1
|
Wang X, Harty KR, Wan TC, Qu Z, Smith BC, Lough JW, Auchampach JA. Mitigation of Injury from Myocardial Infarction by Pentamidine, an Inhibitor of the Acetyltransferase Tip60. Cardiovasc Drugs Ther 2025:10.1007/s10557-025-07696-z. [PMID: 40202550 DOI: 10.1007/s10557-025-07696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
PURPOSE There is an urgent unmet need for new pharmacologic approaches that promote re-muscularization and repair following myocardial infarction (MI). We previously reported that genetic depletion of the acetyltransferase Tip60 after MI in a mouse model activates the CM cell-cycle, reduces scarring, and restores cardiac function, and that these beneficial effects are mimicked by the Tip60-selective inhibitor TH1834. Here, we investigated whether the FDA-approved anti-microbial agent pentamidine, a Tip60 inhibitor from which TH1834 is derived, also protects from the damaging effects of MI. METHODS Adult (10-14 weeks old) C57Bl/6 mice were subjected to permanent left coronary artery ligation to induce MI. Subsequently, echocardiography, electrocardiography, cardiac staining, and molecular analyses were performed to monitor the effects of treatment with pentamidine on cardiac injury and function. RESULTS We report that transient systemic administration of pentamidine on days 3-16 post-MI at a daily dose of 3 mg/kg efficiently improved cardiac function for up to ten months. This was accompanied by improved survival, diminished scarring, and increased activation of cell-cycle markers in CMs located in the infarct border zone in the absence of hypertrophy. Histological assessments suggested that post-MI treatment with pentamidine reduced site-specific acetylation of the minor histone variant H2A.Z at lysines K4 and K7 in CMs, indicative of the dedifferentiation process which must occur prior to CM proliferation. Treating mice with pentamidine post-MI produced no prominent electrophysiological changes. CONCLUSIONS These findings support the translational potential of pentamidine for treatment of MI, and provide evidence that functional improvement is mediated, in part, by CM renewal due to inhibition of the acetyltransferase activity of Tip60.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Katherine R Harty
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Tina C Wan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Zhuocheng Qu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - John W Lough
- Department of Cell Biology Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - John A Auchampach
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
2
|
Dias P, Meng X, Selimi Z, Struckman H, Veeraraghavan R, Radwański PB. Lamotrigine promotes reentrant ventricular tachycardia in murine hearts. Epilepsia 2025. [PMID: 39887338 DOI: 10.1111/epi.18295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
OBJECTIVE In 2021, the US Food and Drug Administration issued a safety warning concerning lamotrigine use in patients with underlying cardiac disorders. This warning was based on in vitro data that predicted class Ib antiarrhythmic activity for lamotrigine. Therefore, we investigated the proarrhythmic potential of lamotrigine in the murine heart and compared its effect with flecainide. METHODS Murine hearts were perfused with clinically relevant concentrations of lamotrigine 3.8 μg/mL (15 μmol·L-1) or flecainide .4 μg/mL (1 μmol·L-1). RESULTS Ex vivo electrocardiography revealed a high prevalence of ventricular tachycardia (VT) in lamotrigine-perfused hearts (7/9 hearts), whereas only two hearts exposed to flecainide evidenced VT. Optical voltage mapping showed that lamotrigine preferentially decreased ventricular conduction velocity (CV) in the longitudinal direction at all pacing frequencies tested (-22% ± 8.6%, -30% ± 15.4%, and -33% ± 13.3% for pacing frequency of 200-ms, 180-ms, and 150-ms cycle length, respectively, p ≤ .05) compared to the transverse direction, which only slowed CV at the fastest pacing frequency (-15% ± 16% for pacing frequency of 150-ms cycle length, p ≤ .01). Notably, the preferential CV slowing in the longitudinal direction altered the anisotropic ratio, giving rise to a functional substrate for reentrant VT. In contrast, flecainide slowed CV uniformly in both longitudinal and transverse directions (-30% ± 8.5% vs. -27% ± 5.3%, -32% ± 9.4% vs. -29% ± 6.9%, and - 29% ± 8.3% vs. -27% ± 10% for pacing frequency of 200-ms, 180-ms, and 150-ms cycle length, respectively, p ≤ .05). SIGNIFICANCE Our findings provide mechanistic insight into the proarrhythmic impact of lamotrigine.
Collapse
Affiliation(s)
- Patrícia Dias
- Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - Xiaolei Meng
- Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - Zoja Selimi
- Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - Heather Struckman
- Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Biomedical Engineering, College of Engineering, Ohio State University, Columbus, Ohio, USA
| | - Rengasayee Veeraraghavan
- Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Biomedical Engineering, College of Engineering, Ohio State University, Columbus, Ohio, USA
| | - Przemysław B Radwański
- Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Figueroa F, Salinas L, Thai PN, Montgomery CB, Chiamvimonvat N, Cortopassi G, Dedkova EN. Poincaré plot analysis of electrocardiogram uncovers beneficial effects of omaveloxolone in a mouse model of Friedreich's ataxia. Heart Rhythm 2025:S1547-5271(25)00001-3. [PMID: 39788175 DOI: 10.1016/j.hrthm.2024.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Friedreich's ataxia (FA) is a rare inherited neuromuscular disorder whereby most patients die of lethal cardiomyopathy and arrhythmias. Mechanisms leading to arrhythmic events in patients with FA are poorly understood. OBJECTIVE This study aimed to examine cardiac electrical signal propagation in a mouse model of FA with severe cardiomyopathy and to evaluate effects of omaveloxolone (OMAV), the first Food and Drug Administration-approved therapy. METHODS Cardiac-specific MCK-Cre frataxin knockout (FXN-cKO) mice were used to mimic FA cardiomyopathy. In vivo surface electrocardiogram (ECG) recordings, Western blotting, quantitative real-time polymerase chain reaction analysis, and histochemistry were performed. RESULTS Characteristics like long QT syndrome, interatrial block, and ST-segment abnormalities in patients with FA were identified in FXN-cKO mice. FXN-cKO mice exhibited sexual dimorphism in electrical signal propagation and cardiac structural integrity. Untreated FA males showed increased ventricular propagation intervals, whereas females exhibited delayed atrial propagation. OMAV showed no significant therapeutic effect on average ECG time intervals but improved chamber-specific waveforms when aggregated frequency distributions were analyzed. The J wave was absent in FXN-cKO male mice but reappeared with OMAV treatment. Poincaré plots revealed disparate idiopathic arrhythmias with multi-clustering events in individual mice with high incidence in FXN-cKO males. OMAV treatment reduced multi-clustering events to a single cluster; however, autonomic nervous system dysfunction still remained. CONCLUSION Our study revealed significant electrical propagation disturbances and sexual dimorphism in FXN-cKO mice with severe cardiomyopathy. Poincaré plots identified irregularities in heart rhythm and autonomic nervous system dysfunction. OMAV improved heart function by stabilizing early repolarization and reducing disparate arrhythmias. This work stresses sex-specific ECG interpretations and alternative mathematical approaches for drug testing in FA models.
Collapse
Affiliation(s)
- Francisco Figueroa
- Department of Molecular Biosciences, University of California, Davis, California
| | - Lili Salinas
- Department of Molecular Biosciences, University of California, Davis, California
| | - Phung N Thai
- Department of Internal Medicine, Cardiovascular Medicine, University of California, Davis, California
| | - Claire B Montgomery
- Department of Molecular Biosciences, University of California, Davis, California
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Cardiovascular Medicine, University of California, Davis, California; Department of Veterans Affairs, Northern California Health Care System, Mather, California
| | - Gino Cortopassi
- Department of Molecular Biosciences, University of California, Davis, California
| | - Elena N Dedkova
- Department of Molecular Biosciences, University of California, Davis, California; Department of Basic Sciences, California Northstate University, Elk Grove, California.
| |
Collapse
|
4
|
Bains S, Giammarino L, Nimani S, Alerni N, Tester DJ, Kim CSJ, Christoforou N, Louradour J, Horváth A, Beslac O, Barbieri M, Matas L, Hof TS, Lopez R, Perez-Feliz S, Parodi C, Garcia Casalta LG, Jurgensen J, Barry MA, Bego M, Keyes L, Owens J, Pinkstaff J, Koren G, Zehender M, Brunner M, Casoni D, Praz F, Haeberlin A, Brooks G, Ackerman MJ, Odening KE. KCNQ1 suppression-replacement gene therapy in transgenic rabbits with type 1 long QT syndrome. Eur Heart J 2024; 45:3751-3763. [PMID: 39115049 PMCID: PMC11439107 DOI: 10.1093/eurheartj/ehae476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/20/2024] [Accepted: 07/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND AND AIMS Type 1 long QT syndrome (LQT1) is caused by pathogenic variants in the KCNQ1-encoded Kv7.1 potassium channels, which pathologically prolong ventricular action potential duration (APD). Herein, the pathologic phenotype in transgenic LQT1 rabbits is rescued using a novel KCNQ1 suppression-replacement (SupRep) gene therapy. METHODS KCNQ1-SupRep gene therapy was developed by combining into a single construct a KCNQ1 shRNA (suppression) and an shRNA-immune KCNQ1 cDNA (replacement), packaged into adeno-associated virus serotype 9, and delivered in vivo via an intra-aortic root injection (1E10 vg/kg). To ascertain the efficacy of SupRep, 12-lead electrocardiograms were assessed in adult LQT1 and wild-type (WT) rabbits and patch-clamp experiments were performed on isolated ventricular cardiomyocytes. RESULTS KCNQ1-SupRep treatment of LQT1 rabbits resulted in significant shortening of the pathologically prolonged QT index (QTi) towards WT levels. Ventricular cardiomyocytes isolated from treated LQT1 rabbits demonstrated pronounced shortening of APD compared to LQT1 controls, leading to levels similar to WT (LQT1-UT vs. LQT1-SupRep, P < .0001, LQT1-SupRep vs. WT, P = ns). Under β-adrenergic stimulation with isoproterenol, SupRep-treated rabbits demonstrated a WT-like physiological QTi and APD90 behaviour. CONCLUSIONS This study provides the first animal-model, proof-of-concept gene therapy for correction of LQT1. In LQT1 rabbits, treatment with KCNQ1-SupRep gene therapy normalized the clinical QTi and cellular APD90 to near WT levels both at baseline and after isoproterenol. If similar QT/APD correction can be achieved with intravenous administration of KCNQ1-SupRep gene therapy in LQT1 rabbits, these encouraging data should compel continued development of this gene therapy for patients with LQT1.
Collapse
Affiliation(s)
- Sahej Bains
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Genetic Heart Rhythm Clinic and The Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Guggenheim 501, Rochester, MN 55905, USA
| | - Lucilla Giammarino
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Saranda Nimani
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Nicolo Alerni
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - David J Tester
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Genetic Heart Rhythm Clinic and The Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Guggenheim 501, Rochester, MN 55905, USA
| | - C S John Kim
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Genetic Heart Rhythm Clinic and The Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Guggenheim 501, Rochester, MN 55905, USA
| | | | - Julien Louradour
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - András Horváth
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Olgica Beslac
- Department of Cardiology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Miriam Barbieri
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Lluis Matas
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Thomas S Hof
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Ruben Lopez
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Stefanie Perez-Feliz
- Department of Cardiology, University Heart Center, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Chiara Parodi
- Experimental Surgical Facility, Experimental Animal Center, University of Bern, Bern, Switzerland
| | - Luisana G Garcia Casalta
- Experimental Surgical Facility, Experimental Animal Center, University of Bern, Bern, Switzerland
| | - Jacqulyn Jurgensen
- Department of Virology & Gene Therapy, Vector and Vaccine Engineering Laboratory, Mayo Clinic, Rochester, USA
| | - Michael A Barry
- Department of Virology & Gene Therapy, Vector and Vaccine Engineering Laboratory, Mayo Clinic, Rochester, USA
| | - Mariana Bego
- Formerly from Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Lisa Keyes
- Formerly from Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Jane Owens
- Formerly from the Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Jason Pinkstaff
- Drug Safety Research & Development, Pfizer Inc., Cambridge, MA, USA
| | - Gideon Koren
- Cardiovascular Research Center, Brown University, Providence, USA
| | - Manfred Zehender
- Department of Cardiology, University Heart Center, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Michael Brunner
- Department of Cardiology, University Heart Center, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
- Department of Cardiology and Intensive Care, St. Josefskrankenhaus Freiburg, Freiburg, Germany
| | - Daniela Casoni
- Experimental Surgical Facility, Experimental Animal Center, University of Bern, Bern, Switzerland
| | - Fabien Praz
- Department of Cardiology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Andreas Haeberlin
- Department of Cardiology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Gabriel Brooks
- Formerly from the Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Genetic Heart Rhythm Clinic and The Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Guggenheim 501, Rochester, MN 55905, USA
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| |
Collapse
|
5
|
Pluteanu F, Glaser D, Massing F, Schulte JS, Kirchhefer U. Loss of protein phosphatase 2A regulatory subunit PPP2R5A is associated with increased incidence of stress-induced proarrhythmia. Front Cardiovasc Med 2024; 11:1419597. [PMID: 38863902 PMCID: PMC11165201 DOI: 10.3389/fcvm.2024.1419597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
Background Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme that controls Ca2+ homeostasis and contractility of the heart via dephosphorylation of regulatory proteins. In some genetically modified mouse models with increased arrhythmogenicity, a reduced expression of the regulatory subunit B56α of PP2A was found as a concomitant effect. Whether there is a general correlation between the abundance of B56α and the promotion of cardiac arrhythmogenesis remains unclear. Methods The aim of this study was therefore to investigate the role of PP2A-B56α in the propensity for arrhythmic activity in the heart. The experimental analysis of this question has been addressed by using a mouse model with deletion of the PP2A-B56α gene, PPP2R5A (KO), in comparison to wild-type animals (WT). Evidence for arrhythmogenicity was investigated in whole animal, isolated heart and cardiomyocytes by ECG, recording of monophasic action potential (MAP) induced by programmed electrical stimulation (PES), measurement of Ca2+ transients under increased pacing frequencies and determination of total K+ channel currents (I K). Results ECG measurements showed a prolongation of QT time in KO vs. WT. KO mice exhibited a higher rate of premature ventricular contractions in the ECG. MAP measurements in Langendorff-perfused KO hearts showed increased episodes of ventricular tachyarrhythmia induced by PES. However, the KO hearts showed values for MAP duration that were similar to those in WT hearts. In contrast, KO showed more myocardial cells with spontaneous arrhythmogenic Ca2+ transient events compared to WT. The whole-cell patch-clamp technique applied to ventricular cardiomyocytes revealed comparable peak potassium channel current densities between KO and WT. Conclusion These findings support the assumption that a decrease or even the loss of PP2A-B56α leads to an increased propensity of triggered arrhythmias. This could be based on the increased spontaneous Ca2+ tansients observed.
Collapse
Affiliation(s)
- Florentina Pluteanu
- Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, Bucharest, Romania
| | - Dennis Glaser
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Fabian Massing
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Jan S. Schulte
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| |
Collapse
|
6
|
Smith A, Auer D, Johnson M, Sanchez E, Ross H, Ward C, Chakravarti A, Kapoor A. Cardiac muscle-restricted partial loss of Nos1ap expression has limited but significant impact on electrocardiographic features. G3 (BETHESDA, MD.) 2023; 13:jkad208. [PMID: 37708408 PMCID: PMC10627271 DOI: 10.1093/g3journal/jkad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Genome-wide association studies have identified sequence polymorphisms in a functional enhancer of the NOS1AP gene as the most common genetic regulator of QT interval and human cardiac NOS1AP gene expression in the general population. Functional studies based on in vitro overexpression in murine cardiomyocytes and ex vivo knockdown in zebrafish embryonic hearts, by us and others, have also demonstrated that NOS1AP expression levels can alter cellular electrophysiology. Here, to explore the role of NOS1AP in cardiac electrophysiology at an organismal level, we generated and characterized constitutive and heart muscle-restricted Nos1ap knockout mice to assess whether NOS1AP disruption alters the QT interval in vivo. Constitutive loss of Nos1ap led to genetic background-dependent variable lethality at or right before birth. Heart muscle-restricted Nos1ap knockout, generated using cardiac-specific alpha-myosin heavy chain promoter-driven tamoxifen-inducible Cre, resulted in tissue-level Nos1ap expression reduced by half. This partial loss of expression had no detectable effect on the QT interval or other electrocardiographic and echocardiographic parameters, except for a small but significant reduction in the QRS interval. Given that challenges associated with defining the end of the T wave on murine electrocardiogram can limit identification of subtle effects on the QT interval and that common noncoding NOS1AP variants are also associated with the QRS interval, our findings support the role of NOS1AP in regulation of the cardiac electrical cycle.
Collapse
Affiliation(s)
- Alexa Smith
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dallas Auer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Morgan Johnson
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ernesto Sanchez
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Holly Ross
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher Ward
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aravinda Chakravarti
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Human Genetics and Genomics, New York University School of Medicine, New York, NY 10016, USA
| | - Ashish Kapoor
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
In Vitro Drug Screening Using iPSC-Derived Cardiomyocytes of a Long QT-Syndrome Patient Carrying KCNQ1 & TRPM4 Dual Mutation: An Experimental Personalized Treatment. Cells 2022; 11:cells11162495. [PMID: 36010573 PMCID: PMC9406448 DOI: 10.3390/cells11162495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/24/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Congenital long QT syndrome is a type of inherited cardiovascular disorder characterized by prolonged QT interval. Patient often suffer from syncopal episodes, electrocardiographic abnormalities and life-threatening arrhythmia. Given the complexity of the root cause of the disease, a combination of clinical diagnosis and drug screening using patient-derived cardiomyocytes represents a more effective way to identify potential cures. We identified a long QT syndrome patient carrying a heterozygous KCNQ1 c.656G>A mutation and a heterozygous TRPM4 c.479C>T mutation. Implantation of implantable cardioverter defibrillator in combination with conventional medication demonstrated limited success in ameliorating long-QT-syndrome-related symptoms. Frequent defibrillator discharge also caused deterioration of patient quality of life. Aiming to identify better therapeutic agents and treatment strategy, we established a patient-specific iPSC line carrying the dual mutations and differentiated these patient-specific iPSCs into cardiomyocytes. We discovered that both verapamil and lidocaine substantially shortened the QT interval of the long QT syndrome patient-specific cardiomyocytes. Verapamil treatment was successful in reducing defibrillator discharge frequency of the KCNQ1/TRPM4 dual mutation patient. These results suggested that verapamil and lidocaine could be alternative therapeutic agents for long QT syndrome patients that do not respond well to conventional treatments. In conclusion, our approach indicated the usefulness of the in vitro disease model based on patient-specific iPSCs in identifying pharmacological mechanisms and drug screening. The long QT patient-specific iPSC line carrying KCNQ1/TRPM4 dual mutations also represents a tool for further understanding long QT syndrome pathogenesis.
Collapse
|
8
|
Salama G. Angiotensin II Receptor Blockers and Arrhythmias in Ventricular Hypertrophy. J Am Heart Assoc 2022; 11:e026634. [PMID: 35862170 PMCID: PMC9375503 DOI: 10.1161/jaha.122.026634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Guy Salama
- Department of Medicine University of Pittsburgh, School of Medicine Pittsburgh PA
| |
Collapse
|
9
|
Travi BL. Current status of antihistamine drugs repurposing for infectious diseases. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
10
|
Abstract
Heart disease is the leading cause of death worldwide. Despite decades of research, most heart pathologies have limited treatments, and often the only curative approach is heart transplantation. Thus, there is an urgent need to develop new therapeutic approaches for treating cardiac diseases. Animal models that reproduce the human pathophysiology are essential to uncovering the biology of diseases and discovering therapies. Traditionally, mammals have been used as models of cardiac disease, but the cost of generating and maintaining new models is exorbitant, and the studies have very low throughput. In the last decade, the zebrafish has emerged as a tractable model for cardiac diseases, owing to several characteristics that made this animal popular among developmental biologists. Zebrafish fertilization and development are external; embryos can be obtained in high numbers, are cheap and easy to maintain, and can be manipulated to create new genetic models. Moreover, zebrafish exhibit an exceptional ability to regenerate their heart after injury. This review summarizes 25 years of research using the zebrafish to study the heart, from the classical forward screenings to the contemporary methods to model mutations found in patients with cardiac disease. We discuss the advantages and limitations of this model organism and introduce the experimental approaches exploited in zebrafish, including forward and reverse genetics and chemical screenings. Last, we review the models used to induce cardiac injury and essential ideas derived from studying natural regeneration. Studies using zebrafish have the potential to accelerate the discovery of new strategies to treat cardiac diseases.
Collapse
Affiliation(s)
- Juan Manuel González-Rosa
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute, Harvard Medical School, Charlestown, MA
| |
Collapse
|
11
|
Song Y, Zheng Z, Lian J. Deciphering Common Long QT Syndrome Using CRISPR/Cas9 in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Front Cardiovasc Med 2022; 9:889519. [PMID: 35647048 PMCID: PMC9136094 DOI: 10.3389/fcvm.2022.889519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
From carrying potentially pathogenic genes to severe clinical phenotypes, the basic research in the inherited cardiac ion channel disease such as long QT syndrome (LQTS) has been a significant challenge in explaining gene-phenotype heterogeneity. These have opened up new pathways following the parallel development and successful application of stem cell and genome editing technologies. Stem cell-derived cardiomyocytes and subsequent genome editing have allowed researchers to introduce desired genes into cells in a dish to replicate the disease features of LQTS or replace causative genes to normalize the cellular phenotype. Importantly, this has made it possible to elucidate potential genetic modifiers contributing to clinical heterogeneity and hierarchically manage newly identified variants of uncertain significance (VUS) and more therapeutic options to be tested in vitro. In this paper, we focus on and summarize the recent advanced application of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) combined with clustered regularly interspaced short palindromic repeats/CRISPR-associated system 9 (CRISPR/Cas9) in the interpretation for the gene-phenotype relationship of the common LQTS and presence challenges, increasing our understanding of the effects of mutations and the physiopathological mechanisms in the field of cardiac arrhythmias.
Collapse
Affiliation(s)
- Yongfei Song
- Department of Cardiovascular, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
- Yongfei Song
| | - Zequn Zheng
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
| | - Jiangfang Lian
- Department of Cardiovascular, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
- *Correspondence: Jiangfang Lian
| |
Collapse
|
12
|
Song L, Bekdash R, Morikawa K, Quejada JR, Klein AD, Aina-Badejo D, Yoshida K, Yamamoto HE, Chalan A, Yang R, Patel A, Sirabella D, Lee TM, Joseph LC, Kawano F, Warren JS, Soni RK, Morrow JP, Yazawa M. Sigma non-opioid receptor 1 is a potential therapeutic target for long QT syndrome. NATURE CARDIOVASCULAR RESEARCH 2022; 1:142-156. [PMID: 36051854 PMCID: PMC9431959 DOI: 10.1038/s44161-021-00016-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Some missense gain-of-function mutations in CACNA1C gene, encoding calcium channel CaV1.2, cause a life-threatening form of long QT syndrome named Timothy syndrome, with currently no clinically-effective therapeutics. Here we report that pharmacological targeting of sigma non-opioid intracellular receptor 1 (SIGMAR1) can restore electrophysiological function in iPSC-derived cardiomyocytes generated from patients with Timothy syndrome and two common forms of long QT syndrome, type 1 (LQTS1) and 2 (LQTS2), caused by missense trafficking mutations in potassium channels. Electrophysiological recordings demonstrate that an FDA-approved cough suppressant, dextromethorphan, can be used as an agonist of SIGMAR1, to shorten the prolonged action potential in Timothy syndrome cardiomyocytes and human cellular models of LQTS1 and LQTS2. When tested in vivo, dextromethorphan also normalized the prolonged QT intervals in Timothy syndrome model mice. Overall, our study demonstrates that SIGMAR1 is a potential therapeutic target for Timothy syndrome and possibly other inherited arrhythmias such as LQTS1 and LQTS2.
Collapse
|
13
|
Cumberland MJ, Riebel LL, Roy A, O’Shea C, Holmes AP, Denning C, Kirchhof P, Rodriguez B, Gehmlich K. Basic Research Approaches to Evaluate Cardiac Arrhythmia in Heart Failure and Beyond. Front Physiol 2022; 13:806366. [PMID: 35197863 PMCID: PMC8859441 DOI: 10.3389/fphys.2022.806366] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
Patients with heart failure often develop cardiac arrhythmias. The mechanisms and interrelations linking heart failure and arrhythmias are not fully understood. Historically, research into arrhythmias has been performed on affected individuals or in vivo (animal) models. The latter however is constrained by interspecies variation, demands to reduce animal experiments and cost. Recent developments in in vitro induced pluripotent stem cell technology and in silico modelling have expanded the number of models available for the evaluation of heart failure and arrhythmia. An agnostic approach, combining the modalities discussed here, has the potential to improve our understanding for appraising the pathology and interactions between heart failure and arrhythmia and can provide robust and validated outcomes in a variety of research settings. This review discusses the state of the art models, methodologies and techniques used in the evaluation of heart failure and arrhythmia and will highlight the benefits of using them in combination. Special consideration is paid to assessing the pivotal role calcium handling has in the development of heart failure and arrhythmia.
Collapse
Affiliation(s)
- Max J. Cumberland
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Leto L. Riebel
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Ashwin Roy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher O’Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew P. Holmes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chris Denning
- Stem Cell Biology Unit, Biodiscovery Institute, British Heart Foundation Centre for Regenerative Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford and British Heart Foundation Centre of Research Excellence Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
A comparative review on heart ion channels, action potentials and electrocardiogram in rodents and human: extrapolation of experimental insights to clinic. Lab Anim Res 2021; 37:25. [PMID: 34496976 PMCID: PMC8424989 DOI: 10.1186/s42826-021-00102-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022] Open
Abstract
Electrocardiogram (ECG) is a non-invasive valuable diagnostic tool that is used in clinics for investigation and monitoring of heart electrical rhythm/conduction, ischemia/injury of heart, electrolyte disturbances and agents/drugs induced cardiac toxicity. Nowadays using animal models to study heart diseases such as electrical and mechanical disturbance is common. In addition, given to ethical consideration and availability, the use of small rodents has been a top priority for cardiovascular researchers. However, extrapolation of experimental findings from the lab to the clinic needs sufficient basic knowledge of similarities and differences between heart action potential and ECG of rodents and humans in normal and disease conditions. This review compares types of human action potentials, the dominant ion currents during action potential phases, alteration in ion channels activities in channelopathies-induced arrhythmias and the ECG appearance of mouse, rat, guinea pig, rabbit and human. Also, it briefly discusses the responsiveness and alterations in ECG following some interventions such as cardiac injury and arrhythmia induction. Overall, it provides a roadmap for researchers in selecting the best animal model/species whose studies results can be translated into clinical practice. In addition, this study will also be useful to biologists, physiologists, pharmacologists, veterinarians and physicians working in the fields of comparative physiology, pharmacology, toxicology and diseases.
Collapse
|
15
|
Crotti L, Odening KE, Sanguinetti MC. Heritable arrhythmias associated with abnormal function of cardiac potassium channels. Cardiovasc Res 2021; 116:1542-1556. [PMID: 32227190 DOI: 10.1093/cvr/cvaa068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiomyocytes express a surprisingly large number of potassium channel types. The primary physiological functions of the currents conducted by these channels are to maintain the resting membrane potential and mediate action potential repolarization under basal conditions and in response to changes in the concentrations of intracellular sodium, calcium, and ATP/ADP. Here, we review the diversity and functional roles of cardiac potassium channels under normal conditions and how heritable mutations in the genes encoding these channels can lead to distinct arrhythmias. We briefly review atrial fibrillation and J-wave syndromes. For long and short QT syndromes, we describe their genetic basis, clinical manifestation, risk stratification, traditional and novel therapeutic approaches, as well as insights into disease mechanisms provided by animal and cellular models.
Collapse
Affiliation(s)
- Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, San Luca Hospital, Milan, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany.,Institute of Experimental Cardiovascular Medicine, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany.,Department of Cardiology, Translational Cardiology, Inselspital, Bern University Hospital, and Institute of Physiology, University of Bern, Bern, Switzerland
| | - Michael C Sanguinetti
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
16
|
Chang Y, Li YN, Bai R, Wu F, Ma S, Saleem A, Zhang S, Jiang Y, Dong T, Guo T, Hang C, Lu WJ, Jiang H, Lan F. hERG-deficient human embryonic stem cell-derived cardiomyocytes for modelling QT prolongation. Stem Cell Res Ther 2021; 12:278. [PMID: 33962658 PMCID: PMC8103639 DOI: 10.1186/s13287-021-02346-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long-QT syndrome type 2 (LQT2) is a common malignant hereditary arrhythmia. Due to the lack of suitable animal and human models, the pathogenesis of LQT2 caused by human ether-a-go-go-related gene (hERG) deficiency is still unclear. In this study, we generated an hERG-deficient human cardiomyocyte (CM) model that simulates 'human homozygous hERG mutations' to explore the underlying impact of hERG dysfunction and the genotype-phenotype relationship of hERG deficiency. METHODS The KCNH2 was knocked out in the human embryonic stem cell (hESC) H9 line using the CRISPR/Cas9 system. Using a chemically defined differentiation protocol, we obtained and verified hERG-deficient CMs. Subsequently, high-throughput microelectrode array (MEA) assays and drug interventions were performed to characterise the electrophysiological signatures of hERG-deficient cell lines. RESULTS Our results showed that KCNH2 knockout did not affect the pluripotency or differentiation efficiency of H9 cells. Using high-throughput MEA assays, we found that the electric field potential duration and action potential duration of hERG-deficient CMs were significantly longer than those of normal CMs. The hERG-deficient lines also exhibited irregular rhythm and some early afterdepolarisations. Moreover, we used the hERG-deficient human CM model to evaluate the potency of agents (nifedipine and magnesium chloride) that may ameliorate the phenotype. CONCLUSIONS We established an hERG-deficient human CM model that exhibited QT prolongation, irregular rhythm and sensitivity to other ion channel blockers. This model serves as an important tool that can aid in understanding the fundamental impact of hERG dysfunction, elucidate the genotype-phenotype relationship of hERG deficiency and facilitate drug development.
Collapse
Affiliation(s)
- Yun Chang
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Research Institute Building, Room 323, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Ya-Nan Li
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Research Institute Building, Room 323, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Rui Bai
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Research Institute Building, Room 323, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Fujian Wu
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Research Institute Building, Room 323, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Shuhong Ma
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Research Institute Building, Room 323, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Amina Saleem
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Research Institute Building, Room 323, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Siyao Zhang
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Research Institute Building, Room 323, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Youxu Jiang
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Research Institute Building, Room 323, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Tao Dong
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Research Institute Building, Room 323, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Tianwei Guo
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Research Institute Building, Room 323, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Chengwen Hang
- Department of Cardiology, Peking University Third Hospital, Beijing, 100191, China
| | - Wen-Jing Lu
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Research Institute Building, Room 323, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Hongfeng Jiang
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Research Institute Building, Room 323, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China.
| | - Feng Lan
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Research Institute Building, Room 323, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China.
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Key Laboratory of Application of Pluripotent Stem Cells in Heart Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
17
|
Hornyik T, Rieder M, Castiglione A, Major P, Baczko I, Brunner M, Koren G, Odening KE. Transgenic rabbit models for cardiac disease research. Br J Pharmacol 2021; 179:938-957. [PMID: 33822374 DOI: 10.1111/bph.15484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
To study the pathophysiology of human cardiac diseases and to develop novel treatment strategies, complex interactions of cardiac cells on cellular, tissue and on level of the whole heart need to be considered. As in vitro cell-based models do not depict the complexity of the human heart, animal models are used to obtain insights that can be translated to human diseases. Mice are the most commonly used animals in cardiac research. However, differences in electrophysiological and mechanical cardiac function and a different composition of electrical and contractile proteins limit the transferability of the knowledge gained. Moreover, the small heart size and fast heart rate are major disadvantages. In contrast to rodents, electrophysiological, mechanical and structural cardiac characteristics of rabbits resemble the human heart more closely, making them particularly suitable as an animal model for cardiac disease research. In this review, various methodological approaches for the generation of transgenic rabbits for cardiac disease research, such as pronuclear microinjection, the sleeping beauty transposon system and novel genome-editing methods (ZFN and CRISPR/Cas9)will be discussed. In the second section, we will introduce the different currently available transgenic rabbit models for monogenic cardiac diseases (such as long QT syndrome, short-QT syndrome and hypertrophic cardiomyopathy) in detail, especially in regard to their utility to increase the understanding of pathophysiological disease mechanisms and novel treatment options.
Collapse
Affiliation(s)
- Tibor Hornyik
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, and Institute of Physiology, University of Bern, Bern, Switzerland.,Department of Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marina Rieder
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, and Institute of Physiology, University of Bern, Bern, Switzerland
| | - Alessandro Castiglione
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, and Institute of Physiology, University of Bern, Bern, Switzerland
| | - Peter Major
- Institute for Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Istvan Baczko
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Michael Brunner
- Department of Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiology and Medical Intensive Care, St. Josefskrankenhaus, Freiburg, Germany
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, and Institute of Physiology, University of Bern, Bern, Switzerland.,Department of Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Niimi N, Yuki K, Zaleski K. Long QT Syndrome and Perioperative Torsades de Pointes: What the Anesthesiologist Should Know. J Cardiothorac Vasc Anesth 2020; 36:286-302. [PMID: 33495078 DOI: 10.1053/j.jvca.2020.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/16/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Affiliation(s)
- Naoko Niimi
- Department of Anesthesiology, Juntendo University, Tokyo, Japan.
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA; Department of Anesthesia, Harvard Medical School, Boston, MA
| | - Katherine Zaleski
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA; Department of Anesthesia, Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Protze SI, Lee JH, Keller GM. Human Pluripotent Stem Cell-Derived Cardiovascular Cells: From Developmental Biology to Therapeutic Applications. Cell Stem Cell 2020; 25:311-327. [PMID: 31491395 DOI: 10.1016/j.stem.2019.07.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advances in our understanding of cardiovascular development have provided a roadmap for the directed differentiation of human pluripotent stem cells (hPSCs) to the major cell types found in the heart. In this Perspective, we review the state of the field in generating and maturing cardiovascular cells from hPSCs based on our fundamental understanding of heart development. We then highlight their applications for studying human heart development, modeling disease-performing drug screening, and cell replacement therapy. With the advancements highlighted here, the promise that hPSCs will deliver new treatments for degenerative and debilitating diseases may soon be fulfilled.
Collapse
Affiliation(s)
- Stephanie I Protze
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Jee Hoon Lee
- BlueRock Therapeutics ULC, Toronto, ON M5G 1L7, Canada
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
20
|
Reilly L, Alvarado FJ, Lang D, Abozeid S, Van Ert H, Spellman C, Warden J, Makielski JC, Glukhov AV, Eckhardt LL. Genetic Loss of IK1 Causes Adrenergic-Induced Phase 3 Early Afterdepolariz ations and Polymorphic and Bidirectional Ventricular Tachycardia. Circ Arrhythm Electrophysiol 2020; 13:e008638. [PMID: 32931337 PMCID: PMC7574954 DOI: 10.1161/circep.120.008638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Arrhythmia syndromes associated with KCNJ2 mutations have been described clinically; however, little is known of the underlying arrhythmia mechanism. We create the first patient inspired KCNJ2 transgenic mouse and study effects of this mutation on cardiac function, IK1, and Ca2+ handling, to determine the underlying cellular arrhythmic pathogenesis. METHODS A cardiac-specific KCNJ2-R67Q mouse was generated and bred for heterozygosity (R67Q+/-). Echocardiography was performed at rest, under anesthesia. In vivo ECG recording and whole heart optical mapping of intact hearts was performed before and after adrenergic stimulation in wild-type (WT) littermate controls and R67Q+/- mice. IK1 measurements, action potential characterization, and intracellular Ca2+ imaging from isolated ventricular myocytes at baseline and after adrenergic stimulation were performed in WT and R67Q+/- mice. RESULTS R67Q+/- mice (n=17) showed normal cardiac function, structure, and baseline electrical activity compared with WT (n=10). Following epinephrine and caffeine, only the R67Q+/- mice had bidirectional ventricular tachycardia, ventricular tachycardia, frequent ventricular ectopy, and/or bigeminy and optical mapping demonstrated high prevalence of spontaneous and sustained ventricular arrhythmia. Both R67Q+/- (n=8) and WT myocytes (n=9) demonstrated typical n-shaped IK1IV relationship; however, following isoproterenol, max outward IK1 increased by ≈20% in WT but decreased by ≈24% in R67Q+/- (P<0.01). R67Q+/- myocytes (n=5) demonstrated prolonged action potential duration at 90% repolarization and after 10 nmol/L isoproterenol compared with WT (n=7; P<0.05). Ca2+ transient amplitude, 50% decay rate, and sarcoplasmic reticulum Ca2+ content were not different between WT (n=18) and R67Q+/- (n=16) myocytes. R67Q+/- myocytes (n=10) under adrenergic stimulation showed frequent spontaneous development of early afterdepolarizations that occurred at phase 3 of action potential repolarization. CONCLUSIONS KCNJ2 mutation R67Q+/- causes adrenergic-dependent loss of IK1 during terminal repolarization and vulnerability to phase 3 early afterdepolarizations. This model clarifies a heretofore unknown arrhythmia mechanism and extends our understanding of treatment implications for patients with KCNJ2 mutation.
Collapse
Affiliation(s)
- Louise Reilly
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Francisco J Alvarado
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Di Lang
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Sara Abozeid
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Hannah Van Ert
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Cordell Spellman
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Jarrett Warden
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Jonathan C Makielski
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Alexey V Glukhov
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Lee L Eckhardt
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| |
Collapse
|
21
|
Branco MA, Cabral JM, Diogo MM. From Human Pluripotent Stem Cells to 3D Cardiac Microtissues: Progress, Applications and Challenges. Bioengineering (Basel) 2020; 7:E92. [PMID: 32785039 PMCID: PMC7552661 DOI: 10.3390/bioengineering7030092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
The knowledge acquired throughout the years concerning the in vivo regulation of cardiac development has promoted the establishment of directed differentiation protocols to obtain cardiomyocytes (CMs) and other cardiac cells from human pluripotent stem cells (hPSCs), which play a crucial role in the function and homeostasis of the heart. Among other developments in the field, the transition from homogeneous cultures of CMs to more complex multicellular cardiac microtissues (MTs) has increased the potential of these models for studying cardiac disorders in vitro and for clinically relevant applications such as drug screening and cardiotoxicity tests. This review addresses the state of the art of the generation of different cardiac cells from hPSCs and the impact of transitioning CM differentiation from 2D culture to a 3D environment. Additionally, current methods that may be employed to generate 3D cardiac MTs are reviewed and, finally, the adoption of these models for in vitro applications and their adaptation to medium- to high-throughput screening settings are also highlighted.
Collapse
Affiliation(s)
| | | | - Maria Margarida Diogo
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (M.A.B.); (J.M.S.C.)
| |
Collapse
|
22
|
Hornyik T, Castiglione A, Franke G, Perez-Feliz S, Major P, Hiripi L, Koren G, Bősze Z, Varró A, Zehender M, Brunner M, Bode C, Baczkó I, Odening KE. Transgenic LQT2, LQT5, and LQT2-5 rabbit models with decreased repolarisation reserve for prediction of drug-induced ventricular arrhythmias. Br J Pharmacol 2020; 177:3744-3759. [PMID: 32436214 PMCID: PMC7393202 DOI: 10.1111/bph.15098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 12/21/2022] Open
Abstract
Background and Purpose Reliable prediction of pro‐arrhythmic side effects of novel drug candidates is still a major challenge. Although drug‐induced pro‐arrhythmia occurs primarily in patients with pre‐existing repolarisation disturbances, healthy animals are employed for pro‐arrhythmia testing. To improve current safety screening, transgenic long QT (LQTS) rabbit models with impaired repolarisation reserve were generated by overexpressing loss‐of‐function mutations of human HERG (HERG‐G628S, loss of IKr; LQT2), KCNE1 (KCNE1‐G52R, decreased IKs; LQT5), or both transgenes (LQT2‐5) in the heart. Experimental Approach Effects of K+ channel blockers on cardiac repolarisation and arrhythmia susceptibility were assessed in healthy wild‐type (WT) and LQTS rabbits using in vivo ECG and ex vivo monophasic action potential and ECG recordings in Langendorff‐perfused hearts. Key Results LQTS models reflect patients with clinically “silent” (LQT5) or “manifest” (LQT2 and LQT2‐5) impairment in cardiac repolarisation reserve: they were more sensitive in detecting IKr‐blocking (LQT5) or IK1/IKs‐blocking (LQT2 and LQT2‐5) properties of drugs compared to healthy WT animals. Impaired QT‐shortening capacity at fast heart rates was observed due to disturbed IKs function in LQT5 and LQT2‐5. Importantly, LQTS models exhibited higher incidence, longer duration, and more malignant types of ex vivo arrhythmias than WT. Conclusion and Implications LQTS models represent patients with reduced repolarisation reserve due to different pathomechanisms. As they demonstrate increased sensitivity to different specific ion channel blockers (IKr blockade in LQT5 and IK1 and IKs blockade in LQT2 and LQT2‐5), their combined use could provide more reliable and more thorough prediction of (multichannel‐based) pro‐arrhythmic potential of novel drug candidates.
Collapse
Affiliation(s)
- Tibor Hornyik
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany.,Institute of Experimental Cardiovascular Medicine, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany.,Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Alessandro Castiglione
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany
| | - Gerlind Franke
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany
| | - Stefanie Perez-Feliz
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany.,Institute of Experimental Cardiovascular Medicine, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany
| | - Péter Major
- NARIC-Agricultural Biotechnology Institute, Animal Biotechnology Department, Gödöllő, Hungary
| | - László Hiripi
- NARIC-Agricultural Biotechnology Institute, Animal Biotechnology Department, Gödöllő, Hungary
| | - Gideon Koren
- Cardiovascular Research Center, Brown University, Providence, Rhode Island, USA
| | - Zsuzsanna Bősze
- NARIC-Agricultural Biotechnology Institute, Animal Biotechnology Department, Gödöllő, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Manfred Zehender
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany
| | - Michael Brunner
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany.,Department of Cardiology and Medical Intensive Care, St. Josefskrankenhaus, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany.,Institute of Experimental Cardiovascular Medicine, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany.,Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, and Institute of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Baczkó I, Hornyik T, Brunner M, Koren G, Odening KE. Transgenic Rabbit Models in Proarrhythmia Research. Front Pharmacol 2020; 11:853. [PMID: 32581808 PMCID: PMC7291951 DOI: 10.3389/fphar.2020.00853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Drug-induced proarrhythmia constitutes a potentially lethal side effect of various drugs. Most often, this proarrhythmia is mechanistically linked to the drug's potential to interact with repolarizing cardiac ion channels causing a prolongation of the QT interval in the ECG. Despite sophisticated screening approaches during drug development, reliable prediction of proarrhythmia remains very challenging. Although drug-induced long-QT-related proarrhythmia is often favored by conditions or diseases that impair the individual's repolarization reserve, most cellular, tissue, and whole animal model systems used for drug safety screening are based on normal, healthy models. In recent years, several transgenic rabbit models for different types of long QT syndromes (LQTS) with differences in the extent of impairment in repolarization reserve have been generated. These might be useful for screening/prediction of a drug's potential for long-QT-related proarrhythmia, particularly as different repolarizing cardiac ion channels are impaired in the different models. In this review, we summarize the electrophysiological characteristics of the available transgenic LQTS rabbit models, and the pharmacological proof-of-principle studies that have been performed with these models—highlighting the advantages and disadvantages of LQTS models for proarrhythmia research. In the end, we give an outlook on potential future directions and novel models.
Collapse
Affiliation(s)
- István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Tibor Hornyik
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Brunner
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiology and Medical Intensive Care, St. Josefskrankenhaus, Freiburg, Germany
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland.,Institute of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Matasic DS, Yoon JY, McLendon JM, Mehdi H, Schmidt MS, Greiner AM, Quinones P, Morgan GM, Boudreau RL, Irani K, Brenner C, London B. Modulation of the cardiac sodium channel Na V1.5 peak and late currents by NAD + precursors. J Mol Cell Cardiol 2020; 141:70-81. [PMID: 32209328 PMCID: PMC7234910 DOI: 10.1016/j.yjmcc.2020.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/09/2019] [Accepted: 01/08/2020] [Indexed: 01/02/2023]
Abstract
RATIONALE The cardiac sodium channel NaV1.5, encoded by SCN5A, produces the rapidly inactivating depolarizing current INa that is responsible for the initiation and propagation of the cardiac action potential. Acquired and inherited dysfunction of NaV1.5 results in either decreased peak INa or increased residual late INa (INa,L), leading to tachy/bradyarrhythmias and sudden cardiac death. Previous studies have shown that increased cellular NAD+ and NAD+/NADH ratio increase INa through suppression of mitochondrial reactive oxygen species and PKC-mediated NaV1.5 phosphorylation. In addition, NAD+-dependent deacetylation of NaV1.5 at K1479 by Sirtuin 1 increases NaV1.5 membrane trafficking and INa. The role of NAD+ precursors in modulating INa remains unknown. OBJECTIVE To determine whether and by which mechanisms the NAD+ precursors nicotinamide riboside (NR) and nicotinamide (NAM) affect peak INa and INa,Lin vitro and cardiac electrophysiology in vivo. METHODS AND RESULTS The effects of NAD+ precursors on the NAD+ metabolome and electrophysiology were studied using HEK293 cells expressing wild-type and mutant NaV1.5, rat neonatal cardiomyocytes (RNCMs), and mice. NR increased INa in HEK293 cells expressing NaV1.5 (500 μM: 51 ± 18%, p = .02, 5 mM: 59 ± 22%, p = .03) and RNCMs (500 μM: 60 ± 26%, p = .02, 5 mM: 74 ± 39%, p = .03) while reducing INa,L at the higher concentration (RNCMs, 5 mM: -45 ± 11%, p = .04). NR (5 mM) decreased NaV1.5 K1479 acetylation but increased INa in HEK293 cells expressing a mutant form of NaV1.5 with disruption of the acetylation site (NaV1.5-K1479A). Disruption of the PKC phosphorylation site abolished the effect of NR on INa. Furthermore, NAM (5 mM) had no effect on INa in RNCMs or in HEK293 cells expressing wild-type NaV1.5, but increased INa in HEK293 cells expressing NaV1.5-K1479A. Dietary supplementation with NR for 10-12 weeks decreased QTc in C57BL/6 J mice (0.35% NR: -4.9 ± 2.0%, p = .14; 1.0% NR: -9.5 ± 2.8%, p = .01). CONCLUSIONS NAD+ precursors differentially regulate NaV1.5 via multiple mechanisms. NR increases INa, decreases INa,L, and warrants further investigation as a potential therapy for arrhythmic disorders caused by NaV1.5 deficiency and/or dysfunction.
Collapse
Affiliation(s)
- Daniel S Matasic
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Jin-Young Yoon
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Jared M McLendon
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Haider Mehdi
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Mark S Schmidt
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Alexander M Greiner
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Pravda Quinones
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Gina M Morgan
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Ryan L Boudreau
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Kaikobad Irani
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Charles Brenner
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Barry London
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America.
| |
Collapse
|
25
|
Garg P, Garg V, Shrestha R, Sanguinetti MC, Kamp TJ, Wu JC. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as Models for Cardiac Channelopathies: A Primer for Non-Electrophysiologists. Circ Res 2019; 123:224-243. [PMID: 29976690 DOI: 10.1161/circresaha.118.311209] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Life threatening ventricular arrhythmias leading to sudden cardiac death are a major cause of morbidity and mortality. In the absence of structural heart disease, these arrhythmias, especially in the younger population, are often an outcome of genetic defects in specialized membrane proteins called ion channels. In the heart, exceptionally well-orchestrated activity of a diversity of ion channels mediates the cardiac action potential. Alterations in either the function or expression of these channels can disrupt the configuration of the action potential, leading to abnormal electrical activity of the heart that can sometimes initiate an arrhythmia. Understanding the pathophysiology of inherited arrhythmias can be challenging because of the complexity of the disorder and lack of appropriate cellular and in vivo models. Recent advances in human induced pluripotent stem cell technology have provided remarkable progress in comprehending the underlying mechanisms of ion channel disorders or channelopathies by modeling these complex arrhythmia syndromes in vitro in a dish. To fully realize the potential of induced pluripotent stem cells in elucidating the mechanistic basis and complex pathophysiology of channelopathies, it is crucial to have a basic knowledge of cardiac myocyte electrophysiology. In this review, we will discuss the role of the various ion channels in cardiac electrophysiology and the molecular and cellular mechanisms of arrhythmias, highlighting the promise of human induced pluripotent stem cell-cardiomyocytes as a model for investigating inherited arrhythmia syndromes and testing antiarrhythmic strategies. Overall, this review aims to provide a basic understanding of the electrical activity of the heart and related channelopathies, especially to clinicians or research scientists in the cardiovascular field with limited electrophysiology background.
Collapse
Affiliation(s)
- Priyanka Garg
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.).,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| | - Vivek Garg
- Stanford University School of Medicine, CA; Department of Physiology, University of California San Francisco (V.G.)
| | - Rajani Shrestha
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.).,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| | | | - Timothy J Kamp
- Department of Medicine, University of Wisconsin-Madison (T.J.K.)
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.) .,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| |
Collapse
|
26
|
Schroer A, Pardon G, Castillo E, Blair C, Pruitt B. Engineering hiPSC cardiomyocyte in vitro model systems for functional and structural assessment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 144:3-15. [PMID: 30579630 PMCID: PMC6919215 DOI: 10.1016/j.pbiomolbio.2018.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/24/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023]
Abstract
The study of human cardiomyopathies and the development and testing of new therapies has long been limited by the availability of appropriate in vitro model systems. Cardiomyocytes are highly specialized cells whose internal structure and contractile function are sensitive to the local microenvironment and the combination of mechanical and biochemical cues they receive. The complementary technologies of human induced pluripotent stem cell (hiPSC) derived cardiomyocytes (CMs) and microphysiological systems (MPS) allow for precise control of the genetics and microenvironment of human cells in in vitro contexts. These combined systems also enable quantitative measurement of mechanical function and intracellular organization. This review describes relevant factors in the myocardium microenvironment that affect CM structure and mechanical function and demonstrates the application of several engineered microphysiological systems for studying development, disease, and drug discovery.
Collapse
Affiliation(s)
- Alison Schroer
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| | - Gaspard Pardon
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Erica Castillo
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Mechanical Engineering, University of California at Santa Barbara, USA
| | - Cheavar Blair
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Mechanical Engineering, University of California at Santa Barbara, USA
| | - Beth Pruitt
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Mechanical Engineering, University of California at Santa Barbara, USA
| |
Collapse
|
27
|
Dementyeva EV, Medvedev SP, Kovalenko VR, Vyatkin YV, Kretov EI, Slotvitsky MM, Shtokalo DN, Pokushalov EA, Zakian SM. Applying Patient-Specific Induced Pluripotent Stem Cells to Create a Model of Hypertrophic Cardiomyopathy. BIOCHEMISTRY (MOSCOW) 2019; 84:291-298. [DOI: 10.1134/s0006297919030118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Sato S. Multi-dry-electrode plate sensor for non-invasive electrocardiogram and heart rate monitoring for the assessment of drug responses in freely behaving mice. J Pharmacol Toxicol Methods 2019; 97:29-35. [PMID: 30880152 DOI: 10.1016/j.vascn.2019.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 11/18/2022]
Abstract
Monitoring of electrocardiogram (ECG) and heart rate (HR) is essential in a wide range of experiments. For conscious animal studies, telemetry is the preferred approach; however, it requires 1-3 weeks of recovery after surgical device-implantation. The present paper describes a novel multi-dry-electrode plate (MDEP) sensor system to monitor ECG/HR in freely behaving mice without the need for surgery for device/electrode implantation. The MDEP sensor is a rectangular plate with 15 gold-plated stripe pattern electrodes, on which a mouse can walk around freely, and detects ECG whenever ≥2 paws (footpads) come in contact with the electrodes. Here we show that the MDEP sensor detected distinct QRS complexes which, were fragmented due to locomotion and insufficient perspiration on the footpads. Nonetheless, the HR calculated from the QRS complexes were similar to the HR calculated from R-R intervals simultaneously recorded from lead-II ECG (difference = 0.0 ± 0.16 ms) as part of the validation exercise. Also, the archetypal responses to isoproterenol and metoprolol injections were successfully detected as a significantly elevation (+151 ± 15 bpm) and reduction (-77 ± 6 bpm) in HR, respectively, compared to vehicle at 20-60 min postdose. Conversely, the P wave was rarely identifiable unless signal averaging was undertaken. These results indicate a potential utility for the MDEP-sensor system for cardiac pharmacological studies. In addition, signal averaging appeared to be effective for detection of ECG intervals such as PR and QT, although the QT cannot be measured in the mouse heart as there is no T wave.
Collapse
Affiliation(s)
- Shinichi Sato
- Department of Cell Physiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| |
Collapse
|
29
|
Applications of CRISPR/Cas9 for the Treatment of Duchenne Muscular Dystrophy. J Pers Med 2018; 8:jpm8040038. [PMID: 30477208 PMCID: PMC6313657 DOI: 10.3390/jpm8040038] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive neuromuscular disease prevalent in 1 in 3500 to 5000 males worldwide. As a result of mutations that interrupt the reading frame of the dystrophin gene (DMD), DMD is characterized by a loss of dystrophin protein that leads to decreased muscle membrane integrity, which increases susceptibility to degeneration. CRISPR/Cas9 technology has garnered interest as an avenue for DMD therapy due to its potential for permanent exon skipping, which can restore the disrupted DMD reading frame in DMD and lead to dystrophin restoration. An RNA-guided DNA endonuclease system, CRISPR/Cas9 allows for the targeted editing of specific sequences in the genome. The efficacy and safety of CRISPR/Cas9 as a therapy for DMD has been evaluated by numerous studies in vitro and in vivo, with varying rates of success. Despite the potential of CRISPR/Cas9-mediated gene editing for the long-term treatment of DMD, its translation into the clinic is currently challenged by issues such as off-targeting, immune response activation, and sub-optimal in vivo delivery. Its nature as being mostly a personalized form of therapy also limits applicability to DMD patients, who exhibit a wide spectrum of mutations. This review summarizes the various CRISPR/Cas9 strategies that have been tested in vitro and in vivo for the treatment of DMD. Perspectives on the approach will be provided, and the challenges faced by CRISPR/Cas9 in its road to the clinic will be briefly discussed.
Collapse
|
30
|
Bernardo BC, Ooi JYY, Weeks KL, Patterson NL, McMullen JR. Understanding Key Mechanisms of Exercise-Induced Cardiac Protection to Mitigate Disease: Current Knowledge and Emerging Concepts. Physiol Rev 2018; 98:419-475. [PMID: 29351515 DOI: 10.1152/physrev.00043.2016] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The benefits of exercise on the heart are well recognized, and clinical studies have demonstrated that exercise is an intervention that can improve cardiac function in heart failure patients. This has led to significant research into understanding the key mechanisms responsible for exercise-induced cardiac protection. Here, we summarize molecular mechanisms that regulate exercise-induced cardiac myocyte growth and proliferation. We discuss in detail the effects of exercise on other cardiac cells, organelles, and systems that have received less or little attention and require further investigation. This includes cardiac excitation and contraction, mitochondrial adaptations, cellular stress responses to promote survival (heat shock response, ubiquitin-proteasome system, autophagy-lysosomal system, endoplasmic reticulum unfolded protein response, DNA damage response), extracellular matrix, inflammatory response, and organ-to-organ crosstalk. We summarize therapeutic strategies targeting known regulators of exercise-induced protection and the challenges translating findings from bench to bedside. We conclude that technological advancements that allow for in-depth profiling of the genome, transcriptome, proteome and metabolome, combined with animal and human studies, provide new opportunities for comprehensively defining the signaling and regulatory aspects of cell/organelle functions that underpin the protective properties of exercise. This is likely to lead to the identification of novel biomarkers and therapeutic targets for heart disease.
Collapse
Affiliation(s)
- Bianca C Bernardo
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Jenny Y Y Ooi
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Kate L Weeks
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Natalie L Patterson
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| |
Collapse
|
31
|
Rayani K, Lin E, Craig C, Lamothe M, Shafaattalab S, Gunawan M, Li AY, Hove-Madsen L, Tibbits GF. Zebrafish as a model of mammalian cardiac function: Optically mapping the interplay of temperature and rate on voltage and calcium dynamics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:69-90. [DOI: 10.1016/j.pbiomolbio.2018.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
|
32
|
Hodgson P, Ireland J, Grunow B. Fish, the better model in human heart research? Zebrafish Heart aggregates as a 3D spontaneously cardiomyogenic in vitro model system. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:132-141. [PMID: 29729327 DOI: 10.1016/j.pbiomolbio.2018.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/04/2018] [Accepted: 04/27/2018] [Indexed: 12/25/2022]
Abstract
The zebrafish (ZF) has become an essential model for biomedical, pharmacological and eco-toxicological heart research. Despite the anatomical differences between fish and human hearts, similarities in cellular structure and conservation of genes as well as pathways across vertebrates have led to an increase in the popularity of ZF as a model for human cardiac research. ZF research benefits from an entirely sequenced genome, which allows us to establish and study cardiovascular mutants to better understand cardiovascular diseases. In this review, we will discuss the importance of in vitro model systems for cardiac research and summarise results of in vitro 3D heart-like cell aggregates, consisting of myocardial tissue formed spontaneously from enzymatically digested whole embryonic ZF larvae (Zebrafish Heart Aggregate - ZFHA). We will give an overview of the similarities and differences of ZF versus human hearts and highlight why ZF complement established mammalian models (i.e. murine and large animal models) for cardiac research. At this stage, the ZFHA model system is being refined into a high-throughput (more ZFHA generated than larvae prepared) and stable in vitro test system to accomplish the same longevity of previously successful salmonid models. ZFHA have potential for the use of high-throughput-screenings of different factors like small molecules, nucleic acids, proteins and lipids which is difficult to achieve in the zebrafish in vivo screening models with lethal mutations as well as to explore ion channel disorders and to find appropriate drugs for safety screening.
Collapse
Affiliation(s)
- Patricia Hodgson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK; Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK
| | - Jake Ireland
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK; School of Chemistry, Materials Science, and Engineering, Hilmer Building, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Bianka Grunow
- University Medicine Greifswald, Institute of Physiology, Greifswalder Str. 11C, 17495 Karlsburg, Germany; Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK.
| |
Collapse
|
33
|
Kalra S, Montanaro F, Denning C. Can Human Pluripotent Stem Cell-Derived Cardiomyocytes Advance Understanding of Muscular Dystrophies? J Neuromuscul Dis 2018; 3:309-332. [PMID: 27854224 PMCID: PMC5123622 DOI: 10.3233/jnd-150133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Muscular dystrophies (MDs) are clinically and molecularly a highly heterogeneous group of single-gene disorders that primarily affect striated muscles. Cardiac disease is present in several MDs where it is an important contributor to morbidity and mortality. Careful monitoring of cardiac issues is necessary but current management of cardiac involvement does not effectively protect from disease progression and cardiac failure. There is a critical need to gain new knowledge on the diverse molecular underpinnings of cardiac disease in MDs in order to guide cardiac treatment development and assist in reaching a clearer consensus on cardiac disease management in the clinic. Animal models are available for the majority of MDs and have been invaluable tools in probing disease mechanisms and in pre-clinical screens. However, there are recognized genetic, physiological, and structural differences between human and animal hearts that impact disease progression, manifestation, and response to pharmacological interventions. Therefore, there is a need to develop parallel human systems to model cardiac disease in MDs. This review discusses the current status of cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSC) to model cardiac disease, with a focus on Duchenne muscular dystrophy (DMD) and myotonic dystrophy (DM1). We seek to provide a balanced view of opportunities and limitations offered by this system in elucidating disease mechanisms pertinent to human cardiac physiology and as a platform for treatment development or refinement.
Collapse
Affiliation(s)
- Spandan Kalra
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, UK
| | - Federica Montanaro
- Dubowitz Neuromuscular Centre, Department of Molecular Neurosciences, University College London - Institute of Child Health, London, UK
| | - Chris Denning
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, UK
| |
Collapse
|
34
|
Expression and relevance of the G protein-gated K + channel in the mouse ventricle. Sci Rep 2018; 8:1192. [PMID: 29352184 PMCID: PMC5775354 DOI: 10.1038/s41598-018-19719-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
The atrial G protein-gated inwardly rectifying K+ (GIRK) channel is a critical mediator of parasympathetic influence on cardiac physiology. Here, we probed the details and relevance of the GIRK channel in mouse ventricle. mRNAs for the atrial GIRK channel subunits (GIRK1, GIRK4), M2 muscarinic receptor (M2R), and RGS6, a negative regulator of atrial GIRK-dependent signaling, were detected in mouse ventricle at relatively low levels. The cholinergic agonist carbachol (CCh) activated small GIRK currents in adult wild-type ventricular myocytes that exhibited relatively slow kinetics and low CCh sensitivity; these currents were absent in ventricular myocytes from Girk1-/- or Girk4-/- mice. While loss of GIRK channels attenuated the CCh-induced shortening of action potential duration and suppression of ventricular myocyte excitability, selective ablation of GIRK channels in ventricle had no effect on heart rate, heart rate variability, or electrocardiogram parameters at baseline or after CCh injection. Additionally, loss of ventricular GIRK channels did not impact susceptibility to ventricular arrhythmias. These data suggest that the mouse ventricular GIRK channel is a GIRK1/GIRK4 heteromer, and show that while it contributes to the cholinergic suppression of ventricular myocyte excitability, this influence does not substantially impact cardiac physiology or ventricular arrhythmogenesis in the mouse.
Collapse
|
35
|
Tanner MR, Beeton C. Differences in ion channel phenotype and function between humans and animal models. FRONT BIOSCI-LANDMRK 2018; 23:43-64. [PMID: 28930537 PMCID: PMC5626566 DOI: 10.2741/4581] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion channels play crucial roles in regulating a broad range of physiological processes. They form a very large family of transmembrane proteins. Their diversity results from not only a large number of different genes encoding for ion channel subunits but also the ability of subunits to assemble into homo- or heteromultimers, the existence of splice variants, and the expression of different regulatory subunits. These characteristics and the existence of very selective modulators make ion channels very attractive targets for therapy in a wide variety of pathologies. Some ion channels are already being targeted in the clinic while many more are being evaluated as novel drug targets in both clinical and preclinical studies. Advancing ion channel modulators from the bench to the clinic requires their assessment for safety and efficacy in animal models. While extrapolating results from one species to another is tempting, doing such without careful evaluation of the ion channels in different species presents a risk as the translation is not always straightforward. Here, we discuss differences between species in terms of ion channels expressed in selected tissues, differing roles of ion channels in some cell types, variable response to pharmacological agents, and human channelopathies that cannot fully be replicated in animal models.
Collapse
Affiliation(s)
- Mark R Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston TX 77030, and Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston TX 77030
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston TX 77030, and Center for Drug Discovery and Biology of Inflammation Center, Baylor College of Medicine, Houston TX 77030,
| |
Collapse
|
36
|
The effects of ageing and adrenergic challenge on electrocardiographic phenotypes in a murine model of long QT syndrome type 3. Sci Rep 2017; 7:11070. [PMID: 28894151 PMCID: PMC5593918 DOI: 10.1038/s41598-017-11210-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/21/2017] [Indexed: 01/19/2023] Open
Abstract
Long QT Syndrome 3 (LQTS3) arises from gain-of-function Nav1.5 mutations, prolonging action potential repolarisation and electrocardiographic (ECG) QT interval, associated with increased age-dependent risk for major arrhythmic events, and paradoxical responses to β-adrenergic agents. We investigated for independent and interacting effects of age and Scn5a+/ΔKPQ genotype in anaesthetised mice modelling LQTS3 on ECG phenotypes before and following β-agonist challenge, and upon fibrotic change. Prolonged ventricular recovery was independently associated with Scn5a+/ΔKPQ and age. Ventricular activation was prolonged in old Scn5a+/ΔKPQ mice (p = 0.03). We associated Scn5a+/ΔKPQ with increased atrial and ventricular fibrosis (both: p < 0.001). Ventricles also showed increased fibrosis with age (p < 0.001). Age and Scn5a+/ΔKPQ interacted in increasing incidences of repolarisation alternans (p = 0.02). Dobutamine increased ventricular rate (p < 0.001) and reduced both atrioventricular conduction (PR segment-p = 0.02; PR interval-p = 0.02) and incidences of repolarisation alternans (p < 0.001) in all mice. However, in Scn5a+/ΔKPQ mice, dobutamine delayed the changes in ventricular repolarisation following corresponding increases in ventricular rate. The present findings implicate interactions between age and Scn5a+/ΔKPQ in prolonging ventricular activation, correlating them with fibrotic change for the first time, adding activation abnormalities to established recovery abnormalities in LQTS3. These findings, together with dynamic electrophysiological responses to β-adrenergic challenge, have therapeutic implications for ageing LQTS patients.
Collapse
|
37
|
Naumenko N, Huusko J, Tuomainen T, Koivumäki JT, Merentie M, Gurzeler E, Alitalo K, Kivelä R, Ylä-Herttuala S, Tavi P. Vascular Endothelial Growth Factor-B Induces a Distinct Electrophysiological Phenotype in Mouse Heart. Front Physiol 2017; 8:373. [PMID: 28620319 PMCID: PMC5450225 DOI: 10.3389/fphys.2017.00373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/18/2017] [Indexed: 12/22/2022] Open
Abstract
Vascular endothelial growth factor B (VEGF-B) is a potent mediator of vascular, metabolic, growth, and stress responses in the heart, but the effects on cardiac muscle and cardiomyocyte function are not known. The purpose of this study was to assess the effects of VEGF-B on the energy metabolism, contractile, and electrophysiological properties of mouse cardiac muscle and cardiac muscle cells. In vivo and ex vivo analysis of cardiac-specific VEGF-B TG mice indicated that the contractile function of the TG hearts was normal. Neither the oxidative metabolism of isolated TG cardiomyocytes nor their energy substrate preference showed any difference to WT cardiomyocytes. Similarly, myocyte Ca2+ signaling showed only minor changes compared to WT myocytes. However, VEGF-B overexpression induced a distinct electrophysiological phenotype characterized by ECG changes such as an increase in QRSp time and decreases in S and R amplitudes. At the level of isolated TG cardiomyocytes, these changes were accompanied with decreased action potential upstroke velocity and increased duration (APD60–70). These changes were partly caused by downregulation of sodium current (INa) due to reduced expression of Nav1.5. Furthermore, TG myocytes had alterations in voltage-gated K+ currents, namely decreased density of transient outward current (Ito) and total K+ current (Ipeak). At the level of transcription, these were accompanied by downregulation of Kv channel-interacting protein 2 (Kcnip2), a known modulatory subunit for Kv4.2/3 channel. Cardiac VEGF-B overexpression induces a distinct electrophysiological phenotype including remodeling of cardiomyocyte ion currents, which in turn induce changes in action potential waveform and ECG.
Collapse
Affiliation(s)
- Nikolay Naumenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| | - Jenni Huusko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| | - Tomi Tuomainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| | - Jussi T Koivumäki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| | - Mari Merentie
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| | - Erika Gurzeler
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Biomedicum HelsinkiHelsinki, Finland
| | - Riikka Kivelä
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Biomedicum HelsinkiHelsinki, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland.,Heart Center and Gene Therapy Unit, Kuopio University HospitalKuopio, Finland
| | - Pasi Tavi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| |
Collapse
|
38
|
Hormones and sex differences: changes in cardiac electrophysiology with pregnancy. Clin Sci (Lond) 2017; 130:747-59. [PMID: 27128800 DOI: 10.1042/cs20150710] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/01/2016] [Indexed: 11/17/2022]
Abstract
Disruption of cardiac electrical activity resulting in palpitations and syncope is often an early symptom of pregnancy. Pregnancy is a time of dramatic and dynamic physiological and hormonal changes during which numerous demands are placed on the heart. These changes result in electrical remodelling which can be detected as changes in the electrocardiogram (ECG). This gestational remodelling is a very under-researched area. There are no systematic large studies powered to determine changes in the ECG from pre-pregnancy, through gestation, and into the postpartum period. The large variability between patients and the dynamic nature of pregnancy hampers interpretation of smaller studies, but some facts are consistent. Gestational cardiac hypertrophy and a physical shift of the heart contribute to changes in the ECG. There are also electrical changes such as an increased heart rate and lengthening of the QT interval. There is an increased susceptibility to arrhythmias during pregnancy and the postpartum period. Some changes in the ECG are clearly the result of changes in ion channel expression and behaviour, but little is known about the ionic basis for this electrical remodelling. Most information comes from animal models, and implicates changes in the delayed-rectifier channels. However, it is likely that there are additional roles for sodium channels as well as changes in calcium homoeostasis. The changes in the electrical profile of the heart during pregnancy and the postpartum period have clear implications for the safety of pregnant women, but the field remains relatively undeveloped.
Collapse
|
39
|
Kithcart A, MacRae CA. Using Zebrafish for High-Throughput Screening of Novel Cardiovascular Drugs. JACC Basic Transl Sci 2017; 2:1-12. [PMID: 30167552 PMCID: PMC6113531 DOI: 10.1016/j.jacbts.2017.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases remain a major challenge for modern drug discovery. The diseases are chronic, complex, and the result of sophisticated interactions between genetics and environment involving multiple cell types and a host of systemic factors. The clinical events are often abrupt, and the diseases may be asymptomatic until a highly morbid event. Target selection is often based on limited information, and though highly specific agents are often identified in screening, their final efficacy is often compromised by unanticipated systemic responses, a narrow therapeutic index, or substantial toxicities. Our understanding of complexity of cardiovascular disease has grown dramatically over the past 2 decades, and the range of potential disease mechanisms now includes pathways previously thought only tangentially involved in cardiac or vascular disease. Despite these insights, the majority of active cardiovascular agents derive from a remarkably small number of classes of agents and target a very limited number of pathways. These agents have often been used initially for particular indications and then discovered serendipitously to have efficacy in other cardiac disorders or in a manner unrelated to their original mechanism of action. In this review, the rationale for in vivo screening is described, and the utility of the zebrafish for this approach and for complementary work in functional genomics is discussed. Current limitations of the model in this setting and the need for careful validation in new disease areas are also described. An overview is provided of the complex mechanisms underlying most clinical cardiovascular diseases, and insight is offered into the limits of single downstream pathways as drug targets. The zebrafish is introduced as a model organism, in particular for cardiovascular biology. Potential approaches to overcoming the hurdles to drug discovery in the face of complex biology are discussed, including in vivo screening of zebrafish genetic disease models.
Collapse
Affiliation(s)
- Aaron Kithcart
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Harvard Stem Cell Institute, Boston, Massachusetts
| | - Calum A MacRae
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Harvard Stem Cell Institute, Boston, Massachusetts
| |
Collapse
|
40
|
Sedaghat G, Gardner RT, Kabir MM, Ghafoori E, Habecker BA, Tereshchenko LG. Correlation between the high-frequency content of the QRS on murine surface electrocardiogram and the sympathetic nerves density in left ventricle after myocardial infarction: Experimental study. J Electrocardiol 2017; 50:323-331. [PMID: 28190561 DOI: 10.1016/j.jelectrocard.2017.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Indexed: 10/20/2022]
Abstract
Denervated post-infarct scar is arrhythmogenic. Our aim was to compare QRS frequency content in denervated and innervated left ventricular (LV) scar. In-vivo single lead ECG telemetry device was implanted in 17 heterozygous PTPσ (HET) and 7 lacking PTPσ (KO) transgenic mice. Myocardial infarction (MI) with reperfusion and sham surgery was performed. HET mice developed a denervated scar, whereas KO mice developed innervated scar. The power spectral density was used to assess the QRS frequency content. Denervated as compared to innervated post-MI scar was characterized by the higher relative contribution of 300-500 Hz (14 ± 1 vs. 9 ± 1%; P = 0.001) but reduced relative contribution of 200-300 Hz (86 ± 1 vs. 91 ± 1%; P = 0.001). Norepinephrine concentration in peri-infarct zone correlated with both 1-200 Hz (r = 0.75; P = 0.03) and 200-500 Hz QRS power (r = 0.73; P = 0.04). Sympathetic fiber density within the infarct correlated with 200-300/200-500 Hz QRS power ratio (r = 0.56; P = 0.005). Intracellular sigma peptide injections in post-MI HET mice restored the QRS power.
Collapse
Affiliation(s)
- Golriz Sedaghat
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA; Portland State University, Portland, OR, USA
| | - Ryan T Gardner
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| | - Muammar M Kabir
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Elyar Ghafoori
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA; University of Utah, Salt Lake City, UT, USA
| | - Beth A Habecker
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| | - Larisa G Tereshchenko
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
41
|
|
42
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
43
|
Sala L, Yu Z, Ward-van Oostwaard D, van Veldhoven JP, Moretti A, Laugwitz KL, Mummery CL, IJzerman AP, Bellin M. A new hERG allosteric modulator rescues genetic and drug-induced long-QT syndrome phenotypes in cardiomyocytes from isogenic pairs of patient induced pluripotent stem cells. EMBO Mol Med 2016; 8:1065-81. [PMID: 27470144 PMCID: PMC5009811 DOI: 10.15252/emmm.201606260] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Long-QT syndrome (LQTS) is an arrhythmogenic disorder characterised by prolongation of the QT interval in the electrocardiogram, which can lead to sudden cardiac death. Pharmacological treatments are far from optimal for congenital forms of LQTS, while the acquired form, often triggered by drugs that (sometimes inadvertently) target the cardiac hERG channel, is still a challenge in drug development because of cardiotoxicity. Current experimental models in vitro fall short in predicting proarrhythmic properties of new drugs in humans. Here, we leveraged a series of isogenically matched, diseased and genetically engineered, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from patients to test a novel hERG allosteric modulator for treating congenital LQTS, drug-induced LQTS or a combination of the two. By slowing IK r deactivation and positively shifting IK r inactivation, the small molecule LUF7346 effectively rescued all of these conditions, demonstrating in a human system that allosteric modulation of hERG may be useful as an approach to treat inherited and drug-induced LQTS Furthermore, our study provides experimental support of the value of isogenic pairs of patient hiPSC-CMs as platforms for testing drug sensitivities and performing safety pharmacology.
Collapse
Affiliation(s)
- Luca Sala
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Zhiyi Yu
- Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Jacobus Pd van Veldhoven
- Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Alessandra Moretti
- I. Department of Medicine (Cardiology), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Karl-Ludwig Laugwitz
- I. Department of Medicine (Cardiology), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
44
|
Choy L, Yeo JM, Tse V, Chan SP, Tse G. Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models. IJC HEART & VASCULATURE 2016; 12:1-10. [PMID: 27766308 PMCID: PMC5064289 DOI: 10.1016/j.ijcha.2016.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/02/2016] [Indexed: 12/19/2022]
Abstract
The mouse is the second mammalian species, after the human, in which substantial amount of the genomic information has been analyzed. With advances in transgenic technology, mutagenesis is now much easier to carry out in mice. Consequently, an increasing number of transgenic mouse systems have been generated for the study of cardiac arrhythmias in ion channelopathies and cardiomyopathies. Mouse hearts are also amenable to physical manipulation such as coronary artery ligation and transverse aortic constriction to induce heart failure, radiofrequency ablation of the AV node to model complete AV block and even implantation of a miniature pacemaker to induce cardiac dyssynchrony. Last but not least, pharmacological models, despite being simplistic, have enabled us to understand the physiological mechanisms of arrhythmias and evaluate the anti-arrhythmic properties of experimental agents, such as gap junction modulators, that may be exert therapeutic effects in other cardiac diseases. In this article, we examine these in turn, demonstrating that primary inherited arrhythmic syndromes are now recognized to be more complex than abnormality in a particular ion channel, involving alterations in gene expression and structural remodelling. Conversely, in cardiomyopathies and heart failure, mutations in ion channels and proteins have been identified as underlying causes, and electrophysiological remodelling are recognized pathological features. Transgenic techniques causing mutagenesis in mice are extremely powerful in dissecting the relative contributions of different genes play in producing disease phenotypes. Mouse models can serve as useful systems in which to explore how protein defects contribute to arrhythmias and direct future therapy.
Collapse
Affiliation(s)
- Lois Choy
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Jie Ming Yeo
- School of Medicine, Imperial College London, SW7 2AZ, UK
| | - Vivian Tse
- Department of Physiology, McGill University, Canada
| | - Shing Po Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Gary Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| |
Collapse
|
45
|
Major P, Baczkó I, Hiripi L, Odening KE, Juhász V, Kohajda Z, Horváth A, Seprényi G, Kovács M, Virág L, Jost N, Prorok J, Ördög B, Doleschall Z, Nattel S, Varró A, Bősze Z. A novel transgenic rabbit model with reduced repolarization reserve: long QT syndrome caused by a dominant-negative mutation of the KCNE1 gene. Br J Pharmacol 2016; 173:2046-61. [PMID: 27076034 DOI: 10.1111/bph.13500] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 03/25/2016] [Accepted: 04/01/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND PURPOSE The reliable assessment of proarrhythmic risk of compounds under development remains an elusive goal. Current safety guidelines focus on the effects of blocking the KCNH2/HERG ion channel-in tissues and animals with intact repolarization. Novel models with better predictive value are needed that more closely reflect the conditions in patients with cardiac remodelling and reduced repolarization reserve. EXPERIMENTAL APPROACH We have developed a model for the long QT syndrome type-5 in rabbits (LQT5 ) with cardiac-specific overexpression of a mutant (G52R) KCNE1 β-subunit of the channel that carries the slow delayed-rectifier K(+) -current (IKs ). ECG parameters, including short-term variability of the QT interval (STVQT ), a biomarker for proarrhythmic risk, and arrhythmia development were recorded. In vivo, arrhythmia susceptibility was evaluated by i.v. administration of the IKr blocker dofetilide. K(+) currents were measured with the patch-clamp technique. KEY RESULTS Patch-clamp studies in ventricular myocytes isolated from LQT5 rabbits revealed accelerated IKs and IKr deactivation kinetics. At baseline, LQT5 animals exhibited slightly but significantly prolonged heart-rate corrected QT index (QTi) and increased STVQT . Dofetilide provoked Torsade-de-Pointes arrhythmia in a greater proportion of LQT5 rabbits, paralleled by a further increase in STVQT . CONCLUSION AND IMPLICATIONS We have created a novel transgenic LQT5 rabbit model with increased susceptibility to drug-induced arrhythmias that may represent a useful model for testing proarrhythmic potential and for investigations of the mechanisms underlying arrhythmias and sudden cardiac death due to repolarization disturbances.
Collapse
Affiliation(s)
- Péter Major
- Rabbit Genome and Biomodel Group, NARIC - Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - István Baczkó
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - László Hiripi
- Rabbit Genome and Biomodel Group, NARIC - Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Freiburg, Germany
| | - Viktor Juhász
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Zsófia Kohajda
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - András Horváth
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - György Seprényi
- Department of Biology, University of Szeged, Szeged, Hungary
| | - Mária Kovács
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - László Virág
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Norbert Jost
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary.,MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - János Prorok
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Balázs Ördög
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Zoltán Doleschall
- Department of Pathogenetics, National Institute of Oncology, Budapest, Hungary
| | - Stanley Nattel
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada.,Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - András Varró
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary.,MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsuzsanna Bősze
- Rabbit Genome and Biomodel Group, NARIC - Agricultural Biotechnology Institute, Gödöllő, Hungary
| |
Collapse
|
46
|
Lang CN, Koren G, Odening KE. Transgenic rabbit models to investigate the cardiac ion channel disease long QT syndrome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:142-56. [PMID: 27210307 DOI: 10.1016/j.pbiomolbio.2016.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/01/2016] [Indexed: 12/13/2022]
Abstract
Long QT syndrome (LQTS) is a rare inherited channelopathy caused mainly by different mutations in genes encoding for cardiac K(+) or Na(+) channels, but can also be caused by commonly used ion-channel-blocking and QT-prolonging drugs, thus affecting a much larger population. To develop novel diagnostic and therapeutic strategies to improve the clinical management of these patients, a thorough understanding of the pathophysiological mechanisms of arrhythmogenesis and potential pharmacological targets is needed. Drug-induced and genetic animal models of various species have been generated and have been instrumental for identifying pro-arrhythmic triggers and important characteristics of the arrhythmogenic substrate in LQTS. However, due to species differences in features of cardiac electrical function, these different models do not entirely recapitulate all aspects of the human disease. In this review, we summarize advantages and shortcomings of different drug-induced and genetically mediated LQTS animal models - focusing on mouse and rabbit models since these represent the most commonly used small animal models for LQTS that can be subjected to genetic manipulation. In particular, we highlight the different aspects of arrhythmogenic mechanisms, pro-arrhythmic triggering factors, anti-arrhythmic agents, and electro-mechanical dysfunction investigated in transgenic LQTS rabbit models and their translational application for the clinical management of LQTS patients in detail. Transgenic LQTS rabbits have been instrumental to increase our understanding of the role of spatial and temporal dispersion of repolarization to provide an arrhythmogenic substrate, genotype-differences in the mechanisms for early afterdepolarization formation and arrhythmia maintenance, mechanisms of hormonal modification of arrhythmogenesis and regional heterogeneities in electro-mechanical dysfunction in LQTS.
Collapse
Affiliation(s)
- C N Lang
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - G Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - K E Odening
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
47
|
Baczkó I, Jost N, Virág L, Bősze Z, Varró A. Rabbit models as tools for preclinical cardiac electrophysiological safety testing: Importance of repolarization reserve. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:157-68. [PMID: 27208697 DOI: 10.1016/j.pbiomolbio.2016.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/01/2016] [Indexed: 01/26/2023]
Abstract
It is essential to more reliably assess the pro-arrhythmic liability of compounds in development. Current guidelines for pre-clinical and clinical testing of drug candidates advocate the use of healthy animals/tissues and healthy individuals and focus on the test compound's ability to block the hERG current and prolong cardiac ventricular repolarization. Also, pre-clinical safety tests utilize several species commonly used in cardiac electrophysiological studies. In this review, important species differences in cardiac ventricular repolarizing ion currents are considered, followed by the discussion on electrical remodeling associated with chronic cardiovascular diseases that leads to altered ion channel and transporter expression and densities in pathological settings. We argue that the choice of species strongly influences experimental outcome and extrapolation of results to human clinical settings. We suggest that based on cardiac cellular electrophysiology, the rabbit is a useful species for pharmacological pro-arrhythmic investigations. In addition to healthy animals and tissues, the use of animal models (e.g. those with impaired repolarization reserve) is suggested that more closely resemble subsets of patients exhibiting increased vulnerability towards the development of ventricular arrhythmias and sudden cardiac death.
Collapse
Affiliation(s)
- István Baczkó
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Dóm tér 12., 6720 Szeged, Hungary.
| | - Norbert Jost
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Dóm tér 12., 6720 Szeged, Hungary; MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Dóm tér 12., 6720 Szeged, Hungary
| | - László Virág
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Dóm tér 12., 6720 Szeged, Hungary
| | - Zsuzsanna Bősze
- Rabbit Genome and Biomodel Group, NARIC-Agricultural Biotechnology Institute, 2100 Gödöllő, Hungary
| | - András Varró
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Dóm tér 12., 6720 Szeged, Hungary; MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Dóm tér 12., 6720 Szeged, Hungary
| |
Collapse
|
48
|
Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Afford New Opportunities in Inherited Cardiovascular Disease Modeling. Cardiol Res Pract 2016; 2016:3582380. [PMID: 27110425 PMCID: PMC4826691 DOI: 10.1155/2016/3582380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/03/2016] [Indexed: 01/09/2023] Open
Abstract
Fundamental studies of molecular and cellular mechanisms of cardiovascular disease pathogenesis are required to create more effective and safer methods of their therapy. The studies can be carried out only when model systems that fully recapitulate pathological phenotype seen in patients are used. Application of laboratory animals for cardiovascular disease modeling is limited because of physiological differences with humans. Since discovery of induced pluripotency generating induced pluripotent stem cells has become a breakthrough technology in human disease modeling. In this review, we discuss a progress that has been made in modeling inherited arrhythmias and cardiomyopathies, studying molecular mechanisms of the diseases, and searching for and testing drug compounds using patient-specific induced pluripotent stem cell-derived cardiomyocytes.
Collapse
|
49
|
Denning C, Borgdorff V, Crutchley J, Firth KSA, George V, Kalra S, Kondrashov A, Hoang MD, Mosqueira D, Patel A, Prodanov L, Rajamohan D, Skarnes WC, Smith JGW, Young LE. Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1728-48. [PMID: 26524115 PMCID: PMC5221745 DOI: 10.1016/j.bbamcr.2015.10.014] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/12/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022]
Abstract
Cardiomyocytes from human pluripotent stem cells (hPSCs-CMs) could revolutionise biomedicine. Global burden of heart failure will soon reach USD $90bn, while unexpected cardiotoxicity underlies 28% of drug withdrawals. Advances in hPSC isolation, Cas9/CRISPR genome engineering and hPSC-CM differentiation have improved patient care, progressed drugs to clinic and opened a new era in safety pharmacology. Nevertheless, predictive cardiotoxicity using hPSC-CMs contrasts from failure to almost total success. Since this likely relates to cell immaturity, efforts are underway to use biochemical and biophysical cues to improve many of the ~30 structural and functional properties of hPSC-CMs towards those seen in adult CMs. Other developments needed for widespread hPSC-CM utility include subtype specification, cost reduction of large scale differentiation and elimination of the phenotyping bottleneck. This review will consider these factors in the evolution of hPSC-CM technologies, as well as their integration into high content industrial platforms that assess structure, mitochondrial function, electrophysiology, calcium transients and contractility. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Chris Denning
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom.
| | - Viola Borgdorff
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - James Crutchley
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Karl S A Firth
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Vinoj George
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Spandan Kalra
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Alexander Kondrashov
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Minh Duc Hoang
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Diogo Mosqueira
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Asha Patel
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Ljupcho Prodanov
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Divya Rajamohan
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - William C Skarnes
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - James G W Smith
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Lorraine E Young
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
50
|
McCarroll CS, Rossor CL, Morrison LR, Morrison LJ, Loughrey CM. A Pre-clinical Animal Model of Trypanosoma brucei Infection Demonstrating Cardiac Dysfunction. PLoS Negl Trop Dis 2015; 9:e0003811. [PMID: 26023927 PMCID: PMC4449042 DOI: 10.1371/journal.pntd.0003811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/04/2015] [Indexed: 11/19/2022] Open
Abstract
African trypanosomiasis (AT), caused by Trypanosoma brucei species, results in both neurological and cardiac dysfunction and can be fatal if untreated. Research on the pathogenesis and treatment of the disease has centred to date on the characteristic neurological symptoms, whereas cardiac dysfunction (e.g. ventricular arrhythmias) in AT remains largely unstudied. Animal models of AT demonstrating cardiac dysfunction similar to that described in field cases of AT are critically required to transform our understanding of AT-induced cardiac pathophysiology and identify future treatment strategies. We have previously shown that T. brucei can interact with heart muscle cells (cardiomyocytes) to induce ventricular arrhythmias in ex vivo adult rat hearts. However, it is unknown whether the arrhythmias observed ex vivo are also present during in vivo infection in experimental animal models. Here we show for the first time the characterisation of ventricular arrhythmias in vivo in two animal models of AT infection using electrocardiographic (ECG) monitoring. The first model utilised a commonly used monomorphic laboratory strain, Trypanosoma brucei brucei Lister 427, whilst the second model used a pleomorphic laboratory strain, T. b. brucei TREU 927, which demonstrates a similar chronic infection profile to clinical cases. The frequency of ventricular arrhythmias and heart rate (HR) was significantly increased at the endpoint of infection in the TREU 927 infection model, but not in the Lister 427 infection model. At the end of infection, hearts from both models were isolated and Langendorff perfused ex vivo with increasing concentrations of the β-adrenergic agonist isoproterenol (ISO). Interestingly, the increased frequency of arrhythmias observed in vivo in the TREU 927 infection model was lost upon isolation of the heart ex vivo, but re-emerged with the addition of ISO. Our results demonstrate that TREU 927 infection modifies the substrate of the myocardium in such a way as to increase the propensity for ventricular arrhythmias in response to a circulating factor in vivo or β-adrenergic stimulation ex vivo. The TREU 927 infection model provides a new opportunity to accelerate our understanding of AT-related cardiac pathophysiology and importantly has the required sensitivity to monitor adverse cardiac-related electrical dysfunction when testing new therapeutic treatments for AT.
Collapse
Affiliation(s)
- Charlotte S. McCarroll
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Charlotte L. Rossor
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Linda R. Morrison
- Easter Bush Pathology, Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Campus, University of Edinburgh, Midlothian, United Kingdom
| | - Liam J. Morrison
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Christopher M. Loughrey
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|