1
|
Li C, Cai D, Yuan W, Cai R, Qiu X, Qin Y, Feng Y, Zhu Q, Liu Y, Chen Y, Yuan X, Jiang W, Hou N. The canonical Wnt/β-catenin signaling pathway upregulates carbonic anhydrase 2 via transcription factor 7-like 2 to promote cardiomyopathy in type 2 diabetic mice. Life Sci 2025; 368:123506. [PMID: 40010634 DOI: 10.1016/j.lfs.2025.123506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Excessive activation of the canonical Wnt/β-catenin pathway contributes to the development of diabetic cardiomyopathy (DCM). Transcription factor 7-like 2 (TCF7L2) is the main β-catenin partner of the TCF family in adult human hearts. Carbonic anhydrase 2 (CA2) is implicated in various hypertrophic cardiomyopathy. In this study, we aimed to investigate the role of the Wnt/β-catenin/TCF7L2 signaling and CA2 in the development of DCM. Streptozotocin (STZ)/high-fat diet (HFD)-induced diabetic mice and high glucose-stimulated neonatal rat cardiomyocytes (NRCMs) were used as in-vivo and in-vitro models of Type 2 diabetes (T2DM), respectively. Histopathological changes in the mouse myocardium were assessed with hematoxylin-eosin (HE) or Masson's trichrome staining. Cardiac function was evaluated with echocardiography. TCF7L2, β-catenin, and CA2 expression was determined with RT-qPCR, western blotting, and immunohistochemistry. Immunoprecipitation (IP) was used to evaluate the formation of the β-catenin/TCF7L2 bipartite. The regulatory relationship between the β-catenin/TCF7L2 bipartite and CA2 was investigated with chromatin immunoprecipitation (ChIP) and a luciferase reporter assay. Compared with the control mice, the T2DM mice exhibited increased myocardial β-catenin and TCF7L2 expression that was concentrated in the nucleus. Treatment of diabetic mice with the β-catenin/TCF7L2 bipartite inhibitor iCRT14 prevented myocardial remodeling and improved cardiac dysfunction. iCRT14 also prevented high glucose-induced hypertrophy in NRCMs, while the β-catenin stabilizer SKL2001 worsened hypertrophy. IP experiments confirmed the formation of the β-catenin/TCF7L2 bipartite in the control and T2DM mouse cardiomyocytes. Moreover, based on the results of RNA-sequencing analysis, CA2 was upregulated in T2DM cardiomyocytes in vitro and in vivo. TCF7L2 overexpression upregulated CA2, while iCRT14 treatment or TCF7L2 knockdown downregulated CA2. CA2 knockdown ameliorated NRCM hypertrophy induced by high glucose and SKL2001. The ChIP experiments revealed an increased interaction between β-catenin/TCF7L2 and the transcription initiation region of CA2 in the heart tissue of T2DM mice. The luciferase reporter assay confirmed that CA2 is directly regulated by the β-catenin/TCF7L2 bipartite. The results indicate that the canonical Wnt/β-catenin pathway upregulates CA2 via TCF7L2 to promote DCM. This research sheds new light on the pathogenesis of DCM and presents new potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Conglin Li
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, PR China; NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China; Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, PR China
| | - Daofeng Cai
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, PR China; NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Wenchang Yuan
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Rui Cai
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xiaoxia Qiu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yuan Qin
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yaofeng Feng
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China; KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Qiulian Zhu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yun Liu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yilin Chen
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xun Yuan
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Wenyue Jiang
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, PR China.
| | - Ning Hou
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, PR China; NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
2
|
Akbulut M, Keskin Aktan A, Sonugür G, Özen Akarca S, Nur Bahar A, Kavak H, Akbulut G. Protective Effects of SIRT2 Inhibition on Cardiac Fibrosis. Anatol J Cardiol 2025; 29:173-180. [PMID: 39885712 PMCID: PMC11965944 DOI: 10.14744/anatoljcardiol.2025.4770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/11/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND A primary factor in the pathogenesis of aging is oxidative stress, with cardiac inflammation and fibrosis being contributed to by increased oxidative stress as organisms age. Oxidative stress enhances the cardiac fibrotic signaling pathway, with reactive oxygen species inducing cardiac fibrosis through increased expression of the profibrotic factor transforming growth factor-beta 1 (TGF-β1). Furthermore, Wnt/β-catenin signaling pathway is implicated in interstitial fibrosis, which is associated with TGF-β. Sirtuin 2 (SIRT2) is expressed in heart tissue, with protective effects in pathological cardiac hypertrophy. We aimed to investigate the mechanisms of cardiac fibrosis in D-Galactose (D-Gal)-induced accelerated aging, focusing on TGF-β1, β-catenin, and SIRT2. METHODS A total of 30 young male Sprague-Dawley rats were randomly divided into 4 groups: control group, D-Gal group, D-Gal + 4% dimethyl sulfoxide (DMSO) group, and D-Gal + the SIRT2 inhibitor (AGK2) group. After 10 weeks, the rats were sacrificed, and their hearts were removed. SIRT2 expression levels were measured by western blot and gene expression levels of TGF-β1 and β-catenin by quantitative real-time polymerase chain reaction. RESULTS Transforming growth factor-beta 1 (TGF-β1) mRNA expression in heart tissue was higher in the D-Gal group compared to all other groups. β-catenin mRNA expression was higher in the D-Gal group than in the D-Gal + AGK2 group. SIRT2 protein expression was higher in the D-Gal + DMSO group compared to the control group. Sirtuin 2 expression was lower in the D-Gal + AGK2 group compared to the D-Gal and D-Gal + DMSO groups. CONCLUSION Sirtuin 2 inhibition attenuates fibrosis, as evidenced by the downregulation of TGF-β1 and β-catenin. Thus, targeting SIRT2 may represent a potential therapeutic strategy for diseases characterized by cardiac fibrosis in the future.
Collapse
Affiliation(s)
- Müge Akbulut
- Department of Cardiology, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Arzu Keskin Aktan
- Department of Physiology, Afyon Kocatepe University Faculty of Medicine, Afyon, Türkiye
| | - Gizem Sonugür
- Department of Basic Oncology, Ankara University Cancer Research Institute, Ankara, Türkiye
| | - Saadet Özen Akarca
- Department of Physiology, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Aslı Nur Bahar
- Department of Physiology, Marmara University Faculty of Medicine, İstanbul, Türkiye
| | - Hatice Kavak
- Department of Physiology, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Gonca Akbulut
- Department of Physiology, Gazi University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
3
|
Song J, Chang W, Wang Y, Gao P, Zhang J, Xiao Z, An F, Yan C. Inhibitors of the Wnt pathway in osteoporosis: A review of mechanisms of action and potential as therapeutic targets. BIOMOLECULES & BIOMEDICINE 2025; 25:511-524. [PMID: 39606935 PMCID: PMC12010972 DOI: 10.17305/bb.2024.11200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024]
Abstract
The Wnt signaling pathway is one of the most important and critical signaling pathways for maintaining cellular functions, such as cell proliferation and differentiation. Increasing evidence substantiates that the Wnt signaling pathway also plays a significant role in the regulation of bone formation in osteoporosis. Accordingly, inhibitors of this pathway, such as sclerostin, Dickkopf-1 (DKK1), WNT inhibitory factor 1 (WIF1), and secreted frizzled-related proteins (SFRPs), have a negative regulatory role in bone formation and may serve as effective therapeutic targets for osteoporosis. This review examines the mechanisms of action of Wnt signaling pathway inhibitors in osteoporosis, the relationship between the Wnt pathway and its inhibitors, and new molecular targets for osteoporosis treatment. Overall, the regulatory mechanisms of Wnt pathway inhibitors are summarized to provide scientific and theoretical guidance for the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yujie Wang
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhipan Xiao
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chunlu Yan
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
4
|
An F, Jia X, Shi Y, Xiao X, Yang F, Su J, Peng X, Geng G, Yan C. The ultimate microbial composition for correcting Th17/Treg cell imbalance and lipid metabolism disorders in osteoporosis. Int Immunopharmacol 2025; 144:113613. [PMID: 39571271 DOI: 10.1016/j.intimp.2024.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024]
Abstract
Osteoporosis is a systemic bone disease characterised by decreased bone mass and a deteriorated bone microstructure, leading to increased bone fragility and fracture risk. Disorders of the intestinal microbiota may be key inducers of osteoporosis. Furthermore, such disorders may contribute to osteoporosis by influencing immune function and lipid metabolism. Therefore, in this review, we aimed to summarise the molecular mechanisms through which the intestinal microbiota affect the onset and development of osteoporosis by regulating Th17/Treg imbalance and lipid metabolism disorders. We also discussed the regulatory mechanisms underlying the effect of intestinal microbiota-related modulators on Th17/Treg imbalance and lipid metabolism disorders in osteoporosis, to explore new molecular targets for its treatment and provide a theoretical basis for clinical management.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| | - Xueru Jia
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Yangyang Shi
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xiaolong Xiao
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Fan Yang
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Junchang Su
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xia Peng
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Guangqin Geng
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Chunlu Yan
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| |
Collapse
|
5
|
Mousavi SM, Jalali-Zefrei F, Shourmij M, Tabaghi S, Davari A, Khalili SB, Farzipour S, Salari A. Targeting Wnt Pathways with Small Molecules as New Approach in Cardiovascular Disease. Curr Cardiol Rev 2025; 21:108-122. [PMID: 39482911 PMCID: PMC12060913 DOI: 10.2174/011573403x333038241023153349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
The increasing incidences of morbidity and mortality associated with cardiovascular diseases represent significant difficulties for clinical treatment and have a major impact on patient health. Wnt signaling pathways are highly conserved and are well known for their regulatory roles in embryonic development, tissue regeneration, and adult tissue homeostasis. Wnt signaling is classified into two distinct pathways: canonical Wnt/β-catenin signaling and noncanonical pathways, including planar cell polarity and Wnt/Ca2+ pathways. A growing body of experimental evidence suggests the involvement of both canonical and non-canonical Wnt signaling pathways in the development of cardiovascular diseases, including myocardial hypertrophy, arrhythmias, diabetic cardiomyopathy, arrhythmogenic cardiomyopathy, and myocardial infarction. Thus, to enhance patient quality of life, diagnosing and treating cardiac illnesses may require a thorough understanding of the molecular functions played by the Wnt pathway in these disorders. Many small-molecule inhibitors specifically target various components within the Wnt signaling pathways, such as Frizzled, Disheveled, Porcupine, and Tankyrase. This study aims to present an overview of the latest findings regarding the functions of Wnt signaling in human cardiac disorders and possible inhibitors of Wnt, which could lead to novel approaches for treating cardiac ailments.
Collapse
Affiliation(s)
- Seyed Mehdi Mousavi
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Jalali-Zefrei
- Department of radiology, Faculty of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Mohammad Shourmij
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Shiva Tabaghi
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Davari
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeed Bahador Khalili
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Soghra Farzipour
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Arsalan Salari
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
6
|
Gu R, Wang J, Morin J, Lu A, Liang W. High Glucose Sensitizes Male and Female Rat Cardiomyocytes to Wnt/β-Catenin Signaling. Biomolecules 2024; 14:1639. [PMID: 39766346 PMCID: PMC11727057 DOI: 10.3390/biom14121639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
Wnt/β-catenin signaling has been shown to regulate gene expressions in cardiomyocytes. However, it is not known if this effect is dependent on the sex of cells or the glucose level in the culture medium. In the present study, ventricular myocytes were prepared from male and female neonatal rats and maintained in either a glucose-rich (25 mM) medium or a low-glucose (3 mM), lipid-rich medium. Real-time quantitative PCR was used to measure changes in target genes (Axin2, Scn5a, and Tbx3) after treatment with 1, 3, or 10 µM of CHIR-99021, an activator of Wnt/β-catenin signaling. CHIR induced similar changes in Axin2, Tbx3, and Scn5a transcripts in male and female NRVMs in both media, suggesting the absence of sex difference. However, cells in a high-glucose medium showed greater increases in Axin2 and Tbx3 transcripts than cells in a low-glucose medium. In addition, a low concentration of CHIR (1 µM) reduced the Scn5a transcript in cells in a high-glucose medium but not in a low-glucose medium, suggesting an increased sensitivity to Wnt signaling by high glucose. A non-linear relationship was identified between Axin2 transcript upregulation and Scn5a transcript downregulation in CIHR-treated NRVMs. These data suggest that high glucose sensitizes both male and female cardiomyocytes to Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Ruonan Gu
- Cardiac Electrophysiology Laboratory, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jerry Wang
- Cardiac Electrophysiology Laboratory, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julianne Morin
- Cardiac Electrophysiology Laboratory, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Aizhu Lu
- Cardiac Electrophysiology Laboratory, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Wenbin Liang
- Cardiac Electrophysiology Laboratory, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
7
|
Chong A, Joshua J, Raheb S, Pires A, Colpitts M, Caswell JL, Fonfara S. Evaluation of potential novel biomarkers for feline hypertrophic cardiomyopathy. Res Vet Sci 2024; 180:105430. [PMID: 39395261 DOI: 10.1016/j.rvsc.2024.105430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common cardiomyopathy in cats. The diagnosis can be difficult, requiring advanced echocardiographic skills. Additionally, circulating biomarkers (N-terminal pro-B type natriuretic peptide and cardiac troponin I) have several limitations when used for HCM screening. In previous work, we identified interleukin 18 (IL-18), insulin-like growth factor binding protein 2 (IGFBP-2), brain-type glycogen phosphorylase B (PYGB), and WNT Family Member 5 A (WNT5A) as myocardial genes that show significant differential expression between cats with HCM and healthy cats. The products of these genes are released into the circulation, and we hypothesized that IL-18, IGFBP-2, PYGB, and WNT5A serum RNA and protein concentrations differ between healthy cats, cats with subclinical HCM, and those with HCM and congestive heart failure (HCM + CHF). Reverse transcriptase quantitative polymerase chain reaction (RTqPCR) and enzyme-linked immunosorbent assay (ELISA) were applied to evaluate gene and protein expression, respectively, in the serum of eight healthy controls, eight cats with subclinical HCM, and six cats with HCM + CHF. Serum IGFBP-2 RNA concentrations were significantly different among groups and were highest in cats with subclinical HCM. Compared to healthy controls, serum IL-18 and WNT5A gene expression were significantly higher in cats with HCM + CHF, and WNT5A was higher in cats with subclinical HCM. No differences were observed for PYGB. These results indicate that further investigation via large scale clinical studies for IGFBP-2, WNT5A, and IL-18 may be valuable in diagnosing and staging feline HCM.
Collapse
Affiliation(s)
- Andrew Chong
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 28 College Ave W, Guelph, Ontario N1G 2W1, Canada
| | - Jessica Joshua
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 28 College Ave W, Guelph, Ontario N1G 2W1, Canada; Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada
| | - Shari Raheb
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 28 College Ave W, Guelph, Ontario N1G 2W1, Canada
| | - Ananda Pires
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 28 College Ave W, Guelph, Ontario N1G 2W1, Canada
| | - Michelle Colpitts
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 28 College Ave W, Guelph, Ontario N1G 2W1, Canada
| | - Jeff L Caswell
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada
| | - Sonja Fonfara
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 28 College Ave W, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
8
|
Boukharov N, Yuan S, Ruangsirluk W, Ayyadurai S, Rahman A, Rivera-Hernandez M, Sunkara S, Tonini K, Park EYH, Deshpande M, Islam R. Developing Gene Therapy for Mitigating Multisystemic Pathology in Fabry Disease: Proof of Concept in an Aggravated Mouse Model. Hum Gene Ther 2024; 35:680-694. [PMID: 38970423 DOI: 10.1089/hum.2023.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024] Open
Abstract
Fabry disease (FD) is a multisystemic lysosomal storage disorder caused by the loss of α-galactosidase A (α-Gal) function. The current standard of care, enzyme replacement therapies, while effective in reducing kidney pathology when treated early, do not fully ameliorate cardiac issues, neuropathic manifestations, and risk of cerebrovascular events. Adeno-associated virus (AAV)-based gene therapies (AAV-GT) can provide superior efficacy across multiple tissues owing to continuous, endogenous production of the therapeutic enzyme and lower treatment burden. We set out to develop a robust AAV-GT to achieve optimal efficacy with the lowest feasible dose to minimize any safety risks that are associated with high-dose AAV-GTs. In this proof-of-concept study, we evaluated the effectiveness of an rAAV9 vector expressing human GLA transgene under a strong ubiquitous promoter, combined with woodchuck hepatitis virus posttranscriptional regulatory element (rAAV9-hGLA). We tested our GT at three different doses, 5e10 vg/kg, 2.5e11 vg/kg, and 6.25e12 vg/kg in the G3Stg/GLAko Fabry mouse model that has tissue Gb3 substrate levels comparable with patients with FD and develops several early FD pathologies. After intravenous injections of rAAV9-hGLA at 11 weeks of age, we observed dose-dependent increases in α-Gal activity in the key target tissues, reaching as high as 393-fold of WT in the kidneys and 6156-fold in the heart at the highest dose. Complete or near-complete substrate clearance was observed in animals treated with the two higher dose levels tested in all tissues except for the brain. We also found dose-dependent improvements in several pathological biomarkers, as well as prevention of structural and functional organ pathology. Taken together, these results indicate that an AAV-GT under a strong ubiquitous promoter has the potential to address the unmet therapeutic needs in patients with FD at relatively low doses.
Collapse
|
9
|
Singh A, Bhatt KS, Nguyen HC, Frisbee JC, Singh KK. Endothelial-to-Mesenchymal Transition in Cardiovascular Pathophysiology. Int J Mol Sci 2024; 25:6180. [PMID: 38892367 PMCID: PMC11173124 DOI: 10.3390/ijms25116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Under different pathophysiological conditions, endothelial cells lose endothelial phenotype and gain mesenchymal cell-like phenotype via a process known as endothelial-to-mesenchymal transition (EndMT). At the molecular level, endothelial cells lose the expression of endothelial cell-specific markers such as CD31/platelet-endothelial cell adhesion molecule, von Willebrand factor, and vascular-endothelial cadherin and gain the expression of mesenchymal cell markers such as α-smooth muscle actin, N-cadherin, vimentin, fibroblast specific protein-1, and collagens. EndMT is induced by numerous different pathways triggered and modulated by multiple different and often redundant mechanisms in a context-dependent manner depending on the pathophysiological status of the cell. EndMT plays an essential role in embryonic development, particularly in atrioventricular valve development; however, EndMT is also implicated in the pathogenesis of several genetically determined and acquired diseases, including malignant, cardiovascular, inflammatory, and fibrotic disorders. Among cardiovascular diseases, aberrant EndMT is reported in atherosclerosis, pulmonary hypertension, valvular disease, fibroelastosis, and cardiac fibrosis. Accordingly, understanding the mechanisms behind the cause and/or effect of EndMT to eventually target EndMT appears to be a promising strategy for treating aberrant EndMT-associated diseases. However, this approach is limited by a lack of precise functional and molecular pathways, causes and/or effects, and a lack of robust animal models and human data about EndMT in different diseases. Here, we review different mechanisms in EndMT and the role of EndMT in various cardiovascular diseases.
Collapse
Affiliation(s)
- Aman Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Kriti S. Bhatt
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Hien C. Nguyen
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jefferson C. Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Krishna K. Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
10
|
Somanader DVN, Zhao P, Widdop RE, Samuel CS. The involvement of the Wnt/β-catenin signaling cascade in fibrosis progression and its therapeutic targeting by relaxin. Biochem Pharmacol 2024; 223:116130. [PMID: 38490518 DOI: 10.1016/j.bcp.2024.116130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Organ scarring, referred to as fibrosis, results from a failed wound-healing response to chronic tissue injury and is characterised by the aberrant accumulation of various extracellular matrix (ECM) components. Once established, fibrosis is recognised as a hallmark of stiffened and dysfunctional tissues, hence, various fibrosis-related diseases collectively contribute to high morbidity and mortality in developed countries. Despite this, these diseases are ineffectively treated by currently-available medications. The pro-fibrotic cytokine, transforming growth factor (TGF)-β1, has emerged as the master regulator of fibrosis progression, owing to its ability to promote various factors and processes that facilitate rapid ECM synthesis and deposition, whilst negating ECM degradation. TGF-β1 signal transduction is tightly controlled by canonical (Smad-dependent) and non-canonical (MAP kinase- and Rho-associated protein kinase-dependent) intracellular protein activity, whereas its pro-fibrotic actions can also be facilitated by the Wnt/β-catenin pathway. This review outlines the pathological sequence of events and contributing roles of TGF-β1 in the progression of fibrosis, and how the Wnt/β-catenin pathway contributes to tissue repair in acute disease settings, but to fibrosis and related tissue dysfunction in synergy with TGF-β1 in chronic diseases. It also outlines the anti-fibrotic and related signal transduction mechanisms of the hormone, relaxin, that are mediated via its negative modulation of TGF-β1 and Wnt/β-catenin signaling, but through the promotion of Wnt/β-catenin activity in acute disease settings. Collectively, this highlights that the crosstalk between TGF-β1 signal transduction and the Wnt/β-catenin cascade may provide a therapeutic target that can be exploited to broadly treat and reverse established fibrosis.
Collapse
Affiliation(s)
- Deidree V N Somanader
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Peishen Zhao
- Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
11
|
He K, Wang X, Li T, Li Y, Ma L. Chlorogenic Acid Attenuates Isoproterenol Hydrochloride-Induced Cardiac Hypertrophy in AC16 Cells by Inhibiting the Wnt/β-Catenin Signaling Pathway. Molecules 2024; 29:760. [PMID: 38398512 PMCID: PMC10892528 DOI: 10.3390/molecules29040760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Cardiac hypertrophy (CH) is an important characteristic in heart failure development. Chlorogenic acid (CGA), a crucial bioactive compound from honeysuckle, is reported to protect against CH. However, its underlying mechanism of action remains incompletely elucidated. Therefore, this study aimed to explore the mechanism underlying the protective effect of CGA on CH. This study established a CH model by stimulating AC16 cells with isoproterenol (Iso). The observed significant decrease in cell surface area, evaluated through fluorescence staining, along with the downregulation of CH-related markers, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-myosin heavy chain (β-MHC) at both mRNA and protein levels, provide compelling evidence of the protective effect of CGA against isoproterenol-induced CH. Mechanistically, CGA induced the expression of glycogen synthase kinase 3β (GSK-3β) while concurrently attenuating the expression of the core protein β-catenin in the Wnt/β-catenin signaling pathway. Furthermore, the experiment utilized the Wnt signaling activator IM-12 to observe its ability to modulate the impact of CGA pretreatment on the development of CH. Using the Gene Expression Omnibus (GEO) database combined with online platforms and tools, this study identified Wnt-related genes influenced by CGA in hypertrophic cardiomyopathy (HCM) and further validated the correlation between CGA and the Wnt/β-catenin signaling pathway in CH. This result provides new insights into the molecular mechanisms underlying the protective effect of CGA against CH, indicating CGA as a promising candidate for the prevention and treatment of heart diseases.
Collapse
Affiliation(s)
- Kai He
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Xiaoying Wang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Tingting Li
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Yanfei Li
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Linlin Ma
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| |
Collapse
|
12
|
Sheikhzadeh F, Khajehnasiri N, Khalaj-Kondori M, Ramouz A, Sadeghian R. Wnt1 gene expression in the heart left ventricle as a response to the various durations of the intensive exercise: An experimental study. Endocr Regul 2024; 58:168-173. [PMID: 39121475 DOI: 10.2478/enr-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Abstract
Objective. Myocardial fibrosis is a devastating condition causing millions of deaths yearly. Several factors, such as aging, cause myocardial fibrosis. The Wnt/β-catenin pathway is one of the critical intracellular signaling for the development of cardiac fibrosis. Molecular and cellular mechanism of myocardial fibrosis induced by intensive exercise is not well-understood. The current study evaluates the effects of short- and long-term intensive exercise on the Wnt1 gene expression in a heart left ventricle in an animal model. Methods. Twenty-one male Wistar rats (mean weight 250±50 g) were divided into three groups (n=7): 1) control group (C); 2) short-term regular intensive exercise group (S-RIE, high-intensity exercise for one month six days weekly for 60 min with speed of 35 m/min), and 3) long-term regular intensive exercise group (L-RIE, high-intensity exercise for six months six days daily for 60 min with speed of 35 m/min). The heart left ventricle was isolated at the end of the experiment, and the relative gene expression of the Wnt1 gene was measured by the Real-Time PCR. Results. The L-RIE group showed a significant increase in the Wnt1 expression compared to the S-RIE and the control group. Although no difference was observed in the Wnt1 mRNA level in the S-RIE group compared to the control group, Wnt1 mRNA level increased in the L-RIE group compared to the S-RIE group. Conclusion. The exercise duration was of a great importance in the Wnt1 gene expression. Regular intensive exercise may be involved in the formation of the myocardial fibrosis by increasing the expression of the Wnt1 gene.
Collapse
Affiliation(s)
- Farzam Sheikhzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Nazli Khajehnasiri
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ali Ramouz
- General, Visceral and Transplant Surgery Department, Universitat, Klinikum Heidelberg, Heidelberg, Germany
| | - Reihaneh Sadeghian
- Clinical Research Development Unit, Shahid Bahonar Hospital, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Madè A, Bibi A, Garcia-Manteiga JM, Tascini AS, Piella SN, Tikhomirov R, Voellenkle C, Gaetano C, Leszek P, Castelvecchio S, Menicanti L, Martelli F, Greco S. circRNA-miRNA-mRNA Deregulated Network in Ischemic Heart Failure Patients. Cells 2023; 12:2578. [PMID: 37947656 PMCID: PMC10648415 DOI: 10.3390/cells12212578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Noncoding RNAs (ncRNAs), which include circular RNAs (circRNAs) and microRNAs (miRNAs), regulate the development of cardiovascular diseases (CVD). Notably, circRNAs can interact with miRNAs, influencing their specific mRNA targets' levels and shaping a competing endogenous RNAs (ceRNA) network. However, these interactions and their respective functions remain largely unexplored in ischemic heart failure (IHF). This study is aimed at identifying circRNA-centered ceRNA networks in non-end-stage IHF. Approximately 662 circRNA-miRNA-mRNA interactions were identified in the heart by combining state-of-the-art bioinformatics tools with experimental data. Importantly, KEGG terms of the enriched mRNA indicated CVD-related signaling pathways. A specific network centered on circBPTF was validated experimentally. The levels of let-7a-5p, miR-18a-3p, miR-146b-5p, and miR-196b-5p were enriched in circBPTF pull-down experiments, and circBPTF silencing inhibited the expression of HDAC9 and LRRC17, which are targets of miR-196b-5p. Furthermore, as suggested by the enriched pathway terms of the circBPTF ceRNA network, circBPTF inhibition elicited endothelial cell cycle arrest. circBPTF expression increased in endothelial cells exposed to hypoxia, and its upregulation was confirmed in cardiac samples of 36 end-stage IHF patients compared to healthy controls. In conclusion, circRNAs act as miRNA sponges, regulating the functions of multiple mRNA targets, thus providing a novel vision of HF pathogenesis and laying the theoretical foundation for further experimental studies.
Collapse
Affiliation(s)
- Alisia Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Alessia Bibi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
- Department of Biosciences, University of Milan, 20122 Milan, Italy
| | - Jose Manuel Garcia-Manteiga
- Center for Omics Sciences COSR, BioInformatics Laboratory, San Raffaele Scientific Institute, 20132 Milan, Italy; (J.M.G.-M.); (A.S.T.)
| | - Anna Sofia Tascini
- Center for Omics Sciences COSR, BioInformatics Laboratory, San Raffaele Scientific Institute, 20132 Milan, Italy; (J.M.G.-M.); (A.S.T.)
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Santiago Nicolas Piella
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Roman Tikhomirov
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy;
| | - Przemyslaw Leszek
- Department of Heart Failure and Transplantology, National Institute of Cardiology, 04-628 Warsaw, Poland;
| | - Serenella Castelvecchio
- Department of Adult Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (S.C.); (L.M.)
| | - Lorenzo Menicanti
- Department of Adult Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (S.C.); (L.M.)
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| |
Collapse
|
14
|
Yang M, Wu H, Qian H, Li D, Xu H, Chen J, Zhong J, Wu W, Yang H, Chen X, Min X, Chen J. Linggui Zhugan decoction delays ventricular remodeling in rats with chronic heart failure after myocardial infarction through the Wnt/β-catenin signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155026. [PMID: 37619320 DOI: 10.1016/j.phymed.2023.155026] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
CONTEXT Traditional Chinese medicine plays an important role in the prevention and treatment of heart failure (HF). Linggui Zhugan decoction has been approved for clinical treatment of chronic HF. However, the mechanism is still unclear. OBJECTIVE The effect of Linggui Zhugan decoction on the Wnt/β-catenin signaling pathway in rat myocardium was studied to investigate the mechanism by Linggui Zhugan decoction effects ventricular remodeling in rats with heart failure after myocardial infarction. METHOD A rat model of HF after myocardial infarction was prepared by ligating the left anterior descending coronary artery. After 6 weeks of intervention with Linggui Zhugan decoction, the effect of Linggui Zhugan decoction on the cardiac function of chronic HF model rats was observed. Myocardial infarct size was measured by triphenyl tetrazolium chloride (TTC) staining. Enzyme linked immunosorbent assays (ELISAs) were used to measure NT-proBNP and sST-2 concentrations in rat serum. Hematoxylin and eosin (H&E) staining, and Masson's trichrome staining were used to observe the morphology of myocardial tissue; immunohistochemistry was used to detect the protein expression of type I collagen and type III collagen in myocardial tissue; and mRNA expression levels of Wnt3a, GSK-3β, β-catenin, and c-Myc in the infarct marginal zone were detected using PCR. Protein expression of Wnt3a, p-GSK-3β, GSK-3β, and β-catenin in the infarct marginal zone was detected using western blot. RESULTS Compared with the control, Linggui Zhugan decoction reduced the levels of serum ST-2 and NT-proBNP, improved cardiac function, and reduced the deposition of collagen fiber. In addition, Linggui Zhugan decoction inhibited the expression of Wnt3a, p-GSK-3β, and β-catenin in cardiomyocytes. CONCLUSION Linggui Zhugan decoction inhibits the expression of several key proteins in the Wnt/β-catenin signaling pathway, delays cardiomyocyte hypertrophy and fibrosis, and improves cardiac function.
Collapse
Affiliation(s)
- Mingming Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Haiyan Wu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Hang Qian
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Dongfeng Li
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Hao Xu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Jishun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wenwen Wu
- School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Xinlong Chen
- Yunxi Hospital of Chinese Medicine, Shiyan, Hubei 442600, China.
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| |
Collapse
|
15
|
Zhang B, Wu Y, Yang X, Xiang Y, Yang B. Molecular insight into arrhythmogenic cardiomyopathy caused by DSG2 mutations. Biomed Pharmacother 2023; 167:115448. [PMID: 37696084 DOI: 10.1016/j.biopha.2023.115448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023] Open
Abstract
Mutant desmoglein 2 (DSG2) is the second most common pathogenic gene in arrhythmogenic cardiomyopathy (ACM), accounting for approximately 10% of ACM cases. In addition to common clinical and pathological features, ACM caused by mutant DSG2 has specific characteristics, manifesting as left ventricle involvement and a high risk of heart failure. Pathological studies have shown extensive cardiomyocyte necrosis, infiltration of immune cells, and fibrofatty replacement in both ventricles, as well as abnormal desmosome structures in the hearts of humans and mice with mutant DSG2-related ACM. Although desmosome dysfunction is a common pathway in the pathogenesis of mutant DSG2-related ACM, the mechanisms underlying this dysfunction vary among mutations. Desmosome dysfunction induces cardiomyocyte injury, plakoglobin dislocation, and gap junction dysfunction, all of which contribute to the initiation and progression of ACM. Additionally, dysregulated inflammation, overactivation of transforming growth factor-beta-1 signaling and endoplasmic reticulum stress, and cardiac metabolic dysfunction contribute to the pathogenesis of ACM caused by mutant DSG2. These features demonstrate that patients with mutant DSG2-related ACM should be managed individually and precisely based on the genotype and phenotype. Further studies are needed to investigate the underlying mechanisms and to identify novel therapies to reverse or attenuate the progression of ACM caused by mutant DSG2.
Collapse
Affiliation(s)
- Baowei Zhang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai 200120, PR China
| | - Yizhang Wu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai 200120, PR China
| | - Xingbo Yang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 150 Jimo Road, Pudong, Shanghai 200120, PR China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 150 Jimo Road, Pudong, Shanghai 200120, PR China.
| | - Bing Yang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai 200120, PR China.
| |
Collapse
|
16
|
Herting JR, König JH, Hadova K, Heinick A, Müller FU, Pauls P, Seidl MD, Soppa C, Kirchhefer U. Hypercontractile cardiac phenotype in mice overexpressing the regulatory subunit PR72 of protein phosphatase 2A. Front Cardiovasc Med 2023; 10:1239555. [PMID: 37868783 PMCID: PMC10590119 DOI: 10.3389/fcvm.2023.1239555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Background The activity, localization, and substrate specificity of the protein phosphatase 2A (PP2A) heterotrimer are controlled by various regulatory B subunits. PR72 belongs to the B'' gene family and has been shown to be upregulated in human heart failure. However, little is known about the functions of PR72 in the myocardium. Methods To address this issue, we generated a transgenic mouse model with heart-specific overexpression of PP2A-PR72. Biochemical and physiological methods were used to determine contractility, Ca2+ cycling parameters, and protein phosphorylation. Results A 2.5-fold increase in PR72 expression resulted in moderate cardiac hypertrophy. Maximal ventricular pressure was increased in catheterized transgenic mice (TG) compared to wild-type (WT) littermates. This was accompanied by an increased shortening of sarcomere length and faster relaxation at the single-cell level in TG. In parallel with these findings, the peak amplitude of Ca2+ transients was increased, and the decay in intracellular Ca2+ levels was shortened in TG compared to WT. The changes in Ca2+ cycling in TG were also evident from an increase in the full duration and width at half maximum of Ca2+ sparks. Consistent with the contractile data, phosphorylation of phospholamban at threonine-17 was higher in TG hearts. The lower expression of the Na+/Ca2+ exchanger may also contribute to the hypercontractile state in transgenic myocardium. Conclusion Our results suggest that PP2A-PR72 plays an important role in regulating cardiac contractile function and Ca2+ cycling, indicating that the upregulation of PR72 in heart failure is an attempt to compensate functionally.
Collapse
Affiliation(s)
- Julius R. Herting
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Jule H. König
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Katarina Hadova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Alexander Heinick
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Frank U. Müller
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Paul Pauls
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Matthias D. Seidl
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Carolina Soppa
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| |
Collapse
|
17
|
Cai D, Wang X, Sun Y, Fan H, Zhou J, Yang Z, Qiu H, Wang J, Su J, Gong T, Jiang C, Liang P. Patient-specific iPSC-derived cardiomyocytes reveal aberrant activation of Wnt/β-catenin signaling in SCN5A-related Brugada syndrome. Stem Cell Res Ther 2023; 14:241. [PMID: 37679791 PMCID: PMC10486057 DOI: 10.1186/s13287-023-03477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Mutations in the cardiac sodium channel gene SCN5A cause Brugada syndrome (BrS), an arrhythmic disorder that is a leading cause of sudden death and lacks effective treatment. An association between SCN5A and Wnt/β-catenin signaling has been recently established. However, the role of Wnt/β-catenin signaling in BrS and underlying mechanisms remains unknown. METHODS Three healthy control subjects and one BrS patient carrying a novel frameshift mutation (T1788fs) in the SCN5A gene were recruited in this study. Control and BrS patient-specific induced pluripotent stem cells (iPSCs) were generated from skin fibroblasts using nonintegrated Sendai virus. All iPSCs were differentiated into cardiomyocytes using monolayer-based differentiation protocol. Action potentials and sodium currents were recorded from control and BrS iPSC-derived cardiomyocytes (iPSC-CMs) by single-cell patch clamp. RESULTS BrS iPSC-CMs exhibited increased burden of arrhythmias and abnormal action potential profile featured by slower depolarization, decreased action potential amplitude, and increased beating interval variation. Moreover, BrS iPSC-CMs showed cardiac sodium channel (Nav1.5) loss-of-function as compared to control iPSC-CMs. Interestingly, the electrophysiological abnormalities and Nav1.5 loss-of-function observed in BrS iPSC-CMs were accompanied by aberrant activation of Wnt/β-catenin signaling. Notably, inhibition of Wnt/β-catenin significantly rescued Nav1.5 defects and arrhythmic phenotype in BrS iPSC-CMs. Mechanistically, SCN5A-encoded Nav1.5 interacts with β-catenin, and reduced expression of Nav1.5 leads to re-localization of β-catenin in BrS iPSC-CMs, which aberrantly activates Wnt/β-catenin signaling to suppress SCN5A transcription. CONCLUSIONS Our findings suggest that aberrant activation of Wnt/β-catenin signaling contributes to the pathogenesis of SCN5A-related BrS and point to Wnt/β-catenin as a potential therapeutic target.
Collapse
Affiliation(s)
- Dongsheng Cai
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, China
| | - Xiaochen Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Yaxun Sun
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, China
| | - Hangping Fan
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Jingjun Zhou
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Zongkuai Yang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Hangyuan Qiu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, China
| | - Jue Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Jun Su
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Tingyu Gong
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Chenyang Jiang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, China.
| | - Ping Liang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
18
|
Kasamoto M, Funakoshi S, Hatani T, Okubo C, Nishi Y, Tsujisaka Y, Nishikawa M, Narita M, Ohta A, Kimura T, Yoshida Y. Am80, a retinoic acid receptor agonist, activates the cardiomyocyte cell cycle and enhances engraftment in the heart. Stem Cell Reports 2023; 18:1672-1685. [PMID: 37451261 PMCID: PMC10444569 DOI: 10.1016/j.stemcr.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Human induced pluripotent stem cell-derived (hiPSC) cardiomyocytes are a promising source for regenerative therapy. To realize this therapy, however, their engraftment potential after their injection into the host heart should be improved. Here, we established an efficient method to analyze the cell cycle activity of hiPSC cardiomyocytes using a fluorescence ubiquitination-based cell cycle indicator (FUCCI) system. In vitro high-throughput screening using FUCCI identified a retinoic acid receptor (RAR) agonist, Am80, as an effective cell cycle activator in hiPSC cardiomyocytes. The transplantation of hiPSC cardiomyocytes treated with Am80 before the injection significantly enhanced the engraftment in damaged mouse heart for 6 months. Finally, we revealed that the activation of endogenous Wnt pathways through both RARA and RARB underlies the Am80-mediated cell cycle activation. Collectively, this study highlights an efficient method to activate cell cycle in hiPSC cardiomyocytes by Am80 as a means to increase the graft size after cell transplantation into a damaged heart.
Collapse
Affiliation(s)
- Manabu Kasamoto
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Department of Cardiovascular Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Shunsuke Funakoshi
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint program (T-CiRA), Fujisawa, Japan.
| | - Takeshi Hatani
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Chikako Okubo
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yohei Nishi
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yuta Tsujisaka
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Department of Cardiovascular Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Misato Nishikawa
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Megumi Narita
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Akira Ohta
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Yoshinori Yoshida
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint program (T-CiRA), Fujisawa, Japan.
| |
Collapse
|
19
|
Jameson HS, Hanley A, Hill MC, Xiao L, Ye J, Bapat A, Ronzier E, Hall AW, Hucker WJ, Clauss S, Barazza M, Silber E, Mina J, Tucker NR, Mills RW, Dong JT, Milan DJ, Ellinor PT. Loss of the Atrial Fibrillation-Related Gene, Zfhx3, Results in Atrial Dilation and Arrhythmias. Circ Res 2023; 133:313-329. [PMID: 37449401 PMCID: PMC10527554 DOI: 10.1161/circresaha.123.323029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND ZFHX3 (zinc finger homeobox 3), a gene that encodes a large transcription factor, is at the second-most significantly associated locus with atrial fibrillation (AF), but its function in the heart is unknown. This study aims to identify causative genetic variation related to AF at the ZFHX3 locus and examine the impact of Zfhx3 loss on cardiac function in mice. METHODS CRISPR-Cas9 genome editing, chromatin immunoprecipitation, and luciferase assays in pluripotent stem cell-derived cardiomyocytes were used to identify causative genetic variation related to AF at the ZFHX3 locus. Cardiac function was assessed by echocardiography, magnetic resonance imaging, electrophysiology studies, calcium imaging, and RNA sequencing in mice with heterozygous and homozygous cardiomyocyte-restricted Zfhx3 loss (Zfhx3 Het and knockout, respectively). Human cardiac single-nucleus ATAC (assay for transposase-accessible chromatin)-sequencing data was analyzed to determine which genes in atrial cardiomyocytes are directly regulated by ZFHX3. RESULTS We found single-nucleotide polymorphism (SNP) rs12931021 modulates an enhancer regulating ZFHX3 expression, and the AF risk allele is associated with decreased ZFHX3 transcription. We observed a gene-dose response in AF susceptibility with Zfhx3 knockout mice having higher incidence, frequency, and burden of AF than Zfhx3 Het and wild-type mice, with alterations in conduction velocity, atrial action potential duration, calcium handling and the development of atrial enlargement and thrombus, and dilated cardiomyopathy. Zfhx3 loss results in atrial-specific differential effects on genes and signaling pathways involved in cardiac pathophysiology and AF. CONCLUSIONS Our findings implicate ZFHX3 as the causative gene at the 16q22 locus for AF, and cardiac abnormalities caused by loss of cardiac Zfhx3 are due to atrial-specific dysregulation of pathways involved in AF susceptibility. Together, these data reveal a novel and important role for Zfhx3 in the control of cardiac genes and signaling pathways essential for normal atrial function.
Collapse
Affiliation(s)
- Heather S. Jameson
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Alan Hanley
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew C. Hill
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Ling Xiao
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Jiangchuan Ye
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Aneesh Bapat
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Elsa Ronzier
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Amelia Weber Hall
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA
| | - William J. Hucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Sebastian Clauss
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), 81377 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Munich, Germany
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Germany
| | - Miranda Barazza
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth Silber
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Julie Mina
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Robert W. Mills
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
20
|
Shah R, Amador C, Chun ST, Ghiam S, Saghizadeh M, Kramerov AA, Ljubimov AV. Non-canonical Wnt signaling in the eye. Prog Retin Eye Res 2023; 95:101149. [PMID: 36443219 PMCID: PMC10209355 DOI: 10.1016/j.preteyeres.2022.101149] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Wnt signaling comprises a group of complex signal transduction pathways that play critical roles in cell proliferation, differentiation, and apoptosis during development, as well as in stem cell maintenance and adult tissue homeostasis. Wnt pathways are classified into two major groups, canonical (β-catenin-dependent) or non-canonical (β-catenin-independent). Most previous studies in the eye have focused on canonical Wnt signaling, and the role of non-canonical signaling remains poorly understood. Additionally, the crosstalk between canonical and non-canonical Wnt signaling in the eye has hardly been explored. In this review, we present an overview of available data on ocular non-canonical Wnt signaling, including developmental and functional aspects in different eye compartments. We also discuss important changes of this signaling in various ocular conditions, such as keratoconus, aniridia-related keratopathy, diabetes, age-related macular degeneration, optic nerve damage, pathological angiogenesis, and abnormalities in the trabecular meshwork and conjunctival cells, and limbal stem cell deficiency.
Collapse
Affiliation(s)
- Ruchi Shah
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cynthia Amador
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven T Chun
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; University of California Los Angeles, Los Angeles, CA, USA
| | - Sean Ghiam
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Mehrnoosh Saghizadeh
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrei A Kramerov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Rami M, Rahdar S, Ahmadi Hekmatikar A, Awang Daud DM. Highlighting the novel effects of high-intensity interval training on some histopathological and molecular indices in the heart of type 2 diabetic rats. Front Endocrinol (Lausanne) 2023; 14:1175585. [PMID: 37274326 PMCID: PMC10235768 DOI: 10.3389/fendo.2023.1175585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Background Type 2 diabetes is one of the most common metabolic diseases in recent years and has become an important risk factor for cardiovascular disorders. The first goal is to reduce type 2 diabetes, and in the case of cardiovascular disease, the second goal is to reduce and manage that disorder. Materials and methods The rats were divided into 4 groups: Healthy Control (n=8), Diabetes Control (n=8), Diabetes Training (n=8), and Healthy Training (n=8). The protocol consisted of 8 weeks of High-intensity interval (5 sessions per week), where the training started with 80% of the peak speed in the first week, and 10% was added to this speed every week. To measure the level of B-catenin, c-MYC, GSK3B, and Bcl-2 proteins using the western blot method, cardiac pathological changes were measured using hematoxylin and eosin staining, Masson's trichrome and PAS staining and apoptosis using the TUNEL method. Findings Histological results showed that diabetes causes significant pathological hypertrophy, fibrosis, and severe apoptosis in heart tissue. HIIT training significantly reduced pathological hypertrophy and fibrosis in heart tissue, and the rate of cardiomyocyte apoptosis was greatly reduced. This research showed that diabetes disorder increases the levels of B-catenin and c-Myc proteins and causes a decrease in the expression of GSK3B and Bcl-2 proteins. After eight weeks of HIIT training, the levels of B-catenin and c-Myc proteins decreased significantly, and the levels of GSK3B and Bcl-2 proteins increased. Conclusion This study showed that HIIT could be a suitable strategy to reduce cardiomyopathy in type 2 diabetic rats. However, it is suggested that in future studies, researchers should perform different intensities and exercises to promote exercise goals in type 2 diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Mohammad Rami
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Samane Rahdar
- Department of Basic Sciences, Histology section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amirhoseein Ahmadi Hekmatikar
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - D. Maryama Awang Daud
- Health Through Exercise and Active Living (HEAL) Research Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
22
|
Lu A, Gu R, Chu C, Xia Y, Wang J, Davis DR, Liang W. Inhibition of Wnt/β-catenin signaling upregulates Na v 1.5 channels in Brugada syndrome iPSC-derived cardiomyocytes. Physiol Rep 2023; 11:e15696. [PMID: 37226398 PMCID: PMC10209518 DOI: 10.14814/phy2.15696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023] Open
Abstract
The voltage-gated Nav 1.5 channels mediate the fast Na+ current (INa ) in cardiomyocytes initiating action potentials and cardiac contraction. Downregulation of INa , as occurs in Brugada syndrome (BrS), causes ventricular arrhythmias. The present study investigated whether the Wnt/β-catenin signaling regulates Nav 1.5 in human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). In healthy male and female iPSC-CMs, activation of Wnt/β-catenin signaling by CHIR-99021 reduced (p < 0.01) both Nav 1.5 protein and SCN5A mRNA. In iPSC-CMs from a BrS patient, both Nav 1.5 protein and peak INa were reduced compared to those in healthy iPSC-CMs. Treatment of BrS iPSC-CMs with Wnt-C59, a small-molecule Wnt inhibitor, led to a 2.1-fold increase in Nav 1.5 protein (p = 0.0005) but surprisingly did not affect SCN5A mRNA (p = 0.146). Similarly, inhibition of Wnt signaling using shRNA-mediated β-catenin knockdown in BrS iPSC-CMs led to a 4.0-fold increase in Nav 1.5, which was associated with a 4.9-fold increase in peak INa but only a 2.1-fold increase in SCN5A mRNA. The upregulation of Nav 1.5 by β-catenin knockdown was verified in iPSC-CMs from a second BrS patient. This study demonstrated that Wnt/β-catenin signaling inhibits Nav 1.5 expression in both male and female human iPSC-CMs, and inhibition of Wnt/β-catenin signaling upregulates Nav 1.5 in BrS iPSC-CMs through both transcriptional and posttranscriptional mechanisms.
Collapse
Affiliation(s)
- Aizhu Lu
- University of Ottawa Heart InstituteOttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
| | - Ruonan Gu
- University of Ottawa Heart InstituteOttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
- Department of Anesthesiology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Cencen Chu
- University of Ottawa Heart InstituteOttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
| | - Ying Xia
- University of Ottawa Heart InstituteOttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
| | - Jerry Wang
- University of Ottawa Heart InstituteOttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
| | - Darryl R. Davis
- University of Ottawa Heart InstituteOttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
| | - Wenbin Liang
- University of Ottawa Heart InstituteOttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
23
|
Floy ME, Shabnam F, Givens SE, Patil VA, Ding Y, Li G, Roy S, Raval AN, Schmuck EG, Masters KS, Ogle BM, Palecek SP. Identifying molecular and functional similarities and differences between human primary cardiac valve interstitial cells and ventricular fibroblasts. Front Bioeng Biotechnol 2023; 11:1102487. [PMID: 37051268 PMCID: PMC10083504 DOI: 10.3389/fbioe.2023.1102487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction: Fibroblasts are mesenchymal cells that predominantly produce and maintain the extracellular matrix (ECM) and are critical mediators of injury response. In the heart, valve interstitial cells (VICs) are a population of fibroblasts responsible for maintaining the structure and function of heart valves. These cells are regionally distinct from myocardial fibroblasts, including left ventricular cardiac fibroblasts (LVCFBs), which are located in the myocardium in close vicinity to cardiomyocytes. Here, we hypothesize these subpopulations of fibroblasts are transcriptionally and functionally distinct. Methods: To compare these fibroblast subtypes, we collected patient-matched samples of human primary VICs and LVCFBs and performed bulk RNA sequencing, extracellular matrix profiling, and functional contraction and calcification assays. Results: Here, we identified combined expression of SUSD2 on a protein-level, and MEOX2, EBF2 and RHOU at a transcript-level to be differentially expressed in VICs compared to LVCFBs and demonstrated that expression of these genes can be used to distinguish between the two subpopulations. We found both VICs and LVCFBs expressed similar activation and contraction potential in vitro, but VICs showed an increase in ALP activity when activated and higher expression in matricellular proteins, including cartilage oligomeric protein and alpha 2-Heremans-Schmid glycoprotein, both of which are reported to be linked to calcification, compared to LVCFBs. Conclusion: These comparative transcriptomic, proteomic, and functional studies shed novel insight into the similarities and differences between valve interstitial cells and left ventricular cardiac fibroblasts and will aid in understanding region-specific cardiac pathologies, distinguishing between primary subpopulations of fibroblasts, and generating region-specific stem-cell derived cardiac fibroblasts.
Collapse
Affiliation(s)
- Martha E. Floy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Fathima Shabnam
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Sophie E. Givens
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Vaidehi A. Patil
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Yunfeng Ding
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Grace Li
- Department of Chemical Engineering, University of Florida, Gainesville, FL, United States
| | - Sushmita Roy
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Amish N. Raval
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Eric G. Schmuck
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Kristyn S. Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Brenda M. Ogle
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
24
|
Bekedam FT, Goumans MJ, Bogaard HJ, de Man FS, Llucià-Valldeperas A. Molecular mechanisms and targets of right ventricular fibrosis in pulmonary hypertension. Pharmacol Ther 2023; 244:108389. [PMID: 36940790 DOI: 10.1016/j.pharmthera.2023.108389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/19/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Right ventricular fibrosis is a stress response, predominantly mediated by cardiac fibroblasts. This cell population is sensitive to increased levels of pro-inflammatory cytokines, pro-fibrotic growth factors and mechanical stimulation. Activation of fibroblasts results in the induction of various molecular signaling pathways, most notably the mitogen-activated protein kinase cassettes, leading to increased synthesis and remodeling of the extracellular matrix. While fibrosis confers structural protection in response to damage induced by ischemia or (pressure and volume) overload, it simultaneously contributes to increased myocardial stiffness and right ventricular dysfunction. Here, we review state-of-the-art knowledge of the development of right ventricular fibrosis in response to pressure overload and provide an overview of all published preclinical and clinical studies in which right ventricular fibrosis was targeted to improve cardiac function.
Collapse
Affiliation(s)
- F T Bekedam
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - M J Goumans
- Department of Cell and Chemical Biology, Leiden UMC, 2300 RC Leiden, the Netherlands
| | - H J Bogaard
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - F S de Man
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| | - A Llucià-Valldeperas
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| |
Collapse
|
25
|
Schoger E, Bleckwedel F, Germena G, Rocha C, Tucholla P, Sobitov I, Möbius W, Sitte M, Lenz C, Samak M, Hinkel R, Varga ZV, Giricz Z, Salinas G, Gross JC, Zelarayán LC. Single-cell transcriptomics reveal extracellular vesicles secretion with a cardiomyocyte proteostasis signature during pathological remodeling. Commun Biol 2023; 6:79. [PMID: 36681760 PMCID: PMC9867722 DOI: 10.1038/s42003-022-04402-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/23/2022] [Indexed: 01/22/2023] Open
Abstract
Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell transcriptome profiling of hearts with inducible cardiomyocyte-specific Wnt activation (β-catΔex3) as well as with compensatory and failing hypertrophic remodeling. We show that functional enrichment analysis points to an involvement of extracellular vesicles (EVs) related processes in hearts of β-catΔex3 mice. A proteomic analysis of in vivo cardiac derived EVs from β-catΔex3 hearts has identified differentially enriched proteins involving 20 S proteasome constitutes, protein quality control (PQC), chaperones and associated cardiac proteins including α-Crystallin B (CRYAB) and sarcomeric components. The hypertrophic model confirms that cardiomyocytes reacted with an acute early transcriptional upregulation of exosome biogenesis processes and chaperones transcripts including CRYAB, which is ameliorated in advanced remodeling. Finally, human induced pluripotent stem cells (iPSC)-derived cardiomyocytes subjected to pharmacological Wnt activation recapitulated the increased expression of exosomal markers, CRYAB accumulation and increased PQC signaling. These findings reveal that secretion of EVs with a proteostasis signature contributes to early patho-physiological adaptation of cardiomyocytes, which may serve as a read-out of disease progression and can be used for monitoring cellular remodeling in vivo with a possible diagnostic and prognostic role in the future.
Collapse
Affiliation(s)
- Eric Schoger
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075, Göttingen, Germany
| | - Federico Bleckwedel
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
| | - Giulia Germena
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
- Laboratory Animal Science Unit, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, 37075, Göttingen, Germany
| | - Cheila Rocha
- Laboratory Animal Science Unit, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, 37075, Göttingen, Germany
| | - Petra Tucholla
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
| | - Izzatullo Sobitov
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
| | - Wiebke Möbius
- Max-Planck-Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
| | - Maren Sitte
- NGS Integrative Genomics Core Unit (NIG), University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
| | - Christof Lenz
- Department of Clinical Chemistry, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
| | - Mostafa Samak
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
- Laboratory Animal Science Unit, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, 37075, Göttingen, Germany
| | - Rabea Hinkel
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
- Laboratory Animal Science Unit, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, 37075, Göttingen, Germany
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour (ITTN), Stiftung Tierärztliche Hochschule Hannover, University of Veterinary Medicine, 30173, Hannover, Germany
| | - Zoltán V Varga
- HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1085, Budapest, Hungary
- Pharmahungary Group, H-1085, Budapest, Hungary
| | - Zoltán Giricz
- HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1085, Budapest, Hungary
- Pharmahungary Group, H-1085, Budapest, Hungary
| | - Gabriela Salinas
- NGS Integrative Genomics Core Unit (NIG), University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
| | - Julia C Gross
- Health and Medical University, D-14471, Potsdam, Germany
| | - Laura C Zelarayán
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
26
|
Akoumianakis I, Polkinghorne M, Antoniades C. Non-canonical WNT signalling in cardiovascular disease: mechanisms and therapeutic implications. Nat Rev Cardiol 2022; 19:783-797. [PMID: 35697779 PMCID: PMC9191761 DOI: 10.1038/s41569-022-00718-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/15/2022]
Abstract
WNT signalling comprises a diverse spectrum of receptor-mediated pathways activated by a large family of WNT ligands and influencing fundamental biological processes. WNT signalling includes the β-catenin canonical pathway and the non-canonical pathways, namely the planar cell polarity and the calcium-dependent pathways. Advances over the past decade have linked non-canonical WNT signalling with key mechanisms of atherosclerosis, including oxidative stress, endothelial dysfunction, macrophage activation and vascular smooth muscle cell phenotype regulation. In addition, non-canonical WNT signalling is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and oxidative stress. Importantly, non-canonical WNT signalling activation has complex effects in adipose tissue in the context of obesity, thereby potentially linking metabolic and vascular diseases. Tissue-specific targeting of non-canonical WNT signalling might be associated with substantial risks of off-target tumorigenesis, challenging its therapeutic potential. However, novel technologies, such as monoclonal antibodies, recombinant decoy receptors, tissue-specific gene silencing with small interfering RNAs and gene editing with CRISPR-Cas9, might enable more efficient therapeutic targeting of WNT signalling in the cardiovascular system. In this Review, we summarize the components of non-canonical WNT signalling, their links with the main mechanisms of atherosclerosis, heart failure and arrhythmias, and the rationale for targeting individual components of non-canonical WNT signalling for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Murray Polkinghorne
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
27
|
Yang Y, Feng K, Yuan L, Liu Y, Zhang M, Guo K, Yin Z, Wang W, Zhou S, Sun H, Yan K, Yan X, Wang X, Duan Y, Hu Y, Han J. Compound Danshen Dripping Pill inhibits hypercholesterolemia/atherosclerosis-induced heart failure in ApoE and LDLR dual deficient mice via multiple mechanisms. Acta Pharm Sin B 2022; 13:1036-1052. [PMID: 36970211 PMCID: PMC10031343 DOI: 10.1016/j.apsb.2022.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure is the leading cause of death worldwide. Compound Danshen Dripping Pill (CDDP) or CDDP combined with simvastatin has been widely used to treat patients with myocardial infarction and other cardiovascular diseases in China. However, the effect of CDDP on hypercholesterolemia/atherosclerosis-induced heart failure is unknown. We constructed a new model of heart failure induced by hypercholesterolemia/atherosclerosis in apolipoprotein E (ApoE) and LDL receptor (LDLR) dual deficient (ApoE-/-LDLR-/-) mice and investigated the effect of CDDP or CDDP plus a low dose of simvastatin on the heart failure. CDDP or CDDP plus a low dose of simvastatin inhibited heart injury by multiple actions including anti-myocardial dysfunction and anti-fibrosis. Mechanistically, both Wnt and lysine-specific demethylase 4A (KDM4A) pathways were significantly activated in mice with heart injury. Conversely, CDDP or CDDP plus a low dose of simvastatin inhibited Wnt pathway by markedly up-regulating expression of Wnt inhibitors. While the anti-inflammation and anti-oxidative stress by CDDP were achieved by inhibiting KDM4A expression and activity. In addition, CDDP attenuated simvastatin-induced myolysis in skeletal muscle. Taken together, our study suggests that CDDP or CDDP plus a low dose of simvastatin can be an effective therapy to reduce hypercholesterolemia/atherosclerosis-induced heart failure.
Collapse
Affiliation(s)
- Yanfang Yang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Ke Feng
- Department of Physiology, Binzhou Medical University, Yantai 264003, China
| | - Liying Yuan
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yuxin Liu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Mengying Zhang
- Cloudphar Pharmaceuticals Co., Ltd., Shenzhen 518000, China
| | - Kaimin Guo
- Cloudphar Pharmaceuticals Co., Ltd., Shenzhen 518000, China
| | - Zequn Yin
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Wenjia Wang
- Cloudphar Pharmaceuticals Co., Ltd., Shenzhen 518000, China
| | - Shuiping Zhou
- The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, China
- Tasly Pharmaceutical Group Co., Ltd., Tianjin 300410, China
| | - He Sun
- Cloudphar Pharmaceuticals Co., Ltd., Shenzhen 518000, China
- The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, China
- Tasly Pharmaceutical Group Co., Ltd., Tianjin 300410, China
| | - Kaijing Yan
- Cloudphar Pharmaceuticals Co., Ltd., Shenzhen 518000, China
- The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, China
- Tasly Pharmaceutical Group Co., Ltd., Tianjin 300410, China
| | - Xijun Yan
- The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, China
- Tasly Pharmaceutical Group Co., Ltd., Tianjin 300410, China
| | - Xuerui Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China
- Corresponding authors. Tel.: +86 17352916451 (Yajun Duan); +86 18522755110 (Yunhui Hu); +86 13920545670 (Jihong Han).
| | - Yunhui Hu
- Cloudphar Pharmaceuticals Co., Ltd., Shenzhen 518000, China
- Corresponding authors. Tel.: +86 17352916451 (Yajun Duan); +86 18522755110 (Yunhui Hu); +86 13920545670 (Jihong Han).
| | - Jihong Han
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
- Corresponding authors. Tel.: +86 17352916451 (Yajun Duan); +86 18522755110 (Yunhui Hu); +86 13920545670 (Jihong Han).
| |
Collapse
|
28
|
Alharbi KS, Singh Y, Afzal O, Alfawaz Altamimi AS, Kazmi I, Al-Abbasi FA, Alzarea SI, Chellappan DK, Singh SK, Dua K, Gupta G. Molecular explanation of Wnt/βcatenin antagonist pyrvinium mediated calcium equilibrium changes in aging cardiovascular disorders. Mol Biol Rep 2022; 49:11101-11111. [DOI: 10.1007/s11033-022-07863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 08/11/2022] [Indexed: 10/14/2022]
|
29
|
Kania K, Ahmed A, Ahmed S, Rådegran G. Elevated plasma WIF-1 levels are associated with worse prognosis in heart failure with pulmonary hypertension. ESC Heart Fail 2022; 9:4139-4149. [PMID: 36082780 PMCID: PMC9773778 DOI: 10.1002/ehf2.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 01/19/2023] Open
Abstract
AIMS Heart failure (HF) is a progressive condition that is becoming more prevalent in the ageing population. Pulmonary hypertension is a common complicating factor in HF and negatively impacts survival. Plasma biomarkers are a potential method for determining the prognosis of patients with left heart failure with pulmonary hypertension (LHF-PH). We aimed to analyse the prognostic capability of 33 proteins related to, among other pathways, inflammation, coagulation, and Wnt signalling in LHF-PH. METHODS Plasma levels of 33 proteins were analysed using proximity extension assay from the plasma of 20 controls and 67 LHF-PH patients, whereof 19 underwent heart transplantation (HT). Haemodynamics in the patients were assessed using right heart catheterization. RESULTS Eleven proteins had elevated plasma levels in LHF-PH compared with controls (P < 0.01), which decreased towards the controls' levels after HT (P < 0.01). Survival analysis of these proteins showed that elevated plasma levels of growth hormone, programmed cell death 1 ligand 2, tissue factor pathway inhibitor 2, and Wnt inhibitory factor 1 (WIF-1) were associated with worse transplantation-free survival in LHF-PH (P < 0.05). When adjusted for age, sex and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels using multivariable cox regressions, only WIF-1 remained prognostic [hazard ratio (95% confidence interval)] [1.013 (1.001-1.024)]. WIF-1 levels in LHF-PH patients also correlated with the mean right atrial pressure (rs = 0.42; P < 0.01), stroke volume index (rs = 0.41; P < 0.01), cardiac index (rs = -0.42; P < 0.01), left ventricular stroke work index (rs = -0.41; P < 0.01), and NT-proBNP (rs = 0.63; P < 0.01). CONCLUSIONS The present study demonstrated that LHF-PH patients have higher plasma WIF-1 levels than healthy controls, suggesting that plasma WIF-1 may be a potential future prognostic biomarker in LHF-PH. Its prognostic capability could be further refined by including it in a multi-marker panel. Further studies are needed to establish the potential role of WIF-1 in LHF-PH pathophysiology in larger cohorts to determine its clinical applicability.
Collapse
Affiliation(s)
- Kriss Kania
- Department of Clinical Sciences Lund, CardiologyLund UniversityLundSweden,The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| | - Abdulla Ahmed
- Department of Clinical Sciences Lund, CardiologyLund UniversityLundSweden,The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| | - Salaheldin Ahmed
- Department of Clinical Sciences Lund, CardiologyLund UniversityLundSweden,The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| | - Göran Rådegran
- Department of Clinical Sciences Lund, CardiologyLund UniversityLundSweden,The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| |
Collapse
|
30
|
Lin LR, Hu XQ, Lu LH, Dai JZ, Lin NN, Wang RH, Xie ZX, Chen XM. MicroRNA expression profiles in familial hypertrophic cardiomyopathy with myosin-binding protein C3 (MYBPC3) gene mutations. BMC Cardiovasc Disord 2022; 22:278. [PMID: 35717150 PMCID: PMC9206743 DOI: 10.1186/s12872-022-02714-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (FHCM) is an autosomal dominant inherited disease caused by mutations in genes encoding cardiac sarcomere proteins. MicroRNAs (miRNAs) play an important role in the pathogenesis of FHCM. In the present study, we aimed to determine the miRNA profile in FHCM patients with myosin-binding protein C3 (MYBPC3) gene mutations. We recruited three FHCM patients and age- and sex-matched controls. The three probands all had hypertrophic obstructive cardiomyopathy with severe myocardial hypertrophy, and two of the three had a history of sudden cardiac death, representing a “malignant” phenotype. We then compared the miRNA expression profiles of three FHCM patients carrying MYBPC3 gene mutations with those of the normal control group using miRNA sequencing technology. Differentially expressed miRNAs were verified using real-time polymerase chain reaction (qPCR). Target genes and signaling pathways of the identified differentially expressed miRNAs were predicted using bioinformatics analysis. A total of 33 significantly differentially expressed miRNAs were detected in the peripheral blood of the three probands, of which 28 were upregulated, including miR-208b-3p, and 5 were downregulated. Real-time PCR confirmed the upregulated expression of miR-208b-3p in FHCM patients (P < 0.05). Bioinformatics analysis showed that miR-208b-3p was mainly enriched in 79 target genes including UBE2V2, MED13, YBX1, CNKSR2, GATA4, andSOX5/6, et al. Gene ontology (GO) analysis of target genes showed that miR-208b was mainly involved in the processes of negative regulation of transcription from RNA polymerase II promoter, and regulation of transcription, DNA templated. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the target genes regulated by miR-208b-3p were mainly involved in the Wnt signaling pathway. These findings suggest that FHCM patients with MYBPC3 gene mutations have a specific miRNA expression profile, and that miR-208b-3p is significantly upregulated in cardiac hypertrophy. Our results also indicate that miRNA-208b-3p activates the Wnt signaling pathway through its target gene to promote cardiac hypertrophy.
Collapse
Affiliation(s)
- Li-Rong Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.,Department of Cardiology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Xue-Qun Hu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.,Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Li-Hong Lu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China. .,Department of Cardiology, Fujian Provincial Hospital, Fuzhou, 350001, China.
| | - Jia-Zhen Dai
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Ning-Ning Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Re-Hua Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.,Department of Cardiology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Zhang-Xin Xie
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.,Department of Emergency, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Xue-Mei Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.,Department of Cardiology, Fujian Provincial Hospital, Fuzhou, 350001, China
| |
Collapse
|
31
|
Chen Y, Zou H, Lu H, Xiang H, Chen S. Research progress of endothelial-mesenchymal transition in diabetic kidney disease. J Cell Mol Med 2022; 26:3313-3322. [PMID: 35560773 PMCID: PMC9189345 DOI: 10.1111/jcmm.17356] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Renal fibrosis is an important pathological feature of diabetic kidney disease (DKD), manifested as tubular interstitial fibrosis, tubular atrophy, glomerulosclerosis and damage to the normal structure of the kidney. Renal fibrosis can eventually develop into renal failure. A better understanding of renal fibrosis in DKD is needed due to clinical limitations of current anti‐fibrotic drugs in terms of effectiveness, cost‐effectiveness and side effects. Fibrosis is characterized by local excessive deposition of extracellular matrix, which is derived from activated myofibroblasts to increase its production or specific tissue inhibitors of metalloproteinases to reduce its degradation. In recent years, endothelial‐mesenchymal transition (EndMT) has gradually integrated into the pathogenesis of fibrosis. In animal models of diabetic kidney disease, it has been found that EndMT is involved in the formation of renal fibrosis and multiple signalling pathways such as TGF‐β signalling pathway, Wnt signalling pathway and non‐coding RNA network participate in the regulation of EndMT during fibrosis. Here, we mainly review EndMT regulation and targeted therapy of renal fibrosis in DKD.
Collapse
Affiliation(s)
- Ying Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Hang Zou
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Hongwei Lu
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hong Xiang
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
32
|
Młynarczyk M, Kasacka I. The role of the Wnt / β-catenin pathway and the functioning of the heart in arterial hypertension - A review. Adv Med Sci 2022; 67:87-94. [PMID: 35101653 DOI: 10.1016/j.advms.2022.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Accepted: 01/12/2022] [Indexed: 11/28/2022]
Abstract
Many factors and molecular pathways are involved in the pathogenesis of arterial hypertension. The increase in blood pressure may be determined by the properties of specific gene products and their associated action with environmental factors. In recent years, much attention has been paid to the Wnt/β-catenin signaling pathway which is essential for organ damage repair and homeostasis. Deregulation of the activity of the Wnt/β-catenin pathway may be directly or indirectly related to myocardial hypertrophy, as well as to cardiomyocyte remodeling and remodeling processes in pathological states of this organ. There are reports pointing to the role of the Wnt/β-catenin pathway in the course and development of organ complications in conditions of arterial hypertension. This paper presents the current state of knowledge of the role of the Wnt/β-catenin pathway in the regulation of arterial pressure and its impact on the physiology and the development of the complications of arterial hypertension in the heart.
Collapse
Affiliation(s)
- Maryla Młynarczyk
- Department of Histology and Cytophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
33
|
Guo Q, Lai Y, Chu J, Chen X, Gao M, Sang C, Dong J, Pu J, Ma C. LRP6 Polymorphisms Is Associated With Sudden Cardiac Death in Patients With Chronic Heart Failure in the Chinese Han Population. Front Cardiovasc Med 2022; 8:815595. [PMID: 35187114 PMCID: PMC8854291 DOI: 10.3389/fcvm.2021.815595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) plays a critical role in cardiovascular homeostasis. The deficiency of LRP6 is associated with a high risk of arrhythmias. However, the association between genetic variations of LRP6 and sudden cardiac death (SCD) remains unknown. This study aims to explore the association between common variants of LRP6 and the prognosis of chronic heart failure (CHF) patients. From July 2005 to December 2009, patients with CHF were enrolled from 10 hospitals in China. The single-nucleotide polymorphism (SNP) rs2302684 was selected for the evaluation of the effect of LRP6 polymorphisms on the survival in patients with CHF. A total of 1,437 patients with CHF were finally included for the analysis. During a median follow-up of 61 months (range 0.4–129 months), a total of 546 (38.0%) patients died, including 201 (36.8%) cases with SCD and 345 (63.2%) cases with non-SCD. Patients carrying A allele of rs2302684 had an increased risk of all-cause death (adjusted HR 1.452, 95% CI 1.189–1.706; P < 0.001) and SCD (adjusted HR 1.783, 95% CI 1.337–2.378; P < 0.001). Therefore, the SNP rs2302684 T>A in LRP6 indicated higher risks of all-cause death and SCD in patients with CHF. LRP6 could be added as a novel predictor of SCD and might be a potential therapeutic target in the prevention of SCD in the CHF population.
Collapse
Affiliation(s)
- Qi Guo
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yiwei Lai
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jianmin Chu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuhua Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingyang Gao
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Caihua Sang
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jianzeng Dong
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jielin Pu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, China
- *Correspondence: Jielin Pu
| | - Changsheng Ma
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Changsheng Ma
| |
Collapse
|
34
|
Arun A, Rayford KJ, Cooley A, Rana T, Rachakonda G, Villalta F, Pratap S, Lima MF, Sheibani N, Nde PN. Thrombospondin-1 expression and modulation of Wnt and hippo signaling pathways during the early phase of Trypanosoma cruzi infection of heart endothelial cells. PLoS Negl Trop Dis 2022; 16:e0010074. [PMID: 34986160 PMCID: PMC8730400 DOI: 10.1371/journal.pntd.0010074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
The protozoan parasite, Trypanosoma cruzi, causes severe morbidity and mortality in afflicted individuals. Approximately 30% of T. cruzi infected individuals present with cardiac pathology. The invasive forms of the parasite are carried in the vascular system to infect other cells of the body. During transportation, the molecular mechanisms by which the parasite signals and interact with host endothelial cells (EC) especially heart endothelium is currently unknown. The parasite increases host thrombospondin-1 (TSP1) expression and activates the Wnt/β-catenin and hippo signaling pathways during the early phase of infection. The links between TSP1 and activation of the signaling pathways and their impact on parasite infectivity during the early phase of infection remain unknown. To elucidate the significance of TSP1 function in YAP/β-catenin colocalization and how they impact parasite infectivity during the early phase of infection, we challenged mouse heart endothelial cells (MHEC) from wild type (WT) and TSP1 knockout mice with T. cruzi and evaluated Wnt signaling, YAP/β-catenin crosstalk, and how they affect parasite infection. We found that in the absence of TSP1, the parasite induced the expression of Wnt-5a to a maximum at 2 h (1.73±0.13), P< 0.001 and enhanced the level of phosphorylated glycogen synthase kinase 3β at the same time point (2.99±0.24), P<0.001. In WT MHEC, the levels of Wnt-5a were toned down and the level of p-GSK-3β was lowest at 2 h (0.47±0.06), P< 0.01 compared to uninfected control. This was accompanied by a continuous significant increase in the nuclear colocalization of β-catenin/YAP in TSP1 KO MHEC with a maximum Pearson correlation coefficient of (0.67±0.02), P< 0.05 at 6 h. In WT MHEC, the nuclear colocalization of β-catenin/YAP remained steady and showed a reduction at 6 h (0.29±0.007), P< 0.05. These results indicate that TSP1 plays an important role in regulating β-catenin/YAP colocalization during the early phase of T. cruzi infection. Importantly, dysregulation of this crosstalk by pre-incubation of WT MHEC with a β-catenin inhibitor, endo-IWR 1, dramatically reduced the level of infection of WT MHEC. Parasite infectivity of inhibitor treated WT MHEC was similar to the level of infection of TSP1 KO MHEC. These results indicate that the β-catenin pathway induced by the parasite and regulated by TSP1 during the early phase of T. cruzi infection is an important potential therapeutic target, which can be explored for the prophylactic prevention of T. cruzi infection.
Collapse
Affiliation(s)
- Ashutosh Arun
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Kayla J. Rayford
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Ayorinde Cooley
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Tanu Rana
- Department of Professional Medical Education and Molecular Biology Core Facility, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Girish Rachakonda
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Fernando Villalta
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Siddharth Pratap
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Maria F. Lima
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, United States of America
- Department of Molecular and Cellular and Biomedical Sciences, School of Medicine, The City College of New York, New York, United States of America
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Pius N. Nde
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| |
Collapse
|
35
|
Li JY, Li XC, Tang YL. Upregulation of miR-128 Mediates Heart Injury by Activating Wnt/β-catenin Signaling Pathway in Heart Failure Mice. Organogenesis 2021; 17:27-39. [PMID: 34965835 PMCID: PMC9208784 DOI: 10.1080/15476278.2021.2020018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cardiac hypertrophy contributes to heart failure and is pathogenically modulated by a network of signaling cascades including Wnt/β-catenin signaling pathway. miRNAs have been widely demonstrated to regulate gene expression in heart development. miR-128 was routinely found as a brain-enriched gene and has been functionally associated with regulation of cardiac function. However, its role and molecular mechanisms that regulate cardiac hypertrophy remain largely unclear. Adeno-associated virus serotype 9 (AAV9)-mediated constructs with miR-128 or anti-miR-128 were generated and delivered to overexpression or blockade of miR-128 in vivo followed by HF induction with isoproterenol (ISO) or transverse aortic constriction (TAC). Cardiac dysfunction and hypertrophy, coupled with involved gene and protein level, were then assessed. Our data found that miR-128, Wnt1, and β-catenin expressions were upregulated in both patients and mice model with HF. Interference with miR-128 reduces Wnt1/β-catenin expression in mouse failing hearts and ameliorates heart dysfunctional properties. We identified miR-128 directly targets to Axin1, an inhibitor of Wnt/β-catenin signaling, and suppresses its inhibition on Wnt1/β-catenin. Our study provides evidence indicating miR-128 as an inducer of HF and cardiac hypertrophy by enhancing Wnt1/β-catenin in an Axin1-dependent nature. We thus suggest miR-128 has potential value in the treatment of heart failure.
Collapse
Affiliation(s)
- Jing-Yao Li
- Department of Cardiology, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, China
| | - Xin-Chang Li
- Department of Cardiology, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, China
| | - Yu-Long Tang
- Cardiac Intensive Care Center, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, China
| |
Collapse
|
36
|
Yin C, Ye Z, Wu J, Huang C, Pan L, Ding H, Zhong L, Guo L, Zou Y, Wang X, Wang Y, Gao P, Jin X, Yan X, Zou Y, Huang R, Gong H. Elevated Wnt2 and Wnt4 activate NF-κB signaling to promote cardiac fibrosis by cooperation of Fzd4/2 and LRP6 following myocardial infarction. EBioMedicine 2021; 74:103745. [PMID: 34911029 PMCID: PMC8669316 DOI: 10.1016/j.ebiom.2021.103745] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/29/2022] Open
Abstract
Background Acute myocardial infarction (AMI)-induced excessive myocardial fibrosis exaggerates cardiac dysfunction. However, serum Wnt2 or Wnt4 level in AMI patients, and the roles in cardiac fibrosis are largely unkown. Methods AMI and non-AMI patients were enrolled to examine serum Wnt2 and Wnt4 levels by ELISA analysis. The AMI patients were followed-up for one year. MI mouse model was built by ligation of left anterior descending branch (LAD). Findings Serum Wnt2 or Wnt4 level was increased in patients with AMI, and the elevated Wnt2 and Wnt4 were correlated to adverse outcome of these patients. Knockdown of Wnt2 and Wnt4 significantly attenuated myocardial remodeling and cardiac dysfunction following experimental MI. In vitro, hypoxia enhanced the secretion and expression of Wnt2 and Wnt4 in neonatal rat cardiac myocytes (NRCMs) or fibroblasts (NRCFs). Mechanistically, the elevated Wnt2 or Wnt4 activated β-catenin /NF-κB signaling to promote pro-fibrotic effects in cultured NRCFs. In addition, Wnt2 or Wnt4 upregulated the expression of these Wnt co-receptors, frizzled (Fzd) 2, Fzd4 and (ow-density lipoprotein receptor-related protein 6 (LRP6). Further analysis revealed that Wnt2 or Wnt4 activated β-catenin /NF-κB by the co-operation of Fzd4 or Fzd2 and LRP6 signaling, respectively. Interpretation Elevated Wnt2 and Wnt4 activate β-catenin/NF-κB signaling to promote cardiac fibrosis by cooperation of Fzd4/2 and LRP6 in fibroblasts, which contributes to adverse outcome of patients with AMI, suggesting that systemic inhibition of Wnt2 and Wnt4 may improve cardiac dysfunction after MI.
Collapse
Affiliation(s)
- Chao Yin
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhishuai Ye
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - Jian Wu
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Chenxing Huang
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Le Pan
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Huaiyu Ding
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Zhong
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Guo
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yan Zou
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiang Wang
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ying Wang
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Pan Gao
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xuejuan Jin
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoxiang Yan
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunzeng Zou
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Rongchong Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China.
| | - Hui Gong
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
37
|
Chronic Ethanol Exposure Induces Deleterious Changes in Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells. Stem Cell Rev Rep 2021; 17:2314-2331. [PMID: 34564802 DOI: 10.1007/s12015-021-10267-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
Chronic alcohol consumption in adults can induce cardiomyopathy, arrhythmias, and heart failure. In newborns, prenatal alcohol exposure can increase the risk of congenital heart diseases. Understanding biological mechanisms involved in the long-term alcohol exposure-induced cardiotoxicity is pivotal to the discovery of therapeutic strategies. In this study, cardiomyocytes derived from human pluripotent stem cells (hiPSC-CMs) were treated with clinically relevant doses of ethanol for various durations up to 5 weeks. The treated cells were characterized for their cellular properties and functions, and global proteomic profiling was conducted to understand the molecular changes associated with long-term ethanol exposure. Increased cell death, oxidative stress, deranged Ca2+ handling, abnormal action potential, altered contractility, and suppressed structure development were observed in ethanol-treated cells. Many dysregulated proteins identified by global proteomic profiling were involved in apoptosis, heart contraction, and extracellular collagen matrix. In addition, several signaling pathways including the Wnt and TGFβ signaling pathways were affected due to long-term ethanol treatment. Therefore, chronic ethanol treatment of hiPSC-CMs induces cardiotoxicity, impairs cardiac functions, and alters protein expression and signaling pathways. This study demonstrates the utility of hiPSC-CMs as a novel model for chronic alcohol exposure study and provides the molecular mechanisms associated with long-term alcohol exposure in human cardiomyocytes.
Collapse
|
38
|
Zou Y, Pan L, Shen Y, Wang X, Huang C, Wang H, Jin X, Yin C, Wang Y, Jia J, Qian J, Zou Y, Gong H, Ge J. Cardiac Wnt5a and Wnt11 promote fibrosis by the crosstalk of FZD5 and EGFR signaling under pressure overload. Cell Death Dis 2021; 12:877. [PMID: 34564708 PMCID: PMC8464604 DOI: 10.1038/s41419-021-04152-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022]
Abstract
Progressive cardiac fibrosis accelerates the development of heart failure. Here, we aimed to explore serum Wnt5a and Wnt11 levels in hypertension patients, the roles of Wnt5a and Wnt11 in cardiac fibrosis and potential mechanisms under pressure overload. The pressure overload mouse model was built by transverse aortic constriction (TAC). Cardiac fibrosis was analyzed by Masson's staining. Serum Wnt5a or Wnt11 was elevated and associated with diastolic dysfunction in hypertension patients. TAC enhanced the expression and secretion of Wnt5a or Wnt11 from cardiomyocytes (CMs), cardiac fibroblasts (CFs), and cardiac microvascular endothelial cells (CMECs). Knockdown of Wnt5a and Wnt11 greatly improved cardiac fibrosis and function at 4 weeks after TAC. In vitro, shWnt5a or shWnt11 lentivirus transfection inhibited pro-fibrotic effects in CFs under mechanical stretch (MS). Similarly, conditional medium from stretched-CMs transfected with shWnt5a or shWnt11 lentivirus significantly suppressed the pro-fibrotic effects induced by conditional medium from stretched-CMs. These data suggested that CMs- or CFs-derived Wnt5a or Wnt11 showed a pro-fibrotic effect under pressure overload. In vitro, exogenous Wnt5a or Wnt11 activated ERK and p38 (fibrotic-related signaling) pathway, promoted the phosphorylation of EGFR, and increased the expression of Frizzled 5 (FZD5) in CFs. Inhibition or knockdown of EGFR greatly attenuated the increased FZD5, p-p38, and p-ERK levels, and the pro-fibrotic effect induced by Wnt5a or Wnt11 in CFs. Si-FZD5 transfection suppressed the increased p-EGFR level, and the fibrotic-related effects in CFs treated with Wnt5a or Wnt11. In conclusion, pressure overload enhances the secretion of Wnt5a or Wnt11 from CMs and CFs which promotes cardiac fibrosis by activation the crosstalk of FZD5 and EGFR. Thus, Wnt5a or Wnt11 may be a novel therapeutic target for the prevention of cardiac fibrosis under pressure overload.
Collapse
Affiliation(s)
- Yan Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Le Pan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yi Shen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiang Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenxing Huang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hao Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xuejuan Jin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chao Yin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jianguo Jia
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Juying Qian
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Hui Gong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
39
|
Bahie A, Abdalbary MM, El-Sayed DY, Elzehery R, El-Said G, El-Kannishy G, Abd El Wahab AM. Relation of Wnt Signaling Pathway Inhibitors (Sclerostin and Dickkopf-1) to Left Ventricular Mass Index in Maintenance Hemodialysis Patients. Int J Nephrol 2021; 2021:2439868. [PMID: 34603797 PMCID: PMC8483936 DOI: 10.1155/2021/2439868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/03/2021] [Accepted: 09/11/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Left ventricular hypertrophy (LVH) is common in hemodialysis (HD) patients. It predicts poor prognosis. Several inhibitors regulate Wnt canonical pathways like Dickkopf-related protein-1 (Dkk-1) and sclerostin. OBJECTIVES To investigate the relationship between serum sclerostin, Dkk-1, left ventricular mass (LVM), and LVM index (LVMI) in HD patients. METHODS This is a cross-sectional study including 65 HD patients in our HD unit. Patients were divided into two groups according to LVMI (group 1 with LVMI < 125 gm/m2 (N = 29) and group 2 with LVMI > 125 gm/m2 (N = 36)). Echocardiographic evaluation of the LVM, aortic, and mitral valves calcification (AVC and MVC) was done. Serum levels of sclerostin and Dkk-1 and patients' clinical and biochemical data were recorded. RESULTS Group 2 showed significantly higher age, blood pressure, AVC, and MVC and significantly lower hemoglobin, sclerostin, and Dkk-1 levels. LVM and LVMI had a significant linear negative correlation to both serum sclerostin and Dkk-1 (r = -0.329 and -0.257, P=0.01 and 0.046 for LVM; r = -0.427 and -0.324, P=0.001 and 0.012 for LVMI, resp.). Serum Dkk-1 was an independent negative indicator for LVM and LVMI in multiple regression analyses (P=0.003 and 0.041 with 95% CI = -0.963 to -0.204 and -0.478 to -0.010, resp.). CONCLUSION Serum sclerostin and Dkk-1 were significantly lower in HD patients with increased LVMI > 125 gm/m2, and both had a significant linear negative correlation with LVM and LVMI. Dkk-1 was a significant negative independent indicator for LVM and LVMI in HD patients.
Collapse
Affiliation(s)
- Ahmed Bahie
- Internal Medicine Department, Mansoura Nephrology and Dialysis Unit (MNDU), Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Mohamed M Abdalbary
- Internal Medicine Department, Mansoura Nephrology and Dialysis Unit (MNDU), Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Dalia Younis El-Sayed
- Internal Medicine Department, Mansoura Nephrology and Dialysis Unit (MNDU), Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Rasha Elzehery
- Department of Clinical Pathology, Mansoura University, Mansoura, Egypt
| | - Ghada El-Said
- Internal Medicine Department, Mansoura Nephrology and Dialysis Unit (MNDU), Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Ghada El-Kannishy
- Internal Medicine Department, Mansoura Nephrology and Dialysis Unit (MNDU), Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Ahmed M Abd El Wahab
- Internal Medicine Department, Mansoura Nephrology and Dialysis Unit (MNDU), Mansoura Faculty of Medicine, Mansoura, Egypt
| |
Collapse
|
40
|
Wang J, Xia Y, Lu A, Wang H, Davis DR, Liu P, Beanlands RS, Liang W. Cardiomyocyte-specific deletion of β-catenin protects mouse hearts from ventricular arrhythmias after myocardial infarction. Sci Rep 2021; 11:17722. [PMID: 34489488 PMCID: PMC8421412 DOI: 10.1038/s41598-021-97176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/23/2021] [Indexed: 11/09/2022] Open
Abstract
Wnt/β-catenin signaling is activated in the heart after myocardial infarction (MI). This study aims to investigate if β-catenin deletion affects post-MI ion channel gene alterations and ventricular tachycardias (VT). MI was induced by permanent ligation of left anterior descending artery in wild-type (WT) and cardiomyocyte-specific β-catenin knockout (KO) mice. KO mice showed reduced susceptibility to VT (18% vs. 77% in WT) at 8 weeks after MI, associated with reduced scar size and attenuated chamber dilation. qPCR analyses of both myocardial tissues and purified cardiomyocytes demonstrated upregulation of Wnt pathway genes in border and infarct regions after MI, including Wnt ligands (such as Wnt4) and receptors (such as Fzd1 and Fzd2). At 1 week after MI, cardiac sodium channel gene (Scn5a) transcript was reduced in WT but not in KO hearts, consistent with previous studies showing Scn5a inhibition by Wnt/β-catenin signaling. At 8 weeks after MI when Wnt genes have declined, Scn5a returned to near sham levels and K+ channel gene downregulations were not different between WT and KO mice. This study demonstrated that VT susceptibility in the chronic phase after MI is reduced in mice with cardiomyocyte-specific β-catenin deletion primarily through attenuated structural remodeling, but not ion channel gene alterations.
Collapse
Affiliation(s)
- Jerry Wang
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ying Xia
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Aizhu Lu
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hongwei Wang
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada
| | - Darryl R Davis
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Peter Liu
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rob S Beanlands
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada
| | - Wenbin Liang
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
41
|
Liu S, Tang L, Zhao X, Nguyen B, Heallen TR, Li M, Wang J, Wang J, Martin JF. Yap Promotes Noncanonical Wnt Signals From Cardiomyocytes for Heart Regeneration. Circ Res 2021; 129:782-797. [PMID: 34424032 DOI: 10.1161/circresaha.121.318966] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Shijie Liu
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston (S.L., T.R.H., J.F.M.)
| | - Li Tang
- Department of Molecular Physiology and Biophysics (L.T., B.N., J.F.M.), Baylor College of Medicine, One Baylor Plaza, Houston, TX.,School of Computer Science and Engineering, Central South University, Changsha, Hunan, China (L.T., Jianxin Wang)
| | - Xiaolei Zhao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center, Houston (X.Z., J.W.)
| | - Bao Nguyen
- Department of Molecular Physiology and Biophysics (L.T., B.N., J.F.M.), Baylor College of Medicine, One Baylor Plaza, Houston, TX
| | - Todd R Heallen
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston (S.L., T.R.H., J.F.M.)
| | | | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China (L.T., Jianxin Wang)
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center, Houston (X.Z., J.W.)
| | - James F Martin
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston (S.L., T.R.H., J.F.M.).,Department of Molecular Physiology and Biophysics (L.T., B.N., J.F.M.), Baylor College of Medicine, One Baylor Plaza, Houston, TX.,Cardiovascular Research Institute (J.F.M.), Baylor College of Medicine, One Baylor Plaza, Houston, TX
| |
Collapse
|
42
|
Evolution of β-catenin-independent Wnt-GSK3-mTOR signalling in regulation of energy metabolism in isoproterenol-induced cardiotoxicity model. Inflamm Res 2021; 70:743-747. [PMID: 34185111 DOI: 10.1007/s00011-021-01477-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE Isoproterenol (ISO) is widely used agent to study the effects of interventions which could prevent or attenuate the development of myocardial infarction. The sequence of pathological event's revealed that increased myocardial tissue oxygen demand and energy dysregulation exist early during Iso-induced cardiac toxicity. Later, tissue hypoxia results in increased oxidative stress, inflammation and fibrosis along with cardiac dysfunction in this model. The canonical Wnt/β-catenin pathway has been reported to directly implicate in inducing cardiomyocyte hypertrophy and remodelling. However, less is known about the role of non-canonical Wnt signalling in cardiac diseases. METHOD Certain evidences have suggested that the activation of Wnt could up-regulate key energy sensor and cell growth regulator mTOR (Mechanistic target of rapamycin) by inhibition of GSK-3β mediator. RESULT The GSK-3β could negatively influence the mTOR activity and produce energy dysregulation during stress or hypoxic conditions. This suggests that the inhibition of GSK-3β by Wnt signalling could up-regulate mTOR levels and thereby restore early myocardial tissue energy balance and prevent cardiac toxicity in rodents. CONCLUSION We hereby discuss a novel therapeutic role of the β-catenin independent, Wnt-GSK3-mTOR axis in attenuation of Iso-induced cardiotoxicity in rodents.
Collapse
|
43
|
Bogdanova E, Beresneva O, Galkina O, Zubina I, Ivanova G, Parastaeva M, Semenova N, Dobronravov V. Myocardial Hypertrophy and Fibrosis Are Associated with Cardiomyocyte Beta-Catenin and TRPC6/Calcineurin/NFAT Signaling in Spontaneously Hypertensive Rats with 5/6 Nephrectomy. Int J Mol Sci 2021; 22:4645. [PMID: 33924991 PMCID: PMC8124394 DOI: 10.3390/ijms22094645] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Arterial hypertension (AH) is associated with heart and chronic kidney disease (CKD). However, the precise mechanisms of myocardial remodeling (MR) in the settings of CKD remain elusive. We hypothesized that TRPC6, calcineurin/NFAT, and Wnt/β-catenin signaling pathways are involved in the development of MR in the background of CKD and AH. METHODS Early CKD was induced by performing a 5/6 nephrectomy (5/6NE) in spontaneously hypertensive rats (SHR-NE). Sham-operated (SO) SHR (SHR-SO) and Wistar Kyoto (WKY-SO) rats served as controls. Systolic blood pressure (SBP), heart rate, myocardial mass index (MMI), serum creatinine, cardiomyocyte diameter (dCM), myocardial fibrosis (MF), serum and kidney α-Klotho levels, myocardial expression of calcineurin (CaN), TRPC6, and β-catenin were measured two months after 5/6NE or SO. RESULTS NE-induced kidney dysfunction corresponded to mild-to-moderate human CKD and was associated with an increase in FGF23 and a decrease in renal α-Klotho. The levels of SBP, MMI, dCM, and MF were higher in SHRs compared to WKY-SO as well as in SHR-NE vs. SHR-SO. The MR was associated with increased cardiomyocyte expression of CaN/NFAT and β-catenin along with its intracellular re-distribution. TRPC6 protein levels were substantially elevated in both SHR groups with higher Trpc6 mRNA expression in SHR-NE. CONCLUSIONS The Wnt/β-catenin and TRPC6/CaN/NFAT hypertrophic signaling pathways seem to be involved in myocardial remodeling in the settings of AH and CKD and might be mediated by FGF23 and α-Klotho axis.
Collapse
Affiliation(s)
- Evdokia Bogdanova
- Research Institute of Nephrology, Pavlov University, Saint Petersburg 197022, Russia; (E.B.); (O.B.); (O.G.); (I.Z.); (M.P.)
| | - Olga Beresneva
- Research Institute of Nephrology, Pavlov University, Saint Petersburg 197022, Russia; (E.B.); (O.B.); (O.G.); (I.Z.); (M.P.)
| | - Olga Galkina
- Research Institute of Nephrology, Pavlov University, Saint Petersburg 197022, Russia; (E.B.); (O.B.); (O.G.); (I.Z.); (M.P.)
| | - Irina Zubina
- Research Institute of Nephrology, Pavlov University, Saint Petersburg 197022, Russia; (E.B.); (O.B.); (O.G.); (I.Z.); (M.P.)
| | - Galina Ivanova
- Laboratory of Cardiovascular and Lymphatic Systems Physiology, Pavlov Institute of Physiology, Saint Petersburg 199034, Russia;
| | - Marina Parastaeva
- Research Institute of Nephrology, Pavlov University, Saint Petersburg 197022, Russia; (E.B.); (O.B.); (O.G.); (I.Z.); (M.P.)
| | - Natalia Semenova
- Research Department of Pathomorphology, Almazov National Medical Research Center, Saint Petersburg 197341, Russia;
- Laboratory of Leukemia Research, Russian Research Institute of Hematology and Transfusiology of FMBA of Russia, Saint Petersburg 191024, Russia
| | - Vladimir Dobronravov
- Research Institute of Nephrology, Pavlov University, Saint Petersburg 197022, Russia; (E.B.); (O.B.); (O.G.); (I.Z.); (M.P.)
| |
Collapse
|
44
|
Liu S, Yu J, Fu M, Wang X, Chang X. Regulatory effects of hawthorn polyphenols on hyperglycemic, inflammatory, insulin resistance responses, and alleviation of aortic injury in type 2 diabetic rats. Food Res Int 2021; 142:110239. [PMID: 33773689 DOI: 10.1016/j.foodres.2021.110239] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/26/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022]
Abstract
Hawthorn polyphenol extract (HPE) is beneficial for patients with type 2 diabetes (T2D). However, the mechanism underlying its beneficial effects remains unclear. We investigated the inhibitory effects and mechanisms of HPE on insulin resistance, inflammation, and aortic injury in T2D rats, using metformin (MF) as a positive control. High-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) was used to determine the primary polyphenols in HPE. Hematoxylin & Eosin (H&E) staining was used to evaluate pathological conditions of the skeletal muscle, liver, and aorta vessels in each group. The levels of serum and intestinal tissue oxidative stress, tumor necrosis factor α (TNF-α), and inflammatory interleukin-6 (IL-6) were also assessed. Western blotting was used to evaluate protein expression levels in the associated molecular pathway. Volatile organic compounds (VOCs) from colon contents were determined using headspace-gas chromatography-ion mobility chromatography. Our results showed that supplementation with 300 mg HPE/kg body weight over four weeks significantly improved total cholesterol (TC), total triglyceride (TG), insulin, and lipopolysaccharide (LPS) levels in diabetic rats (p < 0.01). The lesions of skeletal muscle, liver, and aorta in diabetic rats were significantly improved. HPE supplementation also significantly downregulated the inflammatory factors (IL-6, TNF-α, and MCP-1) in the liver of diabetic rats via the SIRT1/AMPK/NF-κB signaling pathway. Furthermore, HPE significantly reduced insulin resistance in T2D rats by upregulating the phosphorylation of glucose absorption protein (GLUT4) and insulin resistance-associated proteins, p-IRS1, p-AKT, and p-PI3K, in the rat liver (p < 0.01). The findings show that HPE could also alleviate aortic injury by activating SIRT1 and regulating the NF-κB and Wnt2/β-catenin signaling pathways. Overall, the results of this study suggest that both HPE and MF have similar inhibitory effects on T2D in rats and that HPE could be used as a functional food component in the adjuvant treatment of T2D.
Collapse
Affiliation(s)
- Suwen Liu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.
| | - Jincheng Yu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Mengfan Fu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Xinfang Wang
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Xuedong Chang
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China; Hebei (Chengde) Hawthorn Industrial Technology Research Institute, Chengde, Hebei 067000, China
| |
Collapse
|
45
|
Zhao S, Cao R, Zhang S, Kang Y. Explore the Protective Role of Obesity in the Progression of Myocardial Infarction. Front Cardiovasc Med 2021; 8:629734. [PMID: 33842562 PMCID: PMC8026861 DOI: 10.3389/fcvm.2021.629734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/03/2021] [Indexed: 01/15/2023] Open
Abstract
Obesity has been shown as a risk factor to increase the incidence of myocardial infarction (MI). However, obesity has also been linked to the decreased mortality of acute MI with unknown mechanisms. Here, we firstly used large-scale literature data mining to identify obesity downstream targets and MI upstream regulators with polarity, based on which an obesity-MI regulatory network was constructed. Then, a gene set enrichment analysis was conducted to explore the functional profile of the genes involved in the obesity-MI regulatory networks. After that, a mega-analysis using MI RNA expression datasets was conducted to test the expression of obesity-specific genes in MI patients, followed by a shortest-path analysis to explore any potential gene-MI association. Our results suggested that obesity could inhibit 11 MI promoters, including NPPB, NPPA, IRS1, SMAD3, MIR155, ADRB1, AVP, MAPK14, MC3R, ROCK1, and COL3A1, which were mainly involved in blood pressure-related pathways. Our study suggested that obesity could influence MI progression by driving multiple genes associated with blood pressure regulation. Moreover, PTH could be a novel obesity driven gene associated with the pathogenesis of MI, which needs further validation.
Collapse
Affiliation(s)
- Siyuan Zhao
- Department of Cardiology, Second People's Hospital of Lianyungang, Lianyungang, China
| | - Rongyuan Cao
- Department of Cardiology, Second People's Hospital of Lianyungang, Lianyungang, China
| | - Shuhua Zhang
- Department of Cardiology, Second People's Hospital of Lianyungang, Lianyungang, China
| | - Yan Kang
- Human Biochemical Genetics Section, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
46
|
Romero G, Salama G. Relaxin abrogates genomic remodeling of the aged heart. VITAMINS AND HORMONES 2021; 115:419-448. [PMID: 33706957 DOI: 10.1016/bs.vh.2020.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
"Healthy" aging drives structural and functional changes in the heart including maladaptive electrical remodeling, fibrosis and inflammation, which lower the threshold for cardiovascular diseases such as heart failure (HF) and atrial fibrillation (AF). Despite mixed results in clinical trials, Relaxin-therapy for 2-days reduced mortality by 37% at 180-days post-treatment, in patients with acute decompensated HF. Relaxin's short lifespan (2-3h) but long-lasting protective actions suggested that relaxin acts at a genomic level to reverse maladaptive remodeling in AF, HF and aging. Our recent studies showed that a 2-week treatment with Relaxin (0.4mg/kg/day) of aged (24months old F-344 rats) increases the expression of voltage-gated Na+ channels (mRNA, Nav1.5 and INa), connexin-43, abrogates inflammatory and immune responses and reverses myocardial fibrosis and cellular hypertrophy of the aged hearts. Relaxin acts directly at a wide range of cell types in the cardiovascular system that express its cognate GPCR receptor, RXFP1. RNA-seq analysis of young and aged hearts with and without Relaxin treatment revealed that "normal" aging altered the expression of ~10% of genes expressed in the ventricles, including: ion channels, components of fibrosis, hemodynamic biomarkers, immune and inflammatory responses which were reversed by Relaxin. The extensive cardiovascular remodeling caused by Relaxin was mediated through the activation of the Wnt/β-catenin signaling pathway which was otherwise suppressed by in adult cardiomyocytes intracellular by cytosolic Dickkopf1 (Dkk1). Wnt/β-catenin signaling is a mechanism that can explain the pleiotropic actions of Relaxin and the marked reversal of genomic changes that occur in aged hearts.
Collapse
Affiliation(s)
- Guillermo Romero
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Guy Salama
- Department of Medicine, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
47
|
Hsueh YC, Hodgkinson CP, Gomez JA. The role of Sfrp and DKK proteins in cardiomyocyte development. Physiol Rep 2021; 9:e14678. [PMID: 33587322 PMCID: PMC7883806 DOI: 10.14814/phy2.14678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we summarize the role of Wnt proteins in cardiomyogenesis. More specifically, we focus on how the development of cardiomyocytes from precursor cells involves a complex interplay between Wnt canonical β-catenin signaling pathways and Wnt noncanonical signaling pathways involving PCP and JNK. We also describe recent literature which suggests that endogenous Wnt inhibitors such as the Sfrp and DKK proteins play important roles in regulating the cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Ying-Chang Hsueh
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, USA
| | - Conrad P Hodgkinson
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, USA
| | - Jose A Gomez
- Department of Medicine, Clinical Pharmacology Division, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
48
|
Xie J, Huang L, Lu YG, Zheng DL. Roles of the Wnt Signaling Pathway in Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2021; 7:590912. [PMID: 33469547 PMCID: PMC7814318 DOI: 10.3389/fmolb.2020.590912] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common type of head and neck tumor. It is a high incidence malignant tumor associated with a low survival rate and limited treatment options. Accumulating conclusions indicate that the Wnt signaling pathway plays a vital role in the pathobiological process of HNSCC. The canonical Wnt/β-catenin signaling pathway affects a variety of cellular progression, enabling tumor cells to maintain and further promote the immature stem-like phenotype, proliferate, prolong survival, and gain invasiveness. Genomic studies of head and neck tumors have shown that although β-catenin is not frequently mutated in HNSCC, its activity is not inhibited by mutations in upstream gene encoding β-catenin, NOTCH1, FAT1, and AJUBA. Genetic defects affect the components of the Wnt pathway in oral squamous cell carcinoma (OSCC) and the epigenetic mechanisms that regulate inhibitors of the Wnt pathway. This paper aims to summarize the groundbreaking discoveries and recent advances involving the Wnt signaling pathway and highlight the relevance of this pathway in head and neck squamous cell cancer, which will help provide new insights into improving the treatment of human HNSCC by interfering with the transcriptional signaling of Wnt.
Collapse
Affiliation(s)
- Jing Xie
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Li Huang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Department of Dentistry, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - You-Guang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Da-Li Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
49
|
Li T, Weng X, Cheng S, Wang D, Cheng G, Gao H, Li Y. Wnt3a upregulation is involved in TGFβ1-induced cardiac hypertrophy. Cytokine 2020; 138:155376. [PMID: 33243628 DOI: 10.1016/j.cyto.2020.155376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 01/03/2023]
Abstract
Pathological cardiac hypertrophy, characterized by enlarged cell size and fetal gene reactivation, ultimately leads to cardiac dysfunction and heart failure. The expression of transforming growth factor beta 1 (TGFβ1) is often elevated in experimental models of cardiac hypertrophy. In the present study, we observed the activation of Wnt/β-catenin signaling in TGFβ1-induced cardiac hypertrophy. TGFβ1 stimulation decreased the phosphorylation levels of β-catenin and triggered the nuclear accumulation of β-catenin. In turn, TGFβ1 enhanced the expression of c-Myc, which is a transcriptional target of canonical Wnt/β-catenin pathway. Knockdown of β-catenin completely blocked TGFβ1-induced c-Myc upregulation. Wnt3a is an important Wnt ligand associated with cardiac fibrosis and hypertrophy. Further investigation revealed that TGFβ1 can upregulate Wnt3a expression in an ALK5-Smad2/3-dependent manner. A consensus Smad binding sequence is located within the Wnt3a promoter, and TGFβ1 stimulation enhanced recruitment of Smad2/3 onto the Wnt3a promoter. Meanwhile, Wnt3a overexpression also stimulated TGFβ1 expression. Chemical inhibition of Wnt/β-catenin signaling partially attenuated TGFβ1-induced hypertrophic responses. These findings suggest crosstalk between TGFβ1 and canonical Wnt/β-catenin pathways in cardiac hypertrophy.
Collapse
Affiliation(s)
- Tao Li
- School of Medicine, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiaofei Weng
- School of Medicine, Hunan Normal University, Changsha, Hunan 410081, China
| | - Siya Cheng
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan Province 475000, China
| | - Dongxing Wang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan Province 475000, China
| | - Guanchang Cheng
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan Province 475000, China
| | - Hai Gao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Yanming Li
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan Province 475000, China.
| |
Collapse
|
50
|
Haas Bueno R, Recamonde-Mendoza M. Meta-analysis of Transcriptomic Data Reveals Pathophysiological Modules Involved with Atrial Fibrillation. Mol Diagn Ther 2020; 24:737-751. [PMID: 33095430 DOI: 10.1007/s40291-020-00497-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is a complex disease and affects millions of people around the world. The biological mechanisms that are involved with AF are complex and still need to be fully elucidated. Therefore, we performed a meta-analysis of transcriptome data related to AF to explore these mechanisms aiming at more sensitive and reliable results. METHODS Ten public transcriptomic datasets were downloaded, analyzed for quality control, and individually pre-processed. Differential expression analysis was carried out for each dataset, and the results were meta-analytically aggregated using the rth ordered p value method. We analyzed the final list of differentially expressed genes through network analysis, namely topological and modularity analysis, and functional enrichment analysis. RESULTS The meta-analysis of transcriptomes resulted in 1197 differentially expressed genes, whose protein-protein interaction network presented 39 hubs-bottlenecks and four main identified functional modules. These modules were enriched for 39, 20, 64, and 10 biological pathways involved with the pathophysiology of AF, especially with the disease's structural and electrical remodeling processes. The stress of the endoplasmic reticulum, protein catabolism, oxidative stress, and inflammation are some of the enriched processes. Among hub-bottlenecks genes, which are highly connected and probably have a key role in regulating these processes, HSPA5, ANK2, CTNNB1, and MAPK1 were identified. CONCLUSION Our approach based on transcriptome meta-analysis revealed a set of key genes that demonstrated consistent overall changes in expression patterns associated with AF despite data heterogeneity related, among others, to type of tissue. Further experimental investigation of our findings may shed light on the pathophysiology of the disease and contribute to the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Rodrigo Haas Bueno
- Experimental and Molecular Cardiovascular Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Mariana Recamonde-Mendoza
- Experimental and Molecular Cardiovascular Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
- Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|