1
|
Frolov RV. Non-inactivating voltage-activated K+ conductances can increase photoreceptor signaling bandwidth beyond the bandwidth set by phototransduction. PLoS One 2023; 18:e0289466. [PMID: 37527242 PMCID: PMC10393161 DOI: 10.1371/journal.pone.0289466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023] Open
Abstract
Evolution produced a large variety of rhabdomeric photoreceptors in the compound eyes of insects. To study effects of morphological and electrophysiological differences on signal generation and modulation, we developed models of the cockroach and blow fly photoreceptors. The cockroach model included wide microvilli, large membrane capacitance and two voltage-activated K+ conductances. The blow fly model included narrow microvilli, small capacitance and two sustained voltage-activated K+ conductances. Our analysis indicated that membrane of even the narrowest microvilli of up to 3 μm long can be measured fully from the soma. Attenuation of microvillar quantum bump (QB)-like signals at the recording site in the soma increased with the signal amplitude in the microvillus, due to the decreasing driving force. However, conductance of the normal-sized QBs can be detected in the soma with minimal attenuation. Next, we investigated how interactions between the sustained voltage-activated K+ and light-induced conductances can shape the frequency response. The models were depolarized by either a current injection or light-induced current (LIC) and probed with inward currents kinetically approximating dark- or light-adapted QBs. By analyzing the resulting voltage impulse responses (IR), we found that: (1) sustained K+ conductance can shorten IRs, expanding the signaling bandwidth beyond that set by phototransduction; (2) voltage-dependencies of changes in IR durations have minima within the physiological voltage response range, depending on the activation kinetics of K+ conductance, the presence or absence of sustained LIC, and the kinetics of the probing current stimulus; and (3) sustained LIC lowers gain of IRs and can exert dissimilar effects on their durations. The first two findings were supported by experiments. It is argued that improvement of membrane response bandwidth by parametric interactions between passive, ligand-gated and voltage-dependent components of the membrane circuit can be a general feature of excitable cells that respond with graded voltage signals.
Collapse
Affiliation(s)
- Roman V Frolov
- Laboratory of Comparative Sensory Physiology, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
2
|
Morphological and electrophysiological specializations of photoreceptors in the love spot of hover fly Volucella pellucens. Vis Neurosci 2021; 38:E015. [PMID: 34635193 DOI: 10.1017/s0952523821000146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Studies of functional variability in the compound eyes of flies reveal superior temporal resolution of photoreceptors from the frontal areas that mediate binocular vision, and in males mate recognition and pursuit. However, the mechanisms underlying differences in performance are not known. Here, we investigated properties of hover fly Volucella pellucens photoreceptors from two regions of the retina, the frontal-dorsal "love spot" and the lateral one. Morphologically, the microvilli of the frontal-dorsal photoreceptors were relatively few in number per rhabdomere cross-section, short and narrow. In electrophysiological experiments involving stimulation with prolonged white-noise and natural time intensity series, frontal-dorsal photoreceptors demonstrated comparatively high corner frequencies and information rates. Investigation of possible mechanisms responsible for their superior performance revealed significant differences in the properties of quantum bumps, and, unexpectedly, relatively high absolute sensitivity of the frontal-dorsal photoreceptors. Analysis of light adaptation indicated that photoreceptors from two regions adapt similarly but because frontal-dorsal photoreceptors were depolarized much stronger by the same stimuli than the lateral photoreceptors, they reached a deeper state of adaptation associated with higher corner frequencies of light response. Recordings from the photoreceptor axons were characterized by spike-like events that can significantly expand the frequency response range. Seamless integration of spikes into the graded voltage responses was enabled by light adaptation mechanisms that accelerate kinetics and decrease duration of depolarizing light response transients.
Collapse
|
3
|
Electrophysiological adaptations of insect photoreceptors and their elementary responses to diurnal and nocturnal lifestyles. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:55-69. [PMID: 31858215 PMCID: PMC6995784 DOI: 10.1007/s00359-019-01392-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
Nocturnal vision in insects depends on the ability to reliably detect scarce photons. Nocturnal insects tend to have intrinsically more sensitive and larger rhabdomeres than diurnal species. However, large rhabdomeres have relatively high membrane capacitance (Cm), which can strongly low-pass filter the voltage bumps, widening and attenuating them. To investigate the evolution of photoreceptor signaling under near dark, we recorded elementary current and voltage responses from a number of species in six insect orders. We found that the gain of phototransduction increased with Cm, so that nocturnal species had relatively large and prolonged current bumps. Consequently, although the voltage bump amplitude correlated negatively with Cm, the strength of the total voltage signal increased. Importantly, the background voltage noise decreased strongly with increasing Cm, yielding a notable increase in signal-to-noise ratio for voltage bumps. A similar decrease in the background noise with increasing Cm was found in intracellular recordings in vivo. Morphological measurements of rhabdomeres were consistent with our Cm estimates. Our results indicate that the increased photoreceptor Cm in nocturnal insects is a major sensitivity-boosting and noise-suppressing adaptation. However, by requiring a compensatory increase in the gain of phototransduction, this adaptation comes at the expense of the signaling bandwidth.
Collapse
|
4
|
Gür B, Sporar K, Lopez-Behling A, Silies M. Distinct expression of potassium channels regulates visual response properties of lamina neurons in Drosophila melanogaster. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:273-287. [PMID: 31823004 DOI: 10.1007/s00359-019-01385-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/23/2019] [Accepted: 11/21/2019] [Indexed: 01/11/2023]
Abstract
The computational organization of sensory systems depends on the diversification of individual cell types with distinct signal-processing capabilities. The Drosophila visual system, for instance, splits information into channels with different temporal properties directly downstream of photoreceptors in the first-order interneurons of the OFF pathway, L2 and L3. However, the biophysical mechanisms that determine this specialization are largely unknown. Here, we show that the voltage-gated Ka channels Shaker and Shal contribute to the response properties of the major OFF pathway input L2. L3 calcium response kinetics postsynaptic to photoreceptors resemble the sustained calcium signals of photoreceptors, whereas L2 neurons decay transiently. Based on a cell-type-specific RNA-seq data set and endogenous protein tagging, we identified Shaker and Shal as the primary candidates to shape L2 responses. Using in vivo two-photon imaging of L2 calcium signals in combination with pharmacological and genetic perturbations of these Ka channels, we show that the wild-type Shaker and Shal function is to enhance L2 responses and cell-autonomously sharpen L2 kinetics. Our results reveal a role for Ka channels in determining the signal-processing characteristics of a specific cell type in the visual system.
Collapse
Affiliation(s)
- Burak Gür
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, 55128, Mainz, Germany
- European Neuroscience Institute Göttingen a Joint Initiative of the University Medical Center Göttingen, and the Max Planck Society, 37077, Göttingen, Germany
- International Max Planck Research School and Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) at the University of Göttingen, Göttingen, Germany
| | - Katja Sporar
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, 55128, Mainz, Germany
- European Neuroscience Institute Göttingen a Joint Initiative of the University Medical Center Göttingen, and the Max Planck Society, 37077, Göttingen, Germany
- International Max Planck Research School and Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) at the University of Göttingen, Göttingen, Germany
| | - Anne Lopez-Behling
- European Neuroscience Institute Göttingen a Joint Initiative of the University Medical Center Göttingen, and the Max Planck Society, 37077, Göttingen, Germany
| | - Marion Silies
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, 55128, Mainz, Germany.
- European Neuroscience Institute Göttingen a Joint Initiative of the University Medical Center Göttingen, and the Max Planck Society, 37077, Göttingen, Germany.
| |
Collapse
|
5
|
Heras FJH, Vähäsöyrinki M, Niven JE. Modulation of voltage-dependent K+ conductances in photoreceptors trades off investment in contrast gain for bandwidth. PLoS Comput Biol 2018; 14:e1006566. [PMID: 30399147 PMCID: PMC6239345 DOI: 10.1371/journal.pcbi.1006566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/16/2018] [Accepted: 10/16/2018] [Indexed: 01/20/2023] Open
Abstract
Modulation is essential for adjusting neurons to prevailing conditions and differing demands. Yet understanding how modulators adjust neuronal properties to alter information processing remains unclear, as is the impact of neuromodulation on energy consumption. Here we combine two computational models, one Hodgkin-Huxley type and the other analytic, to investigate the effects of neuromodulation upon Drosophila melanogaster photoreceptors. Voltage-dependent K+ conductances in these photoreceptors: (i) activate upon depolarisation to reduce membrane resistance and adjust bandwidth to functional requirements; (ii) produce negative feedback to increase bandwidth in an energy efficient way; (iii) produce shunt-peaking thereby increasing the membrane gain bandwidth product; and (iv) inactivate to amplify low frequencies. Through their effects on the voltage-dependent K+ conductances, three modulators, serotonin, calmodulin and PIP2, trade-off contrast gain against membrane bandwidth. Serotonin shifts the photoreceptor performance towards higher contrast gains and lower membrane bandwidths, whereas PIP2 and calmodulin shift performance towards lower contrast gains and higher membrane bandwidths. These neuromodulators have little effect upon the overall energy consumed by photoreceptors, instead they redistribute the energy invested in gain versus bandwidth. This demonstrates how modulators can shift neuronal information processing within the limitations of biophysics and energy consumption. The properties of neurons and neural circuits can be adjusted by neuromodulators, molecules that alter their ability to respond to future activity. Many neuromodulators target voltage-dependent ion channels, molecular components of cell membranes that influence the electrical activity of neurons. Because of their importance, the action of neuromodulators upon voltage-dependent ion channels and the subsequent changes in neural activity has been studied extensively. However, the properties of voltage-dependent ion channels also influence the energy that neural signalling consumes. Here we assess the impact of neuromodulators upon neuronal energy consumption. We use analytical and computational models to determine the impact of different neuromodulators upon the signalling properties and energy consumption of fly photoreceptors. Our models uncover previously unknown properties of voltage-dependent ion channels in fly photoreceptors, showing how they adjust the membrane properties, gain and bandwidth, to prevailing light levels. Neuromodulators alter voltage-dependent ion channel properties, adjusting the gain and bandwidth. Although neuromodulators do not substantially alter the overall energy consumption of photoreceptors, they redistribute energy investment in gain and bandwidth. Hence, our models provide novel insights into the functions that neuromodulators play in neurons and neural circuits.
Collapse
Affiliation(s)
- Francisco J. H. Heras
- Department of Zoology, University of Cambridge, Cambridge, UK
- * E-mail: (FJHH); (JEN)
| | | | - Jeremy E. Niven
- School of Life Sciences, University of Sussex, Falmer, Brighton, UK
- Centre for Computational Neuroscience and Robotics, University of Sussex, Falmer, Brighton, UK
- * E-mail: (FJHH); (JEN)
| |
Collapse
|
6
|
Frolov RV. On the role of transient depolarization-activated K + current in microvillar photoreceptors. J Gen Physiol 2018; 150:1287-1298. [PMID: 30049678 PMCID: PMC6122929 DOI: 10.1085/jgp.201711940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/11/2018] [Accepted: 06/28/2018] [Indexed: 01/30/2023] Open
Abstract
The transient K+ current carried by Shaker channels is thought to play a role in low-frequency signal amplification in Drosophila melanogaster photoreceptors. By combining patch-clamp recordings with a physiological variability analysis, Frolov reveals its role in high-frequency signal transmission. Photoreceptors in the compound eyes of most insect species express two functional types of depolarization-activated potassium currents: a transient A-type current (IA) and a sustained delayed rectifier current (IDR). The role of Shaker-dependent IA in Drosophila melanogaster photoreceptors was previously investigated by comparing intracellular recordings from Shaker and wild-type photoreceptors. Shaker channels were proposed to be involved in low-frequency signal amplification in dim light and reduction of the metabolic cost of information transfer. Here, I study the function of IA in photoreceptors of the cockroach Panchlora nivea using the patch-clamp method. Responses to Gaussian white-noise stimuli reveal that blockade of IA with 4-aminopyridine has no discernible effect on voltage responses or information processing. However, because open-channel blockers are often ineffective at low membrane potentials, no conclusion on the role of IA could be made on the basis of negative results of pharmacological tests. Using a relatively large set of control data, a physiological variability analysis was performed to discern the role of IA. Amplitudes of the IA window current and half-activation potentials correlate strongly with membrane corner frequencies, especially in dim light, indicating that IA facilitates transmission of higher frequencies. Consistent with voltage-dependent inactivation of IA, these correlations decrease with depolarization in brighter backgrounds. In contrast, correlations involving IDR are comparatively weak. Upon reexamining photoreceptor conductance in wild-type and Shaker strains of D. melanogaster, I find a biphasic voltage dependence near the resting potential in a minority of photoreceptors from both strains, indicating that Shaker channels are not crucial for early amplification of voltage signals in D. melanogaster photoreceptors. Leak current in Shaker photoreceptors at the level of the soma is not elevated. These results suggest a novel role for IA in facilitating transmission of high-frequency signals in microvillar photoreceptors.
Collapse
Affiliation(s)
- Roman V Frolov
- Faculty of Science, Nano and Molecular Materials Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
7
|
Rusanen J, Frolov R, Weckström M, Kinoshita M, Arikawa K. Non-linear amplification of graded voltage signals in the first-order visual interneurons of the butterfly Papilio xuthus. ACTA ACUST UNITED AC 2018; 221:jeb.179085. [PMID: 29712749 DOI: 10.1242/jeb.179085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/26/2018] [Indexed: 11/20/2022]
Abstract
Lamina monopolar cells (LMCs) are the first-order visual interneurons of insects and crustacea, primarily involved in achromatic vision. Here, we investigated morphological and electrophysiological properties of LMCs in the butterfly Papilio xuthus Using intracellular recording coupled with dye injection, we found two types of LMCs. Cells with roundish terminals near the distal surface of the medulla demonstrating no or small depolarizing spikes were classified as L1/2. Cells with elongated terminals deep in the medulla that showed prominent spiking were classified as L3/4. The majority of LMCs of both types had broad spectral sensitivities, peaking between 480 and 570 nm. Depending on the experimental conditions, spikes varied from small to action potential-like events, with their amplitudes and rates decreasing as stimulus brightness increased. When the eye was stimulated with naturalistic contrast-modulated time series, spikes were reliably triggered by high-contrast components of the stimulus. Spike-triggered average functions showed that spikes emphasize rapid membrane depolarizations. Our results suggest that spikes are mediated by voltage-activated Na+ channels, which are mainly inactivated at rest. Strong local minima in the coherence functions of spiking LMCs indicate that the depolarizing conductance contributes to the amplification of graded responses even when detectable spikes are not evoked. We propose that the information transfer strategies of spiking LMCs change with light intensity. In dim light, both graded voltage signals and large spikes are used together without mutual interference, as a result of separate transmission bandwidths. In bright light, signals are non-linearly amplified by the depolarizing conductance in the absence of detectable spikes.
Collapse
Affiliation(s)
- Juha Rusanen
- Nano and Molecular Materials Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, Oulu 90014, Finland
| | - Roman Frolov
- Nano and Molecular Materials Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, Oulu 90014, Finland
| | - Matti Weckström
- Nano and Molecular Materials Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, Oulu 90014, Finland
| | - Michiyo Kinoshita
- Laboratory of Neuroethology, Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Kentaro Arikawa
- Laboratory of Neuroethology, Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
8
|
Heras FJH, Anderson J, Laughlin SB, Niven JE. Voltage-dependent K + channels improve the energy efficiency of signalling in blowfly photoreceptors. J R Soc Interface 2017; 14:rsif.2016.0938. [PMID: 28381642 DOI: 10.1098/rsif.2016.0938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Voltage-dependent conductances in many spiking neurons are tuned to reduce action potential energy consumption, so improving the energy efficiency of spike coding. However, the contribution of voltage-dependent conductances to the energy efficiency of analogue coding, by graded potentials in dendrites and non-spiking neurons, remains unclear. We investigate the contribution of voltage-dependent conductances to the energy efficiency of analogue coding by modelling blowfly R1-6 photoreceptor membrane. Two voltage-dependent delayed rectifier K+ conductances (DRs) shape the membrane's voltage response and contribute to light adaptation. They make two types of energy saving. By reducing membrane resistance upon depolarization they convert the cheap, low bandwidth membrane needed in dim light to the expensive high bandwidth membrane needed in bright light. This investment of energy in bandwidth according to functional requirements can halve daily energy consumption. Second, DRs produce negative feedback that reduces membrane impedance and increases bandwidth. This negative feedback allows an active membrane with DRs to consume at least 30% less energy than a passive membrane with the same capacitance and bandwidth. Voltage-dependent conductances in other non-spiking neurons, and in dendrites, might be organized to make similar savings.
Collapse
Affiliation(s)
| | - John Anderson
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Simon B Laughlin
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Jeremy E Niven
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
9
|
Honkanen A, Immonen EV, Salmela I, Heimonen K, Weckström M. Insect photoreceptor adaptations to night vision. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0077. [PMID: 28193821 DOI: 10.1098/rstb.2016.0077] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 01/25/2023] Open
Abstract
Night vision is ultimately about extracting information from a noisy visual input. Several species of nocturnal insects exhibit complex visually guided behaviour in conditions where most animals are practically blind. The compound eyes of nocturnal insects produce strong responses to single photons and process them into meaningful neural signals, which are amplified by specialized neuroanatomical structures. While a lot is known about the light responses and the anatomical structures that promote pooling of responses to increase sensitivity, there is still a dearth of knowledge on the physiology of night vision. Retinal photoreceptors form the first bottleneck for the transfer of visual information. In this review, we cover the basics of what is known about physiological adaptations of insect photoreceptors for low-light vision. We will also discuss major enigmas of some of the functional properties of nocturnal photoreceptors, and describe recent advances in methodologies that may help to solve them and broaden the field of insect vision research to new model animals.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- Anna Honkanen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Esa-Ville Immonen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Iikka Salmela
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Kyösti Heimonen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Matti Weckström
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| |
Collapse
|
10
|
Heras FJH, Laughlin SB, Niven JE. Shunt peaking in neural membranes. J R Soc Interface 2017; 13:rsif.2016.0719. [PMID: 27807272 DOI: 10.1098/rsif.2016.0719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/11/2016] [Indexed: 11/12/2022] Open
Abstract
Capacitance limits the bandwidth of engineered and biological electrical circuits because it determines the gain-bandwidth product (GBWP). With a fixed GBWP, bandwidth can only be improved by decreasing gain. In engineered circuits, an inductance reduces this limitation through shunt peaking but no equivalent mechanism has been reported for biological circuits. We show that in blowfly photoreceptors a voltage-dependent K+ conductance, the fast delayed rectifier (FDR), produces shunt peaking thereby increasing bandwidth without reducing gain. Furthermore, the FDR's time constant is close to the value that maximizes the photoreceptor GBWP while reducing distortion associated with the creation of a wide-band filter. Using a model of the honeybee drone photoreceptor, we also show that a voltage-dependent Na+ conductance can produce shunt peaking. We argue that shunt peaking may be widespread in graded neurons and dendrites.
Collapse
Affiliation(s)
| | - Simon B Laughlin
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Jeremy E Niven
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
11
|
Katz B, Gutorov R, Rhodes-Mordov E, Hardie RC, Minke B. Electrophysiological Method for Whole-cell Voltage Clamp Recordings from Drosophila Photoreceptors. J Vis Exp 2017. [PMID: 28654039 PMCID: PMC5608386 DOI: 10.3791/55627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Whole-cell voltage clamp recordings from Drosophila melanogaster photoreceptors have revolutionized the field of invertebrate visual transduction, enabling the use of D. melanogaster molecular genetics to study inositol-lipid signaling and Transient Receptor Potential (TRP) channels at the single-molecule level. A handful of labs have mastered this powerful technique, which enables the analysis of the physiological responses to light under highly controlled conditions. This technique allows control over the intracellular and extracellular media; the membrane voltage; and the fast application of pharmacological compounds, such as a variety of ionic or pH indicators, to the intra- and extracellular media. With an exceptionally high signal-to-noise ratio, this method enables the measurement of dark spontaneous and light-induced unitary currents (i.e. spontaneous and quantum bumps) and macroscopic Light-induced Currents (LIC) from single D. melanogaster photoreceptors. This protocol outlines, in great detail, all the key steps necessary to perform this technique, which includes both electrophysiological and optical recordings. The fly retina dissection procedure for the attainment of intact and viable ex vivo isolated ommatidia in the bath chamber is described. The equipment needed to perform whole-cell and fluorescence imaging measurements are also detailed. Finally, the pitfalls in using this delicate preparation during extended experiments are explained.
Collapse
Affiliation(s)
- Ben Katz
- Department of Medical Neurobiology, Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University
| | - Rita Gutorov
- Department of Medical Neurobiology, Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University
| | - Elisheva Rhodes-Mordov
- Department of Medical Neurobiology, Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University
| | - Roger C Hardie
- Department of Physiology, Development and Neuroscience, University of Cambridge;
| | - Baruch Minke
- Department of Medical Neurobiology, Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University;
| |
Collapse
|
12
|
Song Z, Juusola M. A biomimetic fly photoreceptor model elucidates how stochastic adaptive quantal sampling provides a large dynamic range. J Physiol 2017; 595:5439-5456. [PMID: 28369994 PMCID: PMC5556150 DOI: 10.1113/jp273614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/10/2017] [Indexed: 11/08/2022] Open
Abstract
Light intensities (photons s-1 μm-2 ) in a natural scene vary over several orders of magnitude from shady woods to direct sunlight. A major challenge facing the visual system is how to map such a large dynamic input range into its limited output range, so that a signal is neither buried in noise in darkness nor saturated in brightness. A fly photoreceptor has achieved such a large dynamic range; it can encode intensity changes from single to billions of photons, outperforming man-made light sensors. This performance requires powerful light adaptation, the neural implementation of which has only become clear recently. A computational fly photoreceptor model, which mimics the real phototransduction processes, has elucidated how light adaptation happens dynamically through stochastic adaptive quantal information sampling. A Drosophila R1-R6 photoreceptor's light sensor, the rhabdomere, has 30,000 microvilli, each of which stochastically samples incoming photons. Each microvillus employs a full G-protein-coupled receptor signalling pathway to adaptively transduce photons into quantum bumps (QBs, or samples). QBs then sum the macroscopic photoreceptor responses, governed by four quantal sampling factors (limitations): (i) the number of photon sampling units in the cell structure (microvilli), (ii) sample size (QB waveform), (iii) latency distribution (time delay between photon arrival and emergence of a QB), and (iv) refractory period distribution (time for a microvillus to recover after a QB). Here, we review how these factors jointly orchestrate light adaptation over a large dynamic range.
Collapse
Affiliation(s)
- Zhuoyi Song
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mikko Juusola
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.,State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
13
|
Juusola M, Song Z. How a fly photoreceptor samples light information in time. J Physiol 2017; 595:5427-5437. [PMID: 28233315 PMCID: PMC5556158 DOI: 10.1113/jp273645] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/17/2017] [Indexed: 11/08/2022] Open
Abstract
A photoreceptor's information capture is constrained by the structure and function of its light‐sensitive parts. Specifically, in a fly photoreceptor, this limit is set by the number of its photon sampling units (microvilli), constituting its light sensor (the rhabdomere), and the speed and recoverability of their phototransduction reactions. In this review, using an insightful constructionist viewpoint of a fly photoreceptor being an ‘imperfect’ photon counting machine, we explain how these constraints give rise to adaptive quantal information sampling in time, which maximises information in responses to salient light changes while antialiasing visual signals. Interestingly, such sampling innately determines also why photoreceptors extract more information, and more economically, from naturalistic light contrast changes than Gaussian white‐noise stimuli, and we explicate why this is so. Our main message is that stochasticity in quantal information sampling is less noise and more processing, representing an ‘evolutionary adaptation’ to generate a reliable neural estimate of the variable world.
![]()
Collapse
Affiliation(s)
- Mikko Juusola
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 T2N, UK.,National Key laboratory of Cognitive Neuroscience and Learning, Beijing, Beijing Normal University, Beijing, 100875, China
| | - Zhuoyi Song
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 T2N, UK
| |
Collapse
|
14
|
Frolov RV. Current advances in invertebrate vision: insights from patch-clamp studies of photoreceptors in apposition eyes. J Neurophysiol 2016; 116:709-23. [PMID: 27250910 DOI: 10.1152/jn.00288.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022] Open
Abstract
Traditional electrophysiological research on invertebrate photoreceptors has been conducted in vivo, using intracellular recordings from intact compound eyes. The only exception used to be Drosophila melanogaster, which was exhaustively studied by both intracellular recording and patch-clamp methods. Recently, several patch-clamp studies have provided new information on the biophysical properties of photoreceptors of diverse insect species, having both apposition and neural superposition eyes, in the contexts of visual ecology, behavior, and ontogenesis. Here, I discuss these and other relevant results, emphasizing differences between fruit flies and other species, between photoreceptors of diurnal and nocturnal insects, properties of distinct functional types of photoreceptors, postembryonic developmental changes, and relationships between voltage-gated potassium channels and visual ecology.
Collapse
Affiliation(s)
- Roman V Frolov
- Department of Physics, Division of Biophysics, University of Oulu, Oulun Yliopisto, Finland
| |
Collapse
|
15
|
Rusanen J, Weckström M. Frequency-selective transmission of graded signals in large monopolar neurons of blowfly Calliphora vicina compound eye. J Neurophysiol 2016; 115:2052-64. [PMID: 26843598 PMCID: PMC4869513 DOI: 10.1152/jn.00747.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/30/2016] [Indexed: 11/22/2022] Open
Abstract
The functional roles of voltage-gated K(+)(Kv) channels in visual system interneurons remain poorly studied. We have addressed this problem in the large monopolar cells (LMCs) of the blowfly Calliphora vicina, using intracellular recordings and mathematical modeling methods. Intracellular recordings were performed in two cellular compartments: the synaptic zone, which receives input from photoreceptors, and the axon, which provides graded potential output to the third-order visual neurons. Biophysical properties of Kv conductances in the physiological voltage range were examined in the dark with injections of current in the discontinuous current-clamp mode. Putative LMC types 1/2 and 3 (L1/2 and L3, respectively) had dissimilar Kv channelomes: L1/2 displayed a prominent inactivating Kv conductance in the axon, while L3 cells were characterized by a sustained delayed-rectifier Kv conductance. To study the propagation of voltage signals, the data were incorporated into the previously developed mathematical model. We demonstrate that the complex interaction between the passive membrane properties, Kv conductances, and the neuronal geometry leads to a resonance-like filtering of signals with peak frequencies of transmission near 15 and 40 Hz for L3 and L1/2, respectively. These results point to distinct physiological roles of different types of LMCs.
Collapse
Affiliation(s)
- Juha Rusanen
- Centre for Molecular Materials Research, Biophysics, University of Oulu, Oulu, Finland
| | - Matti Weckström
- Centre for Molecular Materials Research, Biophysics, University of Oulu, Oulu, Finland
| |
Collapse
|
16
|
Frolov R, Immonen EV, Weckström M. Visual ecology and potassium conductances of insect photoreceptors. J Neurophysiol 2016; 115:2147-57. [PMID: 26864762 DOI: 10.1152/jn.00795.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/06/2016] [Indexed: 01/22/2023] Open
Abstract
Voltage-activated potassium channels (Kv channels) in the microvillar photoreceptors of arthropods are responsible for repolarization and regulation of photoreceptor signaling bandwidth. On the basis of analyzing Kv channels in dipteran flies, it was suggested that diurnal, rapidly flying insects predominantly express sustained K(+) conductances, whereas crepuscular and nocturnally active animals exhibit strongly inactivating Kv conductances. The latter was suggested to function for minimizing cellular energy consumption. In this study we further explore the evolutionary adaptations of the photoreceptor channelome to visual ecology and behavior by comparing K(+) conductances in 15 phylogenetically diverse insects, using patch-clamp recordings from dissociated ommatidia. We show that rapid diurnal flyers such as the blowfly (Calliphora vicina) and the honeybee (Apis mellifera) express relatively large noninactivating Kv conductances, conforming to the earlier hypothesis in Diptera. Nocturnal and/or slow-moving species do not in general exhibit stronger Kv conductance inactivation in the physiological membrane voltage range, but the photoreceptors in species that are known to rely more on vision behaviorally had higher densities of sustained Kv conductances than photoreceptors of less visually guided species. No statistically significant trends related to visual performance could be identified for the rapidly inactivating Kv conductances. Counterintuitively, strong negative correlations were observed between photoreceptor capacitance and specific membrane conductance for both sustained and inactivating fractions of Kv conductance, suggesting insignificant evolutionary pressure to offset negative effects of high capacitance on membrane filtering with increased conductance.
Collapse
Affiliation(s)
- Roman Frolov
- Department of Physics, Division of Biophysics, University of Oulu, Oulun Yliopisto, Finland
| | - Esa-Ville Immonen
- Department of Physics, Division of Biophysics, University of Oulu, Oulun Yliopisto, Finland
| | - Matti Weckström
- Department of Physics, Division of Biophysics, University of Oulu, Oulun Yliopisto, Finland
| |
Collapse
|
17
|
Novakovic A, Marinko M, Vranic A, Jankovic G, Milojevic P, Stojanovic I, Nenezic D, Ugresic N, Kanjuh V, Yang Q, He GW. Mechanisms underlying the vasorelaxation of human internal mammary artery induced by (-)-epicatechin. Eur J Pharmacol 2015; 762:306-312. [PMID: 26049011 DOI: 10.1016/j.ejphar.2015.05.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/03/2015] [Accepted: 05/21/2015] [Indexed: 02/05/2023]
Abstract
Evidences have suggested that flavanol compound (-)-epicatechin is associated with reduced risk of cardiovascular diseases. One of the mechanisms of its cardioprotective effect is vasodilation. However, the exact mechanisms by which (-)-epicatechin causes vasodilation are not yet clearly defined. The aims of the present study were to investigate relaxant effect of flavanol (-)-epicatechin on the isolated human internal mammary artery (HIMA) and to determine the mechanisms underlying its vasorelaxation. Our results showed that (-)-epicatechin induced a concentration-dependent relaxation of HIMA rings pre-contracted by phenylephrine. Among the K(+) channel blockers, 4-aminopyridine (4-AP) and margatoxin, blockers of voltage-gated K(+) (KV) channels, and glibenclamide, a selective ATP-sensitive K(+) (KATP) channels blocker, partly inhibited the (-)-epicatechin-induced relaxation of HIMA, while iberiotoxin, a most selective blocker of large conductance Ca(2+)-activated K(+) channels (BKCa), almost completely inhibited the relaxation. In rings pre-contracted by 80mM K(+), (-)-epicatechin induced partial relaxation of HIMA, whereas in Ca(2+)-free medium, (-)-epicatechin completely relaxed HIMA rings pre-contracted by phenylephrine and caffeine. Finally, thapsigargin, a sarcoplasmic reticulum Ca(2+)-ATPase inhibitor, slightly antagonized (-)-epicatechin-induced relaxation of HIMA pre-contracted by phenylephrine. These results suggest that (-)-epicatechin induces strong endothelium-independent relaxation of HIMA pre-contracted by phenylephrine whilst 4-AP- and margatoxin-sensitive KV channels, as well as BKCa and KATP channels, located in vascular smooth muscle, mediate this relaxation. In addition, it seems that (-)-epicatechin could inhibit influx of extracellular Ca(2+), interfere with intracellular Ca(2+) release and re-uptake by the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Aleksandra Novakovic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.
| | - Marija Marinko
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Vranic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Goran Jankovic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Predrag Milojevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Ivan Stojanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Dragoslav Nenezic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Nenad Ugresic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | | - Qin Yang
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong; TEDA International Cardiovascular Hospital, Tianjin, China
| | - Guo-Wei He
- TEDA International Cardiovascular Hospital, Tianjin, China
| |
Collapse
|
18
|
Marinko M, Novakovic A, Nenezic D, Stojanovic I, Milojevic P, Jovic M, Ugresic N, Kanjuh V, Yang Q, He GW. Nicorandil directly and cyclic GMP-dependently opens K+ channels in human bypass grafts. J Pharmacol Sci 2015; 128:59-64. [PMID: 25850381 DOI: 10.1016/j.jphs.2015.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/08/2015] [Accepted: 03/10/2015] [Indexed: 02/07/2023] Open
Abstract
As we previously demonstrated the role of different K(+) channels in the action of nicorandil on human saphenous vein (HSV) and human internal mammary artery (HIMA), this study aimed to analyse the contribution of the cGMP pathway in nicorandil-induced vasorelaxation and to determine the involvement of cGMP in the K(+) channel-activating effect of nicorandil. An inhibitor of soluble guanylate cyclase (GC), ODQ, significantly inhibited nicorandil-induced relaxation, while ODQ plus glibenclamide, a selective ATP-sensitive K(+) (KATP) channel inhibitor, produced a further inhibition of both vessels. In HSV, ODQ in combination with 4-aminopyridine, a blocker of voltage-gated K(+) (KV) channels, did not modify the concentration-response to nicorandil compared with ODQ, whereas in HIMA, ODQ plus iberiotoxin, a selective blocker of large-conductance Ca(2+)-activated K(+) (BKCa) channels, produced greater inhibition than ODQ alone. We showed that the cGMP pathway plays a significant role in the vasorelaxant effect of nicorandil on HSV and HIMA. It seems that nicorandil directly opens KATP channels in both vessels and BKCa channels in HIMA, although it is possible that stimulation of GC contributes to KATP channels activation in HIMA. Contrary, the activation of KV channels in HSV is probably due to GC activation and increased levels of cGMP.
Collapse
Affiliation(s)
- Marija Marinko
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Novakovic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.
| | - Dragoslav Nenezic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Ivan Stojanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Predrag Milojevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Miomir Jovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Nenad Ugresic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | | - Qin Yang
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong; TEDA International Cardiovascular Hospital, Medical College, Nankai University, Tianjin, China
| | - Guo-Wei He
- TEDA International Cardiovascular Hospital, Medical College, Nankai University, Tianjin, China; Providence Heart & Vascular Institute, Albert Starr Academic Center, Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
19
|
Frolov R, Weckström M. Developmental changes in biophysical properties of photoreceptors in the common water strider (Gerris lacustris): better performance at higher cost. J Neurophysiol 2014; 112:913-22. [PMID: 24872534 DOI: 10.1152/jn.00239.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although the dependence of invertebrate photoreceptor biophysical properties on visual ecology has already been investigated in some cases, developmental aspects have largely been ignored due to the general research emphasis on holometabolous insects. Here, using the patch-clamp method, we examined changes in biophysical properties and performance of photoreceptors in the common water strider Gerris lacustris during postembryonic development. We identified two types of peripheral photoreceptors, green and blue sensitive. Whole cell capacitance (a measure of cell size) of blue photoreceptors was significantly higher than the capacitance of green photoreceptors (69 ± 20 vs. 43 ± 12 pF, respectively). Most of the measured morphological and biophysical parameters changed with development. Photoreceptor capacitance increased progressively and was positively correlated with sensitivity to light, magnitudes and densities of light-induced (LIC) and delayed rectifier K(+) (IDR) currents, membrane corner frequency, and maximal information rate [Spearman rank correlation coefficients: 0.70 (sensitivity), 0.79 (LIC magnitude), 0.79 (IDR magnitude), 0.48 (corner frequency), and 0.57 (information rate)]. Transient K(+) current increased to a smaller extent, while its density decreased. We found no significant changes in the properties of single photon responses or levels of light-induced depolarization, the latter indicating a balanced channelome expansion associated with IDR expression. However, the dramatic ∼7.6-fold increase in IDR from first instars to adults indicated a development-related rise in the metabolic cost of information. In conclusion, this study provides novel insights into functional photoreceptor adaptations with development and illustrates remarkable variability in patterns of postembryonic retinal development in hemimetabolous insects with dissimilar visual ecologies and behaviors.
Collapse
Affiliation(s)
- Roman Frolov
- Department of Physics, Division of Biophysics, University of Oulu, Oulun Yliopisto, Finland
| | - Matti Weckström
- Department of Physics, Division of Biophysics, University of Oulu, Oulun Yliopisto, Finland
| |
Collapse
|
20
|
Rudolf J, Meglič A, Zupančič G, Belušič G. Development and plasticity of mitochondria and electrical properties of the cell membrane in blowfly photoreceptors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:669-80. [PMID: 24788333 DOI: 10.1007/s00359-014-0912-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
Abstract
Blowfly photoreceptors are highly energy demanding sensory systems. Their information processing efficiency is enabled by the high temporal resolution of the cell membrane, requiring heavy metabolic support by the mitochondria. We studied the developmental changes of the mitochondrial apparatus and electrical properties of the photoreceptor membrane in the white eyed Calliphora vicina Chalky. Using in vivo microspectrophotometry and Western blot analysis, we found an age-dependent increase in the concentration of mitochondrial pigments. The maximal change occurred during the first week. The age-related changes were smaller in dark-bred than in light-bred flies. The mitochondrial pigment content increased after the switch from dark to light rearing and decreased after the switch from light to dark rearing. The electrical parameters of the photoreceptors were investigated with intracellular recordings. The resting membrane resistance and time constant decreased significantly after eclosion. The decrease was again most significant during the first week of adult life, paralleled with changes in the Na/K pump-dependent hyperpolarizing afterpotential. We conclude that the photoreceptor mitochondria exhibit remarkable ontogenetic and phenotypic plasticity, because the quantity of mitochondrial pigments tightly follows the development of the cell membrane as well as the energy demands of the photoreceptors under different rearing conditions.
Collapse
Affiliation(s)
- Jerneja Rudolf
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
21
|
Frolov RV, Immonen EV, Weckström M. Performance of blue- and green-sensitive photoreceptors of the cricket Gryllus bimaculatus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:209-19. [DOI: 10.1007/s00359-013-0879-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 12/23/2013] [Accepted: 12/27/2013] [Indexed: 12/11/2022]
|
22
|
Membrane filtering properties of the bumblebee (Bombus terrestris) photoreceptors across three spectral classes. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:629-39. [DOI: 10.1007/s00359-013-0814-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/20/2013] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
|
23
|
Postembryonic developmental changes in photoreceptors of the stick insect Carausius morosus enhance the shift to an adult nocturnal life-style. J Neurosci 2013; 32:16821-31. [PMID: 23175835 DOI: 10.1523/jneurosci.2612-12.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Optimization of sensory processing during development can be studied by using photoreceptors of hemimetabolous insects (with incomplete metamorphosis) as a research model. We have addressed this topic in the stick insect Carausius morosus, where retinal growth after hatching is accompanied by a diurnal-to-nocturnal shift in behavior, by recording from photoreceptors of first instar nymphs and adult animals using the patch-clamp method. In the nymphs, ommatidia were smaller and photoreceptors were on average 15-fold less sensitive to light than in adults. The magnitude of A-type K(+) current did not increase but the delayed rectifier doubled in adults compared with nymphs, the K(+) current densities being greater in the nymphs. By contrast, the density of light-induced current did not increase, although its magnitude increased 8.6-fold, probably due to the growth of microvilli. Nymph photoreceptors performed poorly, demonstrating a peak information rate (IR) of 2.9 ± 0.7 bits/s versus 34.1 ± 5.0 bits/s in adults in response to white-noise stimulation. Strong correlations were found between photoreceptor capacitance (a proxy for cell size) and IR, and between light sensitivity and IR, with larger and more sensitive photoreceptors performing better. In adults, IR peaked at light intensities matching irradiation from the evening sky. Our results indicate that biophysical properties of photoreceptors at each age stage and visual behavior are interdependent and that developmental improvement in photoreceptor performance may facilitate the switch from the diurnal to the safer nocturnal lifestyle. This also has implications for how photoreceptors achieve optimal performance.
Collapse
|
24
|
Heimonen K, Immonen EV, Frolov RV, Salmela I, Juusola M, Vähäsöyrinki M, Weckström M. Signal coding in cockroach photoreceptors is tuned to dim environments. J Neurophysiol 2012; 108:2641-52. [DOI: 10.1152/jn.00588.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In dim light, scarcity of photons typically leads to poor vision. Nonetheless, many animals show visually guided behavior with dim environments. We investigated the signaling properties of photoreceptors of the dark active cockroach ( Periplaneta americana) using intracellular and whole-cell patch-clamp recordings to determine whether they show selective functional adaptations to dark. Expectedly, dark-adapted photoreceptors generated large and slow responses to single photons. However, when light adapted, responses of both phototransduction and the nontransductive membrane to white noise (WN)-modulated stimuli remained slow with corner frequencies ∼20 Hz. This promotes temporal integration of light inputs and maintains high sensitivity of vision. Adaptive changes in dynamics were limited to dim conditions. Characteristically, both step and frequency responses stayed effectively unchanged for intensities >1,000 photons/s/photoreceptor. A signal-to-noise ratio (SNR) of the light responses was transiently higher at frequencies <5 Hz for ∼5 s after light onset but deteriorated to a lower value upon longer stimulation. Naturalistic light stimuli, as opposed to WN, evoked markedly larger responses with higher SNRs at low frequencies. This allowed realistic estimates of information transfer rates, which saturated at ∼100 bits/s at low-light intensities. We found, therefore, selective adaptations beneficial for vision in dim environments in cockroach photoreceptors: large amplitude of single-photon responses, constant high level of temporal integration of light inputs, saturation of response properties at low intensities, and only transiently efficient encoding of light contrasts. The results also suggest that the sources of the large functional variability among different photoreceptors reside mostly in phototransduction processes and not in the properties of the nontransductive membrane.
Collapse
Affiliation(s)
- K. Heimonen
- University of Oulu, Department of Physics, Oulu, Finland
| | - E.-V. Immonen
- University of Oulu, Department of Physics, Oulu, Finland
| | - R. V. Frolov
- University of Oulu, Department of Physics, Oulu, Finland
| | - I. Salmela
- University of Oulu, Department of Physics, Oulu, Finland
| | - M. Juusola
- University of Sheffield, Department of Biomedical Science, Sheffield, United Kingdom; and
- State Key Laboratory of Cognitive Neuroscience, Beijing Normal University, Beijing, China
| | | | - M. Weckström
- University of Oulu, Department of Physics, Oulu, Finland
| |
Collapse
|
25
|
Salmela I, Immonen EV, Frolov R, Krause S, Krause Y, Vähäsöyrinki M, Weckström M. Cellular elements for seeing in the dark: voltage-dependent conductances in cockroach photoreceptors. BMC Neurosci 2012; 13:93. [PMID: 22867024 PMCID: PMC3472236 DOI: 10.1186/1471-2202-13-93] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The importance of voltage-dependent conductances in sensory information processing is well-established in insect photoreceptors. Here we present the characterization of electrical properties in photoreceptors of the cockroach (Periplaneta americana), a nocturnal insect with a visual system adapted for dim light. RESULTS Whole-cell patch-clamped photoreceptors had high capacitances and input resistances, indicating large photosensitive rhabdomeres suitable for efficient photon capture and amplification of small photocurrents at low light levels. Two voltage-dependent potassium conductances were found in the photoreceptors: a delayed rectifier type (KDR) and a fast transient inactivating type (KA). Activation of KDR occurred during physiological voltage responses induced by light stimulation, whereas KA was nearly fully inactivated already at the dark resting potential. In addition, hyperpolarization of photoreceptors activated a small-amplitude inward-rectifying (IR) current mediated at least partially by chloride. Computer simulations showed that KDR shapes light responses by opposing the light-induced depolarization and speeding up the membrane time constant, whereas KA and IR have a negligible role in the majority of cells. However, larger KA conductances were found in smaller and rapidly adapting photoreceptors, where KA could have a functional role. CONCLUSIONS The relative expression of KA and KDR in cockroach photoreceptors was opposite to the previously hypothesized framework for dark-active insects, necessitating further comparative work on the conductances. In general, the varying deployment of stereotypical K+ conductances in insect photoreceptors highlights their functional flexibility in neural coding.
Collapse
Affiliation(s)
- Iikka Salmela
- Department of Physics, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
26
|
Novakovic A, Pavlovic M, Milojevic P, Stojanovic I, Nenezic D, Jovic M, Ugresic N, Kanjuh V, Yang Q, He GW. Different potassium channels are involved in relaxation of rat renal artery induced by P1075. Basic Clin Pharmacol Toxicol 2012; 111:24-30. [PMID: 22225832 DOI: 10.1111/j.1742-7843.2011.00855.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 12/16/2011] [Indexed: 11/28/2022]
Abstract
The ATP-sensitive K(+) channels opener (K(ATP)CO), P1075 [N-cyano-N'-(1,1-dimethylpropyl)-N″-3-pyridylguanidine], has been shown to cause relaxation of various isolated animal and human blood vessels by opening of vascular smooth muscle ATP-sensitive K(+) (K(ATP)) channels. In addition to the well-known effect on the opening of K(ATP) channels, it has been reported that vasorelaxation induced by some of the K(ATP)COs includes some other K(+) channel subtypes. Given that there is still no information on other types of K(+) channels possibly involved in the mechanism of relaxation induced by P1075, this study was designed to examine the effects of P1075 on the rat renal artery with endothelium and with denuded endothelium and to define the contribution of different K(+) channel subtypes in the P1075 action on this blood vessel. Our results show that P1075 induced a concentration-dependent relaxation of rat renal artery rings pre-contracted by phenylephrine. Glibenclamide, a selective K(ATP) channels inhibitor, partly antagonized the relaxation of rat renal artery induced by P1075. Tetraethylammonium (TEA), a non-selective inhibitor of Ca(2+)-activated K(+) channels, as well as iberiotoxin, a most selective blocker of large-conductance Ca(2+) -activated K(+) (BK(Ca)) channels, did not abolish the effect of P1075 on rat renal artery. In contrast, a non-selective blocker of voltage-gated K(+) (K(V)) channels, 4-aminopyridine (4-AP), as well as margatoxin, a potent inhibitor of K(V)1.3 channels, caused partial inhibition of the P1075-induced relaxation of rat renal artery. In addition, in this study, P1075 relaxed contractions induced by 20 mM K(+) , but had no effect on contractions induced by 80 mM K(+). Our results showed that P1075 induced strong endothelium-independent relaxation of rat renal artery. It seems that K(ATP), 4-AP- and margatoxin-sensitive K(+) channels located in vascular smooth muscle mediated the relaxation of rat renal artery induced by P1075.
Collapse
Affiliation(s)
- Aleksandra Novakovic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Serbia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Takalo J, Piironen A, Honkanen A, Lempeä M, Aikio M, Tuukkanen T, Vähäsöyrinki M. A fast and flexible panoramic virtual reality system for behavioural and electrophysiological experiments. Sci Rep 2012; 2:324. [PMID: 22442752 PMCID: PMC3310229 DOI: 10.1038/srep00324] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 02/27/2012] [Indexed: 11/09/2022] Open
Abstract
Ideally, neuronal functions would be studied by performing experiments with unconstrained animals whilst they behave in their natural environment. Although this is not feasible currently for most animal models, one can mimic the natural environment in the laboratory by using a virtual reality (VR) environment. Here we present a novel VR system based upon a spherical projection of computer generated images using a modified commercial data projector with an add-on fish-eye lens. This system provides equidistant visual stimulation with extensive coverage of the visual field, high spatio-temporal resolution and flexible stimulus generation using a standard computer. It also includes a track-ball system for closed-loop behavioural experiments with walking animals. We present a detailed description of the system and characterize it thoroughly. Finally, we demonstrate the VR system’s performance whilst operating in closed-loop conditions by showing the movement trajectories of the cockroaches during exploratory behaviour in a VR forest.
Collapse
|
28
|
Novakovic A, Pavlovic M, Stojanovic I, Milojevic P, Babic M, Ristic S, Ugresic N, Kanjuh V, Yang Q, He GW. Different K+ channels are involved in relaxation of arterial and venous graft induced by nicorandil. J Cardiovasc Pharmacol 2011; 58:602-608. [PMID: 22146404 DOI: 10.1097/fjc.0b013e31823003f2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The drug nicorandil is a vasodilator approved for the treatment of angina. In addition to its well-known effect on the opening of ATP-sensitive K (KATP) channels, nicorandil-induced vasorelaxation also involves the opening of Ca-activated K channels. The aim of this study was to investigate the effects of nicorandil on the isolated human internal mammary artery (HIMA) and the human saphenous vein (HSV) and to define the contribution of different K channel subtypes in the nicorandil action on these arterial and venous grafts. Our results show that nicorandil induced a concentration-dependent relaxation of HSV and HIMA rings precontracted by phenylephrine. Glibenclamide, a selective KATP channels inhibitor, partially inhibited the response to nicorandil in both HSV and HIMA. Iberiotoxin, a most selective blocker of large-conductance Ca-activated K (BKCa) channels, partly antagonized relaxation of HIMA. A nonselective blocker of voltage-gated K channels, 4-aminopyridine caused partial inhibition of the nicorandil-induced relaxation of HSV but did not antagonize relaxation of HIMA induced by nicorandil. Margatoxin, a potent inhibitor of KV1.3 channels, did not abolish the effect of nicorandil on HSV and HIMA. Our results showed that nicorandil induced strong endothelium-independent relaxation of HSV and HIMA contracted by phenylephrine. It seems that KATP and 4-aminopyridine-sensitive K channels located in the smooth muscle of HSV mediated relaxation induced by nicorandil. In addition, KATP and BKCa channels are probably involved in the nicorandil action on HIMA.
Collapse
Affiliation(s)
- Aleksandra Novakovic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Skorupski P, Chittka L. Photoreceptor processing speed and input resistance changes during light adaptation correlate with spectral class in the bumblebee, Bombus impatiens. PLoS One 2011; 6:e25989. [PMID: 22046251 PMCID: PMC3203109 DOI: 10.1371/journal.pone.0025989] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 09/15/2011] [Indexed: 11/18/2022] Open
Abstract
Colour vision depends on comparison of signals from photoreceptors with different spectral sensitivities. However, response properties of photoreceptor cells may differ in ways other than spectral tuning. In insects, for example, broadband photoreceptors, with a major sensitivity peak in the green region of the spectrum (>500 nm), drive fast visual processes, which are largely blind to chromatic signals from more narrowly-tuned photoreceptors with peak sensitivities in the blue and UV regions of the spectrum. In addition, electrophysiological properties of the photoreceptor membrane may result in differences in response dynamics of photoreceptors of similar spectral class between species, and different spectral classes within a species. We used intracellular electrophysiological techniques to investigate response dynamics of the three spectral classes of photoreceptor underlying trichromatic colour vision in the bumblebee, Bombus impatiens, and we compare these with previously published data from a related species, Bombus terrestris. In both species, we found significantly faster responses in green, compared with blue- or UV-sensitive photoreceptors, although all 3 photoreceptor types are slower in B. impatiens than in B. terrestris. Integration times for light-adapted B. impatiens photoreceptors (estimated from impulse response half-width) were 11.3 ± 1.6 ms for green photoreceptors compared with 18.6 ± 4.4 ms and 15.6 ± 4.4 for blue and UV, respectively. We also measured photoreceptor input resistance in dark- and light-adapted conditions. All photoreceptors showed a decrease in input resistance during light adaptation, but this decrease was considerably larger (declining to about 22% of the dark value) in green photoreceptors, compared to blue and UV (41% and 49%, respectively). Our results suggest that the conductances associated with light adaptation are largest in green photoreceptors, contributing to their greater temporal processing speed. We suggest that the faster temporal processing of green photoreceptors is related to their role in driving fast achromatic visual processes.
Collapse
Affiliation(s)
- Peter Skorupski
- Biological and Experimental Psychology Group, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.
| | | |
Collapse
|
30
|
Extracellular potentials modify the transfer of information at photoreceptor output synapses in the blowfly compound eye. J Neurosci 2010; 30:9557-66. [PMID: 20631184 DOI: 10.1523/jneurosci.6122-09.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Signal processing in fly photoreceptors and visual interneurons takes place with graded potentials. Photoreceptors drive large monopolar cells (LMCs) with synapses that, like their counterparts in vertebrates, have a high gain and introduce strong spatiotemporal antagonism (Laughlin et al., 1987) that implements predictive coding (Srinivasan et al., 1982). The synapses are contained in compartments, lamina cartridges, whose extracellular potentials change with illumination (Shaw, 1984). We described these extracellular field potentials (FPs) using a novel permeabilization technique that converts neurons into extracellular recording probes. Having characterized extracellular FPs, we went on to study them using conventional microelectrodes. Extracellular space in a cartridge is electrically isolated from the body cavity and retina [input resistance (R(in)) = 6.0 MOmega in dark], and light adaptation increases this isolation (R(in) = 7.8 MOmega). In the dark, the extracellular space is 30 mV hyperpolarized compared with retina, and this promotes tonic synaptic activity by depolarizing the synaptic terminals. Illumination depolarizes the extracellular space, and voltage-clamp studies suggest that the postsynaptic chloride current in LMCs contributes to this light response. The presynaptic transmembrane potential in the photoreceptor axon was estimated by subtracting the FP from intracellular recordings. By backing off the presynaptic input, the FP can reset the synaptic operating range, produce response transients, and contribute to predictive coding by subtracting redundant low frequencies.
Collapse
|
31
|
Zheng L, Nikolaev A, Wardill TJ, O'Kane CJ, de Polavieja GG, Juusola M. Network adaptation improves temporal representation of naturalistic stimuli in Drosophila eye: I dynamics. PLoS One 2009; 4:e4307. [PMID: 19180196 PMCID: PMC2628724 DOI: 10.1371/journal.pone.0004307] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 12/23/2008] [Indexed: 12/17/2022] Open
Abstract
Because of the limited processing capacity of eyes, retinal networks must adapt constantly to best present the ever changing visual world to the brain. However, we still know little about how adaptation in retinal networks shapes neural encoding of changing information. To study this question, we recorded voltage responses from photoreceptors (R1–R6) and their output neurons (LMCs) in the Drosophila eye to repeated patterns of contrast values, collected from natural scenes. By analyzing the continuous photoreceptor-to-LMC transformations of these graded-potential neurons, we show that the efficiency of coding is dynamically improved by adaptation. In particular, adaptation enhances both the frequency and amplitude distribution of LMC output by improving sensitivity to under-represented signals within seconds. Moreover, the signal-to-noise ratio of LMC output increases in the same time scale. We suggest that these coding properties can be used to study network adaptation using the genetic tools in Drosophila, as shown in a companion paper (Part II).
Collapse
Affiliation(s)
- Lei Zheng
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Anton Nikolaev
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Trevor J. Wardill
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Cahir J. O'Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Gonzalo G. de Polavieja
- Department of Theoretical Physics, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto ‘Nicolás Cabrera’ de Física de Materiales, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mikko Juusola
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- State Key Laboratory of Cognitive Neuroscience, Beijing Normal University, Beijing, China
- * E-mail:
| |
Collapse
|
32
|
Krause Y, Krause S, Huang J, Liu CH, Hardie RC, Weckström M. Light-dependent modulation of Shab channels via phosphoinositide depletion in Drosophila photoreceptors. Neuron 2008; 59:596-607. [PMID: 18760696 DOI: 10.1016/j.neuron.2008.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 05/08/2008] [Accepted: 07/11/2008] [Indexed: 11/26/2022]
Abstract
The Drosophila phototransduction cascade transforms light into depolarizations that are further shaped by activation of voltage-dependent K+ (Kv) channels. In whole-cell recordings of isolated photoreceptors, we show that light selectively modulated the delayed rectifier (Shab) current. Shab currents were increased by light with similar kinetics to the light-induced current itself (latency approximately 20 ms), recovering to control values with a t(1/2) of approximately 60 s in darkness. Genetic disruption of PLCbeta4, responsible for light-induced PIP(2) hydrolysis, abolished this light-dependent modulation. In mutants of CDP-diaclyglycerol synthase (cds(1)), required for PIP(2) resynthesis, the modulation became irreversible, but exogenously applied PIP(2) restored reversibility. The modulation was accurately and reversibly mimicked by application of PIP(2) to heterologously expressed Shab channels in excised inside-out patches. The results indicate a functionally implemented mechanism of Kv channel modulation by PIP(2) in photoreceptors, which enables light-dependent regulation of signal processing by direct coupling to the phototransduction cascade.
Collapse
Affiliation(s)
- Yani Krause
- University of Oulu, Department of Physical Sciences, Division of Biophysics, 90014 Oulun Yliopisto, Finland
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Information capture by photoreceptors ultimately limits the quality of visual processing in the brain. Using conventional sharp microelectrodes, we studied how locust photoreceptors encode random (white-noise, WN) and naturalistic (1/f stimuli, NS) light patterns in vivo and how this coding changes with mean illumination and ambient temperature. We also examined the role of their plasma membrane in shaping voltage responses. We found that brightening or warming increase and accelerate voltage responses, but reduce noise, enabling photoreceptors to encode more information. For WN stimuli, this was accompanied by broadening of the linear frequency range. On the contrary, with NS the signaling took place within a constant bandwidth, possibly revealing a ‘preference’ for inputs with 1/f statistics. The faster signaling was caused by acceleration of the elementary phototransduction current - leading to bumps - and their distribution. The membrane linearly translated phototransduction currents into voltage responses without limiting the throughput of these messages. As the bumps reflected fast changes in membrane resistance, the data suggest that their shape is predominantly driven by fast changes in the light-gated conductance. On the other hand, the slower bump latency distribution is likely to represent slower enzymatic intracellular reactions. Furthermore, the Q10s of bump duration and latency distribution depended on light intensity. Altogether, this study suggests that biochemical constraints imposed upon signaling change continuously as locust photoreceptors adapt to environmental light and temperature conditions.
Collapse
Affiliation(s)
- Olivier Faivre
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Mikko Juusola
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Niven JE, Anderson JC, Laughlin SB. Fly photoreceptors demonstrate energy-information trade-offs in neural coding. PLoS Biol 2007; 5:e116. [PMID: 17373859 PMCID: PMC1828148 DOI: 10.1371/journal.pbio.0050116] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 02/02/2007] [Indexed: 11/20/2022] Open
Abstract
Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster, D. virilis, Calliphora vicina, and Sarcophaga carnaria, we measured the rates at which homologous R1–6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, ∼20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from ∼200 bits s−1 in D. melanogaster to ∼1,000 bits s−1 in S. carnaria. Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput. Many animals show striking reductions or enlargements of sense organs or brain regions according to their lifestyle and habitat. For example, cave dwelling or subterranean animals often have reduced eyes and brain regions involved in visual processing. These differences suggest that although there are benefits to possessing a particular sense organ or brain region, there are also significant costs that shape the evolution of the nervous system, but little is known about this trade-off, particularly at the level of single neurons. We measured the trade-off between performance and energetic costs by recording electrical signals from single photoreceptors in different fly species. We discovered that photoreceptors in the blowfly transmit five times more information than the smaller photoreceptors of the diminutive fruit fly Drosophila. The blowfly pays a high price for better performance; its photoreceptor uses ten times more energy to code the same quantity of information. We conclude that, for basic biophysical reasons, neuronal energy consumption increases much more steeply than performance, and this intensifies the evolutionary pressure to reduce performance to the minimum required for adequate function. Thus the biophysical properties of sensory neurons help to explain why the sense organs and brains of different species vary in size and performance. Evidence from single-neuron recordings supports the law of diminishing returns, i.e., high performance eyes in larger, faster flies have less efficient photoreceptors than those of their small, sluggish counterparts.
Collapse
Affiliation(s)
- Jeremy E Niven
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - John C Anderson
- Biology and Environmental Science, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Simon B Laughlin
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Burton BG. Adaptation of single photon responses in photoreceptors of the housefly, Musca domestica: a novel spectral analysis. Vision Res 2006; 46:622-35. [PMID: 16321420 DOI: 10.1016/j.visres.2005.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 05/29/2005] [Accepted: 09/20/2005] [Indexed: 11/15/2022]
Abstract
The absorption of a photon by a photoreceptor triggers a small voltage fluctuation termed the 'bump'. Here, in the housefly, I introduce the bispectrum of photoreceptor noise to characterise the bump under dim light. The bispectrum provides explicit phase information and is not contaminated by Gaussian background noise. Over the photon rates examined (<10(4) s(-1)), I show that bumps are minimum-phase, noise spectra are little affected by natural variations in bump shape and bumps adapt such that amplitude is approximately proportional to duration squared. In the dark exists a 'dark event', which I suggest represents spontaneous activation of G-protein.
Collapse
|
36
|
Vähäsöyrinki M, Niven JE, Hardie RC, Weckström M, Juusola M. Robustness of neural coding in Drosophila photoreceptors in the absence of slow delayed rectifier K+ channels. J Neurosci 2006; 26:2652-60. [PMID: 16525044 PMCID: PMC6675149 DOI: 10.1523/jneurosci.3316-05.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 01/16/2006] [Accepted: 01/16/2006] [Indexed: 11/21/2022] Open
Abstract
Determining the contribution of a single type of ion channel to information processing within a neuron requires not only knowledge of the properties of the channel but also understanding of its function within a complex system. We studied the contribution of slow delayed rectifier K+ channels to neural coding in Drosophila photoreceptors by combining genetic and electrophysiological approaches with biophysical modeling. We show that the Shab gene encodes the slow delayed rectifier K+ channel and identify a novel voltage-gated K+ conductance. Analysis of the in vivo recorded voltage responses together with their computer-simulated counterparts demonstrates that Shab channels in Drosophila photoreceptors attenuate the light-induced depolarization and prevent response saturation in bright light. We also show that reduction of the Shab conductance in mutant photoreceptors is accompanied by a proportional drop in their input resistance. This reduction in input resistance partially restores the signaling range, sensitivity, and dynamic coding of light intensities of Shab photoreceptors to those of the wild-type counterparts. However, loss of the Shab channels may affect both the energy efficiency of coding and the processing of natural stimuli. Our results highlight the role of different types of voltage-gated K+ channels in the performance of the photoreceptors and provide insight into functional robustness against the perturbation of specific ion channel composition.
Collapse
|
37
|
van Hateren JH, Snippe HP. Phototransduction in primate cones and blowfly photoreceptors: different mechanisms, different algorithms, similar response. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 192:187-97. [PMID: 16249881 DOI: 10.1007/s00359-005-0060-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 09/14/2005] [Accepted: 09/18/2005] [Indexed: 11/28/2022]
Abstract
Phototransduction in primate cones is compared with phototransduction in blowfly photoreceptor cells. Phototransduction in the two cell types utilizes not only different molecular mechanisms, but also different signal processing steps, producing range compression, contrast constancy, and an intensity-dependent integration time. The dominant processing step in the primate cone is a strongly compressive nonlinearity due to cGMP hydrolysis by phosphodiesterase. In the blowfly photoreceptor a considerable part of the range compression is performed by the nonlinear membrane of the cell. Despite these differences, both photoreceptor cell types are similarly effective in compressing the wide range of naturally occurring intensities, and in converting intensity variations into contrast variations. A direct comparison of the responses to a natural time series of intensities, simulated in the cone and measured in the blowfly photoreceptor, shows that the responses are quite similar.
Collapse
Affiliation(s)
- J H van Hateren
- Department of Neurobiophysics, University of Groningen, Nijenborgh 4, NL-9747 AG, Groningen, The Netherlands.
| | | |
Collapse
|
38
|
Chrachri A, Nelson L, Williamson R. Whole-cell recording of light-evoked photoreceptor responses in a slice preparation of the cuttlefish retina. Vis Neurosci 2005; 22:359-70. [PMID: 16079010 DOI: 10.1017/s0952523805223106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 03/23/2005] [Indexed: 11/06/2022]
Abstract
A new tissue slice preparation of the cuttlefish eye is described that permits patch-clamp recordings to be acquired from intact photoreceptors during stimulation of the retina with controlled light flashes. Whole-cell recordings using this preparation, from the retinas of very young Sepia officinalis demonstrated that the magnitude, latency, and kinetics of the flash-induced photocurrent are closely dependent on the magnitude of the flash intensity. Depolarizing steps to voltages more positive than -40 mV, from a membrane holding potential of -60 mV, induced a transient inward current followed by a larger, more sustained outward current in these early-stage photoreceptors. The latter current resembled the delayed rectifier (I(K)) already identified in many other nerve cells, including photoreceptors. This current was activated at -30 mV from a holding potential of -60 mV, had a sustained time course, and was blocked in a dose-dependent manner by tetraethylammonium chloride (TEA). The smaller, transient, inward current appeared at potentials more positive than -50 mV, reached peak amplitude at -30 mV and decreased with further depolarization. This current was characterized as the sodium current (I(Na)) on the basis that it was inactivated at holding potentials above -40 mV, was blocked by tetrodotoxin (TTX) and was insensitive to cobalt. Intracellular perfusion of the photoreceptors, via the patch pipette, demonstrated that U-73122 and heparin blocked the evoked photocurrent in a dose-dependent manner, suggesting the involvement of the phospholipase C (PLC) and inositol 1,4,5-triphosphate (InsP(3)), respectively, in the phototransduction cascade. Perfusion with cyclic GMP increased significantly the evoked photocurrent, while the inclusion of phorbol-12,13-dibutyrate reduced significantly the evoked photocurrent, supporting the involvement of cGMP and the diacylglycerol (DAG) pathways, respectively, in the cuttlefish transduction process.
Collapse
|
39
|
Xu P, Abshire P. Threshold detection of intensity flashes in the blowfly photoreceptor by an ideal observer. Neurocomputing 2005. [DOI: 10.1016/j.neucom.2004.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Hornstein EP, Verweij J, Schnapf JL. Electrical coupling between red and green cones in primate retina. Nat Neurosci 2004; 7:745-50. [PMID: 15208634 DOI: 10.1038/nn1274] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Accepted: 05/25/2004] [Indexed: 11/09/2022]
Abstract
Color vision in humans and other Old World primates depends on differences in the absorption properties of three spectral types of cone photoreceptors. Primate cones are linked by gap junctions, but it is not known to what extent the various cone types are electrically coupled through these junctions. Here we show, by using a combination of dye labeling and electrical recordings in the retina of macaque monkeys, that neighboring red and green cones are homologously and heterologously coupled by nonrectifying gap junctions. This indiscriminate coupling blurs the differences between red- and green-cone signals. The average junctional conductance is about 650 pS. Our calculations indicate that coupling between red and green cones may cause a modest decrease in human color discrimination with a comparable increase in luminance discrimination.
Collapse
Affiliation(s)
- Eric P Hornstein
- Department of Ophthalmology, University of California, 10 Kirkham Street, San Francisco, California 94143-0730, USA.
| | | | | |
Collapse
|
41
|
Niven JE, Vähäsöyrinki M, Juusola M, French AS. Interactions Between Light-Induced Currents, Voltage-Gated Currents, and Input Signal Properties inDrosophilaPhotoreceptors. J Neurophysiol 2004; 91:2696-706. [PMID: 14749305 DOI: 10.1152/jn.01163.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Voltage-gated K+channels are important in neuronal signaling, but little is known of their interactions with receptor currents or their behavior during natural stimulation. We used nonparametric and parametric nonlinear modeling of experimental responses, combined with Hodgkin–Huxley style simulation, to examine the roles of K+channels in forming the responses of wild-type (WT) and Shaker mutant ( Sh14) Drosophila photoreceptors to naturalistic stimulus sequences. Naturalistic stimuli gave results different from those of similar experiments with white noise stimuli. Sh14responses were larger and faster than WT. Simulation indicated that, in addition to eliminating the Shaker current, the mutation changed the current flowing through light-dependent channels [light-induced current (LIC)] and increased the delayed rectifier current. Part of the change in LIC could be attributed to direct feedback from the voltage-sensitive ion channels to the light-sensitive channels by the membrane potential. However, we argue that other changes occur in the light detecting machinery of Sh14mutants, possibly during photoreceptor development.
Collapse
Affiliation(s)
- Jeremy E Niven
- Physiological Laboratory, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | | | | | | |
Collapse
|
42
|
Wolfram V, Juusola M. Impact of rearing conditions and short-term light exposure on signaling performance in Drosophila photoreceptors. J Neurophysiol 2004; 92:1918-27. [PMID: 15152014 DOI: 10.1152/jn.00201.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The amount of visual information an animal can extract from its environment is ultimately limited by the signaling performance of its photoreceptors. To maximize their performance, photoreceptors must be able to accommodate large changes in input caused by the dynamic properties of the visual environment and the animal's own behavior. This is likely to require a range of adaptation mechanisms operating over multiple time scales. Using intracellular recordings, we investigated the effects of developmental light rearing conditions and the effects of 2 h light or dark exposure prior the experiment on the signaling performance of adult Drosophila melanogaster photoreceptors. We show that light-rearing amplifies photoreceptors' voltage responses to light contrast changes by >or =20% and accelerates them by 3 ms. We argue that these differences mostly reflect changes in the timing of the early phototransduction reactions, some of which are persistent. However, being born and nurtured in certain lighting conditions does not set an ultimate limit for the signaling performance of Drosophila photoreceptors. Two-hour light exposure prior to the experiment can improve the information capacity of dark-reared photoreceptors close to the values of light-reared photoreceptors by reducing voltage noise. This effect may originate from plastic changes in the utilization of phototransduction proteins and ion channels.
Collapse
Affiliation(s)
- Verena Wolfram
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, UK
| | | |
Collapse
|
43
|
Oberwinkler J. Calcium homeostasis in fly photoreceptor cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:539-83. [PMID: 12596943 DOI: 10.1007/978-1-4615-0121-3_32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In fly photoreceptor cells, two processes dominate the Ca2+ homeostasis: light-induced Ca2+ influx through members of the TRP family of ion channels, and Ca2+ extrusion by Na+/Ca2+ exchange. Ca2+ release from intracellular stores is quantitatively insignificant. Both, the light-activated channels and the Ca2+-extruding exchangers are located in or close to the rhabdomeric microvilli, small protrusions of the plasma membrane. The microvilli also contain the molecular machinery necessary for generating quantum bumps, short electrical responses caused by the absorption of a single photon. Due to this anatomical arrangement, the light-induced Ca2+ influx results in two separate Ca2+ signals that have different functions: a global, homogeneous increase of the Ca2+ concentration in the cell body, and rapid but large amplitude Ca2+ transients in the microvilli. The global rise of the Ca2+ concentration mediates light adaptation, via regulatory actions on the phototransduction cascade, the voltage-gated K+ channels and small pigment granules controlling the light intensity. The local Ca2+ transients in the microvilli are responsible for shaping the quantum bumps into fast, all-or-nothing events. They achieve this by facilitating strongly the phototransduction cascade at early stages ofthe light response and subsequently inhibiting it. Many molecular targets of these feedback mechanisms have been identified and characterized due to the availability of numerous Drosophila mutant showing defects in the phototransduction.
Collapse
|
44
|
Kurtz R, Egelhaaf M. Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life. Mol Neurobiol 2003; 27:13-32. [PMID: 12668900 DOI: 10.1385/mn:27:1:13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Physiological mechanisms of neuronal information processing have been shaped during evolution by a continual interplay between organisms and their sensory surroundings. Thus, when asking for the functional significance of such mechanisms, the natural conditions under which they operate must be considered. This has been done successfully in several studies that employ sensory stimulation under in vivo conditions. These studies address the question of how physiological mechanisms within neurons are properly adjusted to the characteristics of natural stimuli and to the demands imposed on the system being studied. Results from diverse animal models show how neurons exploit natural stimulus statistics efficiently by utilizing specific filtering capacities. Mechanisms that allow neurons to adapt to the currently relevant range from an often immense stimulus spectrum are outlined, and examples are provided that suggest that information transfer between neurons is shaped by the system-specific computational tasks in the behavioral context.
Collapse
Affiliation(s)
- Rafael Kurtz
- Lehrstuhl für Neurobiologie, Fakultät für Biologie, Universität Bielefeld, Germany.
| | | |
Collapse
|
45
|
Granados-Soto V, Argüelles CF, Ortiz MI. The peripheral antinociceptive effect of resveratrol is associated with activation of potassium channels. Neuropharmacology 2002; 43:917-23. [PMID: 12384177 DOI: 10.1016/s0028-3908(02)00130-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The possible participation of K(+) channels in the antinociceptive action induced by resveratrol was assessed in the 1% formalin test. Local administration of resveratrol produced a dose-dependent antinociception in the second phase of the test. The antinociception produced by resveratrol was due to a local action as its administration in the contralateral paw was not active. Local pretreatment of the injured paw with glibenclamide, tolbutamide or glipizide (ATP-sensitive K(+) channel inhibitors) did not modify resveratrol-induced antinociception. In contrast, charybdotoxin and apamin (large and small conductance Ca(2+) activated-K(+) channel blockers, respectively), 4-aminopyridine or tetraethylammonium (voltage-dependent K(+) channel inhibitors) dose-dependently prevented resveratrol-induced antinociception. Local peripheral administration of glibenclamide, but not charybdotoxin or apamin, significantly reduced the antinociceptive effect produced by peripheral morphine (positive control). At the highest effective doses, none of the drugs used induced behavioral side effects as revealed by the evaluation of stepping, righting, corneal and pinna reflexes. In addition, when given alone, none of the inhibitors modified the nociceptive behavior induced by 1% formalin. The results suggest that resveratrol opens large and small conductance Ca(2+)-activated K(+) channels, but not ATP-sensitive K(+) channels, in order to produce its peripheral antinociceptive effect in the formalin test. The participation of voltage-dependent K(+) channels was also suggested, but since non-selective inhibitors were used the data awaits further confirmation.
Collapse
Affiliation(s)
- V Granados-Soto
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, DF, Mexico.
| | | | | |
Collapse
|
46
|
Abstract
Second-order neurons L1-3 of the locust ocellar pathway make inhibitory synapses with each other. Although the synapses transmit graded potentials, transmission depresses rapidly and completely so that a synapse only transmits when the presynaptic terminal depolarizes rapidly. The rate at which a presynaptic neuron depolarizes determines the rate at which a postsynaptic neuron hyperpolarizes, and neurotransmitter is only released during a fixed 2 ms long period. Consequently, the amplitude of a postsynaptic potential depends on the rate rather than the amplitude of a presynaptic depolarization. Following a postsynaptic potential, a synapse recovers from depression over about a second. The synapse recovers from depression even if the presynaptic terminal is held depolarized.
Collapse
Affiliation(s)
- Peter J Simmons
- School of Biology and School of Neurosciences and Psychiatry, University of Newcastle Upon Tyne, Framlington Place, Upon Tyne NE2 4HH, Newcastle, United Kingdom.
| |
Collapse
|
47
|
Mao BQ, MacLeish PR, Victor JD. Relation between potassium-channel kinetics and the intrinsic dynamics in isolated retinal bipolar cells. J Comput Neurosci 2002; 12:147-63. [PMID: 12142548 DOI: 10.1023/a:1016563028021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Characterization of the intrinsic dynamics of isolated retinal bipolar cells by a whole-cell patch-clamp technique combined with estimation of effective impulse responses across a range of mean injected currents reveals strikingly adaptive behavior. At resting potential, bipolar cells' effective impulse response is slow, high gain, and low pass. Depolarization speeds up response, decreases gain, and, in most cells, induces bandpass behavior. This adaptive behavior involves two K(+) currents. The delayed-rectifier accounts for the observed gain reduction, speed increase, and bandpass behavior. The A-channel further shortens the impulse responses but suppresses bandpass features. Computer simulations of model neurons with a delayed-rectifier and varying A-channel conductances reveal that impulse responses largely reflect the flux of electrical charge through the two K(+) channels. The A-channel broadens the frequency response and preempts the action of the delayed-rectifier, thereby reducing the associated bandpass features. Admixtures of the two K(+) channels produce the observed variety of dynamics of retinal bipolar cells.
Collapse
Affiliation(s)
- Bu-Qing Mao
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
48
|
Simmons PJ. Signal processing in a simple visual system: the locust ocellar system and its synapses. Microsc Res Tech 2002; 56:270-80. [PMID: 11877802 DOI: 10.1002/jemt.10030] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The neurons with the widest axons that carry information into a locust brain belong to L-neurons, the large, second-order neurons of the ocelli. L-neurons play roles in flight control and boosting visual sensitivity. Their morphology is simple, and their axons convey graded potentials from the ocellus with little decrement to the brain, which makes them good subjects in which to study transmission of graded potentials. L-neurons are very sensitive to changes in light, due to an abnormally high gain in the sign inverting synapses they receive from photoreceptors. Adaptation ensures that L-neurons signal contrast in a light signal when average light intensity changes, and that their responses depend on the speed of change in light. Neurons L1-3 make excitatory output synapses with third-order neurons and with L4-5. These synapses transmit tonically, but are unable to convey hyperpolarising signals about large increases in light. Graded rebound spikes enhance depolarising responses. L1-3 also make reciprocal inhibitory synapses with each other and transmission at these decrements so rapidly that it normally requires a presynaptic spike. The resolution with which graded potentials can be transferred has been studied at the inhibitory synapses, and is limited by intrinsic variability in the mechanism that determines neurotransmitter release. Electron microscopy has shown that each excitatory connection made from an L-neuron to a postsynaptic partner consists of thousands of discrete synaptic contacts, in which individual dense-staining bars in the presynaptic neuron are associated with clouds of vesicles. Acetylcholine is likely to be a neurotransmitter released by L-neurons.
Collapse
Affiliation(s)
- Peter J Simmons
- Department of Neuroscience, University of Newcastle upon Tyne, Newcastle Upon Tyne, NE2 4HH, United Kingdom.
| |
Collapse
|
49
|
Abshire PA, Andreou AG. A communication channel model for information transmission in the blowfly photoreceptor. Biosystems 2001; 62:113-33. [PMID: 11595323 DOI: 10.1016/s0303-2647(01)00141-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biological photoreceptors transduce and communicate information about visual stimuli to other neurons through a series of signal transformations among physical states such as concentration of a chemical species, current, or the number of open ion channels. We present a communication channel model to quantify the transmission and degradation of visual information in the blowfly photoreceptor cell. The model is a cascade of linear transfer functions and noise sources that are derived from fundamental principles whenever possible, and whose parameters are estimated from physiological data. We employ the model to calculate the information capacity of blowfly phototransduction; our results compare favorably with estimates of the capacity derived from experimental measurements by de Ruyter van Steveninck and Laughlin (Nature 379 (1996) 642-645) and Juusola (J. Gen. Physiol. 104 (1994) 593-621). The model predicts that photon shot noise and ion channel noise are the dominant noise sources that limits information transmission in the blowfly photoreceptor.
Collapse
Affiliation(s)
- P A Abshire
- Department of Electrical and Computer Engineering, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | |
Collapse
|
50
|
Wicher D, Walther C, Wicher C. Non-synaptic ion channels in insects--basic properties of currents and their modulation in neurons and skeletal muscles. Prog Neurobiol 2001; 64:431-525. [PMID: 11301158 DOI: 10.1016/s0301-0082(00)00066-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insects are favoured objects for studying information processing in restricted neuronal networks, e.g. motor pattern generation or sensory perception. The analysis of the underlying processes requires knowledge of the electrical properties of the cells involved. These properties are determined by the expression pattern of ionic channels and by the regulation of their function, e.g. by neuromodulators. We here review the presently available knowledge on insect non-synaptic ion channels and ionic currents in neurons and skeletal muscles. The first part of this article covers genetic and structural informations, the localization of channels, their electrophysiological and pharmacological properties, and known effects of second messengers and modulators such as neuropeptides or biogenic amines. In a second part we describe in detail modulation of ionic currents in three particularly well investigated preparations, i.e. Drosophila photoreceptor, cockroach DUM (dorsal unpaired median) neuron and locust jumping muscle. Ion channel structures are almost exclusively known for the fruitfly Drosophila, and most of the information on their function has also been obtained in this animal, mainly based on mutational analysis and investigation of heterologously expressed channels. Now the entire genome of Drosophila has been sequenced, it seems almost completely known which types of channel genes--and how many of them--exist in this animal. There is much knowledge of the various types of channels formed by 6-transmembrane--spanning segments (6TM channels) including those where four 6TM domains are joined within one large protein (e.g. classical Na+ channel). In comparison, two TM channels and 4TM (or tandem) channels so far have hardly been explored. There are, however, various well characterized ionic conductances, e.g. for Ca2+, Cl- or K+, in other insect preparations for which the channels are not yet known. In some of the larger insects, i.e. bee, cockroach, locust and moth, rather detailed information has been established on the role of ionic currents in certain physiological or behavioural contexts. On the whole, however, knowledge of non-synaptic ion channels in such insects is still fragmentary. Modulation of ion currents usually involves activation of more or less elaborate signal transduction cascades. The three detailed examples for modulation presented in the second part indicate, amongst other things, that one type of modulator usually leads to concerted changes of several ion currents and that the effects of different modulators in one type of cell may overlap. Modulators participate in the adaptive changes of the various cells responsible for different physiological or behavioural states. Further study of their effects on the single cell level should help to understand how small sets of cells cooperate in order to produce the appropriate output.
Collapse
Affiliation(s)
- D Wicher
- Sächsische Akademie der Wissenschaften zu Leipzig, Arbeitsgruppe Neurohormonale Wirkungsmechanismen, Erbertstr. 1, 07743, Jena, Germany.
| | | | | |
Collapse
|