1
|
Mörkl S, Narrath M, Schlotmann D, Sallmutter MT, Putz J, Lang J, Brandstätter A, Pilz R, Karl Lackner H, Goswami N, Steuber B, Tatzer J, Lackner S, Holasek S, Painold A, Jauk E, Wenninger J, Horvath A, Spicher N, Barth A, Butler MI, Wagner-Skacel J. Multi-species probiotic supplement enhances vagal nerve function - results of a randomized controlled trial in patients with depression and healthy controls. Gut Microbes 2025; 17:2492377. [PMID: 40298641 PMCID: PMC12045568 DOI: 10.1080/19490976.2025.2492377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Major depression (MD) significantly impacts individual well-being and society. The vagus nerve plays a pivotal role in the gut-brain axis, facilitating bidirectional communication between these systems. Recent meta-analyses suggest potential antidepressant effects of probiotics, although their mechanisms remain unclear. This study aimed to assess the impact of a multi-species probiotic (OMNi-BiOTiC® STRESS Repair) on vagus nerve function in 43 MD patients and 43 healthy controls (HC). Participants received either probiotics or placebo twice daily. Serum and stool samples were collected at baseline, 7 days, 28 days, and 3 months. Vagus nerve (VN) function was evaluated using 24-hour electrocardiography (ECG) for heart rate variability (HRV), alongside stool microbiome analysis via 16S rRNA sequencing. After 3 months, MD patients receiving probiotics demonstrated significantly improved morning VN function compared to HC. MD participants who were in the probiotic group showed a significant increase in Christensellales, particularly Akkermansia muciniphila along with improved sleep parameters (use of sleep medication, sleep latency) as measured by the Pittsburgh Sleep Quality Inventory (PSI). This study highlights potential physiological benefits of probiotics in MD, potentially mediated through VN stimulation. Understanding these mechanisms could lead to novel therapeutic approaches for MD management.
Collapse
Affiliation(s)
- Sabrina Mörkl
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Martin Narrath
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Daria Schlotmann
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Marie-Therese Sallmutter
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Julia Putz
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Julia Lang
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Brandstätter
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Rene Pilz
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Helmut Karl Lackner
- Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
| | - Nandu Goswami
- Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
- Gravitational Physiology and Medicine Research Unit, Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
- Center for Space and Aviation Health, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Bianca Steuber
- Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
- Gravitational Physiology and Medicine Research Unit, Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
| | - Jasmin Tatzer
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Sonja Lackner
- Division of Immunology, Medical University of Graz, Graz, Austria
| | - Sandra Holasek
- Division of Immunology, Medical University of Graz, Graz, Austria
| | - Annamaria Painold
- Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Emanuel Jauk
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Julian Wenninger
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Angela Horvath
- Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Nicolai Spicher
- Department of Medical Informatics, University Medical Center Göttingen, Göttingen, Germany
| | - Asmus Barth
- Department of Medical Informatics, University Medical Center Göttingen, Göttingen, Germany
| | - Mary I Butler
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Jolana Wagner-Skacel
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
2
|
Rosell-Cardona C, Collins MK, O'Riordan KJ, Goodson MS, Kelley-Loughnane N, Cryan JF, Clarke G. Acute stress enhances synaptic plasticity in male mice via a microbiota-dependent mechanism. Neuropharmacology 2025; 273:110434. [PMID: 40154944 DOI: 10.1016/j.neuropharm.2025.110434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Acute stress can enhance or impair synaptic plasticity depending on the nature, duration, and type of stress exposure as well as the brain region examined. The absence of a gut microbiome can also alter hippocampal plasticity. However, the possible interplay between synaptic plasticity, acute stress, and the gut microbiota remains unknown. Here, we examine this interaction and determine whether the gut microbiota impacts stress-induced alterations in hippocampal plasticity. Further, we explored whether exposure to the microbial metabolite butyrate is sufficient to counteract stress-induced alterations in synaptic plasticity. We used electrophysiological and molecular experiments in adult male C57/BL6 antibiotic-treated and acutely stressed mice. In electrophysiological experiments we treated hippocampal slices with 3 μM sodium butyrate to explore the effect of this microbial metabolite. We found the presence of the microbiota essential for the enhancement of both short- and long-term potentiation induced by 15 min of acute restraint stress. Furthermore, butyrate exposure effectively restored the stress-induced enhancement of potentiation in slices from microbiome-depleted animals while also enhancing long-term potentiation independent of stress. In addition, alterations of hippocampal synaptic plasticity markers were noted. Our findings highlight a critical new temporal role for gut-derived metabolites in defining the impact of acute stress on synaptic plasticity.
Collapse
Affiliation(s)
| | - Michael K Collins
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, USA
| | - Nancy Kelley-Loughnane
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, USA
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland.
| |
Collapse
|
3
|
Ohara TE, Hsiao EY. Microbiota-neuroepithelial signalling across the gut-brain axis. Nat Rev Microbiol 2025; 23:371-384. [PMID: 39743581 DOI: 10.1038/s41579-024-01136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Research over the past two decades has established a remarkable ability of the gut microbiota to modulate brain activity and behaviour. Conversely, signals from the brain can influence the composition and function of the gut microbiota. This bidirectional communication across the gut microbiota-brain axis, involving multiple biochemical and cellular mediators, is recognized as a major brain-body network that integrates cues from the environment and the body's internal state. Central to this network is the gut sensory system, formed by intimate connections between chemosensory epithelial cells and sensory nerve fibres, that conveys interoceptive signals to the central nervous system. In this Review, we provide a broad overview of the pathways that connect the gut and the brain, and explore the complex dialogue between microorganisms and neurons at this emerging intestinal neuroepithelial interface. We highlight relevant microbial factors, endocrine cells and neural mechanisms that govern gut microbiota-brain interactions and their implications for gastrointestinal and neuropsychiatric health.
Collapse
Affiliation(s)
- Takahiro E Ohara
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Klak K, Maciuszek M, Michalik A, Mazur M, Zawisza M, Pecio A, Nowak B, Chadzinska M. Fire in the belly: Stress and antibiotics induce dysbiosis and inflammation in the gut of common carp. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110301. [PMID: 40157582 DOI: 10.1016/j.fsi.2025.110301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Fish are exposed to numerous stressors which negatively affect their immune response and increase infection susceptibility. The risk of bacterial infections results in the excessive and preventive use of antibiotics. Therefore, we aimed to study how antibiotic treatment and restraint stress will affect the stress response, microbiota composition, gut morphology, and inflammatory reaction in common carp. Both restraint stress and antibiotic treatment increased cortisol level. Moreover, antibiotics induced dysbiosis in fish gut, manifested by a decrease in the total abundance of bacteria, and a shift in bacteria diversity, including a reduced number of Aeromonas, Bacteroides, Barnesiellaceae, Cetobacterium and Shewanella and an increased abundance of Flavobacterium. To a lesser extent, stress modified gut microbiota, as it decreased bacteria number and slightly changed the microbiota composition by decreasing Cetobacterium abundance and increasing Vibrio abundance. Microbiota of the antibiotic-treated and stressed fish shifted from the beneficial bacterial genera - Cetobacterium and Bacteroides, to the increased presence of unfavorable bacteria such as Brevinema, Flavobacterium and Desulfovibrionaceae. Stress and antibiotic-induced changes in the gut microbiota were related to the changes in the gut morphology when the higher abundance of goblet and rodlet cells and increased secretion activity of goblet cells were observed. Moreover, up-regulation of the expression of genes encoding pro-inflammatory mediators and cytokines involved in the Th17 immune response was present in the gut of the antibiotic-treated and stressed fish. We conclude that in carp antibiotics and stress alter the abundance and composition of the microbiota and induce Th17-dependent inflammatory reaction in the gut. Moreover, our results strongly suggest the interplay of the stress axis and the brain-gut-microbiota axis.
Collapse
Affiliation(s)
- Katarzyna Klak
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland.
| | - Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| | - Anna Michalik
- Department of Invertebrate Development and Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| | - Mikolaj Mazur
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland.
| | - Maria Zawisza
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland.
| | - Anna Pecio
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| | - Barbara Nowak
- Institute for Marine and Antarctic Studies - Launceston, University of Tasmania, Launceston, Tasmania, Australia.
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
5
|
Ong J, Wu Q, Sasaki K, Isoda H, Szele FG. Nutraceuticals: using food to enhance brain health by modulating postnatal neurogenesis in animal models and patient populations. Stem Cells Transl Med 2025; 14:szaf006. [PMID: 40387786 PMCID: PMC12087346 DOI: 10.1093/stcltm/szaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/30/2024] [Indexed: 05/20/2025] Open
Abstract
Adult hippocampal neurogenesis, while occurring throughout life, decreases with age and in some neurodegenerative diseases. As decreased hippocampal neurogenesis is correlated with cognitive decline, efforts have been made to increase levels of neurogenesis, either through natural compounds, environmental interventions or novel pharmacological compounds. Nutraceuticals are food products with medical benefits such as antioxidation, anti-inflammation or neuroprotection. There has been increasing interest in these "functional foods" and their active compounds in recent years, providing natural alternatives to de novo pharmaceuticals. This review highlights key nutraceuticals that promote neurogenesis and/or improve cognitive outcomes. By outlining the effects of these compounds in the animal models employed and in clinical populations, we also suggest further investigations. We examine common targets and pathways through which these nutraceuticals are believed to exert pro-neurogenic effects. Most nutraceutical preparations contain multiple components, any of which may exert effects on neurogenesis. Identifying key active compounds in nutraceuticals may enable researchers to better understand their effects and standardize doses across studies. The less stringent regulatory requirements for nutraceuticals can be a double-edged sword. While allowing easier access to the beneficial effects, higher doses of these compounds may have detrimental effects. Hence, research in this field should not only aim to identify the benefits of these compounds but also to identify efficacious and safe dosages for them. Our aims are to provide understanding of nutraceuticals, provide evidence for their benefits on neurogenesis and neurogenesis-related behaviors and finally to summarize potential mechanisms and help guide future work.
Collapse
Affiliation(s)
- Jun Ong
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Qingqing Wu
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| |
Collapse
|
6
|
Dubé-Zinatelli E, Mayotte E, Cappelletti L, Ismail N. Impact of the maternal microbiome on neonatal immune development. J Reprod Immunol 2025; 170:104542. [PMID: 40403512 DOI: 10.1016/j.jri.2025.104542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/22/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025]
Abstract
Historically, multigenerational health and disease transmission have primarily focused on genetic inheritance. However, the discovery that beneficial microorganisms known as commensal microbiota outnumber human genes tenfold has reshaped this perspective, highlighting their critical role in maintaining homeostasis and protecting against pathogens. Unlike the human genome, commensal microbiota is not genetically inherited but is acquired anew with each generation. with initial gut colonization playing a pivotal role in shaping an infant's immune system, neurodevelopment, and long-term health, all heavily influenced by maternal factors. In this review, we examine emerging research on maternal microbial influences on the fetus beginning in utero. We provide an updated overview of the current insights into the impact of the vaginal microbiome during parturition on offspring immunity and discuss the potential long-term health implications for infants born via cesarean section. We explore the advantages and limitations of techniques designed to mitigate these effects, such as vaginal seeding and emphasize that the development of the neonatal immune system is a dynamic process influenced by maternal factors beyond birth, including the transfer of microbiota through breast milk and skin contact. Finally, we present gaps in current research and propose future research directions to deepen our understanding of the impacts of the maternal microbiome on her child. Together, these insights demonstrate how maternal influence on offspring health and immunity extends beyond genetic factors, encompassing the transmission of microbiota, which, in turn, has profound long-term implications for health and disease resilience, offering a novel perspective on intergenerational health dynamics.
Collapse
Affiliation(s)
- Eleni Dubé-Zinatelli
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Hall, Room 2076B, Ottawa, Ontario K1N 6N5, Canada.
| | - Edwige Mayotte
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Hall, Room 2076B, Ottawa, Ontario K1N 6N5, Canada.
| | - Luna Cappelletti
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Hall, Room 2076B, Ottawa, Ontario K1N 6N5, Canada.
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Hall, Room 2076B, Ottawa, Ontario K1N 6N5, Canada; LIFE Research Institute, University of Ottawa, Thompson Hall, 25 University Private, room 227, Ottawa, Ontario K1N 6N5, Canada; University of Ottawa Brain and Mind Research Institute, Faculty of Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
7
|
Zhang X, Wang Y, E Q, Naveed M, Wang X, Liu Y, Li M. The biological activity and potential of probiotics-derived extracellular vesicles as postbiotics in modulating microbiota-host communication. J Nanobiotechnology 2025; 23:349. [PMID: 40380331 PMCID: PMC12082936 DOI: 10.1186/s12951-025-03435-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 05/01/2025] [Indexed: 05/19/2025] Open
Abstract
Probiotics such as Lactobacillus and Bifidobacterium spp. have been shown to be critical for maintaining host homeostasis. In recent years, key compounds of postbiotics derived from probiotic metabolism and cellular secretion have been identified for their role in maintaining organ immunity and regulating intestinal inflammation. In particular, probiotic-derived extracellular vesicles (PEVs) can act as postbiotics, maintaining almost the same functional activity as probiotics. They also have strong biocompatibility and loading capacity to carry exogenous or parental active molecules to reach distal organs to play their roles. This provides a new direction for understanding the intrinsic microbiota-host communication mechanism. However, most current studies on PEVs are limited to their functional effects/benefits, and their specific physicochemical properties, composition, intrinsic mechanisms for maintaining host homeostasis, and possible threats remain to be explored. Here, we review and summarize the unique physicochemical properties of PEVs and their bioactivities and mechanisms in mediating microbiota-host communication, and elucidate the limitations of the current research on PEVs and their potential application as postbiotics.
Collapse
Affiliation(s)
- Xiaoming Zhang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Ye Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Qiyu E
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Muhammad Naveed
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xiuli Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yinhui Liu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| |
Collapse
|
8
|
Wylie AC, Murgueitio N, Carlson AL, Fry RC, Propper CB. The role of the gut microbiome in the associations between lead exposure and child neurodevelopment. Toxicol Lett 2025; 408:95-104. [PMID: 40250742 DOI: 10.1016/j.toxlet.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/10/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Lead is highly toxic to the developing brain. Given its persistence in the environment, new intervention strategies are needed to mitigate the impacts of lead on child neurodevelopment. The gut microbiome, referring to the bacteria and microorganisms residing in the gastrointestinal system, may be a viable target for intervention. This short review summarizes recent evidence linking the gut-brain axis to child developmental outcomes. We explore how lead-induced effects to the gut microbiome could indirectly affect child neurodevelopment, such that disrupting or offsetting this mediating process could buffer the effects of lead on child developmental outcomes. Unexpected findings with respect to child microbiota diversity and child cognitive and behavioral outcomes as well as lead exposure and adult microbiota diversity are discussed. When possible, we draw connections between observed changes to relative bacterial abundance, proposed bacterial functions, and downstream effects to brain development. We also explore how the gut microbiome might modify the toxicity of lead by impeding the uptake of lead across the gastrointestinal tract or through indirect mechanisms in such ways that the gut microbiome does not fit within a mediating pathway. In this case, promoting the buffering capacity of the gut microbiome may reduce the impacts of lead on child neurodevelopment. The goal of this short review is to bring attention to the potential role of the gut microbiome in the associations between lead exposure and child neurodevelopment with an eye towards intervention.
Collapse
Affiliation(s)
- Amanda C Wylie
- RTI International, Research Triangle Park, North Carolina, United States; Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, United States.
| | - Nicolas Murgueitio
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, United States
| | | | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, United States; Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, United States
| | - Cathi B Propper
- School of Nursing, University of North Carolina at Chapel Hill, United States; Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, United States
| |
Collapse
|
9
|
Capatina TF, Oatu A, Babasan C, Trifu S. Translating Molecular Psychiatry: From Biomarkers to Personalized Therapies-A Narrative Review. Int J Mol Sci 2025; 26:4285. [PMID: 40362522 PMCID: PMC12072283 DOI: 10.3390/ijms26094285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
In this review, we explore the biomarkers of different psychiatric disorders, such as major depressive disorder, generalized anxiety disorder, schizophrenia, and bipolar disorder. Moreover, we show the interplay between genetic and environmental factors. Novel techniques such as genome-wide association studies (GWASs) have identified numerous risk loci and single-nucleotide polymorphisms (SNPs) implicated in these conditions, contributing to a better understanding of their mechanisms. Moreover, the impact of genetic variations on drug metabolisms, particularly through cytochrome P450 (CYP450) enzymes, highlights the importance of pharmacogenomics in optimizing psychiatric treatment. This review also explores the role of neurotransmitter regulation, immune system interactions, and metabolic pathways in psychiatric disorders. As the technology advances, integrating genetic markers into clinical practice will be crucial in advancing precision psychiatry, improving diagnostic accuracy and therapeutic interventions for individual patients.
Collapse
Affiliation(s)
| | - Anamaria Oatu
- Department of Psychiatry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.O.); (C.B.)
| | - Casandra Babasan
- Department of Psychiatry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.O.); (C.B.)
| | - Simona Trifu
- Department of Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
10
|
Kimmel M, Tong B, Devall AE, Björvang RD, Schuppe-Koistinen I, Engstrand L, Fransson E, Skalkidou A, Hugerth LW. Investigating the Microbiome in Relation to Mental Distress Across Two Points During Pregnancy: Data From U.S. and Swedish Cohorts. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100453. [PMID: 40115744 PMCID: PMC11925571 DOI: 10.1016/j.bpsgos.2025.100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 03/23/2025] Open
Abstract
Background In this study, we aimed to characterize the gut microbiome and its potential functioning in 2 populations at 2 time points during pregnancy in relation to mental distress. Methods During the second and third trimester, individuals from the United States and Sweden completed the Edinburgh Postnatal Depression Scale and provided fecal samples for whole-genome metagenomics. A total of 832 and 161 samples were sequenced and analyzed from the Swedish cohort and the U.S. cohort, respectively. Multiple characterizations of the microbial community were analyzed in relation to distress measured using the Edinburgh Postnatal Depression Scale. Principal coordinate analysis and distance-based redundancy analysis assessed variation in functional gut-brain modules. For the U.S. cohort, the Trier Social Stress Test was administered 8 weeks postpartum while collecting salivary cortisol. Results Principal coordinate analysis identified 4 sample clusters based on the gut-brain modules distinguished by functions such as short-chain fatty acid synthesis and cortisol degradation. While with distance-based redundancy analysis, mental distress subtypes did not significantly contribute to variation in gut-brain modules (p = .085 for Sweden, p = .23 for the U.S.), a U.S. sample cluster distinguished by lower cortisol degradation from another cluster with higher gut microbial cortisol degradation abundance had significantly higher odds of being associated with depression (p = .024). The U.S. sample cluster with lower gut microbial cortisol degradation abundance also had significantly higher cortisol levels after a postpartum social stressor. Conclusions Further studies are warranted to investigate the potential for the gut microbiome to serve as biomarkers of gut-brain axis health during pregnancy across disparate populations.
Collapse
Affiliation(s)
- Mary Kimmel
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Psychiatry, Washington University, St. Louis, Missouri
| | - Bangzhuo Tong
- Department of Medical Biochemistry and Microbiology, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
| | - Alfons Edbom Devall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Richelle D Björvang
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Ina Schuppe-Koistinen
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Engstrand
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Emma Fransson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alkistis Skalkidou
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Luisa W Hugerth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Lee SH, Han C, Shin C. IUPHAR Review: Microbiota-Gut-Brain Axis and its role in Neuropsychiatric Disorders. Pharmacol Res 2025; 216:107749. [PMID: 40306604 DOI: 10.1016/j.phrs.2025.107749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/20/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
The human gut microbiome, composed of a vast array of microorganisms that have co-evolved with humans, is crucial for the development and function of brain systems. Research has consistently shown bidirectional communication between the gut and the brain through neuronal, endocrine, and immunological, and chemical pathways. Recent neuroscience studies have linked changes in the microbiome and microbial metabolites to various neuropsychiatric disorders such as autism, depression, anxiety, schizophrenia, eating disorders, and neurocognitive disorders. Novel metagenome-wide association studies have confirmed these microbiome variations in large samples and expanded our understanding of the interactions between human genes and the gut microbiome. The causal relationship between gut microbiota and neuropsychiatric disorders is being elucidated through the establishment of large cohort studies incorporating microbiome data and advanced statistical techniques. Ongoing animal and human studies focused on the microbiota-gut-brain axis are promising for developing new prevention and treatment strategies for neuropsychiatric conditions. The scope of these studies has broadened from microbiome-modulating therapies including prebiotics, probiotics, synbiotics and postbiotics to more extensive approaches such as fecal microbiota transplantation. Recent systematic reviews and meta-analyses have strengthened the evidence base for these innovative treatments. Despite extensive research over the past decade, many intriguing aspects still need to be elucidated regarding the role and therapeutic interventions of the microbiota-gut-brain axis in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Changsu Han
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Cheolmin Shin
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Geertsema J, Juncker HG, Wilmes L, Burchell GL, de Rooij SR, van Goudoever JB, O'Riordan KJ, Clarke G, Cryan JF, Korosi A. Nutritional interventions to counteract the detrimental consequences of early-life stress. Mol Psychiatry 2025:10.1038/s41380-025-03020-1. [PMID: 40289212 DOI: 10.1038/s41380-025-03020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025]
Abstract
Exposure to stress during sensitive developmental periods comes with long term consequences for neurobehavioral outcomes and increases vulnerability to psychopathology later in life. While we have advanced our understanding of the mechanisms underlying the programming effects of early-life stress (ES), these are not yet fully understood and often hard to target, making the development of effective interventions challenging. In recent years, we and others have suggested that nutrition might be instrumental in modulating and possibly combatting the ES-induced increased risk to psychopathologies and neurobehavioral impairments. Nutritional strategies are very promising as they might be relatively safe, cheap and easy to implement. Here, we set out to comprehensively review the existing literature on nutritional interventions aimed at counteracting the effects of ES on neurobehavioral outcomes in preclinical and clinical settings. We identified eighty six rodent and ten human studies investigating a nutritional intervention to ameliorate ES-induced impairments. The human evidence to date, is too few and heterogeneous in terms of interventions, thus not allowing hard conclusions, however the preclinical studies, despite their heterogeneity in terms of designs, interventions used, and outcomes measured, showed nutritional interventions to be promising in combatting ES-induced impairments. Furthermore, we discuss the possible mechanisms involved in the beneficial effects of nutrition on the brain after ES, including neuroinflammation, oxidative stress, hypothalamus-pituitary-adrenal axis regulation and the microbiome-gut-brain axis. Lastly, we highlight the critical gaps in our current knowledge and make recommendations for future research to move the field forward.
Collapse
Affiliation(s)
- Jorine Geertsema
- Brain Plasticity group, Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Hannah G Juncker
- Brain Plasticity group, Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Lars Wilmes
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - George L Burchell
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susanne R de Rooij
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health research institute, Aging and Later Life, Health Behaviors and Chronic Diseases, Amsterdam, The Netherlands
| | - J B van Goudoever
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Aniko Korosi
- Brain Plasticity group, Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Ding S, Alexander E, Liang H, Kulchar RJ, Singh R, Herzog RW, Daniell H, Leong KW. Synthetic and Biogenic Materials for Oral Delivery of Biologics: From Bench to Bedside. Chem Rev 2025; 125:4009-4068. [PMID: 40168474 DOI: 10.1021/acs.chemrev.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
The development of nucleic acid and protein drugs for oral delivery has lagged behind their production for conventional nonoral routes. Over the past decade, the evolution of DNA- and RNA-based technologies combined with the innovation of state-of-the-art delivery vehicles for nucleic acids has brought rapid advancements to the biopharmaceutical field. Nucleic acid therapies have the potential to achieve long-lasting effects, or even cures, by inhibiting or editing genes, which is not possible with conventional small-molecule drugs. However, challenges and limitations must be addressed before these therapies can provide cures for chronic conditions and rare diseases, rather than only offering temporary relief. Nucleic acids and proteins face premature degradation in the acidic, enzyme-rich stomach environment and are rapidly cleared by the liver. To overcome these challenges, various delivery vehicles have been developed to transport therapeutic compounds to the intestines, where the active compounds are released and gut microbiota and mucosal immune system also play an important role. This review provides a comprehensive overview of the promises and pitfalls associated with the oral route of administration of biologics, current delivery systems, applications of orally delivered therapeutics, and the challenges and considerations for translation of nucleic acid and protein therapeutics into clinical practice.
Collapse
Affiliation(s)
- Suwan Ding
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Elena Alexander
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Huiyi Liang
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Rachel J Kulchar
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Rahul Singh
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| |
Collapse
|
14
|
Cho MY, Eom JH, Choi EM, Yang SJ, Lee D, Kim YY, Kim HS, Hwang I. Recent advances in therapeutic probiotics: insights from human trials. Clin Microbiol Rev 2025:e0024024. [PMID: 40261032 DOI: 10.1128/cmr.00240-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
SUMMARYRecent advances in therapeutic probiotics have shown promising results across various health conditions, reflecting a growing understanding of the human microbiome's role in health and disease. However, comprehensive reviews integrating the diverse therapeutic effects of probiotics in human subjects have been limited. By analyzing randomized controlled trials (RCTs) and meta-analyses, this review provides a comprehensive overview of key developments in probiotic interventions targeting gut, liver, skin, vaginal, mental, and oral health. Emerging evidence supports the efficacy of specific probiotic strains and combinations in treating a wide range of disorders, from gastrointestinal (GI) and liver diseases to dermatological conditions, bacterial vaginosis, mental disorders, and oral diseases. We discuss the expanding understanding of microbiome-organ connections underlying probiotic mechanisms of action. While many clinical trials demonstrate significant benefits, we acknowledge areas requiring further large-scale studies to establish definitive efficacy and optimal treatment protocols. The review addresses challenges in standardizing probiotic research methodologies and emphasizes the importance of considering individual variations in microbiome composition and host genetics. Additionally, we explore emerging concepts such as the oral-gut-brain axis and future directions, including high-resolution microbiome profiling, host-microbe interaction studies, organoid models, and artificial intelligence applications in probiotic research. Overall, this review offers a comprehensive update on the current state of therapeutic probiotics across multiple domains of human health, providing insights into future directions and the potential for probiotics to revolutionize preventive and therapeutic medicine.
Collapse
Affiliation(s)
- Mu-Yeol Cho
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-si, South Korea
| | - Je-Hyun Eom
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-si, South Korea
| | - Eun-Mi Choi
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-si, South Korea
| | | | - Dahye Lee
- Department of Orthodontics, Apple Tree Dental Hospital, Goyang-si, South Korea
| | - Young Youn Kim
- Department of Oral and Maxillofacial Surgery, Apple Tree Dental Hospital, Goyang-si, South Korea
| | - Hye-Sung Kim
- Department of Oral and Maxillofacial Surgery, Apple Tree Dental Hospital, Goyang-si, South Korea
| | - Inseong Hwang
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-si, South Korea
| |
Collapse
|
15
|
Milligan YC, Peters NV, West G, Cortes LR, Chassaing B, de Vries GJ, Castillo-Ruiz A. The microbiota shapes the development of the mouse hypothalamic paraventricular nucleus. Horm Behav 2025; 172:105742. [PMID: 40262424 DOI: 10.1016/j.yhbeh.2025.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
Microbes massively colonize the mammalian newborn at birth. We previously reported that the microbiota influences key neurodevelopmental events, e.g., when compared to their conventionally colonized (CC) counterparts, sterile newborn mice ("germ-free" or GF) show higher cell death in the hypothalamic paraventricular nucleus (PVN). Here, we tested the hypothesis that the microbiota, perhaps via cell death mechanisms, shapes PVN development. To this aim, we used a cross-fostering approach that also allowed us to test whether any potential effects are influenced by microbial colonization at birth or programmed prenatally via the maternal microbiota. Specifically, we cross-fostered GF pups to CC dams (GF → CC) immediately after birth and compared them to control groups cross-fostered within microbial status (CC → CC, GF → GF). At postnatal day 7, GF → GF and GF → CC newborns had fewer PVN cells than did CC → CC newborns, without affecting PVN volume. In a follow-up experiment, we confirmed a reduction in PVN cell number with no change in PVN volume in adult GF mice. Thus, the greater cell death previously observed in the PVN of newborn GF mice is associated with a permanent reduction in cell number. Because the deficit is not altered by introducing a microbiota at birth, our findings also suggest that the maternal microbiota shapes development of the PVN starting in utero.
Collapse
Affiliation(s)
- Yvonne C Milligan
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Nicole V Peters
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Gabby West
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | - Laura R Cortes
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Benoit Chassaing
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Geert J de Vries
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA; Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | | |
Collapse
|
16
|
Ramadan YN, Alqifari SF, Alshehri K, Alhowiti A, Mirghani H, Alrasheed T, Aljohani F, Alghamdi A, Hetta HF. Microbiome Gut-Brain-Axis: Impact on Brain Development and Mental Health. Mol Neurobiol 2025:10.1007/s12035-025-04846-0. [PMID: 40234288 DOI: 10.1007/s12035-025-04846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/12/2025] [Indexed: 04/17/2025]
Abstract
The current discovery that the gut microbiome, which contains roughly 100 trillion microbes, affects health and disease has catalyzed a boom in multidisciplinary research efforts focused on understanding this relationship. Also, it is commonly demonstrated that the gut and the CNS are closely related in a bidirectional pathway. A balanced gut microbiome is essential for regular brain activities and emotional responses. On the other hand, the CNS regulates the majority of GI physiology. Any disruption in this bidirectional pathway led to a progression of health problems in both directions, neurological and gastrointestinal diseases. In this review, we hope to shed light on the complicated connections of the microbiome-gut-brain axis and the critical roles of gut microbiome in the early development of the brain in order to get a deeper knowledge of microbiome-mediated pathological conditions and management options through rebalancing of gut microbiome.
Collapse
Affiliation(s)
- Yasmin N Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut, 71515, Egypt.
| | - Saleh F Alqifari
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Khaled Alshehri
- Department of Internal Medicine (Neurology), Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Amirah Alhowiti
- Department of Family and Community Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Hyder Mirghani
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Tariq Alrasheed
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisal Aljohani
- Division of Medicine and Gastroenterology, Department of Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdulaziz Alghamdi
- Department of Medicine, Division of Psychiatry, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Helal F Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, 71491, Tabuk, Saudi Arabia
| |
Collapse
|
17
|
Yuan C, Chang F, Zhai H, Du J, Lu D, Ma H, Wu X, Gao P, Ni L. Integrative approaches to depression in end-stage renal disease: insights into mechanisms, impacts, and pharmacological strategies. Front Pharmacol 2025; 16:1559038. [PMID: 40297143 PMCID: PMC12034933 DOI: 10.3389/fphar.2025.1559038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Depression is a frequently overlooked psychiatric symptom in patients with end-stage renal disease (ESRD), seriously affecting their quality of life, risk of death, adherence to treatment, cognitive abilities, and overall health outcomes. The study investigates the prevalence of depression is in ESRD patients, along with the methods for assessment, diagnostic guidelines, underlying factors, consequences, and management strategies. The Beck Depression Inventory (BDI), with an optimal diagnostic cutoff score greater than 14, has been identified as the most accurate for diagnosing depression in ESRD, while emerging tools such as vacancy-driven high-performance metabolic assays show promise for evaluation. Depression contributes to adverse health outcomes by increasing risks of treatment withdrawal, suicide, and cognitive impairment, as well as serving as a predictor of mortality and poor treatment adherence. Even though tricyclic antidepressants and selective serotonin reuptake inhibitors are commonly used, the effectiveness of treatment remains unpredictable because clinical studies often have limitations such as small sample sizes, no randomization, and missing control groups. Innovative approaches, such as nanomaterials and traditional Chinese medicine, have shown therapeutic potential with reduced side effects. Future research should focus on specific high-risk populations, particularly older adults and women under the age of 45, to better tailor interventions. The goal of this research is to improve understanding of depression in ESRD, leading to better patient care, improved quality of life, and superior clinical results.
Collapse
Affiliation(s)
- Cheng Yuan
- Department of Oncology, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| | - Fengpei Chang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Nephrology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hongfu Zhai
- Department of Nephrology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jiayin Du
- Department of Nephrology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Danqin Lu
- Department of Nephrology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Haoli Ma
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Department of General Practice, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Gao
- Department of Nephrology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Marano G, Rossi S, Sfratta G, Traversi G, Lisci FM, Anesini MB, Pola R, Gasbarrini A, Gaetani E, Mazza M. Gut Microbiota: A New Challenge in Mood Disorder Research. Life (Basel) 2025; 15:593. [PMID: 40283148 PMCID: PMC12028401 DOI: 10.3390/life15040593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
The gut microbiome has emerged as a novel and intriguing focus in mood disorder research. Emerging evidence demonstrates the significant role of the gut microbiome in influencing mental health, suggesting a bidirectional communication between the gut and the brain. This review examines the latest findings on the gut-microbiota-brain axis and elucidates how alterations in gut microbiota composition can influence this axis, leading to changes in brain function and behavior. Although dietary interventions, prebiotics, probiotics, and fecal microbiota transplantation have yielded encouraging results, significant advances are needed to establish next-generation approaches that precisely target the neurobiological mechanisms of mood disorders. Future research must focus on developing personalized treatments, facilitated by innovative therapies and technological progress, which account for individual variables such as age, sex, drug history, and lifestyle. Highlighting the potential therapeutic implications of targeting the gut microbiota, this review emphasizes the importance of integrating microbiota research into psychiatric studies to develop more effective and personalized treatment strategies for mood disorders.
Collapse
Affiliation(s)
- Giuseppe Marano
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sara Rossi
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Greta Sfratta
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianandrea Traversi
- Unit of Medical Genetics, Department of Laboratory Medicine, Ospedale Isola Tiberina-Gemelli Isola, 00186 Rome, Italy
| | - Francesco Maria Lisci
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Benedetta Anesini
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Roberto Pola
- Section of Internal Medicine and Thromboembolic Diseases, Department of Internal Medicine, Fondazione Poli-Clinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Eleonora Gaetani
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Unit of Internal Medicine, Cristo Re Hospital, 00167 Rome, Italy
| | - Marianna Mazza
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
19
|
Zarimeidani F, Rahmati R, Mostafavi M, Darvishi M, Khodadadi S, Mohammadi M, Shamlou F, Bakhtiyari S, Alipourfard I. Gut Microbiota and Autism Spectrum Disorder: A Neuroinflammatory Mediated Mechanism of Pathogenesis? Inflammation 2025; 48:501-519. [PMID: 39093342 PMCID: PMC12053372 DOI: 10.1007/s10753-024-02061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 08/04/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social communication and behavior, frequently accompanied by restricted and repetitive patterns of interests or activities. The gut microbiota has been implicated in the etiology of ASD due to its impact on the bidirectional communication pathway known as the gut-brain axis. However, the precise involvement of the gut microbiota in the causation of ASD is unclear. This study critically examines recent evidence to rationalize a probable mechanism in which gut microbiota symbiosis can induce neuroinflammation through intermediator cytokines and metabolites. To develop ASD, loss of the integrity of the intestinal barrier, activation of microglia, and dysregulation of neurotransmitters are caused by neural inflammatory factors. It has emphasized the potential role of neuroinflammatory intermediates linked to gut microbiota alterations in individuals with ASD. Specifically, cytokines like brain-derived neurotrophic factor, calprotectin, eotaxin, and some metabolites and microRNAs have been considered etiological biomarkers. We have also overviewed how probiotic trials may be used as a therapeutic strategy in ASD to reestablish a healthy balance in the gut microbiota. Evidence indicates neuroinflammation induced by dysregulated gut microbiota in ASD, yet there is little clarity based on analysis of the circulating immune profile. It deems the repair of microbiota load would lower inflammatory chaos in the GI tract, correct neuroinflammatory mediators, and modulate the neurotransmitters to attenuate autism. The interaction between the gut and the brain, along with alterations in microbiota and neuroinflammatory biomarkers, serves as a foundational background for understanding the etiology, diagnosis, prognosis, and treatment of autism spectrum disorder.
Collapse
Affiliation(s)
- Fatemeh Zarimeidani
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rahem Rahmati
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrnaz Mostafavi
- Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Darvishi
- School of Aerospace and Subaquatic Medicine, Infectious Diseases & Tropical Medicine Research Center (IDTMC), AJA University of Medical Sciences, Tehran, Iran
| | - Sanaz Khodadadi
- Student Research Committee, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Shamlou
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Salar Bakhtiyari
- Feinberg Cardiovascular and Renal Research Institute, North Western University, Chicago. Illinois, USA
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcin Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
20
|
Júnior JIRN, Aires R, de Sousa Cutrim TA, Vasquez EC, Pereira TMC, Campagnaro BP. Efficacy of probiotic adjuvant therapy in women with major depressive disorder: insights from a case series study. Pharmacol Rep 2025; 77:463-473. [PMID: 39808404 DOI: 10.1007/s43440-024-00690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND The therapeutic targeting of the intestinal microbiota has gained increasing attention as a promising avenue for addressing mood disorders. This study aimed to assess the potential effect of supplementing standard pharmacological treatment with the probiotic kefir in patients with Major Depressive Disorder (MDD). METHODS Thirty-eight female participants diagnosed with moderate MDD by the Hamilton Rating Scale for Depression (HAM-D) were selected to receive the probiotic kefir in conjunction with antidepressant therapy for 12 weeks. The participants were evaluated at baseline (T0) and 90 days after probiotic kefir supplementation (T90). HAM-D scores and blood samples were collected at both time points. RESULTS Probiotic supplementation significantly reduced MDD severity, as evidenced by lower HAM-D scores compared to baseline. Probiotic consumption for 90 days also significantly decreased interleukin-6 (IL-6), C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) levels compared to baseline. However, probiotic kefir supplementation did not significantly affect serum serotonin levels. Additionally, after 90 days of probiotic consumption, insulin and morning cortisol levels were significantly reduced. In contrast, no significant changes were observed in serum levels of prolactin, vitamin D, and afternoon cortisol. CONCLUSION This study provides valuable insights into the potential benefits of probiotics, specifically kefir, as adjunctive therapy for female patients with MDD. The findings highlight promising results in ameliorating depressive symptoms and modulating inflammatory and hormonal markers.
Collapse
Affiliation(s)
- Jairo Izidro Rossetti Navarro Júnior
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), R Mercurio s/n, Vila Velha, ES, 29102623, Brazil
| | - Rafaela Aires
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), R Mercurio s/n, Vila Velha, ES, 29102623, Brazil
| | - Thiago Antonio de Sousa Cutrim
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), R Mercurio s/n, Vila Velha, ES, 29102623, Brazil
| | - Elisardo Corral Vasquez
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), R Mercurio s/n, Vila Velha, ES, 29102623, Brazil
| | - Thiago Melo Costa Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), R Mercurio s/n, Vila Velha, ES, 29102623, Brazil
- Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Bianca Prandi Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), R Mercurio s/n, Vila Velha, ES, 29102623, Brazil.
| |
Collapse
|
21
|
Chen L, Wang X, Wang S, Liu W, Song Z, Liao H. The impact of gut microbiota on the occurrence, treatment, and prognosis of ischemic stroke. Neurobiol Dis 2025; 207:106836. [PMID: 39952411 DOI: 10.1016/j.nbd.2025.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025] Open
Abstract
Ischemic stroke (IS) is a cerebrovascular disease that predominantly affects middle-aged and elderly populations, exhibiting high mortality and disability rates. At present, the incidence of IS is increasing annually, with a notable trend towards younger affected individuals. Recent discoveries concerning the "gut-brain axis" have established a connection between the gut and the brain. Numerous studies have revealed that intestinal microbes play a crucial role in the onset, progression, and outcomes of IS. They are involved in the entire pathophysiological process of IS through mechanisms such as chronic inflammation, neural regulation, and metabolic processes. Although numerous studies have explored the relationship between IS and intestinal microbiota, comprehensive analyses of specific microbiota is relatively scarce. Therefore, this paper provides an overview of the typical changes in gut microbiota following IS and investigates the role of specific microorganisms in this context. Additionally, it presents a comprehensive analysis of post-stroke microbiological therapy and the relationship between IS and diet. The aim is to identify potential microbial targets for therapeutic intervention, as well as to highlight the benefits of microbiological therapies and the significance of dietary management. Overall, this paper seeks to provide key strategies for the treatment and management of IS, advocating for healthy diets and health programs for individuals. Meanwhile, it may offer a new perspective on the future interdisciplinary development of neurology, microbiology and nutrition.
Collapse
Affiliation(s)
- Liying Chen
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xi Wang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Shiqi Wang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Weili Liu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | | | - Huiling Liao
- Neurology Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
22
|
El-Sehrawy AAMA, Ayoub II, Uthirapathy S, Ballal S, Gabble BC, Singh A, V K, Panigrahi R, Kamali M, Khosravi M. The microbiota-gut-brain axis in myalgic encephalomyelitis/chronic fatigue syndrome: a narrative review of an emerging field. Eur J Transl Myol 2025; 35:13690. [PMID: 39937103 PMCID: PMC12038572 DOI: 10.4081/ejtm.2025.13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
The intricate relationship between gut microbiota and the brain has emerged as a pivotal area of research, particularly in understanding Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). This complex condition is characterized by debilitating fatigue, cognitive dysfunction, and a wide array of systemic manifestations, posing significant challenges for diagnosis and treatment. Recent studies highlight the microbiota-gut-brain axis as a crucial pathway in ME/CFS pathophysiology, suggesting that alterations in gut microbial composition may impact immune responses, neurochemical signaling, and neuronal health. This narrative review systematically explores English-language scholarly articles from January 1995 to January 2025, utilizing databases such as PubMed, Scopus, and Web of Science. The findings underscore the potential for targeted therapeutic interventions aimed at correcting gut dysbiosis. As research progresses, a deeper understanding of the microbiota-gut-brain connection could lead to innovative approaches for managing ME/CFS, ultimately enhancing the quality of life for affected individuals.
Collapse
Affiliation(s)
| | | | - Subasini Uthirapathy
- Faculty of Pharmacy, Department of Pharmacology, Tishk International University, Erbil, Kurdistan Region.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka.
| | - Baneen C Gabble
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon.
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab.
| | - Kavitha V
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu.
| | - Rajashree Panigrahi
- Department of Microbiology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar.
| | - Mostafa Kamali
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan.
| | - Mohsen Khosravi
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Community Nursing Research Center, Zahedan University of Medical Sciences, Zahedan.
| |
Collapse
|
23
|
Gupta M, Cilkiz M, Ibrahim MMA, Athrey G. Gut Microbiome-Brain Crosstalk in the Early Life of Chicken Reveals the Circadian Regulation of Key Metabolic and Immune Signaling Processes. Microorganisms 2025; 13:789. [PMID: 40284627 PMCID: PMC12029235 DOI: 10.3390/microorganisms13040789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/13/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Circadian rhythms are innate biological systems that control everyday behavior and physiology. Furthermore, bilateral interaction between the host's circadian rhythm and the gut microbes influences a variety of health ramifications, including metabolic diseases, obesity, and mental health including GALT physiology and the microbiome population. Therefore, we are studying the correlation between differential gene expression in the chicken brain and microbiota abundance during circadian rhythms. To understand this, we raised freshly hatched chicks under two photoperiod treatments: normal photoperiod (NP = 12/12 LD) and extended photoperiod (EP 23/1 LD). The chicks were randomly assigned to one of two treatments. After 21 days of circadian entrainment, the chicks were euthanized at nine time points spaced six hours apart over 48 h to characterize the brain transcriptomes. Each sample's RNA was extracted, and 36 mRNA libraries were generated and sequenced using Illumina technology, followed by data processing, count data generation, and differential gene expression analysis. We generated an average of 17.5 million reads per library for 237.9 M reads. When aligned to the Galgal6 reference genome, 11,867 genes had detectable expression levels, with a common dispersion value of 0.105. To identify the genes that follow 24 h rhythms, counts per million data were performed in DiscoRhythm. We discovered 577 genes with Cosinor and 417 with the JTK cycle algorithm that exhibit substantial rhythms. We used weighted gene co-expression network analysis (WGCNA) to analyze the correlation between differentially expressed genes and microbiota abundance. The most enriched pathways included aldosterone-regulated sodium reabsorption, endocrine and other factor-regulated calcium reabsorption, GABAergic synapse, oxidative phosphorylation, serotonergic synapse, dopaminergic synapse and circadian entrainment. This study builds on our previous study, and adds new findings about the specific interactions and co-regulation of the brain transcriptome and the gut microbiota. The interaction between gut microbiota and host gene expression highlights the potential benefits of microbiome-modulation approaches to improve gut health and performance in poultry.
Collapse
Affiliation(s)
- Mridula Gupta
- Department of Poultry Science, Texas A&M University, 2472 TAMU, College Station, TX 77843, USA;
| | - Mustafa Cilkiz
- Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Mohamed M. A. Ibrahim
- Department of Laser Applications in Metrology, Photochemistry and Agriculture, National Institute of Laser Enhanced Sciences, Cairo University, Giza 12613, Egypt;
| | - Giridhar Athrey
- Department of Poultry Science, Texas A&M University, 2472 TAMU, College Station, TX 77843, USA;
- Faculty of Ecology & Evolutionary Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
24
|
Zhou Y, Zheng W, Guo F, Wu S, Zhong C. The anti-inflammation pharmacodynamics of lithium: Therapy of bipolar disorder. J Psychopharmacol 2025:2698811251326942. [PMID: 40138498 DOI: 10.1177/02698811251326942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Bipolar disorder is a severe mental disorder that necessitates effective long-term treatment strategies. Clinically, lithium has demonstrated favorable outcomes in managing this condition. The inflammatory theory posits that bipolar disorder is influenced by an inflammatory response, and lithium is thought to mitigate this disorder by inhibiting such responses. In terms of the pharmacodynamics of blocking inflammatory mediators, lithium mainly acts on GSK-3β. Upon interaction with GSK-3β, lithium can suppress the gene expression of inflammatory mediators, subsequently reducing their secretion. This mechanism influences multiple downstream pathways, ultimately contributing to the therapeutic effects observed in bipolar disorder. Specifically, these pathways include the arachidonic acid pathway, nitric oxide synthase pathway, neurotransmitter pathway, and so on. This article reviews the pharmacodynamic targets and mechanisms of lithium, offering insights into the appropriate clinical application of lithium and the advancement of lithium pharmacotherapies.
Collapse
Affiliation(s)
- Yuyang Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weizhi Zheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Feichang Guo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shijin Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Congjie Zhong
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
25
|
Sasaki H, Masutomi H, Nakamura S, Tanigawa C, Cui Y, Ishihara K, Yanagisawa M, Kokubo T. Granola consumption with multiple prebiotics in Japanese participants increases Bifidobacterium abundance and improves stress and subjective sleepiness. Front Nutr 2025; 12:1551313. [PMID: 40181940 PMCID: PMC11965129 DOI: 10.3389/fnut.2025.1551313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Background Sleep is essential for physical and mental health. However, stress-related sleep disorders are common in Japan, and the gut-brain axis may play a role in sleep and stress management. This study investigated whether the consumption of granola containing multiple prebiotic ingredients could alleviate stress and improve insomnia in adults with stress-related sleep problems, regardless of individual differences in the gut microbiota. Additionally, we aimed to investigate the relationship between changes in gut microbiota and the observed improvements. Method A single-arm uncontrolled trial was conducted with 27 adults with high stress levels and sleep disturbance. The participants consumed 50 g of prebiotics-containing granola daily for 8 weeks. Subjective sleep quality was assessed using the Athens Insomnia Scale, Epworth Sleep Scale, and Oguri-Shirakawa-Azumi Sleep Inventory-Middle-aged and Aged version (OSA-MA). Stress levels were assessed by administering the Brief Job Stress Questionnaire and Profile of Mood States 2nd edition (POMS2). Gut microbiota composition was analyzed using 16S rDNA sequencing. Results After 8 weeks, subjective insomnia scores and sleep onset and maintenance improved significantly, whereas the stress and mood disturbance scores decreased significantly. Gut microbiota analysis showed that the relative abundance of Bifidobacterium increased, whereas that of Bacteroides decreased. Correlation analysis suggested a significant association between increased Bifidobacterium level and reduced stress (r = -0.39, p = 0.0035) and insomnia levels (r = -0.3, p = 0.026). Conclusion Prebiotics-containing granola improved subjective sleep quality and reduced stress in adults with stress-related sleep disturbances, which may be attributed to alterations in gut microbiota, particularly the increase in Bifidobacterium abundance.
Collapse
Affiliation(s)
- Hiroyuki Sasaki
- Research & Development Division, Calbee, Inc., Utsunomiya, Japan
| | | | - Shuji Nakamura
- Sleep is the Ultimate Intelligent Mechanism In Nature (S’UIMIN) Inc., Tokyo, Japan
| | - Chiemi Tanigawa
- Sleep is the Ultimate Intelligent Mechanism In Nature (S’UIMIN) Inc., Tokyo, Japan
| | - Yufei Cui
- Sleep is the Ultimate Intelligent Mechanism In Nature (S’UIMIN) Inc., Tokyo, Japan
| | | | - Masashi Yanagisawa
- Sleep is the Ultimate Intelligent Mechanism In Nature (S’UIMIN) Inc., Tokyo, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- The Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Toshio Kokubo
- Sleep is the Ultimate Intelligent Mechanism In Nature (S’UIMIN) Inc., Tokyo, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
26
|
Lewis N, Villani A, Lagopoulos J. Gut dysbiosis as a driver of neuroinflammation in attention-deficit/hyperactivity disorder: A review of current evidence. Neuroscience 2025; 569:298-321. [PMID: 39848564 DOI: 10.1016/j.neuroscience.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
There is mounting evidence for the involvement of the immune system, neuroinflammation and disturbed gut microbiota, or dysbiosis, in attention-deficit/hyperactivity disorder (ADHD). Gut dysbiosis is strongly implicated in many physical, autoimmune, neurological, and neuropsychiatric conditions, however knowledge of its particular pathogenic role in ADHD is sparse. As such, this narrative review examines and synthesizes the available evidence related to inflammation, dysbiosis, and neural processes in ADHD. Minimal differences in microbiota diversity measures between cases and controls were found, however many relative abundance differences were observed at all classification levels (phylum to strain). Compositional differences of taxa important to key gut-brain axis pathways, in particular Bacteroides species and Faecalibacterium, may contribute to inflammation, brain functioning differences, and symptoms, in ADHD. We have identified one possible model of ADHD etiopathogenesis involving systemic inflammation, an impaired blood-brain barrier, and neural disturbances as downstream consequences of gut dysbiosis. Nevertheless, studies conducted to date have varied degrees of methodological rigour and involve diverse participant characteristics and analytical techniques, highlighting a need for additional research.
Collapse
Affiliation(s)
- Naomi Lewis
- School of Health, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia; Thompson Institute, University of the Sunshine Coast, 12 Innovation Pkwy, Birtinya, QLD 4575, Australia.
| | - Anthony Villani
- School of Health, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia.
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Eccles Blvd, Birtinya, QLD 4575, Australia.
| |
Collapse
|
27
|
Menozzi E, Schapira AHV, Borghammer P. The Gut-Brain Axis in Parkinson disease: Emerging Concepts and Therapeutic Implications. Mov Disord Clin Pract 2025. [PMID: 40079755 DOI: 10.1002/mdc3.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND The gut-brain axis, i.e. the bidirectional communication system between the gut and the brain, has become of central importance in Parkinson disease (PD) research over the past 20 years. AIMS We aimed to describe the milestones of the gut-brain axis research in PD and the development of theories proposing the involvement of the gastrointestinal tract in PD pathogenesis. METHODS We searched PubMed using the terms 'gut-brain axis' AND 'Parkinson disease', and selected relevant articles to provide the foundation for reconstructing an historical overview of the gut-brain axis research in PD. RESULTS Mounting evidence from preclinical, clinical and post-mortem studies suggests that a subgroup of PD patients present with a range of prodromal symptoms (e.g., autonomic dysfunction, rapid eye movement sleep behaviour disorder) which reflect initial accumulation and later spread of pathological α-synuclein rostrally from the gastrointestinal tract ("body-first" PD). Through neural connections along the gut-brain axis, pathological α-synuclein may spread to the brain, producing clinically manifest disease. Recently, two mechanisms involving the gut-brain axis have attracted increasing attention for their role in PD pathogenesis and progression, namely the perturbation of the composition of the microorganisms living in the gut (the gut microbiome), and the dysfunction of enteroendocrine cells. CONCLUSION Treatments targeting the gut-brain axis, especially the gut microbiome and the enteroendocrine cells pathway, could potentially slow disease progression or even prevent disease onset. Among these, pre/probiotics, faecal microbiota transplantation, and glucagon-like peptide-1 receptor agonists, have entered advanced stages of clinical trials in humans and shown potential symptomatic and disease-modifying effects.
Collapse
Affiliation(s)
- Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Per Borghammer
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
28
|
Hyder N, Raza ML. Stress and the gut microbiota-brain axis. PROGRESS IN BRAIN RESEARCH 2025; 291:175-203. [PMID: 40222779 DOI: 10.1016/bs.pbr.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The gut microbiota-brain axis is a complex system that links the bacteria in our gut with our brain, it plays a part in what way we respond to stress. This chapter explores how stress affects the types of bacteria in the gut and shows the two-way connection between them. Stress can change the bacteria in our gut, which can cause various problems related to stress, like depression, anxiety, and irritable bowel syndrome (IBS). Figuring out how these interactions may help us develop new treatments that focus on the connection between gut bacteria and the brain. This chapter looks at how gut bacteria could help identify stress-related problems. It also discusses the difficulties and possibilities of using this research in medical practice. In the end, the chapter talks about what comes next in this quickly changing area. It highlights how important it is to include research about the gut-brain connection in overall public health plans.
Collapse
Affiliation(s)
- Noorulain Hyder
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, Karachi, Pakistan; HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| | - Muhammad Liaquat Raza
- Department of Infection Prevention & Control, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| |
Collapse
|
29
|
Shibata C, Muratsubaki T, Shibata S, Aizawa E, Watanabe S, Kanazawa M, Fukudo S. A randomized controlled trial of environmental richness on gastrointestinal symptoms, salivary cortisol, and gut microbiota in early childhood. Sci Rep 2025; 15:8493. [PMID: 40075129 PMCID: PMC11903663 DOI: 10.1038/s41598-025-86618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 01/13/2025] [Indexed: 03/14/2025] Open
Abstract
Gastrointestinal (GI) symptoms are common and can affect children's social lives. This study investigated the effects of exposure to a rich natural environment on GI symptoms, salivary cortisol levels, salivary amylase levels, and the gut microbiota in young children. Children aged 5-6 years from four kindergartens in Japan were randomly assigned to two groups: a nature childcare group and a regular childcare group. The children were exposed to their respective conditions once weekly for one month. Before and after the intervention, GI symptoms were detected using the Children's Somatization Inventory to calculate a 'GI score' and categorize participants into GI and control groups (primary outcome measure). Fecal examinations were performed for gut microbiota using 16 S-rRNA analysis, salivary cortisol and amylase levels were quantified, and the Child Behavior Checklist was administered. The two groups had similar GI symptoms, salivary cortisol and amylase levels, and behavioral characteristics. Following the intervention, significant differences in the GI score, abdominal pain, constipation, Shannon index value, and salivary cortisol and amylase levels (p < 0.05) were observed between the two childcare groups. Spending free and abundant time in nature during early childhood could help maintain digestive system homeostasis, increase gut microbiota diversity, and reduce cortisol levels.
Collapse
Affiliation(s)
- Chikako Shibata
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Miyagi, Japan.
- Department of Exercise Education for Children, Faculty of Sports Science, Sendai University, Sendai, Japan.
| | - Tomohiko Muratsubaki
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Miyagi, Japan
- Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
| | - Suguru Shibata
- Department of Early Childhood Education, Koriyama Women's University Junior College, Koriyama, Japan
| | - Emiko Aizawa
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Miyagi, Japan
- Department of Health and Nutrition, Faculty of Human Sciences, Sendai Shirayuri Women's College, Sendai, Japan
| | - Satoshi Watanabe
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Miyagi, Japan
| | - Motoyori Kanazawa
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Miyagi, Japan
- Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
| | - Shin Fukudo
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Miyagi, Japan
- Research Center for Accelerator and Radioisotope Science, Tohoku University, Sendai, Japan
- Department of Psychosomatic Medicine, Japanese Red Cross Ishinomaki Hospital, Ishinomaki, Japan
- Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
30
|
Philip V, Kraimi N, Zhang H, Lu J, Palma GD, Shimbori C, McCoy KD, Hapfelmeier S, Schären OP, Macpherson AJ, Chirdo F, Surette MG, Verdu EF, Liu F, Collins SM, Bercik P. Innate immune system signaling and intestinal dendritic cells migration to the brain underlie behavioral changes after microbial colonization in adult mice. Brain Behav Immun 2025; 127:238-250. [PMID: 40068794 DOI: 10.1016/j.bbi.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND AND AIMS Accumulating evidence suggests the microbiota is a key factor in Disorders of Gut-Brain Interaction (DGBI), by affecting host immune and neural systems. However, the underlying mechanisms remain elusive due to their complexity and clinical heterogeneity of patients with DGBIs. We aimed to identify neuroimmune pathways that are critical in microbiota-gut-brain communication during de novo gut colonization. METHODS We employed a combination of gnotobiotic and state-of-the-art microbial tools, behavioral analysis, immune and pharmacological approaches. Germ-free wild type, TLR signaling-deficient MyD88-/- Ticam1-/- and lymphocyte-deficient SCID mice were studied before and after colonization with specific pathogen-free microbiota, Altered Schaedler Flora, E. coli or S. typhimurium (permanent or transient colonizers). TLR agonists and antagonists, CCR7 antagonist or immunomodulators were used to study immune pathways. We assessed brain c-Fos, brain-derived neurotrophic factor, and dendritic and glial cells by immunofluorescence, expression of neuroimmune genes by NanoString and performed brain proteomics. RESULTS Bacterial monocolonization, conventionalization or administration of microbial products to germ-free mice altered mouse behavior similarly, acting through Toll-like receptor or nucleotide-binding oligomerization domain signaling. The process required CD11b+CD11c+CD103+ dendritic cell activation and migration into the brain. The change in behavior did not require the continued presence of bacteria and was associated with activation of multiple neuro-immune networks in the gut and the brain. CONCLUSIONS Changes in neural plasticity occur rapidly upon initial gut microbial colonization and involve innate immune signaling to the brain, mediated by CD11b+CD11c+CD103+ dendritic cell migration. The results identify a new target with therapeutic potential for DGBIs developing in context of increased gut and blood-brain barrier permeability.
Collapse
Affiliation(s)
- Vivek Philip
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Campbell Family Mental Health Research Institute, the Centre for Addiction and Mental Health, Toronto, Canada
| | - Narjis Kraimi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Hailong Zhang
- Campbell Family Mental Health Research Institute, the Centre for Addiction and Mental Health, Toronto, Canada
| | - Jun Lu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Chiko Shimbori
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Kathy D McCoy
- Department of Biomedical Research, University Hospital, Bern, Switzerland; Dept. of Physiology and Pharmacology, Snyder Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Olivier P Schären
- University of Bern, Institute for Infectious Diseases, Bern, Switzerland
| | | | - Fernando Chirdo
- Instituto de Estudios Inmunologicos y Fisiopatologicos - IIFP (UNLP-CONICET), La Plata, Argentina
| | - Michael G Surette
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Fang Liu
- Campbell Family Mental Health Research Institute, the Centre for Addiction and Mental Health, Toronto, Canada
| | - Stephen M Collins
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
| |
Collapse
|
31
|
Nakhal MM, Mydeen AB, Yassin LK, Almazrouei R, Alkamali R, Alsulaimi M, Elsaleh RI, BaniYas S, Al Houqani S, Al-Marzooq F, Hassane M, Voitetskii R, Statsenko Y, Allam M, Akour A, Hamad MIK. Antibiotics-induced dysbiosis impacts dendritic morphology of adult mouse cortical interneurons. Front Neuroanat 2025; 19:1557961. [PMID: 40124111 PMCID: PMC11925899 DOI: 10.3389/fnana.2025.1557961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction A growing body of evidence suggests that the gut microbiome may contribute to changes in brain morphology. The microbiota-gut-brain axis (MGBA) has been shown to influence neurogenesis, axon myelination, and synapse structure. However, it remains unclear whether the MGBA can influence the morphology and density of inhibitory GABAergic interneurons. The aim of this study was to determine whether antibiotic-induced dysbiosis (AID) is associated with alterations in dendritic morphology of GABAergic inhibitory interneurons in the medial entorhinal cortex (mEC), somatosensory cortex (SSC), motor cortex (MC), and hippocampus (Hp). Methods A cohort of six-month-old GAD-67-EGFP transgenic mice was treated with an antibiotic cocktail for two weeks, resulting in gut dysbiosis as validated by collecting stool samples at baseline and after treatment, then using next-generation sequencing of 16S ribosomal RNA. Results The results demonstrate that the proposed model effectively exhibited the defining features of gut dysbiosis, including a significant reduction in microbiome diversity, expansion of pathobionts, and loss of beneficial microbes. The AID group showed alterations in density and morphology of GABAergic interneurons in different brain areas. The mean dendritic length and mean dendritic segments of the SSC and Hp were found to be significantly decreased, while no such decrease was observed in the mEC or MC. Furthermore, the density of interneurons was decreased in the mEC, Hp, and SSC areas, while no change was observed in the MC area. Discussion The interneuron dysfunction plays a role in the pathogenesis of neurological disease. The findings of this study suggest that AID potentially influences the density and morphology of the interneurons, which may contribute to the development of neurological disorders.
Collapse
Affiliation(s)
- Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ayishal B. Mydeen
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Lydia K. Yassin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Reem Almazrouei
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rasha Alkamali
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mahra Alsulaimi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rawan I. Elsaleh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shamsa BaniYas
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shaikha Al Houqani
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maya Hassane
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Roman Voitetskii
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yauhen Statsenko
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mushal Allam
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
32
|
Garrity S, Whittemore JC, Sahoo DK, Morgan S, Lindgreen E, VanDeWalle S, Suchodolski JS, Jergens AE. Effects of High-Dose Prednisone on the Gastrointestinal Microbiota of Healthy Dogs. Vet Sci 2025; 12:216. [PMID: 40266941 PMCID: PMC11946374 DOI: 10.3390/vetsci12030216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 04/25/2025] Open
Abstract
The effects of high-dose glucocorticoids on the gastrointestinal microbiota of healthy dogs are unknown. This study's aim was to investigate the effects of immunosuppressive doses of prednisone on the fecal microbiota and the gastric and duodenal mucosal microbiota in healthy dogs. Twelve healthy adult dogs were enrolled into a randomized, double-blinded, placebo-controlled trial. Dogs were evaluated on days 0, 14, and 28 following treatments with either prednisone (2 mg/kg/d) or placebo. Outcome measures included (1) composition and abundance of the fecal microbiota (via high-throughput sequencing of the 16S rRNA gene and qPCR-based dysbiosis index [DI]) and (2) spatial distribution of the gastric and duodenal mucosal microbiota using fluorescence in situ hybridization (FISH). No significant difference in alpha and beta diversity or amplicon sequence variants of the fecal microbiota was observed between treatment groups. Blautia spp. concentrations via qPCR were significantly decreased between prednisone group timepoints 2 and 3. Compared to placebo group dogs, prednisone group dogs showed significantly increased gastric mucosal helicobacters and increased mucosal-associated total bacteria and Bacteroides in duodenal biopsies over the treatment period. The results indicate that immunosuppressive dosages of prednisone alter the mucosal microbiota of healthy dogs in a time-dependent manner, which may disrupt mucosal homeostasis. This report is significant, since it addresses a knowledge gap in our understanding of the effects of glucocorticoids on the gastrointestinal mucosal microbiota of healthy dogs.
Collapse
Affiliation(s)
- Sarah Garrity
- The Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996, USA; (S.G.); (J.C.W.)
| | - Jacqueline C. Whittemore
- The Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996, USA; (S.G.); (J.C.W.)
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (S.M.); (E.L.); (S.V.)
| | - Shannon Morgan
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (S.M.); (E.L.); (S.V.)
| | - Emily Lindgreen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (S.M.); (E.L.); (S.V.)
| | - Sarah VanDeWalle
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (S.M.); (E.L.); (S.V.)
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (S.M.); (E.L.); (S.V.)
| |
Collapse
|
33
|
Bamigbade GB, Abdin M, Subhash A, Arachchi MP, Ullah N, Gan R, Ali A, Kamal‐Eldin A, Ayyash M. Plant polysaccharide-capped nanoparticles: A sustainable approach to modulate gut microbiota and advance functional food applications. Compr Rev Food Sci Food Saf 2025; 24:e70156. [PMID: 40052474 PMCID: PMC11887029 DOI: 10.1111/1541-4337.70156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 03/10/2025]
Abstract
Plant-derived polysaccharides have emerged as sustainable biopolymers for fabricating nanoparticles (polysaccharide-based nanomaterials [PS-NPs]), presenting unique opportunities to enhance food functionality and human health. PS-NPs exhibit exceptional biocompatibility, biodegradability, and structural versatility, enabling their integration into functional foods to positively influence gut microbiota. This review explores the mechanisms of PS-NPs interaction with gut microbiota, highlighting their ability to promote beneficial microbial populations, such as Lactobacilli and Bifidobacteria, and stimulate the production of short-chain fatty acids. Key synthesis and stabilization methods of PS-NPs are discussed, focusing on their role in improving bioavailability, stability, and gastrointestinal delivery of bioactive compounds in food systems. The potential of PS-NPs to address challenges in food science, including enhancing nutrient absorption, mitigating intestinal dysbiosis, and supporting sustainable food production through innovative nanotechnology, is critically evaluated. Barriers such as enzymatic degradation and physicochemical stability are analyzed, alongside strategies to optimize their functionality within complex food matrices. The integration of PS-NPs in food systems offers a novel approach to modulate gut microbiota, improve intestinal health, and drive the development of next-generation functional foods. Future research should focus on bridging knowledge gaps in metagenomic and metabolomic profiling of PS-NPs, optimizing their design for diverse applications, and advancing their role in sustainable and health-promoting food innovations.
Collapse
Affiliation(s)
- Gafar Babatunde Bamigbade
- Department of Food Science, College of Agriculture and Veterinary MedicineUnited Arab Emirates University (UAEU)Al AinUAE
| | - Mohamed Abdin
- Department of Food Science, College of Agriculture and Veterinary MedicineUnited Arab Emirates University (UAEU)Al AinUAE
| | - Athira Subhash
- Department of Food Science, College of Agriculture and Veterinary MedicineUnited Arab Emirates University (UAEU)Al AinUAE
| | - Maduni Paththuwe Arachchi
- Department of Food Science, College of Agriculture and Veterinary MedicineUnited Arab Emirates University (UAEU)Al AinUAE
| | - Naeem Ullah
- Department of Food Science, College of Agriculture and Veterinary MedicineUnited Arab Emirates University (UAEU)Al AinUAE
| | - Ren‐You Gan
- Department of Food Science and NutritionHong Kong Polytechnic University, Hung HomKowloonHong Kong SARChina
- Research Institute for Future FoodHong Kong Polytechnic University, Hung HomKowloonHong Kong SARChina
| | - Abdelmoneim Ali
- Department of Food Science, College of Agriculture and Veterinary MedicineUnited Arab Emirates University (UAEU)Al AinUAE
| | - Afaf Kamal‐Eldin
- Department of Food Science, College of Agriculture and Veterinary MedicineUnited Arab Emirates University (UAEU)Al AinUAE
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary MedicineUnited Arab Emirates University (UAEU)Al AinUAE
| |
Collapse
|
34
|
Palmer JK, van der Pols JC, Sullivan KA, Staudacher HM, Byrne R. A Double-Blind Randomised Controlled Trial of Prebiotic Supplementation in Children with Autism: Effects on Parental Quality of Life, Child Behaviour, Gastrointestinal Symptoms, and the Microbiome. J Autism Dev Disord 2025; 55:775-788. [PMID: 38291245 PMCID: PMC11828843 DOI: 10.1007/s10803-024-06239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
PURPOSE Modifying gut bacteria in children with autism may influence behaviour, with potential to improve family functioning. We conducted a randomised controlled trial to assess the effect of prebiotics on behaviour, gastrointestinal symptoms and downstream effects on parental quality of life. METHOD Children with autism (4-10yrs) were randomised to 2.4 g/d of prebiotic (GOS) or placebo for six weeks. Pre and post stools samples were collected, and validated questionnaires used to measure change in social and mealtime behaviours, GI symptoms and pQOL. Linear mixed models evaluated group differences for behavioural variables, and Mann Whitney U tests were used to compare change between-groups for GI symptoms, differential abundance of genera and alpha diversity of the microbiome. RESULTS Thirty-three parent-child dyads completed the trial. No group difference was seen for behavioural variables but both groups improved significantly from baseline. There was a medium effect size between groups for GI symptoms (d = 0.47) and pQOL (d = 0.44) driven by greater improvements in the prebiotic group. Bifidobacterium increased threefold following prebiotics (1.4-5.9%, p < 0.001) with no change in controls. Supplements were well tolerated, compliance with dose 94%. CONCLUSION Prebiotics modify levels of Bifidobacterium and prove well tolerated but in this instance, resulted in only marginal effects on GI symptoms and pQOL. A larger sample of children with more severe symptoms could help to determine the potential of prebiotics in autism. TRIAL REGISTRATION https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12619000615189 .
Collapse
Affiliation(s)
- Jacqueline K Palmer
- School of Exercise and Nutrition Science, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Jolieke C van der Pols
- School of Exercise and Nutrition Science, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Karen A Sullivan
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Heidi M Staudacher
- Food & Mood Centre, School of Medicine, Barwon Health, IMPACT Institute, Deakin University, Geelong, VIC, Australia
| | - Rebecca Byrne
- School of Exercise and Nutrition Science, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
35
|
Aizpurua O, Botnen AB, Eisenhofer R, Odriozola I, Santos‐Bay L, Bjørnsen MB, Gilbert MTP, Alberdi A. Functional Insights Into the Effect of Feralisation on the Gut Microbiota of Cats Worldwide. Mol Ecol 2025; 34:e17695. [PMID: 39953749 PMCID: PMC11874672 DOI: 10.1111/mec.17695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
Successfully adapting to a feral lifestyle with different access to food, shelter and other resources requires rapid physiological and behavioural changes, which could potentially be facilitated by gut microbiota plasticity. To investigate whether alterations in gut microbiota support this transition to a feral lifestyle, we analysed the gut microbiomes of domestic and feral cats from six geographically diverse locations using genome-resolved metagenomics. By reconstructing 229 non-redundant metagenome-assembled genomes from 92 cats, we identified a typical carnivore microbiome structure, with notable diversity and taxonomic differences across regions. While overall diversity metrics did not differ significantly between domestic and feral cats, hierarchical modelling of species communities, accounting for geographic and sex covariates, revealed significantly larger microbial functional capacities among feral cats. The increased capacity for amino acid and lipid degradation corresponds to feral cats' dietary reliance on crude protein and fat. A second modelling analysis, using behavioural phenotype as the main predictor, unveiled a positive association between microbial production of short-chain fatty acids, neurotransmitters and vitamins and cat aggressiveness, suggesting that gut microbes might contribute to heightened aggression and elusiveness observed in feral cats. Functional microbiome shifts may therefore play a significant role in the development of physiological and behavioural traits advantageous for a feral lifestyle, a hypothesis that warrants validation through microbiota manipulation experiments.
Collapse
Affiliation(s)
- Ostaizka Aizpurua
- Center for Evolutionary HologenomicsGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Amanda Bolt Botnen
- Center for Evolutionary HologenomicsGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Raphael Eisenhofer
- Center for Evolutionary HologenomicsGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Iñaki Odriozola
- Center for Evolutionary HologenomicsGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Luisa Santos‐Bay
- Center for Evolutionary HologenomicsGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Mads Bjørn Bjørnsen
- Center for Evolutionary HologenomicsGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - M. Thomas P. Gilbert
- Center for Evolutionary HologenomicsGlobe Institute, University of CopenhagenCopenhagenDenmark
- University Museum, NTNUTrondheimNorway
| | - Antton Alberdi
- Center for Evolutionary HologenomicsGlobe Institute, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
36
|
Waterman A, Doumas SA, Fischer M, Mattar M, Charbel S, Jennings J, Doman DB. Uncovering the Hidden Link Between the Aberrant Intestinal Microbiome and Fibromyalgia. Gastroenterol Hepatol (N Y) 2025; 21:111-121. [PMID: 40115610 PMCID: PMC11920023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Fibromyalgia is a multifaceted syndrome primarily characterized by chronic widespread pain and fatigue. Despite its significant prevalence and incidence, the mechanisms mediating the disease pathogenesis have remained poorly understood; however, increasing evidence suggests a potentially central role of intestinal dysbiosis. Researchers have been examining possible diagnostic biomarkers, such as Helicobacter pylori infection, urine metabolite profiles, and cytokine levels, which reflect these microbiome changes. Additionally, evaluation of therapeutic interventions targeting the gut microbiome, including probiotics, fecal microbiota transplantation, and antibiotics for specific infections, has highlighted their potential in alleviating fibromyalgia symptoms. This article delves into the emerging role of the gut microbiome in fibromyalgia pathogenesis, illustrating how alterations in gut bacterial composition and diversity are implicated in the pathophysiology of the disease through the gut-brain axis, and sets a direction for future research to enhance diagnostic accuracy and therapeutic efficacy of this complex condition.
Collapse
Affiliation(s)
- Ade Waterman
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC
| | - Stavros A Doumas
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC
| | - Michele Fischer
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC
| | - Mark Mattar
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC
| | - Samer Charbel
- Department of Gastroenterology, MedStar Montgomery Medical Center, Olney, Maryland
| | - Joseph Jennings
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC
| | - David B Doman
- Department of Gastroenterology, MedStar Health Gastroenterology at Silver Spring, Silver Spring, Maryland
| |
Collapse
|
37
|
Cannarella R, Curto R, Condorelli RA, Grillo A, Aversa A, Calogero AE, La Vignera S. The influence of seminal microbiota on human testicular steroidogenesis: a prospective study. J Assist Reprod Genet 2025; 42:897-907. [PMID: 39776388 PMCID: PMC11950476 DOI: 10.1007/s10815-024-03351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE Preclinical evidence has demonstrated that gut microbiota composition can influence steroid hormone biosynthesis and spermatogenesis. This study aims to investigate the association of seminal microbiota and testicular steroidogenesis. PATIENTS AND METHODS One hundred adult eugonadal men were consecutively enrolled. The seminal concentration of Lactobacilli, anaerobic and facultative bacteria, as well as serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and total testosterone (TT) were evaluated. Unadjusted and adjusted multi-regression models were built to evaluate the relationship between seminal Lactobacilli, anaerobic and facultative bacteria, and Lactobacilli/total bacteria ratio, and serum LH, FSH, and TT. The concentrations of seminal Lactobacilli, anaerobic, and facultative bacteria predictive of serum TT values in the lowest quartile (< 3.8 ng/mL) were calculated. RESULTS TT levels were weakly and positively correlated with seminal Lactobacillus concentration (r = 0.33; p = 0.001), with seminal Lactobacilli/total bacteria ratio (r = 0.89; p < 0.001), and negatively with anaerobic and facultative bacteria (r = - 0.69; p < 0.001). Opposite correlations were found for gonadotropin concentrations. These data persisted after adjustment for confounding factors. Seminal concentration of Lactobacilli ≤ 0.1 × 106/mL (AUC 0.917, 95% CI: 0.845 to 0.963), of anaerobic and facultative bacteria > 2 × 104/mL (AUC 0.924, 95% CI: 0.853 to 0.967), or a Lactobacilli/total bacteria ratio ≤ 90% (AUC 0.910, 95% CI: 0.837 to 0.958) were found to predict serum TT level < 3.8 ng/mL with a sensitivity of 92.0% and a specificity of 88.0%. CONCLUSION A relationship between the composition of the seminal microbiota and testicular steroidogenesis seems to exist. The mechanisms underlying this association are still unknown.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123, Catania, Italy.
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44106, USA.
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Agata Grillo
- Labogen (Specialized Human Genetics Laboratory), 95124, Catania, Italy
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, Magna Græcia University, 88100, Catanzaro, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| |
Collapse
|
38
|
Tofani GSS, Clarke G, Cryan JF. I "Gut" Rhythm: the microbiota as a modulator of the stress response and circadian rhythms. FEBS J 2025; 292:1454-1479. [PMID: 39841560 PMCID: PMC11927059 DOI: 10.1111/febs.17400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/20/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025]
Abstract
Modern habits are becoming more and more disruptive to health. As our days are often filled with circadian disruption and stress exposures, we need to understand how our responses to these external stimuli are shaped and how their mediators can be targeted to promote health. A growing body of research demonstrates the role of the gut microbiota in influencing brain function and behavior. The stress response and circadian rhythms, which are essential to maintaining appropriate responses to the environment, are known to be impacted by the gut microbiota. Gut microbes have been shown to alter the host's response to stress and modulate circadian rhythmicity. Although studies demonstrated strong links between the gut microbiota, circadian rhythms and the stress response, such studies were conducted in an independent manner not conducive to understanding the interface between these factors. Due to the interconnected nature of the stress response and circadian rhythms, in this review we explore how the gut microbiota may play a role in regulating the integration of stress and circadian signals in mammals and the consequences for brain health and disease.
Collapse
Affiliation(s)
- Gabriel S. S. Tofani
- APC MicrobiomeUniversity College CorkIreland
- Department of Anatomy & NeuroscienceUniversity College CorkIreland
| | - Gerard Clarke
- APC MicrobiomeUniversity College CorkIreland
- Department of Psychiatry & Neurobehavioural ScienceUniversity College CorkIreland
| | - John F. Cryan
- APC MicrobiomeUniversity College CorkIreland
- Department of Anatomy & NeuroscienceUniversity College CorkIreland
| |
Collapse
|
39
|
Zhou X, Ganz AB, Rayner A, Cheng TY, Oba H, Rolnik B, Lancaster S, Lu X, Li Y, Johnson JS, Hoyd R, Spakowicz DJ, Slavich GM, Snyder MP. Dynamic human gut microbiome and immune shifts during an immersive psychosocial intervention program. Brain Behav Immun 2025; 125:428-443. [PMID: 39701328 PMCID: PMC11903166 DOI: 10.1016/j.bbi.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/24/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Although depression is a leading cause of disability worldwide, the pathophysiological mechanisms underlying this disorder-particularly those involving the gut microbiome-are poorly understood. METHOD To investigate, we conducted a community-based observational study to explore complex associations between changes in the gut microbiome, cytokine levels, and depression symptoms in 51 participants (Mage = 49.56, SD = 13.31) receiving an immersive psychosocial intervention. A total of 142 multi-omics samples were collected from participants before, during, and three months after the nine-day inquiry-based stress reduction program. RESULTS Results revealed that depression was associated with both an increased presence of putatively pathogenic bacteria and reduced microbial beta-diversity. Following the intervention, we observed reductions in neuroinflammatory cytokines and improvements in several mental health indicators. Interestingly, participants with a Prevotella-dominant microbiome showed milder symptoms when depressed, along with a more resilient microbiome and more favorable inflammatory cytokine profile, including reduced levels of CXCL-1. CONCLUSIONS These findings reveal a potentially protective link between the Prevotella-dominant microbiome and depression, as evidenced by a reduced pro-inflammatory environment and fewer depressive symptoms. These insights, coupled with observed improvements in neuroinflammatory markers and mental health from the intervention, may highlight potential avenues for microbiome-targeted therapies for managing depression.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, CA, USA
| | - Ariel B Ganz
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Andre Rayner
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Tess Yan Cheng
- Department of Genetics, Stanford University School of Medicine, CA, USA; Department of Microbiology, College of Arts and Sciences, University of Washington, WA, USA
| | - Haley Oba
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Benjamin Rolnik
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Samuel Lancaster
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Xinrui Lu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Yizhou Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Jethro S Johnson
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Rebecca Hoyd
- The Ohio State University Comprehensive Cancer Center, OH, USA
| | | | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA.
| |
Collapse
|
40
|
Krawczyk A, Sladowska GE, Strzalka-Mrozik B. The Role of the Gut Microbiota in Modulating Signaling Pathways and Oxidative Stress in Glioma Therapies. Cancers (Basel) 2025; 17:719. [PMID: 40075568 PMCID: PMC11899293 DOI: 10.3390/cancers17050719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Tumors of the central nervous system (CNS), especially gliomas, pose a significant clinical challenge due to their aggressive nature and limited therapeutic options. Emerging research highlights the critical role of the gut microbiota in regulating CNS health and disease. The composition of the gut microbiota is essential for maintaining CNS homeostasis, as it modulates immune responses, oxidative status, and neuroinflammation. The microbiota-gut-brain axis, a bidirectional communication network, plays a pivotal role in cancer and CNS disease treatment, exerting its influence through neural, endocrine, immunological, and metabolic pathways. Recent studies suggest that the gut microbiota influences the solidification of the tumor microenvironment and that dysbiosis may promote glioma development by modulating systemic inflammation and oxidative stress, which contributes to tumorigenesis and CNS tumor progression. This review interrogates the impact of the gut microbiota on glioma, focusing on critical pathways such as NF-κB, MAPK, PI3K/Akt/mTOR, and Kynurenine/AhR that drive tumor proliferation, immune evasion, and therapy resistance. Furthermore, we explore emerging therapeutic strategies, including probiotics and microbiota-based interventions, which show potential in modulating these pathways and enhancing immunotherapies such as checkpoint inhibitors. By focusing on the multifaceted interactions between the gut microbiota, oxidative stress, and CNS tumors, this review highlights the potential of microbiota-targeted therapies and their manipulation to complement and enhance current treatments.
Collapse
Affiliation(s)
| | | | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (A.K.); (G.E.S.)
| |
Collapse
|
41
|
Yassin LK, Nakhal MM, Alderei A, Almehairbi A, Mydeen AB, Akour A, Hamad MIK. Exploring the microbiota-gut-brain axis: impact on brain structure and function. Front Neuroanat 2025; 19:1504065. [PMID: 40012737 PMCID: PMC11860919 DOI: 10.3389/fnana.2025.1504065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
The microbiota-gut-brain axis (MGBA) plays a significant role in the maintenance of brain structure and function. The MGBA serves as a conduit between the CNS and the ENS, facilitating communication between the emotional and cognitive centers of the brain via diverse pathways. In the initial stages of this review, we will examine the way how MGBA affects neurogenesis, neuronal dendritic morphology, axonal myelination, microglia structure, brain blood barrier (BBB) structure and permeability, and synaptic structure. Furthermore, we will review the potential mechanistic pathways of neuroplasticity through MGBA influence. The short-chain fatty acids (SCFAs) play a pivotal role in the MGBA, where they can modify the BBB. We will therefore discuss how SCFAs can influence microglia, neuronal, and astrocyte function, as well as their role in brain disorders such as Alzheimer's disease (AD), and Parkinson's disease (PD). Subsequently, we will examine the technical strategies employed to study MGBA interactions, including using germ-free (GF) animals, probiotics, fecal microbiota transplantation (FMT), and antibiotics-induced dysbiosis. Finally, we will examine how particular bacterial strains can affect brain structure and function. By gaining a deeper understanding of the MGBA, it may be possible to facilitate research into microbial-based pharmacological interventions and therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Lidya K. Yassin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Alreem Alderei
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Afra Almehairbi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ayishal B. Mydeen
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
42
|
Interino N, Vitagliano R, D’Amico F, Lodi R, Porru E, Turroni S, Fiori J. Microbiota-Gut-Brain Axis: Mass-Spectrometry-Based Metabolomics in the Study of Microbiome Mediators-Stress Relationship. Biomolecules 2025; 15:243. [PMID: 40001546 PMCID: PMC11853089 DOI: 10.3390/biom15020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
The microbiota-gut-brain axis is a complex bidirectional communication system that involves multiple interactions between intestinal functions and the emotional and cognitive centers of the brain. These interactions are mediated by molecules (metabolites) produced in both areas, which are considered mediators. To shed light on this complex mechanism, which is still largely unknown, a reliable characterization of the mediators is essential. Here, we review the most studied metabolites in the microbiota-gut-brain axis, the metabolic pathways in which they are involved, and their functions. This review focuses mainly on the use of mass spectrometry for their determination, reporting on the latest analytical methods, their limitations, and future perspectives. The analytical strategy for the qualitative-quantitative characterization of mediators must be reliable in order to elucidate the molecular mechanisms underlying the influence of the above-mentioned axis on stress resilience or vulnerability.
Collapse
Affiliation(s)
- Nicolò Interino
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
| | - Rosalba Vitagliano
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
| | - Federica D’Amico
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Raffaele Lodi
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
| | - Emanuele Porru
- Occupational Medicine Unit, Department of Medical and Surgical Science, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy;
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Jessica Fiori
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
43
|
Bertollo AG, Santos CF, Bagatini MD, Ignácio ZM. Hypothalamus-pituitary-adrenal and gut-brain axes in biological interaction pathway of the depression. Front Neurosci 2025; 19:1541075. [PMID: 39981404 PMCID: PMC11839829 DOI: 10.3389/fnins.2025.1541075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
The hypothalamus-pituitary-adrenal (HPA) and gut-brain axes are vital biological pathways in depression. The HPA axis regulates the body's stress response, and chronic stress can lead to overactivation of the HPA axis, resulting in elevated cortisol levels that contribute to neuronal damage, particularly in regions such as the hippocampus and prefrontal cortex, both of which are involved in mood regulation and mental disorders. In parallel, the gut-brain axis, a bidirectional communication network between the gut microbiota and the central nervous system, influences emotional and cognitive functions. Imbalances in gut microbiota can affect the HPA axis, promoting inflammation and increasing gut permeability. This allows endotoxins to enter the bloodstream, contributing to neuroinflammation and altering neurotransmitter production, including serotonin. Since the majority of serotonin is produced in the gut, disruptions in this pathway may be linked to depressive symptoms. This review explores the interplay between the HPA axis and the gut-brain axis in the context of depression.
Collapse
|
44
|
Kyei-Baffour VO, Vijaya AK, Burokas A, Daliri EBM. Psychobiotics and the gut-brain axis: advances in metabolite quantification and their implications for mental health. Crit Rev Food Sci Nutr 2025:1-20. [PMID: 39907087 DOI: 10.1080/10408398.2025.2459341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Psychobiotics are live microorganisms that, when administered in adequate amounts, confer mental health benefits to the host. Several clinical studies have demonstrated significant mental health benefits from psychobiotic administration, making them an emerging topic in food science. Certain strains of Lactobacillus, Bifidobacterium, Streptococcus, Escherichia, and Enterococcus species are known for their ability to modulate the gut-brain axis and provide mental health benefits. Proposed action mechanisms include the production of neuroactive compounds or their precursors, which may cross the blood-brain barrier, or transported by their extracellular vesicles. However, there is a lack of in vivo evidence directly confirming these mechanisms, although indirect evidence from recent studies suggest potential pathways for further investigation. To advance our understanding, it is crucial to study these mechanisms within the host, with accurate quantification of neuroactive compounds and/or their precursors being key in such studies. Current quantification methods, however, face challenges, such as low sensitivity for detecting trace metabolites and limited specificity due to interference from other compounds, impacting the reliability of measurements. This review discusses the emerging field of psychobiotics, their potential action mechanisms, neuroactive compound estimation techniques, and perspectives for improvement in quantifying neuroactive compounds and/or precursors within the host.
Collapse
Affiliation(s)
- Vincent Owusu Kyei-Baffour
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Akshay Kumar Vijaya
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aurelijus Burokas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Eric Banan-Mwine Daliri
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
45
|
Mottawea W, Yousuf B, Sultan S, Ahmed T, Yeo J, Hüttmann N, Li Y, Bouhlel NE, Hassan H, Zhang X, Minic Z, Hammami R. Multi-level analysis of gut microbiome extracellular vesicles-host interaction reveals a connection to gut-brain axis signaling. Microbiol Spectr 2025; 13:e0136824. [PMID: 39699251 PMCID: PMC11792502 DOI: 10.1128/spectrum.01368-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/12/2024] [Indexed: 12/20/2024] Open
Abstract
Microbiota-released extracellular vesicles (MEVs) have emerged as a key player in intercellular signaling. However, their involvement in the gut-brain axis has been poorly investigated. We hypothesize that MEVs cross host cellular barriers and deliver their cargoes of bioactive compounds to the brain. In this study, we aimed to investigate the cargo capacity of MEVs for bioactive metabolites and their interactions with the host cellular barriers. First, we conducted a multi-omics profiling of MEVs' contents from ex vivo and stool samples. Metabolomics analysis identified various neuro-related compounds encapsulated within MEVs, such as arachidonyl-dopamine, gabapentin, glutamate, and N-acylethanolamines. Metaproteomics unveiled an enrichment of enzymes involved in neuronal metabolism, primarily in the glutamine/glutamate/gamma-aminobutyric acid (GABA) pathway. These neuro-related proteins and metabolites were correlated with Bacteroides spp. We isolated 18 Bacteroides strains and assessed their GABA production capacity in extracellular vesicles (EVs) and culture supernatant. A GABA-producing Bacteroides finegoldii, released EVs with a high GABA content (4 µM) compared to Phocaeicola massiliensis. Upon testing the capacity of MEVs to cross host barriers, MEVs exhibited a dose-dependent paracellular transport and were endocytosed by Caco-2 and hCMEC/D3 cells. Exposure of Caco-2 cells to MEVs did not alter expression of genes related to intestinal barrier integrity, while affected immune pathways and cell apoptosis process as revealed by RNA-seq analyses. In vivo, MEVs biodistributed across mice organs, including the brain, liver, stomach, and spleen. Our results highlight the ability of MEVs to cross the intestinal and blood-brain barriers to deliver their cargoes to distant organs, with potential implication for the gut-brain axis. IMPORTANCE Microbiota-released extracellular vesicles (MEVs) have emerged as a key player in intercellular signaling. In this study, a multi-level analysis revealed presence of a diverse array of biologically active molecules encapsulated within MEVs, including neuroactive metabolites, such as arachidonyl-dopamine, gabapentin, glutamate, and N-acylethanolamines, and gamma-aminobutyric acid (GABA). Metaproteomics also unveiled an enrichment of neural-related proteins, mainly the glutamine/glutamate/GABA pathway. MEVs were able to cross epithelial and blood-brain barriers in vitro. RNA-seq analyses showed that MEVs stimulate several immune pathways while suppressing cell apoptosis process. Furthermore, MEVs were able to traverse the intestinal barriers and reach distal organs, including the brain, thereby potentially influencing brain functionality and contributing to mental and behavior.
Collapse
Affiliation(s)
- Walid Mottawea
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Basit Yousuf
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Salma Sultan
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Tamer Ahmed
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - JuDong Yeo
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Nico Hüttmann
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Yingxi Li
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Nour Elhouda Bouhlel
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Hebatoallah Hassan
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Xu Zhang
- Regulatory Research Division, Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Riadh Hammami
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
46
|
Chakravarty K, Gaur S, Kumar R, Jha NK, Gupta PK. Exploring the Multifaceted Therapeutic Potential of Probiotics: A Review of Current Insights and Applications. Probiotics Antimicrob Proteins 2025; 17:341-363. [PMID: 39069588 DOI: 10.1007/s12602-024-10328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
The interplay between human health and the microbiome has gained extensive attention, with probiotics emerging as pivotal therapeutic agents due to their vast potential in treating various health issues. As significant modulators of the gut microbiota, probiotics are crucial in maintaining intestinal homeostasis and enhancing the synthesis of short-chain fatty acids. Despite extensive research over the past decades, there remains an urgent need for a comprehensive and detailed review that encapsulates probiotics' latest insights and applications. This review focusses on the multifaceted roles of probiotics in promoting health and preventing disease, highlighting the complex mechanisms through which these beneficial bacteria influence both gut flora and the human body at large. This paper also explores probiotics' neurological and gastrointestinal applications, focussing on their significant impact on the gut-brain axis and their therapeutic potential in a broad spectrum of pathological conditions. Current innovations in probiotic formulations, mainly focusing on integrating genomics and biotechnological advancements, have also been comprehensively discussed herein. This paper also critically examines the regulatory landscape that governs probiotic use, ensuring safety and efficacy in clinical and dietary settings. By presenting a comprehensive overview of recent studies and emerging trends, this review aims to illuminate probiotics' extensive therapeutic capabilities, leading to future research and clinical applications. However, besides extensive research, further advanced explorations into probiotic interactions and mechanisms will be essential for developing more targeted and effective therapeutic strategies, potentially revolutionizing health care practices for consumers.
Collapse
Affiliation(s)
- Kashyapi Chakravarty
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India
| | - Smriti Gaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India.
| | - Rohit Kumar
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, 140401, India
| | - Piyush Kumar Gupta
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India.
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
47
|
Stothart MR, Lavergne S, McCaw L, Singh H, de Vega W, Amato K, Poissant J, Boonstra R. Population Dynamics and the Microbiome in a Wild Boreal Mammal: The Snowshoe Hare Cycle and Impacts of Diet, Season and Predation Risk. Mol Ecol 2025; 34:e17629. [PMID: 39698753 PMCID: PMC11754720 DOI: 10.1111/mec.17629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
The North American boreal forest is a massive ecosystem, and its keystone herbivore is the snowshoe hare (Lepus americanus). Hares are exposed to considerable environmental extremes in diet and weather, food availability, and predation risk. Gut microbiomes have been suggested to facilitate adaptive animal responses to environmental change, but severe environmental challenges to homeostasis can also disrupt host-microbiome relationships. To better understand gut microbiome contributions to animal acclimation, we studied the faecal bacterial microbiome of wild hares across two types of extreme environmental change that are integral to their natural history: (1) seasonal transitions between summer and winter, and (2) changes over the ~10 year 'boom-bust' population cycles that are characterised by shifting food resource availability and predation pressure. When compared to summer, hares in winter had lower bacterial richness and were depleted in 20 families (including Oxalobacteraceae and Christensenellaceae) but enriched for Ruminococcaceae (a family which contains plant fibre degrading bacteria) alongside nine other bacterial groups. Marked bacterial microbiome differences also occurred across phases of the population cycle. Bacterial microbiomes were lower in richness and compositionally distinct in the peak compared to the increase or decline phases of the population cycle. Direct measures of host physiology and diet quality (faecal fibre contents) most strongly supported food resource availability as a mechanism underlying phase-based differences in bacterial communities, but faecal fibre contents could not fully account for bacterial microbiome variation across phases.
Collapse
Affiliation(s)
- Mason R. Stothart
- Faculty of Veterinary MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of BiologyUniversity of OxfordOxfordUK
| | - Sophia Lavergne
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Laura McCaw
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Hardeep Singh
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Wilfred de Vega
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Katherine Amato
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Jocelyn Poissant
- Faculty of Veterinary MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Rudy Boonstra
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| |
Collapse
|
48
|
Yu W, Xiao Y, Jayaraman A, Yen YC, Lee HU, Pettersson S, Je HS. Microbial metabolites tune amygdala neuronal hyperexcitability and anxiety-linked behaviors. EMBO Mol Med 2025; 17:249-264. [PMID: 39910348 PMCID: PMC11821874 DOI: 10.1038/s44321-024-00179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 02/07/2025] Open
Abstract
Changes in gut microbiota composition have been linked to anxiety behavior in rodents. However, the underlying neural circuitry linking microbiota and their metabolites to anxiety behavior remains unknown. Using male C57BL/6J germ-free (GF) mice, not exposed to live microbes, increased anxiety-related behavior was observed correlating with a significant increase in the immediate early c-Fos gene in the basolateral amygdala (BLA). This phenomenon coincided with increased intrinsic excitability and spontaneous synaptic activity of BLA pyramidal neurons associated with reduced small conductance calcium-activated potassium (SK) channel currents. Importantly, colonizing GF mice to live microbes or the microbial-derived metabolite indoles reverted SK channel activities in BLA pyramidal neurons and reduced the anxiety behavioral phenotype. These results are consistent with a molecular mechanism by which microbes and or microbial-derived indoles, regulate functional changes in the BLA neurons. Moreover, this microbe metabolite regulation of anxiety links these results to ancient evolutionarily conserved defense mechanisms associated with anxiety-related behaviors in mammals.
Collapse
Affiliation(s)
- Weonjin Yu
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Yixin Xiao
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Anusha Jayaraman
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Yi-Chun Yen
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Hae Ung Lee
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Sven Pettersson
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Karolinska Institutet, Department of Dental Medicine, Stockholm, Sweden.
- School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia.
- Department of Microbiology and Immunology, National University, Singapore, Singapore.
| | - H Shawn Je
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
49
|
Lin X, Yu Z, Liu Y, Li C, Hu H, Hu J, Liu M, Yang Q, Gu P, Li J, Nandakumar KS, Hu G, Zhang Q, Chen X, Ma H, Huang W, Wang G, Wang Y, Huang L, Wu W, Liu N, Zhang C, Liu X, Zheng L, Chen P. Gut-X axis. IMETA 2025; 4:e270. [PMID: 40027477 PMCID: PMC11865426 DOI: 10.1002/imt2.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 03/05/2025]
Abstract
Recent advances in understanding the modulatory functions of gut and gut microbiota on human diseases facilitated our focused attention on the contribution of the gut to the pathophysiological alterations of many extraintestinal organs, including the liver, heart, brain, lungs, kidneys, bone, skin, reproductive, and endocrine systems. In this review, we applied the "gut-X axis" concept to describe the linkages between the gut and other organs and discussed the latest findings related to the "gut-X axis," including the underlying modulatory mechanisms and potential clinical intervention strategies.
Collapse
Affiliation(s)
- Xu Lin
- Department of Endocrinology and MetabolismShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)Foshan City528308China
| | - Zuxiang Yu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Yang Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Changzhou Li
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Hui Hu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Jia‐Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Mian Liu
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qin Yang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Peng Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jiaxin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Kutty Selva Nandakumar
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Gaofei Hu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Qi Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Xinyu Chen
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Huihui Ma
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Wenye Huang
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Ning‐Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Leming Zheng
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
50
|
Tomaszek N, Urbaniak AD, Bałdyga D, Chwesiuk K, Modzelewski S, Waszkiewicz N. Unraveling the Connections: Eating Issues, Microbiome, and Gastrointestinal Symptoms in Autism Spectrum Disorder. Nutrients 2025; 17:486. [PMID: 39940343 PMCID: PMC11819948 DOI: 10.3390/nu17030486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by challenges in social communication, restricted interests, and repetitive behaviors. It is also associated with a high prevalence of eating disorders, gastrointestinal (GI) symptoms, and alterations in gut microbiota composition. One of the most pressing concerns is food selectivity. Various eating disorders, such as food neophobia, avoidant/restrictive food intake disorder (ARFID), specific dietary patterns, and poor-quality diets, are commonly observed in this population, often leading to nutrient deficiencies. Additionally, gastrointestinal problems in children with ASD are linked to imbalances in gut microbiota and immune system dysregulation. The aim of this narrative review is to identify previous associations between the gut-brain axis and gastrointestinal problems in ASD. We discuss the impact of the "microbiome-gut-brain axis", a bidirectional connection between gut microbiota and brain function, on the development and symptoms of ASD. In gastrointestinal problems associated with ASD, a 'vicious cycle' may play a significant role: ASD symptoms contribute to the prevalence of ARFID, which in turn leads to microbiota degradation, ultimately worsening ASD symptoms. Current data suggest a link between gastrointestinal problems in ASD and the microbiota, but the amount of evidence is limited. Further research is needed, targeting the correlation of a patient's microbiota status, dietary habits, and disease course.
Collapse
Affiliation(s)
| | | | | | | | - Stefan Modzelewski
- Department of Psychiatry, Medical University of Bialystok, pl. Wołodyjowskiego 2, 15-272 Białystok, Poland; (N.T.); (A.D.U.); (D.B.); (K.C.); (N.W.)
| | | |
Collapse
|