1
|
Li XM, Su S, Zhang LW, Wu YQ, Ji X. Responses to Hypoxia and Hyperoxia in Embryonic Tiger Keelbacks (Rhabdophis tigrinus lateralis; Colubridae). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:554-563. [PMID: 39930709 DOI: 10.1002/jez.2910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/13/2025] [Accepted: 01/30/2025] [Indexed: 05/07/2025]
Abstract
Studies examining the oxygen dependency of embryonic survival, growth, and differentiation have been conducted for decades in a diverse array of animal taxa but including only one oviparous snake, the viperine water snake Natrix maura. Here, we describe a study incubating eggs of the tiger keelback Rhabdophis tigrinus lateralis (Colubridae) under four oxygen conditions, hypoxia (7% and 11% O2), normoxia (21% O2), and hyperoxia (31% O2), for different lengths or at different stages of incubation. The length of hypoxic exposure is important in affecting embryonic development in R. t. lateralis, with prolonged hypoxic exposure retarding embryonic growth and differentiation, increasing embryonic mortality and deformity, reducing hatchling size and mass, and altering hatchling body shape relative to normoxic controls. Embryonic tiger keelbacks are most susceptible to hypoxia late in development, as revealed by the fact that a 5-day exposure of eggs to hypoxia of 7% O2 reduced embryo mass and hatchling mass if it occurred at late stages of incubation. Hyperoxia of 31% O2 did not enhance development of R. t. lateralis embryos, only affecting hatchling head width, which slightly differed between hyperoxic hatchlings and their normoxic siblings. This study demonstrates the importance of avoiding hypoxic exposure at late stages of embryonic development in snakes.
Collapse
Affiliation(s)
- Xiang-Mo Li
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Shan Su
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Lu-Wen Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yan-Qing Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xiang Ji
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
2
|
Lock MC, Ripley DM, Smith KLM, Mueller CA, Shiels HA, Crossley DA, Galli GLJ. Developmental plasticity of the cardiovascular system in oviparous vertebrates: effects of chronic hypoxia and interactive stressors in the context of climate change. J Exp Biol 2024; 227:jeb245530. [PMID: 39109475 PMCID: PMC11418206 DOI: 10.1242/jeb.245530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Animals at early life stages are generally more sensitive to environmental stress than adults. This is especially true of oviparous vertebrates that develop in variable environments with little or no parental care. These organisms regularly experience environmental fluctuations as part of their natural development, but climate change is increasing the frequency and intensity of these events. The developmental plasticity of oviparous vertebrates will therefore play a critical role in determining their future fitness and survival. In this Review, we discuss and compare the phenotypic consequences of chronic developmental hypoxia on the cardiovascular system of oviparous vertebrates. In particular, we focus on species-specific responses, critical windows, thresholds for responses and the interactive effects of other stressors, such as temperature and hypercapnia. Although important progress has been made, our Review identifies knowledge gaps that need to be addressed if we are to fully understand the impact of climate change on the developmental plasticity of the oviparous vertebrate cardiovascular system.
Collapse
Affiliation(s)
- Mitchell C. Lock
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Daniel M. Ripley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kerri L. M. Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Casey A. Mueller
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Holly A. Shiels
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Dane A. Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Gina L. J. Galli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
3
|
Collins HE, Alexander BT, Care AS, Davenport MH, Davidge ST, Eghbali M, Giussani DA, Hoes MF, Julian CG, LaVoie HA, Olfert IM, Ozanne SE, Bytautiene Prewit E, Warrington JP, Zhang L, Goulopoulou S. Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum. Am J Physiol Heart Circ Physiol 2024; 327:H191-H220. [PMID: 38758127 PMCID: PMC11380979 DOI: 10.1152/ajpheart.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.
Collapse
Grants
- HL169157 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HD088590 NICHD NIH HHS
- HD083132 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- The Biotechnology and Biological Sciences Research Council
- P20GM103499 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- British Heart Foundation (BHF)
- R21 HD111908 NICHD NIH HHS
- Distinguished University Professor
- The Lister Insititute
- ES032920 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL149608 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Royal Society (The Royal Society)
- U.S. Department of Defense (DOD)
- HL138181 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- MC_00014/4 UKRI | Medical Research Council (MRC)
- RG/17/8/32924 British Heart Foundation
- Jewish Heritage Fund for Excellence
- HD111908 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- APP2002129 NHMRC Ideas Grant
- HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL131182 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NS103017 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138181 NHLBI NIH HHS
- 20CSA35320107 American Heart Association (AHA)
- RG/17/12/33167 British Heart Foundation (BHF)
- National Heart Foundation Future Leader Fellowship
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL155295 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HD088590-06 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- WVU SOM Synergy Grant
- R01 HL146562 NHLBI NIH HHS
- R01 HL159865 NHLBI NIH HHS
- Canadian Insitute's of Health Research Foundation Grant
- R01 HL169157 NHLBI NIH HHS
- HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- ES034646-01 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL150472 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 2021T017 Dutch Heart Foundation Dekker Grant
- MC_UU_00014/4 Medical Research Council
- R01 HL163003 NHLBI NIH HHS
- Christenson professor In Active Healthy Living
- National Heart Foundation
- Dutch Heart Foundation Dekker
- WVU SOM Synergy
- Jewish Heritage
- Department of Health | National Health and Medical Research Council (NHMRC)
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Helen E Collins
- University of Louisville, Louisville, Kentucky, United States
| | - Barbara T Alexander
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alison S Care
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Mansoureh Eghbali
- University of California Los Angeles, Los Angeles, California, United States
| | | | | | - Colleen G Julian
- University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Holly A LaVoie
- University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - I Mark Olfert
- West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | | | | | - Junie P Warrington
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lubo Zhang
- Loma Linda University School of Medicine, Loma Linda, California, United States
| | | |
Collapse
|
4
|
Smelt E, Thomas S, Barber T, Stevenson G, Cung ABN, Welsh AW. Three-Dimensional Fractional Moving Blood Volume: A Robust Bedside Tool for Evaluation of Fetal Multiorgan Perfusion. Fetal Diagn Ther 2024; 51:432-444. [PMID: 38897185 DOI: 10.1159/000539271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/02/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Three-dimensional fractional moving blood volume (3D-FMBV) may provide superior noninvasive measurement of feto-placental perfusion compared to current methods. This study investigated the feasibility and repeatability of producing 3D-FMBV measurements of the placenta, fetal liver, kidney, and brain in a single ultrasound consultation. METHODS The placenta, fetal liver, kidney, and brain were scanned in triplicate using 3D power Doppler ultrasound (3D-PDU) in 48 women ≥22 weeks of gestation with healthy fetuses. 3D-FMBV was calculated by two analyzers. Feasibility was assessed as the percentage of cases where 3D-FMBV could be evaluated; repeatability (intraobserver and interobserver) using two-way mixed measure intraclass correlation coefficients (ICCs). RESULTS 3D-FMBV was calculated for 100% of scanned organs. Intraobserver ICCs (95% CI) were good to excellent; 0.93 (0.88-0.96) and 0.87 (0.78-0.92) for placenta, 0.95 (0.92-0.97) and 0.98 (0.96-0.99) for fetal liver, 0.96 (0.94-0.98) and 0.91 (0.85-0.95) for fetal kidney, and 0.98 (0.97-0.99) and 0.97 (0.95-0.98) for fetal brain. Interobserver ICCs (95% CI) were 0.50 (0.08-0.73), 0.92 (0.85-0.96), 0.89 (0.78-0.94), and 0.71 (0.46-0.85) for placenta, fetal liver, kidney, and brain. CONCLUSION Feto-placental perfusion assessment with 3D-FMBV is highly reliable in healthy pregnancies ≥22 weeks of gestation and can be feasibly calculated in four feto-placental vascular beds in a single ultrasound consultation.
Collapse
Affiliation(s)
- Emily Smelt
- School of Medicine and Health, University of New South Wales, Randwick, New South Wales, Australia,
- School Women's and Children's Health, University of New South Wales, Randwick, New South Wales, Australia,
| | - Samantha Thomas
- School of Medicine and Health, University of New South Wales, Randwick, New South Wales, Australia
- School Women's and Children's Health, University of New South Wales, Randwick, New South Wales, Australia
| | - Tracie Barber
- School of Medicine and Health, University of New South Wales, Randwick, New South Wales, Australia
- School Women's and Children's Health, University of New South Wales, Randwick, New South Wales, Australia
| | - Gordon Stevenson
- School of Medicine and Health, University of New South Wales, Randwick, New South Wales, Australia
- School Women's and Children's Health, University of New South Wales, Randwick, New South Wales, Australia
| | - Alexandria Bao-Ngoc Cung
- School of Medicine and Health, University of New South Wales, Randwick, New South Wales, Australia
- School Women's and Children's Health, University of New South Wales, Randwick, New South Wales, Australia
| | - Alec William Welsh
- School of Medicine and Health, University of New South Wales, Randwick, New South Wales, Australia
- School Women's and Children's Health, University of New South Wales, Randwick, New South Wales, Australia
| |
Collapse
|
5
|
Brown ER, Giussani DA. Cause of fetal growth restriction during high-altitude pregnancy. iScience 2024; 27:109702. [PMID: 38694168 PMCID: PMC11061758 DOI: 10.1016/j.isci.2024.109702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/23/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024] Open
Abstract
High-altitude pregnancy increases the incidence of fetal growth restriction and reduces birth weight. This poses a significant clinical challenge as both are linked to adverse health outcomes, including raised infant mortality and the development of the metabolic syndrome in later life. While this reduction in birth weight is mostly understood to be driven by the hypobaric hypoxia of high altitude, the causative mechanism is unclear. Moreover, it is now recognized that highland ancestry confers protection against this reduction in birth weight. Here, we analyze the evidence that pregnancy at high altitude reduces birth weight and that highland ancestry confers protection, discussing mechanisms contributing to both effects.
Collapse
Affiliation(s)
- Emily R. Brown
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Dino A. Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Cambridge Strategic Research Initiative in Reproduction
- Cambridge Cardiovascular Centre for Research Excellence
| |
Collapse
|
6
|
Özokan G, Cansız D, Bilginer A, Ünal İ, Beler M, Alturfan AA, Emekli-Alturfan E. Synthesis of salicylic acid from wintergreen oil by green chemistry overcomes its cytotoxicity in keratinocyte cells and teratogenicity in zebrafish embryos. Toxicol Mech Methods 2024; 34:203-213. [PMID: 37849293 DOI: 10.1080/15376516.2023.2272184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Salicylic acid topical is used to treat variety of skin conditions. However, salicylic acid in these products is generated through industrial synthesis and has been shown to negatively impact fetal development and cause congenital abnormalities. We hypothesized that teratogenic effects reported in salicylic acid can be prevented by naturally synthesizing salicylic acid from wintergreen oil using green chemistry method. For this purpose, we investigated the effects of natural salicylic acid (NSA) synthesized from wintergreen oil using green chemistry and synthetic salicylic acid (SSA) on keratinocyte cell (HaCaT) proliferation and zebrafish embryo development. NSA structures were analyzed by 1H NMR, 13C NMR, and GC/MS methods. Percentage inhibition against HaCaT cell was determined by MTS assay. xCelligence system was used for cellular activities. Zebrafish embryos were exposed to NSA and SSA for 72 h post-fertilization. Lipid peroxidation, nitric oxide, sialic acid, glutathione-S-transferase, catalase, and superoxide dismutase were evaluated using biochemical methods. Expressions of nqO1, gfap, bdnf, vtg, egr, cyp1a, and igf2 were determined by RT-PCR as developmental indicators. MTS and RT-cell analysis showed increased cell viability by NSA, whereas SSA decreased cell viability. NSA beneficially affected zebrafish embryo development while SSA exerted deleterious effects through oxidant-antioxidant status, inflammation, and development. Results of our study showed for the first time that synthesis of salicylic acid from wintergreen oil by green chemistry overcomes its cytotoxicity in keratinocyte cells and teratogenicity in zebrafish embryos. This finding is important for drug research on safe topical applications during pregnancy, when preventing exposure to drug and chemical-derived teratogens is vital.
Collapse
Affiliation(s)
- Gökhan Özokan
- BioArge Laboratories, Yıldız Technical University Technocity, Istanbul, Turkey
| | - Derya Cansız
- Faculty of Medicine, Medical Biochemistry, Medipol University, Istanbul, Turkey
| | - Abdulkerim Bilginer
- BioArge Laboratories, Yıldız Technical University Technocity, Istanbul, Turkey
| | - İsmail Ünal
- Department of Biochemistry, Institute of Health Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Merih Beler
- Department of Biochemistry, Institute of Health Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - A Ata Alturfan
- Department of Biochemistry, Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Basic Medical Sciences, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
7
|
Saini BS, Ducas R, Darby JRT, Marini D, Sun L, Macgowan CK, Windrim R, Kingdom JC, Wald RM, Morrison JL, Seed M. Feasibility of MRI assessment of maternal-fetal oxygen transport and consumption relative to maternal position in healthy late gestational pregnancies. J Physiol 2023; 601:5413-5436. [PMID: 37906114 DOI: 10.1113/jp285097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023] Open
Abstract
Late gestational supine positioning reduces maternal cardiac output due to inferior vena caval (IVC) compression, despite increased collateral venous return. However, little is known about the impact of maternal position on oxygen (O2 ) delivery and consumption of the gravid uterus, fetus, placenta and lower limbs. We studied the effects of maternal positioning on these parameters in 20 healthy pregnant subjects at 36 ± 2 weeks using magnetic resonance imaging (MRI); a follow-up MRI was performed 6-months postpartum (n = 16/20). MRI techniques included phase-contrast and T1/T2 relaxometry for blood flow and oximetry imaging, respectively. O2 transport was measured in the following vessels (bilateral where appropriate): maternal abdominal descending aorta (DAoabdo ), IVC, ovarian, paraspinal veins (PSV), uterine artery (UtA) and external iliacs, and umbilical. Maternal cardiac output was measured by summing DAothoracic and superior vena cava flows. Supine mothers (n = 6) had lower cardiac output and O2 delivery in the DAoabdo , UtA and external iliac arteries, and higher PSV flow than those in either the left (n = 8) or right (n = 6) lateral positions during MRI. However, O2 consumption in the gravid uterus, fetus, placenta and lower limbs was unaffected by maternal positioning. The ratio of IVC/PSV flow decreased in supine mothers while ovarian venous flow and O2 saturation were unaltered, suggesting a major route of pelvic venous return unaffected by maternal position. Placental-fetal O2 transport and consumption were similar between left and right lateral maternal positions. In comparison to non-pregnant findings, DAoabdo and UtA O2 delivery and pelvic O2 consumption increased, while lower-limb consumption remained constant , despite reduced external iliac artery O2 delivery in late gestation. KEY POINTS: Though sleeping supine during the third trimester is associated with an increased risk of antepartum stillbirth, the underlying biological mechanisms are not fully understood. Maternal cardiac output and uteroplacental flow are reduced in supine mothers due to inferior vena caval compression from the weight of the gravid uterus. This MRI study provides a comprehensive circulatory assessment, demonstrating reduced maternal cardiac output and O2 delivery (uteroplacental, lower body) in supine compared to lateral positioning; however, O2 consumption (gravid uterus, fetus, placenta, lower limbs) was preserved. Unlike other mammalian species, the ovarian veins conduct substantial venous return from the human pregnant uterus that is unaffected by maternal positioning. Lumbar paraspinal venous flow increased in supine mothers. These observations may have important considerations during major pelvic surgery in pregnancy (i.e. placenta percreta). Future studies should address the importance of maternal positioning as a potential tool to deliver improved perinatal outcomes in pregnancies with compromised uteroplacental O2 delivery.
Collapse
Affiliation(s)
- Brahmdeep S Saini
- Heart Centre, Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robin Ducas
- Department of Internal Medicine, Section of Cardiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Davide Marini
- Heart Centre, Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Liqun Sun
- Heart Centre, Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christopher K Macgowan
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rory Windrim
- Department of Obstetrics and Gynaecology, Maternal-Fetal Medicine Division, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John C Kingdom
- Department of Obstetrics and Gynaecology, Maternal-Fetal Medicine Division, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rachel M Wald
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mike Seed
- Heart Centre, Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Filippi L, Scaramuzzo RT, Pascarella F, Pini A, Morganti R, Cammalleri M, Bagnoli P, Ciantelli M. Fetal oxygenation in the last weeks of pregnancy evaluated through the umbilical cord blood gas analysis. Front Pediatr 2023; 11:1140021. [PMID: 37152310 PMCID: PMC10160648 DOI: 10.3389/fped.2023.1140021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Embryo and fetus grow and mature over the first trimester of pregnancy in a dynamic hypoxic environment, where placenta development assures an increased oxygen availability. However, it is unclear whether and how oxygenation changes in the later trimesters and, more specifically, in the last weeks of pregnancy. Methods Observational study that evaluated the gas analysis of the umbilical cord blood collected from a cohort of healthy newborns with gestational age ≥37 weeks. Umbilical venous and arterial oxygen levels as well as fetal oxygen extraction were calculated to establish whether oxygenation level changes over the last weeks of pregnancy. In addition, fetal lactate, and carbon dioxide production were analyzed to establish whether oxygen oscillations may induce metabolic effects in utero. Results This study demonstrates a progressive increase in fetal oxygenation levels from the 37th to the 41st weeks of gestation (mean venous PaO2 approximately from 20 to 25 mmHg; p < 0.001). This increase is largely attributable to growing umbilical venous PaO2, regardless of delivery modalities. In neonates born by vaginal delivery, the increased oxygen availability is associated with a modest increase in oxygen extraction, while in neonates born by cesarean section, it is associated with reduced lactate production. Independently from the type of delivery, carbon dioxide production moderately increased. These findings suggest a progressive shift from a prevalent anaerobic metabolism (Warburg effect) towards a growing aerobic metabolism. Conclusion This study confirms that fetuses grow in a hypoxic environment that becomes progressively less hypoxic in the last weeks of gestation. The increased oxygen availability seems to favor aerobic metabolic shift during the last weeks of intrauterine life; we hypothesize that this environmental change may have implications for fetal maturation during intrauterine life.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Neonatology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Correspondence: Luca Filippi
| | | | | | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Riccardo Morganti
- Section of Statistics, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Maurizio Cammalleri
- Unit of General Physiology, Department of Biology, University of Pisa, Pisa, Italy
| | - Paola Bagnoli
- Unit of General Physiology, Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
9
|
Beckman EJ, Vargas Campos W, Benham PM, Schmitt CJ, Cheviron ZA, Witt CC. Selection on embryonic haemoglobin in an elevational generalist songbird. Biol Lett 2022; 18:20220105. [PMCID: PMC9554719 DOI: 10.1098/rsbl.2022.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Animals developing at high elevation experience a suite of environmental challenges, most notably the low partial pressure of oxygen (PO2) in ambient air. In low PO2, bird species with high-elevation ancestry consistently demonstrate higher hatching success than lowland counterparts, suggesting highland birds are adapted to restricted O2 (hypoxia) in early development. Haemoglobin (Hb), the critical oxygen-transport protein, is a likely target of PO2-related selection across ontogeny since Hb isoforms expressed at distinct developmental stages demonstrate different O2 affinities. To test if Hb function is under PO2-related selection at different ontogenetic stages, we sampled a songbird, the hooded siskin (Spinus magellanicus), across two approximately 4000 m elevational transects. We sequenced all of the loci that encode avian Hb isoforms, and tested for signatures of spatially varying selection by comparing divergence patterns in Hb loci to other loci sampled across the genome. We found strong signatures of diversifying selection at non-synonymous sites in loci that contribute to embryonic (απ, βH) and definitive (βA) Hb isoforms. This is the first evidence for selection on embryonic haemoglobin in high-elevation Neoaves. We conclude that selection on Hb function at brief, but critical stages of ontogeny may be a vital component to high elevation adaptation in birds.
Collapse
Affiliation(s)
- Elizabeth J. Beckman
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA,Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Walter Vargas Campos
- Centro de Ornitología y Biodiversidad, Calle Sta. Rita 105, Oficina 202, Santiago de Surco, Lima, Perú
| | - Phred M. Benham
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA,Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - C. Jonathan Schmitt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA,Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | | | - Christopher C. Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
10
|
Valenzuela I, Kinoshita M, van der Merwe J, Maršál K, Deprest J. Prenatal interventions for fetal growth restriction in animal models: A systematic review. Placenta 2022; 126:90-113. [PMID: 35796064 DOI: 10.1016/j.placenta.2022.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/20/2022] [Accepted: 06/17/2022] [Indexed: 12/09/2022]
Abstract
Fetal growth restriction (FGR) in human pregnancy is associated with perinatal mortality, short- and long-term morbidities. No prenatal therapy is currently established despite decades of research. We aimed to review interventions in animal models for prenatal FGR treatment, and to seek the next steps for an effective clinical therapy. We registered our protocol and searched MEDLINE, Embase, and The Cochrane Library with no language restrictions, in accordance with the PRISMA guideline. We included all studies that reported the effects of any prenatal intervention in animal models of induced FGR. From 3257 screened studies, 202 describing 237 interventions were included for the final synthesis. Mice and rats were the most used animals (79%) followed by sheep (16%). Antioxidants (23%), followed by vasodilators (18%), nutrients (14%), and immunomodulators (12%) were the most tested therapy. Two-thirds of studies only reported delivery or immediate neonatal outcomes. Adverse effects were rarely reported (11%). Most studies (73%), independent of the intervention, showed a benefit in fetal survival or birthweight. The risk of bias was high, mostly due to the lack of randomization, allocation concealment, and blinding. Future research should aim to describe both short- and long-term outcomes across various organ systems in well-characterized models. Further efforts must be made to reduce selection, performance, and detection bias.
Collapse
|
11
|
Chen B, Li D, Ran B, Zhang P, Wang T. Key miRNAs and Genes in the High-Altitude Adaptation of Tibetan Chickens. Front Vet Sci 2022; 9:911685. [PMID: 35909692 PMCID: PMC9330022 DOI: 10.3389/fvets.2022.911685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Tibetan chickens living at high altitudes show specific physiological adaptations to the extreme environmental conditions. However, the regulated base of how chickens adapt to high-altitude habitats remains largely unknown. In this study, we sequenced 96 transcriptomes (including 48 miRNA and 48 mRNA transcriptomes of heart, liver, lung, and brain) and resequenced 12 whole genomes of Tibetan chickens and Peng'xian yellow chickens. We found that several miRNAs show the locally optimal plastic changes that occurred in miRNAs of chickens, such as miR-10c-5p, miR-144-3p, miR-3536, and miR-499-5p. These miRNAs could have effects on early adaption to the high-altitude environment of chickens. In addition, the genes under selection between Tibetan chickens and Peng'xian yellow chickens were mainly related to oxygen transport and oxidative stress. The I-kappa B kinase/NF-kappa B signaling pathway is widely found for high-altitude adaptation in Tibetan chickens. The candidate differentially expressed miRNAs and selected genes identified in this study may be useful in current breeding efforts to develop improved breeds for the highlands.
Collapse
Affiliation(s)
- Binlong Chen
- College of Animal Science, Xichang University, Xichang, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, China
- *Correspondence: Diyan Li
| | - Bo Ran
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Pu Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, China
- Tao Wang
| |
Collapse
|
12
|
Tong W, Allison BJ, Brain KL, Patey OV, Niu Y, Botting KJ, Ford SG, Garrud TA, Wooding PF, Shaw CJ, Lyu Q, Zhang L, Ma J, Cindrova-Davies T, Yung HW, Burton GJ, Giussani DA. Chronic Hypoxia in Ovine Pregnancy Recapitulates Physiological and Molecular Markers of Preeclampsia in the Mother, Placenta, and Offspring. Hypertension 2022; 79:1525-1535. [PMID: 35534925 PMCID: PMC9172902 DOI: 10.1161/hypertensionaha.122.19175] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/20/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Preeclampsia continues to be a prevalent pregnancy complication and underlying mechanisms remain controversial. A common feature of preeclampsia is utero-placenta hypoxia. In contrast to the impact of hypoxia on the placenta and fetus, comparatively little is known about the maternal physiology. METHODS We adopted an integrative approach to investigate the inter-relationship between chronic hypoxia during pregnancy with maternal, placental, and fetal outcomes, common in preeclampsia. We exploited a novel technique using isobaric hypoxic chambers and in vivo continuous cardiovascular recording technology for measurement of blood pressure in sheep and studied the placental stress in response to hypoxia at cellular and subcellular levels. RESULTS Chronic hypoxia in ovine pregnancy promoted fetal growth restriction (FGR) with evidence of fetal brain-sparing, increased placental hypoxia-mediated oxidative damage, and activated placental stress response pathways. These changes were linked with dilation of the placental endoplasmic reticulum (ER) cisternae and increased placental expression of the antiangiogenic factors sFlt-1 (soluble fms-like tyrosine kinase 1) and sEng (soluble endoglin), combined with a shift towards an angiogenic imbalance in the maternal circulation. Chronic hypoxia further led to an increase in uteroplacental vascular resistance and the fall in maternal blood pressure with advancing gestation measured in normoxic pregnancy did not occur in hypoxic pregnancy. CONCLUSIONS Therefore, we show in an ovine model of sea-level adverse pregnancy that chronic hypoxia recapitulates physiological and molecular features of preeclampsia in the mother, placenta, and offspring.
Collapse
Affiliation(s)
- Wen Tong
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Beth J. Allison
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Kirsty L. Brain
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Olga V. Patey
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Youguo Niu
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- BHF Cardiovascular Centre for Research Excellence, University of Cambridge, United Kingdom (Y.N., K.J.B., D.A.S.)
- Department of Aerospace Physiology, Fourth Military Medical University, Xi’an, China (Y.N., Q.L., L.Z., J.M., D.A.G.)
| | - Kimberley J. Botting
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- BHF Cardiovascular Centre for Research Excellence, University of Cambridge, United Kingdom (Y.N., K.J.B., D.A.S.)
| | - Sage G. Ford
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Tessa A. Garrud
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Peter F.B. Wooding
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Caroline J. Shaw
- Department of Metabolism, Digestion and Reproduction, Imperial College London, United Kingdom (C.J.S.)
| | - Qiang Lyu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi’an, China (Y.N., Q.L., L.Z., J.M., D.A.G.)
| | - Lin Zhang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi’an, China (Y.N., Q.L., L.Z., J.M., D.A.G.)
| | - Jin Ma
- Department of Aerospace Physiology, Fourth Military Medical University, Xi’an, China (Y.N., Q.L., L.Z., J.M., D.A.G.)
| | - Tereza Cindrova-Davies
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Hong Wa Yung
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Graham J. Burton
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Dino A. Giussani
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- BHF Cardiovascular Centre for Research Excellence, University of Cambridge, United Kingdom (Y.N., K.J.B., D.A.S.)
| |
Collapse
|
13
|
Lakshman R, Spiroski AM, McIver LB, Murphy MP, Giussani DA. Noninvasive Biomarkers for Cardiovascular Dysfunction Programmed in Male Offspring of Adverse Pregnancy. Hypertension 2021; 78:1818-1828. [PMID: 34757774 PMCID: PMC8577293 DOI: 10.1161/hypertensionaha.121.17926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Rama Lakshman
- Department of Physiology, Development and Neuroscience (R.L., A.-M.S., L.B.M., D.A.G.), University of Cambridge, United Kingdom
| | - Ana-Mishel Spiroski
- Department of Physiology, Development and Neuroscience (R.L., A.-M.S., L.B.M., D.A.G.), University of Cambridge, United Kingdom.,Cambridge BHF Centre of Research Excellence (A.-M.S., M.P.M., D.A.G.), University of Cambridge, United Kingdom
| | - Lauren B McIver
- Department of Physiology, Development and Neuroscience (R.L., A.-M.S., L.B.M., D.A.G.), University of Cambridge, United Kingdom
| | - Michael P Murphy
- MRC Mitochondria Biology Unit (M.P.M.), University of Cambridge, United Kingdom.,Cambridge BHF Centre of Research Excellence (A.-M.S., M.P.M., D.A.G.), University of Cambridge, United Kingdom.,Department of Medicine (M.P.M., D.A.G.), University of Cambridge, United Kingdom
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience (R.L., A.-M.S., L.B.M., D.A.G.), University of Cambridge, United Kingdom.,Cambridge BHF Centre of Research Excellence (A.-M.S., M.P.M., D.A.G.), University of Cambridge, United Kingdom.,Department of Medicine (M.P.M., D.A.G.), University of Cambridge, United Kingdom.,Cambridge Strategic Research Initiative in Reproduction, United Kingdom (D.A.G.)
| |
Collapse
|
14
|
Abstract
Heart disease remains one of the greatest killers. In addition to genetics and traditional lifestyle risk factors, we now understand that adverse conditions during pregnancy can also increase susceptibility to cardiovascular disease in the offspring. Therefore, the mechanisms by which this occurs and possible preventative therapies are of significant contemporary interest to the cardiovascular community. A common suboptimal pregnancy condition is a sustained reduction in fetal oxygenation. Chronic fetal hypoxia results from any pregnancy with increased placental vascular resistance, such as in preeclampsia, placental infection, or maternal obesity. Chronic fetal hypoxia may also arise during pregnancy at high altitude or because of maternal respiratory disease. This article reviews the short- and long-term effects of hypoxia on the fetal cardiovascular system, and the importance of chronic fetal hypoxia in triggering a developmental origin of future heart disease in the adult progeny. The work summarizes evidence derived from human studies as well as from rodent, avian, and ovine models. There is a focus on the discovery of the molecular link between prenatal hypoxia, oxidative stress, and increased cardiovascular risk in adult offspring. Discussion of mitochondria-targeted antioxidant therapy offers potential targets for clinical intervention in human pregnancy complicated by chronic fetal hypoxia.
Collapse
Affiliation(s)
- Dino A Giussani
- Department of Physiology, Development, and Neuroscience; The Barcroft Centre; Cambridge Cardiovascular British Heart Foundation Centre for Research Excellence; and Cambridge Strategic Research Initiative in Reproduction, University of Cambridge, UK
| |
Collapse
|
15
|
Kakadia J, Biggar K, Jain B, Chen AW, Nygard K, Li C, Nathanielsz PW, Jansson T, Gupta MB. Mechanisms linking hypoxia to phosphorylation of insulin-like growth factor binding protein-1 in baboon fetuses with intrauterine growth restriction and in cell culture. FASEB J 2021; 35:e21788. [PMID: 34425031 DOI: 10.1096/fj.202100397r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022]
Abstract
Hypoxia increases fetal hepatic insulin-like growth factor binding protein-1 (IGFBP-1) phosphorylation mediated by mechanistic target of rapamycin (mTOR) inhibition. Whether maternal nutrient restriction (MNR) causes fetal hypoxia remains unclear. We used fetal liver from a baboon (Papio sp.) model of intrauterine growth restriction due to MNR (70% global diet of Control) and liver hepatocellular carcinoma (HepG2) cells as a model for human fetal hepatocytes and tested the hypothesis that mTOR-mediated IGFBP-1 hyperphosphorylation in response to hypoxia requires hypoxia-inducible factor-1α (HIF-1α) and regulated in development and DNA-damage responses-1 (REDD-1) signaling. Western blotting (n = 6) and immunohistochemistry (n = 3) using fetal liver indicated greater expression of HIF-1α, REDD-1 as well as erythropoietin and its receptor, and vascular endothelial growth factor at GD120 (GD185 term) in MNR versus Control. Moreover, treatment of HepG2 cells with hypoxia (1% pO2 ) (n = 3) induced REDD-1, inhibited mTOR complex-1 (mTORC1) activity and increased IGFBP-1 secretion/phosphorylation (Ser101/Ser119/Ser169). HIF-1α inhibition by echinomycin or small interfering RNA silencing prevented the hypoxia-mediated inhibition of mTORC1 and induction of IGFBP-1 secretion/phosphorylation. dimethyloxaloylglycine (DMOG) induced HIF-1α and also REDD-1 expression, inhibited mTORC1 and increased IGFBP-1 secretion/phosphorylation. Induction of HIF-1α (DMOG) and REDD-1 by Compound 3 inhibited mTORC1, increased IGFBP-1 secretion/ phosphorylation and protein kinase PKCα expression. Together, our data demonstrate that HIF-1α induction, increased REDD-1 expression and mTORC1 inhibition represent the mechanistic link between hypoxia and increased IGFBP-1 secretion/phosphorylation. We propose that maternal undernutrition limits fetal oxygen delivery, as demonstrated by increased fetal liver expression of hypoxia-responsive proteins in baboon MNR. These findings have important implications for our understanding of the pathophysiology of restricted fetal growth.
Collapse
Affiliation(s)
- Jenica Kakadia
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Kyle Biggar
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Bhawani Jain
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Allan W Chen
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Karen Nygard
- Biotron Integrated Microscopy Facility, University of Western Ontario, London, ON, Canada
| | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, WY, USA.,Southwest National Primate Research Center, San Antonio, TX, USA
| | - Peter W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, WY, USA.,Southwest National Primate Research Center, San Antonio, TX, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Madhulika B Gupta
- Department of Biochemistry, University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, London, ON, Canada.,Department of Pediatrics, University of Western Ontario, London, ON, Canada
| |
Collapse
|
16
|
Saini BS, Darby JRT, Marini D, Portnoy S, Lock MC, Yin Soo J, Holman SL, Perumal SR, Wald RM, Windrim R, Macgowan CK, Kingdom JC, Morrison JL, Seed M. An MRI approach to assess placental function in healthy humans and sheep. J Physiol 2021; 599:2573-2602. [PMID: 33675040 DOI: 10.1113/jp281002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/15/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Human placental function is evaluated using non-invasive Doppler ultrasound of umbilical and uterine artery pulsatility indices as measures of resistance in placental vascular beds, while measurement of placental oxygen consumption ( V O 2 ) is only possible during Caesarean delivery. This study shows the feasibility of using magnetic resonance imaging (MRI) in utero to measure blood flow and oxygen content in uterine and umbilical vessels to calculate oxygen delivery to and V O 2 by the gravid uterus, uteroplacenta and fetus. Normal late gestational human uteroplacental V O 2 by MRI was ∼4 ml min-1 kg-1 fetal weight, which was similar to our MRI measurements in sheep and to those previously measured using invasive techniques. Our MRI approach can quantify uteroplacental V O 2 , which involves the quantification of maternal- and fetal-placental blood flows, fetal oxygen delivery and V O 2 , and the oxygen gradient between uterine- and umbilical-venous blood, providing a comprehensive assessment of placental function with clinical potential. ABSTRACT It has not been feasible to perform routine clinical measurement of human placental oxygen consumption ( V O 2 ) and in vitro studies do not reflect true metabolism in utero. Here we propose an MRI method to non-invasively quantify in utero placental and fetal oxygen delivery ( D O 2 ) and V O 2 in healthy humans and sheep. Women (n = 20) and Merino sheep (n = 10; 23 sets of measurements) with singleton pregnancies underwent an MRI in late gestation (36 ± 2 weeks and 128 ± 9 days, respectively; mean ± SD). Blood flow (phase-contrast) and oxygen content (T1 and T2 relaxometry) were measured in the major uterine- and umbilical-placental vessels, allowing calculation of uteroplacental and fetal D O 2 and V O 2 . Maternal D O 2 (ml min-1 kg-1 fetus) to the gravid uterus was similar in humans and sheep (human = 54 ± 15, sheep = 53 ± 21, P = 0.854), while fetal D O 2 (human = 25 ± 4, sheep = 22 ± 5, P = 0.049) was slightly lower in sheep. Uteroplacental and fetal V O 2 (ml min-1 kg-1 fetus; uteroplacental: human = 4.1 ± 1.5, sheep = 3.5 ± 1.9, P = 0.281; fetus: human = 6.8 ± 1.3, sheep = 7.2 ± 1.7, P = 0.426) were similar between species. Late gestational uteroplacental:fetal V O 2 ratio did not change with age (human, P = 0.256; sheep, P = 0.121). Human umbilical blood flow (ml min-1 kg-1 fetus) decreased with advancing age (P = 0.008), while fetal V O 2 was preserved through an increase in oxygen extraction (P = 0.046). By contrast, sheep fetal V O 2 was preserved through stable umbilical flow (ml min-1 kg-1 ; P = 0.443) and oxygen extraction (P = 0.582). MRI derived measurements of uteroplacental and fetal V O 2 between humans and sheep were similar and in keeping with prior data obtained using invasive techniques. Taken together, these data confirm the reliability of our approach, which offers a novel clinical 'placental function test'.
Collapse
Affiliation(s)
- Brahmdeep S Saini
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Division of Cardiology, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Davide Marini
- Division of Cardiology, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Sharon Portnoy
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Sunthara R Perumal
- Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5086, Australia
| | - Rachel M Wald
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, ON, M5G 2N2, Canada
| | - Rory Windrim
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1E2, Canada
| | - Christopher K Macgowan
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - John C Kingdom
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1E2, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Mike Seed
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Division of Cardiology, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.,Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1E2, Canada
| |
Collapse
|
17
|
Oviedo-Rondón EO, Velleman SG, Wineland MJ. The Role of Incubation Conditions in the Onset of Avian Myopathies. Front Physiol 2020; 11:545045. [PMID: 33041856 PMCID: PMC7530269 DOI: 10.3389/fphys.2020.545045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
White striping, wooden breast, and spaghetti muscle have become common myopathies in broilers worldwide. Several research reports have indicated that the origin of these lesions is metabolic disorders. These failures in normal metabolism can start very early in life, and suboptimal incubation conditions may trigger some of the key alterations on muscle metabolism. Incubation conditions affect the development of muscle and can be associated with the onset of myopathies. A series of experiments conducted with broilers, turkeys, and ducks are discussed to overview primary information showing the main changes in breast muscle histomorphology, metabolism, and physiology caused by suboptimal incubation conditions. These modifications may be associated with current myopathies. Those effects of incubation on myopathy occurrence and severity have also been confirmed at slaughter age. The impact of egg storage, temperature profiles, oxygen concentrations, and time of hatch have been evaluated. The effects have been observed in diverse species, genetic lines, and both genders. Histological and muscle evaluations have detected that myopathies could be induced by extended hypoxia and high temperatures, and those effects depend on the genetic line. Thus, these modifications in muscle metabolic responses may make hatchlings more susceptible to develop myopathies during grow out due to thermal stress, high-density diets, and fast growth rates.
Collapse
Affiliation(s)
| | - Sandra G. Velleman
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
18
|
Skeffington KL, Beck C, Itani N, Niu Y, Shaw CJ, Giussani DA. Hypertension Programmed in Adult Hens by Isolated Effects of Developmental Hypoxia In Ovo. Hypertension 2020; 76:533-544. [PMID: 32536277 PMCID: PMC7340221 DOI: 10.1161/hypertensionaha.120.15045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In mammals, pregnancy complicated by chronic hypoxia can program hypertension in the adult offspring. However, mechanisms remain uncertain because the partial contributions of the challenge on the placenta, mother, and fetus are difficult to disentangle. Here, we used chronic hypoxia in the chicken embryo-an established model system that permits isolation of the direct effects of developmental hypoxia on the cardiovascular system of the offspring, independent of additional effects on the mother or the placenta. Fertilized chicken eggs were exposed to normoxia (N; 21% O2) or hypoxia (H; 13.5%-14% O2) from the start of incubation (day 0) until day 19 (hatching, ≈day 21). Following hatching, all birds were maintained under normoxic conditions until ≈6 months of adulthood. Hypoxic incubation increased hematocrit (+27%) in the chicken embryo and induced asymmetrical growth restriction (body weight, -8.6%; biparietal diameter/body weight ratio, +7.5%) in the hatchlings (all P<0.05). At adulthood (181±4 days), chickens from hypoxic incubations remained smaller (body weight, -7.5%) and showed reduced basal and stimulated in vivo NO bioavailability (pressor response to NG-nitro-L-arginine methyl ester, -43%; phenylephrine pressor response during NO blockade, -61%) with significant hypertension (mean arterial blood pressure, +18%), increased cardiac work (ejection fraction, +12%; fractional shortening, +25%; enhanced baroreflex gain, +456%), and left ventricular wall thickening (left ventricular wall volume, +36%; all P<0.05). Therefore, we show that chronic hypoxia can act directly on a developing embryo to program hypertension, cardiovascular dysfunction, and cardiac wall remodeling in adulthood in the absence of any maternal or placental effects.
Collapse
Affiliation(s)
- Katie L. Skeffington
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (K.L.S., C.B., N.I., Y.N., C.J.S., D.A.G.)
| | - Christian Beck
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (K.L.S., C.B., N.I., Y.N., C.J.S., D.A.G.)
| | - Nozomi Itani
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (K.L.S., C.B., N.I., Y.N., C.J.S., D.A.G.)
| | - Youguo Niu
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (K.L.S., C.B., N.I., Y.N., C.J.S., D.A.G.)
| | - Caroline J. Shaw
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (K.L.S., C.B., N.I., Y.N., C.J.S., D.A.G.),Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, United Kingdom (C.J.S.)
| | - Dino A. Giussani
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (K.L.S., C.B., N.I., Y.N., C.J.S., D.A.G.)
| |
Collapse
|
19
|
Li K, Jiang L, Wang J, Xia L, Zhao R, Cai C, Wang P, Zhan X, Wang Y. Maternal dietary supplementation with different sources of selenium on antioxidant status and mortality of chicken embryo in a model of diquat-induced acute oxidative stress. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Smith B, Crossley JL, Elsey RM, Hicks JW, Crossley DA. Embryonic developmental oxygen preconditions cardiovascular functional response to acute hypoxic exposure and maximal β-adrenergic stimulation of anesthetized juvenile American alligators ( Alligator mississippiensis). ACTA ACUST UNITED AC 2019; 222:jeb.205419. [PMID: 31548289 DOI: 10.1242/jeb.205419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022]
Abstract
The effects of the embryonic environment on juvenile phenotypes are widely recognized. We investigated the effect of embryonic hypoxia on the cardiovascular phenotype of 4-year-old American alligators (Alligator mississippiensis). We hypothesized that embryonic 10% O2 preconditions cardiac function, decreasing the reduction in cardiac contractility associated with acute 5% O2 exposure in juvenile alligators. Our findings indicate that dobutamine injections caused a 90% increase in systolic pressure in juveniles that were incubated in 21% and 10% O2, with the 10% O2 group responding with a greater rate of ventricular relaxation and greater left ventricle output compared with the 21% O2 group. Further, our findings indicate that juvenile alligators that experienced embryonic hypoxia have a faster rate of ventricular relaxation, greater left ventricle stroke volume and greater cardiac power following β-adrenergic stimulation, compared with juvenile alligators that did not experience embryonic hypoxia. When juveniles were exposed to 5% O2 for 20 min, normoxic-incubated juveniles had a 50% decline in left ventricle maximal rate of pressure development and maximal pressure; however, these parameters were unaffected and decreased less in the hypoxic-incubated juveniles. These data indicate that embryonic hypoxia in crocodilians alters the cardiovascular phenotype, changing the juvenile response to acute hypoxia and β-adrenergic stimulation.
Collapse
Affiliation(s)
- Brandt Smith
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Janna L Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Ruth M Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, LA 70643, USA
| | - James W Hicks
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
21
|
Teramo K, Piñeiro-Ramos JD. Fetal chronic hypoxia and oxidative stress in diabetic pregnancy. Could fetal erythropoietin improve offspring outcomes? Free Radic Biol Med 2019; 142:32-37. [PMID: 30898666 DOI: 10.1016/j.freeradbiomed.2019.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022]
Abstract
Oxidative stress is responsible for microvascular complications (hypertension, nephropathy, retinopathy, peripheral neuropathy) of diabetes, which during pregnancy increase both maternal and fetal complications. Chronic hypoxia and hyperglycemia result in increased oxidative stress and decreased antioxidant enzyme activity. However, oxidative stress induces also anti-oxidative reactions both in pregnant diabetes patients and in their fetuses. Not all type 1 diabetes patients with long-lasting disease develop microvascular complications, which suggests that some of these patients have protective mechanisms against these complications. Fetal erythropoietin (EPO) is the main regulator of red cell production in the mother and in the fetus, but it has also protective effects in various maternal and fetal tissues. This dual effect of EPO is based on EPO receptor (EPO-R) isoforms, which differ structurally and functionally from the hematopoietic EPO-R isoform. The tissue protective effects of EPO are based on its anti-apoptotic, anti-oxidative, anti-inflammatory, cell proliferative and angiogenic properties. Recent experimental and clinical studies have shown that EPO has also positive metabolic effects on hyperglycemia and diabetes, although these have not yet been fully delineated. Whether the tissue protective and metabolic effects of EPO could have clinical benefits, are important topics for future research in diabetic pregnancies.
Collapse
Affiliation(s)
- Kari Teramo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | | |
Collapse
|
22
|
Sussman D, Saini BS, Schneiderman JE, Spitzer R, Seed M, Lye SJ, Wells GD. Uterine artery and umbilical vein blood flow are unaffected by moderate habitual physical activity during pregnancy. Prenat Diagn 2019; 39:976-985. [PMID: 31254464 DOI: 10.1002/pd.5517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This study aims to noninvasively quantify blood flow in the uterine arteries (UTAs) and umbilical vein (UV) using phase-contrast magnetic resonance imaging (PC-MRI) and test whether these correlate with maternal fitness parameters. METHOD Resting UTA and UV flows were measured in 23 healthy 30 ± 3-year-old women who engaged in moderate-intensity physical activity during pregnancy. Participant fitness was characterized in the second and third trimesters using the submaximal oxygen uptake (VO2 ) test measuring heart rate (HR), VO2 , ventilation (ventilatory equivalent [VE]/VO2 ), and the Borg rating of perceived exertion (respiratory quotient [RQ]). Linear regression models were used to determine the associations between blood flow and maternal fitness measures. RESULTS Blood flows in the UTA (957 ± 241 mL/min) and UV (132 ± 38 mL/min/kg) were successfully measured in 20 (87%) participants. Neither was associated with any physical fitness parameters (HR, VO2 , VE/VO2 , and RQ) nor with any second-to-third trimester change in these parameters. CONCLUSION PC-MRI can be used to noninvasively measure blood flow in the UTA and UV. Neither resting UTA nor UV flow is associated with maternal fitness parameters. This is the first MRI-based study to provide novel hemodynamic data suggesting decoupling between maternal moderate fitness level and the maternal-placental-fetal hemodynamic system in healthy, normal body mass index (BMI) pregnancies.
Collapse
Affiliation(s)
- Dafna Sussman
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Brahmdeep S Saini
- Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Jane E Schneiderman
- Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada.,Clinical Research Services, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rachel Spitzer
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, Ontario, Canada.,Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mike Seed
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Stephen J Lye
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Greg D Wells
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Hirano I, Suzuki N. The Neural Crest as the First Production Site of the Erythroid Growth Factor Erythropoietin. Front Cell Dev Biol 2019; 7:105. [PMID: 31245372 PMCID: PMC6581680 DOI: 10.3389/fcell.2019.00105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/28/2019] [Indexed: 12/25/2022] Open
Abstract
While the neural crest is considered the fourth germ layer that originates a variety of tissues during mammalian development, we recently discovered that some neural crest cells and neuroepithelial cells play a unique role in secreting a vital hematopoietic hormone, erythropoietin (EPO), in mouse embryos. EPO production by the neural crest is transient in mid-stage embryos but essential for the first erythropoiesis in the yolk sac and for sufficient oxygen supply in the whole embryo growing in utero. The site of EPO production shifts from the neural crest to the liver in late embryonic stages, followed by interstitial fibroblasts of the kidneys in adults. Interestingly, the transition of EPO production sites synchronizes with the transition of erythropoietic sites during mouse development from the yolk sac and the fetal liver to the bone marrow. EPO produced by the neural crest and the neuroepithelium is first stored around the production sites and delivered to the yolk sac as an endocrine hormone for erythropoiesis after heartbeat activation. The fact that EPO is produced by some human cell lines derived from neuroblastoma, which mainly originates from the neural crest, provides evidence that the neural crest secretes EPO for primitive erythropoiesis not only in mouse but also in human embryos. Here, we introduce and discuss recent progress in studies on the mechanism of EPO production by the neural crest and its roles in erythropoietic development and in the fate of EPO-producing neural crest cells.
Collapse
Affiliation(s)
- Ikuo Hirano
- Department of Molecular Hematology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
24
|
Badran M, Abuyassin B, Ayas N, Laher I. Intermittent hypoxia impairs uterine artery function in pregnant mice. J Physiol 2019; 597:2639-2650. [PMID: 31002746 PMCID: PMC6826231 DOI: 10.1113/jp277775] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/27/2019] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS Obstructive sleep apnoea (OSA) is a chronic condition characterized by intermittent hypoxia that induces oxidative stress and inflammation leading to cardiovascular disease. Women can develop OSA during late pregnancy, which is associated with adverse maternal and fetal outcomes. However, the effects of OSA throughout pregnancy on fetoplacental outcomes are unknown. Using a mouse model of intermittent hypoxia, we evaluated main uterine artery function, spiral artery remodelling, circulating angiogenic and anti-angiogenic factors, and placental hypoxia and oxidative stress at gestational day 14.5 in pregnant mice. Gestational intermittent hypoxia increased placental weight but decreased fetal weight, impaired uterine artery function, increased circulating angiogenic and anti-angiogenic factors, and induced placental hypoxia and oxidative stress, but had no impact on spiral artery remodelling. Our results suggest that pregnant women experiencing OSA during pregnancy could be at risk of maternal and fetal complications. ABSTRACT Obstructive sleep apnoea (OSA) is characterized by chronic intermittent hypoxia (IH) and is associated with increased inflammation, oxidative stress and endothelial dysfunction. OSA is a common sleep disorder and remains under-diagnosed; it can increase the risk of adverse maternal and fetal outcomes in pregnant women. We investigated the effects of gestational IH (GIH) on uterine artery function, spiral artery remodelling and placental circulating angiogenic and anti-angiogenic factors in pregnant female mice. WT C57BL/6 mice (8 weeks) were exposed to either GIH ( F I O 2 12%) or intermittent air ( F I O 2 21%) for 14.5 days of gestation. Exposure to GIH reduced fetal weight but increased placental weight. GIH dams had higher plasma levels of oxidative stress (8-isoprostane) and inflammatory markers (tumour necrosis factor-α). GIH significantly reduced uterine artery function as indicated by reduced endothelium-dependent vasodilatation and enhanced vasoconstriction. Plasma levels of placental angiogenic and anti-angiogenic markers (soluble fms-like tyrosine kinase-1, soluble endoglin, angiogenic placental growth factor-2 and vascular endothelial growth factor) were higher in pregnant mice exposed to GIH. There was no evidence of impaired spiral artery remodelling based on immunostaining with α-smooth muscle actin and cytokeratin-7, and also by measurements of lumen area. Immunostaining for markers of hypoxia (pimonidazole) and oxidative stress (4-hydroxynonenal) were higher in mice exposed to GIH. Our data show that GIH adversely affects uterine vascular function and may be a mechanism by which gestational OSA leads to adverse maternal and fetal outcomes.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of AnesthesiologyPharmacology and TherapeuticsUniversity of British ColumbiaVancouverCanada
| | - Bisher Abuyassin
- Department of AnesthesiologyPharmacology and TherapeuticsUniversity of British ColumbiaVancouverCanada
| | - Najib Ayas
- Divisions of Critical Care and Respiratory MedicineDepartment of MedicineUniversity of British ColumbiaVancouverBCCanada
- Sleep Disorders ProgramUBC HospitalVancouverBCCanada
- Division of Critical Care MedicineProvidence HealthcareVancouverBCCanada
| | - Ismail Laher
- Department of AnesthesiologyPharmacology and TherapeuticsUniversity of British ColumbiaVancouverCanada
| |
Collapse
|
25
|
Abstract
Complications of pregnancy remain key drivers of morbidity and mortality, affecting the health of both the mother and her offspring in the short and long term. There is lack of detailed understanding of the pathways involved in the pathology and pathogenesis of compromised pregnancy, as well as a shortfall of effective prognostic, diagnostic and treatment options. In many complications of pregnancy, such as in preeclampsia, there is an increase in uteroplacental vascular resistance. However, the cause and effect relationship between placental dysfunction and adverse outcomes in the mother and her offspring remains uncertain. In this review, we aim to highlight the value of gestational hypoxia-induced complications of pregnancy in elucidating underlying molecular pathways and in assessing candidate therapeutic options for these complex disorders. Chronic maternal hypoxia not only mimics the placental pathology associated with obstetric syndromes like gestational hypertension at morphological, molecular and functional levels, but also recapitulates key symptoms that occur as maternal and fetal clinical manifestations of these pregnancy disorders. We propose that gestational hypoxia provides a useful model to study the inter-relationship between placental dysfunction and adverse outcomes in the mother and her offspring in a wide array of examples of complicated pregnancy, such as in preeclampsia.
Collapse
|
26
|
Kumagai A, Itakura A, Koya D, Kanasaki K. AMP-Activated Protein (AMPK) in Pathophysiology of Pregnancy Complications. Int J Mol Sci 2018; 19:ijms19103076. [PMID: 30304773 PMCID: PMC6212814 DOI: 10.3390/ijms19103076] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022] Open
Abstract
Although the global maternal mortality ratio has been consistently reduced over time, in 2015, there were still 303,000 maternal deaths throughout the world, of which 99% occurred in developing countries. Understanding pathophysiology of pregnancy complications contributes to the proper prenatal care for the reduction of prenatal, perinatal and neonatal mortality and morbidity ratio. In this review, we focus on AMP-activated protein kinase (AMPK) as a regulator of pregnancy complications. AMPK is a serine/threonine kinase that is conserved within eukaryotes. It regulates the cellular and whole-body energy homeostasis under stress condition. The functions of AMPK are diverse, and the dysregulation of AMPK is known to correlate with many disorders such as cardiovascular disease, diabetes, inflammatory disease, and cancer. During pregnancy, AMPK is necessary for the proper placental differentiation, nutrient transportation, maternal and fetal energy homeostasis, and protection of the fetal membrane. Activators of AMPK such as 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR), resveratrol, and metformin restores pregnancy complications such as gestational diabetes mellitus (GDM), preeclampsia, intrauterine growth restriction, and preterm birth preclinically. We also discuss on the relationship between catechol-O-methyltransferase (COMT), an enzyme that metabolizes catechol, and AMPK during pregnancy. It is known that metformin cannot activate AMPK in COMT deficient mice, and that 2-methoxyestradiol (2-ME), a metabolite of COMT, recovers the AMPK activity, suggesting that COMT is a regulator of AMPK. These reports suggest the therapeutic use of AMPK activators for various pregnancy complications, however, careful analysis is required for the safe use of AMPK activators since AMPK activation could cause fetal malformation.
Collapse
Affiliation(s)
- Asako Kumagai
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
- Department of Obstetrics and Gynecology, Juntendo University, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Atsuo Itakura
- Department of Obstetrics and Gynecology, Juntendo University, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| |
Collapse
|
27
|
Fathollahipour S, Patil PS, Leipzig ND. Oxygen Regulation in Development: Lessons from Embryogenesis towards Tissue Engineering. Cells Tissues Organs 2018; 205:350-371. [PMID: 30273927 PMCID: PMC6397050 DOI: 10.1159/000493162] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2018] [Indexed: 12/19/2022] Open
Abstract
Oxygen is a vital source of energy necessary to sustain and complete embryonic development. Not only is oxygen the driving force for many cellular functions and metabolism, but it is also involved in regulating stem cell fate, morphogenesis, and organogenesis. Low oxygen levels are the naturally preferred microenvironment for most processes during early development and mainly drive proliferation. Later on, more oxygen and also nutrients are needed for organogenesis and morphogenesis. Therefore, it is critical to maintain oxygen levels within a narrow range as required during development. Modulating oxygen tensions is performed via oxygen homeostasis mainly through the function of hypoxia-inducible factors. Through the function of these factors, oxygen levels are sensed and regulated in different tissues, starting from their embryonic state to adult development. To be able to mimic this process in a tissue engineering setting, it is important to understand the role and levels of oxygen in each developmental stage, from embryonic stem cell differentiation to organogenesis and morphogenesis. Taking lessons from native tissue microenvironments, researchers have explored approaches to control oxygen tensions such as hemoglobin-based, perfluorocarbon-based, and oxygen-generating biomaterials, within synthetic tissue engineering scaffolds and organoids, with the aim of overcoming insufficient or nonuniform oxygen levels and nutrient supply.
Collapse
Affiliation(s)
| | - Pritam S Patil
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio, USA
| | - Nic D Leipzig
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio,
| |
Collapse
|
28
|
Babacanoğlu E. Responses of developmental and physiological traits to manipulated incubation conditions in broiler embryos at hypoxic high altitude. Arch Anim Breed 2018. [DOI: 10.5194/aab-61-337-2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Abstract. The effects of hypoxia at
increased altitude levels on the cardio-respiratory development of broiler
embryos are distinct in comparison with those at sea level. The aim of the
study was to investigate the effects of high incubation temperature (H) and
oxygen supplementation (O) during hypoxic high altitude (HA) on developmental
and physiological traits of embryos and hatching performance of embryonated
hatching eggs in broilers at different embryonic stages. A total of 1280 eggs
obtained from broiler breeders laid at sea level were used. Eggshell quality
characteristics were measured for 20 eggs. The rest of the 1260 eggs were
divided into seven incubation condition (IC) groups (180 eggs per group)
including a control group at 37.8 ∘C and 21 % O2; O
groups, with daily 1 h 23.5 % O2 supplementation at
37.8 ∘C as O0−11, O12−21, and O18−21; H groups
at 38.5 ∘C high incubation temperature at 21 % O2 as
H0−11, H12−21, and H18−21 from days 0 to 11, 12 to 21, and 18 to 21 of incubation,
respectively. All groups were incubated in three different incubators at
hypoxic HA. The effect of IC was determined on eggshell temperature, hatching
performance, embryo development, right ventricular (RV) to total ventricular
(TV) ratio, and blood parameters. The highest egg water loss and embryonic
mortality and the lowest hatchability were in the H0−11 group, which
depended on increased eggshell temperature during incubation. On day 18 of
incubation, due to the decreased egg water loss in the O12−21 and
O18−21 groups, there was an increase in hatchability in fertile eggs
similar to the middle and late H groups. Towards the end of incubation,
embryo/chick weights were not different and RV and TV weights increased in
the treated groups, and the RV ∕ TV ratio changed between 15 and
26 %. At hatching, yolk
sac weight increased in H0−11 and H12−21 groups. The O groups
had the lowest serum tri-iodothyronine (T3) concentration as distinct
from H groups. The serum thyroxine (T4) concentration increased in the
treated groups, dependent on sex of the embryo. Blood hemoglobin
concentration of O groups decreased relative to other groups. The hematocrit
value was the lowest in the O12−21 and highest in the H12−21
groups. The H and O treatments during pre-hatch hypoxic HA condition can be
positively evaluated on physiological traits of embryos after half of
incubation depended on the timing of the IC exposure to the hatching eggs
obtained from broiler breeders at sea level.
Collapse
|
29
|
Cindrova-Davies T, Giussani DA. miRNA-210: a hypoxamiRyad of possibilities. J Physiol 2018; 596:5501-5502. [PMID: 29929210 DOI: 10.1113/jp276591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Tereza Cindrova-Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
30
|
Villamonte-Calanche W, Yabar-Galdos G, Jerí-Palomino M, Wilson NA. Anthropometric reference curves for term neonates born at 3400 meters above sea level. J Matern Fetal Neonatal Med 2018. [DOI: 10.1080/14767058.2017.1421935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Wilfredo Villamonte-Calanche
- Centro de Investigación de Medicina Materno-Fetal de Altura (CENIMFA), Servicios de Salud, CENIMFA SAC, Cusco, Perú
| | - Gloria Yabar-Galdos
- Servicio de Neonatología, Departamento de Pediatría, Hospital Nacional Adolfo Guevara Velazco de ESSALUD, Cusco, Perú
| | - María Jerí-Palomino
- Centro de Investigación de Medicina Materno-Fetal de Altura (CENIMFA), Servicios de Salud, CENIMFA SAC, Cusco, Perú
| | | |
Collapse
|
31
|
High temperature and oxygen supplementation can mitigate the effects of hypoxia on developmental stability of bilateral traits during incubation of broiler breeder eggs. Animal 2018; 12:1584-1593. [DOI: 10.1017/s1751731118000344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
32
|
Han G, Yang H, Bungo T, Ikeda H, Wang Y, Nguyen LT, Eltahan HM, Furuse M, Chowdhury VS. In ovo L -leucine administration stimulates lipid metabolisms in heat-exposed male, but not female, chicks to afford thermotolerance. J Therm Biol 2018; 71:74-82. [DOI: 10.1016/j.jtherbio.2017.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 01/05/2023]
|
33
|
Mohammed R, Salinas CE, Giussani DA, Blanco CE, Cogolludo AL, Villamor E. Acute hypoxia-reoxygenation and vascular oxygen sensing in the chicken embryo. Physiol Rep 2017; 5:5/22/e13501. [PMID: 29146864 PMCID: PMC5704079 DOI: 10.14814/phy2.13501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 02/03/2023] Open
Abstract
Fetal/perinatal hypoxia is one of the most common causes of perinatal morbidity and mortality and is frequently accompannied by vascular dysfunction. However, the mechanisms involved have not been fully delineated. We hypothesized that exposure to acute hypoxia‐reoxygenation induces alterations in vascular O2 sensing/signaling as well as in endothelial function in the chicken embryo pulmonary artery (PA), mesenteric artery (MA), femoral artery (FA), and ductus arteriosus (DA). Noninternally pipped 19‐day embryos were exposed to 10% O2 for 30 min followed by reoxygenation with 21% O2 or 80% O2. Another group was constantly maintained at 21% O2 or at 21% O2 for 30 min and then exposed to 80% O2. Following treatment, responses of isolated blood vessels to hypoxia as well as endothelium‐dependent (acetylcholine) and ‐independent (sodium nitroprusside and forskolin) relaxation were investigated in a wire myograph. Hypoxia increased venous blood lactate from 2.03 ± 0.18 to 15.98 ± 0.73 mmol/L (P < 0.001) and reduced hatchability to 0%. However, ex vivo hypoxic contraction of PA and MA, hypoxic relaxation of FA, and normoxic contraction of DA were not significantly different in any of the experimental groups. Relaxations induced by acetylcholine, sodium nitroprusside, and forskolin in PA, MA, FA, and DA rings were also similar in the four groups. In conclusion, exposure to acute hypoxia‐reoxygenation did not affect vascular oxygen sensing or reactivity in the chicken embryo. This suggests that direct effects of acute hypoxia‐reoxygenation on vascular function does not play a role in the pathophysiology of hypoxic cardiovascular injury in the perinatal period.
Collapse
Affiliation(s)
- Riazuddin Mohammed
- Department of Pediatrics, Maastricht University Medical Center (MUMC+) School for Oncology and Developmental Biology (GROW), Maastricht, the Netherlands
| | - Carlos E Salinas
- Instituto Boliviano de Biología de Altura, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Dino A Giussani
- Department of Physiology Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Carlos E Blanco
- Department of Neonatology, National Maternity Hospital, Dublin, Ireland
| | - Angel L Cogolludo
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES) Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+) School for Oncology and Developmental Biology (GROW), Maastricht, the Netherlands
| |
Collapse
|
34
|
Itani N, Salinas CE, Villena M, Skeffington KL, Beck C, Villamor E, Blanco CE, Giussani DA. The highs and lows of programmed cardiovascular disease by developmental hypoxia: studies in the chicken embryo. J Physiol 2017; 596:2991-3006. [PMID: 28983923 DOI: 10.1113/jp274111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/31/2017] [Indexed: 12/31/2022] Open
Abstract
It is now established that adverse conditions during pregnancy can trigger a fetal origin of cardiovascular dysfunction and/or increase the risk of heart disease in later life. Suboptimal environmental conditions during early life that may promote the development of cardiovascular dysfunction in the offspring include alterations in fetal oxygenation and nutrition as well as fetal exposure to stress hormones, such as glucocorticoids. There has been growing interest in identifying the partial contributions of each of these stressors to programming of cardiovascular dysfunction. However, in humans and in many animal models this is difficult, as the challenges cannot be disentangled. By using the chicken embryo as an animal model, science has been able to circumvent a number of problems. In contrast to mammals, in the chicken embryo the effects on the developing cardiovascular system of changes in oxygenation, nutrition or stress hormones can be isolated and determined directly, independent of changes in the maternal or placental physiology. In this review, we summarise studies that have exploited the chicken embryo model to determine the effects on prenatal growth, cardiovascular development and pituitary-adrenal function of isolated chronic developmental hypoxia.
Collapse
Affiliation(s)
- N Itani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Cambridge Cardiovascular Strategic Research Initiative, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - C E Salinas
- Instituto Boliviano de Biología de Altura, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - M Villena
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - K L Skeffington
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - C Beck
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - E Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Universiteitssingel 40, 6229, ER Maastricht, The Netherlands
| | - C E Blanco
- Department of Neonatology, The National Maternity Hospital, Holles Street, Dublin, D02 YH21, Ireland
| | - D A Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Cambridge Cardiovascular Strategic Research Initiative, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
35
|
Amaral-Silva LD, Scarpellini CDS, Toro-Velasquez PA, Fernandes MH, Gargaglioni LH, Bícego KC. Hypoxia during embryonic development increases energy metabolism in normoxic juvenile chicks. Comp Biochem Physiol A Mol Integr Physiol 2017; 207:93-99. [DOI: 10.1016/j.cbpa.2017.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 01/11/2023]
|
36
|
GEOSPATIAL ASSESSMENT BASED ON FERTILITY AND MORTALITY DIFFERENTIAL INDICES OF NATURAL SELECTION IN NORTH-WEST AND EASTERN HIMALAYAN POPULATIONS. J Biosoc Sci 2016; 49:811-825. [PMID: 27995836 DOI: 10.1017/s0021932016000705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
There is contradictory evidence of having fewer live births and higher embryonic mortality among high-altitude populations than their counterparts at lower altitude. This study explores the geospatial differences in selection intensities among human populations living in different ecological settings. Reproductive data from post-menopausal women were collected from 75 women from near Shimla, Himachal Pradesh, at an altitude of 2150 m above sea level and 100 women from Jind, Haryana, at an altitude of 227 m. Secondary data were taken from 85 women from the Kinnaur district of Himachal Pradesh at an average altitude of 3420 m. A comparison of the study data was made with similar data from different populations living in the western and eastern Himalayas. The total selection intensity index based on Johnston and Kensinger's index was highest in Shimla and lowest in Kinnaur. The fertility selection component was highest in Shimla and lowest in Kinnaur. The prenatal mortality contribution to the total selection was highest in Shimla (30.76%) and lowest in Kinnaur (2.14%), while the contributions of normalized postnatal mortality were 16.39% and 57.80% in Shimla and Kinnaur, respectively. The fertility component of selection was higher than the mortality component in Shimla, while in the other two places the reverse was observed. Hypoxic conditions at high altitude seem to have little effect on the fertility and embryonic mortality rates of indigenous people. The geospatial differences in the selection intensities may be due to differences in ethnic, behavioural ecology, environmental, cultural and socioeconomic factors.
Collapse
|
37
|
A review of fundamental principles for animal models of DOHaD research: an Australian perspective. J Dev Orig Health Dis 2016; 7:449-472. [DOI: 10.1017/s2040174416000477] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epidemiology formed the basis of ‘the Barker hypothesis’, the concept of ‘developmental programming’ and today’s discipline of the Developmental Origins of Health and Disease (DOHaD). Animal experimentation provided proof of the underlying concepts, and continues to generate knowledge of underlying mechanisms. Interventions in humans, based on DOHaD principles, will be informed by experiments in animals. As knowledge in this discipline has accumulated, from studies of humans and other animals, the complexity of interactions between genome, environment and epigenetics, has been revealed. The vast nature of programming stimuli and breadth of effects is becoming known. As a result of our accumulating knowledge we now appreciate the impact of many variables that contribute to programmed outcomes. To guide further animal research in this field, the Australia and New Zealand DOHaD society (ANZ DOHaD) Animals Models of DOHaD Research Working Group convened at the 2nd Annual ANZ DOHaD Congress in Melbourne, Australia in April 2015. This review summarizes the contributions of animal research to the understanding of DOHaD, and makes recommendations for the design and conduct of animal experiments to maximize relevance, reproducibility and translation of knowledge into improving health and well-being.
Collapse
|
38
|
Villamonte-Calanche W, Manrique-Corazao F, Jerí-Palomino M, De-La-Torre C, Roque-Roque JS, Wilson NA. Neonatal anthropometry at 3400 m above sea level compared with INTERGROWTH 21st standards*. J Matern Fetal Neonatal Med 2016; 30:155-158. [DOI: 10.3109/14767058.2016.1163682] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
39
|
Dimasuay KG, Boeuf P, Powell TL, Jansson T. Placental Responses to Changes in the Maternal Environment Determine Fetal Growth. Front Physiol 2016; 7:12. [PMID: 26858656 PMCID: PMC4731498 DOI: 10.3389/fphys.2016.00012] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022] Open
Abstract
Placental responses to maternal perturbations are complex and remain poorly understood. Altered maternal environment during pregnancy such as hypoxia, stress, obesity, diabetes, toxins, altered nutrition, inflammation, and reduced utero-placental blood flow may influence fetal development, which can predispose to diseases later in life. The placenta being a metabolically active tissue responds to these perturbations by regulating the fetal supply of nutrients and oxygen and secretion of hormones into the maternal and fetal circulation. We have proposed that placental nutrient sensing integrates maternal and fetal nutritional cues with information from intrinsic nutrient sensing signaling pathways to balance fetal demand with the ability of the mother to support pregnancy by regulating maternal physiology, placental growth, and placental nutrient transport. Emerging evidence suggests that the nutrient-sensing signaling pathway mechanistic target of rapamycin (mTOR) plays a central role in this process. Thus, placental nutrient sensing plays a critical role in modulating maternal-fetal resource allocation, thereby affecting fetal growth and the life-long health of the fetus.
Collapse
Affiliation(s)
- Kris Genelyn Dimasuay
- Department of Medicine, The University of MelbourneMelbourne, VIC, Australia
- Centre for Biomedical Research, Burnet InstituteMelbourne, VIC, Australia
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical CampusAurora, CO, USA
| | - Philippe Boeuf
- Department of Medicine, The University of MelbourneMelbourne, VIC, Australia
- Centre for Biomedical Research, Burnet InstituteMelbourne, VIC, Australia
- Victorian Infectious Diseases Service, Royal Melbourne HospitalMelbourne, VIC, Australia
| | - Theresa L. Powell
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical CampusAurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical CampusAurora, CO, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical CampusAurora, CO, USA
| |
Collapse
|
40
|
Giussani DA. The fetal brain sparing response to hypoxia: physiological mechanisms. J Physiol 2016; 594:1215-30. [PMID: 26496004 DOI: 10.1113/jp271099] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/12/2015] [Indexed: 01/13/2023] Open
Abstract
How the fetus withstands an environment of reduced oxygenation during life in the womb has been a vibrant area of research since this field was introduced by Joseph Barcroft, a century ago. Studies spanning five decades have since used the chronically instrumented fetal sheep preparation to investigate the fetal compensatory responses to hypoxia. This defence is contingent on the fetal cardiovascular system, which in late gestation adopts strategies to decrease oxygen consumption and redistribute the cardiac output away from peripheral vascular beds and towards essential circulations, such as those perfusing the brain. The introduction of simultaneous measurement of blood flow in the fetal carotid and femoral circulations by ultrasonic transducers has permitted investigation of the dynamics of the fetal brain sparing response for the first time. Now we know that major components of fetal brain sparing during acute hypoxia are triggered exclusively by a carotid chemoreflex and that they are modified by endocrine agents and the recently discovered vascular oxidant tone. The latter is determined by the interaction between nitric oxide and reactive oxygen species. The fetal brain sparing response matures as the fetus approaches term, in association with the prepartum increase in fetal plasma cortisol, and treatment of the preterm fetus with clinically relevant doses of synthetic steroids mimics this maturation. Despite intense interest into how the fetal brain sparing response may be affected by adverse intrauterine conditions, this area of research has been comparatively scant, but it is likely to take centre stage in the near future.
Collapse
Affiliation(s)
- Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
41
|
Itani N, Skeffington KL, Beck C, Niu Y, Giussani DA. Melatonin rescues cardiovascular dysfunction during hypoxic development in the chick embryo. J Pineal Res 2016; 60:16-26. [PMID: 26444711 PMCID: PMC4832387 DOI: 10.1111/jpi.12283] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/02/2015] [Indexed: 01/08/2023]
Abstract
There is a search for rescue therapy against fetal origins of cardiovascular disease in pregnancy complicated by chronic fetal hypoxia, particularly following clinical diagnosis of fetal growth restriction (FGR). Melatonin protects the placenta in adverse pregnancy; however, whether melatonin protects the fetal heart and vasculature in hypoxic pregnancy independent of effects on the placenta is unknown. Whether melatonin can rescue fetal cardiovascular dysfunction when treatment commences following FGR diagnosis is also unknown. We isolated the effects of melatonin on the developing cardiovascular system of the chick embryo during hypoxic incubation. We tested the hypothesis that melatonin directly protects the fetal cardiovascular system in adverse development and that it can rescue dysfunction following FGR diagnosis. Chick embryos were incubated under normoxia or hypoxia (14% O2) from day 1 ± melatonin treatment (1 mg/kg/day) from day 13 of incubation (term ~21 days). Melatonin in hypoxic chick embryos rescued cardiac systolic dysfunction, impaired cardiac contractility and relaxability, increased cardiac sympathetic dominance, and endothelial dysfunction in peripheral circulations. The mechanisms involved included reduced oxidative stress, enhanced antioxidant capacity and restored vascular endothelial growth factor expression, and NO bioavailability. Melatonin treatment of the chick embryo starting at day 13 of incubation, equivalent to ca. 25 wk of gestation in human pregnancy, rescues early origins of cardiovascular dysfunction during hypoxic development. Melatonin may be a suitable antioxidant candidate for translation to human therapy to protect the fetal cardiovascular system in adverse pregnancy.
Collapse
Affiliation(s)
- Nozomi Itani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Katie L. Skeffington
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Christian Beck
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Youguo Niu
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Dino A. Giussani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
42
|
Walton SL, Singh RR, Tan T, Paravicini TM, Moritz KM. Late gestational hypoxia and a postnatal high salt diet programs endothelial dysfunction and arterial stiffness in adult mouse offspring. J Physiol 2015; 594:1451-63. [PMID: 26456386 DOI: 10.1113/jp271067] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/28/2015] [Indexed: 01/21/2023] Open
Abstract
Gestational hypoxia and high dietary salt intake have both been associated with impaired vascular function in adulthood. Using a mouse model of prenatal hypoxia, we examined whether a chronic high salt diet had an additive effect in promoting vascular dysfunction in offspring. Pregnant CD1 dams were placed in a hypoxic chamber (12% O2) or housed under normal conditions (21% O2) from embryonic day 14.5 until birth. Gestational hypoxia resulted in a reduced body weight for both male and female offspring at birth. This restriction in body weight persisted until weaning, after which the animals underwent catch-up growth. At 10 weeks of age, a subset of offspring was placed on a high salt diet (5% NaCl). Pressurized myography of mesenteric resistance arteries at 12 months of age showed that both male and female offspring exposed to maternal hypoxia had significantly impaired endothelial function, as demonstrated by impaired vasodilatation to ACh but not sodium nitroprusside. Endothelial dysfunction caused by prenatal hypoxia was not exacerbated by postnatal consumption of a high salt diet. Prenatal hypoxia increased microvascular stiffness in male offspring. The combination of prenatal hypoxia and a postnatal high salt diet caused a leftward shift in the stress-strain relationship in both sexes. Histopathological analysis of aortic sections revealed a loss of elastin integrity and increased collagen, consistent with increased vascular stiffness. These results demonstrate that prenatal hypoxia programs endothelial dysfunction in both sexes. A chronic high salt diet in postnatal life had an additive deleterious effect on vascular mechanics and structural characteristics in both sexes.
Collapse
Affiliation(s)
- Sarah L Walton
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Reetu R Singh
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia.,Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Tiffany Tan
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Tamara M Paravicini
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia.,School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
43
|
Dunlop K, Cedrone M, Staples JF, Regnault TRH. Altered fetal skeletal muscle nutrient metabolism following an adverse in utero environment and the modulation of later life insulin sensitivity. Nutrients 2015; 7:1202-16. [PMID: 25685986 PMCID: PMC4344584 DOI: 10.3390/nu7021202] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/02/2015] [Indexed: 02/07/2023] Open
Abstract
The importance of the in utero environment as a contributor to later life metabolic disease has been demonstrated in both human and animal studies. In this review, we consider how disruption of normal fetal growth may impact skeletal muscle metabolic development, ultimately leading to insulin resistance and decreased insulin sensitivity, a key precursor to later life metabolic disease. In cases of intrauterine growth restriction (IUGR) associated with hypoxia, where the fetus fails to reach its full growth potential, low birth weight (LBW) is often the outcome, and early in postnatal life, LBW individuals display modifications in the insulin-signaling pathway, a critical precursor to insulin resistance. In this review, we will present literature detailing the classical development of insulin resistance in IUGR, but also discuss how this impaired development, when challenged with a postnatal Western diet, may potentially contribute to the development of later life insulin resistance. Considering the important role of the skeletal muscle in insulin resistance pathogenesis, understanding the in utero programmed origins of skeletal muscle deficiencies in insulin sensitivity and how they may interact with an adverse postnatal environment, is an important step in highlighting potential therapeutic options for LBW offspring born of pregnancies characterized by placental insufficiency.
Collapse
Affiliation(s)
- Kristyn Dunlop
- Department of Physiology and Pharmacology, Western University, London, ON N6A-5C1, Canada.
| | - Megan Cedrone
- Department of Biology, Western University, London, ON N6A 5B7, Canada.
| | - James F Staples
- Department of Biology, Western University, London, ON N6A 5B7, Canada.
| | - Timothy R H Regnault
- Department of Physiology and Pharmacology, Western University, London, ON N6A-5C1, Canada.
- Department of Obstetrics and Gynecology, Western University, London, ON N6H-5W9, Canada.
- Lawson Health Research Institute, London, ON N6C-2R5, Canada.
- Children's Health Research Institute, London, ON N6C-2V5, Canada.
| |
Collapse
|
44
|
Poudel R, McMillen IC, Dunn SL, Zhang S, Morrison JL. Impact of chronic hypoxemia on blood flow to the brain, heart, and adrenal gland in the late-gestation IUGR sheep fetus. Am J Physiol Regul Integr Comp Physiol 2015; 308:R151-62. [DOI: 10.1152/ajpregu.00036.2014] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the fetus, there is a redistribution of cardiac output in response to acute hypoxemia, to maintain perfusion of key organs, including the brain, heart, and adrenal glands. There may be a similar redistribution of cardiac output in the chronically hypoxemic, intrauterine growth-restricted fetus. Surgical removal of uterine caruncles in nonpregnant ewe results in the restriction of placental growth (PR) and intrauterine growth. Vascular catheters were implanted in seven control and six PR fetal sheep, and blood flow to organs was determined using microspheres. Placental and fetal weight was significantly reduced in the PR group. Despite an increase in the relative brain weight in the PR group, there was no difference in blood flow to the brain between the groups, although PR fetuses had higher blood flow to the temporal lobe. Adrenal blood flow was significantly higher in PR fetuses, and there was a direct relationship between mean gestational PaO2 and blood flow to the adrenal gland. There was no change in blood flow, but a decrease in oxygen and glucose delivery to the heart in the PR fetuses. In another group, there was a decrease in femoral artery blood flow in the PR compared with the Control group, and this may support blood flow changes to the adrenal and temporal lobe. In contrast to the response to acute hypoxemia, these data show that there is a redistribution of blood flow to the adrenals and temporal lobe, but not the heart or whole brain, in chronically hypoxemic PR fetuses in late gestation.
Collapse
Affiliation(s)
- Rajan Poudel
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - I. Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Stacey L. Dunn
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Song Zhang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
45
|
Robin E, Marcillac F, Raddatz E. A hypoxic episode during cardiogenesis downregulates the adenosinergic system and alters the myocardial anoxic tolerance. Am J Physiol Regul Integr Comp Physiol 2015; 308:R614-26. [PMID: 25632022 DOI: 10.1152/ajpregu.00423.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/19/2015] [Indexed: 11/22/2022]
Abstract
To what extent hypoxia alters the adenosine (ADO) system and impacts on cardiac function during embryogenesis is not known. Ectonucleoside triphosphate diphosphohydrolase (CD39), ecto-5'-nucleotidase (CD73), adenosine kinase (AdK), adenosine deaminase (ADA), equilibrative (ENT1,3,4), and concentrative (CNT3) transporters and ADO receptors A1, A2A, A2B, and A3 constitute the adenosinergic system. During the first 4 days of development chick embryos were exposed in ovo to normoxia followed or not followed by 6 h hypoxia. ADO and glycogen content and mRNA expression of the genes were determined in the atria, ventricle, and outflow tract of the normoxic (N) and hypoxic (H) hearts. Electrocardiogram and ventricular shortening of the N and H hearts were recorded ex vivo throughout anoxia/reoxygenation ± ADO. Under basal conditions, CD39, CD73, ADK, ADA, ENT1,3,4, CNT3, and ADO receptors were differentially expressed in the atria, ventricle, and outflow tract. In H hearts ADO level doubled, glycogen decreased, and mRNA expression of all the investigated genes was downregulated by hypoxia, except for A2A and A3 receptors. The most rapid and marked downregulation was found for ADA in atria. H hearts were arrhythmic and more vulnerable to anoxia-reoxygenation than N hearts. Despite downregulation of the genes, exposure of isolated hearts to ADO 1) preserved glycogen through activation of A1 receptor and Akt-GSK3β-GS pathway, 2) prolonged activity and improved conduction under anoxia, and 3) restored QT interval in H hearts. Thus hypoxia-induced downregulation of the adenosinergic system can be regarded as a coping response, limiting the detrimental accumulation of ADO without interfering with ADO signaling.
Collapse
Affiliation(s)
- Elodie Robin
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Switzerland; and National Center for Scientific Research, Center for Molecular Biophysics, Orléans, France
| | - Fabrice Marcillac
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Switzerland; and
| | - Eric Raddatz
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Switzerland; and
| |
Collapse
|
46
|
Kovalyova IM. Key morphofunctional transformations in the evolution of bats (Mammalia, Chiroptera). Russ J Dev Biol 2014. [DOI: 10.1134/s1062360414060071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Bigham AW, Julian CG, Wilson MJ, Vargas E, Browne VA, Shriver MD, Moore LG. Maternal PRKAA1 and EDNRA genotypes are associated with birth weight, and PRKAA1 with uterine artery diameter and metabolic homeostasis at high altitude. Physiol Genomics 2014; 46:687-97. [PMID: 25225183 PMCID: PMC4166715 DOI: 10.1152/physiolgenomics.00063.2014] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/14/2014] [Indexed: 12/20/2022] Open
Abstract
Low birth weight and intrauterine growth restriction (IUGR) increase the risk of mortality and morbidity during the perinatal period as well as in adulthood. Environmental and genetic factors contribute to IUGR, but the influence of maternal genetic variation on birth weight is largely unknown. We implemented a gene-by-environment study wherein we utilized the growth restrictive effects of high altitude. Multigenerational high-altitude residents (Andeans) are protected from altitude-associated IUGR compared with recent migrants (Europeans). Using a combined cohort of low- and high-altitude European and Andean women, we tested 63 single nucleotide polymorphisms (SNPs) from 16 natural selection-nominated candidate gene regions for associations with infant birth weight. We identified significant SNP associations with birth weight near coding regions for two genes involved in oxygen sensing and vascular control, PRKAA1 and EDNRA, respectively. Next, we identified a significant association for the PRKAA1 SNP with an intermediate phenotype, uterine artery diameter, which has been shown to be related to Andean protection from altitude-associated reductions in fetal growth. To explore potential functional relationships for the effect of maternal SNP genotype on birth weight, we evaluated the relationship between maternal PRKAA1 SNP genotype and gene expression patterns in general and, in particular, of key pathways involved in metabolic homeostasis that have been proposed to play a role in the pathophysiology of IUGR. Our observations suggest that maternal genetic variation within genes that regulate oxygen sensing, metabolic homeostasis, and vascular control influence fetal growth and birth weight outcomes and hence Andean adaptation to high altitude.
Collapse
Affiliation(s)
- Abigail W Bigham
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan;
| | - Colleen G Julian
- Departments of Anthropology and Health/Behavioral Sciences, University of Colorado Denver, Denver, Colorado; Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Megan J Wilson
- Departments of Anthropology and Health/Behavioral Sciences, University of Colorado Denver, Denver, Colorado; Department of Biology, Western State Colorado University, Gunnison, Colorado
| | - Enrique Vargas
- Instituto Boliviano de Biología de Altura, La Paz, Bolivia
| | - Vaughn A Browne
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Denver, Aurora, Colorado
| | - Mark D Shriver
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania; and
| | - Lorna G Moore
- Departments of Anthropology and Health/Behavioral Sciences, University of Colorado Denver, Denver, Colorado; Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
48
|
Belichenko VM, Turganbaeva AS, Khodyrev EV, Kislyakova LP, Kislyakov YY, Shoshenko CA. Tissue oxygen partial pressure in organs of chickens in the second half of embryogenesis and first days after hatching. Russ J Dev Biol 2014. [DOI: 10.1134/s1062360414050038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Cardiac and vascular disease prior to hatching in chick embryos incubated at high altitude. J Dev Orig Health Dis 2014; 1:60-6. [PMID: 25142932 DOI: 10.1017/s2040174409990043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The partial contributions of reductions in fetal nutrition and oxygenation to slow fetal growth and a developmental origin of cardiovascular disease remain unclear. By combining high altitude with the chick embryo model, we have previously isolated the direct effects of high-altitude hypoxia on growth. This study isolated the direct effects of high-altitude hypoxia on cardiovascular development. Fertilized eggs from sea-level or high-altitude hens were incubated at sea level or high altitude. Fertilized eggs from sea-level hens were also incubated at high altitude with oxygen supplementation. High altitude promoted embryonic growth restriction, cardiomegaly and aortic wall thickening, effects which could be prevented by incubating eggs from high-altitude hens at sea level or by incubating eggs from sea-level hens at high altitude with oxygen supplementation. Embryos from high-altitude hens showed reduced effects of altitude incubation on growth restriction but not on cardiovascular remodeling. The data show that: (1) high-altitude hypoxia promotes embryonic cardiac and vascular disease already evident prior to hatching and that this is associated with growth restriction; (2) the effects can be prevented by increased oxygenation; and (3) the effects are different in embryos from sea-level or high-altitude hens.
Collapse
|
50
|
Abstract
Epidemiological studies, including those in identical twins, and in individuals in utero during periods of famine have provided robust evidence of strong correlations between low birth-weight and subsequent risk of disease in later life, including type 2 diabetes (T2D), CVD, and metabolic syndrome. These and studies in animal models have suggested that the early environment, especially early nutrition, plays an important role in mediating these associations. The concept of early life programming is therefore widely accepted; however the molecular mechanisms by which early environmental insults can have long-term effects on a cell and consequently the metabolism of an organism in later life, are relatively unclear. So far, these mechanisms include permanent structural changes to the organ caused by suboptimal levels of an important factor during a critical developmental period, changes in gene expression caused by epigenetic modifications (including DNA methylation, histone modification and microRNA) and permanent changes in cellular ageing. Many of the conditions associated with early-life nutrition are also those which have an age-associated aetiology. Recently, a common molecular mechanism in animal models of developmental programming and epidemiological studies has been development of oxidative stress and macromolecule damage, specifically DNA damage and telomere shortening. These are phenotypes common to accelerated cellular ageing. Thus, this review will encompass epidemiological and animal models of developmental programming with specific emphasis on cellular ageing and how these could lead to potential therapeutic interventions and strategies which could combat the burden of common age-associated disease, such as T2D and CVD.
Collapse
|