1
|
Subramanian A, Nayak PK, Schilling TF. A Cold-Active Protease Tissue Dissociation Protocol for the Preservation of the Tendon Fibroblast Transcriptome. Bio Protoc 2025; 15:e5293. [PMID: 40364987 PMCID: PMC12067300 DOI: 10.21769/bioprotoc.5293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 05/15/2025] Open
Abstract
Traditional tissue dissociation methods for bulk- and single-cell sequencing use various protease and/or collagenase combinations at temperatures ranging from 28 to 37 °C, which cause transcriptional cell stress that may alter data interpretation. Such artifacts can be reduced by dissociating cells in cold-active proteases, but few studies have shown that this improves cell-type specific transcription, particularly in tissues hypersensitive to mechanical integrity and extracellular matrix (ECM) interactions. To address this, we have dissociated zebrafish tendons and ligaments in subtilisin A at 4 °C and compared the results with 37 °C collagenase dissociation using bulk RNA sequencing. We find that high-temperature collagenase dissociation causes general cell stress in tendon fibroblasts (tenocytes) as reported in previous studies with other cell types, but also that high temperature specifically downregulates hallmark genes involved in tenocyte specification and ECM production in vivo. Our results suggest that cold-protease dissociation reduces transcriptional artifacts and increases the robustness of RNA-sequencing datasets such that they better reflect native in vivo tissue microenvironments. Key features • Utilizing a cold-active protease derived from the Himalayan soil bacterium B. licheniformis for tissue dissociation preserves cell transcriptomes, increasing data quality of downstream sequencing experiments. • This method is reproducible and requires no extra equipment for tissue agitation. • Tenocytes isolated using this method show lower stress and better preserved native expression of key tenocyte markers and ECM genes than with traditional warm-dissociation methods. • This protocol is ideal for cell types that are particularly sensitive to microenvironment signals or are embedded in extracellular matrix.
Collapse
Affiliation(s)
- Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Pavan K. Nayak
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| |
Collapse
|
2
|
Ma J, Xu X, Zhang Y, Guo X, Sun Y, Wang X, Zhao L, Shen Q. Pulsed Radiofrequency Alleviates Acute Soft Tissue Injury in Rats by Regulating the TNF/mTOR Signaling Pathway. Photobiomodul Photomed Laser Surg 2025; 43:198-206. [PMID: 40197902 DOI: 10.1089/photob.2024.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Objective: Acute traumatic muscle injuries are common and result in substantial loss of time and risk of recurrence. Pulsed radiofrequency (PR) is a strategy that has been gradually adopted for treating muscle injuries in clinical practice. However, the molecular mechanism underlying its therapeutic effects is currently unclear. Materials and Methods: In this study, we screened the gene expression profiles of rats with muscle contusion obtained from the online dataset GSE162565. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the differentially expressed genes were conducted. Further, we established an acute soft tissue injury (ASTI) rat model and applied PR treatment. Muscle swelling rate analysis, malondialdehyde (MAD) and superoxide dismutase (SOD) content, inflammatory cytokine release, and hematoxylin and eosin staining of the gastrocnemius muscles of ASTI and ASTI + PR rats were performed, and the results were compared with those of control rats. Further, we evaluated the gene expression of Ccl1, interleukin-6 (IL-6), nuclear factor-kappa-B-inhibitor alpha (Nfkbia), Akt1, Jun, Fos, and Caps3 in the model and PR-treated groups, all of which are key genes in the tumor necrosis factor (TNF)/mechanistic target of rapamycin (mTOR) signaling pathway according to the KEGG analysis. Results: The results revealed that 52 genes involved in the TNF/mTOR signaling pathway were closely associated with ASTI progression in rats. PR treatment significantly reduced the malondialdehyde content but increased the SOD content in ASTI model rat muscles, efficiently alleviated muscle contusions and reduced TNF-α and IL-1β production. Moreover, PR treatment significantly decreased Ccl1, IL-6, and Nfkbia expression but increased Akt1, Jun, Fos, and Caps3 levels in ASTI models. These data indicate that PR alleviated ASTI in rats by mediating redox homeostasis and the inflammatory response, which might be modulated by the TNF/mTOR signaling pathway. Conclusions: Thus, this study contributes to the understanding of ASTI progression and provides more substantial information about the genetic mechanism underlying the therapeutic effects of PR on ASTI.
Collapse
Affiliation(s)
- Jianyun Ma
- Department of Pain Treatment, The People's Hospital of Suzhou New District, Suzhou City, China
| | - Xue Xu
- Medical Research Center, The People's Hospital of Suzhou New District, Suzhou City, China
| | - Ying Zhang
- Department of Pain Treatment, The People's Hospital of Suzhou New District, Suzhou City, China
| | - Xiaoli Guo
- Department of Pain Treatment, The People's Hospital of Suzhou New District, Suzhou City, China
| | - Yunzhong Sun
- Department of Pain Treatment, The People's Hospital of Suzhou New District, Suzhou City, China
| | - Xiaochuan Wang
- Department of Pain Treatment, The People's Hospital of Suzhou New District, Suzhou City, China
| | - Lei Zhao
- Department of Pain Treatment, The People's Hospital of Suzhou New District, Suzhou City, China
| | - Qiming Shen
- Department of Pain Treatment, The People's Hospital of Suzhou New District, Suzhou City, China
| |
Collapse
|
3
|
Kahn RE, Zhu P, Roy I, Peek C, Hawley JA, Dayanidhi S. Ablation of satellite cell-specific clock gene, Bmal1, alters force production, muscle damage, and repair following contractile-induced injury. FASEB J 2025; 39:e70325. [PMID: 39812604 PMCID: PMC11734708 DOI: 10.1096/fj.202402145rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Following injury, skeletal muscle undergoes repair via satellite cell (SC)-mediated myogenic progression. In SCs, the circadian molecular clock gene, Bmal1, is necessary for appropriate myogenic progression and repair with evidence that muscle molecular clocks can also affect force production. Utilizing a mouse model allowing for inducible depletion of Bmal1 within SCs, we determined contractile function, SC myogenic progression and muscle damage and repair following eccentric contractile-induced injury. At baseline, SC-Bmal1iKO animals exhibited a ~20-25% reduction in normalized force production (ex vivo and in vivo) versus control SC-Bmal1Cntrl and SC-Bmal1iKO untreated littermates (p < .05). Following contractile injury, SC-Bmal1iKO animals displayed reduced muscle damage and subsequent repair post-injury (Dystrophinnegative fibers 24 h: SC-Bmal1Cntrl 199 ± 41; SC-Bmal1iKO 36 ± 13, p < .05) (eMHC+ fibers 7 day: SC-Bmal1Cntrl 217.8 ± 115.5; SC-Bmal1iKO 27.8 ± 17.3; Centralized nuclei 7 day: SC-Bmal1Cntrl 160.7 ± 70.5; SC-Bmal1iKO 46.2 ± 15.7). SC-Bmal1iKO animals also showed reduced neutrophil infiltration, consistent with less injury (Neutrophil content 24 h: SC-Bmal1Cntrl 2.4 ± 0.4; SC-Bmal1iKO 0.4 ± 0.2, % area fraction, p < .05). SC-Bmal1iKO animals had greater SC activation/proliferation at an earlier timepoint (p < .05) and an unexplained increase in activation 7 days post injury. Collectively, these data suggest SC-Bmal1 plays a regulatory role in force production, influencing the magnitude of muscle damage/repair, with an altered SC myogenic progression following contractile-induced muscle injury.
Collapse
Affiliation(s)
- Ryan E. Kahn
- Exercise and Nutrition Research Program, The Mary MacKillop Institute for Health ResearchAustralian Catholic UniversityMelbourneAustralia
- Shirley Ryan AbilityLabChicagoIllinoisUSA
| | - Pei Zhu
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Ishan Roy
- Shirley Ryan AbilityLabChicagoIllinoisUSA
- Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Clara Peek
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - John A. Hawley
- Exercise and Nutrition Research Program, The Mary MacKillop Institute for Health ResearchAustralian Catholic UniversityMelbourneAustralia
- Department of Sport and Exercise SciencesManchester Metropolitan University Institute of SportManchester
| | - Sudarshan Dayanidhi
- Shirley Ryan AbilityLabChicagoIllinoisUSA
- Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
4
|
Byun WS, Lee J, Baek JH. Beyond the bulk: overview and novel insights into the dynamics of muscle satellite cells during muscle regeneration. Inflamm Regen 2024; 44:39. [PMID: 39327631 PMCID: PMC11426090 DOI: 10.1186/s41232-024-00354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Skeletal muscle possesses remarkable regenerative capabilities, fully recovering within a month following severe acute damage. Central to this process are muscle satellite cells (MuSCs), a resident population of somatic stem cells capable of self-renewal and differentiation. Despite the highly predictable course of muscle regeneration, evaluating this process has been challenging due to the heterogeneous nature of myogenic precursors and the limited insight provided by traditional markers with overlapping expression patterns. Notably, recent advancements in single-cell technologies, such as single-cell (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), have revolutionized muscle research. These approaches allow for comprehensive profiling of individual cells, unveiling dynamic heterogeneity among myogenic precursors and their contributions to regeneration. Through single-cell transcriptome analyses, researchers gain valuable insights into cellular diversity and functional dynamics of MuSCs post-injury. This review aims to consolidate classical and new insights into the heterogeneity of myogenic precursors, including the latest discoveries from novel single-cell technologies.
Collapse
Affiliation(s)
- Woo Seok Byun
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jinu Lee
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jea-Hyun Baek
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea.
| |
Collapse
|
5
|
Liu X, Wang X, Xu T, Liu X, Li L. Effects of Different Delivery Modes on the Expression of Vesicle Transport-Related Genes in Female Pelvic Floor Muscle Repair After Injury. Appl Biochem Biotechnol 2024; 196:667-678. [PMID: 37171760 DOI: 10.1007/s12010-023-04510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
A sudden rise in intra-abdominal pressure that causes the pressure in the bladder to rise during physical movement and/or activity, such as coughing, sneezing, laughing, running, or weightlifting, is known as stress urinary incontinence. This condition causes an uncontrollable overflow of urine. The study's goal was to determine whether effector molecules, specifically ADP ribosylation factor GTPase activated protein 3, might play a part in the female pelvic floor muscle's ability to heal after suffering damage during vaginal delivery. Pelvic floor muscle samples were taken from women who had at least one vaginal delivery and were enrolled in either the IU group (n = 45; issue of stress urinary incontinence) or the NL group (n = 85; no issue of stress urinary incontinence) depending on whether they had a problem with stress urinary incontinence. Vesicle transport-related genes in female pelvic floor muscle injury repair were discovered using Gene Expression Omnibus. For gene analysis and screening, RT-qPCR was employed. On the first day following injury, the expression level of ARFGAP3 mRNA increased by 2.8 times (p 0.05) and by 5 times (p 0.01) on the third day. On the first day following damage, STMN1 mRNA expression rose by 0.3 times (p 0.05). On the first day following injury, the expression level of THBS2 mRNA increased by 1.6 times (p 0.01). On the third day following the injury, the expression level of PLXNB2 mRNA increased by 1.2 times (p 0. 01), and on the fifth day following the injury, it increased by 2.5 times (p 0. 01). After pelvic floor muscle damage, the mRNA expression levels of the CSF1R, ANXA4, and EMR1 genes dropped. Between those with and without pelvic floor muscle damage, there was no statistically significant difference in the expression levels of LGARLS3, KDELR3, and KIF20A mRNA (p > 0. 05 for all). The differential expression of genes after pelvic floor muscle injury can identify the target in the process of pelvic floor muscle injury repair and regeneration.
Collapse
Affiliation(s)
- Xin Liu
- Obstetrics Department of Hebei Hospital of Traditional Chinese Medicine, Shijiazhuang, 050013, China.
| | - Xiaohui Wang
- Obstetrics Department of Hebei Hospital of Traditional Chinese Medicine, Shijiazhuang, 050013, China
| | - Tingna Xu
- Obstetrics Department of Hebei Hospital of Traditional Chinese Medicine, Shijiazhuang, 050013, China
| | - Xia Liu
- Obstetrics Department of Hebei Hospital of Traditional Chinese Medicine, Shijiazhuang, 050013, China
| | - Lingge Li
- Obstetrics Department of Hebei Hospital of Traditional Chinese Medicine, Shijiazhuang, 050013, China
| |
Collapse
|
6
|
Edouard P, Reurink G, Mackey AL, Lieber RL, Pizzari T, Järvinen TAH, Gronwald T, Hollander K. Traumatic muscle injury. Nat Rev Dis Primers 2023; 9:56. [PMID: 37857686 DOI: 10.1038/s41572-023-00469-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
Traumatic muscle injury represents a collection of skeletal muscle pathologies caused by trauma to the muscle tissue and is defined as damage to the muscle tissue that can result in a functional deficit. Traumatic muscle injury can affect people across the lifespan and can result from high stresses and strains to skeletal muscle tissue, often due to muscle activation while the muscle is lengthening, resulting in indirect and non-contact muscle injuries (strains or ruptures), or from external impact, resulting in direct muscle injuries (contusion or laceration). At a microscopic level, muscle fibres can repair focal damage but must be completely regenerated after full myofibre necrosis. The diagnosis of muscle injury is based on patient history and physical examination. Imaging may be indicated to eliminate differential diagnoses. The management of muscle injury has changed within the past 5 years from initial rest, immobilization and (over)protection to early activation and progressive loading using an active approach. One challenge of muscle injury management is that numerous medical treatment options, such as medications and injections, are often used or proposed to try to accelerate muscle recovery despite very limited efficacy evidence. Another challenge is the prevention of muscle injury owing to the multifactorial and complex nature of this injury.
Collapse
Affiliation(s)
- Pascal Edouard
- Université Jean Monnet, Lyon 1, Université Savoie Mont-Blanc, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, France.
- Department of Clinical and Exercise Physiology, Sports Medicine Unit, University Hospital of Saint-Etienne, Faculty of Medicine, Saint-Etienne, France.
| | - Gustaaf Reurink
- Department of Orthopedic Surgery and Sports Medicine, Academic Medical Center, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Academic Center for Evidence-based Sports Medicine (ACES), Academic Medical Center, Amsterdam, Netherlands
- The Sports Physicians Group, Onze Lieve Vrouwe Gasthuis, Amsterdam, Netherlands
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard L Lieber
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Departments of Physical Medicine and Rehabilitation and Biomedical Engineering, Northwestern University, Chicago, IL, USA
- Hines VA Medical Center, Maywood, IL, USA
| | - Tania Pizzari
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Tero A H Järvinen
- Tampere University and Tampere University Hospital, Tampere, Finland
| | - Thomas Gronwald
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Karsten Hollander
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Schneider BS, Petereit J, Zhang L, Voss JG. Crush Injury and Simulated Flight Effects on Muscle Gene Expression in Female Mice. Nurs Res 2023; 72:363-370. [PMID: 37625178 PMCID: PMC10542909 DOI: 10.1097/nnr.0000000000000667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Aeromedical evacuation provides critical care during long-distance transport of injured victims between medical facilities. Often, these victims sustain muscle trauma related to mechanical insults, such as crush. Understanding the effects of flight on injured muscle is important because the aircraft cabin represents an external environment with mild hypoxia-the cabin's altitude is 2,438 m instead of sea level. Because mild hypobaric hypoxia can alter gene expression in normal muscle and affect recovery patterns, it is beneficial to examine whether this type of hypoxia may also alter injury-related genes. OBJECTIVE The objective of this study was to verify the hypothesis that differential gene expression occurs in response to mild hypobaric hypoxia exposure in crush-injured muscle during two early recovery (preregeneration stage) time points. METHODS Twenty-four female mice were anesthetized, and the right gastrocnemius muscle underwent crush injury. Approximately 24 hours later, mice were exposed to normobaric normoxia or hypobaric hypoxia for 8-9 hours. After 32 or 48 hours of recovery, the mice were euthanized, and the right and left lateral gastrocnemius muscles were collected for microarray and bioinformatics analyses. RESULTS The study hypothesis was verified. There were 353 highly upregulated, differentially expressed genes identified in the injured muscle compared to the uninjured muscle. Mid1 was upregulated in both pressure conditions regardless of injury status. There were 52 and 15 differentially expressed genes at 32 and 48 hours postinjury, respectively, in the hypobaric hypoxia-exposed, injured muscle compared to the normobaric normoxia-exposed, injured muscle. The macrophage gene Cd68 correlated with other leukocyte-related genes. DISCUSSION These findings expand our understanding of the genetic changes that occur in muscle in response to a crush injury, including those related to the macrophage protein CD68. Nursing interventions addressing adequate functioning after crush muscle injury may need to consider the effects on Cd68 and its closely related genes. In addition, our results suggest a responsiveness of the gene Mid1 to flight-relevant hypobaric hypoxia. Changes in the expression of Mid1 may be appropriate in assessing the long-term health of flight crew members.
Collapse
|
8
|
Picca A, Guerra F, Calvani R, Romano R, Coelho-Junior HJ, Bucci C, Leeuwenburgh C, Marzetti E. Mitochondrial-derived vesicles in skeletal muscle remodeling and adaptation. Semin Cell Dev Biol 2023; 143:37-45. [PMID: 35367122 DOI: 10.1016/j.semcdb.2022.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/25/2022] [Accepted: 03/19/2022] [Indexed: 12/24/2022]
Abstract
Mitochondrial remodeling is crucial to meet the bioenergetic demand to support muscle contractile activity during daily tasks and muscle regeneration following injury. A set of mitochondrial quality control (MQC) processes, including mitochondrial biogenesis, dynamics, and mitophagy, are in place to maintain a well-functioning mitochondrial network and support muscle regeneration. Alterations in any of these pathways compromises mitochondrial quality and may potentially lead to impaired myogenesis, defective muscle regeneration, and ultimately loss of muscle function. Among MQC processes, mitophagy has gained special attention for its implication in the clearance of dysfunctional mitochondria via crosstalk with the endo-lysosomal system, a major cell degradative route. Along this pathway, additional opportunities for mitochondrial disposal have been identified that may also signal at the systemic level. This communication occurs via inclusion of mitochondrial components within membranous shuttles named mitochondrial-derived vesicles (MDVs). Here, we discuss MDV generation and release as a mitophagy-complementing route for the maintenance of mitochondrial homeostasis in skeletal myocytes. We also illustrate the possible role of muscle-derived MDVs in immune signaling during muscle remodeling and adaptation.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | | | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, Gainesville, USA
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Department of Geriatrics and Orthopedics, Rome, Italy.
| |
Collapse
|
9
|
Matheny RW, Kolb AL, Geddis AV, Roberts BM. Celecoxib impairs primary human myoblast proliferation and differentiation independent of cyclooxygenase 2 inhibition. Physiol Rep 2022; 10:e15481. [PMID: 36325583 PMCID: PMC9630763 DOI: 10.14814/phy2.15481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023] Open
Abstract
The use of non-steroidal anti-inflammatory drugs (NSAIDs) for treatment of musculoskeletal injuries is commonplace in the general, athletic, and military populations. While NSAIDs have been studied in a variety of tissues, the effects of NSAIDs on skeletal muscle have not been fully defined. To address this, we investigated the degree to which the cyclooxygenase (COX)-2-selective NSAID celecoxib affects muscle cell proliferation, differentiation, anabolic signaling, and mitochondrial function in primary human skeletal myoblasts and myotubes. Primary muscle cells were treated with celecoxib or NS-398 (a pharmacological inhibitor of COX-2) as a control. Celecoxib administration significantly reduced myoblast proliferation, viability, fusion, and myotube area in a dose-dependent manner, whereas NS-398 had no effect on any of these outcomes. Celecoxib treatment was also associated with reduced phosphorylation of ribosomal protein S6 in myoblasts, and reduced phosphorylation of AKT, p70S6K, S6, and ERK in myotubes. In contrast, NS-398 did not alter phosphorylation of these molecules in myoblasts or myotubes. In myoblasts, celecoxib significantly reduced mitochondrial membrane potential and respiration, as evidenced by the decreased citric acid cycle (CAC) intermediates cis-aconitic acid, alpha-keto-glutarate acid, succinate acid, and malic acid. Similar results were observed in myotubes, although celecoxib also reduced pyruvic acid, citric acid, and fumaric acid. NS-398 did not affect CAC intermediates in myoblasts or myotubes. Together, these data reveal that celecoxib inhibits proliferation, differentiation, intracellular signaling, and mitochondrial function in primary human myoblasts and myotubes independent of its function as a COX-2 inhibitor.
Collapse
Affiliation(s)
- Ronald W. Matheny
- Military Performance DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
- Military Operational Medicine Research ProgramFt. DetrickMarylandUSA
| | - Alexander L. Kolb
- Military Performance DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Alyssa V. Geddis
- Military Performance DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Brandon M. Roberts
- Military Performance DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| |
Collapse
|
10
|
Alfaqih MS, Tarawan VM, Sylviana N, Goenawan H, Lesmana R, Susianti S. Effects of Vitamin D on Satellite Cells: A Systematic Review of In Vivo Studies. Nutrients 2022; 14:4558. [PMID: 36364820 PMCID: PMC9657163 DOI: 10.3390/nu14214558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 08/30/2023] Open
Abstract
The non-classical role of vitamin D has been investigated in recent decades. One of which is related to its role in skeletal muscle. Satellite cells are skeletal muscle stem cells that play a pivotal role in skeletal muscle growth and regeneration. This systematic review aims to investigate the effect of vitamin D on satellite cells. A systematic search was performed in Scopus, MEDLINE, and Google Scholar. In vivo studies assessing the effect of vitamin D on satellite cells, published in English in the last ten years were included. Thirteen in vivo studies were analyzed in this review. Vitamin D increases the proliferation of satellite cells in the early life period. In acute muscle injury, vitamin D deficiency reduces satellite cells differentiation. However, administering high doses of vitamin D impairs skeletal muscle regeneration. Vitamin D may maintain satellite cell quiescence and prevent spontaneous differentiation in aging. Supplementation of vitamin D ameliorates decreased satellite cells' function in chronic disease. Overall, evidence suggests that vitamin D affects satellite cells' function in maintaining skeletal muscle homeostasis. Further research is needed to determine the most appropriate dose of vitamin D supplementation in a specific condition for the optimum satellite cells' function.
Collapse
Affiliation(s)
- Muhammad Subhan Alfaqih
- Biomedical Science Master Program, Faculty of Medicine, Universitas Padjadjaran, Jl. Prof Eyckman No.38, Bandung 45363, Indonesia
| | - Vita Murniati Tarawan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Nova Sylviana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Hanna Goenawan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Susianti Susianti
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| |
Collapse
|
11
|
Li H, Yuan W, Chen Y, Lin B, Wang S, Deng Z, Zheng Q, Li Q. Transcription and proteome changes involved in re-innervation muscle following nerve crush in rats. BMC Genomics 2022; 23:666. [PMID: 36131238 PMCID: PMC9494802 DOI: 10.1186/s12864-022-08895-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/16/2022] [Indexed: 02/05/2023] Open
Abstract
Severe peripheral nerve injury leads to the irreparable disruption of nerve fibers. This leads to disruption of synapses with the designated muscle, which consequently go through progressive atrophy and damage of muscle function. The molecular mechanism that underlies the re-innervation process has yet to be evaluated using proteomics or transcriptomics. In the present study, multi-dimensional data were therefore integrated with transcriptome and proteome profiles in order to investigate the mechanism of re-innervation in muscles. Two simulated nerve injury muscle models in the rat tibial nerve were compared: the nerve was either cut (denervated, DN group) or crushed but with the nerve sheath intact (re-innervated, RN group). The control group had a preserved and intact tibial nerve. At 4 weeks, the RN group showed better tibial nerve function and recovery of muscle atrophy compared to the DN group. As the high expression of Myh3, Postn, Col6a1 and Cfi, the RN group demonstrated superior re-innervation as well. Both differentially expressed genes (DEGs) and proteins (DEPs) were enriched in the peroxisome proliferator-activated receptors (PPARs) signaling pathway, as well as the energy metabolism. This study provides basic information regarding DEGs and DEPs during re-innervation-induced muscle atrophy. Furthermore, the crucial genes and proteins can be detected as possible treatment targets in the future.
Collapse
Affiliation(s)
- Haotao Li
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106, Zhongshan Road, Yuexiu District, Guangzhou, People's Republic of China
- Shantou University Medical College, Shantou, People's Republic of China
| | - Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China
- Beijing Key Laboratory of Spinal Disease, Beijing, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, People's Republic of China
| | - Yijian Chen
- Department of Orthopedics, Shantou Central Hospital, Shantou, Guangdong, People's Republic of China
| | - Bofu Lin
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106, Zhongshan Road, Yuexiu District, Guangzhou, People's Republic of China
- Shantou University Medical College, Shantou, People's Republic of China
| | - Shuai Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106, Zhongshan Road, Yuexiu District, Guangzhou, People's Republic of China
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106, Zhongshan Road, Yuexiu District, Guangzhou, People's Republic of China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106, Zhongshan Road, Yuexiu District, Guangzhou, People's Republic of China
| | - Qingtian Li
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106, Zhongshan Road, Yuexiu District, Guangzhou, People's Republic of China.
| |
Collapse
|
12
|
Washington TA, Haynie WS, Schrems ER, Perry RA, Brown LA, Williams BM, Rosa-Caldwell ME, Lee DE, Brown JL. Effects of PGC-1α overexpression on the myogenic response during skeletal muscle regeneration. SPORTS MEDICINE AND HEALTH SCIENCE 2022; 4:198-208. [PMID: 36090923 PMCID: PMC9453693 DOI: 10.1016/j.smhs.2022.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
The ability of skeletal muscle to regenerate from injury is crucial for locomotion, metabolic health, and quality of life. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1A) is a transcriptional coactivator required for mitochondrial biogenesis. Increased mitochondrial biogenesis is associated with improved muscle cell differentiation, however PGC1A's role in skeletal muscle regeneration following damage requires further investigation. The purpose of this study was to investigate the role of skeletal muscle-specific PGC1A overexpression during regeneration following damage. 22 C57BL/6J (WT) and 26 PGC1A muscle transgenic (A1) mice were injected with either phosphate-buffered saline (PBS, uninjured control) or Bupivacaine (MAR, injured) into their tibialis anterior (TA) muscle to induce skeletal muscle damage. TA muscles were extracted 3- or 28-days post-injury and analyzed for markers of regenerative myogenesis and protein turnover. Pgc1a mRNA was ∼10–20 fold greater in A1 mice. Markers of protein synthesis, AKT and 4EBP1, displayed decreases in A1 mice compared to WT at both timepoints indicating a decreased protein synthetic response. Myod mRNA was ∼75% lower compared to WT 3 days post-injection. WT mice exhibited decreased cross-sectional area of the TA muscle at 28 days post-injection with bupivacaine compared to all other groups. PGC1A overexpression modifies the myogenic response during regeneration.
Collapse
Affiliation(s)
- Tyrone A. Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
- Corresponding author. University of Arkansas Department of Health, Human Performance, and Recreation, 155 Stadium Dr. HPER 309, Fayetteville, AR, 72701, USA.
| | - Wesley S. Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Eleanor R. Schrems
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Richard A. Perry
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Lemuel A. Brown
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Breanna M. Williams
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Megan E. Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - David E. Lee
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jacob L. Brown
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
13
|
Boivin J, Tolsma R, Awad P, Kenter K, Li Y. The Biological Use of Platelet-Rich Plasma in Skeletal Muscle Injury and Repair. Am J Sports Med 2021; 51:1347-1355. [PMID: 34904902 DOI: 10.1177/03635465211061606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Platelet-rich plasma (PRP) is a blood product that contains several growth factors and active proteins. PRP is thought to be used autologously to assist in the repair of injured tissues as well as to treat pain at the site of injury. The mechanism behind PRP in regenerative medicine has been well investigated and includes the identification and concentration of released growth factors and exosomes. The benefits of PRP have been highly recommended and are used widely in orthopaedics and sports medicine, including repair of injured skeletal muscle. This current report summarizes some of the more recent studies in the use of PRP as it relates to muscle healing, in both the in vitro and clinical arenas.
Collapse
Affiliation(s)
- Jordan Boivin
- Department of Orthopaedic Surgery, Biomedical Engineering at Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, USA
| | - Rachael Tolsma
- Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, USA
| | - Peter Awad
- Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, USA
| | - Keith Kenter
- Department of Orthopaedic Surgery, Biomedical Engineering at Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, USA
| | - Yong Li
- Department of Orthopaedic Surgery, Biomedical Engineering at Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, USA
| |
Collapse
|
14
|
Deaver JW, Schrems ER, Brown LA, Haynie WA, Perry RA, Rosa-Caldwell ME, Tedrowe MA, Greene NP, Washington TA. The effect of diet-induced obesity on extracellular matrix remodeling during skeletal muscle regeneration. SPORTS MEDICINE AND HEALTH SCIENCE 2021; 3:212-217. [PMID: 35783375 PMCID: PMC9219258 DOI: 10.1016/j.smhs.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/11/2022] Open
Abstract
Diet-induced obesity has previously been shown to occur with the concomitant rise in the expression of proinflammatory cytokines and increases in collagen deposition. While it has been known that the regenerative process of skeletal muscle is altered in obese mice following an acute muscle injury, we sought to examine differences in the expression of various markers of extracellular matrix remodeling and repair. Our laboratory has previously reported an impaired inflammatory and protein synthetic signaling in these mice that may contribute negatively to the muscle regenerative process. To expand upon this previous investigation, tissues from these animals underwent further analysis to determine the extent of changes to the regenerative response within the extracellular matrix, including transcriptional changes in Collagen I, Collagen III, and Fibronectin. Here, we show that the expression of Collagen III:I is significantly increased at 3-days post-injury in obese injured animals compared to lean injured animals (p = 0.0338), and by 28-days the obese injured animals exhibit a significantly lower Collagen III:I than their lean injured counterparts (p = 0.0035). We demonstrate an impaired response to an acute muscle injury in obese mice when compared with lean counterparts. However, further studies are required to elucidate translational consequences of these changes, as well as to determine any causative mechanisms that may be driving this effect.
Collapse
|
15
|
Collins BC, Kardon G. It takes all kinds: heterogeneity among satellite cells and fibro-adipogenic progenitors during skeletal muscle regeneration. Development 2021; 148:dev199861. [PMID: 34739030 PMCID: PMC8602941 DOI: 10.1242/dev.199861] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Vertebrate skeletal muscle is composed of multinucleate myofibers that are surrounded by muscle connective tissue. Following injury, muscle is able to robustly regenerate because of tissue-resident muscle stem cells, called satellite cells. In addition, efficient and complete regeneration depends on other cells resident in muscle - including fibro-adipogenic progenitors (FAPs). Increasing evidence from single-cell analyses and genetic and transplantation experiments suggests that satellite cells and FAPs are heterogeneous cell populations. Here, we review our current understanding of the heterogeneity of satellite cells, their myogenic derivatives and FAPs in terms of gene expression, anatomical location, age and timing during the regenerative process - each of which have potentially important functional consequences.
Collapse
Affiliation(s)
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
16
|
Ren K, Wang L, Wang L, Du Q, Cao J, Jin Q, An G, Li N, Dang L, Tian Y, Wang Y, Sun J. Investigating Transcriptional Dynamics Changes and Time-Dependent Marker Gene Expression in the Early Period After Skeletal Muscle Injury in Rats. Front Genet 2021; 12:650874. [PMID: 34220936 PMCID: PMC8248501 DOI: 10.3389/fgene.2021.650874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Following skeletal muscle injury (SMI), from post-injury reaction to repair consists of a complex series of dynamic changes. However, there is a paucity of research on detailed transcriptional dynamics and time-dependent marker gene expression in the early stages after SMI. In this study, skeletal muscle tissue in rats was taken at 4 to 48 h after injury for next-generation sequencing. We examined the transcriptional kinetics characteristics during above time periods after injury. STEM and maSigPro were used to screen time-correlated genes. Integrating 188 time-correlated genes with 161 genes in each time-related gene module by WGCNA, we finally identified 18 network-node regulatory genes after SMI. Histological staining analyses confirmed the mechanisms underlying changes in the tissue damage to repair process. Our research linked a variety of dynamic biological processes with specific time periods and provided insight into the characteristics of transcriptional dynamics, as well as screened time-related biological indicators with biological significance in the early stages after SMI.
Collapse
Affiliation(s)
- Kang Ren
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China.,Department of Basic Medicine, Changzhi Medical College, Changzhi, China
| | - Liangliang Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Liang Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Qiuxiang Du
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Jie Cao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Qianqian Jin
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Guoshuai An
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Na Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Lihong Dang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Yingjie Tian
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Yingyuan Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Junhong Sun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| |
Collapse
|
17
|
Endo Y, Karvar M, Sinha I. Muscle Cryoinjury and Quantification of Regenerating Myofibers in Mice. Bio Protoc 2021; 11:e4036. [PMID: 34250203 DOI: 10.21769/bioprotoc.4036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/02/2021] [Accepted: 04/23/2021] [Indexed: 11/02/2022] Open
Abstract
Cryoinjury, or injury due to freezing, is a method of creating reproducible, local injuries in skeletal muscle. This method allows studying the regenerative response following muscle injuries in vivo, thus enabling the evaluation of local and systemic factors that influence the processes of myofiber regeneration. Cryoinjuries are applicable to the study of various modalities of muscle injury, particularly non-traumatic and traumatic injuries, without a loss of substantial volume of muscle mass. Cryoinjury requires only simple instruments and has the advantage over other methods that the extent of the lesion can be easily adjusted and standardized according to the duration of contact with the freezing instrument. The regenerative response can be evaluated histologically by the average maturity of regenerating myofibers as indicated by the cross-sectional areas of myofibers with centrally located nuclei. Accordingly, cryoinjury is regarded as one of the most reliable and easily accessible methods for simulating muscle injuries in studies of muscle regeneration.
Collapse
Affiliation(s)
- Yori Endo
- Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Mehran Karvar
- Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Indranil Sinha
- Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.,Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
18
|
Localization of T-cell factor 4 positive fibroblasts and CD206-positive macrophages during skeletal muscle regeneration in mice. Ann Anat 2021; 235:151694. [DOI: 10.1016/j.aanat.2021.151694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/17/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022]
|
19
|
Zhou Q, Yang H, Pan H, Pan H, Zhou J. Exosomes isolated from the miR-215-modified bone marrow mesenchymal stem cells protect H 2O 2-induced rat myoblasts via the miR-215/FABP3 pathway. Exp Mol Pathol 2021; 119:104608. [PMID: 33503452 DOI: 10.1016/j.yexmp.2021.104608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/03/2021] [Accepted: 01/20/2021] [Indexed: 01/08/2023]
Abstract
This study aimed to investigate the potential effects of miR-215, with exosomes as carriers, against skeletal muscle injury. Exosomes were isolated from rat bone marrow mesenchymal stem cells (rBMSCs) or rBMSCs overexpressing miR-215. Subsequently, rat myoblasts (L6) were treated with different exosomes and mimics, then exposed to H2O2. Cell viability and apoptosis were determined using the Cell Counting Kit-8 and Annexin V-FITC cell apoptosis assay kits, respectively. Reverse-transcriptase quantitative PCR (RT-qPCR) was used to examine the expression of related genes. Transmission electron microscopy, Nanosight, and western blotting showed that the exosomes were successfully isolated. PKH67 staining revealed that both exosomes and miR-215-modified exosomes were taken up by L6 cells. FABP3 was found to be the target gene of miR-215 via a dual luciferase reporter gene assay. In the L6 cells treated with H2O2, cell viability was significantly inhibited, whereas apoptosis significantly increased (P < 0.05). Exosomes significantly enhanced the viability of H2O2-induced cells and inhibited their apoptosis (P < 0.05). In addition, RT-qPCR showed that in the H2O2-induced L6 cells, FABP3, CDKN1A, and TP53 were significantly upregulated, while CCNB1 was significantly downregulated (P < 0.05). However, their expression levels were significantly reversed after treatment with miR-215-modified exosomes (P < 0.05). These findings indicate that the miR-215-modified exosomes may exert protective effects against skeletal muscle injury through the miR-215/FABP3 pathway and regulate the expression of CDKN1A, CCNB1, and TP53.
Collapse
Affiliation(s)
- Qiang Zhou
- Physical Education Department, Hohai University, Nanjing, Jiangsu 210098, China
| | - Hongchang Yang
- Physical Education Department, Hohai University, Nanjing, Jiangsu 210098, China.
| | - Hongchi Pan
- Department of food and drug, college of material and chemical engineering, Tongren University, Tongren, Guizhou 554300, China
| | - Hongyao Pan
- Physical Education Department, Hohai University, Nanjing, Jiangsu 210098, China
| | - Jing Zhou
- Department of clinical medicine, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, China
| |
Collapse
|
20
|
Reactive Changes in Elements of Stromal-Vascular Differons of Dysferlin-Deficient Skeletal Muscles after Procaine Injection. Bull Exp Biol Med 2021; 170:677-681. [PMID: 33788118 DOI: 10.1007/s10517-021-05131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 10/21/2022]
Abstract
The study assessed reactivity of stromal-vascular skeletal muscle differons to acute chemical injury. Dysferlin-deficient Bla/J mice and the wild-type С57BL/6 mice were intramuscularly injected with 100 μl of 0.5% procaine solution. The middle segment of gastrocnemius muscle was taken on postsurgery days 2, 4, 10, and 14 for routine histological examination. To evaluate proliferation and vascularization, the paraffin sections were stained immunohistochemically with antibodies to α-smooth muscle actin and Ki-67. The connective tissue was stained according to Mallory. The study revealed diminished proliferative activity of stromal-vascular differons and decreased vascular density in muscles of Bla/J mice. Thus, mutations in the DYSF gene coding dysferlin down-regulate the reparation processes in all differons of skeletal muscle.
Collapse
|
21
|
Dienes J, Browne S, Farjun B, Amaral Passipieri J, Mintz EL, Killian G, Healy KE, Christ GJ. Semisynthetic Hyaluronic Acid-Based Hydrogel Promotes Recovery of the Injured Tibialis Anterior Skeletal Muscle Form and Function. ACS Biomater Sci Eng 2021; 7:1587-1599. [PMID: 33660968 DOI: 10.1021/acsbiomaterials.0c01751] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Volumetric muscle loss (VML) injuries are characterized by a degree of tissue loss that exceeds the endogenous regenerative capacity of muscle, resulting in permanent structural and functional deficits. Such injuries are a consequence of trauma, as well as a host of congenital and acquired diseases and disorders. Despite significant preclinical research with diverse biomaterials, as well as early clinical studies with implantation of decellularized extracellular matrices, there are still significant barriers to more complete restoration of muscle form and function following repair of VML injuries. In fact, identification of novel biomaterials with more advantageous regenerative profiles is a critical limitation to the development of improved therapeutics. As a first step in this direction, we evaluated a novel semisynthetic hyaluronic acid-based (HyA) hydrogel that embodies material features more favorable for robust muscle regeneration. This HyA-based hydrogel is composed of an acrylate-modified HyA (AcHyA) macromer, an AcHyA macromer conjugated with the bsp-RGD(15) peptide sequence to enhance cell adhesion, a high-molecular-weight heparin to sequester growth factors, and a matrix metalloproteinase-cleavable cross-linker to allow for cell-dependent remodeling. In a well-established, clinically relevant rat tibialis anterior VML injury model, we report observations of robust functional recovery, accompanied by volume reconstitution, muscle regeneration, and native-like vascularization following implantation of the HyA-based hydrogel at the site of injury. These findings have important implications for the development and clinical application of the improved biomaterials that will be required for stable and complete functional recovery from diverse VML injuries.
Collapse
Affiliation(s)
- Jack Dienes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Shane Browne
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Material Science and Engineering, University of California, Berkeley, Berkeley 94720, United States
| | - Bruna Farjun
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Juliana Amaral Passipieri
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Ellen L Mintz
- Pathology Department, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Grant Killian
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Kevin E Healy
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Material Science and Engineering, University of California, Berkeley, Berkeley 94720, United States
| | - George J Christ
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
22
|
Qualls AE, Southern WM, Call JA. Mitochondria-cytokine crosstalk following skeletal muscle injury and disuse: a mini-review. Am J Physiol Cell Physiol 2021; 320:C681-C688. [PMID: 33566726 DOI: 10.1152/ajpcell.00462.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Skeletal muscle mitochondria are highly adaptable, highly dynamic organelles that maintain the functional integrity of the muscle fiber by providing ATP for contraction and cellular homeostasis (e.g., Na+/K+ ATPase). Emerging as early modulators of inflammation, mitochondria sense and respond to cellular stress. Mitochondria communicate with the environment, in part, by release of physical signals called mitochondrial-derived damage-associated molecular patterns (mito-DAMPs) and deviation from routine function (e.g., reduced ATP production, Ca2+ overload). When skeletal muscle is compromised, mitochondria contribute to an acute inflammatory response necessary for myofibril regeneration; however, exhaustive signaling associated with altered or reduced mitochondrial function can be detrimental to muscle outcomes. Here, we describe changes in mitochondrial content, structure, and function following skeletal muscle injury and disuse and highlight the influence of mitochondria-cytokine crosstalk on muscle regeneration and recovery. Although the appropriate therapeutic modulation following muscle stressors remains unknown, retrospective gene expression analysis reveals that interleukin-6 (IL-6), interleukin-1β (IL-1β), chemokine C-X-C motif ligand 1 (CXCL1), and monocyte chemoattractant protein 1 (MCP-1) are significantly upregulated following three unique muscle injuries. These cytokines modulate mitochondrial function and execute bona fide pleiotropic roles that can aid functional recovery of muscle, however, when aberrant, chronically disrupt healing partly by exacerbating mitochondrial dysfunction. Multidisciplinary efforts to delineate the opposing regulatory roles of inflammatory cytokines in the muscle mitochondrial environment are required to modulate regenerative behavior following skeletal muscle injury or disuse. Future therapeutic directions to consider include quenching or limited release of mito-DAMPs and cytokines present in cytosol or circulation.
Collapse
Affiliation(s)
- Anita E Qualls
- Clinical School, University of Cambridge, Cambridge, United Kingdom
| | - W Michael Southern
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Jarrod A Call
- Department of Kinesiology, University of Georgia, Athens, Georgia.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| |
Collapse
|
23
|
Kim HB, Seo HG, Son S, Choi H, Kim BG, Kweon TH, Kim S, Pai J, Shin I, Yang WH, Cho JW. O-GlcNAcylation of Mef2c regulates myoblast differentiation. Biochem Biophys Res Commun 2020; 529:692-698. [PMID: 32736694 DOI: 10.1016/j.bbrc.2020.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/07/2020] [Indexed: 12/30/2022]
Abstract
Unlike other types of glycosylation, O-GlcNAcylation is a single glycosylation which occurs exclusively in the nucleus and cytosol. O-GlcNAcylation underlie metabolic diseases, including diabetes and obesity. Furthermore, O-GlcNAcylation affects different oncogenic processes such as osteoblast differentiation, adipogenesis and hematopoiesis. Emerging evidence suggests that skeletal muscle differentiation is also regulated by O-GlcNAcylation, but the detailed molecular mechanism has not been fully elucidated. In this study, we showed that hyper-O-GlcNAcylation reduced the expression of myogenin, a transcription factor critical for terminal muscle development, in C2C12 myoblasts differentiation by O-GlcNAcylation on Thr9 of myocyte-specific enhancer factor 2c. Furthermore, we showed that O-GlcNAcylation on Mef2c inhibited its DNA binding affinity to myogenin promoter. Taken together, we demonstrated that hyper-O-GlcNAcylation attenuates skeletal muscle differentiation by increased O-GlcNAcylation on Mef2c, which downregulates its DNA binding affinity.
Collapse
Affiliation(s)
- Han Byeol Kim
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyeon Gyu Seo
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - SeongJin Son
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyeonjin Choi
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byung Gyu Kim
- Leading-edge Research Center for Drug Discovery and Development and Metabolic Disease, Kyungpook National University, Daegu, Republic of Korea
| | - Tae Hyun Kweon
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Republic of Korea
| | - Jaeyoung Pai
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Won Ho Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin Won Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
24
|
Ceafalan LC, Dobre M, Milanesi E, Niculae AM, Manole E, Gherghiceanu M, Hinescu ME. Gene expression profile of adhesion and extracellular matrix molecules during early stages of skeletal muscle regeneration. J Cell Mol Med 2020; 24:10140-10150. [PMID: 32681815 PMCID: PMC7520258 DOI: 10.1111/jcmm.15624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle regeneration implies the coordination of myogenesis with the recruitment of myeloid cells and extracellular matrix (ECM) remodelling. Currently, there are no specific biomarkers to diagnose the severity and prognosis of muscle lesions. In order to investigate the gene expression profile of extracellular matrix and adhesion molecules, as premises of homo‐ or heterocellular cooperation and milestones for skeletal muscle regeneration, we performed a gene expression analysis for genes involved in cellular cooperation, migration and ECM remodelling in a mouse model of acute crush injury. The results obtained at two early time‐points post‐injury were compared to a GSE5413 data set from two other trauma models. Third day post‐injury, when inflammatory cells invaded, genes associated with cell‐matrix interactions and migration were up‐regulated. After day 5, as myoblast migration and differentiation started, genes for basement membrane constituents were found down‐regulated, whereas genes for ECM molecules, macrophage, myoblast adhesion, and migration receptors were up‐regulated. However, the profile and the induction time varied according to the experimental model, with only few genes being constantly up‐regulated. Gene up‐regulation was higher, delayed and more diverse following more severe trauma. Moreover, one of the most up‐regulated genes was periostin, suggestive for severe muscle damage and unfavourable architecture restoration.
Collapse
Affiliation(s)
- Laura C Ceafalan
- Cell Biology, Neurosciences and Experimental Myology Laboratory, 'Victor Babeș' National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | - Maria Dobre
- Molecular Pathology Laboratory, 'Victor Babeș' National Institute of Pathology, Bucharest, Romania
| | - Elena Milanesi
- Molecular Pathology Laboratory, 'Victor Babeș' National Institute of Pathology, Bucharest, Romania.,Radiobiology Laboratory, 'Victor Babeș' National Institute of Pathology, Bucharest, Romania
| | - Andrei M Niculae
- Department of Cellular and Molecular Biology and Histology, Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | - Emilia Manole
- Cell Biology, Neurosciences and Experimental Myology Laboratory, 'Victor Babeș' National Institute of Pathology, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Department of Cellular and Molecular Biology and Histology, Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania.,Ultrastructural Pathology Laboratory, 'Victor Babeș' National Institute of Pathology, Bucharest, Romania
| | - Mihail E Hinescu
- Cell Biology, Neurosciences and Experimental Myology Laboratory, 'Victor Babeș' National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
25
|
Rigon M, Hörner SJ, Straka T, Bieback K, Gretz N, Hafner M, Rudolf R. Effects of ASC Application on Endplate Regeneration Upon Glycerol-Induced Muscle Damage. Front Mol Neurosci 2020; 13:107. [PMID: 32655366 PMCID: PMC7324987 DOI: 10.3389/fnmol.2020.00107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/20/2020] [Indexed: 01/06/2023] Open
Abstract
Amongst other approaches, adipose-derived stromal cells (ASCs) have recently been tested with respect to their regenerative capacity for treatment of neuromuscular disorders. While beneficial effects of ASCs on muscle recovery were observed previously, their impact on regeneration of neuromuscular junctions (NMJs) is unclear. Here, we used a murine glycerol damage model to study disruption and regeneration of NMJs and to evaluate the effects of systemic application of ASCs on muscle and NMJ recovery. In mice that were not treated with ASCs, a differential response of NMJ pre- and post-synapses to glycerol-induced damage was observed. While post-synapses were still present in regions that were necrotic and lacking actin and dystrophin, pre-synapses disappeared soon in those affected areas. Partial regeneration of NMJs occurred within 11 days after damage. ASC treatment slightly enhanced NMJ recovery and reduced the loss of presynaptic sites, but also led to a late phase of muscle necrosis and fibrosis. In summary, the results suggest a differential sensitivity of NMJ pre- and post-synapses to glycerol-induced muscle damage and that the use of ASC for the treatment of neuromuscular disorders needs further careful evaluation.
Collapse
Affiliation(s)
- Matteo Rigon
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Tatjana Straka
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Institute of Medical Technology, Medical Faculty Mannheim, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.,Institute of Medical Technology, Medical Faculty Mannheim, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.,Institute of Medical Technology, Medical Faculty Mannheim, Mannheim University of Applied Sciences, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
26
|
Liu L, Broszczak DA, Broadbent JA, Singh DP, Steck R, Parker TJ, Peake JM. Comparative label-free mass spectrometric analysis of temporal changes in the skeletal muscle proteome after impact trauma in rats. Am J Physiol Endocrinol Metab 2020; 318:E1022-E1037. [PMID: 32255681 DOI: 10.1152/ajpendo.00433.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Proteomics offers the opportunity to identify and quantify many proteins and to explore how they correlate and interact with each other in biological networks. This study aimed to characterize changes in the muscle proteome during the destruction, repair, and early-remodeling phases after impact trauma in male Wistar rats. Muscle tissue was collected from uninjured control rats and rats that were euthanized between 6 h and 14 days after impact injury. Muscle tissue was analyzed using unbiased, data-independent acquisition LC-MS/MS. We identified 770 reviewed proteins in the muscle tissue, 296 of which were differentially abundant between the control and injury groups (P ≤ 0.05). Around 50 proteins showed large differences (≥10-fold) or a distinct pattern of abundance after injury. These included proteins that have not been identified previously in injured muscle, such as ferritin light chain 1, fibrinogen γ-chain, fibrinogen β-chain, osteolectin, murinoglobulin-1, T-kininogen 2, calcium-regulated heat-stable protein 1, macrophage-capping protein, retinoid-inducible serine carboxypeptidase, ADP-ribosylation factor 4, Thy-1 membrane glycoprotein, and ADP-ribosylation factor-like protein 1. Some proteins increased between 6 h and 14 days, whereas other proteins increased in a more delayed pattern at 7 days after injury. Bioinformatic analysis revealed that various biological processes, including regulation of blood coagulation, fibrinolysis, regulation of wound healing, tissue regeneration, acute inflammatory response, and negative regulation of the immune effector process, were enriched in injured muscle tissue. This study advances the understanding of early muscle healing after muscle injury and lays a foundation for future mechanistic studies on interventions to treat muscle injury.
Collapse
Affiliation(s)
- Lian Liu
- Queensland University of Technology, School of Biomedical Sciences, Brisbane, Australia
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
| | - Daniel A Broszczak
- Queensland University of Technology, School of Biomedical Sciences, Brisbane, Australia
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
| | - James A Broadbent
- Queensland University of Technology, School of Biomedical Sciences, Brisbane, Australia
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, St. Lucia, Australia
| | - Daniel P Singh
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Roland Steck
- Queensland University of Technology, Medical Engineering Research Facility, Institute of Health and Biomedical Innovation, Brisbane, Australia
| | - Tony J Parker
- Queensland University of Technology, School of Biomedical Sciences, Brisbane, Australia
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
| | - Jonathan M Peake
- Queensland University of Technology, School of Biomedical Sciences, Brisbane, Australia
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
| |
Collapse
|
27
|
Call JA, Nichenko AS. Autophagy: an essential but limited cellular process for timely skeletal muscle recovery from injury. Autophagy 2020; 16:1344-1347. [PMID: 32267791 DOI: 10.1080/15548627.2020.1753000] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy/autophagy induction, i.e., the formation of autophagosomes, is robust following many forms of muscle injury. Autophagy inhibition studies strongly indicate that autophagy is necessary for successful muscle fiber recovery. Now, there are accumulating pieces of evidence indicating that autophagosome clearance, i.e., autophagy flux, does not increase to match the burden of accumulating damaged proteins and organelles after muscle fiber damage, creating a bottleneck effect. Some potential consequences of the bottleneck effect are reduced regenerative capacity marked by the inadequate activation of muscle stem cells (i.e., satellite cells) and a lesser commitment toward differentiation due to a deficiency in energetic substrates and/or molecular signaling pathways. These findings highlight an emerging area of investigation for both autophagy and muscle regeneration fields. The identification of the molecular mechanisms governing autophagy and autophagy flux may serve as targets for future therapies to enhance the recovery of its function in healthy and diseased muscle. ABBREVIATIONS BNIP3: BCL2/adenovirus E1B interacting protein 3; CQ: chloroquine; DMD: Duchenne muscular dystrophy; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; ULK1: unc-51 like kinase 1.
Collapse
Affiliation(s)
- Jarrod A Call
- Department of Kinesiology, University of Georgia , Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia , Athens, GA, USA
| | - Anna S Nichenko
- Department of Kinesiology, University of Georgia , Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia , Athens, GA, USA
| |
Collapse
|
28
|
MicroRNA-29a Exhibited Pro-Angiogenic and Anti-Fibrotic Features to Intensify Human Umbilical Cord Mesenchymal Stem Cells-Renovated Perfusion Recovery and Preventing against Fibrosis from Skeletal Muscle Ischemic Injury. Int J Mol Sci 2019; 20:ijms20235859. [PMID: 31766662 PMCID: PMC6928887 DOI: 10.3390/ijms20235859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022] Open
Abstract
This study was conducted to elucidate whether microRNA-29a (miR-29a) and/or together with transplantation of mesenchymal stem cells isolated from umbilical cord Wharton’s jelly (uMSCs) could aid in skeletal muscle healing and putative molecular mechanisms. We established a skeletal muscle ischemic injury model by injection of a myotoxin bupivacaine (BPVC) into gastrocnemius muscle of C57BL/6 mice. Throughout the angiogenic and fibrotic phases of muscle healing, miR-29a was considerably downregulated in BPVC-injured gastrocnemius muscle. Overexpressed miR-29a efficaciously promoted human umbilical vein endothelial cells proliferation and capillary-like tube formation in vitro, crucial steps for neoangiogenesis, whereas knockdown of miR-29a notably suppressed those endothelial functions. Remarkably, overexpressed miR-29a profitably elicited limbic flow perfusion and estimated by Laser Dopple. MicroRNA-29a motivated perfusion recovery through abolishing the tissue inhibitor of metalloproteinase (TIMP)-2, led great numbers of pro-angiogenic matrix metalloproteinases (MMPs) to be liberated from bondage of TIMP, thus reinforced vascular development. Furthermore, engrafted uMSCs also illustrated comparable effect to restore the flow perfusion and augmented vascular endothelial growth factors-A, -B, and -C expression. Notably, the combination of miR29a and the uMSCs treatments revealed the utmost renovation of limbic flow perfusion. Amplified miR-29a also adequately diminished the collagen deposition and suppressed broad-wide miR-29a targeted extracellular matrix components expression. Consistently, miR-29a administration intensified the relevance of uMSCs to abridge BPVC-aggravated fibrosis. Our data support that miR-29a is a promising pro-angiogenic and anti-fibrotic microRNA which delivers numerous advantages to endorse angiogenesis, perfusion recovery, and protect against fibrosis post injury. Amalgamation of nucleic acid-based strategy (miR-29a) together with the stem cell-based strategy (uMSCs) may be an innovative and eminent strategy to accelerate the healing process post skeletal muscle injury.
Collapse
|
29
|
Nichenko AS, Southern WM, Tehrani KF, Qualls AE, Flemington AB, Mercer GH, Yin A, Mortensen LJ, Yin H, Call JA. Mitochondrial-specific autophagy linked to mitochondrial dysfunction following traumatic freeze injury in mice. Am J Physiol Cell Physiol 2019; 318:C242-C252. [PMID: 31721614 DOI: 10.1152/ajpcell.00123.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The objective of this study was to interrogate the link between mitochondrial dysfunction and mitochondrial-specific autophagy in skeletal muscle. C57BL/6J mice were used to establish a time course of mitochondrial function and autophagy induction after fatigue (n = 12), eccentric contraction-induced injury (n = 20), or traumatic freeze injury (FI, n = 28); only FI resulted in a combination of mitochondrial dysfunction, i.e., decreased mitochondrial respiration, and autophagy induction. Moving forward, we tested the hypothesis that mitochondrial-specific autophagy is important for the timely recovery of mitochondrial function after FI. Following FI, there is a significant increase in several mitochondrial-specific autophagy-related protein contents including dynamin-related protein 1 (Drp1), BCL1 interacting protein (BNIP3), Pink1, and Parkin (~2-fold, P < 0.02). Also, mitochondrial-enriched fractions from FI muscles showed microtubule-associated protein light chain B1 (LC3)II colocalization suggesting autophagosome assembly around the damaged mitochondrial. Unc-51 like autophagy activating kinase (Ulk1) is considered necessary for mitochondrial-specific autophagy and herein we utilized a mouse model with Ulk1 deficiency in adult skeletal muscle (myogenin-Cre). While Ulk1 knockouts had contractile weakness compared with littermate controls (-27%, P < 0.02), the recovery of mitochondrial function was not different, and this may be due in part to a partial rescue of Ulk1 protein content within the regenerating muscle tissue of knockouts from differentiated satellite cells in which Ulk1 was not genetically altered via myogenin-Cre. Lastly, autophagy flux was significantly less in injured versus uninjured muscles (-26%, P < 0.02) despite the increase in autophagy-related protein content. This suggests autophagy flux is not upregulated to match increases in autophagy machinery after injury and represents a potential bottleneck in the clearance of damaged mitochondria by autophagy.
Collapse
Affiliation(s)
- Anna S Nichenko
- Department of Kinesiology, University of Georgia, Athens, Georgia.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| | - W Michael Southern
- Department of Kinesiology, University of Georgia, Athens, Georgia.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| | | | - Anita E Qualls
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| | | | - Grant H Mercer
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| | - Amelia Yin
- Center for Molecular Medicine, University of Georgia, Athens, Georgia.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Luke J Mortensen
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| | - Hang Yin
- Center for Molecular Medicine, University of Georgia, Athens, Georgia.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Jarrod A Call
- Department of Kinesiology, University of Georgia, Athens, Georgia.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| |
Collapse
|
30
|
Human Umbilical Cord Mesenchymal Stem Cells Extricate Bupivacaine-Impaired Skeletal Muscle Function via Mitigating Neutrophil-Mediated Acute Inflammation and Protecting against Fibrosis. Int J Mol Sci 2019; 20:ijms20174312. [PMID: 31484417 PMCID: PMC6747081 DOI: 10.3390/ijms20174312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle injury presents a challenging traumatological dilemma, and current therapeutic options remain mediocre. This study was designed to delineate if engraftment of mesenchymal stem cells derived from umbilical cord Wharton's jelly (uMSCs) could aid in skeletal muscle healing and persuasive molecular mechanisms. We established a skeletal muscle injury model by injection of myotoxin bupivacaine (BPVC) into quadriceps muscles of C57BL/6 mice. Post BPVC injection, neutrophils, the first host defensive line, rapidly invaded injured muscle and induced acute inflammation. Engrafted uMSCs effectively abolished neutrophil infiltration and activation, and diminished neutrophil chemotaxis, including Complement component 5a (C5a), Keratinocyte chemoattractant (KC), Macrophage inflammatory protein (MIP)-2, LPS-induced CXC chemokine (LIX), Fractalkine, Leukotriene B4 (LTB4), and Interferon-γ, as determined using a Quantibody Mouse Cytokine Array assay. Subsequently, uMSCs noticeably prevented BPVC-accelerated collagen deposition and fibrosis, measured by Masson's trichrome staining. Remarkably, uMSCs attenuated BPVC-induced Transforming growth factor (TGF)-β1 expression, a master regulator of fibrosis. Engrafted uMSCs attenuated TGF-β1 transmitting through interrupting the canonical Sma- And Mad-Related Protein (Smad)2/3 dependent pathway and noncanonical Smad-independent Transforming growth factor beta-activated kinase (TAK)-1/p38 mitogen-activated protein kinases signaling. The uMSCs abrogated TGF-β1-induced fibrosis by reducing extracellular matrix components including fibronectin-1, collagen (COL) 1A1, and COL10A1. Most importantly, uMSCs modestly extricated BPVC-impaired gait functions, determined using CatWalk™ XT gait analysis. This work provides several innovative insights into and molecular bases for employing uMSCs to execute therapeutic potential through the elimination of neutrophil-mediated acute inflammation toward protecting against fibrosis, thereby rescuing functional impairments post injury.
Collapse
|
31
|
Patsalos A, Tzerpos P, Halasz L, Nagy G, Pap A, Giannakis N, Lyroni K, Koliaraki V, Pintye E, Dezso B, Kollias G, Spilianakis CG, Nagy L. The BACH1-HMOX1 Regulatory Axis Is Indispensable for Proper Macrophage Subtype Specification and Skeletal Muscle Regeneration. THE JOURNAL OF IMMUNOLOGY 2019; 203:1532-1547. [PMID: 31405954 DOI: 10.4049/jimmunol.1900553] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/04/2019] [Indexed: 12/17/2022]
Abstract
The infiltration and subsequent in situ subtype specification of monocytes to effector/inflammatory and repair macrophages is indispensable for tissue repair upon acute sterile injury. However, the chromatin-level mediators and regulatory events controlling this highly dynamic macrophage phenotype switch are not known. In this study, we used a murine acute muscle injury model to assess global chromatin accessibility and gene expression dynamics in infiltrating macrophages during sterile physiological inflammation and tissue regeneration. We identified a heme-binding transcriptional repressor, BACH1, as a novel regulator of this process. Bach1 knockout mice displayed impaired muscle regeneration, altered dynamics of the macrophage phenotype transition, and transcriptional deregulation of key inflammatory and repair-related genes. We also found that BACH1 directly binds to and regulates distal regulatory elements of these genes, suggesting a novel role for BACH1 in controlling a broad spectrum of the repair response genes in macrophages upon injury. Inactivation of heme oxygenase-1 (Hmox1), one of the most stringently deregulated genes in the Bach1 knockout in macrophages, impairs muscle regeneration by changing the dynamics of the macrophage phenotype switch. Collectively, our data suggest the existence of a heme-BACH1--HMOX1 regulatory axis, that controls the phenotype and function of the infiltrating myeloid cells upon tissue damage, shaping the overall tissue repair kinetics.
Collapse
Affiliation(s)
- Andreas Patsalos
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032 Hungary
| | - Petros Tzerpos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032 Hungary.,Department of Biology, University of Crete, Heraklion, GR-70013 Greece
| | - Laszlo Halasz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032 Hungary
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032 Hungary
| | - Attila Pap
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032 Hungary
| | - Nikolas Giannakis
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032 Hungary
| | - Konstantina Lyroni
- Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Crete, GR-71003 Greece
| | - Vasiliki Koliaraki
- Biomedical Sciences Research Center "Alexander Fleming," Vari, GR-16672 Greece
| | - Eva Pintye
- Department of Radiotherapy, University of Debrecen, Debrecen, HU-4032 Hungary.,Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701.,Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701
| | - Balazs Dezso
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701
| | - George Kollias
- Biomedical Sciences Research Center "Alexander Fleming," Vari, GR-16672 Greece.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032 Hungary.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032 Hungary
| | - Charalampos G Spilianakis
- Department of Biology, University of Crete, Heraklion, GR-70013 Greece.,Department of Biology, University of Crete, Heraklion, GR-70013 Greece.,Department of Biology, University of Crete, Heraklion, GR-70013 Greece
| | - Laszlo Nagy
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701; .,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032 Hungary
| |
Collapse
|
32
|
Wang J, Khodabukus A, Rao L, Vandusen K, Abutaleb N, Bursac N. Engineered skeletal muscles for disease modeling and drug discovery. Biomaterials 2019; 221:119416. [PMID: 31419653 DOI: 10.1016/j.biomaterials.2019.119416] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 01/04/2023]
Abstract
Skeletal muscle is the largest organ of human body with several important roles in everyday movement and metabolic homeostasis. The limited ability of small animal models of muscle disease to accurately predict drug efficacy and toxicity in humans has prompted the development in vitro models of human skeletal muscle that fatefully recapitulate cell and tissue level functions and drug responses. We first review methods for development of three-dimensional engineered muscle tissues and organ-on-a-chip microphysiological systems and discuss their potential utility in drug discovery research and development of new regenerative therapies. Furthermore, we describe strategies to increase the functional maturation of engineered muscle, and motivate the importance of incorporating multiple tissue types on the same chip to model organ cross-talk and generate more predictive drug development platforms. Finally, we review the ability of available in vitro systems to model diseases such as type II diabetes, Duchenne muscular dystrophy, Pompe disease, and dysferlinopathy.
Collapse
Affiliation(s)
- Jason Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Lingjun Rao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Keith Vandusen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nadia Abutaleb
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
33
|
Li Q, Luo Z. Identification of Candidate Genes for Skeletal Muscle Injury Prevention in Two Different Types. J Comput Biol 2019; 26:1080-1089. [PMID: 31120330 DOI: 10.1089/cmb.2019.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The study aims to uncover mechanisms on repair process of two different types of skeletal muscle injuries, freezing injury (FI) and contraction-induced injury (CI). GSE5413 was utilized, including 11 eccentric CI, 11 FI, and 3 control samples at 4 time points (6 hours, 1 day, 3 days, and 7 days after injury). Differentially expressed genes (DEGs) separately were selected in FI and CI. Correlation analysis of samples at different time points was performed. Clustering analysis was conducted for DEGs in FI and CI, respectively. Moreover, enrichment analysis and protein/protein interaction network analysis were performed for the specific DEGs. There were 616 and 465 DEGs separately in FI and CI samples. For both FI and CI, samples between 6 hours and 1 day, and between 3 and 7 days, had a close distance. DEGs in FI and CI separately were enriched in leukocyte transendothelial migration (e.g., ICAM1 [intercellular adhesion molecule 1], ITGAM, MMP9) and protein processing in endoplasmic reticulum pathway (e.g., HSPH1, HSP90AA1). In addition, MMP9 (matrix metallopeptidase 9) and ITGAM, and MYC, HSPA1B, and HSPA1A were hub nodes in the networks in FI and CI, respectively. ICAM1, ITGAM, and MMP9 in FI, and MYC and HSP70 family members in CI were biomarkers for injury prevention.
Collapse
Affiliation(s)
- Qi Li
- 32nd Ward, Emergency Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Zhengqiang Luo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
van den Brink SC, Sage F, Vértesy Á, Spanjaard B, Peterson-Maduro J, Baron CS, Robin C, van Oudenaarden A. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat Methods 2019; 14:935-936. [PMID: 28960196 DOI: 10.1038/nmeth.4437] [Citation(s) in RCA: 639] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Susanne C van den Brink
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.,University Medical Center Utrecht, Cancer Genomics Netherlands, Utrecht, The Netherlands
| | - Fanny Sage
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ábel Vértesy
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.,University Medical Center Utrecht, Cancer Genomics Netherlands, Utrecht, The Netherlands
| | - Bastiaan Spanjaard
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.,University Medical Center Utrecht, Cancer Genomics Netherlands, Utrecht, The Netherlands.,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Josi Peterson-Maduro
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.,University Medical Center Utrecht, Cancer Genomics Netherlands, Utrecht, The Netherlands
| | - Chloé S Baron
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.,University Medical Center Utrecht, Cancer Genomics Netherlands, Utrecht, The Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.,University Medical Center Utrecht, Department of Cell Biology, Utrecht, The Netherlands
| | - Alexander van Oudenaarden
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.,University Medical Center Utrecht, Cancer Genomics Netherlands, Utrecht, The Netherlands
| |
Collapse
|
35
|
Le G, Novotny SA, Mader TL, Greising SM, Chan SSK, Kyba M, Lowe DA, Warren GL. A moderate oestradiol level enhances neutrophil number and activity in muscle after traumatic injury but strength recovery is accelerated. J Physiol 2018; 596:4665-4680. [PMID: 30035314 PMCID: PMC6166067 DOI: 10.1113/jp276432] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS The female hormone oestrogen may protect muscle from injury by reducing inflammation but this is debatable. In this study, the inflammatory response of injured muscle from oestrogen-replete mice was comprehensively compared to that from oestrogen-deficient mice. We show that oestrogen markedly promotes movement of neutrophils, an inflammatory white blood cell type, into muscle over the first few days after injury but has only a minor effect on the movement of macrophages, another inflammatory cell type. Despite the enhancement of inflammation by oestrogen in injured muscle, we found strength in oestrogen-replete mice to recover faster and to a greater extent than it does in oestrogen-deficient mice. Our study and others indicate that lower doses of oestrogen, such as that used in our study, may affect muscle inflammation and injury differently from higher doses. ABSTRACT Oestrogen has been shown to protect against skeletal muscle injury and a reduced inflammatory response has been suggested as a possible protective mechanism. There are, however, dissenting reports. Our objective was to conduct an unbiased, comprehensive study of the effect of oestradiol on the inflammatory response following muscle injury. Female C57BL6/J mice were ovariectomized and supplemented with and without oestradiol. Tibialis anterior muscles were freeze injured and studied primarily at 1-4 days post-injury. Oestradiol supplementation increased injured muscle gene expression of neutrophil chemoattractants (Cxcl1 and Cxcl5) and to a lesser extent that of monocyte/macrophage chemoattractants (Ccl2 and Spp1). Oestradiol markedly increased gene expression of the neutrophil cell surface marker (Ly6g) but had less consistent effects on the monocyte/macrophage cell surface markers (Cd68, Cd163 and Cd206). These results were confirmed at the protein level by immunoblot with oestradiol increasing LY6G/C content and having no significant effect on CD163 content. These findings were confirmed with fluorescence-activated cell sorting counts of neutrophils and macrophages in injured muscles; oestradiol increased the proportion of CD45+ cells that were neutrophils (LY6G+ ) but not the proportion that were macrophages (CD68+ or CD206+ ). Physiological impact of the oestradiol-enhanced neutrophil response was assessed by strength measurements. There was no significant difference in strength between oestradiol-supplemented and -unsupplemented mice until 2 weeks post-injury; strength was 13-24% greater in supplemented mice at 2-6 weeks post-injury. In conclusion, a moderate level of oestradiol supplementation enhances neutrophil infiltration in injured muscle and this is associated with a beneficial effect on strength recovery.
Collapse
Affiliation(s)
- Gengyun Le
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation MedicineUniversity of Minnesota Medical SchoolMinneapolisMNUSA
| | - Susan A. Novotny
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation MedicineUniversity of Minnesota Medical SchoolMinneapolisMNUSA
| | - Tara L. Mader
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation MedicineUniversity of Minnesota Medical SchoolMinneapolisMNUSA
| | - Sarah M. Greising
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation MedicineUniversity of Minnesota Medical SchoolMinneapolisMNUSA
| | - Sunny S. K. Chan
- Lillehei Heart InstituteUniversity of MinnesotaMinneapolisMNUSA
- Department of PediatricsUniversity of MinnesotaMinneapolisMNUSA
| | - Michael Kyba
- Lillehei Heart InstituteUniversity of MinnesotaMinneapolisMNUSA
- Department of PediatricsUniversity of MinnesotaMinneapolisMNUSA
| | - Dawn A. Lowe
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation MedicineUniversity of Minnesota Medical SchoolMinneapolisMNUSA
| | - Gordon L. Warren
- Department of Physical TherapyGeorgia State UniversityAtlantaGAUSA
| |
Collapse
|
36
|
Chen CF, Chu HC, Chen CM, Cheng YC, Tsai SW, Chang MC, Chen WM, Wu PK. A safety comparative study between freezing nitrogen ethanol composite and liquid nitrogen for cryotherapy of musculoskeletal tumors. Cryobiology 2018; 83:34-39. [PMID: 29953845 DOI: 10.1016/j.cryobiol.2018.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022]
Abstract
Freezing nitrogen ethanol composite (FNEC) showed effective cryoablative ability for bone tumor ex vivo and in vivo comparable to liquid nitrogen (LN). We therefore wished to compare the radiant cooling damage of the surrounding tissue between FNEC and LN. The evaluation of the radiant cooling damage was demonstrated human bone xenograft transplantation (HXT) in a mouse model. Characterizations and quantifications of the damaging effects on morphologic features and apoptosis of the cryoablative surrounding bone tissue, muscle and epidermal layer of skin were compared. The radiant cooled damaging effects including epidermal rupture, hair follicle atrophy, dermis and subcutaneous crystal vacuolation of skin were significantly greater in LN than FNEC. Muscular apoptosis, structural shrinkage and bone cellular apoptosis were supposedly 15%-33% destroying degrees of LN more than FNEC. We concluded that FNEC is an innovative cryogenic material, and it could cause less cryoablative damage to surrounding normal tissue than LN. The findings might support the safety of FNEC being applied in clinical cryoablation therapy.
Collapse
Affiliation(s)
- Cheng-Fong Chen
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taiwan; Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taiwan; Orthopaedic Department School of Medicine, National Yang-Ming University, Taiwan
| | - Hui-Chun Chu
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chao-Ming Chen
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taiwan; Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Orthopaedic Department School of Medicine, National Yang-Ming University, Taiwan
| | - Yu-Chi Cheng
- Department of Radiology, Taichung Veterans General Hospital, Taiwan
| | - Shang-Wen Tsai
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taiwan; Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Orthopaedic Department School of Medicine, National Yang-Ming University, Taiwan
| | - Ming-Chau Chang
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taiwan; Orthopaedic Department School of Medicine, National Yang-Ming University, Taiwan
| | - Wei-Ming Chen
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taiwan; Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taiwan; Orthopaedic Department School of Medicine, National Yang-Ming University, Taiwan
| | - Po-Kuei Wu
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taiwan; Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taiwan; Orthopaedic Department School of Medicine, National Yang-Ming University, Taiwan.
| |
Collapse
|
37
|
Warren GL, Call JA, Farthing AK, Baadom-Piaro B. Minimal Evidence for a Secondary Loss of Strength After an Acute Muscle Injury: A Systematic Review and Meta-Analysis. Sports Med 2018; 47:41-59. [PMID: 27100114 PMCID: PMC5214801 DOI: 10.1007/s40279-016-0528-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND An immediate loss of strength follows virtually all types of muscle injury but there is debate whether the initial strength loss is maximal or if a secondary loss of strength occurs during the first 3 days post-injury. OBJECTIVE The objective of this analysis was to conduct a systematic review and meta-analysis of the research literature to determine if a secondary loss of strength occurs after an injurious initiating event. METHODS Literature searches were performed using eight electronic databases (e.g., PubMed, Cochrane Library). Search terms included skeletal muscle AND (injur* OR damage*) AND (strength OR force OR torque). The extracted strength data were converted to a standard format by calculating the standardized mean difference, which is reported as the effect size (ES) along with its 95 % confidence interval (CI). The calculation of ES was designed so that a negative ES that was statistically less than zero would be interpreted as indicating a secondary loss of strength. RESULTS A total of 223 studies with over 4000 human and animal subjects yielded data on 262 independent groups and a total of 936 separate ESs. Our overall meta-analysis yielded a small-to-medium, positive overall ES that was statistically greater than zero (overall ES = +0.34, 95 % CI 0.27-0.40; P < 0.00000001). Considerable variation in ES was observed among studies (I 2 = 86 %), which could be partially explained by the research group conducting the study, sex of the subject, day of post-injury strength assessment, whether fatigue was present immediately post-injury, and the muscle group injured. From the subgroup meta-analyses probing these variables, 36 subgroup ESs were calculated and none were statistically less than zero. CONCLUSION Overall, our findings do not support the presence of a secondary loss of strength following an acute muscle injury, and strongly suggest that strength, on average, recovers steadily over the first 3 days post-injury.
Collapse
Affiliation(s)
- Gordon L Warren
- Department of Physical Therapy, Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University, PO Box 4019, Atlanta, GA, 30302, USA.
| | - Jarrod A Call
- Department of Kinesiology, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Amy K Farthing
- Department of Physical Therapy, Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University, PO Box 4019, Atlanta, GA, 30302, USA
| | | |
Collapse
|
38
|
Sokolović DT, Lilić L, Milenković V, Stefanović R, Ilić TP, Mekić B, Ilić I, Stojanović NM, Ilić IR. Effects of melatonin on oxidative stress parameters and pathohistological changes in rat skeletal muscle tissue following carbon tetrachloride application. Saudi Pharm J 2018; 26:1044-1050. [PMID: 30416361 PMCID: PMC6218370 DOI: 10.1016/j.jsps.2018.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
Animal models demonstrating skeletal muscle (SM) disorders are rarely investigated, although these disorders accompany liver disorders and can occur during prolonged exercise/training. In cases of SM disorders exogenous antioxidants, such as melatonin, could help by generally improving tissues antioxidant capacities. We aimed to analyze the potential of melatonin in preventing biochemical and structural changes in rat biceps muscle (BM) occurring after an acute exposure to carbon tetrachloride (CCl4). Biceps muscles obtained from male Wistar rats belonging to different experimental groups were biochemically (determination of tissue MDA, total antioxidant capacity, GSH, CAT, SOD and GPx activities) and pathologically analyzed. Also, serum levels of potassium, LHD and CK were analyzed in all experimental animals. The obtained results were statically compared with those from vehicle-treated control group. The applied melatonin prevented potassium and intracellular enzyme leakage (CK and LDH) that was induced by CCl4, as well as an increase in tissue MDA. From a panel of determined oxidative stress parameters melatonin was able to statistically significantly prevent changes in total antioxidative capacity and in CAT, SOD and GPx activities induced by CCl4. Microscopic analysis of BM from the animals exposed to CCl4 revealed significant muscle fiber disorganization and massive inflammatory cell infiltration. All these changes were significantly ameliorated in the group that received melatonin prior to CCl4. Changes in serum and tissue biochemical parameters accompanied the observed pathological changes, which demonstrated a significant influence of melatonin in preventing skeletal muscle damage induced by CCl4.
Collapse
Affiliation(s)
- Dušan T. Sokolović
- Faculty of Medicine, University of Niš, Zorana Đinđića 81, 18000 Niš, Serbia
- Corresponding author at: Department of Biochemistry, Faculty of Medicine, University of Niš, Zorana Đinđića 81, 18000 Niš, Serbia.
| | - Ljubiša Lilić
- Faculty of Sport and Physical Education in Leposavić, University of Priština, Priština, Serbia
| | - Vesko Milenković
- Faculty of Sport and Physical Education in Leposavić, University of Priština, Priština, Serbia
| | - Rade Stefanović
- Faculty of Sport and Physical Education in Leposavić, University of Priština, Priština, Serbia
| | - Tatjana Popović Ilić
- Faculty of Sport and Physical Education in Leposavić, University of Priština, Priština, Serbia
| | - Branimir Mekić
- Faculty of Sport and Physical Education in Leposavić, University of Priština, Priština, Serbia
| | - Igor Ilić
- Faculty of Sport and Physical Education in Leposavić, University of Priština, Priština, Serbia
| | | | - Ivan R. Ilić
- Faculty of Medicine, University of Niš, Zorana Đinđića 81, 18000 Niš, Serbia
| |
Collapse
|
39
|
Spletter ML, Barz C, Yeroslaviz A, Zhang X, Lemke SB, Bonnard A, Brunner E, Cardone G, Basler K, Habermann BH, Schnorrer F. A transcriptomics resource reveals a transcriptional transition during ordered sarcomere morphogenesis in flight muscle. eLife 2018; 7:34058. [PMID: 29846170 PMCID: PMC6005683 DOI: 10.7554/elife.34058] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/26/2018] [Indexed: 01/07/2023] Open
Abstract
Muscles organise pseudo-crystalline arrays of actin, myosin and titin filaments to build force-producing sarcomeres. To study sarcomerogenesis, we have generated a transcriptomics resource of developing Drosophila flight muscles and identified 40 distinct expression profile clusters. Strikingly, most sarcomeric components group in two clusters, which are strongly induced after all myofibrils have been assembled, indicating a transcriptional transition during myofibrillogenesis. Following myofibril assembly, many short sarcomeres are added to each myofibril. Subsequently, all sarcomeres mature, reaching 1.5 µm diameter and 3.2 µm length and acquiring stretch-sensitivity. The efficient induction of the transcriptional transition during myofibrillogenesis, including the transcriptional boost of sarcomeric components, requires in part the transcriptional regulator Spalt major. As a consequence of Spalt knock-down, sarcomere maturation is defective and fibers fail to gain stretch-sensitivity. Together, this defines an ordered sarcomere morphogenesis process under precise transcriptional control - a concept that may also apply to vertebrate muscle or heart development.
Collapse
Affiliation(s)
- Maria L Spletter
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Biomedical Center, Physiological ChemistryLudwig-Maximilians-Universität MünchenMartinsriedGermany
| | - Christiane Barz
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Assa Yeroslaviz
- Computational Biology GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Xu Zhang
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- School of Life Science and EngineeringFoshan UniversityGuangdongChina
| | - Sandra B Lemke
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Adrien Bonnard
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- Aix Marseille Univ, INSERM, TAGCMarseilleFrance
| | - Erich Brunner
- Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Giovanni Cardone
- Imaging FacilityMax Planck Institute of BiochemistryMartinsriedGermany
| | - Konrad Basler
- Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Bianca H Habermann
- Computational Biology GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- Aix Marseille Univ, INSERM, TAGCMarseilleFrance
| | - Frank Schnorrer
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
| |
Collapse
|
40
|
Early rehabilitation for volumetric muscle loss injury augments endogenous regenerative aspects of muscle strength and oxidative capacity. BMC Musculoskelet Disord 2018; 19:173. [PMID: 29843673 PMCID: PMC5975473 DOI: 10.1186/s12891-018-2095-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/16/2018] [Indexed: 02/08/2023] Open
Abstract
Background Volumetric muscle loss (VML) injuries occur due to orthopaedic trauma or the surgical removal of skeletal muscle and result in debilitating long-term functional deficits. Current treatment strategies do not promote significant restoration of function; additionally appropriate evidenced-based practice physical therapy paradigms have yet to be established. The objective of this study was to develop and evaluate early rehabilitation paradigms of passive range of motion and electrical stimulation in isolation or combination to understand the genetic and functional response in the tissue remaining after a multi-muscle VML injury. Methods Adult male mice underwent an ~ 20% multi-muscle VML injury to the posterior compartment (gastrocnemius, soleus, and plantaris muscle) unilaterally and were randomized to rehabilitation paradigm twice per week beginning 2 days post-injury or no treatment. Results The most salient findings of this work are: 1) that the remaining muscle tissue after VML injury was adaptable in terms of improved muscle strength and mitigation of stiffness; but 2) not adaptable to improvements in metabolic capacity. Furthermore, biochemical (i.e., collagen content) and gene (i.e., gene arrays) assays suggest that functional adaptations may reflect changes in the biomechanical properties of the remaining tissue due to the cellular deposition of non-contractile tissue in the void left by the VML injury and/or differentiation of gene expression with early rehabilitation. Conclusions Collectively this work provides evidence of genetic and functional plasticity in the remaining skeletal muscle with early rehabilitation approaches, which may facilitate future evidenced-based practice of early rehabilitation at the clinical level. Electronic supplementary material The online version of this article (10.1186/s12891-018-2095-6) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Mahdy MAA. Glycerol-induced injury as a new model of muscle regeneration. Cell Tissue Res 2018; 374:233-241. [DOI: 10.1007/s00441-018-2846-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/24/2018] [Indexed: 01/15/2023]
|
42
|
Gibbons MC, Fisch KM, Pichika R, Cheng T, Engler AJ, Schenk S, Lane JG, Singh A, Ward SR. Heterogeneous muscle gene expression patterns in patients with massive rotator cuff tears. PLoS One 2018; 13:e0190439. [PMID: 29293645 PMCID: PMC5749784 DOI: 10.1371/journal.pone.0190439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/14/2017] [Indexed: 01/26/2023] Open
Abstract
Detrimental changes in the composition and function of rotator cuff (RC) muscles are hallmarks of RC disease progression. Previous studies have demonstrated both atrophic and degenerative muscle loss in advanced RC disease. However, the relationship between gene expression and RC muscle pathology remains poorly defined, in large part due to a lack of studies correlating gene expression to tissue composition. Therefore, the purpose of this study was to determine how tissue composition relates to gene expression in muscle biopsies from patients undergoing reverse shoulder arthroplasty (RSA). Gene expression related to myogenesis, atrophy and cell death, adipogenesis and metabolism, inflammation, and fibrosis was measured in 40 RC muscle biopsies, including 31 biopsies from reverse shoulder arthroplasty (RSA) cases that had available histology data and 9 control biopsies from patients with intact RC tendons. After normalization to reference genes, linear regression was used to identify relationships between gene expression and tissue composition. Hierarchical clustering and principal component analysis (PCA) identified unique clusters, and fold-change analysis was used to determine significant differences in expression between clusters. We found that gene expression profiles were largely dependent on muscle presence, with muscle fraction being the only histological parameter that was significantly correlated to gene expression by linear regression. Similarly, samples with histologically-confirmed muscle distinctly segregated from samples without muscle. However, two sub-groups within the muscle-containing RSA biopsies suggest distinct phases of disease, with one group expressing markers of both atrophy and regeneration, and another group not significantly different from either control biopsies or biopsies lacking muscle. In conclusion, this study provides context for the interpretation of gene expression in heterogeneous and degenerating muscle, and provides further evidence for distinct stages of RC disease in humans.
Collapse
Affiliation(s)
- Michael C. Gibbons
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Kathleen M. Fisch
- Department of Computational Biology, University of California San Diego, La Jolla, California, United States of America
| | - Rajeswari Pichika
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, California, United States of America
| | - Timothy Cheng
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, California, United States of America
| | - Adam J. Engler
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Simon Schenk
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, California, United States of America
| | - John G. Lane
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, California, United States of America
| | - Anshu Singh
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, California, United States of America
- Department of Orthopedic Surgery, Kaiser Permanente, San Diego, La Jolla, California, United States of America
| | - Samuel R. Ward
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, California, United States of America
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Baker BA. Efficacy of Age-Specific High-Intensity Stretch-Shortening Contractions in Reversing Dynapenia, Sarcopenia, and Loss of Skeletal Muscle Quality. J Funct Morphol Kinesiol 2018; 3:36. [PMID: 31149646 PMCID: PMC6537613 DOI: 10.3390/jfmk3020036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the aging process, skeletal muscle performance and physiology undergoes alterations leading to decrements in functional capacity, health-span, and independence. Background: The utility and implementation of age-specific exercise is a paramount research agenda focusing on ameliorating the loss of both skeletal muscle performance and physiology; yet, to date, no consensus exists as to the most appropriate mechanical loading protocol design or overall exercise prescription that best meets this need. Thus, the purpose of this review is to highlight the most optimal type of exercise presently available and provide the most current, evidence-based findings for its efficacy. The hypothesis that high-intensity, stretch-shortening contractions (SSCs)-a form of "resistance-type exercise" training-present as the preferred exercise mode for serving as an intervention-based modality to attenuate dynapenia, sarcopenia, and decreased muscle quality with aging, even restoring the overall youthful phenotype, will be demonstrated. Conclusions: Appreciating the fundamental evidence supporting the use of high-intensity SSCs in positively impacting aging skeletal muscle's responsivity and their use as a specific and sensitive countermeasure is crucial. Moreover, from an applied perspective, SSCs may improve skeletal muscle quality and rejuvenate health-span and, ultimately, lead to augmented functional capacity, independence, and quality of life concomitant with decreased morbidity.
Collapse
Affiliation(s)
- Brent A Baker
- Health Effects Laboratory Division, Toxicology and Molecular Biology Branch, Systems Mechanophysiology and Aging Research Team, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|
44
|
Coleman SK, Cao AW, Rebalka IA, Gyulay G, Chambers PJ, Tupling AR, Austin RC, Hawke TJ. The Pleckstrin homology like domain family member, TDAG51, is temporally regulated during skeletal muscle regeneration. Biochem Biophys Res Commun 2017; 495:499-505. [PMID: 29127005 DOI: 10.1016/j.bbrc.2017.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 01/23/2023]
Abstract
The capacity for skeletal muscle to repair from daily insults as well as larger injuries is a vital component to maintaining muscle health over our lifetime. Given the importance of skeletal muscle for our physical and metabolic well-being, identifying novel factors mediating the growth and repair of skeletal muscle will thus build our foundational knowledge and help lead to potential therapeutic avenues for muscle wasting disorders. To that end, we investigated the expression of T-cell death associated gene 51 (TDAG51) during skeletal muscle repair and studied the response of TDAG51 deficient (TDAG51-/-) mice to chemically-induced muscle damage. TDAG51 mRNA and protein expression within uninjured skeletal muscle is almost undetectable but, in response to chemically-induced muscle damage, protein levels increase by 5 days post-injury and remain elevated for up to 10 days of regeneration. To determine the impact of TDAG51 deletion on skeletal muscle form and function, we compared adult male TDAG51-/- mice with age-matched wild-type (WT) mice. Body and muscle mass were not different between the two groups, however, in situ muscle testing demonstrated a significant reduction in force production both before and after fatiguing contractions in TDAG51-/- mice. During the early phases of the regenerative process (5 days post-injury), TDAG51-/- muscles display a significantly larger area of degenerating muscle tissue concomitant with significantly less regenerating area compared to WT (as demonstrated by embryonic myosin heavy chain expression). Despite these early deficits in regeneration, TDAG51-/- muscles displayed no morphological deficits by 10 days post injury compared to WT mice. Taken together, the data presented herein demonstrate TDAG51 expression to be upregulated in damaged skeletal muscle and its absence attenuates the early phases of muscle regeneration.
Collapse
Affiliation(s)
- Samantha K Coleman
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Andrew W Cao
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Irena A Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Gabriel Gyulay
- Department of Medicine, Division of Nephrology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Paige J Chambers
- Department of Kinesiology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
45
|
Abstract
BACKGROUND Early inflammation and secretion of proinflammatory cytokines such as IL-1β, IL-6, and TNF-α act as the key drivers to regulate inflammation after muscle injury. However, the effects of these key proinflammatory drivers in a noninvasive crush injury model are not well known. Understanding these effects is important for treating crush injuries that occur during natural disasters and military conflicts. PURPOSE We studied the timed mRNA expression of IL-1β, IL-6, and TNF-α in a noninvasive murine crush injury model to further understand their impact on proinflammatory cytokine pathways that are activated within the first 48 hours after a crush muscle injury. METHODS A total of 25 mice were anesthetized and placed on a crush injury apparatus platform with the apparatus piston situated in direct contact with intact skin overlying the right gastrocnemius muscle. Pressure at 45 psi was applied to the piston for 30 seconds for two applications. The mice recovered for either 4, 8, 24, or 48 hours postinjury, after which we harvested the gastrocnemius muscle of both legs. Microarray, confirmatory real-time polymerase chain reaction, and immunolabeling experiments were followed by a microarray time-course analysis. RESULTS Muscle IL-1β mRNA rose 270-fold within 4 hours and declined rapidly at 8 hours to 196-fold, 24 hours to 96-fold, and 48 hours to 10-fold. Muscle IL-6 followed the same pattern, with a 34-fold increase at 4 hours, 29-fold increase at 8 hours, 10-fold increase at 24 hours, and 5-fold increase at 48 hours. Ingenuity Pathway Analysis of IL-6 identified activation of two major downstream signaling pathways (IL-6/Stat3 and IL-1β/Egr1) as key activators of inflammation, regeneration, and fibrosis. DISCUSSION Closed crush muscle injury produced robust muscle cytokine expression levels, and the microarray findings allowed us to generate our most novel hypothesis: that high expression of IL-1β, IL-6, and TNF-α may be related to the downregulation of mitochondrial genes early after injury and triggers activation of genes in the repair and fibrosis machinery. The significance of these findings and the identified expression pathways of IL1-β, IL-6, and TNF-α and their downstream targets in skeletal muscle will allow us to further investigate targets for improved muscle recovery and limb-saving interventions.
Collapse
|
46
|
Davim ALS, Dantas TNDC, Albuquerque DF, Pereira MR, Queiroz LBTDS, Freitas LMD. Anti-inflammatory potential of microemulsion and pure bullfrog oil in muscle injury. REV BRAS MED ESPORTE 2017. [DOI: 10.1590/1517-869220172303159519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction: Every day science seeks new ways to treat various diseases through drugs that are efficient and viable. Thus, therapeutic alternatives that meet such demand are targets of study. Microemulsions are one of these new alternatives due to their peculiar pharmacodynamic and pharmacokinetic characteristics. Objective: The aim of this study was to analyze the anti-inflammatory potential of microemulsion and pure bullfrog oil using an experimental model of muscle injury. Methods: Male Swiss mice were divided into three groups: control, microemulsion and pure bullfrog oil. After the pre-treatment, a muscle injury was induced in the animals’ leg and subsequently evaluations were carried out in the horizontal extent of edema and compared between the groups at predetermined times. Following evaluation of muscle injury, dissection of the right gastrocnemius muscles was performed for histological analysis. Results: The microemulsion and pure bullfrog oil showed good anti-inflammatory activity, acting similarly in reducing edema during the first two hours, but without statistical significance from the 3rd to the 24th hour after induction. The histological analysis revealed that the muscle tissue of the animals treated with the microemulsion presented mild cellular infiltrate and little wear of muscle fibers when compared with the muscular tissue of animals treated with the pure bullfrog oil. The histological analysis of the hepatic tissue showed signs of injury in the liver lobes of the pure bullfrog oil group, not observed in the microemulsion group. Conclusion: The microemulsion sho-wed good anti-inflammatory potential in the acute phase of the inflammatory response, reducing the formation of edema and preserving muscle tissue against the occurrence of lesions and without inducing injury in hepatic tissue.
Collapse
|
47
|
Bryant AE, Aldape MJ, Bayer CR, Katahira EJ, Bond L, Nicora CD, Fillmore TL, Clauss TRW, Metz TO, Webb-Robertson BJ, Stevens DL. Effects of delayed NSAID administration after experimental eccentric contraction injury - A cellular and proteomics study. PLoS One 2017; 12:e0172486. [PMID: 28245256 PMCID: PMC5330483 DOI: 10.1371/journal.pone.0172486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Acute muscle injuries are exceedingly common and non-steroidal anti-inflammatory drugs (NSAIDs) are widely consumed to reduce the associated inflammation, swelling and pain that peak 1-2 days post-injury. While prophylactic use or early administration of NSAIDs has been shown to delay muscle regeneration and contribute to loss of muscle strength after healing, little is known about the effects of delayed NSAID use. Further, NSAID use following non-penetrating injury has been associated with increased risk and severity of infection, including that due to group A streptococcus, though the mechanisms remain to be elucidated. The present study investigated the effects of delayed NSAID administration on muscle repair and sought mechanisms supporting an injury/NSAID/infection axis. METHODS A murine model of eccentric contraction (EC)-induced injury of the tibialis anterior muscle was used to profile the cellular and molecular changes induced by ketorolac tromethamine administered 47 hr post injury. RESULTS NSAID administration inhibited several important muscle regeneration processes and down-regulated multiple cytoprotective proteins known to inhibit the intrinsic pathway of programmed cell death. These activities were associated with increased caspase activity in injured muscles but were independent of any NSAID effect on macrophage influx or phenotype switching. CONCLUSIONS These findings provide new molecular evidence supporting the notion that NSAIDs have a direct negative influence on muscle repair after acute strain injury in mice and thus add to renewed concern about the safety and benefits of NSAIDS in both children and adults, in those with progressive loss of muscle mass such as the elderly or patients with cancer or AIDS, and those at risk of secondary infection after trauma or surgery.
Collapse
Affiliation(s)
- Amy E. Bryant
- U.S. Department of Veterans Affairs, Office of Research and Development, Boise, ID, United States of America
- University of Washington School of Medicine, Seattle, WA, United States of America
| | - Michael J. Aldape
- U.S. Department of Veterans Affairs, Office of Research and Development, Boise, ID, United States of America
- Northwest Nazarene University, Nampa, ID, United States of America
| | - Clifford R. Bayer
- U.S. Department of Veterans Affairs, Office of Research and Development, Boise, ID, United States of America
| | - Eva J. Katahira
- U.S. Department of Veterans Affairs, Office of Research and Development, Boise, ID, United States of America
| | - Laura Bond
- Boise State University, Boise, ID, United States of America
| | - Carrie D. Nicora
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Thomas L. Fillmore
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | | | - Thomas O. Metz
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | | | - Dennis L. Stevens
- U.S. Department of Veterans Affairs, Office of Research and Development, Boise, ID, United States of America
- University of Washington School of Medicine, Seattle, WA, United States of America
| |
Collapse
|
48
|
Matheny RW, Carrigan CT, Abdalla MN, Geddis AV, Leandry LA, Aguilar CA, Hobbs SS, Urso ML. RNA transcript expression of IGF-I/PI3K pathway components in regenerating skeletal muscle is sensitive to initial injury intensity. Growth Horm IGF Res 2017; 32:14-21. [PMID: 27647425 DOI: 10.1016/j.ghir.2016.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/25/2016] [Accepted: 09/13/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Skeletal muscle regeneration is a complex process involving the coordinated input from multiple stimuli. Of these processes, actions of the insulin-like growth factor-I (IGF-I) and phosphoinositide 3-kinase (PI3K) pathways are vital; however, whether IGF-I or PI3K expression is modified during regeneration relative to initial damage intensity is unknown. The objective of this study was to determine whether mRNA expression of IGF-I/PI3K pathway components was differentially regulated during muscle regeneration in mice in response to traumatic injury induced by freezing of two different durations. DESIGN Traumatic injury was imposed by applying a 6-mm diameter cylindrical steel probe, cooled to the temperature of dry ice (-79°C), to the belly of the left tibialis anterior muscle of 12-week-old C57BL/6J mice for either 5s (5s) or 10s (10s). The right leg served as the uninjured control. RNA was obtained from injured and control muscles following 3, 7, and 21days recovery and examined by real-time PCR. Expression of transcripts within the IGF, PI3K, and Akt families, as well as for myogenic regulatory factors and micro-RNAs were studied. RESULTS Three days following injury, there was significantly increased expression of Igf1, Igf2, Igf1r, Igf2r, Pik3cb, Pik3cd, Pik3cg, Pik3r1, Pik3r5, Akt1, and Akt3 in response to either 5s or 10s injury compared to uninjured control muscle. There was a significantly greater expression of Pik3cb, Pik3cd, Pik3cg, Pik3r5, Akt1, and Akt3 in 10s injured muscle compared to 5s injured muscle. Seven days following injury, we observed significantly increased expression of Igf1, Igf2, Pik3cd, and Pik3cg in injured muscle compared to control muscle in response to 10s freeze injury. We also observed significantly reduced expression of Igf1r and miR-133a in response to 5s freeze injury compared to control muscle, and significantly reduced expression of Ckm, miR-1 and miR-133a in response to 10s freeze injury as compared to control. Twenty-one days following injury, 5s freeze-injured muscle exhibited significantly increased expression of Igf2, Igf2r, Pik3cg, Akt3, Myod1, Myog, Myf5, and miR-206 compared to control muscle, while 10s freeze-injured muscles showed significantly increased expression of Igf2, Igf2r, Pik3cb, Pik3cd, Pik3r5, Akt1, Akt3, and Myog compared to control. Expression of miR-1 was significantly reduced in 10s freeze-injured muscle compared to control muscle at this time. There were no significant differences in RNA expression between 5s and 10s injury at either 7d or 21d recovery in any transcript examined. CONCLUSIONS During early skeletal muscle regeneration in mice, transcript expressions for some components of the IGF-I/PI3K pathway are sensitive to initial injury intensity induced by freeze damage.
Collapse
Affiliation(s)
- Ronald W Matheny
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA 01760, USA.
| | - Christopher T Carrigan
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA 01760, USA
| | - Mary N Abdalla
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA 01760, USA
| | - Alyssa V Geddis
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA 01760, USA
| | - Luis A Leandry
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA 01760, USA
| | - Carlos A Aguilar
- Massachusetts Institute of Technology Lincoln Laboratory, 244 Wood St., Lexington, MA 02420, USA
| | - Stuart S Hobbs
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA 01760, USA
| | - Maria L Urso
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA 01760, USA
| |
Collapse
|
49
|
Fernández-Verdejo R, Vanwynsberghe AM, Essaghir A, Demoulin JB, Hai T, Deldicque L, Francaux M. Activating transcription factor 3 attenuates chemokine and cytokine expression in mouse skeletal muscle after exercise and facilitates molecular adaptation to endurance training. FASEB J 2016; 31:840-851. [PMID: 27856557 DOI: 10.1096/fj.201600987r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/31/2016] [Indexed: 12/17/2022]
Abstract
Activating transcription factor (ATF)3 regulates the expression of inflammation-related genes in several tissues under pathological contexts. In skeletal muscle, atf3 expression increases after exercise, but its target genes remain unknown. We aimed to identify those genes and to determine the influence of ATF3 on muscle adaptation to training. Skeletal muscles of ATF3-knockout (ATF3-KO) and control mice were analyzed at rest, after exercise, and after training. In resting muscles, there was no difference between genotypes in enzymatic activities or fiber type. After exercise, a microarray analysis in quadriceps revealed ATF3 affects genes modulating chemotaxis and chemokine/cytokine activity. Quantitative PCR showed that the mRNA levels of chemokine C-C motif ligand (ccl)8 and chemokine C-X-C motif ligand (cxcl)13 were higher in quadriceps of ATF3-KO mice than in control mice. The same was observed for ccl9 and cxcl13 in soleus. Also in soleus, ccl2, interleukin (il)6, il1β, and cluster of differentiation (cd)68 mRNA levels increased after exercise only in ATF3-KO mice. Endurance training increased the basal mRNA level of hexokinase-2, hormone sensitive lipase, glutathione peroxidase-1, and myosin heavy chain IIa in quadriceps of control mice but not in ATF3-KO mice. In summary, ATF3 attenuates the expression of inflammation-related genes after exercise and thus facilitates molecular adaptation to training.-Fernández-Verdejo, R., Vanwynsberghe, A. M., Essaghir, A., Demoulin, J.-B., Hai, T., Deldicque, L., Francaux, M. Activating transcription factor 3 attenuates chemokine and cytokine expression in mouse skeletal muscle after exercise and facilitates molecular adaptation to endurance training.
Collapse
Affiliation(s)
| | - Aline M Vanwynsberghe
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Ahmed Essaghir
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium; and
| | | | - Tsonwin Hai
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio, USA
| | - Louise Deldicque
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marc Francaux
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium;
| |
Collapse
|
50
|
Fry CS, Kirby TJ, Kosmac K, McCarthy JJ, Peterson CA. Myogenic Progenitor Cells Control Extracellular Matrix Production by Fibroblasts during Skeletal Muscle Hypertrophy. Cell Stem Cell 2016; 20:56-69. [PMID: 27840022 DOI: 10.1016/j.stem.2016.09.010] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 06/28/2016] [Accepted: 09/23/2016] [Indexed: 01/19/2023]
Abstract
Satellite cells, the predominant stem cell population in adult skeletal muscle, are activated in response to hypertrophic stimuli and give rise to myogenic progenitor cells (MPCs) within the extracellular matrix (ECM) that surrounds myofibers. This ECM is composed largely of collagens secreted by interstitial fibrogenic cells, which influence satellite cell activity and muscle repair during hypertrophy and aging. Here we show that MPCs interact with interstitial fibrogenic cells to ensure proper ECM deposition and optimal muscle remodeling in response to hypertrophic stimuli. MPC-dependent ECM remodeling during the first week of a growth stimulus is sufficient to ensure long-term myofiber hypertrophy. MPCs secrete exosomes containing miR-206, which represses Rrbp1, a master regulator of collagen biosynthesis, in fibrogenic cells to prevent excessive ECM deposition. These findings provide insights into how skeletal stem and progenitor cells interact with other cell types to actively regulate their extracellular environments for tissue maintenance and adaptation.
Collapse
Affiliation(s)
- Christopher S Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tyler J Kirby
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Kate Kosmac
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA; College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - John J McCarthy
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA.
| | - Charlotte A Peterson
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA; College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|