1
|
Kaplan JP, Ye W, Kileen H, Liang Z, Tran A, Chi J, Yang C, Cohen P, Liman ER. Epitope Tagging with Genome Editing in Mice Reveals That the Proton Channel OTOP1 Is Apically Localized and Not Restricted to Type III "Sour" Taste Receptor Cells. J Neurosci 2025; 45:e1560242024. [PMID: 39592233 PMCID: PMC11800744 DOI: 10.1523/jneurosci.1560-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The gustatory system allows animals to assess the nutritive value and safety of foods prior to ingestion. The first step in gustation is the interaction of taste stimuli with one or more specific sensory receptors that are generally believed to be present on the apical surface of the taste receptor cells. However, this assertion is rarely tested. We recently identified OTOP1 as a proton channel and showed that it is required for taste response to acids (sour) and ammonium. Here, we examined the cellular and subcellular localization of OTOP1 by tagging the endogenous OTOP1 protein with an N-terminal HA epitope (HA-OTOP1). Using both male and female HA-OTOP1 mice and high-resolution imaging, we show that OTOP1 is strictly localized to the apical tips of taste cells throughout the tongue and oral cavity. Interestingly, immunoreactivity is observed in the actin-rich taste pore above the tight junctions defined by zonula occludens-1 (ZO-1) and also immediately below these junctions. Surprisingly, OTOP1 immunoreactivity is not restricted to Type III taste receptor cells (TRCs) that mediate sour taste but is also observed in glia-like Type I TRCs proposed to perform housekeeping functions, a result that is corroborated by scRNA-seq data. The apical localization of OTOP1 supports the contention that OTOP1 functions as a taste receptor and suggests that OTOP1 may be accessible to orally available compounds that could act as taste modifiers.
Collapse
Affiliation(s)
- Joshua P Kaplan
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
- Program in Neuroscience, University of Southern California, Los Angeles, California 90089
| | - Wenlei Ye
- Department of Physiology, University of California, San Francisco, California 94158
| | - Heather Kileen
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Ziyu Liang
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
- Program in Neuroscience, University of Southern California, Los Angeles, California 90089
| | - Anne Tran
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Jingyi Chi
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York 10065
| | - Chingwen Yang
- CRISPR and Genome Editing Center, The Rockefeller University, New York, New York 10065
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York 10065
| | - Emily R Liman
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
- Program in Neuroscience, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
2
|
Pandey P, Shrestha B, Lee Y. Acid and Alkali Taste Sensation. Metabolites 2023; 13:1131. [PMID: 37999227 PMCID: PMC10673112 DOI: 10.3390/metabo13111131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Living organisms rely on pH levels for a multitude of crucial biological processes, such as the digestion of food and the facilitation of enzymatic reactions. Among these organisms, animals, including insects, possess specialized taste organs that enable them to discern between acidic and alkaline substances present in their food sources. This ability is vital, as the pH of these compounds directly influences both the nutritional value and the overall health impact of the ingested substances. In response to the various chemical properties of naturally occurring compounds, insects have evolved peripheral taste organs. These sensory structures play a pivotal role in identifying and distinguishing between nourishing and potentially harmful foods. In this concise review, we aim to provide an in-depth examination of the molecular mechanisms governing pH-dependent taste responses, encompassing both acidic and alkaline stimuli, within the peripheral taste organs of the fruit fly, Drosophila melanogaster, drawing insights from a comprehensive analysis of existing research articles.
Collapse
Affiliation(s)
| | | | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea; (P.P.); (B.S.)
| |
Collapse
|
3
|
He W, Liang L, Zhang Y. Pungency Perception and the Interaction with Basic Taste Sensations: An Overview. Foods 2023; 12:2317. [PMID: 37372528 DOI: 10.3390/foods12122317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The perception of pungency can be attributed to the combination of pain and heat, and it has critical impacts on food flavor and food consumption preferences. Many studies have reported a variety of pungent ingredients with different Scoville heat units (SHU), and the mechanism of pungent perception was revealed in vivo and in vitro. The worldwide use of spices containing pungent ingredients has led to an increasing awareness of their effects on basic tastes. However, the interaction between basic tastes and pungency perception based on structure-activity relationship, taste perception mechanism and neurotransmission lacks review and summary, considering its brighter prospects in food flavor. Thus, in this review, common pungency substances and pungency evaluation methods, and the mechanism of pungency perception is presented, and the interaction between basic tastes and pungency perception and the possible factors of their interaction are reviewed in detail. Pungent stimuli are mainly transduced through transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential fixed hormone isoform (TRPA1) activated by stimulants. Using modern detection techniques combined with sensory standards, different substances produce different degrees of pungent stimulation, ranging from 104 to 107 SHU/g. Pungent stimuli can affect taste receptor or channel protein conformation and regulate taste bud cell sensitivity by producing neurotransmission products. The products of neurotransmission and taste receptor cell activation in turn act on taste perception. When there are simultaneous effects of taste perception, pungency stimulation may enhance the perception of salty at a certain concentration, with a mutual inhibition effect with sour, sweet, and bitter taste, while its interaction with umami taste is not obvious. However, due to the complexity of perception and the uncertainty of many perceptual receptors or channels, the current studies of interactions are still controversial. Based on the understanding of the mechanism and influencing factors, the availability of pungency substances is proposed in the perspective of food industry in order to achieve new development.
Collapse
Affiliation(s)
- Wei He
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Wu J, Chen C, Qin C, Li Y, Jiang N, Yuan Q, Duan Y, Liu M, Wei X, Yu Y, Zhuang L, Wang P. Mimicking the Biological Sense of Taste In Vitro Using a Taste Organoids-on-a-Chip System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206101. [PMID: 36638268 PMCID: PMC9982573 DOI: 10.1002/advs.202206101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2022] [Indexed: 05/31/2023]
Abstract
Thanks to the gustatory system, humans can experience the flavors in foods and drinks while avoiding the intake of some harmful substances. Although great advances in the fields of biotechnology, microfluidics, and nanotechnologies have been made in recent years, this astonishing recognition system can hardly be replaced by any artificial sensors designed so far. Here, taste organoids are coupled with an extracellular potential sensor array to form a novel bioelectronic organoid and developed a taste organoids-on-a-chip system (TOS) for highly mimicking the biological sense of taste ex vivo with high stability and repeatability. The taste organoids maintain key taste receptors expression after the third passage and high cell viability during 7 days of on-chip culture. Most importantly, the TOS not only distinguishs sour, sweet, bitter, and salt stimuli with great specificity, but also recognizes varying concentrations of the stimuli through an analytical method based on the extraction of signal features and principal component analysis. It is hoped that this bioelectronic tongue can facilitate studies in food quality controls, disease modelling, and drug screening.
Collapse
Affiliation(s)
- Jianguo Wu
- Biosensor National Special LaboratoryKey Laboratory for Biomedical Engineering of Education MinistryDepartment of Biomedical EngineeringZhejiang UniversityHangzhou310027P. R. China
- The MOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationZhejiang UniversityHangzhou310027P. R. China
- State Key Laboratory of Transducer TechnologyChinese Academy of SciencesShanghai200050P. R. China
| | - Changming Chen
- Biosensor National Special LaboratoryKey Laboratory for Biomedical Engineering of Education MinistryDepartment of Biomedical EngineeringZhejiang UniversityHangzhou310027P. R. China
- The MOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationZhejiang UniversityHangzhou310027P. R. China
| | - Chunlian Qin
- Biosensor National Special LaboratoryKey Laboratory for Biomedical Engineering of Education MinistryDepartment of Biomedical EngineeringZhejiang UniversityHangzhou310027P. R. China
- The MOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationZhejiang UniversityHangzhou310027P. R. China
| | - Yihong Li
- College of Life SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Nan Jiang
- Biosensor National Special LaboratoryKey Laboratory for Biomedical Engineering of Education MinistryDepartment of Biomedical EngineeringZhejiang UniversityHangzhou310027P. R. China
- The MOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationZhejiang UniversityHangzhou310027P. R. China
| | - Qunchen Yuan
- Biosensor National Special LaboratoryKey Laboratory for Biomedical Engineering of Education MinistryDepartment of Biomedical EngineeringZhejiang UniversityHangzhou310027P. R. China
- The MOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationZhejiang UniversityHangzhou310027P. R. China
| | - Yan Duan
- Biosensor National Special LaboratoryKey Laboratory for Biomedical Engineering of Education MinistryDepartment of Biomedical EngineeringZhejiang UniversityHangzhou310027P. R. China
- The MOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationZhejiang UniversityHangzhou310027P. R. China
| | - Mengxue Liu
- Biosensor National Special LaboratoryKey Laboratory for Biomedical Engineering of Education MinistryDepartment of Biomedical EngineeringZhejiang UniversityHangzhou310027P. R. China
- The MOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationZhejiang UniversityHangzhou310027P. R. China
| | - Xinwei Wei
- Biosensor National Special LaboratoryKey Laboratory for Biomedical Engineering of Education MinistryDepartment of Biomedical EngineeringZhejiang UniversityHangzhou310027P. R. China
- The MOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationZhejiang UniversityHangzhou310027P. R. China
| | - Yiqun Yu
- Department of OtolaryngologyEye, Ear, Nose and Throat HospitalShanghai Key Clinical Disciplines of OtorhinolaryngologyFudan UniversityShanghai200031P. R. China
| | - Liujing Zhuang
- Biosensor National Special LaboratoryKey Laboratory for Biomedical Engineering of Education MinistryDepartment of Biomedical EngineeringZhejiang UniversityHangzhou310027P. R. China
- State Key Laboratory of Transducer TechnologyChinese Academy of SciencesShanghai200050P. R. China
| | - Ping Wang
- Biosensor National Special LaboratoryKey Laboratory for Biomedical Engineering of Education MinistryDepartment of Biomedical EngineeringZhejiang UniversityHangzhou310027P. R. China
- The MOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationZhejiang UniversityHangzhou310027P. R. China
- State Key Laboratory of Transducer TechnologyChinese Academy of SciencesShanghai200050P. R. China
- Cancer CenterZhejiang UniversityHangzhou310058P. R. China
| |
Collapse
|
5
|
Dutta Banik D, Medler KF. Defining the role of TRPM4 in broadly responsive taste receptor cells. Front Cell Neurosci 2023; 17:1148995. [PMID: 37032837 PMCID: PMC10073513 DOI: 10.3389/fncel.2023.1148995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Peripheral taste receptor cells use multiple signaling pathways to transduce taste stimuli into output signals that are sent to the brain. We have previously identified a subpopulation of Type III taste cells that are broadly responsive (BR) and respond to multiple taste stimuli including bitter, sweet, umami, and sour. These BR cells use a PLCβ3/IP3R1 signaling pathway to detect bitter, sweet, and umami stimuli and use a separate pathway to detect sour. Currently, the downstream targets of the PLCβ3 signaling pathway are unknown. Here we identify TRPM4, a monovalent selective TRP channel, as an important downstream component in this signaling pathway. Using live cell imaging on isolated taste receptor cells from mice, we show that inhibition of TRPM4 abolished the taste-evoked sodium responses and significantly reduced the taste-evoked calcium responses in BR cells. Since BR cells are a subpopulation of Type III taste cells, they have conventional chemical synapses that require the activation of voltage-gated calcium channels (VGCCs) to cause neurotransmitter release. We found that TRPM4-dependent membrane depolarization selectively activates L-type VGCCs in these cells. The calcium influx through L-type VGCCs also generates a calcium-induced calcium release (CICR) via ryanodine receptors that enhances TRPM4 activity. Together these signaling events amplify the initial taste response to generate an appropriate output signal.
Collapse
|
6
|
Kwon JW, Jeon YK, Kim SJ. Bidirectional sensitivity of CALHM1 channel to protons from both sides of plasma membrane. Am J Physiol Cell Physiol 2023; 324:C98-C112. [PMID: 36409172 DOI: 10.1152/ajpcell.00250.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Calcium homeostasis modulator 1 (CALHM1), a newly discovered voltage-dependent nonselective ion channel, has drawn attention for its role in neuronal activity and taste sensation. Its sluggish voltage-dependent activation is facilitated by lowering extracellular Ca2+ concentration ([Ca2+]e). Here, we investigated the effects of extracellular and intracellular pH (pHe and pHi) on human CALHM1. When normalized to the amplitude of the CALHM1 current (ICALHM1) under whole cell patch clamp at symmetrical pH 7.4, ICALHM1 decreased at acidic pHe or pHi, whereas it sharply increased at alkaline pHe or pHi. The effects of pH were preserved in the inside-out configuration. The voltage dependence of ICALHM1 showed leftward and rightward shifts at alkaline and acidic pHe and pHi, respectively. Site-directed mutagenesis of the water-accessible charged residues of the pore and nearby domains revealed that E17, K229, E233, D257, and E259 are nonadditively responsible for facilitation at alkaline pHi. Identification of the pHe-sensing residue was not possible because mutation of putative residues impaired membrane expression, resulting in undetectable ICALHM1. Alkaline pHe-dependent facilitation appeared gradually with depolarization, suggesting that the sensitivity to pHe might be due to H+ diffusion through the open-state CALHM1. At pHe 6.2, decreased [Ca2+]e could not recover the inhibited ICALHM1 but further augmented the increased ICALHM1 at pHe 8.6, suggesting that unidentified common residues might contribute to the [Ca2+]e and acidic pHe. This study is the first, to our knowledge, to demonstrate the remarkable pH sensitivity of CALHM1, which might contribute to the pH-dependent modulation of neuronal excitability or taste sensation.
Collapse
Affiliation(s)
- Jae Won Kwon
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Keul Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Park GY, Hwang H, Choi M. Advances in Optical Tools to Study Taste Sensation. Mol Cells 2022; 45:877-882. [PMID: 36572557 PMCID: PMC9794552 DOI: 10.14348/molcells.2022.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/28/2022] Open
Abstract
Taste sensation is the process of converting chemical identities in food into a neural code of the brain. Taste information is initially formed in the taste buds on the tongue, travels through the afferent gustatory nerves to the sensory ganglion neurons, and finally reaches the multiple taste centers of the brain. In the taste field, optical tools to observe cellular-level functions play a pivotal role in understanding how taste information is processed along a pathway. In this review, we introduce recent advances in the optical tools used to study the taste transduction pathways.
Collapse
Affiliation(s)
- Gha Yeon Park
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- The Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Hyeyeong Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- The Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Myunghwan Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- The Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
8
|
Ramudit AE, Feldmeyer A, Johnson A, Ennis JM. Sensory interaction effects between capsicum heat and seasoning ingredients applied to unsalted potato chips. Food Qual Prefer 2022. [DOI: 10.1016/j.foodqual.2022.104682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Reprogramming cultured human fungiform (HBO) taste cells into neuron-like cells through in vitro induction. In Vitro Cell Dev Biol Anim 2022; 58:817-829. [DOI: 10.1007/s11626-022-00724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
|
10
|
Frank HER, Amato K, Trautwein M, Maia P, Liman ER, Nichols LM, Schwenk K, Breslin PAS, Dunn RR. The evolution of sour taste. Proc Biol Sci 2022; 289:20211918. [PMID: 35135352 PMCID: PMC8826303 DOI: 10.1098/rspb.2021.1918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/05/2022] [Indexed: 01/05/2023] Open
Abstract
The evolutionary history of sour taste has been little studied. Through a combination of literature review and trait mapping on the vertebrate phylogenetic tree, we consider the origin of sour taste, potential cases of the loss of sour taste, and those factors that might have favoured changes in the valence of sour taste-from aversive to appealing. We reconstruct sour taste as having evolved in ancient fish. By contrast to other tastes, sour taste does not appear to have been lost in any major vertebrate taxa. For most species, sour taste is aversive. Animals, including humans, that enjoy the sour taste triggered by acidic foods are exceptional. We conclude by considering why sour taste evolved, why it might have persisted as vertebrates made the transition to land and what factors might have favoured the preference for sour-tasting, acidic foods, particularly in hominins, such as humans.
Collapse
Affiliation(s)
- Hannah E. R. Frank
- Department of Crop and Soil Sciences North Carolina State University, Raleigh, USA
| | - Katie Amato
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Michelle Trautwein
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, USA
| | - Paula Maia
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Emily R. Liman
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Lauren M. Nichols
- Department of Applied Ecology, North Carolina State University, Raleigh, USA
| | - Kurt Schwenk
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Paul A. S. Breslin
- Department of Nutritional Sciences, Rutgers The State University of New Jersey, New Brunswick, NJ, USA
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Robert R. Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, USA
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Abstract
Taste information is encoded in the gustatory nervous system much as in other sensory systems, with notable exceptions. The concept of adequate stimulus is common to all sensory modalities, from somatosensory to auditory, visual, and so forth. That is, sensory cells normally respond only to one particular form of stimulation, the adequate stimulus, such as photons (photoreceptors in the visual system), odors (olfactory sensory neurons in the olfactory system), noxious heat (nociceptors in the somatosensory system), etc. Peripheral sensory receptors transduce the stimulus into membrane potential changes transmitted to the brain in the form of trains of action potentials. How information concerning different aspects of the stimulus such as quality, intensity, and duration are encoded in the trains of action potentials is hotly debated in the field of taste. At one extreme is the notion of labeled line/spatial coding - information for each different taste quality (sweet, salty, sour, etc.) is transmitted along a parallel but separate series of neurons (a "line") that project to focal clusters ("spaces") of neurons in the gustatory cortex. These clusters are distinct for each taste quality. Opposing this are concepts of population/combinatorial coding and temporal coding, where taste information is encrypted by groups of neurons (circuits) and patterns of impulses within these neuronal circuits. Key to population/combinatorial and temporal coding is that impulse activity in an individual neuron does not provide unambiguous information about the taste stimulus. Only populations of neurons and their impulse firing pattern yield that information.
Collapse
Affiliation(s)
- Stephen D Roper
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
12
|
Abstract
Sour taste, the taste of acids, is one of the most enigmatic of the five basic taste qualities; its function is unclear and its receptor was until recently unknown. Sour tastes are transduced in taste buds on the tongue and palate epithelium by a subset of taste receptor cells, known as type III cells. Type III cells express a number of unique markers, including the PKD2L1 gene, which allow for their identification and manipulation. These cells respond to acid stimuli with action potentials and release neurotransmitters onto afferent nerve fibers, with cell bodies in geniculate and petrosal ganglia. Here, we review classical studies of sour taste leading up to the identification of the sour receptor as the proton channel, OTOP1. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Heather N Turner
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, California, USA; ,
| | - Emily R Liman
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, California, USA; ,
| |
Collapse
|
13
|
Koyama S, Kondo K, Ueha R, Kashiwadani H, Heinbockel T. Possible Use of Phytochemicals for Recovery from COVID-19-Induced Anosmia and Ageusia. Int J Mol Sci 2021; 22:8912. [PMID: 34445619 PMCID: PMC8396277 DOI: 10.3390/ijms22168912] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
The year 2020 became the year of the outbreak of coronavirus, SARS-CoV-2, which escalated into a worldwide pandemic and continued into 2021. One of the unique symptoms of the SARS-CoV-2 disease, COVID-19, is the loss of chemical senses, i.e., smell and taste. Smell training is one of the methods used in facilitating recovery of the olfactory sense, and it uses essential oils of lemon, rose, clove, and eucalyptus. These essential oils were not selected based on their chemical constituents. Although scientific studies have shown that they improve recovery, there may be better combinations for facilitating recovery. Many phytochemicals have bioactive properties with anti-inflammatory and anti-viral effects. In this review, we describe the chemical compounds with anti- inflammatory and anti-viral effects, and we list the plants that contain these chemical compounds. We expand the review from terpenes to the less volatile flavonoids in order to propose a combination of essential oils and diets that can be used to develop a new taste training method, as there has been no taste training so far. Finally, we discuss the possible use of these in clinical settings.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kenji Kondo
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
| | - Rumi Ueha
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
- Swallowing Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
14
|
Barravecchia I, Demontis GC. HCN1 channels: A versatile tool for signal processing by primary sensory neurons. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:133-146. [PMID: 34197835 DOI: 10.1016/j.pbiomolbio.2021.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022]
Abstract
Most primary sensory neurons (PSNs) generate a slowly-activating inward current in response to membrane hyperpolarization (Ih) and express HCN1 along with additional isoforms coding for hyperpolarization-activated channels (HCN). Changes in HCN expression may affect the excitability and firing patterns of PSNs, but retinal and inner ear PSNs do not fire action potentials, suggesting HCN channel roles may extend beyond excitability and cell firing control. In patients taking Ih blockers, photopsia triggered in response to abrupt changes in luminance correlates with impaired visual signal processing via parallel rod and cone pathways. Furthermore, in a mouse model of inherited retinal degeneration, HCN blockers or Hcn1 genetic ablation may worsen photoreceptors' demise. PSN's use of HCN channels to adjust either their firing rate or process signals generated by sensory transduction in non-spiking PSNs indicates HCN1 channels as a versatile tool with a novel role in sensory processing beyond firing control.
Collapse
Affiliation(s)
- Ivana Barravecchia
- Department of Pharmacy, Università di Pisa, Italy, Via Bonanno, 6, 56126, Pisa, Italy; Istitute of Life Science, Scuola Superiore Sant' Anna, 56127, Pisa, Italy.
| | - Gian Carlo Demontis
- Department of Pharmacy, Università di Pisa, Italy, Via Bonanno, 6, 56126, Pisa, Italy.
| |
Collapse
|
15
|
Zhang J, Lee H, Macpherson LJ. Mechanisms for the Sour Taste. Handb Exp Pharmacol 2021; 275:229-245. [PMID: 34117536 DOI: 10.1007/164_2021_476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Sour, the taste of acids, provides important sensory information to prevent the ingestion of unripe, spoiled, or fermented foods. In mammals, acids elicit disgust and pain by simultaneously activating taste and somatosensory neurons innervating the oral cavity. Early researchers detected electrical activity in taste nerves upon presenting acids to the tongue, establishing this as the bona fide sour taste. Recent studies have made significant contributions to our understanding of the mechanisms underlying acid sensing in the taste receptor cells at the periphery and the neural circuitry that convey this information to the brain. In this chapter, we discuss the characterization of sour taste receptor cells, the twists and turns eventually leading to the identification of Otopetrin1 (OTOP1) as the sour taste receptor, the pathway of sour taste signaling from the tongue to the brainstem, and other roles sour taste receptor cells play in the taste bud.
Collapse
Affiliation(s)
- Jin Zhang
- Mortimer B. Zukerman Mind Brain and Behavior Institute, Columbia University, New York, NY, USA.
| | - Hojoon Lee
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| | - Lindsey J Macpherson
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
16
|
Vandenbeuch A, Wilson CE, Kinnamon SC. Optogenetic Activation of Type III Taste Cells Modulates Taste Responses. Chem Senses 2021; 45:533-539. [PMID: 32582939 DOI: 10.1093/chemse/bjaa044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Studies have suggested that communication between taste cells shapes the gustatory signal before transmission to the brain. To further explore the possibility of intragemmal signal modulation, we adopted an optogenetic approach to stimulate sour-sensitive (Type III) taste cells using mice expressing Cre recombinase under a specific Type III cell promoter, Pkd2l1 (polycystic kidney disease-2-like 1), crossed with mice expressing Cre-dependent channelrhodopsin (ChR2). The application of blue light onto the tongue allowed for the specific stimulation of Type III cells and circumvented the nonspecific effects of chemical stimulation. To understand whether taste modality information is preprocessed in the taste bud before transmission to the sensory nerves, we recorded chorda tympani nerve activity during light and/or chemical tastant application to the tongue. To assess intragemmal modulation, we compared nerve responses to various tastants with or without concurrent light-induced activation of the Type III cells. Our results show that light significantly decreased taste responses to sweet, bitter, salty, and acidic stimuli. On the contrary, the light response was not consistently affected by sweet or bitter stimuli, suggesting that activation of Type II cells does not affect nerve responses to stimuli that activate Type III cells.
Collapse
Affiliation(s)
- Aurelie Vandenbeuch
- Department of Otolaryngology and Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Courtney E Wilson
- Department of Otolaryngology and Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sue C Kinnamon
- Department of Otolaryngology and Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
17
|
Abstract
Sour taste, which is evoked by low pH, is one of the original four fundamental taste qualities, recognized as a distinct taste sensation for centuries, and universally aversive across diverse species. It is generally assumed to have evolved for detection of acids in unripe fruit and spoiled food. But despite decades of study, only recently have the receptor, the neurotransmitter, and the circuits for sour taste been identified. In this review, we describe studies leading up to the identification of the sour receptor as OTOP1, an ion channel that is selectively permeable to protons. We also describe advances in our understanding of how information is transmitted from the taste receptor cells to gustatory neurons, leading to behavioral aversion to acids.
Collapse
Affiliation(s)
- Emily R Liman
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, 3641 Watt Way, Los Angeles, CA 90089, USA
| | - Sue C Kinnamon
- Department of Otolaryngology and Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, 12700 E 19(th) Avenue, Aurora, CO 80045, USA
| |
Collapse
|
18
|
Abstract
All organisms have the ability to detect chemicals in the environment, which likely evolved out of organisms' needs to detect food sources and avoid potentially harmful compounds. The taste system detects chemicals and is used to determine whether potential food items will be ingested or rejected. The sense of taste detects five known taste qualities: bitter, sweet, salty, sour, and umami, which is the detection of amino acids, specifically glutamate. These different taste qualities encompass a wide variety of chemicals that differ in their structure and as a result, the peripheral taste utilizes numerous and diverse mechanisms to detect these stimuli. In this chapter, we will summarize what is currently known about the signaling mechanisms used by taste cells to transduce stimulus signals.
Collapse
Affiliation(s)
- Debarghya Dutta Banik
- Department of Biological Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathryn F Medler
- Department of Biological Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
19
|
Yu T, Wilson CE, Stratford JM, Finger TE. Genetic Deletion of TrpV1 and TrpA1 Does Not Alter Avoidance of or Patterns of Brainstem Activation to Citric Acid in Mice. Chem Senses 2020; 45:573-579. [PMID: 32572463 DOI: 10.1093/chemse/bjaa043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exposure of the oral cavity to acidic solutions evokes not only a sensation of sour, but also of sharp or tangy. Acidic substances potentially stimulate both taste buds and acid-sensitive mucosal free nerve endings. Mice lacking taste function (P2X2/P2X3 double-KO mice) refuse acidic solutions similar to wildtype (WT) mice and intraoral infusion of acidic solutions in these KO animals evokes substantial c-Fos activity within orosensory trigeminal nuclei as well as of the nucleus of the solitary tract (nTS) (Stratford, Thompson, et al. 2017). This residual acid-evoked, non-taste activity includes areas that receive inputs from trigeminal and glossopharyngeal peptidergic (CGRP-containing) nerve fibers that express TrpA1 and TrpV1 both of which are activated by low pH. We compared avoidance responses in WT and TrpA1/V1 double-KO (TRPA1/V1Dbl-/-) mice in brief-access behavioral assay (lickometer) to 1, 3, 10, and 30 mM citric acid, along with 100 µM SC45647 and H2O. Both WT and TRPA1/V1Dbl-/- show similar avoidance, including to higher concentrations of citric acid (10 and 30 mM; pH 2.62 and pH 2.36, respectively), indicating that neither TrpA1 nor TrpV1 is necessary for the acid-avoidance behavior in animals with an intact taste system. Similarly, induction of c-Fos in the nTS and dorsomedial spinal trigeminal nucleus was similar in the WT and TRPA1/V1Dbl-/- animals. Taken together these results suggest non-TrpV1 and non-TrpA1 receptors underlie the residual responses to acids in mice lacking taste function.
Collapse
Affiliation(s)
- Tian Yu
- Rocky Mountain Taste & Smell Center, Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Courtney E Wilson
- Rocky Mountain Taste & Smell Center, Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jennifer M Stratford
- Rocky Mountain Taste & Smell Center, Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas E Finger
- Rocky Mountain Taste & Smell Center, Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
20
|
Taruno A, Nomura K, Kusakizako T, Ma Z, Nureki O, Foskett JK. Taste transduction and channel synapses in taste buds. Pflugers Arch 2020; 473:3-13. [PMID: 32936320 DOI: 10.1007/s00424-020-02464-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 07/29/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022]
Abstract
The variety of taste sensations, including sweet, umami, bitter, sour, and salty, arises from diverse taste cells, each of which expresses specific taste sensor molecules and associated components for downstream signal transduction cascades. Recent years have witnessed major advances in our understanding of the molecular mechanisms underlying transduction of basic tastes in taste buds, including the identification of the bona fide sour sensor H+ channel OTOP1, and elucidation of transduction of the amiloride-sensitive component of salty taste (the taste of sodium) and the TAS1R-independent component of sweet taste (the taste of sugar). Studies have also discovered an unconventional chemical synapse termed "channel synapse" which employs an action potential-activated CALHM1/3 ion channel instead of exocytosis of synaptic vesicles as the conduit for neurotransmitter release that links taste cells to afferent neurons. New images of the channel synapse and determinations of the structures of CALHM channels have provided structural and functional insights into this unique synapse. In this review, we discuss the current view of taste transduction and neurotransmission with emphasis on recent advances in the field.
Collapse
Affiliation(s)
- Akiyuki Taruno
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan. .,Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama, Japan.
| | - Kengo Nomura
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Zhongming Ma
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Dutta Banik D, Benfey ED, Martin LE, Kay KE, Loney GC, Nelson AR, Ahart ZC, Kemp BT, Kemp BR, Torregrossa AM, Medler KF. A subset of broadly responsive Type III taste cells contribute to the detection of bitter, sweet and umami stimuli. PLoS Genet 2020; 16:e1008925. [PMID: 32790785 PMCID: PMC7425866 DOI: 10.1371/journal.pgen.1008925] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
Taste receptor cells use multiple signaling pathways to detect chemicals in potential food items. These cells are functionally grouped into different types: Type I cells act as support cells and have glial-like properties; Type II cells detect bitter, sweet, and umami taste stimuli; and Type III cells detect sour and salty stimuli. We have identified a new population of taste cells that are broadly tuned to multiple taste stimuli including bitter, sweet, sour, and umami. The goal of this study was to characterize these broadly responsive (BR) taste cells. We used an IP3R3-KO mouse (does not release calcium (Ca2+) from internal stores in Type II cells when stimulated with bitter, sweet, or umami stimuli) to characterize the BR cells without any potentially confounding input from Type II cells. Using live cell Ca2+ imaging in isolated taste cells from the IP3R3-KO mouse, we found that BR cells are a subset of Type III cells that respond to sour stimuli but also use a PLCβ signaling pathway to respond to bitter, sweet, and umami stimuli. Unlike Type II cells, individual BR cells are broadly tuned and respond to multiple stimuli across different taste modalities. Live cell imaging in a PLCβ3-KO mouse confirmed that BR cells use this signaling pathway to respond to bitter, sweet, and umami stimuli. Short term behavioral assays revealed that BR cells make significant contributions to taste driven behaviors and found that loss of either PLCβ3 in BR cells or IP3R3 in Type II cells caused similar behavioral deficits to bitter, sweet, and umami stimuli. Analysis of c-Fos activity in the nucleus of the solitary tract (NTS) also demonstrated that functional Type II and BR cells are required for normal stimulus induced expression. We use our taste system to decide if we are going to consume or reject a potential food item. This is critical for survival, as we need energy to live but also need to avoid potentially toxic compounds. Therefore, it is important to understand how the taste cells in our mouth detect the chemicals in food and send a message to our brain. Signals from the taste cells form a code that conveys information about the nature of the potential food item to the brain. How this taste coding works is not well understood. Currently, it is thought that taste cells are primarily selective for each taste stimuli and only detect either bitter, sweet, sour, salt, or umami (amino acids) compounds. Our study describes a new population of taste cells that can detect multiple types of stimuli, including chemicals from different taste qualities. Thus, taste cells can be either selective or generally responsive to stimuli which is similar to the cells in the brain that process taste information. The presence of these broadly responsive taste cells provides new insight into how taste information is sent to the brain for processing.
Collapse
Affiliation(s)
- Debarghya Dutta Banik
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Eric D. Benfey
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Laura E. Martin
- Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
| | - Kristen E. Kay
- Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
| | - Gregory C. Loney
- Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
| | - Amy R. Nelson
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Zachary C. Ahart
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Barrett T. Kemp
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Bailey R. Kemp
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Ann-Marie Torregrossa
- Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
- Center for Ingestive Behavior Research, University at Buffalo, Buffalo, New York, United States of America
| | - Kathryn F. Medler
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
- Center for Ingestive Behavior Research, University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
Zhang N, Wei X, Fan Y, Zhou X, Liu Y. Recent advances in development of biosensors for taste-related analyses. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115925] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Nomura K, Nakanishi M, Ishidate F, Iwata K, Taruno A. All-Electrical Ca 2+-Independent Signal Transduction Mediates Attractive Sodium Taste in Taste Buds. Neuron 2020; 106:816-829.e6. [PMID: 32229307 DOI: 10.1016/j.neuron.2020.03.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/12/2020] [Accepted: 03/09/2020] [Indexed: 01/08/2023]
Abstract
Sodium taste regulates salt intake. The amiloride-sensitive epithelial sodium channel (ENaC) is the Na+ sensor in taste cells mediating attraction to sodium salts. However, cells and intracellular signaling underlying sodium taste in taste buds remain long-standing enigmas. Here, we show that a subset of taste cells with ENaC activity fire action potentials in response to ENaC-mediated Na+ influx without changing the intracellular Ca2+ concentration and form a channel synapse with afferent neurons involving the voltage-gated neurotransmitter-release channel composed of calcium homeostasis modulator 1 (CALHM1) and CALHM3 (CALHM1/3). Genetic elimination of ENaC in CALHM1-expressing cells as well as global CALHM3 deletion abolished amiloride-sensitive neural responses and attenuated behavioral attraction to NaCl. Together, sodium taste is mediated by cells expressing ENaC and CALHM1/3, where oral Na+ entry elicits suprathreshold depolarization for action potentials driving voltage-dependent neurotransmission via the channel synapse. Thus, all steps in sodium taste signaling are voltage driven and independent of Ca2+ signals. This work also reveals ENaC-independent salt attraction.
Collapse
Affiliation(s)
- Kengo Nomura
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Miho Nakanishi
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Fumiyoshi Ishidate
- Center for Meso-Bio Single-Molecule Imaging, Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Kazumi Iwata
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Akiyuki Taruno
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan; Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
24
|
Sensing Senses: Optical Biosensors to Study Gustation. SENSORS 2020; 20:s20071811. [PMID: 32218129 PMCID: PMC7180777 DOI: 10.3390/s20071811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022]
Abstract
The five basic taste modalities, sweet, bitter, umami, salty and sour induce changes of Ca2+ levels, pH and/or membrane potential in taste cells of the tongue and/or in neurons that convey and decode gustatory signals to the brain. Optical biosensors, which can be either synthetic dyes or genetically encoded proteins whose fluorescence spectra depend on levels of Ca2+, pH or membrane potential, have been used in primary cells/tissues or in recombinant systems to study taste-related intra- and intercellular signaling mechanisms or to discover new ligands. Taste-evoked responses were measured by microscopy achieving high spatial and temporal resolution, while plate readers were employed for higher throughput screening. Here, these approaches making use of fluorescent optical biosensors to investigate specific taste-related questions or to screen new agonists/antagonists for the different taste modalities were reviewed systematically. Furthermore, in the context of recent developments in genetically encoded sensors, 3D cultures and imaging technologies, we propose new feasible approaches for studying taste physiology and for compound screening.
Collapse
|
25
|
Yang R, Dzowo YK, Wilson CE, Russell RL, Kidd GJ, Salcedo E, Lasher RS, Kinnamon JC, Finger TE. Three-dimensional reconstructions of mouse circumvallate taste buds using serial blockface scanning electron microscopy: I. Cell types and the apical region of the taste bud. J Comp Neurol 2019; 528:756-771. [PMID: 31587284 DOI: 10.1002/cne.24779] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/21/2019] [Accepted: 09/07/2019] [Indexed: 12/20/2022]
Abstract
Taste buds comprise four types of taste cells: three mature, elongate types, Types I-III; and basally situated, immature postmitotic type, Type IV cells. We employed serial blockface scanning electron microscopy to delineate the characteristics and interrelationships of the taste cells in the circumvallate papillae of adult mice. Type I cells have an indented, elongate nucleus with invaginations, folded plasma membrane, and multiple apical microvilli in the taste pore. Type I microvilli may be either restricted to the bottom of the pore or extend outward reaching midway up into the taste pore. Type II cells (aka receptor cells) possess a large round or oval nucleus, a single apical microvillus extending through the taste pore, and specialized "atypical" mitochondria at functional points of contact with nerve fibers. Type III cells (aka "synaptic cells") are elongate with an indented nucleus, possess a single, apical microvillus extending through the taste pore, and are characterized by a small accumulation of synaptic vesicles at points of contact with nerve fibers. About one-quarter of Type III cells also exhibit an atypical mitochondrion near the presynaptic vesicle clusters at the synapse. Type IV cells (nonproliferative "basal cells") have a nucleus in the lower quarter of the taste bud and a foot process extending to the basement membrane often contacting nerve processes along the way. In murine circumvallate taste buds, Type I cells represent just over 50% of the population, whereas Types II, III, and IV (basal cells) represent 19, 15, and 14%, respectively.
Collapse
Affiliation(s)
- Ruibiao Yang
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Denver, Colorado
| | - Yannick K Dzowo
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Denver, Colorado.,Modern Human Anatomy Program, University of Colorado School of Medicine, Denver, Colorado
| | - Courtney E Wilson
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Denver, Colorado
| | - Rae L Russell
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Denver, Colorado.,Modern Human Anatomy Program, University of Colorado School of Medicine, Denver, Colorado
| | - Grahame J Kidd
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,3D-Electron Microscopy, Renovo Neural Inc., Cleveland, Ohio
| | - Ernesto Salcedo
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Denver, Colorado.,Modern Human Anatomy Program, University of Colorado School of Medicine, Denver, Colorado
| | - Robert S Lasher
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Denver, Colorado
| | - John C Kinnamon
- Department of Biological Sciences, University of Denver, Denver, Colorado
| | - Thomas E Finger
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Denver, Colorado.,Modern Human Anatomy Program, University of Colorado School of Medicine, Denver, Colorado
| |
Collapse
|
26
|
Cellular and Neural Responses to Sour Stimuli Require the Proton Channel Otop1. Curr Biol 2019; 29:3647-3656.e5. [PMID: 31543453 DOI: 10.1016/j.cub.2019.08.077] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/08/2019] [Accepted: 08/30/2019] [Indexed: 11/24/2022]
Abstract
The sense of taste allows animals to sample chemicals in the environment prior to ingestion. Of the five basic tastes, sour, the taste of acids, had remained among the most mysterious. Acids are detected by type III taste receptor cells (TRCs), located in taste buds across the tongue and palate epithelium. The first step in sour taste transduction is believed to be entry of protons into the cell cytosol, which leads to cytosolic acidification and the generation of action potentials. The proton-selective ion channel Otop1 is expressed in type III TRCs and is a candidate sour receptor. Here, we tested the contribution of Otop1 to taste cell and gustatory nerve responses to acids in mice in which Otop1 was genetically inactivated (Otop1-KO mice). We first show that Otop1 is required for the inward proton current in type III TRCs from different parts of the tongue that are otherwise molecularly heterogeneous. We next show that in type III TRCs from Otop1-KO mice, intracellular pH does not track with extracellular pH and that moderately acidic stimuli do not elicit trains of action potentials, as they do in type III TRCs from wild-type mice. Moreover, gustatory nerve responses in Otop1-KO mice were severely and selectively attenuated for acidic stimuli, including citric acid and HCl. These results establish that the Otop1 proton channel plays a critical role in acid detection in the mouse gustatory system, evidence that it is a bona fide sour taste receptor.
Collapse
|
27
|
Saotome K, Teng B, Tsui CCA, Lee WH, Tu YH, Kaplan JP, Sansom MSP, Liman ER, Ward AB. Structures of the otopetrin proton channels Otop1 and Otop3. Nat Struct Mol Biol 2019; 26:518-525. [PMID: 31160780 PMCID: PMC6564688 DOI: 10.1038/s41594-019-0235-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/26/2019] [Indexed: 01/08/2023]
Abstract
Otopetrins (Otop1-Otop3) comprise one of two known eukaryotic proton-selective channel families. Otop1 is required for otoconia formation and a candidate mammalian sour taste receptor. Here we report cryo-EM structures of zebrafish Otop1 and chicken Otop3 in lipid nanodiscs. The structures reveal a dimeric architecture, with each subunit forming 12 transmembrane helices divided into structurally similar amino (N) and carboxy (C) domains. Cholesterol-like molecules occupy various sites in Otop1 and Otop3 and occlude a central tunnel. In molecular dynamics simulations, hydrophilic vestibules formed by the N and C domains and in the intrasubunit interface between N and C domains form conduits for water entry into the membrane core, suggesting three potential proton conduction pathways. By mutagenesis, we tested the roles of charged residues in each putative permeation pathway. Our results provide a structural basis for understanding selective proton permeation and gating of this conserved family of proton channels.
Collapse
Affiliation(s)
- Kei Saotome
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Bochuan Teng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Che Chun Alex Tsui
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Yu-Hsiang Tu
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Joshua P Kaplan
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Emily R Liman
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
28
|
Xu J, Lewandowski BC, Miyazawa T, Shoji Y, Yee K, Bryant BP. Spilanthol Enhances Sensitivity to Sodium in Mouse Taste Bud Cells. Chem Senses 2019; 44:91-103. [PMID: 30364996 PMCID: PMC6350677 DOI: 10.1093/chemse/bjy069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Overconsumption of NaCl has been linked to increased hypertension-related morbidity. Compounds that can enhance NaCl responses in taste cells could help reduce human NaCl consumption without sacrificing perceived saltiness. Spilanthol is an unsaturated alkylamide isolated from the Jambu plant (Acmella oleracea) that can induce tingling, pungency, and numbing in the mouth. Structurally similar fatty acid amides, such as sanshool, elicit numbing and tingling sensations by inhibiting 2-pore-domain potassium leak channels on trigeminal sensory neurons. Even when insufficient to induce action potential firing, leak current inhibition causes depolarization and increased membrane resistance, which combine to make cells more sensitive to subsequent depolarizing stimuli, such as NaCl. Using calcium imaging, we tested whether spilanthol alters sensitivity to NaCl in isolated circumvallate taste bud cells and trigeminal sensory neurons of mice (Mus musculus). Micromolar spilanthol elicited little to no response in taste bud cells or trigeminal neurons. These same perithreshold concentrations of spilanthol significantly enhanced responses to NaCl (140 and 200 mM) in taste bud cells. Trigeminal neurons, however, exhibited response enhancement only at the highest concentrations of NaCl and spilanthol tested. Using a combination of potassium depolarization, immunohistochemistry, and Trpm5-GFP and Tas1r3-GFP mice to characterize taste bud cells by type, we found spilanthol enhancement of NaCl responses most prevalent in NaCl-responsive type III cells, and commonly observed in NaCl-responsive type II cells. Our results indicate that spilanthol enhances NaCl responses in taste bud cells and point to a family of compounds that may have utility as salty taste enhancers.
Collapse
Affiliation(s)
- Jiang Xu
- Monell Chemical Senses Center, Philadelphia, PA , USA
| | | | | | - Yasutaka Shoji
- Ogawa & Co. Ltd., Nihonbashi Honcho Chuo-ku, Tokyo, Japan
| | - Karen Yee
- Monell Chemical Senses Center, Philadelphia, PA , USA
| | | |
Collapse
|
29
|
Schier LA, Spector AC. The Functional and Neurobiological Properties of Bad Taste. Physiol Rev 2019; 99:605-663. [PMID: 30475657 PMCID: PMC6442928 DOI: 10.1152/physrev.00044.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/18/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022] Open
Abstract
The gustatory system serves as a critical line of defense against ingesting harmful substances. Technological advances have fostered the characterization of peripheral receptors and have created opportunities for more selective manipulations of the nervous system, yet the neurobiological mechanisms underlying taste-based avoidance and aversion remain poorly understood. One conceptual obstacle stems from a lack of recognition that taste signals subserve several behavioral and physiological functions which likely engage partially segregated neural circuits. Moreover, although the gustatory system evolved to respond expediently to broad classes of biologically relevant chemicals, innate repertoires are often not in register with the actual consequences of a food. The mammalian brain exhibits tremendous flexibility; responses to taste can be modified in a specific manner according to bodily needs and the learned consequences of ingestion. Therefore, experimental strategies that distinguish between the functional properties of various taste-guided behaviors and link them to specific neural circuits need to be applied. Given the close relationship between the gustatory and visceroceptive systems, a full reckoning of the neural architecture of bad taste requires an understanding of how these respective sensory signals are integrated in the brain.
Collapse
Affiliation(s)
- Lindsey A Schier
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Alan C Spector
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
30
|
Abstract
Ramsey and DeSimone highlight the recent discovery of a new family of proton channels.
Collapse
Affiliation(s)
- I Scott Ramsey
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - John A DeSimone
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
31
|
Dutta Banik D, Martin LE, Freichel M, Torregrossa AM, Medler KF. TRPM4 and TRPM5 are both required for normal signaling in taste receptor cells. Proc Natl Acad Sci U S A 2018; 115:E772-E781. [PMID: 29311301 PMCID: PMC5789955 DOI: 10.1073/pnas.1718802115] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Peripheral taste receptor cells use multiple signaling pathways to transduce taste stimuli into output signals that are sent to the brain. Transient receptor potential melastatin 5 (TRPM5), a sodium-selective TRP channel, functions as a common downstream component in sweet, bitter, and umami signaling pathways. In the absence of TRPM5, mice have a reduced, but not abolished, ability to detect stimuli, suggesting that a TRPM5-independent pathway also contributes to these signals. Here, we identify a critical role for the sodium-selective TRP channel TRPM4 in taste transduction. Using live cell imaging and behavioral studies in KO mice, we show that TRPM4 and TRPM5 are both involved in taste-evoked signaling. Loss of either channel significantly impairs taste, and loss of both channels completely abolishes the ability to detect bitter, sweet, or umami stimuli. Thus, both TRPM4 and TRPM5 are required for transduction of taste stimuli.
Collapse
Affiliation(s)
| | - Laura E Martin
- Department of Psychology, University at Buffalo, Buffalo, NY 14260
| | - Marc Freichel
- Pharmakologisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
| | | | - Kathryn F Medler
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260;
| |
Collapse
|
32
|
Ramos-Lopez O, Arpón A, Riezu-Boj JI, Milagro FI, Mansego ML, Martinez JA. DNA methylation patterns at sweet taste transducing genes are associated with BMI and carbohydrate intake in an adult population. Appetite 2018; 120:230-239. [PMID: 28888730 DOI: 10.1016/j.appet.2017.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/09/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023]
Abstract
Individual differences in taste perception may influence appetite, dietary intakes, and subsequently, disease risk. Correlations of DNA methylation patterns at taste transducing genes with BMI and dietary intakes were studied. A nutriepigenomic analysis within the Methyl Epigenome Network Association (MENA) project was conducted in 474 adults. DNA methylation in peripheral white blood cells was analyzed by a microarray approach. KEGG pathway analyses were performed concerning the characterization and discrimination of genes involved in the taste transduction pathway. Adjusted FDR values (p < 0.0001) were used to select those CpGs that showed best correlation with BMI. A total of 29 CpGs at taste transducing genes met the FDR criteria. However, only 12 CpGs remained statistically significant after linear regression analyses adjusted for age and sex. These included cg15743657 (TAS1R2), cg02743674 (TRPM5), cg01790523 (SCN9A), cg15947487 (CALHM1), cg11658986 (ADCY6), cg04149773 (ADCY6), cg02841941 (P2RY1), cg02315111 (P2RX2), cg08273233 (HTR1E), cg14523238 (GABBR2), cg12315353 (GABBR1) and cg05579652 (CACNA1C). Interestingly, most of them were implicated in the sweet taste signaling pathway, except CACNA1C (sour taste). In addition, TAS1R2 methylation at cg15743657 was strongly correlated with total energy (p < 0.0001) and carbohydrate intakes (p < 0.0001). This study suggests that methylation in genes related to sweet taste could be an epigenetic mechanism associated with obesity.
Collapse
Affiliation(s)
- O Ramos-Lopez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - A Arpón
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - J I Riezu-Boj
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - F I Milagro
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Institute, Madrid, Spain
| | - M L Mansego
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - J A Martinez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Institute, Madrid, Spain; Madrid Institute of Advanced Studies (IMDEA Food), Madrid, Spain.
| |
Collapse
|
33
|
Expression of Calcium-Binding Proteins, Calbindin D28k and Calretinin, in the Frog Taste Receptor Structures. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9679-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Chamoun E, Mutch DM, Allen-Vercoe E, Buchholz AC, Duncan AM, Spriet LL, Haines J, Ma DWL. A review of the associations between single nucleotide polymorphisms in taste receptors, eating behaviors, and health. Crit Rev Food Sci Nutr 2017; 58:194-207. [DOI: 10.1080/10408398.2016.1152229] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Abstract
The past decade has witnessed a consolidation and refinement of the extraordinary progress made in taste research. This Review describes recent advances in our understanding of taste receptors, taste buds, and the connections between taste buds and sensory afferent fibres. The article discusses new findings regarding the cellular mechanisms for detecting tastes, new data on the transmitters involved in taste processing and new studies that address longstanding arguments about taste coding.
Collapse
|
36
|
Amiloride-Insensitive Salt Taste Is Mediated by Two Populations of Type III Taste Cells with Distinct Transduction Mechanisms. J Neurosci 2016; 36:1942-53. [PMID: 26865617 DOI: 10.1523/jneurosci.2947-15.2016] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Responses in the amiloride-insensitive (AI) pathway, one of the two pathways mediating salty taste in mammals, are modulated by the size of the anion of a salt. This "anion effect" has been hypothesized to result from inhibitory transepithelial potentials (TPs) generated across the lingual epithelium as cations permeate through tight junctions and leave their larger and less permeable anions behind (Ye et al., 1991). We tested directly the necessity of TPs for the anion effect by measuring responses to NaCl and Na-gluconate (small and large anion sodium salts, respectively) in isolated taste cells from mouse circumvallate papillae. Using calcium imaging, we identified AI salt-responsive type III taste cells and demonstrated that they compose a subpopulation of acid-responsive taste cells. Even in the absence of TPs, many (66%) AI salt-responsive type III taste cells still exhibited the anion effect, demonstrating that some component of the transduction machinery for salty taste in type III cells is sensitive to anion size. We hypothesized that osmotic responses could explain why a minority of type III cells (34%) had AI salt responses but lacked anion sensitivity. All AI type III cells had osmotic responses to cellobiose, which were significantly modulated by extracellular sodium concentration, suggesting the presence of a sodium-conducting osmotically sensitive ion channel. However, these responses were significantly larger in AI type III cells that did not exhibit the anion effect. These findings indicate that multiple mechanisms could underlie AI salt responses in type III taste cells, one of which may contribute to the anion effect. SIGNIFICANCE STATEMENT Understanding the mechanisms underlying salty taste will help inform strategies to combat the health problems associated with NaCl overconsumption by humans. Of the two pathways underlying salty taste in mammals, the amiloride-insensitive (AI) pathway is the least understood. Using calcium imaging of isolated mouse taste cells, we identify two separate populations of AI salt-responsive type III taste cells distinguished by their sensitivity to anion size and show that these cells compose subpopulations of acid-responsive taste cells. We also find evidence that a sodium-conducting osmotically sensitive mechanism contributes to salt responses in type III taste cells. Our data not only provide new insights into the transduction mechanisms of AI salt taste but also have important implications for general theories of taste encoding.
Collapse
|
37
|
The K+ channel KIR2.1 functions in tandem with proton influx to mediate sour taste transduction. Proc Natl Acad Sci U S A 2015; 113:E229-38. [PMID: 26627720 DOI: 10.1073/pnas.1514282112] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sour taste is detected by a subset of taste cells on the tongue and palate epithelium that respond to acids with trains of action potentials. Entry of protons through a Zn(2+)-sensitive proton conductance that is specific to sour taste cells has been shown to be the initial event in sour taste transduction. Whether this conductance acts in concert with other channels sensitive to changes in intracellular pH, however, is not known. Here, we show that intracellular acidification generates excitatory responses in sour taste cells, which can be attributed to block of a resting K(+) current. We identify KIR2.1 as the acid-sensitive K(+) channel in sour taste cells using pharmacological and RNA expression profiling and confirm its contribution to sour taste with tissue-specific knockout of the Kcnj2 gene. Surprisingly, acid sensitivity is not conferred on sour taste cells by the specific expression of Kir2.1, but by the relatively small magnitude of the current, which makes the cells exquisitely sensitive to changes in intracellular pH. Consistent with a role of the K(+) current in amplifying the sensory response, entry of protons through the Zn(2+)-sensitive conductance produces a transient block of the KIR2.1 current. The identification in sour taste cells of an acid-sensitive K(+) channel suggests a mechanism for amplification of sour taste and may explain why weak acids that produce intracellular acidification, such as acetic acid, taste more sour than strong acids.
Collapse
|
38
|
Beckett EL, Martin C, Yates Z, Veysey M, Duesing K, Lucock M. Bitter taste genetics--the relationship to tasting, liking, consumption and health. Food Funct 2015; 5:3040-54. [PMID: 25286017 DOI: 10.1039/c4fo00539b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bitter is the most complex of human tastes, and is arguably the most important. Aversion to bitter taste is important for detecting toxic compounds in food; however, many beneficial nutrients also taste bitter and these may therefore also be avoided as a consequence of bitter taste. While many polymorphisms in TAS2R genes may result in phenotypic differences that influence the range and sensitivity of bitter compounds detected, the full extent to which individuals differ in their abilities to detect bitter compounds remains unknown. Simple logic suggests that taste phenotypes influence food preferences, intake and consequently health status. However, it is becoming clear that genetics only plays a partial role in predicting preference, intake and health outcomes, and the complex, pleiotropic relationships involved are yet to be fully elucidated.
Collapse
Affiliation(s)
- Emma L Beckett
- School of Environmental and Life Sciences, University of Newcastle, Brush Rd, Ourimbah, NSW 2258, Australia.
| | | | | | | | | | | |
Collapse
|
39
|
Ishimaru Y. Molecular mechanisms underlying the reception and transmission of sour taste information. Biosci Biotechnol Biochem 2015; 79:171-6. [DOI: 10.1080/09168451.2014.975187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Taste enables organisms to determine the properties of ingested substances by conveying information regarding the five basic taste modalities: sweet, salty, sour, bitter, and umami. The sweet, salty, and umami taste modalities convey the carbohydrate, electrolyte, and glutamate content of food, indicating its desirability and stimulating appetitive responses. The sour and bitter modalities convey the acidity of food and the presence of potential toxins, respectively, stimulating aversive responses to such tastes. In recent years, the receptors mediating sweet, bitter, and umami tastes have been identified as members of the T1R and T2R G-protein-coupled receptor families; however, the molecular mechanisms underlying sour taste detection have yet to be clearly elucidated. This review covers the molecular mechanisms proposed to mediate the detection and transmission of sour stimuli, focusing on polycystic kidney disease 1-like 3 (Pkd1l3), Pkd2l1, and carbonic anhydrase 4 (Car4).
Collapse
Affiliation(s)
- Yoshiro Ishimaru
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
40
|
Abstract
TRP channels are expressed in taste buds, nerve fibers, and keratinocytes in the oronasal cavity. These channels play integral roles in transducing chemical stimuli, giving rise to sensations of taste, irritation, warmth, coolness, and pungency. Specifically, TRPM5 acts downstream of taste receptors in the taste transduction pathway. TRPM5 channels convert taste-evoked intracellular Ca(2+) release into membrane depolarization to trigger taste transmitter secretion. PKD2L1 is expressed in acid-sensitive (sour) taste bud cells but is unlikely to be the transducer for sour taste. TRPV1 is a receptor for pungent chemical stimuli such as capsaicin and for several irritants (chemesthesis). It is controversial whether TRPV1 is present in the taste buds and plays a direct role in taste. Instead, TRPV1 is expressed in non-gustatory sensory afferent fibers and in keratinocytes of the oronasal cavity. In many sensory fibers and epithelial cells lining the oronasal cavity, TRPA1 is also co-expressed with TRPV1. As with TRPV1, TRPA1 transduces a wide variety of irritants and, in combination with TRPV1, assures that there is a broad response to noxious chemical stimuli. Other TRP channels, including TRPM8, TRPV3, and TRPV4, play less prominent roles in chemesthesis and no known role in taste, per se. The pungency of foods and beverages is likely highly influenced by the temperature at which they are consumed, their acidity, and, for beverages, their carbonation. All these factors modulate the activity of TRP channels in taste buds and in the oronasal mucosa.
Collapse
Affiliation(s)
- Stephen D Roper
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, 1600 NW 10th Ave., Miami, FL, 33136, USA,
| |
Collapse
|
41
|
Rebello MR, Maliphol AB, Medler KF. Ryanodine Receptors Selectively Interact with L Type Calcium Channels in Mouse Taste Cells. PLoS One 2013; 8:e68174. [PMID: 23826376 PMCID: PMC3694925 DOI: 10.1371/journal.pone.0068174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/27/2013] [Indexed: 12/04/2022] Open
Abstract
Introduction We reported that ryanodine receptors are expressed in two different types of mammalian peripheral taste receptor cells: Type II and Type III cells. Type II cells lack voltage-gated calcium channels (VGCCs) and chemical synapses. In these cells, ryanodine receptors contribute to the taste-evoked calcium signals that are initiated by opening inositol trisphosphate receptors located on internal calcium stores. In Type III cells that do have VGCCs and chemical synapses, ryanodine receptors contribute to the depolarization-dependent calcium influx. Methodology/Principal Findings The goal of this study was to establish if there was selectivity in the type of VGCC that is associated with the ryanodine receptor in the Type III taste cells or if the ryanodine receptor opens irrespective of the calcium channels involved. We also wished to determine if the ryanodine receptors and VGCCs require a physical linkage to interact or are simply functionally associated with each other. Using calcium imaging and pharmacological inhibitors, we found that ryanodine receptors are selectively associated with L type VGCCs but likely not through a physical linkage. Conclusions/Significance Taste cells are able to undergo calcium induced calcium release through ryanodine receptors to increase the initial calcium influx signal and provide a larger calcium response than would otherwise occur when L type channels are activated in Type III taste cells.
Collapse
Affiliation(s)
- Michelle R. Rebello
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Amanda B. Maliphol
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Kathryn F. Medler
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
42
|
Azanza MPV. Hydrocolloid sour taste control in pasteurized rice. Journal of Food Science and Technology 2013; 51:3998-4004. [DOI: 10.1007/s13197-013-0947-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/23/2013] [Accepted: 01/30/2013] [Indexed: 11/25/2022]
|
43
|
Desimone JA, Ren Z, Phan THT, Heck GL, Mummalaneni S, Lyall V. Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to salty and sour taste stimuli. J Neurophysiol 2012; 108:3206-20. [PMID: 22956787 DOI: 10.1152/jn.00916.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relationship between taste receptor cell (TRC) Ca(2+) concentration ([Ca(2+)](i)) and rat chorda tympani (CT) nerve responses to salty [NaCl and NaCl+benzamil (Bz)] and sour (HCl, CO(2), and acetic acid) taste stimuli was investigated before and after lingual application of ionomycin+Ca(2+), 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM), U73122 (phospholipase C blocker), and thapsigargin (Ca(2+)-ATPase inhibitor) under open-circuit or lingual voltage-clamp conditions. An increase in TRC [Ca(2+)](i) attenuated the tonic Bz-sensitive NaCl CT response and the apical membrane Na(+) conductance. A decrease in TRC [Ca(2+)](i) enhanced the tonic Bz-sensitive and Bz-insensitive NaCl CT responses and apical membrane Na(+) conductance but did not affect CT responses to KCl or NH(4)Cl. An increase in TRC [Ca(2+)](i) did not alter the phasic response but attenuated the tonic CT response to acidic stimuli. A decrease in [Ca(2+)](i) did not alter the phasic response but attenuated the tonic CT response to acidic stimuli. In a subset of TRCs, a positive relationship between [H(+)](i) and [Ca(2+)](i) was obtained using in vitro imaging techniques. U73122 inhibited the tonic CT responses to NaCl, and thapsigargin inhibited the tonic CT responses to salty and sour stimuli. The results suggest that salty and sour taste qualities are transduced by [Ca(2+)](i)-dependent and [Ca(2+)](i)-independent mechanisms. Changes in TRC [Ca(2+)](i) in a BAPTA-sensitive cytosolic compartment regulate ion channels and cotransporters involved in the salty and sour taste transduction mechanisms and in neural adaptation. Changes in TRC [Ca(2+)](i) in a separate subcompartment, sensitive to inositol trisphosphate and thapsigargin but inaccessible to BAPTA, are associated with neurotransmitter release.
Collapse
Affiliation(s)
- John A Desimone
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | |
Collapse
|
44
|
Ohkuri T, Horio N, Stratford JM, Finger TE, Ninomiya Y. Residual chemoresponsiveness to acids in the superior laryngeal nerve in "taste-blind" (P2X2/P2X3 double-KO) mice. Chem Senses 2012; 37:523-32. [PMID: 22362867 PMCID: PMC3379842 DOI: 10.1093/chemse/bjs004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2012] [Indexed: 12/25/2022] Open
Abstract
Mice lacking both the P2X2 and the P2X3 purinergic receptors (P2X-dblKO) exhibit loss of responses to all taste qualities in the taste nerves innervating the tongue. Similarly, these mice exhibit a near total loss of taste-related behaviors in brief access tests except for a near-normal avoidance of acidic stimuli. This persistent avoidance of acids despite the loss of gustatory neural responses to sour was postulated to be due to continued responsiveness of the superior laryngeal (SL) nerve. However, chemoresponses of the larynx are attributable both to taste buds and to free nerve endings. In order to test whether the SL nerve of P2X-dblKO mice remains responsive to acids but not to other tastants, we recorded responses from the SL nerve in wild-type (WT) and P2X-dblKO mice. WT mice showed substantial SL responses to monosodium glutamate, sucrose, urea, and denatonium-all of which were essentially absent in P2X-dblKO animals. In contrast, the SL nerve of P2X-dblKO mice exhibited near-normal responses to citric acid (50 mM) although responsiveness of both the chorda tympani and the glossopharyngeal nerves to this stimulus were absent or greatly reduced. These results are consistent with the hypothesis that the residual avoidance of acidic solutions by P2X-dblKO mice may be attributable to the direct chemosensitivity of nerve fibers innervating the laryngeal epithelium and not to taste.
Collapse
Affiliation(s)
- Tadahiro Ohkuri
- Department of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
45
|
Dando R, Roper SD. Acetylcholine is released from taste cells, enhancing taste signalling. J Physiol 2012; 590:3009-17. [PMID: 22570381 DOI: 10.1113/jphysiol.2012.232009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Acetylcholine (ACh), a candidate neurotransmitter that has been implicated in taste buds, elicits calcium mobilization in Receptor (Type II) taste cells. Using RT-PCR analysis and pharmacological interventions, we demonstrate that the muscarinic acetylcholine receptor M3 mediates these actions. Applying ACh enhanced both taste-evoked Ca2+ responses and taste-evoked afferent neurotransmitter (ATP) secretion from taste Receptor cells. Blocking muscarinic receptors depressed taste-evoked responses in Receptor cells, suggesting that ACh is normally released from taste cells during taste stimulation. ACh biosensors confirmed that, indeed, taste Receptor cells secrete acetylcholine during gustatory stimulation. Genetic deletion of muscarinic receptors resulted in significantly diminished ATP secretion from taste buds. The data demonstrate a new role for acetylcholine as a taste bud transmitter. Our results imply specifically that ACh is an autocrine transmitter secreted by taste Receptor cells during gustatory stimulation, enhancing taste-evoked responses and afferent transmitter secretion.
Collapse
Affiliation(s)
- Robin Dando
- Department of Physiology and Biophysics, University of Miami Leonard M. Miller School of Medicine, PO Box 016430, Miami, FL 33101, USA.
| | | |
Collapse
|
46
|
Iguchi N, Ohkuri T, Slack JP, Zhong P, Huang L. Sarco/Endoplasmic reticulum Ca2+-ATPases (SERCA) contribute to GPCR-mediated taste perception. PLoS One 2011; 6:e23165. [PMID: 21829714 PMCID: PMC3149081 DOI: 10.1371/journal.pone.0023165] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 07/13/2011] [Indexed: 02/01/2023] Open
Abstract
The sense of taste is important for providing animals with valuable information about the qualities of food, such as nutritional or harmful nature. Mammals, including humans, can recognize at least five primary taste qualities: sweet, umami (savory), bitter, sour, and salty. Recent studies have identified molecules and mechanisms underlying the initial steps of tastant-triggered molecular events in taste bud cells, particularly the requirement of increased cytosolic free Ca(2+) concentration ([Ca(2+)](c)) for normal taste signal transduction and transmission. Little, however, is known about the mechanisms controlling the removal of elevated [Ca(2+)](c) from the cytosol of taste receptor cells (TRCs) and how the disruption of these mechanisms affects taste perception. To investigate the molecular mechanism of Ca(2+) clearance in TRCs, we sought the molecules involved in [Ca(2+)](c) regulation using a single-taste-cell transcriptome approach. We found that Serca3, a member of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) family that sequesters cytosolic Ca(2+) into endoplasmic reticulum, is exclusively expressed in sweet/umami/bitter TRCs, which rely on intracellular Ca(2+) release for signaling. Serca3-knockout (KO) mice displayed significantly increased aversive behavioral responses and greater gustatory nerve responses to bitter taste substances but not to sweet or umami taste substances. Further studies showed that Serca2 was mainly expressed in the T1R3-expressing sweet and umami TRCs, suggesting that the loss of function of Serca3 was possibly compensated by Serca2 in these TRCs in the mutant mice. Our data demonstrate that the SERCA family members play an important role in the Ca(2+) clearance in TRCs and that mutation of these proteins may alter bitter and perhaps sweet and umami taste perception.
Collapse
Affiliation(s)
- Naoko Iguchi
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Tadahiro Ohkuri
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Jay P. Slack
- Givaudan Flavors Corporation, Cincinnati, Ohio, United States of America
| | - Ping Zhong
- Givaudan Flavors Corporation, Cincinnati, Ohio, United States of America
| | - Liquan Huang
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
47
|
Rebello MR, Aktas A, Medler KF. Expression of calcium binding proteins in mouse type II taste cells. J Histochem Cytochem 2011; 59:530-9. [PMID: 21527586 DOI: 10.1369/0022155411402352] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is well established that calcium is a critical signaling molecule in the transduction of taste stimuli within the peripheral taste system. However, little is known about the regulation and termination of these calcium signals in the taste system. The authors used Western blot, immunocytochemical, and RT-PCR analyses to evaluate the expression of multiple calcium binding proteins in mouse circumvallate taste papillae, including parvalbumin, calbindin D28k, calretinin, neurocalcin, NCS-1 (or frequenin), and CaBP. They found that all of the calcium binding proteins they tested were expressed in mouse circumvallate taste cells with the exception of NCS-1. The authors correlated the expression patterns of these calcium binding proteins with a marker for type II cells and found that neurocalcin was expressed in 80% of type II cells, whereas parvalbumin was found in less than 10% of the type II cells. Calretinin, calbindin, and CaBP were expressed in about half of the type II cells. These data reveal that multiple calcium binding proteins are highly expressed in taste cells and have distinct expression patterns that likely reflect their different roles within taste receptor cells.
Collapse
Affiliation(s)
- Michelle R Rebello
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | | | | |
Collapse
|
48
|
Horio N, Yoshida R, Yasumatsu K, Yanagawa Y, Ishimaru Y, Matsunami H, Ninomiya Y. Sour taste responses in mice lacking PKD channels. PLoS One 2011; 6:e20007. [PMID: 21625513 PMCID: PMC3098277 DOI: 10.1371/journal.pone.0020007] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 04/08/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The polycystic kidney disease-like ion channel PKD2L1 and its associated partner PKD1L3 are potential candidates for sour taste receptors. PKD2L1 is expressed in type III taste cells that respond to sour stimuli and genetic elimination of cells expressing PKD2L1 substantially reduces chorda tympani nerve responses to sour taste stimuli. However, the contribution of PKD2L1 and PKD1L3 to sour taste responses remains unclear. METHODOLOGY/PRINCIPAL FINDINGS We made mice lacking PKD2L1 and/or PKD1L3 gene and investigated whole nerve responses to taste stimuli in the chorda tympani or the glossopharyngeal nerve and taste responses in type III taste cells. In mice lacking PKD2L1 gene, chorda tympani nerve responses to sour, but not sweet, salty, bitter, and umami tastants were reduced by 25-45% compared with those in wild type mice. In contrast, chorda tympani nerve responses in PKD1L3 knock-out mice and glossopharyngeal nerve responses in single- and double-knock-out mice were similar to those in wild type mice. Sour taste responses of type III fungiform taste cells (GAD67-expressing taste cells) were also reduced by 25-45% by elimination of PKD2L1. CONCLUSIONS/SIGNIFICANCE These findings suggest that PKD2L1 partly contributes to sour taste responses in mice and that receptors other than PKDs would be involved in sour detection.
Collapse
Affiliation(s)
- Nao Horio
- Section of Oral Neuroscience, Graduate School
of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ryusuke Yoshida
- Section of Oral Neuroscience, Graduate School
of Dental Science, Kyushu University, Fukuoka, Japan
| | - Keiko Yasumatsu
- Section of Oral Neuroscience, Graduate School
of Dental Science, Kyushu University, Fukuoka, Japan
- Department of Oral Physiology, Asahi
University School of Dentistry, Gifu, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral
Neuroscience, Gunma University Graduate School of Medicine, Maebashi,
Japan
- JST, CREST, Tokyo, Japan
| | - Yoshiro Ishimaru
- Department of Applied Biological Chemistry,
Graduate School of Agricultural and Life Sciences, The University of Tokyo,
Tokyo, Japan
- Department of Molecular Genetics and
Microbiology, Duke University Medical Center, Durham, North Carolina, United
States of America
| | - Hiroaki Matsunami
- Department of Molecular Genetics and
Microbiology, Duke University Medical Center, Durham, North Carolina, United
States of America
| | - Yuzo Ninomiya
- Section of Oral Neuroscience, Graduate School
of Dental Science, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
49
|
DeSimone JA, Phan THT, Heck GL, Ren Z, Coleman J, Mummalaneni S, Melone P, Lyall V. Involvement of NADPH-dependent and cAMP-PKA sensitive H+ channels in the chorda tympani nerve responses to strong acids. Chem Senses 2011; 36:389-403. [PMID: 21339339 DOI: 10.1093/chemse/bjq148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To investigate if chorda tympani (CT) taste nerve responses to strong (HCl) and weak (CO(2) and acetic acid) acidic stimuli are dependent upon NADPH oxidase-linked and cAMP-sensitive proton conductances in taste cell membranes, CT responses were monitored in rats, wild-type (WT) mice, and gp91(phox) knockout (KO) mice in the absence and presence of blockers (Zn(2+) and diethyl pyrocarbonate [DEPC]) or activators (8-(4-chlorophenylthio)-cAMP; 8-CPT-cAMP) of proton channels and activators of the NADPH oxidase enzyme (phorbol 12-myristate 13-acetate [PMA], H(2)O(2), and nitrazepam). Zn(2+) and DEPC inhibited and 8-CPT-cAMP, PMA, H(2)O(2), and nitrazepam enhanced the tonic CT responses to HCl without altering responses to CO(2) and acetic acid. In KO mice, the tonic HCl CT response was reduced by 64% relative to WT mice. The residual CT response was insensitive to H(2)O(2) but was blocked by Zn(2+). Its magnitude was further enhanced by 8-CPT-cAMP treatment, and the enhancement was blocked by 8-CPT-adenosine-3'-5'-cyclic monophospho-rothioate, a protein kinase A (PKA) inhibitor. Under voltage-clamp conditions, before cAMP treatment, rat tonic HCl CT responses demonstrated voltage-dependence only at ±90 mV, suggesting the presence of H(+) channels with voltage-dependent conductances. After cAMP treatment, the tonic HCl CT response had a quasi-linear dependence on voltage, suggesting that the cAMP-dependent part of the HCl CT response has a quasi-linear voltage dependence between +60 and -60 mV, only becoming sigmoidal when approaching +90 and -90 mV. The results suggest that CT responses to HCl involve 2 proton entry pathways, an NADPH oxidase-dependent proton channel, and a cAMP-PKA sensitive proton channel.
Collapse
Affiliation(s)
- John A DeSimone
- Department of Physiology and Biophysics, Virginia Commonwealth University,1220 East Broad Street, Richmond, VA 23219, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sturz GR, Phan THT, Mummalaneni S, Ren Z, DeSimone JA, Lyall V. The K+-H+ exchanger, nigericin, modulates taste cell pH and chorda tympani taste nerve responses to acidic stimuli. Chem Senses 2011; 36:375-88. [PMID: 21257734 DOI: 10.1093/chemse/bjq146] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The relationship between acidic pH, taste cell pH(i), and chorda tympani (CT) nerve responses was investigated before and after incorporating the K(+)-H(+) exchanger, nigericin, in the apical membrane of taste cells. CT responses were recorded in anesthetized rats in vivo, and changes in pH(i) were monitored in polarized fungiform taste cells in vitro. Under control conditions, stimulating the tongue with 0.15 M potassium phosphate (KP) or 0.15 M sodium phosphate (NaP) buffers of pHs between 8.0 and 4.6, KP or NaP buffers did not elicit a CT response. Post-nigericin (500 × 10(-6) M), KP buffers, but not NaP buffers, induced CT responses at pHs ≤ 6.6. The effect of nigericin was reversed by the topical lingual application of carbonyl cyanide 3-chloro-phenylhydrazone, a protonophore. Post-nigericin (150 × 10(-6) M), KP buffers induced a greater decrease in taste cell pH(i) relative to NaP buffers and to NaP and KP buffers under control conditions. A decrease in pH(i) to about 6.9 induced by KP buffers was sufficient to elicit a CT response. The results suggest that facilitating apical H(+) entry via nigericin decreases taste cell pH(i) and demonstrates directly a strong correlation between pH(i) and the magnitude of the CT response.
Collapse
Affiliation(s)
- Gregory R Sturz
- Department of Physiology and Biophysics, Virginia Commonwealth University, 1220 East Broad Street, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|