorptive pathways, such as ENaC-dependent Na+ uptake, and initiate a pathophysiological cascade leading to lung edema, one of the most serious and potentially deadly clinical manifestations of COVID-19.
Collapse
Affiliation(s)
- Reem Abdel Hameid
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mohammed Uddin
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bakhrom K Berdiev
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
39
|
Zhu X, Zhang W, Jin L, Zhang G, Yang H, Yu B. Inhibitory activities of curzerenone, curdione, furanodienone, curcumol and germacrone on Ca 2+-activated chloride channels. Fitoterapia 2020; 147:104736. [PMID: 33010370 DOI: 10.1016/j.fitote.2020.104736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/30/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Calcium-activated chloride channels (CaCCs) as a kind of widely expressed ion channels play crucial roles in a variety of physiological regulation. TMEM16A has been identified as the molecular basis of CaCCs in numerous cell types and is considered a new drug target for many diseases. Regulating the function of TMEM16A through small molecule modulators has become a new strategy to improve respiratory and digestive dysfunction and even tumor therapy. Herein, we obtained 5 sesquiterpenoids, named curzerenone, curdione, furanodienone, curcumol and germacrone with TMEM16A inhibition and revealed their mechanism of action by fluorescent and electrophysiological assays. Cell-based YFP fluorescence data demonstrated that 5 compounds inhibited TMEM16A-mediated I- influx in a dose-dependent manner. To explore the mechanism of 5 compounds on CaCCs, FRT cells with high expression of TMEM16A, HBE, HT-29 and T84 cells and mouse colons were used in short-circuit current assay. Our results showed that 5 compounds inhibited the Ca2+-activated Cl- currents generated by the Eact, ATP and UTP stimulation, and this inhibitory effect was related not only to the direct inhibition of channel opening, but also the inhibition of intracellular Ca2+ concentration and K+ channel activity. In addition to CaCCs, these 5 compounds also had definite inhibitory activities against cystic fibrosis transmembrane regulator (CFTR) at the cellular level. In summary, these compounds have the potential to regulate the activites of TMEM16A/CaCCs and CFTR channels in vitro, providing a new class of lead compounds for the development of drugs for diseases related to chloride channel dysfunction.
Collapse
Affiliation(s)
- Xiaojuan Zhu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, PR China
| | - Wanting Zhang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, PR China
| | - Lingling Jin
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Guangping Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Hong Yang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, PR China.
| | - Bo Yu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, PR China.
| |
Collapse
|
40
|
Danahay H, Fox R, Lilley S, Charlton H, Adley K, Christie L, Ansari E, Ehre C, Flen A, Tuvim MJ, Dickey BF, Williams C, Beaudoin S, Collingwood SP, Gosling M. Potentiating TMEM16A does not stimulate airway mucus secretion or bronchial and pulmonary arterial smooth muscle contraction. FASEB Bioadv 2020; 2:464-477. [PMID: 32821878 PMCID: PMC7429354 DOI: 10.1096/fba.2020-00035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/11/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
The calcium-activated chloride channel (CaCC) TMEM16A enables chloride secretion across several transporting epithelia, including in the airways. Additional roles for TMEM16A have been proposed, which include regulating mucus production and secretion and stimulating smooth muscle contraction. The aim of the present study was to test whether the pharmacological regulation of TMEM16A channel function, could affect any of these proposed biological roles in the airways. In vitro, neither a potent and selective TMEM16A potentiator (ETX001) nor the potent TMEM16A inhibitor (Ani9) influenced either baseline mucin release or goblet cell numbers in well-differentiated primary human bronchial epithelial (HBE) cells. In vivo, a TMEM16A potentiator was without effect on goblet cell emptying in an IL-13 stimulated goblet cell metaplasia model. Using freshly isolated human bronchi and pulmonary arteries, neither ETX001 or Ani9 had any effect on the contractile or relaxant responses of the tissues. In vivo, ETX001 also failed to influence either lung or cardiovascular function when delivered directly into the airways of telemetered rats. Together, these studies do not support a role for TMEM16A in the regulation of goblet cell numbers or baseline mucin release, or on the regulation of airway or pulmonary artery smooth muscle contraction.
Collapse
Affiliation(s)
- Henry Danahay
- Enterprise Therapeutics Ltd, Science Park SquareBrightonUK
| | - Roy Fox
- School of Life SciencesUniversity of SussexBrightonUK
| | - Sarah Lilley
- School of Life SciencesUniversity of SussexBrightonUK
| | | | - Kathryn Adley
- School of Life SciencesUniversity of SussexBrightonUK
| | - Lee Christie
- REPROCELL Europe Ltd, West of Scotland Science ParkGlasgowUK
| | - Ejaz Ansari
- REPROCELL Europe Ltd, West of Scotland Science ParkGlasgowUK
| | - Camille Ehre
- Marsico Lung InstituteUniversity of North CarolinaChapel HillNCUSA
| | - Alexis Flen
- Marsico Lung InstituteUniversity of North CarolinaChapel HillNCUSA
| | - Michael J. Tuvim
- Department of Pulmonary MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Burton F. Dickey
- Department of Pulmonary MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | | | | | | | - Martin Gosling
- Enterprise Therapeutics Ltd, Science Park SquareBrightonUK
- School of Life SciencesUniversity of SussexBrightonUK
| |
Collapse
|
41
|
Danahay HL, Lilley S, Fox R, Charlton H, Sabater J, Button B, McCarthy C, Collingwood SP, Gosling M. TMEM16A Potentiation: A Novel Therapeutic Approach for the Treatment of Cystic Fibrosis. Am J Respir Crit Care Med 2020; 201:946-954. [PMID: 31898911 PMCID: PMC7159426 DOI: 10.1164/rccm.201908-1641oc] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Rationale: Enhancing non–CFTR (cystic fibrosis transmembrane conductance regulator)-mediated anion secretion is an attractive therapeutic approach for the treatment of cystic fibrosis (CF) and other mucoobstructive diseases. Objectives: To determine the effects of TMEM16A potentiation on epithelial fluid secretion and mucociliary clearance. Methods: The effects of a novel low-molecular-weight TMEM16A potentiator (ETX001) were evaluated in human cell and animal models of airway epithelial function and mucus transport. Measurements and Main Results: Potentiating the activity of TMEM16A with ETX001 increased the Ca2+-activated Cl− channel activity and anion secretion in human bronchial epithelial (HBE) cells from patients with CF without impacting calcium signaling. ETX001 rapidly increased fluid secretion and airway surface liquid height in CF-HBE cells under both static conditions and conditions designed to mimic the shear stress associated with tidal breathing. In ovine models of mucus clearance (tracheal mucus velocity and mucociliary clearance), inhaled ETX001 was able to accelerate clearance both when CFTR function was reduced by administration of a pharmacological blocker and when CFTR was fully functional. Conclusions: Enhancing the activity of TMEM16A increases epithelial fluid secretion and enhances mucus clearance independent of CFTR function. TMEM16A potentiation is a novel approach for the treatment of patients with CF and non-CF mucoobstructive diseases.
Collapse
Affiliation(s)
| | - Sarah Lilley
- Sussex Drug Discovery Centre, University of Sussex, Brighton, United Kingdom
| | - Roy Fox
- Sussex Drug Discovery Centre, University of Sussex, Brighton, United Kingdom
| | - Holly Charlton
- Sussex Drug Discovery Centre, University of Sussex, Brighton, United Kingdom
| | - Juan Sabater
- Mount Sinai Medical Center of Florida, Miami, Florida; and
| | - Brian Button
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | - Martin Gosling
- Enterprise Therapeutics, Brighton, United Kingdom.,Sussex Drug Discovery Centre, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
42
|
Rosenbaum T, Benítez-Angeles M, Sánchez-Hernández R, Morales-Lázaro SL, Hiriart M, Morales-Buenrostro LE, Torres-Quiroz F. TRPV4: A Physio and Pathophysiologically Significant Ion Channel. Int J Mol Sci 2020; 21:ijms21113837. [PMID: 32481620 PMCID: PMC7312103 DOI: 10.3390/ijms21113837] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023] Open
Abstract
Transient Receptor Potential (TRP) channels are a family of ion channels whose members are distributed among all kinds of animals, from invertebrates to vertebrates. The importance of these molecules is exemplified by the variety of physiological roles they play. Perhaps, the most extensively studied member of this family is the TRPV1 ion channel; nonetheless, the activity of TRPV4 has been associated to several physio and pathophysiological processes, and its dysfunction can lead to severe consequences. Several lines of evidence derived from animal models and even clinical trials in humans highlight TRPV4 as a therapeutic target and as a protein that will receive even more attention in the near future, as will be reviewed here.
Collapse
Affiliation(s)
- Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.B.-A.); (R.S.-H.); (S.L.M.-L.); (M.H.)
- Correspondence: ; Tel.: +52-555-622-56-24; Fax: +52-555-622-56-07
| | - Miguel Benítez-Angeles
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.B.-A.); (R.S.-H.); (S.L.M.-L.); (M.H.)
| | - Raúl Sánchez-Hernández
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.B.-A.); (R.S.-H.); (S.L.M.-L.); (M.H.)
| | - Sara Luz Morales-Lázaro
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.B.-A.); (R.S.-H.); (S.L.M.-L.); (M.H.)
| | - Marcia Hiriart
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.B.-A.); (R.S.-H.); (S.L.M.-L.); (M.H.)
| | - Luis Eduardo Morales-Buenrostro
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Francisco Torres-Quiroz
- Departamento de Bioquímica y Biología Estructural, División Investigación Básica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
43
|
Centeio R, Cabrita I, Benedetto R, Talbi K, Ousingsawat J, Schreiber R, Sullivan JK, Kunzelmann K. Pharmacological Inhibition and Activation of the Ca 2+ Activated Cl - Channel TMEM16A. Int J Mol Sci 2020; 21:ijms21072557. [PMID: 32272686 PMCID: PMC7177308 DOI: 10.3390/ijms21072557] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
TMEM16A is a Ca2+ activated Cl− channel with important functions in airways, intestine, and other epithelial organs. Activation of TMEM16A is proposed as a therapy in cystic fibrosis (CF) to reinstall airway Cl− secretion and to enhance airway surface liquid (ASL). This CFTR-agnostic approach is thought to improve mucociliary clearance and lung function in CF. This could indeed improve ASL, however, mucus release and airway contraction may also be induced by activators of TMEM16A, particularly in inflamed airways of patients with asthma, COPD, or CF. Currently, both activators and inhibitors of TMEM16A are developed and examined in different types of tissues. Here we compare activation and inhibition of endogenous and overexpressed TMEM16A and analyze potential off-target effects. The three well-known blockers benzbromarone, niclosamide, and Ani9 inhibited both TMEM16A and ATP-induced Ca2+ increase by variable degrees, depending on the cell type. Niclosamide, while blocking Ca2+ activated TMEM16A, also induced a subtle but significant Ca2+ store release and inhibited store-operated Ca2+ influx. Niclosamide, benzbromarone and Ani9 also affected TMEM16F whole cell currents, indicating limited specificity for these inhibitors. The compounds Eact, cinnamaldehyde, and melittin, as well as the phosphatidylinositol diC8-PIP2 are the reported activators of TMEM16A. However, the compounds were unable to activate endogenous TMEM16A in HT29 colonic epithelial cells. In contrast, TMEM16A overexpressed in HEK293 cells was potently stimulated by these activators. We speculate that overexpressed TMEM16A might have a better accessibility to intracellular Ca2+, which causes spontaneous activity even at basal intracellular Ca2+ concentrations. Small molecules may therefore potentiate pre-stimulated TMEM16A currents, but may otherwise fail to activate silent endogenous TMEM16A.
Collapse
Affiliation(s)
- Raquel Centeio
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany; (R.C.); (I.C.); (R.B.); (K.T.); (J.O.); (R.S.)
| | - Inês Cabrita
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany; (R.C.); (I.C.); (R.B.); (K.T.); (J.O.); (R.S.)
| | - Roberta Benedetto
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany; (R.C.); (I.C.); (R.B.); (K.T.); (J.O.); (R.S.)
| | - Khaoula Talbi
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany; (R.C.); (I.C.); (R.B.); (K.T.); (J.O.); (R.S.)
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany; (R.C.); (I.C.); (R.B.); (K.T.); (J.O.); (R.S.)
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany; (R.C.); (I.C.); (R.B.); (K.T.); (J.O.); (R.S.)
| | | | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany; (R.C.); (I.C.); (R.B.); (K.T.); (J.O.); (R.S.)
- * Correspondence: ; Tel.: +49-(0)941-943-4302; Fax: +49-(0)941-943-4315
| |
Collapse
|
44
|
Delpiano L, Gray MA. Location, location, location: lessons from airway epithelial anion channels. J Physiol 2019; 597:5739-5740. [PMID: 31654403 DOI: 10.1113/jp279125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Livia Delpiano
- Epithelial Research Group, Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Michael A Gray
- Epithelial Research Group, Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|