1
|
Tong Y, Ma S, Awa R, Tagawa T, Seki Y, Cao T, Kobori H, Suzuki K. Effects of 3-(4-Hydroxy-3-methoxyphenyl)propionic Acid on Regulating Oxidative Stress and Muscle Fiber Composition. Nutrients 2025; 17:668. [PMID: 40004996 PMCID: PMC11857963 DOI: 10.3390/nu17040668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Our previous study demonstrated that 3-(4-hydroxy-3-methoxyphenyl)propionic acid (HMPA) administration improved grip strength and reduced blood urea nitrogen levels, but its underlying mechanisms remain unclear. This study aimed to investigate the effects of HMPA on oxidative stress and muscle fiber composition, emphasizing its potential role in modulating redox signaling pathways and influencing muscle development. Methods: Eight-week-old male C57BL/6 mice were orally administered HMPA solution (50 or 500 mg/kg/day) or distilled water (10 mL/kg) for 14 days, and then divided into sedentary and exhaustive exercise groups to evaluate oxidative stress status, myosin heavy chain (MHC) isoform expression, and underlying mechanisms. Results: Both low and high doses of HMPA reduced oxidative stress by decreasing plasma reactive oxygen metabolites. High-dose HMPA reduced plasma nitrite/nitrate levels and enhanced antioxidant capacity post-exercise, accompanied by changes in the mRNA abundance of antioxidant enzymes (e.g., Sod1 and Nqo1) and reductions in the mRNA abundance of nitric oxide synthases (e.g., Nos2 and Nos3) in the soleus. Additionally, high-dose HMPA administration increased the protein expression of MYH4 in the soleus, while low-dose HMPA enhanced the gene expression of Myh4 and Igf1, suggesting that HMPA may promote fast-twitch fiber hypertrophy through the activation of the IGF-1 pathway. Furthermore, low-dose HMPA significantly increased the gene expression of Sirt1 and Nrf1, as well as AMPK phosphorylation post-exercise, suggesting low-dose HMPA may improve mitochondrial biogenesis and exercise adaptation. Conclusions: These findings suggest that HMPA may serve as a dietary supplement to regulate redox balance, enhance antioxidant defenses, and promote the formation of fast-twitch fibers.
Collapse
Affiliation(s)
- Yishan Tong
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (Y.T.); (Y.S.); (T.C.); (H.K.)
| | - Sihui Ma
- Faculty of Human Sciences, Waseda University, Tokorozawa 359-1192, Japan;
| | - Riyo Awa
- Research Center, Maruzen Pharmaceuticals Co., Ltd., Fukuyama 729-3102, Japan; (R.A.); (T.T.)
| | - Takashi Tagawa
- Research Center, Maruzen Pharmaceuticals Co., Ltd., Fukuyama 729-3102, Japan; (R.A.); (T.T.)
| | - Yasuhiro Seki
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (Y.T.); (Y.S.); (T.C.); (H.K.)
| | - Tiehan Cao
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (Y.T.); (Y.S.); (T.C.); (H.K.)
| | - Haruki Kobori
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (Y.T.); (Y.S.); (T.C.); (H.K.)
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| |
Collapse
|
2
|
Ritenis EJ, Padilha CS, Cooke MB, Stathis CG, Philp A, Camera DM. The acute and chronic influence of exercise on mitochondrial dynamics in skeletal muscle. Am J Physiol Endocrinol Metab 2025; 328:E198-E209. [PMID: 39441237 DOI: 10.1152/ajpendo.00311.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Exercise and nutritional modulation are potent stimuli for eliciting increases in mitochondrial mass and function. Collectively, these beneficial adaptations are increasingly recognized to coincide with improvements in skeletal muscle health. Mitochondrial dynamics of fission and fusion are increasingly implicated as having a central role in mediating aspects of key organelle adaptations that are seen with exercise. Exercise-induced mitochondrial adaptation dynamics that have been implicated are 1) increases to mitochondrial turnover, resulting from elevated rates of mitochondrial synthesis (biogenesis) and degradative (mitophagy) processes and 2) morphological changes to the three-dimensional (3-D) tubular network, known as the mitochondrial reticulum, that mitochondria form in skeletal muscle. Notably, mitochondrial fission has also been implicated in coordinating increases in mitophagy, following acute exercise. Furthermore, increased fusion following exercise training promotes increased connectivity of the mitochondrial reticulum and is associated with improved metabolism and mitochondrial function. However, the molecular basis and fashion in which exercise infers beneficial mitochondrial adaptations through mitochondrial dynamics remains to be fully elucidated. This review attempts to highlight recent developments investigating the effects of exercise on mitochondrial dynamics, while attempting to offer a perspective of the methodological refinements and potential variables, such as substrate/glycogen availability, which should be considered going forward.
Collapse
Affiliation(s)
- Elya J Ritenis
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Melbourne, Victoria, Australia
- Centre for Healthy Ageing, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Camila S Padilha
- Centre for Healthy Ageing, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- School of Sport, Exercise and Rehabilitation Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Matthew B Cooke
- Sport, Performance, and Nutrition Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
| | - Christos G Stathis
- College of Sport, Health and Engineering, Victoria University, Melbourne, Victoria, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Andrew Philp
- Centre for Healthy Ageing, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- School of Sport, Exercise and Rehabilitation Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Donny M Camera
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Mastrototaro L, Apostolopoulou M, Hartwig S, Strassburger K, Lipaeva P, Trinks N, Karusheva Y, Gancheva S, Trenkamp S, Lehr S, Al-Hasani H, Szendroedi J, Roden M. The role of exosomes for sustained specific cardiorespiratory and metabolic improvements in males with type 2 diabetes after detraining. EBioMedicine 2024; 110:105471. [PMID: 39626509 DOI: 10.1016/j.ebiom.2024.105471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND High-intensity interval training (HIIT) has been shown to improve cardiorespiratory fitness (V˙O2 max) but may ameliorate insulin sensitivity only in insulin-resistant humans. It is yet unclear whether these benefits persist after detraining and to which extent duration and effectiveness of metabolic improvements differ between individuals without and with prediabetes or type 2 diabetes (T2D). Understanding these differences is relevant for developing targeted exercise training modes for individuals with different stages of dysglycemia. METHODS Men with (20 T2D) and without T2D (12 insulin-sensitive, IS-NDM; 10 insulin-resistant, IR-NDM) underwent hyperinsulinemic-euglycemic clamps, spiroergometry, ectopic lipid quantification and muscle biopsies at baseline, after 12-week HIIT and after 4-week detraining. FINDINGS After detraining, the HIIT-stimulated V˙O2 max declined in T2D and IR-NDM, but remained higher compared to baseline in all groups. The HIIT-induced changes in hepatic insulin sensitivity and ectopic lipid content were sustained after detraining in T2D and IR-NDM, whereas improvements of whole-body insulin sensitivity were abolished in T2D. T2D and IR-NDM showed persistent increases in the number of small extracellular vesicles, which carry among others antioxidant proteins. The ratio of reduced-to-oxidized glutathione further decreased after detraining in all groups, whereas changes in proteins involved in mitochondrial turnover were dependent on insulin sensitivity, with some evidence for upregulation of fusion and mitophagy in T2D and IR-NDM and upregulation of fission in IS-NDM. Levels of different lipolytic proteins were reduced in all participants after detraining. INTERPRETATION HIIT offers sustained improvement of energy metabolism and hepatic insulin sensitivity in insulin-resistant humans, but long-term adherence is required to maintain these benefits. FUNDING Funding bodies that contributed to this study are listed in the Acknowledgements section.
Collapse
Affiliation(s)
- Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Maria Apostolopoulou
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sonja Hartwig
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Polina Lipaeva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University, Düsseldorf, Germany; Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Nina Trinks
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Yanislava Karusheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Sofiya Gancheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sandra Trenkamp
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Stefan Lehr
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Szendroedi
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
4
|
Clemente-Suárez VJ, Rubio-Zarapuz A, Belinchón-deMiguel P, Beltrán-Velasco AI, Martín-Rodríguez A, Tornero-Aguilera JF. Impact of Physical Activity on Cellular Metabolism Across Both Neurodegenerative and General Neurological Conditions: A Narrative Review. Cells 2024; 13:1940. [PMID: 39682689 PMCID: PMC11640500 DOI: 10.3390/cells13231940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Regular physical activity plays a crucial role in modulating cellular metabolism and mitigating the progression of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Multiple Sclerosis. OBJECTIVE The objective of this review is to evaluate the molecular mechanisms by which exercise influences cellular metabolism, with a focus on its potential as a therapeutic intervention for neurological disorders. METHODS A comprehensive literature review was conducted using peer-reviewed scientific articles, with a focus on the period between 2015 and 2024, to analyze the effects of exercise on mitochondrial function, oxidative stress, and metabolic health. RESULTS The findings indicate that exercise promotes mitochondrial biogenesis, enhances oxidative phosphorylation, and reduces reactive oxygen species, contributing to improved energy production and cellular resilience. These metabolic adaptations are associated with delayed disease progression and reduced symptoms in patients with neurodegenerative conditions. Additionally, integrating exercise with nutritional strategies may further enhance therapeutic outcomes by addressing metabolic disturbances comprehensively. CONCLUSIONS This review concludes that personalized exercise protocols should be developed to optimize metabolic benefits for patients with neurological diseases, while future research should focus on biomarker development for individualized treatment approaches. These findings highlight the importance of non-pharmacological interventions in managing neurodegenerative diseases.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - Pedro Belinchón-deMiguel
- Department of Nursing, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | | | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Faculty of Applied Social Sciences and Communications, Universidad Internacional de la Empresa (UNIE), 28015 Madrid, Spain
| | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| |
Collapse
|
5
|
An J, Su Z, Meng S. Effect of aerobic training versus resistance training for improving cardiorespiratory fitness and body composition in middle-aged to older adults: A systematic review and meta-analysis of randomized controlled trials. Arch Gerontol Geriatr 2024; 126:105530. [PMID: 38878596 DOI: 10.1016/j.archger.2024.105530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 09/05/2024]
Abstract
This systematic review and meta-analysis aimed to examine the influence of aerobic training (AT) versus resistance training (RT) on cardiorespiratory fitness and body composition in middle-aged to older adults. Four electronic databases including PubMed, Scopus, Cochrane CENTRAL, and web of science, as well as reference lists of included randomized controlled trials (RCTs) were searched from inception to April 2024. Data were pooled by the inverse-variance method and reported as mean differences (MDs) with 95 % confidence intervals (CIs). Thirty-eight RCTs, with a pooled sample of 1682 participants, met our inclusion criteria. Meta-analysis revealed that AT significantly improved VO2max/peak (MD = 1.80, 95 % CI: 0.96 to 2.64, p < 0.0001) and 6-MWT (MD = 18.58, 95 % CI: 10.38 to 26.78, p < 0.00001), and significantly decreased body mass (MD = -1.23, 95 % CI: -1.98 to -0.47, p = 0.001) versus RT. However, changes in lean body mass favored RT over AT. Moreover, changes in VO2max/peak and 6-MWT following AT were significant among both healthy and unhealthy participants, or men and women, after medium-term (< 24 weeks) and long-term (≥ 24 weeks) interventions, and among participants aged ≤65 and >65. Our results propose that AT should be considered an efficient approach to improving cardiorespiratory fitness and overall body composition with aging, particularly in terms of VO2max and 6-MWT performance. However, for improvements in lean body mass, RT may be more beneficial. Therefore, a combination of AT and RT might be optimal for comprehensive fitness and body composition improvements with aging.
Collapse
Affiliation(s)
- Jianqun An
- College of Sports Science, Lingnan Normal University, Zhanjiang 524048, Guangdong, China
| | - Zhanguo Su
- Faculty of Physical Education, Huainan Normal University, Huainan 232038, Anhui, China.
| | - Shangjie Meng
- International College, Krirk University, Bangkok 10220, Thailand
| |
Collapse
|
6
|
Dobashi S, Yoshihara T, Ogura Y, Naito H. Normobaric hypoxia accelerates high-intensity intermittent training-induced mitochondrial biogenesis (PGC-1α)- and dynamics (OPA1)-related protein expressions in rat gastrocnemius muscle. J Physiol Biochem 2024; 80:909-917. [PMID: 39422861 DOI: 10.1007/s13105-024-01052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
High-intensity intermittent training (HIIT) in a normobaric hypoxic environment enhances exercise capacity, possibly by increasing the mitochondrial content in skeletal muscle; however, the molecular mechanisms underlying these adaptations are not well understood. Therefore, we investigated whether HIIT under normobaric hypoxia can enhance the expression of proteins involved in mitochondrial biogenesis and dynamics in rat gastrocnemius muscle. Five-week-old male Wistar rats (n = 24) were randomly assigned to the following four groups: (1) sedentary under normoxia (20.9% O2) (NS), (2) training under normoxia (NT), (3) sedentary under normobaric hypoxia (14.5% O2) (HS), and (4) training under normobaric hypoxia (HT). The training groups in both conditions were engaged in HIIT on a treadmill five to six days per week for nine weeks. From the fourth week of the training period, the group assigned to hypoxic conditions was exposed to normobaric hypoxia. Forty-eight hours after completing the final training session, gastrocnemius muscles were surgically removed, and mitochondrial enzyme activity and mitochondrial biogenesis and dynamics regulatory protein levels were determined. Citrate synthase (CS) activity and mitochondrial oxygen phosphorylation (OXPHOS) subunits in the gastrocnemius muscle in the HT significantly exceeded those in the other three groups. Moreover, the levels of a master regulator of mitochondrial biogenesis, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), and a mitochondrial fusion-related protein, optic atrophy 1 (OPA1), were significantly increased by HIIT under normobaric hypoxia. Our data indicates that HIIT and normobaric hypoxia increase the expression of mitochondrial biogenesis- and dynamics-related proteins in skeletal muscles.
Collapse
Affiliation(s)
- Shohei Dobashi
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
- Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan.
| | - Yuji Ogura
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
- Department of Physiology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
- Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
| |
Collapse
|
7
|
Zhang Y, Zhou M, Yin Z, Zhuang W, Wang Y. Relationship between physical activities and mental health in older people: a bibliometric analysis. Front Psychiatry 2024; 15:1424745. [PMID: 39497901 PMCID: PMC11532734 DOI: 10.3389/fpsyt.2024.1424745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Objective To summarize the general situation and focal points of research on the physical activity and mental health of older people over the past 15 years and provide references for future research. Methods Literature published between January 1, 2009, and December 31, 2023, was retrieved from the Web of Science core database. A bibliometric visualization analysis of countries/regions, institutions, authors, keywords, and references was conducted using CiteSpace6.1.R6. Results A total of 4,329 articles were included, and the annual number of articles published over the past 15 years showed an upward trend. The articles were primarily from 65 countries/regions and 626 institutions. The most represented country and institution were the USA and the University of Pittsburgh, respectively. Among the authors identified, Schuch and Callow were the most influential. The research focuses on four areas: the psychological effects of physical activity in older people; physical activity intervention approaches to the mental health of older people; physical activity and mental health assessment questionnaires; and the impact of physical activity on multidimensional aging. Research frontiers involve emerging topics such as the assessment and intervention of mental health in older people and the relationship between their physical activity and cognitive function. Conclusion This study conducted a comprehensive, objective, and visual analysis of publications and revealed the status of relevant studies, trending topics, and trends concerning the physical activity and mental health of older people from 2009 to 2023. We hope that this work will help researchers identify new perspectives on potential collaborators, important topics, and research frontiers.
Collapse
Affiliation(s)
- Yuesen Zhang
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Mei Zhou
- Department of General Education, Shanghai Urban Construction Vocational College, Shanghai, China
| | - Zhihua Yin
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Wenzhen Zhuang
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Yufeng Wang
- College of Physical Education and Health, East China Normal University, Shanghai, China
| |
Collapse
|
8
|
López-Cervantes SP, Toledo-Pérez R, De Lira-Sánchez JA, García-Cruz G, Esparza-Perusquía M, Luna-López A, Pardo JP, Flores-Herrera O, Konigsberg M. Sedentary Lifestyles and a Hypercaloric Diets During Middle Age, are Binomial Conducive to Fatal Progression, That is Counteracted by the Hormetic Treatment of Exercise, Metformin, and Tert-Butyl Hydroquinone: An Analysis of Female Middle-Aged Rat Liver Mitochondria. Dose Response 2024; 22:15593258241272619. [PMID: 39399210 PMCID: PMC11471012 DOI: 10.1177/15593258241272619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 10/15/2024] Open
Abstract
The world's population continuous to shift towards older, less active and more sedentary lifestyles especially during middle age. In addition consumption of high-caloric diets, increases the risk of metabolic and cardiovascular afflictions. Developing clinical strategies to mitigate those health complications represent a difficult challenge. Our group has previously shown that combining metformin (MTF) and tert-butyl hydroquinone (tBHQ) treatments, in addition to exercise, partially prevents liver damage associated with obesity. Hence, we evaluated the role of exercise in combination with MTF and tBHQ (triple-treatment) to counteract mitochondrial damage in the liver from obese middle-aged female rats. Animals were fed a high-fat diet (HFD) starting at 21 days till 15 months of age. The treated groups performed a Fartlek-type exercise 5 days/week for 30 min/session. MTF and tBHQ were administered at a dose of 250 mg/kg/day, and 10 mg/kg/day, respectively, for 7 days/month from 10 to 15 months of age. Triple-treatment therapeutic approach promoted animal survival, and increased AMPK and PGC1α expression. Treatments increased mitochondrial ATP synthesis and OXPHOS complexes activities, recovered membrane potential, and decreased ROS production. In summary, exercise in combination with intermittent tBHQ and MTF treatments proved to be an excellent intervention to prevent mitochondrial damage caused by HFD.
Collapse
Affiliation(s)
- Stefanie Paola López-Cervantes
- Departamento Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
- Departamento Ciencias de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, México
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana, Iztapalapa, México
| | - Rafael Toledo-Pérez
- Departamento Ciencias de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, México
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana, Iztapalapa, México
| | | | - Giovanni García-Cruz
- Departamento Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Mercedes Esparza-Perusquía
- Departamento Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Armando Luna-López
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, Ciudad de Mexico, México
| | - Juan Pablo Pardo
- Departamento Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Oscar Flores-Herrera
- Departamento Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Mina Konigsberg
- Departamento Ciencias de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, México
| |
Collapse
|
9
|
Lee MJC, Saner NJ, Ferri A, García-Domínguez E, Broatch JR, Bishop DJ. Delineating the contribution of ageing and physical activity to changes in mitochondrial characteristics across the lifespan. Mol Aspects Med 2024; 97:101272. [PMID: 38626488 DOI: 10.1016/j.mam.2024.101272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/18/2024]
Abstract
Ageing is associated with widespread physiological changes prominent within all tissues, including skeletal muscle and the brain, which lead to a decline in physical function. To tackle the growing health and economic burdens associated with an ageing population, the concept of healthy ageing has become a major research priority. Changes in skeletal muscle mitochondrial characteristics have been suggested to make an important contribution to the reductions in skeletal muscle function with age, and age-related changes in mitochondrial content, respiratory function, morphology, and mitochondrial DNA have previously been reported. However, not all studies report changes in mitochondrial characteristics with ageing, and there is increasing evidence to suggest that physical activity (or inactivity) throughout life is a confounding factor when interpreting age-associated changes. Given that physical activity is a potent stimulus for inducing beneficial adaptations to mitochondrial characteristics, delineating the influence of physical activity on the changes in skeletal muscle that occur with age is complicated. This review aims to summarise our current understanding and knowledge gaps regarding age-related changes to mitochondrial characteristics within skeletal muscle, as well as to provide some novel insights into brain mitochondria, and to propose avenues of future research and targeted interventions. Furthermore, where possible, we incorporate discussions of the modifying effects of physical activity, exercise, and training status, to purported age-related changes in mitochondrial characteristics.
Collapse
Affiliation(s)
- Matthew J-C Lee
- The Exercise Prescription Lab (EPL), Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| | - Nicholas J Saner
- The Exercise Prescription Lab (EPL), Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| | - Alessandra Ferri
- The Exercise Prescription Lab (EPL), Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| | - Esther García-Domínguez
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - James R Broatch
- The Exercise Prescription Lab (EPL), Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| | - David J Bishop
- The Exercise Prescription Lab (EPL), Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia.
| |
Collapse
|
10
|
Yin L, Tang H, Qu J, Jia Y, Zhang Q, Wang X. Chemerin regulates glucose and lipid metabolism by changing mitochondrial structure and function associated with androgen/androgen receptor. Am J Physiol Endocrinol Metab 2024; 326:E869-E887. [PMID: 38775724 DOI: 10.1152/ajpendo.00104.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 06/07/2024]
Abstract
The adipokine chemerin contributes to exercise-induced improvements in glucose and lipid metabolism; however, the underlying mechanism remains unclear. We aimed to confirm the impact of reduced chemerin expression on exercise-induced improvement in glycolipid metabolism in male diabetic (DM) mice through exogenous chemerin administration. Furthermore, the underlying mechanism of chemerin involved in changes in muscle mitochondria function mediated by androgen/androgen receptor (AR) was explored by generating adipose-specific and global chemerin knockout (adipo-chemerin-/- and chemerin-/-) mice. DM mice were categorized into the DM, exercised DM (EDM), and EDM + chemerin supplementation groups. Adipo-chemerin-/- and chemerin-/- mice were classified in the sedentary or exercised groups and fed either a normal or high-fat diet. Exercise mice underwent a 6-wk aerobic exercise regimen. The serum testosterone and chemerin levels, glycolipid metabolism indices, mitochondrial function, and protein levels involved in mitochondrial biogenesis and dynamics were measured. Notably, exogenous chemerin reversed exercise-induced improvements in glycolipid metabolism, AR protein levels, mitochondrial biogenesis, and mitochondrial fusion in DM mice. Moreover, adipose-specific chemerin knockout improved glycolipid metabolism, enhanced exercise-induced increases in testosterone and AR levels in exercised mice, and alleviated the detrimental effects of a high-fat diet on mitochondrial morphology, biogenesis, and dynamics. Finally, similar improvements in glucose metabolism (but not lipid metabolism), mitochondrial function, and mitochondrial dynamics were observed in chemerin-/- mice. In conclusion, decreased chemerin levels affect exercise-induced improvements in glycolipid metabolism in male mice by increasing mitochondrial number and function, likely through changes in androgen/AR signaling.NEW & NOTEWORTHY Decreased chemerin levels affect exercise-induced improvements in glycolipid metabolism in male mice by increasing mitochondrial number and function, which is likely mediated by androgen/androgen receptor expression. This study is the first to report the regulatory mechanism of chemerin in muscle mitochondria.
Collapse
Affiliation(s)
- Lijun Yin
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
- School of Sport, Shenzhen University, Shenzhen, People's Republic of China
| | - Hongtai Tang
- Department of Burns, Changhai Hospital, Shanghai, People's Republic of China
| | - Jing Qu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Yi Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Qilong Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Xiaohui Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Saner NJ, Lee MJC, Pitchford NW, Broatch JR, Roach GD, Bishop DJ, Bartlett JD. The effect of sleep restriction, with or without high-intensity interval exercise, on behavioural alertness and mood state in young healthy males. J Sleep Res 2024; 33:e13987. [PMID: 37434366 DOI: 10.1111/jsr.13987] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023]
Abstract
Mood state and alertness are negatively affected by sleep loss, and can be positively influenced by exercise. However, the potential mitigating effects of exercise on sleep-loss-induced changes in mood state and alertness have not been studied comprehensively. Twenty-four healthy young males were matched into one of three, 5-night sleep interventions: normal sleep (NS; total sleep time (TST) per night = 449 ± 22 min), sleep restriction (SR; TST = 230 ± 5 min), or sleep restriction and exercise (SR + EX; TST = 235 ± 5 min, plus three sessions of high-intensity interval exercise (HIIE)). Mood state was assessed using the profile of mood states (POMS) and a daily well-being questionnaire. Alertness was assessed using psychomotor vigilance testing (PVT). Following the intervention, POMS total mood disturbance scores significantly increased for both the SR and SR + EX groups, and were greater than the NS group (SR vs NS; 31.0 ± 10.7 A.U., [4.4-57.7 A.U.], p = 0.020; SR + EX vs NS; 38.6 ± 14.9 A.U., [11.1-66.1 A.U.], p = 0.004). The PVT reaction times increased in the SR (p = 0.049) and SR + EX groups (p = 0.033) and the daily well-being questionnaire revealed increased levels of fatigue in both groups (SR; p = 0.041, SR + EX; p = 0.026) during the intervention. Despite previously demonstrated physiological benefits of performing three sessions of HIIE during five nights of sleep restriction, the detriments to mood, wellness, and alertness were not mitigated by exercise in this study. Whether alternatively timed exercise sessions or other exercise protocols could promote more positive outcomes on these factors during sleep restriction requires further research.
Collapse
Affiliation(s)
- Nicholas J Saner
- Institute for Health and Sport (iHeS), College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Matthew J-C Lee
- Institute for Health and Sport (iHeS), College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Nathan W Pitchford
- School of Health Sciences, University of Tasmania, Launceston, Australia
| | - James R Broatch
- Institute for Health and Sport (iHeS), College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Greg D Roach
- Appleton Institute for Behavioural Science, Central Queensland University, Adelaide, Australia
| | - David J Bishop
- Institute for Health and Sport (iHeS), College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Jonathan D Bartlett
- Institute for Health and Sport (iHeS), College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| |
Collapse
|
12
|
Huang Y, Jiang C, Li X, Liu S, Niu Y, Fu L. Resistance exercise preconditioning prevents disuse muscle atrophy by inhibiting apoptosis and protein degradation via SESN2 in C57BL/6J mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167111. [PMID: 38432454 DOI: 10.1016/j.bbadis.2024.167111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
AIM To compare the effects of different exercise preconditioning in the context of skeletal muscle atrophy and to investigate the potential involvement of Sestrin2 (SESN2), a stress-inducible protein that can be regulated by exercise, in exercise preconditioning on preventing disuse muscle atrophy. METHODS Eight-week-old male C57BL/6J mice were randomly assigned to sedentary groups (SD), aerobic exercise groups (AE), resistance exercise groups (RE), and combined exercise groups (CE) with or without 7 days of immobilization. The duration of the exercise intervention was 10 weeks. The effects of different exercise preconditioning to prevent muscle atrophy were analyzed by evaluating skeletal muscle function and mass. Additionally, to investigate the potential underlying mechanism of exercise-induced protection of skeletal muscle, wild-type and SESN2--/-- mice were randomly divided into sedentary group and resistance exercise preconditioning group. C2C12 cells were treated with SESN2 adenoviruses and MK2206 (an AKT inhibitor) for 48 h to elucidate the underlined mechanism. RESULTS RE was more effective in preserving skeletal muscle function, muscle mass and maintaining skeletal muscle protein homeostasis than AE and CE under immobilized condition. Importantly, exercise performance, muscle mass to body weight ratio, and the cross-sectional area of muscle fibers were significantly lower in SESN2-/- mice than wild-type mice after resistance exercise preconditioning. Mechanistically, the absence of SESN2 led to activation of the ubiquitin-proteasome system and induction of apoptosis. In vitro experiments showed that MK2206 treatment mitigated the regulatory effects of overexpression-SESN2 on protein hydrolysis and apoptosis. CONCLUSION RE was more effective than AE or CE in preventing disuse muscle atrophy. SESN2 mediated the protective effects of resistance exercise preconditioning on skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yating Huang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Chenxin Jiang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Xiuru Li
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Sujuan Liu
- Department of Anatomy and Histology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Yanmei Niu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China.
| | - Li Fu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
13
|
Chan WS, Ng CF, Pang BPS, Hang M, Tse MCL, Iu ECY, Ooi XC, Yang X, Kim JK, Lee CW, Chan CB. Exercise-induced BDNF promotes PPARδ-dependent reprogramming of lipid metabolism in skeletal muscle during exercise recovery. Sci Signal 2024; 17:eadh2783. [PMID: 38502732 PMCID: PMC11022078 DOI: 10.1126/scisignal.adh2783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
Post-exercise recovery is essential to resolve metabolic perturbations and promote long-term cellular remodeling in response to exercise. Here, we report that muscle-generated brain-derived neurotrophic factor (BDNF) elicits post-exercise recovery and metabolic reprogramming in skeletal muscle. BDNF increased the post-exercise expression of the gene encoding PPARδ (peroxisome proliferator-activated receptor δ), a transcription factor that is a master regulator of lipid metabolism. After exercise, mice with muscle-specific Bdnf knockout (MBKO) exhibited impairments in PPARδ-regulated metabolic gene expression, decreased intramuscular lipid content, reduced β-oxidation, and dysregulated mitochondrial dynamics. Moreover, MBKO mice required a longer period to recover from a bout of exercise and did not show increases in exercise-induced endurance capacity. Feeding naïve mice with the bioavailable BDNF mimetic 7,8-dihydroxyflavone resulted in effects that mimicked exercise-induced adaptations, including improved exercise capacity. Together, our findings reveal that BDNF is an essential myokine for exercise-induced metabolic recovery and remodeling in skeletal muscle.
Collapse
Affiliation(s)
- Wing Suen Chan
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Chun Fai Ng
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Brian Pak Shing Pang
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Miaojia Hang
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Margaret Chui Ling Tse
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Elsie Chit Yu Iu
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Xin Ci Ooi
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Xiuying Yang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing 101399, China
| | - Jason K. Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Chi Wai Lee
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Chi Bun Chan
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Lo Buglio A, Bellanti F, Vendemiale G. The aging muscle: sarcopenia, mitochondrial function, and redox biology. JOURNAL OF GERONTOLOGY AND GERIATRICS 2024; 72:1-10. [DOI: 10.36150/2499-6564-n695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
|
15
|
Tkaczenko H, Lukash O, Kurhaluk N. Analysis of the season-dependent component in the evaluation of morphological and biochemical blood parameters in Shetland ponies of both sexes during exercise. J Vet Res 2024; 68:155-166. [PMID: 38525221 PMCID: PMC10960263 DOI: 10.2478/jvetres-2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Determination of morphological and biochemical blood indices facilitates assessment of the health and welfare of horses, their nutrient demand, the effects of training already undertaken, and the horses' suitability for exercise. Identification of the season-dependent components and the effects of sex and exercise on changes in frequently referenced haematological and biochemical parameters was the main goal of the current study. Material and Methods The blood morphology of 21 healthy adult Shetland ponies (11 mares and 10 stallions) aged 6.5 ± 1.4 years from the central Pomeranian region in Poland was analysed. Blood samples were taken once per season for one year. Results No statistically significant season-dependent differences were found in the blood morphology parameters in either mares or stallions before or after exercise. Beta-coefficient results revealed the strength and type of the relationship of red blood cell distribution width (RDW) and granulocyte count (GRA) with the season, of red blood cell count (RBC), haematocrit, mean corpuscular volume and mean platelet volume with the sex, and of RDW, white blood cell count, GRA and RBC with the exercise factor. Biomarkers demonstrating the relationship between aerobic and anaerobic levels of energy metabolism in the blood did not show any sex dependency in regression analysis. Conclusion The sex-independence of energy metabolism biomarkers may indicate the universality of these parameters. Both seasonality itself and its combination with the exercise factor took part in the formation of effective adaptive reactions for maintenance of morphological blood indices in the ponies during exercise.
Collapse
Affiliation(s)
- Halina Tkaczenko
- Department of Zoology, Institute of Biology, Pomeranian University in Słupsk, 76-200Słupsk, Poland
| | - Oleksandr Lukash
- Department of Ecology, Geography and Nature Management, T. H. Shevchenko National University “Chernihiv Colehium”, 14013Chernihiv, Ukraine
| | - Natalia Kurhaluk
- Department of Animal Physiology, Institute of Biology, Pomeranian University in Słupsk, 76-200Słupsk, Poland
| |
Collapse
|
16
|
Burtscher J, Strasser B, Burtscher M. A mito-centric view on muscle aging and function. Front Public Health 2024; 11:1330131. [PMID: 38269379 PMCID: PMC10806989 DOI: 10.3389/fpubh.2023.1330131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Barbara Strasser
- Ludwig Boltzmann Institute for Rehabilitation Research, Vienna, Austria
- Faculty of Medicine, Sigmund Freud Private University, Vienna, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Herranz-Gómez A, Suso-Martí L, Varangot-Reille C, Barrachina-Gauchia L, Casaña J, López-Bueno L, Calatayud J, Cuenca-Martínez F. The Benefit of Exercise in Patients With Cancer Who Are Receiving Chemotherapy: A Systematic Review and Network Meta-Analysis. Phys Ther 2024; 104:pzad132. [PMID: 37792792 DOI: 10.1093/ptj/pzad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/08/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVE This study aimed to determine which therapeutic exercise-based intervention is most effective in improving cardiorespiratory fitness (CRF) in patients with cancer receiving chemotherapy. METHODS The authors conducted a systematic review with network meta-analysis in MEDLINE (PubMed), Embase, Cumulative Index to Nursing and Allied Health Literature, Scopus, SPORTDiscus, and Web of Science. The authors employed the Physiotherapy Evidence Database and the Revised Cochrane Risk of Bias Tool for Randomized Trials to assess the methodological quality and risk of bias, respectively. RESULTS A total of 27 studies were included. Data were pooled using a random-effects model. Adding aerobic training (moderate to high intensity), with or without resistance training, to usual care versus usual care was statistically significant, with a small beneficial effect (aerobic training: standardized mean difference = 0.46; 95% CI= 0.17 to 0.75; aerobic and resistance training: standardized mean difference = 0.26; 95% CI = 0.00 to 0.52) for peak oxygen consumption at the postintervention assessment. CONCLUSION Therapeutic exercise-based interventions to improve short-term CRF in patients with cancer receiving chemotherapy should include moderate- to high-intensity aerobic exercise, with or without resistance training. IMPACT It is important to improve CRF in the oncological population due to its relationship with mortality. The results showed the benefit of exercise to improve cardiorespiratory fitness in the oncology population receiving chemotherapy treatment.
Collapse
Affiliation(s)
- Aida Herranz-Gómez
- Department of Physiotherapy, Faculty of Health Sciences, European University of Valencia, Valencia, Spain
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Luis Suso-Martí
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Clovis Varangot-Reille
- Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Département d´Anesthésie-Réanimation, Lyon, Pierre-Bénite, France
| | - Laia Barrachina-Gauchia
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - José Casaña
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Laura López-Bueno
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Joaquín Calatayud
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | | |
Collapse
|
18
|
Muvhulawa N, Mazibuko-Mbeje SE, Ndwandwe D, Silvestri S, Ziqubu K, Moetlediwa MT, Mthembu SXH, Marnewick JL, Van der Westhuizen FH, Nkambule BB, Basson AK, Tiano L, Dludla PV. Sarcopenia in a type 2 diabetic state: Reviewing literature on the pathological consequences of oxidative stress and inflammation beyond the neutralizing effect of intracellular antioxidants. Life Sci 2023; 332:122125. [PMID: 37769808 DOI: 10.1016/j.lfs.2023.122125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Sarcopenia remains one of the major pathological features of type 2 diabetes (T2D), especially in older individuals. This condition describes gradual loss of muscle mass, strength, and function that reduces the overall vitality and fitness, leading to increased hospitalizations and even fatalities to those affected. Preclinical evidence indicates that dysregulated mitochondrial dynamics, together with impaired activity of the NADPH oxidase system, are the major sources of oxidative stress that drive skeletal muscle damage in T2D. While patients with T2D also display relatively higher levels of circulating inflammatory markers in the serum, including high sensitivity-C-reactive protein, interleukin-6, and tumor necrosis factor-α that are independently linked with the deterioration of muscle function and sarcopenia in T2D. In fact, beyond reporting on the pathological consequences of both oxidative stress and inflammation, the current review highlights the importance of strengthening intracellular antioxidant systems to preserve muscle mass, strength, and function in individuals with T2D.
Collapse
Affiliation(s)
- Ndivhuwo Muvhulawa
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | | | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | - Marakiya T Moetlediwa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | | | - Jeanine L Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | | | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
19
|
Liang Z, Zhang M, Shi F, Wang C, Wang J, Yuan Y. Comparative efficacy of four exercise types on obesity-related outcomes in breast cancer survivors: A Bayesian network meta-analysis. Eur J Oncol Nurs 2023; 66:102423. [PMID: 37742423 DOI: 10.1016/j.ejon.2023.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
PURPOSE Exercise training is associated with improving the prognosis of breast cancer survivors, but no studies have evaluated the optimal exercise intervention. We aimed to investigate the most effective exercise intervention to improve obesity-related outcomes in breast cancer survivors. METHODS A comprehensive search strategy was conducted in Medline, Embase, Web of Science, Cochrane Library, and Chinese biomedical literature databases from the time of library construction to April 2, 2023. We included randomized controlled trials reporting the effects of four types of exercise interventions (aerobic exercise; aerobic combined with resitance exercise, resitstance exercise and mind-body exercise ) on obesity-related outcomes in breast cancer survivors. A Bayesian network meta-analysis was used to analyze and rank the effectiveness of four exercise types. RESULTS A total of 76 randomized controlled trials that contained 5610 breast cancer survivors were included. The treatment effect of combined aerobic and resistance exercise (mean difference = -0.59; 95% credible interval: 1.15, -0.08) was significantly better than that of the control groups in terms of body mass index. For percentage of body fat, combined aerobic and resistance exercise (mean difference = -1.74; 95% credible interval: 0.87, -0.90) and aerobic exercise (mean difference = -1.16; 95% credible interval: 2.15, -0.16) were significantly better than controls. Subgroup analysis suggested that combined aerobic and resistance exercise significantly affected body mass index at an intervention duration >12 weeks or weekly time on exercise >150 min. CONCLUSION Our network meta-analysis found combined aerobic and resistance exercise may be the most effective intervention to improve obesity-related outcomes in breast cancer survivors. In addition, intervention duration and participant adherence are important factors that influence the effectiveness of exercise interventions.
Collapse
Affiliation(s)
- Zhide Liang
- Cancer Institute of the Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, 266071, China.
| | - Meng Zhang
- Xi'an Physical Education University, Xi'an, 710068, China.
| | - Fang Shi
- School of Education and Physical Education, Yangtze University, Jingzhou, 434023, China.
| | - Chuanzhi Wang
- Department of Physical Education, College of Physical Education, Qingdao University, Qingdao, 266071, China.
| | - Jingtai Wang
- Department of Physical Education, College of Physical Education, Qingdao University, Qingdao, 266071, China.
| | - Yang Yuan
- Cancer Institute of the Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, 266071, China.
| |
Collapse
|
20
|
Dong H, Tsai SY. Mitochondrial Properties in Skeletal Muscle Fiber. Cells 2023; 12:2183. [PMID: 37681915 PMCID: PMC10486962 DOI: 10.3390/cells12172183] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Mitochondria are the primary source of energy production and are implicated in a wide range of biological processes in most eukaryotic cells. Skeletal muscle heavily relies on mitochondria for energy supplements. In addition to being a powerhouse, mitochondria evoke many functions in skeletal muscle, including regulating calcium and reactive oxygen species levels. A healthy mitochondria population is necessary for the preservation of skeletal muscle homeostasis, while mitochondria dysregulation is linked to numerous myopathies. In this review, we summarize the recent studies on mitochondria function and quality control in skeletal muscle, focusing mainly on in vivo studies of rodents and human subjects. With an emphasis on the interplay between mitochondrial functions concerning the muscle fiber type-specific phenotypes, we also discuss the effect of aging and exercise on the remodeling of skeletal muscle and mitochondria properties.
Collapse
Affiliation(s)
- Han Dong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
| | - Shih-Yin Tsai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
21
|
Lichti J, Maggioni MA, Balcerek B, Becker PN, Labes R, Gunga HC, Fähling M, Steinach M. The relevance of body composition assessment for the rating of perceived exertion in trained and untrained women and men. Front Physiol 2023; 14:1188802. [PMID: 37593237 PMCID: PMC10431604 DOI: 10.3389/fphys.2023.1188802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/30/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction: Mechanic power output (MPO) and oxygen consumption (VO2) reflect endurance capacity and are often stated relative to body mass (BM) but less often per skeletal muscle mass (SMM). Rating of perceived exertion (RPE) has previously shown conflicting results between sexes at submaximal intensities. Individual body composition, however, largely differs due to sex and training status. It was the aim of this study to evaluate RPE of untrained and trained individuals of both sexes considering body composition and to estimate whether RPE could be improved as a tool to determine endurance capacity. Methods: The study included 34 untrained adults (age 26.18 ± 6.34 years, 18 women) and 29 endurance trained (age 27.86 ± 5.19, 14 women) who were measured for body composition (InBody 770, InBody Europe B.V., Germany) and tested on a treadmill (Pulsar, H/P/Cosmos, Germany) for aerobic capacity (Metalyzer 3B, Cortex Biophysik GmbH, Germany) in an all-out exercise test applying the Bruce-protocol. VO2, MPO, heart rate (HR), and RPE were obtained at each exercise stage. VO2 and MPO were calculated per BM and SMM. RPE values were correlated with absolute VO2 and MPO, as well as relative to BM, and SMM. HR values and the parameters' standardized values served for comparison to standard procedures. Results: VO2 and MPO were higher in men compared to women and in trained compared to untrained participants. No differences between groups and sexes exist when VO2 and MPO were calculated per BM. When calculated per SMM, VO2 and MPO indicate opposite results already at low intensity stages of exercise test. RPE values had highest correlation with MPO per SMM (R2 = 0.8345) compared to absolute MPO (R2 = 0.7609), or MPO per BM (R2 = 0.8176). Agreement between RPE and MPO per SMM was greater than between RPE and HR (p = 0.008). Conclusion: Although RPE represents a subjective value at first glance, it was shown that RPE constitutes a valuable tool to estimate endurance capacity, which can be further enhanced if individual body composition is considered. Furthermore, MPO and VO2 should be considered relative to SMM. These findings might help to avoid over-exertion, especially among untrained people, by adjusting the training intensity for each subject according to the individual strain evaluated in an exercise test based on individual body composition.
Collapse
Affiliation(s)
- Julia Lichti
- Charité—Universitätsmedizin Berlin, Institute of Translational Physiology, Berlin, Germany
- Charité—Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Martina Anna Maggioni
- Charité—Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| | - Björn Balcerek
- Charité—Universitätsmedizin Berlin, Institute of Translational Physiology, Berlin, Germany
| | - Philipp Nils Becker
- Charité—Universitätsmedizin Berlin, Institute of Translational Physiology, Berlin, Germany
| | - Robert Labes
- Charité—Universitätsmedizin Berlin, Institute of Translational Physiology, Berlin, Germany
| | - Hanns-Christian Gunga
- Charité—Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Michael Fähling
- Charité—Universitätsmedizin Berlin, Institute of Translational Physiology, Berlin, Germany
| | - Mathias Steinach
- Charité—Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| |
Collapse
|
22
|
Dent JR, Stocks B, Campelj DG, Philp A. Transient changes to metabolic homeostasis initiate mitochondrial adaptation to endurance exercise. Semin Cell Dev Biol 2023; 143:3-16. [PMID: 35351374 DOI: 10.1016/j.semcdb.2022.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/26/2022] [Accepted: 03/19/2022] [Indexed: 12/14/2022]
Abstract
Endurance exercise is well established to increase mitochondrial content and function in skeletal muscle, a process termed mitochondrial biogenesis. Current understanding is that exercise initiates skeletal muscle mitochondrial remodeling via modulation of cellular nutrient, energetic and contractile stress pathways. These subtle changes in the cellular milieu are sensed by numerous transduction pathways that serve to initiate and coordinate an increase in mitochondrial gene transcription and translation. The result of these acute signaling events is the promotion of growth and assembly of mitochondria, coupled to a greater capacity for aerobic ATP provision in skeletal muscle. The aim of this review is to highlight the acute metabolic events induced by endurance exercise and the subsequent molecular pathways that sense this transient change in cellular homeostasis to drive mitochondrial adaptation and remodeling.
Collapse
Affiliation(s)
- Jessica R Dent
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Dean G Campelj
- Mitochondrial Metabolism and Ageing Laboratory, Healthy Ageing Research Theme, Garvan Institute of Medical Research, Sydney, Australia
| | - Andrew Philp
- Mitochondrial Metabolism and Ageing Laboratory, Healthy Ageing Research Theme, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Medical School, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
23
|
Pellegrino D, Casas-Recasens S, Faner R, Palange P, Agusti A. When GETomics meets aging and exercise in COPD. Respir Med 2023:107294. [PMID: 37295536 DOI: 10.1016/j.rmed.2023.107294] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
The term GETomics has been recently proposed to illustrate that human health and disease are actually the final outcome of many dynamic, interacting and cumulative gene (G) - environment (E) interactions that occur through the lifetime (T) of the individual. According to this new paradigm, the final outcome of any GxE interactions depends on both the age of the individual at which such GxE interaction occurs as well as on the previous, cumulative history of previous GxE interactions through the induction of epigenetic changes and immune memory (both lasting overtime). Following this conceptual approach, our understanding of the pathogenesis of chronic obstructive pulmonary disease (COPD) has changed dramatically. Traditionally believed to be a self-inflicted disease induced by tobacco smoking occurring in older men and characterized by an accelerated decline of lung function with age, now we understand that there are many other risk factors associated with COPD, that it occurs also in females and young individuals, that there are different lung function trajectories through life, and that COPD is not always characterized by accelerated lung function decline. In this paper we discuss how a GETomics approach to COPD may open new perspectives to better understand its relationship with exercise limitation and the ageing process.
Collapse
Affiliation(s)
- D Pellegrino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy; Respiratory and Critical Care Unit, Policlinico Umberto I Hospital of Rome, Italy
| | - S Casas-Recasens
- Institut d'investigacions biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro Investigacion Biomedica en Red de Enfermedades Respiratorias (CIBERES), Spain
| | - R Faner
- Institut d'investigacions biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro Investigacion Biomedica en Red de Enfermedades Respiratorias (CIBERES), Spain; Cathedra Salut Respiratoria, University of Barcelona, Spain
| | - P Palange
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy; Respiratory and Critical Care Unit, Policlinico Umberto I Hospital of Rome, Italy
| | - A Agusti
- Institut d'investigacions biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro Investigacion Biomedica en Red de Enfermedades Respiratorias (CIBERES), Spain; Cathedra Salut Respiratoria, University of Barcelona, Spain; Respiratory Institute, Clinic Barcelona, Spain.
| |
Collapse
|
24
|
Gilbert-Jaramillo J, Purnama U, Molnár Z, James WS. Zika virus-induces metabolic alterations in fetal neuronal progenitors that could influence in neurodevelopment during early pregnancy. Biol Open 2023; 12:bio059889. [PMID: 37093064 PMCID: PMC10151830 DOI: 10.1242/bio.059889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 04/25/2023] Open
Abstract
Cortical development consists of an orchestrated process in which progenitor cells exhibit distinct fate restrictions regulated by time-dependent activation of energetic pathways. Thus, the hijacking of cellular metabolism by Zika virus (ZIKV) to support its replication may contribute to damage in the developing fetal brain. Here, we showed that ZIKV replicates differently in two glycolytically distinct pools of cortical progenitors derived from human induced pluripotent stem cells (hiPSCs), which resemble the metabolic patterns of quiescence (early hi-NPCs) and immature brain cells (late hi-NPCs) in the forebrain. This differential replication alters the transcription of metabolic genes in both pools of cortical progenitors but solely upregulates the glycolytic capacity of early hi-NPCs. Analysis using Imagestream® revealed that, during early stages of ZIKV replication, in early hi-NPCs there is an increase in lipid droplet abundance and size. This stage of ZIKV replication significantly reduced the mitochondrial distribution in both early and late hi-NPCs. During later stages of ZIKV replication, late hi-NPCs show reduced mitochondrial size and abundance. The finding that there are alterations of cellular metabolism during ZIKV infection which are specific to pools of cortical progenitors at different stages of maturation may help to explain the differences in brain damage over each trimester.
Collapse
Affiliation(s)
- Javier Gilbert-Jaramillo
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Ujang Purnama
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - William S. James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
25
|
Goh J, Wong E, Soh J, Maier AB, Kennedy BK. Targeting the molecular & cellular pillars of human aging with exercise. FEBS J 2023; 290:649-668. [PMID: 34968001 DOI: 10.1111/febs.16337] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 10/29/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023]
Abstract
Biological aging is the main driver of age-associated chronic diseases. In 2014, the United States National Institute of Aging (NIA) sponsored a meeting between several investigators in the field of aging biology, who identified seven biological pillars of aging and a consensus review, "Geroscience: Linking Aging to Chronic Disease," was published. The pillars of aging demonstrated the conservation of aging pathways in diverse model organisms and thus represent a useful framework with which to study human aging. In this present review, we revisit the seven pillars of aging from the perspective of exercise and discuss how regular physical exercise can modulate these pillars to stave off age-related chronic diseases and maintain functional capacity.
Collapse
Affiliation(s)
- Jorming Goh
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore
| | - Esther Wong
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore
| | - Janjira Soh
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Andrea Britta Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore.,Department of Medicine, National University of Singapore, Singapore.,Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Brian Keith Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| |
Collapse
|
26
|
Ge Z, Lv X, Xue Y. CORRELATION BETWEEN AEROBIC TRAINING AND PHYSICAL ENDURANCE IN BASKETBALL PLAYERS. REV BRAS MED ESPORTE 2023. [DOI: 10.1590/1517-8692202329012022_0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
ABSTRACT Introduction: Endurance is a quality that has been lacking in Chinese athletes. In most endurance sports training in China, there is a problem with attaching importance to high-intensity anaerobic training and ignoring aerobic training. The close combination of aerobic, strength and technical training is endurance training. A significant development trend in training. Objective: This study analyzes the relationship between aerobic training and physical endurance in basketball players. Methods: Basketball players were selected and randomly divided into groups through the analysis method with a questionnaire, observation method, and experimental method to analyze the relationship between aerobic exercise and physical endurance in basketball players. In this paper, the changes in physiological indicators of basketball players were recorded after aerobic exercise. Results: The physical endurance of basketball players were positively correlated with aerobic training time. The physiological indicators of basketball players and basketball skills after aerobic training were significantly improved (P<0.05). Conclusion: Aerobic exercise can improve basketball players’ physical endurance and overall physical fitness, helping them achieve good results in competitions. Level of evidence II; Therapeutic studies - investigation of treatment outcomes.
Collapse
Affiliation(s)
- Zhong Ge
- Beijing University of Posts and Telecommunications, China
| | - Xiongce Lv
- Beijing University of Posts and Telecommunications, China
| | - Yang Xue
- Jiangxi University of Science and Technology, China
| |
Collapse
|
27
|
Impact of concurrent training versus aerobic or resistance training on cardiorespiratory fitness and muscular strength in middle-aged to older adults: A systematic review and meta-analysis. Physiol Behav 2022; 254:113888. [PMID: 35728627 DOI: 10.1016/j.physbeh.2022.113888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/29/2022]
Abstract
The effects of aerobic training (AT) on cardiorespiratory fitness (CRF), and resistance training (RT) on muscular strength, are well known in older adults. However, less is known about the potential additive benefits of concurrent training (CT) versus AT or RT alone in this population. We conducted a systematic review and meta-analysis to investigate the effects of CT, versus AT or RT, on CRF and muscular strength in middle-aged to older adults. PubMed and Web of Science were searched through October 2021 to identify randomized trials evaluating CT versus AT and/or RT in middle-aged and older adults (>50 yrs). Studies were included that measured CRF, using maximal or peak oxygen uptake (VO2max/peak); and/or lower- and upper-body muscular strength measured using 1-repetition maximum (1RM) to 10RM tests during isoinertial contractions, or peak torque during isometric dynamometry or isokinetic dynamometry at 30 to 60°/s. Standardized mean differences (SMD) and 95% confidence intervals (95% CIs) were determined using random or fixed effects models. Forty-nine studies involving 2,587 middle-aged to older participants with mean ages ranging from 55 to 88 years, were included in the meta-analysis. Results indicated that CT effectively increased VO2max/peak (SMD: 0.77, p = 0.005, 12 intervention arms) when compared to RT. In addition, CT effectively increased lower- (SMD: 0.60, p = 0.001, 43 intervention arms) and upper-body (SMD: 0.57, p = 0.001, 28 intervention arms) muscular strength when compared to AT. However, there were no differences in VO2max/peak (SMD: 0.09, p = 0.09, 33 intervention arms) between CT and AT, or in lower-body (SMD: 0.07, p = 0.48, 21 intervention arms) and upper-body (SMD: -0.07, p = 0.38, 17 intervention arms) muscular strength between CT and RT. Overall, CT was shown to be effective for increasing CRF and muscular strength in middle-aged to older adults and there was no negative effect on the magnitude of changes in these outcomes compared to either AT or RT alone. These results suggested that CT should be considered a viable strategy to improvement of CRF and muscular strength with aging.
Collapse
|
28
|
The Therapeutic Role of Exercise and Probiotics in Stressful Brain Conditions. Int J Mol Sci 2022; 23:ijms23073610. [PMID: 35408972 PMCID: PMC8998860 DOI: 10.3390/ijms23073610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress has been recognized as a contributing factor in aging and in the progression of multiple neurological disorders such as Parkinson’s disease, Alzheimer’s dementia, ischemic stroke, and head and spinal cord injury. The increased production of reactive oxygen species (ROS) has been associated with mitochondrial dysfunction, altered metal homeostasis, and compromised brain antioxidant defence. All these changes have been reported to directly affect synaptic activity and neurotransmission in neurons, leading to cognitive dysfunction. In this context two non-invasive strategies could be employed in an attempt to improve the aforementioned stressful brain status. In this regard, it has been shown that exercise could increase the resistance against oxidative stress, thus providing enhanced neuroprotection. Indeed, there is evidence suggesting that regular physical exercise diminishes BBB permeability as it reinforces antioxidative capacity, reduces oxidative stress, and has anti-inflammatory effects. However, the differential effects of different types of exercise (aerobic exhausted exercise, anaerobic exercise, or the combination of both types) and the duration of physical activity will be also addressed in this review as likely determinants of therapeutic efficacy. The second proposed strategy is related to the use of probiotics, which can also reduce some biomarkers of oxidative stress and inflammatory cytokines, although their underlying mechanisms of action remain unclear. Moreover, various probiotics produce neuroactive molecules that directly or indirectly impact signalling in the brain. In this review, we will discuss how physical activity can be incorporated as a component of therapeutic strategies in oxidative stress-based neurological disorders along with the augmentation of probiotics intake.
Collapse
|
29
|
So B, Park J, Jang J, Lim W, Imdad S, Kang C. Effect of Aerobic Exercise on Oxidative Stress and Inflammatory Response During Particulate Matter Exposure in Mouse Lungs. Front Physiol 2022; 12:773539. [PMID: 35185596 PMCID: PMC8850364 DOI: 10.3389/fphys.2021.773539] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
Regular exercise provides several health benefits that can improve the cardiovascular and musculoskeletal systems, but clear evidence on the effect of exercise-induced hyperventilation in particulate matter (PM) exposure is still lacking. This study aimed to investigate the effects of exercise in PM exposure on reactive oxygen species (ROS) generation, inflammatory response, and mitochondrial integrity in human lung epithelial cells (A549), as well as in mouse lung tissue. In in vitro experiments, PM treatment was shown to significantly increased ROS production, and reduced cell viability and mitochondrial function in A549 cells. The mice were divided into four groups for an in vivo exercise experiment: control (CON), PM inhalation (PI), PM inhalation during exercise (PIE), and exercise (EX) groups. The PI and PIE groups were exposed to 100 μg/m3 of PM for 1 h per day for a week. The PIE and EX groups performed treadmill exercises every day for 1 h at 20 m/min for a week. The levels of pro-inflammatory markers (IL-6 and TNF-α) were significantly higher in the PI group than in the CON group (P < 0.001 and P < 0.01, respectively). The carbonyl protein level was decreased in EX vs. PI (P < 0.001). Mitochondrial fission (Drp1) content was significantly decreased in the EX vs. CON group (P < 0.01), but anti-mitochondrial fission (P-Drp1 Ser637) was increased in the EX vs. PI group (P < 0.05). Mitochondrial autophagy (mitophagy), which is an assessment of mitochondrial integrity, was markedly increased in PI vs. CON (P < 0.001), but the level was reversed in PIE (P < 0.05). Lung fibrosis was increased in PI vs. CON group (P < 0.001), however, the cells were rescued in the PIE (P < 0.001). The number of apoptotic cells was remarkably increased in the PI vs. CON group (P < 0.001), whereas the level was decreased in the PIE (P < 0.001). Taken together, these results showed that short-term exposure to PM triggers oxidative stress, pro-inflammatory responses, and apoptosis in the lungs, but the PM-induced adverse effects on the lung tissue are not exacerbated by exercise-induced PM hyperventilation but rather has a protective effect.
Collapse
Affiliation(s)
- Byunghun So
- Molecular Metabolism in Health and Disease, Exercise Physiology Laboratory, Inha University, Incheon, South Korea
| | - Jinhan Park
- Molecular Metabolism in Health and Disease, Exercise Physiology Laboratory, Inha University, Incheon, South Korea
| | - Junho Jang
- Molecular Metabolism in Health and Disease, Exercise Physiology Laboratory, Inha University, Incheon, South Korea
| | - Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju, South Korea
| | - Saba Imdad
- Molecular Metabolism in Health and Disease, Exercise Physiology Laboratory, Inha University, Incheon, South Korea
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, South Korea
| | - Chounghun Kang
- Molecular Metabolism in Health and Disease, Exercise Physiology Laboratory, Inha University, Incheon, South Korea
- Department of Physical Education, College of Education, Inha University, Incheon, South Korea
- *Correspondence: Chounghun Kang,
| |
Collapse
|
30
|
Sligar J, Debruin DA, Saner NJ, Philp AM, Philp A. The importance of mitochondrial quality control for maintaining skeletal muscle function across healthspan. Am J Physiol Cell Physiol 2022; 322:C461-C467. [PMID: 35108118 DOI: 10.1152/ajpcell.00388.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As the principal energy-producing organelles of the cell, mitochondria support numerous biological processes related to metabolism, growth and regeneration in skeletal muscle. Deterioration in skeletal muscle functional capacity with age is thought to be driven in part by a reduction in skeletal muscle oxidative capacity and reduced fatigue resistance. Underlying this maladaptive response is the development of mitochondrial dysfunction caused by alterations in mitochondrial quality control (MQC), a term encompassing processes of mitochondrial synthesis (biogenesis), remodelling (dynamics) and degradation (mitophagy). Knowledge regarding the role and regulation of MQC in skeletal muscle and the influence of ageing in this process have rapidly advanced in the last decade. Given the emerging link between ageing and MQC, therapeutic approaches to manipulate MQC to prevent mitochondrial dysfuntion during ageing hold tremendous therapeutic potential.
Collapse
Affiliation(s)
- James Sligar
- Mitochondrial Metabolism and Ageing Laboratory, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Medical School, UNSW Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Danielle A Debruin
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Sunshine Hospital, St Albans, Australia.,Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Nicholas J Saner
- Human Integrative Physiology, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Ashleigh M Philp
- Mitochondrial Metabolism and Ageing Laboratory, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Medical School, UNSW Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Andrew Philp
- Mitochondrial Metabolism and Ageing Laboratory, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Medical School, UNSW Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Kuang J, Saner NJ, Botella J, Lee MJ, Granata C, Wang Z, Yan X, Li J, Genders AJ, Bishop DJ. Assessing mitochondrial respiration in permeabilized fibres and biomarkers for mitochondrial content in human skeletal muscle. Acta Physiol (Oxf) 2022; 234:e13772. [PMID: 34985815 DOI: 10.1111/apha.13772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/16/2021] [Accepted: 01/01/2022] [Indexed: 12/16/2022]
Abstract
AIM Assessments of mitochondrial respiration and mitochondrial content are common in skeletal muscle research and exercise science. However, many sources of technical and biological variation render these analyses susceptible to error. This study aimed to better quantify the reliability of different experimental designs and/or techniques so as to assist researchers to obtain more reliable data. METHODS We examined the repeatability of maximal mitochondrial oxidative phosphorylation in permeabilized muscle fibres via high-resolution respirometry, and citrate synthase activity (a biomarker for mitochondrial content) in a microplate with spectrophotometery. RESULTS For mitochondrial respiration using permeabilized skeletal muscle fibres, the variability was reduced using three chambers and removing outliers compared to two chambers (CV reduced from 12.7% to 11.0%), and the minimal change that can be detected with 10 participants reduced from 17% to 13% according to modelling. For citrate synthase activity, the within-plate CV (3.5%) increased when the assay was repeated after 4 hours (CV = 10.2%) and 4 weeks (CV = 30.5%). The readings were correlated, but significantly different after 4 hours and 4 weeks. CONCLUSION This research provides evidence for important technical considerations when measuring mitochondrial respiration and content using citrate synthase activity as a biomarker. When assessing mitochondrial respiration in human skeletal muscle, the technical variability of high-resolution respirometry can be reduced by increasing technical repeats and excluding outliers, practices which are not currently common. When analysing citrate synthase activity, our results highlight the importance of analysing all samples from the same study at the same time.
Collapse
Affiliation(s)
- Jujiao Kuang
- Institute for Health and Sport (IHES) Victoria University Melbourne Victoria Australia
- Australia Institute for Musculoskeletal Sciences Melbourne Victoria Australia
| | - Nicholas J. Saner
- Institute for Health and Sport (IHES) Victoria University Melbourne Victoria Australia
- Department of Sports Cardiology Baker Heart and Diabetes Institute Melbourne Victoria Australia
| | - Javier Botella
- Institute for Health and Sport (IHES) Victoria University Melbourne Victoria Australia
| | - Matthew J.‐C. Lee
- Institute for Health and Sport (IHES) Victoria University Melbourne Victoria Australia
| | - Cesare Granata
- Institute for Health and Sport (IHES) Victoria University Melbourne Victoria Australia
- Department of Diabetes Central Clinical School Monash University Melbourne Victoria Australia
- Institute for Clinical Diabetology German Diabetes Center Leibniz Center for Diabetes Research Heinrich Heine University Düsseldorf Germany
| | - Zhenhuan Wang
- Institute for Health and Sport (IHES) Victoria University Melbourne Victoria Australia
- College of Physical Education Southwest University Chongqing China
| | - Xu Yan
- Institute for Health and Sport (IHES) Victoria University Melbourne Victoria Australia
- Australia Institute for Musculoskeletal Sciences Melbourne Victoria Australia
| | - Jia Li
- Institute for Health and Sport (IHES) Victoria University Melbourne Victoria Australia
- College of Physical Education Southwest University Chongqing China
| | - Amanda J. Genders
- Institute for Health and Sport (IHES) Victoria University Melbourne Victoria Australia
| | - David J. Bishop
- Institute for Health and Sport (IHES) Victoria University Melbourne Victoria Australia
| |
Collapse
|
32
|
Lin W, Saner NJ, Weng X, Caruana NJ, Botella J, Kuang J, Lee MJC, Jamnick NA, Pitchford NW, Garnham A, Bartlett JD, Chen H, Bishop DJ. The Effect of Sleep Restriction, With or Without Exercise, on Skeletal Muscle Transcriptomic Profiles in Healthy Young Males. Front Endocrinol (Lausanne) 2022; 13:863224. [PMID: 35937838 PMCID: PMC9355502 DOI: 10.3389/fendo.2022.863224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Inadequate sleep is associated with many detrimental health effects, including increased risk of developing insulin resistance and type 2 diabetes. These effects have been associated with changes to the skeletal muscle transcriptome, although this has not been characterised in response to a period of sleep restriction. Exercise induces a beneficial transcriptional response within skeletal muscle that may counteract some of the negative effects associated with sleep restriction. We hypothesised that sleep restriction would down-regulate transcriptional pathways associated with glucose metabolism, but that performing exercise would mitigate these effects. METHODS 20 healthy young males were allocated to one of three experimental groups: a Normal Sleep (NS) group (8 h time in bed per night (TIB), for five nights (11 pm - 7 am)), a Sleep Restriction (SR) group (4 h TIB, for five nights (3 am - 7 am)), and a Sleep Restriction and Exercise group (SR+EX) (4 h TIB, for five nights (3 am - 7 am) and three high-intensity interval exercise (HIIE) sessions (performed at 10 am)). RNA sequencing was performed on muscle samples collected pre- and post-intervention. Our data was then compared to skeletal muscle transcriptomic data previously reported following sleep deprivation (24 h without sleep). RESULTS Gene set enrichment analysis (GSEA) indicated there was an increased enrichment of inflammatory and immune response related pathways in the SR group post-intervention. However, in the SR+EX group the direction of enrichment in these same pathways occurred in the opposite directions. Despite this, there were no significant changes at the individual gene level from pre- to post-intervention. A set of genes previously shown to be decreased with sleep deprivation was also decreased in the SR group, but increased in the SR+EX group. CONCLUSION The alterations to inflammatory and immune related pathways in skeletal muscle, following five nights of sleep restriction, provide insight regarding the transcriptional changes that underpin the detrimental effects associated with sleep loss. Performing three sessions of HIIE during sleep restriction attenuated some of these transcriptional changes. Overall, the transcriptional alterations observed with a moderate period of sleep restriction were less evident than previously reported changes following a period of sleep deprivation.
Collapse
Affiliation(s)
- Wentao Lin
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Nicholas J. Saner
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Human Integrative Physiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Xiquan Weng
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Nikeisha J. Caruana
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Javier Botella
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Jujiao Kuang
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Matthew J-C. Lee
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Nicholas A. Jamnick
- Metabolic Research Unit, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Nathan W. Pitchford
- School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Andrew Garnham
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | | | - Hao Chen
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, China
- *Correspondence: Hao Chen, ; David J. Bishop,
| | - David J. Bishop
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- *Correspondence: Hao Chen, ; David J. Bishop,
| |
Collapse
|
33
|
Leser JM, Harriot A, Buck HV, Ward CW, Stains JP. Aging, Osteo-Sarcopenia, and Musculoskeletal Mechano-Transduction. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:782848. [PMID: 36004321 PMCID: PMC9396756 DOI: 10.3389/fresc.2021.782848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022]
Abstract
The decline in the mass and function of bone and muscle is an inevitable consequence of healthy aging with early onset and accelerated decline in those with chronic disease. Termed osteo-sarcopenia, this condition predisposes the decreased activity, falls, low-energy fractures, and increased risk of co-morbid disease that leads to musculoskeletal frailty. The biology of osteo-sarcopenia is most understood in the context of systemic neuro-endocrine and immune/inflammatory alterations that drive inflammation, oxidative stress, reduced autophagy, and cellular senescence in the bone and muscle. Here we integrate these concepts to our growing understanding of how bone and muscle senses, responds and adapts to mechanical load. We propose that age-related alterations in cytoskeletal mechanics alter load-sensing and mechano-transduction in bone osteocytes and muscle fibers which underscores osteo-sarcopenia. Lastly, we examine the evidence for exercise as an effective countermeasure to osteo-sarcopenia.
Collapse
Affiliation(s)
| | | | | | | | - Joseph P. Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
34
|
Hool LC. Unravelling the mysteries of mitochondria in health and disease. J Physiol 2021; 599:3447-3448. [PMID: 34263447 DOI: 10.1113/jp281833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Livia C Hool
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia.,Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| |
Collapse
|
35
|
Atakan MM, Li Y, Koşar ŞN, Turnagöl HH, Yan X. Evidence-Based Effects of High-Intensity Interval Training on Exercise Capacity and Health: A Review with Historical Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7201. [PMID: 34281138 PMCID: PMC8294064 DOI: 10.3390/ijerph18137201] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022]
Abstract
Engaging in regular exercise results in a range of physiological adaptations offering benefits for exercise capacity and health, independent of age, gender or the presence of chronic diseases. Accumulating evidence shows that lack of time is a major impediment to exercise, causing physical inactivity worldwide. This issue has resulted in momentum for interval training models known to elicit higher enjoyment and induce adaptations similar to or greater than moderate-intensity continuous training, despite a lower total exercise volume. Although there is no universal definition, high-intensity interval exercise is characterized by repeated short bursts of intense activity, performed with a "near maximal" or "all-out" effort corresponding to ≥90% of maximal oxygen uptake or >75% of maximal power, with periods of rest or low-intensity exercise. Research has indicated that high-intensity interval training induces numerous physiological adaptations that improve exercise capacity (maximal oxygen uptake, aerobic endurance, anaerobic capacity etc.) and metabolic health in both clinical and healthy (athletes, active and inactive individuals without any apparent disease or disorder) populations. In this paper, a brief history of high-intensity interval training is presented, based on the novel findings of some selected studies on exercise capacity and health, starting from the early 1920s to date. Further, an overview of the mechanisms underlying the physiological adaptations in response to high-intensity interval training is provided.
Collapse
Affiliation(s)
- Muhammed Mustafa Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (H.H.T.)
| | - Yanchun Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100192, China
| | - Şükran Nazan Koşar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (H.H.T.)
| | - Hüseyin Hüsrev Turnagöl
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (H.H.T.)
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, Melbourne 8001, Australia;
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne 3021, Australia
| |
Collapse
|
36
|
Cardinale DA, Gejl KD, Petersen KG, Nielsen J, Ørtenblad N, Larsen FJ. Short-term intensified training temporarily impairs mitochondrial respiratory capacity in elite endurance athletes. J Appl Physiol (1985) 2021; 131:388-400. [PMID: 34110230 DOI: 10.1152/japplphysiol.00829.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The maintenance of healthy and functional mitochondria is the result of a complex mitochondrial turnover and herein quality-control program that includes both mitochondrial biogenesis and autophagy of mitochondria. The aim of this study was to examine the effect of an intensified training load on skeletal muscle mitochondrial quality control in relation to changes in mitochondrial oxidative capacity, maximal oxygen consumption, and performance in highly trained endurance athletes. Elite endurance athletes (n = 27) performed high-intensity interval exercise followed by moderate-intensity continuous exercise 3 days per week for 4 wk in addition to their usual volume of training. Mitochondrial oxidative capacity, abundance of mitochondrial proteins, markers of autophagy, and antioxidant capacity of skeletal muscle were assessed in skeletal muscle biopsies before and after the intensified training period. The intensified training period increased several autophagy markers suggesting an increased turnover of mitochondrial and cytosolic proteins. In permeabilized muscle fibers, mitochondrial respiration was ∼20% lower after training although some markers of mitochondrial density increased by 5%-50%, indicative of a reduced mitochondrial quality by the intensified training intervention. The antioxidative proteins UCP3, ANT1, and SOD2 were increased after training, whereas we found an inactivation of aconitase. In agreement with the lower aconitase activity, the amount of mitochondrial LON protease that selectively degrades oxidized aconitase was doubled. Together, this suggests that mitochondrial respiratory function is impaired during the initial recovery from a period of intensified endurance training whereas mitochondrial quality control is slightly activated in highly trained skeletal muscle.NEW & NOTEWORTHY We show that mitochondrial respiration is temporarily impaired after a period of intensified exercise training in elite athletes. In parallel, proteins involved in the antioxidative response including SOD2, UCP3, and ANT2 were upregulated, whereas mitochondrial biogenesis was slightly activated. Despite the mitochondrial respiratory impairments, physical performance was improved a few days after the intense training period.
Collapse
Affiliation(s)
- Daniele A Cardinale
- Åstrand Laboratory, Department of Physiology, Nutrition, and Biomechanics, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden.,Elite Performance Centre, Bosön-Swedish Sports Confederation, Lidingö, Sweden
| | - Kasper D Gejl
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Kristine G Petersen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Filip J Larsen
- Åstrand Laboratory, Department of Physiology, Nutrition, and Biomechanics, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| |
Collapse
|
37
|
Abstract
Gestational Diabetes Mellitus (GDM) is defined as any degree of glucose intolerance with onset or first recognition during pregnancy. Regular exercise is important for a healthy pregnancy and can lower the risk of developing GDM. For women with GDM, exercise is safe and can affect the pregnancy outcomes beneficially. A single exercise bout increases skeletal muscle glucose uptake, minimizing hyperglycemia. Regular exercise training promotes mitochondrial biogenesis, improves oxidative capacity, enhances insulin sensitivity and vascular function, and reduces systemic inflammation. Exercise may also aid in lowering the insulin dose in insulin-treated pregnant women. Despite these benefits, women with GDM are usually inactive or have poor participation in exercise training. Attractive individualized exercise programs that will increase adherence and result in optimal maternal and offspring benefits are needed. However, as women with GDM have a unique physiology, more attention is required during exercise prescription. This review (i) summarizes the cardiovascular and metabolic adaptations due to pregnancy and outlines the mechanisms through which exercise can improve glycemic control and overall health in insulin resistance states, (ii) presents the pathophysiological alterations induced by GDM that affect exercise responses, and (iii) highlights cardinal points of an exercise program for women with GDM.
Collapse
|