1
|
Mendez-Hernandez R, Braga I, Bali A, Yang M, de Lartigue G. Vagal Sensory Gut-Brain Pathways That Control Eating-Satiety and Beyond. Compr Physiol 2025; 15:e70010. [PMID: 40229922 DOI: 10.1002/cph4.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
The vagus nerve is the body's primary sensory conduit from gut to brain, traditionally viewed as a passive relay for satiety signals. However, emerging evidence reveals a far more complex system-one that actively encodes diverse aspects of meal-related information, from mechanical stretch to nutrient content, metabolic state, and even microbial metabolites. This review challenges the view of vagal afferent neurons (VANs) as simple meal-termination sensors and highlights their specialized subpopulations, diverse sensory modalities, and downstream brain circuits, which shape feeding behavior, metabolism, and cognition. We integrate recent advances from single-cell transcriptomics, neural circuit mapping, and functional imaging to examine how VANs contribute to gut-brain communication beyond satiety, including their roles in food reward and memory formation. By synthesizing the latest research and highlighting emerging directions for the field, this review provides a comprehensive update on vagal sensory pathways and their role as integrators of meal information.
Collapse
Affiliation(s)
- Rebeca Mendez-Hernandez
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Isadora Braga
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Avnika Bali
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mingxin Yang
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guillaume de Lartigue
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Ye H, Yang X, Feng B, Luo P, Torres Irizarry VC, Carrillo-Sáenz L, Yu M, Yang Y, Eappen BP, Munoz MD, Patel N, Schaul S, Ibrahimi L, Lai P, Qi X, Zhou Y, Kota M, Dixit D, Mun M, Liew CW, Jiang Y, Wang C, He Y, Xu P. 27-Hydroxycholesterol acts on estrogen receptor α expressed by POMC neurons in the arcuate nucleus to modulate feeding behavior. SCIENCE ADVANCES 2024; 10:eadi4746. [PMID: 38996023 PMCID: PMC11244552 DOI: 10.1126/sciadv.adi4746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 02/05/2024] [Indexed: 07/14/2024]
Abstract
Oxysterols are metabolites of cholesterol that regulate cholesterol homeostasis. Among these, the most abundant oxysterol is 27-hydroxycholesterol (27HC), which can cross the blood-brain barrier. Because 27HC functions as an endogenous selective estrogen receptor modulator, we hypothesize that 27HC binds to the estrogen receptor α (ERα) in the brain to regulate energy balance. Supporting this view, we found that delivering 27HC to the brain reduced food intake and activated proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (POMCARH) in an ERα-dependent manner. In addition, we observed that inhibiting brain ERα, deleting ERα in POMC neurons, or chemogenetic inhibition of POMCARH neurons blocked the anorexigenic effects of 27HC. Mechanistically, we further revealed that 27HC stimulates POMCARH neurons by inhibiting the small conductance of the calcium-activated potassium (SK) channel. Together, our findings suggest that 27HC, through its interaction with ERα and modulation of the SK channel, inhibits food intake as a negative feedback mechanism against a surge in circulating cholesterol.
Collapse
Affiliation(s)
- Hui Ye
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xiaohua Yang
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Bing Feng
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Pei Luo
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Valeria C. Torres Irizarry
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Leslie Carrillo-Sáenz
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Meng Yu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongjie Yang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benjamin P. Eappen
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Marcos David Munoz
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nirali Patel
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sarah Schaul
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lucas Ibrahimi
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Penghua Lai
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xinyue Qi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Yuliang Zhou
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Maya Kota
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Devin Dixit
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Madeline Mun
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chong Wee Liew
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yuwei Jiang
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chunmei Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Müller M, Van Liefferinge E, Tilbrook A, van Barneveld R, Roura E. Excess dietary Lys reduces feed intake, stimulates jejunal CCK secretion and alters essential and non-essential blood AA profile in pigs. J Anim Sci Biotechnol 2024; 15:24. [PMID: 38369505 PMCID: PMC10874532 DOI: 10.1186/s40104-023-00971-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/06/2023] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Commercial diets are frequently formulated to meet or exceed nutrient levels including those of limiting essential amino acids (AA) covering potential individual variations within the herd. However, the provision of dietary excess of AA, such as Lys, may lead to reduced appetite and growth in pigs. The mechanisms modulating these responses have not been extensively investigated. This study evaluated the effect of Lys dietary excesses on performance and satiety biomarkers in post weaning pigs. METHODS Twenty-four pigs aged 21 d and weighing 6.81 ± 0.12 kg (mean ± SEM) were individually housed and offered 1 of 4 dietary treatments for 3 weeks: a diet containing a standardized ileal digestible Lys reaching 100% (T0), 120% (T1), 150% (T2) or 200% (T3) of the NRC (2012) requirements. At the end of the experiment, blood samples from the cephalic vein of the T0 and T3 groups were obtained for AA analysis. In addition, primary intestinal cultures from T0 pigs were used, following their humane killing, to evaluate the effect of Lys on gut hormone secretion and AA sensors gene expression under ex vivo conditions. RESULTS Feed intake was linearly reduced (P < 0.001) and the weight gain to feed ratio reduced (P < 0.10) with increased dietary levels of Lys during the third- and first-week post weaning, respectively. Cholecystokinin concentration (P < 0.05) and the metabotropic glutamate receptor 1 and the solute carrier family 7 member 2 (P < 0.10) gene expression was enhanced in proximal jejunum tissues incubated with Lys at 20 mmol/L when compared to the control (Lys 0 mmol/L). Plasma Lys and Glu (P < 0.05) concentration increased in the T3 compared to T0 pigs. In contrast, plasma levels of His, Val, Thr, Leu (P < 0.05) and Gln (P < 0.10) were lower in T3 than T0 pigs. CONCLUSION The present results confirm that excess dietary Lys inhibits hunger in pigs. Moreover, the results provide evidence of pre- and post-absorptive mechanisms modulating these responses. Lys dietary excesses should be narrowed, when possible, to avoid negative effects of the AA on appetite in pigs.
Collapse
Affiliation(s)
- Maximiliano Müller
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Elout Van Liefferinge
- Laboratory of Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, 339000, Ghent, Flanders, Belgium
| | - Alan Tilbrook
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation and the School of Veterinary Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | | | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
4
|
Paes-Leme B, Monteiro LDRN, Gholami K, Hoe SZ, Ferguson AV, Murphy D, Antunes-Rodrigues J, Rorato R, Reis LC, Mecawi AS. Fasting increases circulating angiotensin levels and brain Agtr1a expression in male rats. J Neuroendocrinol 2023; 35:e13334. [PMID: 37667574 DOI: 10.1111/jne.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 09/06/2023]
Abstract
In addition to being recognised for involvement in cardiovascular control and hydromineral balance, the renin-angiotensin system (RAS) has also been associated with the neuroendocrine control of energy balance. One of the main brain sites for angiotensin II (ANG II)/type 1 receptor (AT1 R) signalling is the subfornical organ (SFO), a circumventricular organ related to the control of autonomic functions, motivated behaviours and energy metabolism. Thus, we hypothesised that circulating ANG II may act on the SFO AT1 R receptors to integrate metabolic and hydromineral balance. We evaluated whether food deprivation can modulate systemic RAS activity and Agrt1a brain expression, and if ANG II/AT1 R signalling influences the hypothalamic expression of mRNAs encoding neuropeptides and food and water ingestion in fed and fasted Wistar rats. We found a significant increase in both ANG I and ANG II plasma levels after 24 and 48 h of fasting. Expression of Agrt1a mRNA in the SFO and paraventricular nucleus (PVN) also increased after food deprivation for 48 h. Treatment of fasted rats with low doses of losartan in drinking water attenuated the decrease in glycemia and meal-associated water intake without changing the expression in PVN or arcuate nucleus of mRNAs encoding selected neuropeptides related to energy homeostasis control. These findings point to a possible role of peripheral ANG II/SFO-AT1 R signalling in the control of refeeding-induced thirst. On the other hand, intracerebroventricular losartan treatment decreased food and water intake over dark time in fed but not in fasted rats.
Collapse
Affiliation(s)
- Bruno Paes-Leme
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Lívia da Rocha Natalino Monteiro
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Khadijeh Gholami
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - See Ziau Hoe
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Alastair Victor Ferguson
- Department of Biomedical and Molecular Sciences and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - José Antunes-Rodrigues
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo Rorato
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Luis Carlos Reis
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - André Souza Mecawi
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
The Potential of Flavonoids and Flavonoid Metabolites in the Treatment of Neurodegenerative Pathology in Disorders of Cognitive Decline. Antioxidants (Basel) 2023; 12:antiox12030663. [PMID: 36978911 PMCID: PMC10045397 DOI: 10.3390/antiox12030663] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Flavonoids are a biodiverse family of dietary compounds that have antioxidant, anti-inflammatory, antiviral, and antibacterial cell protective profiles. They have received considerable attention as potential therapeutic agents in biomedicine and have been widely used in traditional complimentary medicine for generations. Such complimentary medical herbal formulations are extremely complex mixtures of many pharmacologically active compounds that provide a therapeutic outcome through a network pharmacological effects of considerable complexity. Methods are emerging to determine the active components used in complimentary medicine and their therapeutic targets and to decipher the complexities of how network pharmacology provides such therapeutic effects. The gut microbiome has important roles to play in the generation of bioactive flavonoid metabolites retaining or exceeding the antioxidative and anti-inflammatory properties of the intact flavonoid and, in some cases, new antitumor and antineurodegenerative bioactivities. Certain food items have been identified with high prebiotic profiles suggesting that neutraceutical supplementation may be beneficially employed to preserve a healthy population of bacterial symbiont species and minimize the establishment of harmful pathogenic organisms. Gut health is an important consideration effecting the overall health and wellbeing of linked organ systems. Bioconversion of dietary flavonoid components in the gut generates therapeutic metabolites that can also be transported by the vagus nerve and systemic circulation to brain cell populations to exert a beneficial effect. This is particularly important in a number of neurological disorders (autism, bipolar disorder, AD, PD) characterized by effects on moods, resulting in depression and anxiety, impaired motor function, and long-term cognitive decline. Native flavonoids have many beneficial properties in the alleviation of inflammation in tissues, however, concerns have been raised that therapeutic levels of flavonoids may not be achieved, thus allowing them to display optimal therapeutic effects. Dietary manipulation and vagal stimulation have both yielded beneficial responses in the treatment of autism spectrum disorders, depression, and anxiety, establishing the vagal nerve as a route of communication in the gut-brain axis with established roles in disease intervention. While a number of native flavonoids are beneficial in the treatment of neurological disorders and are known to penetrate the blood–brain barrier, microbiome-generated flavonoid metabolites (e.g., protocatechuic acid, urolithins, γ-valerolactones), which retain the antioxidant and anti-inflammatory potency of the native flavonoid in addition to bioactive properties that promote mitochondrial health and cerebrovascular microcapillary function, should also be considered as potential biotherapeutic agents. Studies are warranted to experimentally examine the efficacy of flavonoid metabolites directly, as they emerge as novel therapeutic options.
Collapse
|
6
|
Zhao L, Ding Y, Yang C, Wang P, Zhao Z, Ma Y, Shi Y, Kang X. Identification and characterization of hypothalamic circular RNAs associated with bovine residual feed intake. Gene 2023; 851:147017. [PMID: 36341726 DOI: 10.1016/j.gene.2022.147017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/04/2022]
Abstract
Residual feed intake (RFI) is crucial economic indicator used for calculating the feed efficiency of growing beef cattle. circRNA plays an important biological role in gene transcriptional regulation, but little is known about its potential functional regulation underlying RFI phenotypic variation. As the core center of regulation of animal feeding, the hypothalamus is closely associated with RFI. Therefore, the present study aimed to identify the key genes and functional pathways contributing to variance in cattle RFI phenotypes using RNA sequencing from hypothalamic tissue samples, in order to gain insight into the potential regulatory role of circRNAs in bovine RFI phenotypic variation. Differentially expressed genes were detected by RNA sequencing for beef cattle in the high and low RFI groups, followed by GO, KEGG enrichment, and circRNA-miRNA co-expression network analysis. A total of 257 circRNAs were differentially expressed between the two groups, with 128 significantly upregulated and 129 significantly downregulated genes in H group compared to L group. Among them, 9 unique circRNAs were present in group L and 4 unique circRNAs were present in group H. GO and KEGG enrichment analysis of the source genes of the differentially expressed circRNAs revealed that they were mainly involved in metabolic processes, such as cellular metabolic processes, cellular macromolecular metabolic processes, and regulatory pathways related to nutrient metabolism, including protein and amino acid metabolism, as well as vitamin metabolism and pancreatic secretion associated with the animal feeding behavior. The circRNAs detected in this study were mostly novel, and have not been investigated directly to be associated with the RFI phenotype. Interestingly, most miRNAs of differentially expressed circRNAs predicted based on the circRNA-miRNA co-expression network analysis by using top 50 differentially expressed circRNAs and 13 unique circRNAs, have been reported to be related to animal RFIs, implying that circRNAs in bovine hypothalamic tissue may regulate phenotypic variation in RFI through miRNAs. The study results illustrate the complex biological functions of the hypothalamus in regulating feed efficiency and showing the potential role of circRNAs in the feeding behavior regulation of livestock, which would contributing to expanding the understanding of circRNA.
Collapse
|
7
|
Müller M, Xu C, Navarro M, Elias-Masiques N, Tilbrook A, van Barneveld R, Roura E. An oral gavage of lysine elicited early satiation while gavages of lysine, leucine, or isoleucine prolonged satiety in pigs. J Anim Sci 2022; 100:6783074. [PMID: 36315475 DOI: 10.1093/jas/skac361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/28/2022] [Indexed: 12/14/2022] Open
Abstract
Excess dietary amino acids (AA) may negatively affect feed intake in pigs. Previous results showed that Lys, Leu, Ile, Phe, and Glu significantly increased gut peptide secretion (i.e., cholecystokinin, glucagon-like peptide 1). However, the link between dietary AA and gut peptide secretion with changes in feeding behavior patterns has not been demonstrated to date in pigs. The aim of the present study was to determine the effect of Lys, Leu, Ile, Phe, and Glu, on feed intake and meal patterns in young pigs. Twelve male pigs (Landrace × Large White, body weight = 16.10 ± 2.69 kg) were administered an oral gavage of water (control) or Lys, Leu, Ile, Phe, Glu, or glucose (positive control) at 3 mmol.kg-1 following an overnight fasting. The experiment consisted in measuring individual feed disappearance and changes in meal pattern (including latency to first meal, first meal duration, intermeal interval, second meal duration, and number of meals) based on video footage. Compared to the control group Lys significantly (P ≤ 0.01) reduced feed intake during the first 30 min and up to 2.5 h post-gavage, including a reduction (P ≤ 0.05) in the first meal duration. Similarly, Leu and Ile also significantly decreased feed intake up to 3 h post-gavage on a cumulative count. However, the strongest (P ≤ 0.01) impacts on feed intake by the two branched chained AA were observed after the first- or second-hour post-gavage for Leu or Ile, respectively. In addition, Leu or Ile did not affect the first meal duration (P ≥ 0.05). Leu significantly increased (P ≤ 0.01) the intermeal interval while decreasing (P ≤ 0.05) the number of meals during the initial 2 h following the gavage when compared with the control group. In contrast, the oral gavages of Phe or Glu had no significant impact (P > 0.05) on the feeding behavior parameters measured relative to the control pigs. In turn, glucose had a short-lived effect on appetite by reducing (P < 0.05) feed intake for 30 min after the first-hour post-gavage. In conclusion, the impact of an oral gavage of Lys on feeding behavior is compatible with a stimulation of early satiation and an increased duration of satiety. The main impact of the oral gavages of Leu and Ile was an increase in the duration of satiety. The gastrointestinal mechanisms associated with non-bound dietary AA sensing and the impact on voluntary feed intake warrant further investigations.
Collapse
Affiliation(s)
- Maximiliano Müller
- Centre of Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Chenjing Xu
- Centre of Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marta Navarro
- Centre of Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nuria Elias-Masiques
- Centre of Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alan Tilbrook
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation and the School of Veterinary Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Eugeni Roura
- Centre of Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
8
|
Lueders B, Kanney BC, Krone MJ, Gannon NP, Vaughan RA. Effect of branched-chain amino acids on food intake and indicators of hunger and satiety- a narrative summary. HUMAN NUTRITION & METABOLISM 2022; 30:200168. [DOI: 10.1016/j.hnm.2022.200168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Accardo F, Miguéns-Gómez A, Lolli V, Faccini A, Ardévol A, Terra X, Caligiani A, Pinent M, Sforza S. Molecular composition of lipid and protein fraction of almond, beef and lesser mealworm after in vitro simulated gastrointestinal digestion and correlation with the hormone-stimulating properties of the digesta. Food Res Int 2022; 158:111499. [DOI: 10.1016/j.foodres.2022.111499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 12/01/2022]
|
10
|
Moris JM, Heinold C, Blades A, Koh Y. Nutrient-Based Appetite Regulation. J Obes Metab Syndr 2022; 31:161-168. [PMID: 35718856 PMCID: PMC9284573 DOI: 10.7570/jomes22031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 12/03/2022] Open
Abstract
Regulation of appetite is dependent on crosstalk between the gut and the brain, which is a pathway described as the gut-brain axis (GBA). Three primary appetite-regulating hormones that are secreted in the gut as a response to eating a meal are glucagon-like peptide 1 (GLP-1), cholecystokinin (CCK), and peptide YY (PYY). When these hormones are secreted, the GBA responds to reduce appetite. However, secretion of these hormones and the response of the GBA can vary depending on the types of nutrients consumed. This narrative review describes how the gut secretes GLP-1, CCK, and PYY in response to proteins, carbohydrates, and fats. In addition, the GBA response based on the quality of the meal is described in the context of which meal types produce greater appetite suppression. Last, the beneficiary role of exercise as a mediator of appetite regulation is highlighted.
Collapse
Affiliation(s)
- Jose M. Moris
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Corrinn Heinold
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Alexandra Blades
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Yunsuk Koh
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| |
Collapse
|
11
|
Gonzalez Melo M, Remacle N, Cudré-Cung HP, Roux C, Poms M, Cudalbu C, Barroso M, Gersting SW, Feichtinger RG, Mayr JA, Costanzo M, Caterino M, Ruoppolo M, Rüfenacht V, Häberle J, Braissant O, Ballhausen D. The first knock-in rat model for glutaric aciduria type I allows further insights into pathophysiology in brain and periphery. Mol Genet Metab 2021; 133:157-181. [PMID: 33965309 DOI: 10.1016/j.ymgme.2021.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023]
Abstract
Glutaric aciduria type I (GA-I, OMIM # 231670) is an inborn error of metabolism caused by a deficiency of glutaryl-CoA dehydrogenase (GCDH). Patients develop acute encephalopathic crises (AEC) with striatal injury most often triggered by catabolic stress. The pathophysiology of GA-I, particularly in brain, is still not fully understood. We generated the first knock-in rat model for GA-I by introduction of the mutation p.R411W, the rat sequence homologue of the most common Caucasian mutation p.R402W, into the Gcdh gene of Sprague Dawley rats by CRISPR/CAS9 technology. Homozygous Gcdhki/ki rats revealed a high excretor phenotype, but did not present any signs of AEC under normal diet (ND). Exposure to a high lysine diet (HLD, 4.7%) after weaning resulted in clinical and biochemical signs of AEC. A significant increase of plasmatic ammonium concentrations was found in Gcdhki/ki rats under HLD, accompanied by a decrease of urea concentrations and a concomitant increase of arginine excretion. This might indicate an inhibition of the urea cycle. Gcdhki/ki rats exposed to HLD showed highly diminished food intake resulting in severely decreased weight gain and moderate reduction of body mass index (BMI). This constellation suggests a loss of appetite. Under HLD, pipecolic acid increased significantly in cerebral and extra-cerebral liquids and tissues of Gcdhki/ki rats, but not in WT rats. It seems that Gcdhki/ki rats under HLD activate the pipecolate pathway for lysine degradation. Gcdhki/ki rat brains revealed depletion of free carnitine, microglial activation, astroglyosis, astrocytic death by apoptosis, increased vacuole numbers, impaired OXPHOS activities and neuronal damage. Under HLD, Gcdhki/ki rats showed imbalance of intra- and extracellular creatine concentrations and indirect signs of an intracerebral ammonium accumulation. We successfully created the first rat model for GA-I. Characterization of this Gcdhki/ki strain confirmed that it is a suitable model not only for the study of pathophysiological processes, but also for the development of new therapeutic interventions. We further brought up interesting new insights into the pathophysiology of GA-I in brain and periphery.
Collapse
Affiliation(s)
- Mary Gonzalez Melo
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Noémie Remacle
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland
| | - Hong-Phuc Cudré-Cung
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland
| | - Clothilde Roux
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Martin Poms
- Klinische Chemie und Biochemie Universitäts-Kinderspital Zürich, Switzerland.
| | - Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Madalena Barroso
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Søren Waldemar Gersting
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - René Günther Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Johannes Adalbert Mayr
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Véronique Rüfenacht
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| | - Olivier Braissant
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Diana Ballhausen
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland.
| |
Collapse
|
12
|
Igarashi A, Ogasawara S, Takagi R, Okada K, Ito YM, Hara H, Hira T. Acute Oral Calcium Suppresses Food Intake Through Enhanced Peptide-YY Secretion Mediated by the Calcium-Sensing Receptor in Rats. J Nutr 2021; 151:1320-1328. [PMID: 33693689 DOI: 10.1093/jn/nxab013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/14/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Dietary calcium has been proposed to reduce appetite in human studies. Postprandial satiety is mainly controlled by gut hormones. However, the effect of calcium on appetite and the role of gut hormones remain unclear. OBJECTIVES We examined whether oral administration of calcium reduces food intake in rats and investigated the underlying mechanism. METHODS Male Sprague Dawley rats (8-12 wk old) were used after an overnight fastifffng. In a series of 2 trials with 1-wk interval between challenges, food intake was measured 0.5-24 h after oral gavage of a vehicle (saline containing 1.5% carboxymethyl cellulose) as the control treatment, or the vehicle containing various calcium compounds [calcium chloride (CaCl2), calcium carbonate, calcium lactate, in a random order] at 150 mg calcium/kg dose. A conditional taste aversion test was conducted. In separate experiments, plasma calcium and gut hormone concentrations were measured 15 or 30 min after oral administration of the calcium compounds. In anesthetized rats, portal peptide-YY (PYY) concentrations were measured after intraluminal administration of a liquid meal with or without additional calcium. RESULTS Oral CaCl2 reduced food intake acutely (30 min, ∼20%, P < 0.05) compared with control rats, without taste aversion. Plasma PYY concentration was higher (100%, P < 0.05) in CaCl2-preloaded rats than in control rats, 15 min after administration. In anesthetized rats, luminal meal + CaCl2 induced a 4-fold higher increase in plasma PYY than the control treatment did. Oral administration of a calcium-sensing receptor (CaSR) agonist suppressed food intake (∼30%, P < 0.05), but CaCl2 and CaSR agonist did not suppress food intake under treatment with a PYY receptor antagonist. Furthermore, the CaSR antagonist attenuated the effect of CaCl2 on food intake. CONCLUSIONS CaCl2 suppresses food intake partly by increasing CaSR-mediated PYY secretion in rats. Our findings could at least partially explain the satiating effect of calcium.
Collapse
Affiliation(s)
- Akiho Igarashi
- School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shono Ogasawara
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ryo Takagi
- Biostatistics Division, Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Kazufumi Okada
- Biostatistics Division, Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Yoichi M Ito
- Biostatistics Division, Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Hiroshi Hara
- Faculty of Human Life Science, Fuji Women's University, Ishikari, Japan
| | - Tohru Hira
- School of Agriculture, Hokkaido University, Sapporo, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Wild LE, Alderete TL, Naik NC, Patterson WB, Berger PK, Jones RB, Plows JF, Goran MI. Specific amino acids but not total protein attenuate postpartum weight gain among Hispanic women from Southern California. Food Sci Nutr 2021; 9:1842-1850. [PMID: 33841803 PMCID: PMC8020954 DOI: 10.1002/fsn3.2085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
There is a high prevalence of obesity and type 2 diabetes in the United States, particularly among Hispanic women, which may be partly explained by failure to lose gestational weight during the postpartum period. Previous work indicates that protein and amino acids may protect against weight gain; therefore, this study examined the impact of dietary protein and amino acid intake on changes in postpartum weight and the percent of women meeting the Estimated Average Requirement (EAR) for these dietary variables among Hispanic women from the Southern California Mother's Milk Study (n = 99). Multivariable linear regression analysis was used to examine the associations between protein and amino acid intake with change in weight after adjusting for maternal age, height, and energy intake. Women's weight increased from prepregnancy to 1-month and 6-months postpartum (71.1 ± 14.6 vs. 73.1 ± 13.1 vs. 74.5 ± 14.6 kg, p < .0001). Although dietary protein was not associated with weight change (β = -1.09; p = .13), phenylalanine (β = -1.46; p = .04), tryptophan (β = -1.71; p = .009), valine (β = -1.34; p = .04), isoleucine (β = -1.26; p = .045), and cysteine (β = -1.52; p = .02) intake were inversely associated with weight change. Additionally, fewer women met the EAR values for cysteine (11.1%), phenylalanine (60.6%), and methionine (69.7%), whereas most women met the EAR values for tryptophan (92.9%), valine (96.0%), and isoleucine (94.9%). Study results indicate that several essential and conditionally essential amino acids were associated with postpartum weight loss, with a significant portion of women not meeting recommended intake levels for some of these amino acids. These results highlight the importance of postpartum maternal diet as a potential modifiable risk factor.
Collapse
Affiliation(s)
- Laura E. Wild
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderCOUSA
| | - Tanya L. Alderete
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderCOUSA
| | - Noopur C. Naik
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderCOUSA
| | | | - Paige K. Berger
- Department of PediatricsThe Saban Research InstituteChildren's Hospital Los AngelesUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Roshonda B. Jones
- Department of PediatricsThe Saban Research InstituteChildren's Hospital Los AngelesUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Jasmine F. Plows
- Department of PediatricsThe Saban Research InstituteChildren's Hospital Los AngelesUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Michael I. Goran
- Department of PediatricsThe Saban Research InstituteChildren's Hospital Los AngelesUniversity of Southern CaliforniaLos AngelesCAUSA
| |
Collapse
|
14
|
Kang C, Wang L, Feng J, Zhu W, Hang S. l-Glutamate stimulates cholecystokinin secretion via the T1R1/T1R3 mediated PLC/TRPM5 transduction pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4818-4825. [PMID: 32478409 DOI: 10.1002/jsfa.10541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/17/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND It is known that cholecystokinin (CCK) plays an essential role in reducing food intake and driving weight loss. Previous studies demonstrated that amino acids were capable of triggering CCK release through G protein-coupled receptors, but the sensing mechanism remains obscure, especially the intracellular signaling pathway. RESULTS l-Glu, rather than its d-isomer, robustly stimulated CCK secretion in a porcine duodenal model, and the secretory response was augmented by incubation with the allosteric ligand of T1R1, while T1R3 antagonist attenuated it. Upon inhibiting phospholipase C (PLC) or transient receptor potential M5 (TRPM5) activity, l-Glu failed to increase CCK release. Oral administration of monosodium glutamate in rats also suppressed food intake and increased plasma CCK levels, accompanied by elevated expression of T1R1, PLCβ2 and TRPM5 in the duodenum. CONCLUSION These data demonstrated that l-Glu stimulated CCK secretion through the activation of T1R1/T1R3 in a PLC/TRPM5-dependent manner. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cuicui Kang
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lvyang Wang
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiangyin Feng
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Suqin Hang
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Evaluation of an Amino Acid Mix on the Secretion of Gastrointestinal Peptides, Glucometabolic Homeostasis, and Appetite in Obese Adolescents Administered with a Fixed-Dose or ad Libitum Meal. J Clin Med 2020; 9:jcm9093054. [PMID: 32971830 PMCID: PMC7564111 DOI: 10.3390/jcm9093054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/01/2023] Open
Abstract
Proteins have been demonstrated to reduce food intake in animals and humans via peripheral and central mechanisms. Supplementation of a dietetic regimen with single or mixed amino acids might represent an approach to improve the effectiveness of any body weight reduction program in obese subjects. The aim of the present study was to evaluate the effects of an amino acid mix (L-arginine + L-leucine + L-glutamine + L-tryptophan) on the secretion of some gastrointestinal peptides (i.e., ghrelin and glucagon-like peptide type 1, GLP-1), glucometabolic homeostasis (i.e., glucose, insulin, and glucagon), and appetite (hunger/satiety scored by visual analogue scale, VAS) in obese adolescents (n = 14; 10 females and 4 males; age: 16.6 ± 1.0 years; body mass index (BMI): 36.4 ± 4.6 kg/m²; fat-free mass (FFM): 54.9 ± 4.7%; fat mass (FM): 45.1 ± 4.4%) administered with a fixed-dose (lunch) or ad libitum (dinner) meal. Isocaloric maltodextrins were used as control treatment. During the lunch test, a significant increase in circulating levels of GLP-1, but not of ghrelin, was observed in the amino acid-treated group, which was congruent with significant changes in appetite, i.e., increase in satiety and decrease in hunger. A significant hyperglycemia was found in the maltodextrin-treated group during the prelunch period, without any significant changes in insulin and glucagon between the two groups. During the dinner test, there were no significant differences in appetite (hunger/satiety) and intake of calories. In conclusion, L-arginine, L-leucine, L-glutamine, and L-tryptophan, when administered to obese adolescents with a fixed-dose meal, are capable of evoking an anorexigenic response, which is, at least in part, mediated by an increase in GLP-1 released in circulation by L cells, which are capable of chemosensing specific amino acids present in the intestinal lumen. Further additional studies are requested to understand whether higher doses are necessary to inhibit ad libitum feeding.
Collapse
|
16
|
Comesaña S, Conde-Sieira M, Velasco C, Soengas JL, Morais S. Oral and pre-absorptive sensing of amino acids relates to hypothalamic control of food intake in rainbow trout. J Exp Biol 2020; 223:jeb221721. [PMID: 32680900 DOI: 10.1242/jeb.221721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022]
Abstract
To assess the putative role of taste and pre-absorptive sensing of amino acids in food intake control in fish, we carried out an oral administration with l-leucine, l-valine, l-proline or l-glutamic acid in rainbow trout (Oncorhynchus mykiss). Treatment with proline significantly reduced voluntary food intake at 2 h and 3 h after oral administration, while glutamic acid showed a less pronounced satiating effect at 3 h. The mRNA expression of taste receptor subunits tas1r1, tas1r2a, tas1r2b and tas1r3 was measured in the epithelium overlying the bony basihyal of the fish (analogous to the tetrapod tongue) at 10, 20 or 30 min following treatment. No significant changes were observed, except for a tas1r down-regulation by valine at 30 min. Of the downstream taste signalling genes that were analysed in parallel, plcb2 and possibly trpm5 (non-significant trend) were down-regulated 20 min after proline and glutamic acid treatment. The signal originated in the oropharyngeal and/or gastric cavity presumably relays to the brain as changes in genes involved in the regulation of food intake occurred in hypothalamus 10-30 min after oral treatment with amino acids. In particular, proline induced changes consistent with an increased anorexigenic potential in the hypothalamus. We have therefore demonstrated, for the first time in fish, that the peripheral (pre-absorptive) detection of an amino acid (l-proline), presumably by taste-related mechanisms, elicits a satiety signal that in hypothalamus is translated into changes in cellular signalling and neuropeptides regulating food intake, ultimately resulting in decreased food intake.
Collapse
Affiliation(s)
- Sara Comesaña
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Sofia Morais
- Lucta S.A., Innovation Division, UAB Research Park, 08193 Bellaterra, Spain
| |
Collapse
|
17
|
Fu Z, Gong L, Liu J, Wu J, Barrett EJ, Aylor KW, Liu Z. Brain Endothelial Cells Regulate Glucagon-Like Peptide 1 Entry Into the Brain via a Receptor-Mediated Process. Front Physiol 2020; 11:555. [PMID: 32547420 PMCID: PMC7274078 DOI: 10.3389/fphys.2020.00555] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/04/2020] [Indexed: 01/01/2023] Open
Abstract
Glucagon-like peptide 1 (GLP-1) in addition to regulating glucose-dependent insulin and glucagon secretion exerts anorexic and neuroprotective effects. While brain-derived GLP-1 may participate in these central actions, evidence suggests that peripherally derived GLP-1 plays an important role and GLP-1 analogs are known to cross the blood brain barrier. To define the role of brain microvascular endothelial cells in GLP-1 entry into the brain, we infused labeled GLP-1 or exendin-4 into rats intravenously and examined their appearance and protein kinase A activities in various brain regions. We also studied the role of endothelial cell GLP-1 receptor and its signaling in endothelial cell uptake and transport of GLP-1. Systemically infused labeled GLP-1 or exendin-4 appeared rapidly in various brain regions and this was associated with increased protein kinase A activity in these brain regions. Pretreatment with GLP-1 receptor antagonist reduced labeled GLP-1 or exendin-4 enrichment in the brain. Sub-diaphragmatic vagus nerve resection did not alter GLP-1-mediated increases in protein kinase A activity in the brain. Rat brain microvascular endothelial cells rapidly took up labeled GLP-1 and this was blunted by either GLP-1 receptor antagonism or protein kinase A inhibition but enhanced through adenylyl cyclase activation. Using an artificially assembled blood brain barrier consisting of endothelial and astrocyte layers, we found that labeled GLP-1 time-dependently crossed the barrier and the presence of GLP-1 receptor antagonist blunted this transit. We conclude that GLP-1 crosses the blood brain barrier through active trans-endothelial transport which requires GLP-1 receptor binding and activation.
Collapse
Affiliation(s)
- Zhuo Fu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Liying Gong
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States.,Department of Pharmacology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jia Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Jing Wu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States.,Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Eugene J Barrett
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Kevin W Aylor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| |
Collapse
|
18
|
Effects of mycoprotein on glycaemic control and energy intake in humans: a systematic review. Br J Nutr 2020; 123:1321-1332. [DOI: 10.1017/s0007114520000756] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractMycoprotein is a food high in both dietary fibre and non-animal-derived protein. Global mycoprotein consumption is increasing, although its effect on human health has not yet been systematically reviewed. This study aims to systematically review the effects of mycoprotein on glycaemic control and energy intake in humans. A literature search of randomised controlled trials was performed in PubMed, Embase, Web of Science, Google Scholar and hand search. A total of twenty-one studies were identified of which only five studies, totalling 122 participants, met the inclusion criteria. All five studies were acute studies of which one reported outcomes on glycaemia and insulinaemia, two reported on energy intake and two reported on all of these outcomes. Data were extracted, and risk-of-bias assessment was then conducted. The results did not show a clear effect of acute mycoprotein on blood glucose levels, but it showed a decrease in insulin levels. Acute mycoprotein intake also showed to decrease energy intake at an ad libitum meal and post-24 h in healthy lean, overweight and obese humans. In conclusion, the acute ingestion of mycoprotein reduces energy intake and insulinaemia, whereas its impact on glycaemia is currently unclear. However, evidence comes from a very limited number of heterogeneous studies. Further well-controlled studies are needed to elucidate the short- and long-term effects of mycoprotein intake on glycaemic control and energy intake, as well as the mechanisms underpinning these effects.
Collapse
|
19
|
Barekatain R, Chrystal PV, Howarth GS, McLaughlan CJ, Gilani S, Nattrass GS. Performance, intestinal permeability, and gene expression of selected tight junction proteins in broiler chickens fed reduced protein diets supplemented with arginine, glutamine, and glycine subjected to a leaky gut model. Poult Sci 2019; 98:6761-6771. [PMID: 31328774 PMCID: PMC6869755 DOI: 10.3382/ps/pez393] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/13/2019] [Indexed: 01/05/2023] Open
Abstract
Changing dietary protein and amino acids may impact intestinal barrier function. Experiments were conducted in broiler chickens to evaluate supplementation of L-glutamine, glycine, and L-arginine in a reduced protein (RP) diet. Experiment 1 examined the growth performance of broilers fed 5 dietary treatments: 1) a standard diet; 2) an RP diet (193.9 g/kg CP in grower and 176.9 g/kg CP in finisher); 3) RP diet supplemented with 10 g/kg L-Gln; 4) RP diet supplemented with 10 g/kg Gly; 5) RP diet supplemented with 5 g/kg L-Arg. Each experimental diet was replicated 6 times with 10 birds per replicate. In a subset of 96 birds, experiment 2 tested the 4 RP diets with and without dexamethasone (DEX) to induce leaky gut. Each diet was replicated 24 times. Fluorescein isothiocyanate dextran (FITC-d) was used to test intestinal permeability (IP). Gene expression of selected tight junction proteins in ileal and jejunal tissues was assayed by quantitative PCR. From day 7 to 35, the RP diet increased feed intake (FI) (P < 0.05) and body weight gain (BWG) compared with the standard diet while Gln reduced FI and BWG (P < 0.05) compared with RP. Gly had no effect on BWG or FCR. Supplementation of Arg improved FCR from day 21 to 35 and day 7 to 35. In experiment 2, Arg tended to lower FITC-d (P = 0.086). DEX increased passage of FITC-d into the serum (P < 0.001). The villi surface area was increased in birds fed higher Arg (P < 0.05). DEX and diet interacted (P < 0.01) for jejunal claudin-3 mRNA level where DEX upregulated claudin-3 for all diets except the Arg diet. In summary, with a moderate reduction of protein, satisfactory performance can be obtained. Although Gln and Gly had no demonstrable positive effect on IP and performance of broilers, increasing the dietary Arg by approximately 140% improved FCR and showed indications of improved intestinal barrier function of birds fed an RP diet under a stress model.
Collapse
Affiliation(s)
- R Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia
- School of Animal and Veterinary Science, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia
| | - P V Chrystal
- Baiada Poultry, Pendle Hill, NSW 2145, Australia
| | - G S Howarth
- School of Animal and Veterinary Science, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia
| | - C J McLaughlan
- South Australian Research and Development Institute, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia
| | - S Gilani
- School of Animal and Veterinary Science, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia
| | - G S Nattrass
- South Australian Research and Development Institute, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia
| |
Collapse
|
20
|
Elovaris RA, Hutchison AT, Lange K, Horowitz M, Feinle-Bisset C, Luscombe-Marsh ND. Plasma Free Amino Acid Responses to Whey Protein and Their Relationships with Gastric Emptying, Blood Glucose- and Appetite-Regulatory Hormones and Energy Intake in Lean Healthy Men. Nutrients 2019; 11:2465. [PMID: 31618863 PMCID: PMC6835323 DOI: 10.3390/nu11102465] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/01/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
This study determined the effects of increasing loads of whey protein on plasma amino acid (AA) concentrations, and their relationships with gastric emptying, blood glucose- and appetite-regulatory hormones, blood glucose and energy intake. Eighteen healthy lean men participated in a double-blinded study, in which they consumed, on 3 separate occasions, in randomised order, 450-mL drinks containing either 30 g (L) or 70 g (H) of pure whey protein isolate, or control with 0 g of protein (C). Gastric emptying, serum concentrations of AAs, ghrelin, cholecystokinin (CCK), glucagon-like-peptide 1 (GLP-1), insulin, glucagon and blood glucose were measured before and after the drinks over 180 min. Then energy intake was quantified. All AAs were increased, and 7/20 AAs were increased more by H than L. Incremental areas under the curve (iAUC0-180 min) for CCK, GLP-1, insulin and glucagon were correlated positively with iAUCs of 19/20 AAs (p < 0.05). The strongest correlations were with the branched-chain AAs as well as lysine, tyrosine, methionine, tryptophan, and aspartic acid (all R2 > 0.52, p < 0.05). Blood glucose did not correlate with any AA (all p > 0.05). Ghrelin and energy intake correlated inversely, but only weakly, with 15/20 AAs (all R2 < 0.34, p < 0.05). There is a strong relationship between gluco-regulatory hormones with a number of (predominantly essential) AAs. However, the factors mediating the effects of protein on blood glucose and energy intake are likely to be multifactorial.
Collapse
Affiliation(s)
- Rachel A Elovaris
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| | - Amy T Hutchison
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
- Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia.
| | - Kylie Lange
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| | - Michael Horowitz
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| | - Christine Feinle-Bisset
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| | - Natalie D Luscombe-Marsh
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Nutrition and Health Program, P.O. Box 10097, Adelaide 5000, Australia.
| |
Collapse
|
21
|
Dougkas A, Barr S, Reddy S, Summerbell CD. A critical review of the role of milk and other dairy products in the development of obesity in children and adolescents. Nutr Res Rev 2019; 32:106-127. [PMID: 30477600 PMCID: PMC6536827 DOI: 10.1017/s0954422418000227] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Existing reviews suggest that milk and other dairy products do not play a role in the development of obesity in childhood, but they do make an important contribution to children's nutrient intake. It is thus curious that public health advice on the consumption of dairy products for children is often perceived as unclear. The present review aimed to provide an overview of the totality of the evidence on the association between milk and other dairy products, and obesity and indicators of adiposity, in children. Our search identified forty-three cross-sectional studies, thirty-one longitudinal cohort studies and twenty randomised controlled trials. We found that milk and other dairy products are consistently found to be not associated, or inversely associated, with obesity and indicators of adiposity in children. Adjustment for energy intake tended to change inverse associations to neutral. Also, we found little evidence to suggest that the relationship varied by type of milk or dairy product, or age of the children, although there was a dearth of evidence for young children. Only nine of the ninety-four studies found a positive association between milk and other dairy products and body fatness. There may be some plausible mechanisms underlying the effect of milk and other dairy products on adiposity that influence energy and fat balance, possibly through fat absorption, appetite or metabolic activity of gut microbiota. In conclusion, there is little evidence to support a concern to limit the consumption of milk and other dairy products for children on the grounds that they may promote obesity.
Collapse
Affiliation(s)
- Anestis Dougkas
- Institut Paul Bocuse Research Centre, Institut Paul Bocuse, Château du Vivier, BP 25, 69131 Ecully Cedex, France
| | - Suzanne Barr
- Department of Medicine, Imperial College London, London, UK
| | | | | |
Collapse
|
22
|
Identification of central mechanisms underlying anorexigenic effects of intraperitoneal L-tryptophan. Neuroreport 2019; 29:1293-1300. [PMID: 30085976 DOI: 10.1097/wnr.0000000000001110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A free essential amino acid, L-tryptophan (TRP), administered through a diet or directly into the gut, decreases food intake by engaging neural mechanisms. The ability of intragastric TRP to cross into the general circulation and through the blood-brain barrier, at least partly underlies hypophagia. It is unclear although, whether TRP's anorexigenic effects and accompanying neural processes occur in the absence of the initial action of TRP on the gut mucosa. Here, we addressed this issue by using a fundamental approach of examining effects of intraperitoneally administered TRP on feeding and neuronal activation in rats. We found that 30 mg/kg, intraperitoneal, TRP decreases deprivation-induced intake of standard chow and thirst-driven water intake. A 100 mg/kg dose was necessary to suppress consumption of palatable chow and of sucrose and saccharin solutions in nondeprived animals. Intraperitoneally TRP did not induce a conditioned taste aversion; thus, its anorexigenic effects were unrelated to sickness/malaise. c-Fos mapping in feeding-related brain sites revealed TRP-induced changes in the dorsal vagal complex, hypothalamic paraventricular and supraoptic nuclei and in the basolateral amygdala. TRP enhanced activation of hypothalamic neurons synthesizing an anorexigen, oxytocin (OT). Pharmacological blockade of the OT receptor with a blood-brain barrier -penetrant antagonist, L-368,899, attenuated TRP-induced decrease in deprivation-induced chow intake, but not in thirst-driven water consumption. We conclude that TRP triggers anorexigenic action and underlying neural responses even when it does not directly contact the gut mucosa. TRP requires OT to decrease energy intake, whereas OT is nonobligatory in TRP's effects on drinking behavior.
Collapse
|
23
|
Amin A, Neophytou C, Thein S, Martin NM, Alamshah A, Spreckley E, Bloom SR, Murphy KG. L-Arginine Increases Postprandial Circulating GLP-1 and PYY Levels in Humans. Obesity (Silver Spring) 2018; 26:1721-1726. [PMID: 30358156 PMCID: PMC6220957 DOI: 10.1002/oby.22323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The satiating effect of protein compared with other nutrients has been well described and is thought to be mediated, in part, by gut hormone release. Previously, it has been shown that oral L-arginine acts as a GLP-1 secretagogue both in vitro and in vivo in rodents. Here, the effect of L-arginine on gut hormone release in humans was investigated. METHODS The hypothesis was tested in two separate studies. The first study assessed the tolerability of oral L-arginine in healthy human subjects. The second study assessed the effect of oral L-arginine on gut hormone release following an ad libitum meal. Subjects were given L-arginine, glycine (control amino acid), or vehicle control in a randomized double-blind fashion. RESULTS At a dose of 17.1 mmol, L-arginine was well tolerated and stimulated the release of plasma GLP-1 (P < 0.05) and PYY (P < 0.001) following an ad libitum meal. Food diaries showed a trend toward lower energy intake and particularly fat intake following L-arginine treatment. CONCLUSIONS L-arginine can significantly elevate GLP-1 and PYY in healthy human volunteers in combination with a meal. Further work is required to investigate whether L-arginine may have utility in the suppression of appetite and food intake.
Collapse
Affiliation(s)
- Anjali Amin
- Section of Endocrinology and Investigative Medicine, Department of MedicineImperial College LondonLondonUK
| | - Christina Neophytou
- Section of Endocrinology and Investigative Medicine, Department of MedicineImperial College LondonLondonUK
| | - Shermaine Thein
- Section of Endocrinology and Investigative Medicine, Department of MedicineImperial College LondonLondonUK
| | - Niamh M Martin
- Section of Endocrinology and Investigative Medicine, Department of MedicineImperial College LondonLondonUK
| | - Amin Alamshah
- Section of Endocrinology and Investigative Medicine, Department of MedicineImperial College LondonLondonUK
| | - Eleanor Spreckley
- Section of Endocrinology and Investigative Medicine, Department of MedicineImperial College LondonLondonUK
| | - Stephen R. Bloom
- Section of Endocrinology and Investigative Medicine, Department of MedicineImperial College LondonLondonUK
| | - Kevin G. Murphy
- Section of Endocrinology and Investigative Medicine, Department of MedicineImperial College LondonLondonUK
| |
Collapse
|
24
|
Jordi J, Guggiana-Nilo D, Bolton AD, Prabha S, Ballotti K, Herrera K, Rennekamp AJ, Peterson RT, Lutz TA, Engert F. High-throughput screening for selective appetite modulators: A multibehavioral and translational drug discovery strategy. SCIENCE ADVANCES 2018; 4:eaav1966. [PMID: 30402545 PMCID: PMC6209392 DOI: 10.1126/sciadv.aav1966] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/27/2018] [Indexed: 05/19/2023]
Abstract
How appetite is modulated by physiological, contextual, or pharmacological influence is still unclear. Specifically, the discovery of appetite modulators is compromised by the abundance of side effects that usually limit in vivo drug action. We set out to identify neuroactive drugs that trigger only their intended single behavioral change, which would provide great therapeutic advantages. To identify these ideal bioactive small molecules, we quantified the impact of more than 10,000 compounds on an extended series of different larval zebrafish behaviors using an in vivo imaging strategy. Known appetite-modulating drugs altered feeding and a pleiotropy of behaviors. Using this multibehavioral strategy as an active filter for behavioral side effects, we identified previously unidentified compounds that selectively increased or reduced food intake by more than 50%. The general applicability of this strategy is shown by validation in mice. Mechanistically, most candidate compounds were independent of the main neurotransmitter systems. In addition, we identified compounds with multibehavioral impact, and correlational comparison of these profiles with those of known drugs allowed for the prediction of their mechanism of action. Our results illustrate an unbiased and translational drug discovery strategy for ideal psychoactive compounds and identified selective appetite modulators in two vertebrate species.
Collapse
Affiliation(s)
- Josua Jordi
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Institute of Veterinary Physiology, University of Zurich, Switzerland
- Corresponding author. (J.J.); (F.E.)
| | - Drago Guggiana-Nilo
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Andrew D Bolton
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Srishti Prabha
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Kaitlyn Ballotti
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Kristian Herrera
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Andrew J. Rennekamp
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Randall T. Peterson
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Thomas A. Lutz
- Institute of Veterinary Physiology, University of Zurich, Switzerland
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Corresponding author. (J.J.); (F.E.)
| |
Collapse
|
25
|
Comesaña S, Velasco C, Conde-Sieira M, Míguez JM, Soengas JL, Morais S. Feeding Stimulation Ability and Central Effects of Intraperitoneal Treatment of L-Leucine, L-Valine, and L-Proline on Amino Acid Sensing Systems in Rainbow Trout: Implication in Food Intake Control. Front Physiol 2018; 9:1209. [PMID: 30210366 PMCID: PMC6121200 DOI: 10.3389/fphys.2018.01209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
To continue gathering knowledge on the central regulation of food intake in response to amino acids in teleost fish, using as a model rainbow trout (Oncorhynchus mykiss), we evaluated in a first experiment the feeding attractiveness of L-leucine, L-valine, and L-proline offered as an agar gel matrix. In a second experiment, we assessed the effect of intraperitoneal (IP) treatment with the same amino acids on food intake. In a third experiment, we carried out a similar IP administration of amino acids to evaluate the response of amino acid sensing mechanisms in the hypothalamus and telencephalon. Results are discussed in conjunction with an earlier study where leucine and valine were administered intracerebroventricularly (ICV). The attractiveness of amino acids does not appear to relate to their effects on food intake, at least when administrated by-passing ingestion and luminal absorption, since two attractive amino acids resulted in an anorexigenic (Leu) or no effects (Pro) on food intake while a non-attractive amino acid (Val) induced anorexigenic (IP treatment) or orexigenic (ICV treatment) responses. The effects of Leu on food intake might relate to the expression of hypothalamic neuropeptides and result from the direct activation of amino acid sensing systems. In contrast, while valine had few effects on hypothalamic amino acid sensing systems after ICV treatment, a significant amount of parameters become affected by IP treatment suggesting that the effect of Val after IP treatment is indirect. Proline had no relevant effects on amino acid sensing systems, neuropeptide expression, and food intake, which suggest that this amino acid might not have a relevant role in the homeostatic regulation of food intake through hypothalamic mechanisms. In telencephalon, the same amino acid sensing systems operating in hypothalamus appear to be present and respond to Leu and Val, but it is still unclear how they might relate to the control of food intake.
Collapse
Affiliation(s)
- Sara Comesaña
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Jesús M Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Sofía Morais
- Lucta S.A., Innovation Division, UAB Research Park, Bellaterra, Spain
| |
Collapse
|
26
|
Wang C, Kang C, Xian Y, Zhang M, Chen X, Pei M, Zhu W, Hang S. Sensing of L-Arginine by Gut-Expressed Calcium Sensing Receptor Stimulates Gut Satiety Hormones Cholecystokinin and Glucose-Dependent Insulinotropic Peptide Secretion in Pig Model. J Food Sci 2018; 83:2394-2401. [PMID: 30088839 DOI: 10.1111/1750-3841.14297] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/10/2018] [Accepted: 06/24/2018] [Indexed: 01/09/2023]
Abstract
Nutrients regulate the secretion of gut satiety hormones, which is related to the modulation of food intake and blood glucose levels. Calcium-sensing receptor (CaSR) is involved in regulating gut hormone secretion in response to l-amino acids and multivalent cations. Rodents are often used to investigate the effect of nutrients on these hormonal release. However, results obtained using rodent models are difficult to be applied in humans, we used pigs as a model in this study because their physiology is similar to that of humans. In this study, we investigated whether l-Arginine (l-Arg) could induce gut hormones cholecystokinin (CCK) and glucose-dependent insulinotropic peptide (GIP) secretion in the porcine duodenum and if so, whether CaSR mediated l-Arg-regulated gut satiety hormone secretion. Our data showed that treatment with 20 and 50 mM l-Arg induced CCK and GIP secretion compared with 0 mM l-Arg. However, treatment with d-Arg (an inactive isomer) failed to elicit this response. The potency of l-Arg to induce CCK and GIP secretion was enhanced in the presence of extracellular Ca2+ and CaSR agonist cinacalcet. However, the effect of Arg on CCK and GIP secretion was attenuated by blocking CaSR and its downstream signaling molecules adenylate cyclase (AC) and phospholipase C (PLC). Taken all together, pig duodenum provides an appropriate model to explore the effects of l-Arg on the secretion of the satiety-related gut hormones CCK and GIP and the role of CaSR in this effect. Further investigations are needed to verify the effect of l-Arg on food intake and blood glucose in human study. PRACTICAL APPLICATION: l-Arginine is able to modulate cholecystokinin and glucose-dependent insulinotropic peptide secretion through the CaSR in pig model, which has a potential role in regulating food intake and blood glucose levels.
Collapse
Affiliation(s)
- Chao Wang
- WeiGang No. 1, Nanjing Agricultural Univ., Nanjing, Jiangsu 210095, China
| | - Cuicui Kang
- WeiGang No. 1, Nanjing Agricultural Univ., Nanjing, Jiangsu 210095, China
| | - Yihan Xian
- WeiGang No. 1, Nanjing Agricultural Univ., Nanjing, Jiangsu 210095, China
| | - Mingyu Zhang
- WeiGang No. 1, Nanjing Agricultural Univ., Nanjing, Jiangsu 210095, China
| | - Xiaolin Chen
- WeiGang No. 1, Nanjing Agricultural Univ., Nanjing, Jiangsu 210095, China
| | - Mingcai Pei
- WeiGang No. 1, Nanjing Agricultural Univ., Nanjing, Jiangsu 210095, China
| | - Weiyun Zhu
- WeiGang No. 1, Nanjing Agricultural Univ., Nanjing, Jiangsu 210095, China
| | - Suqin Hang
- WeiGang No. 1, Nanjing Agricultural Univ., Nanjing, Jiangsu 210095, China
| |
Collapse
|
27
|
Gartner SN, Aidney F, Klockars A, Prosser C, Carpenter EA, Isgrove K, Levine AS, Olszewski PK. Intragastric preloads of l-tryptophan reduce ingestive behavior via oxytocinergic neural mechanisms in male mice. Appetite 2018; 125:278-286. [PMID: 29471071 DOI: 10.1016/j.appet.2018.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 11/29/2022]
Abstract
Human and laboratory animal studies suggest that dietary supplementation of a free essential amino acid, l-tryptophan (TRP), reduces food intake. It is unclear whether an acute gastric preload of TRP decreases consumption and whether central mechanisms underlie TRP-driven hypophagia. We examined the effect of TRP administered via intragastric gavage on energy- and palatability-induced feeding in mice. We sought to identify central mechanisms through which TRP suppresses appetite. Effects of TRP on consumption of energy-dense and energy-dilute tastants were established in mice stimulated to eat by energy deprivation or palatability. A conditioned taste aversion (CTA) paradigm was used to assess whether hypophagia is unrelated to sickness. c-Fos immunohistochemistry was employed to detect TRP-induced activation of feeding-related brain sites and of oxytocin (OT) neurons, a crucial component of satiety circuits. Also, expression of OT mRNA was assessed with real-time PCR. The functional importance of OT in mediating TRP-driven hypophagia was substantiated by showing the ability of OT receptor blockade to abolish TRP-induced decrease in feeding. TRP reduced intake of energy-dense standard chow in deprived animals and energy-dense palatable chow in sated mice. Anorexigenic doses of TRP did not cause a CTA. TRP failed to affect intake of palatable yet calorie-dilute or noncaloric solutions (10% sucrose, 4.1% Intralipid or 0.1% saccharin) even for TRP doses that decreased water intake in thirsty mice. Fos analysis revealed that TRP increases activation of several key feeding-related brain areas, especially in the brain stem and hypothalamus. TRP activated hypothalamic OT neurons and increased OT mRNA levels, whereas pretreatment with an OT antagonist abolished TRP-driven hypophagia. We conclude that intragastric TRP decreases food and water intake, and TRP-induced hypophagia is partially mediated via central circuits that encompass OT.
Collapse
Affiliation(s)
| | | | | | - Colin Prosser
- Dairy Goat Co-operative (NZ) Ltd, Hamilton, New Zealand
| | | | | | - Allen S Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Pawel K Olszewski
- University of Waikato, Hamilton, New Zealand; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
28
|
Jando J, Camargo SMR, Herzog B, Verrey F. Expression and regulation of the neutral amino acid transporter B0AT1 in rat small intestine. PLoS One 2017; 12:e0184845. [PMID: 28915252 PMCID: PMC5600382 DOI: 10.1371/journal.pone.0184845] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 08/24/2017] [Indexed: 01/11/2023] Open
Abstract
Absorption of neutral amino acids across the luminal membrane of intestinal enterocytes is mediated by the broad neutral amino acid transporter B0AT1 (SLC6A19). Its intestinal expression depends on co-expression of the membrane-anchored peptidase angiotensin converting enzyme 2 (ACE2) and is additionally enhanced by aminopeptidase N (CD13). We investigated in this study the expression of B0AT1 and its auxiliary peptidases as well as its transport function along the rat small intestine. Additionally, we tested its possible short- and long-term regulation by dietary proteins and amino acids. We showed by immunofluorescence that B0AT1, ACE2 and CD13 co-localize on the luminal membrane of small intestinal villi and by Western blotting that their protein expression increases in distal direction. Furthermore, we observed an elevated transport activity of the neutral amino acid L-isoleucine during the nocturnal active phase compared to the inactive one. Gastric emptying was delayed by intragastric application of an amino acid cocktail but we observed no acute dietary regulation of B0AT1 protein expression and L-isoleucine transport. Investigation of the chronic dietary regulation of B0AT1, ACE2 and CD13 by different diets revealed an increased B0AT1 protein expression under amino acid-supplemented diet in the proximal section but not in the distal one and for ACE2 protein expression a reverse localization of the effect. Dietary regulation for CD13 protein expression was not as distinct as for the two other proteins. Ring uptake experiments showed a tendency for increased L-isoleucine uptake under amino acid-supplemented diet and in vivo L-isoleucine absorption was more efficient under high protein and amino acid-supplemented diet. Additionally, plasma levels of branched-chain amino acids were elevated under high protein and amino acid diet. Taken together, our experiments did not reveal an acute amino acid-induced regulation of B0AT1 but revealed a chronic dietary adaptation mainly restricted to the proximal segment of the small intestine.
Collapse
Affiliation(s)
- Julia Jando
- Institute of Physiology, Zurich Center of Integrative Human Physiology and NCCR Kidney.CH, University of Zurich, Zurich, Switzerland
| | - Simone M. R. Camargo
- Institute of Physiology, Zurich Center of Integrative Human Physiology and NCCR Kidney.CH, University of Zurich, Zurich, Switzerland
| | - Brigitte Herzog
- Institute of Physiology, Zurich Center of Integrative Human Physiology and NCCR Kidney.CH, University of Zurich, Zurich, Switzerland
| | - François Verrey
- Institute of Physiology, Zurich Center of Integrative Human Physiology and NCCR Kidney.CH, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
29
|
Uchida M, Iwamoto C. Influence of amino acids on gastric adaptive relaxation (accommodation) in rats as evaluated with a barostat. J Smooth Muscle Res 2017; 52:56-65. [PMID: 27558952 PMCID: PMC5321853 DOI: 10.1540/jsmr.52.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: The present study aimed to evaluate the effects of selected straight alkyl chain,
hydroxylated chain and branched chain amino acids on gastric adaptive relaxation, as these
have previously been shown to have differing effects on gastric emptying. Materials and
Methods: Gastric adaptive relaxation was evaluated using a barostat in rats under urethane
anesthesia. The pressure within the balloon, introduced from the mouth to the stomach, was
changed stepwise from 1 to 8 mmHg. The increased volume just after the increase of balloon
pressure was defined as distension-induced gastric adaptive relaxation (accommodation).
Amino acids were administered orally or intravenously. Results: As compared with control
rats administered with distilled water, those rats that were orally administered amino
acids having straight alkyl chain and extra hydroxylated alkyl chain, such as glycine and
l-serine, had significantly enhanced gastric adaptive relaxation, but administration of
l-alanine and l-threonine did not. Branched chain amino acids, such as l-isoleucine,
l-leucine and l-valine, also did not significantly influence gastric adaptive relaxation.
Glycine and l-serine showed the same efficacy when administered intravenously. Conclusion:
Among the amino acids evaluated in the present study, glycine and l-serine significantly
enhanced gastric adaptive relaxation, suggesting that short alkyl chain amino acids may
enhance gastric adaptive relaxation as compared with the other amino acids. These findings
may suggest that glycine and l-serine would be useful in the therapy of functional
dyspepsia, especially for early satiety, because the dysfunction of adaptive relaxation is
one of the causes of early satiety.
Collapse
Affiliation(s)
- Masayuki Uchida
- Food Science Research Laboratories, Research and Development Division, Meiji Co., Ltd., Kanagawa, Japan
| | | |
Collapse
|
30
|
Uchida M, Kobayashi O, Saito C. Correlation Between Gastric Emptying and Gastric Adaptive Relaxation Influenced by Amino Acids. J Neurogastroenterol Motil 2017; 23:400-408. [PMID: 28335103 PMCID: PMC5503290 DOI: 10.5056/jnm16153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/04/2017] [Accepted: 01/15/2017] [Indexed: 02/01/2023] Open
Abstract
Background/Aims Amino acids have many physiological activities. We report the correlation between gastric emptying and gastric adaptive relaxation using tryptophan and amino acids with a straight alkyl chain, hydroxylated chain, and branched chain. Here we sought to further clarify the correlation between gastric emptying and gastric adaptive relaxation by using other amino acids. Methods In Sprague-Dawley rats, gastric emptying was evaluated by a breath test using [1-13C] acetic acid. The expired 13CO2 pattern, Tmax, Cmax, and AUC120min values were used as evaluation items. Gastric adaptive relaxation was evaluated in a barostat experiment. Individual amino acids (1 g/kg) were administered orally 30 minutes before each breath test or barostat test. Results L-phenylalanine and L-tyrosine did not influence gastric emptying. All other amino acids, ie, L-proline, L-histidine, L-cysteine, L-methionine, L-aspartic acid, L-glutamic acid, L-asparagine, L-arginine, L-glutamine, and L-lysine significantly delayed and inhibited gastric emptying. L-Cysteine and L-aspartic acid significantly enhanced and L-methionine and L-glutamine significantly inhibited gastric adaptive relaxation. L-Phenylalanine moved the balloon toward the antrum, suggesting strong contraction of the fundus. Tmax showed a significant positive correlation (r = 0.709), and Cmax and AUC120min each showed negative correlations (r = 0.613 and 0.667, respectively) with gastric adaptive relaxation. Conclusion From the above findings, it was found that a close correlation exists between gastric emptying and adaptive relaxation, suggesting that enhanced gastric adaptive relaxation inhibits gastric emptying.
Collapse
Affiliation(s)
- Masayuki Uchida
- Food Science Research Laboratories, Research and Development Division, Meiji Co, Ltd, Odawara, Kanagawa, Japan
| | - Orie Kobayashi
- Food Science Research Laboratories, Research and Development Division, Meiji Co, Ltd, Odawara, Kanagawa, Japan
| | - Chizuru Saito
- Food Science Research Laboratories, Research and Development Division, Meiji Co, Ltd, Odawara, Kanagawa, Japan
| |
Collapse
|
31
|
Alamshah A, Spreckley E, Norton M, Kinsey-Jones JS, Amin A, Ramgulam A, Cao Y, Johnson R, Saleh K, Akalestou E, Malik Z, Gonzalez-Abuin N, Jomard A, Amarsi R, Moolla A, Sargent PR, Gray GW, Bloom SR, Murphy KG. l-phenylalanine modulates gut hormone release and glucose tolerance, and suppresses food intake through the calcium-sensing receptor in rodents. Int J Obes (Lond) 2017; 41:1693-1701. [PMID: 28792489 PMCID: PMC5678004 DOI: 10.1038/ijo.2017.164] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 05/26/2017] [Accepted: 06/21/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE High-protein diets (HPDs) are associated with greater satiety and weight loss than diets rich in other macronutrients. The exact mechanisms by which HPDs exert their effects are unclear. However, evidence suggests that the sensing of amino acids produced as a result of protein digestion may have a role in appetite regulation and satiety. We investigated the effects of l-phenylalanine (L-Phe) on food intake and glucose homeostasis in rodents. METHODS We investigated the effects of the aromatic amino-acid and calcium-sensing receptor (CaSR) agonist l-phenylalanine (L-Phe) on food intake and the release of the gastrointestinal (GI) hormones peptide YY (PYY), glucagon-like peptide-1 (GLP-1) and ghrelin in rodents, and the role of the CaSR in mediating these effects in vitro and in vivo. We also examined the effect of oral l-Phe administration on glucose tolerance in rats. RESULTS Oral administration of l-Phe acutely reduced food intake in rats and mice, and chronically reduced food intake and body weight in diet-induced obese mice. Ileal l-Phe also reduced food intake in rats. l-Phe stimulated GLP-1 and PYY release, and reduced plasma ghrelin, and also stimulated insulin release and improved glucose tolerance in rats. Pharmacological blockade of the CaSR attenuated the anorectic effect of intra-ileal l-Phe in rats, and l-Phe-induced GLP-1 release from STC-1 and primary L cells was attenuated by CaSR blockade. CONCLUSIONS l-Phe reduced food intake, stimulated GLP-1 and PYY release, and reduced plasma ghrelin in rodents. Our data provide evidence that the anorectic effects of l-Phe are mediated via the CaSR, and suggest that l-Phe and the CaSR system in the GI tract may have therapeutic utility in the treatment of obesity and diabetes. Further work is required to determine the physiological role of the CaSR in protein sensing in the gut, and the role of this system in humans.
Collapse
Affiliation(s)
- A Alamshah
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - E Spreckley
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - M Norton
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - J S Kinsey-Jones
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - A Amin
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - A Ramgulam
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Y Cao
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - R Johnson
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - K Saleh
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - E Akalestou
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Z Malik
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - N Gonzalez-Abuin
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - A Jomard
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - R Amarsi
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - A Moolla
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | | | | | - S R Bloom
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - K G Murphy
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| |
Collapse
|
32
|
Okusha Y, Hirai Y, Maezawa H, Hisadome K, Inoue N, Yamazaki Y, Funahashi M. Effects of intraperitoneally administered L-histidine on food intake, taste, and visceral sensation in rats. J Physiol Sci 2017; 67:467-474. [PMID: 27535568 PMCID: PMC10717302 DOI: 10.1007/s12576-016-0476-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/31/2016] [Indexed: 01/21/2023]
Abstract
To evaluate relative factors for anorectic effects of L-histidine, we performed behavioral experiments for measuring food and fluid intake, conditioned taste aversion (CTA), taste disturbance, and c-Fos immunoreactive (Fos-ir) cells before and after i.p. injection with L-histidine in rats. Animals were injected with saline (9 ml/kg, i.p.) for a control group, and saline (9 ml/kg, i.p.) containing L-histidine (0.75, 1.5, 2.0 g/kg) for a L-histidine group. Injection of L-histidine decreased the average value of food intake, and statistically significant anorectic effects were found in animals injected with 1.5 or 2.0 g/kg L-histidine but not with 0.75 g/kg L-histidine. Taste abnormalities were not detected in any of the groups. Animals injected with 2.0 g/kg L-histidine were revealed to present with nausea by the measurement of CTA. In this group, a significant increase in the number of Fos-ir cells was detected both in the area postrema and the nucleus tractus solitarius (NTS). In the 0.75 g/kg L-histidine group, a significant increase in the number of Fos-ir cells was detected only in the NTS. When the ventral gastric branch vagotomy was performed, recovery from anorexia became faster than the sham-operated group, however, vagotomized rats injected with 2.0 g/kg L-histidine still acquired CTA. These data indicate that acute anorectic effects induced by highly concentrated L-histidine are partly caused by induction of nausea and/or visceral discomfort accompanied by neuronal activities in the NTS and the area postrema. We suggest that acute and potent effects of L-histidine on food intake require substantial amount of L-histidine in the diet.
Collapse
Affiliation(s)
- Yuka Okusha
- Department of Gerodontology, Division of Oral Health Science, Hokkaido University, Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
- Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Kita-ku, Shikata-cho, Okayama, 700-8525, Japan
- Department of Oral Physiology, Division of Oral Functional Sciences, Hokkaido University, Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| | - Yoshiyuki Hirai
- Department of Oral Physiology, Division of Oral Functional Sciences, Hokkaido University, Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| | - Hitoshi Maezawa
- Department of Oral Physiology, Division of Oral Functional Sciences, Hokkaido University, Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| | - Kazunari Hisadome
- Department of Oral Physiology, Division of Oral Functional Sciences, Hokkaido University, Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| | - Nobuo Inoue
- Department of Gerodontology, Division of Oral Health Science, Hokkaido University, Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| | - Yutaka Yamazaki
- Department of Gerodontology, Division of Oral Health Science, Hokkaido University, Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| | - Makoto Funahashi
- Department of Oral Physiology, Division of Oral Functional Sciences, Hokkaido University, Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan.
| |
Collapse
|
33
|
Ullrich SS, Fitzgerald PC, Nkamba I, Steinert RE, Horowitz M, Feinle-Bisset C. Intragastric Lysine Lowers the Circulating Glucose and Insulin Responses to a Mixed-Nutrient Drink without Slowing Gastric Emptying in Healthy Adults. J Nutr 2017; 147:1275-1281. [PMID: 28592515 DOI: 10.3945/jn.117.252213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/28/2017] [Accepted: 05/11/2017] [Indexed: 02/05/2023] Open
Abstract
Background: Lysine is reported to lower the glycemic response to oral glucose in humans and, albeit at high loads, to slow gastric emptying of glucose and decrease food intake in rats.Objective: We investigated the effects of intragastrically administered lysine on early (15 min) and later (60 min) blood glucose and insulin responses to and gastric emptying of a mixed-nutrient drink, and effects on subsequent energy intake.Methods: Twelve healthy volunteers (7 men and 5 women; mean ± SEM age: 24 ± 2 y) received intragastric infusions (200 mL) containing 5 or 10 g l-lysine or a control solution within 2 min on 3 different occasions in randomized order. Fifteen minutes later, participants consumed a mixed-nutrient drink (300 mL, 400 kcal, and 56 g carbohydrates) within 1 min. For the next hour (t = 0-60 min), we collected blood samples every 15 min (to measure blood glucose, plasma insulin, and plasma glucagon) and breath samples every 5 min (to measure gastric emptying via a 13C-acetate breath test). We then quantified subjects' energy intake from a buffet-style meal (t = 60-90 min).Results: There were no differences between the 2 lysine treatments; hence, data were pooled for further analysis. Lysine did not affect blood glucose at 15 min or the blood glucose area under the curve from 0 to 60 min (AUC0-60min) but it decreased blood glucose at 60 min compared with the control solution (-9.1% ± 3.1%, P < 0.01). Similarly, the early insulin response and insulin AUC0-60min were not affected by lysine, but plasma insulin at 60 min was 20.9% ± 5.6% lower than after the control (P < 0.05). Plasma glucagon at both 15 min (20.7% ± 4.7%, P < 0.001) and 60 min (14.1% ± 5.4%, P < 0.05) and the glucagon AUC0-60min (P < 0.01) were greater after lysine than after the control. Lysine did not slow gastric emptying, and there was no effect on energy intake.Conclusion: In healthy adults, lysine slightly reduced the glycemic response to an oral mixed-macronutrient drink, an effect that was apparently independent of insulin or slowing of gastric emptying. This trial was registered at www.anzctr.orgau as 12614000837628.
Collapse
Affiliation(s)
- Sina S Ullrich
- University of Adelaide Discipline of Medicine, Adelaide, Australia; and
- National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia
| | - Penelope Ce Fitzgerald
- University of Adelaide Discipline of Medicine, Adelaide, Australia; and
- National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia
| | - Iris Nkamba
- University of Adelaide Discipline of Medicine, Adelaide, Australia; and
| | - Robert E Steinert
- University of Adelaide Discipline of Medicine, Adelaide, Australia; and
- National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine, Adelaide, Australia; and
- National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine, Adelaide, Australia; and
- National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia
| |
Collapse
|
34
|
Role of the area postrema in the hypophagic effects of oleoylethanolamide. Pharmacol Res 2017; 122:20-34. [PMID: 28535974 DOI: 10.1016/j.phrs.2017.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/10/2017] [Accepted: 05/16/2017] [Indexed: 12/25/2022]
Abstract
The satiety-promoting action of oleoylethanolamide (OEA) has been associated to the indirect activation of selected brain areas, such as the nucleus of the solitary tract (NST) in the brainstem and the tuberomammillary (TMN) and paraventricular (PVN) nuclei in the hypothalamus, where noradrenergic, histaminergic and oxytocinergic neurons play a necessary role. Visceral ascending fibers were hypothesized to mediate such effects. However, our previous findings demonstrated that the hypophagic action of peripherally administered OEA does not require intact vagal afferents and is associated to a strong activation of the area postrema (AP). Therefore, we hypothesized that OEA may exert its central effects through the direct activation of this circumventricular organ. To test this hypothesis, we subjected rats to the surgical ablation of the AP (APX rats) and evaluated the effects of OEA (10mgkg-1 i.p.) on food intake, Fos expression, hypothalamic oxytocin (OXY) immunoreactivity and on the expression of dopamine beta hydroxylase (DBH) in the brainstem and hypothalamus. We found that the AP lesion completely prevented OEA's behavioral and neurochemical effects in the brainstem and the hypothalamus. Moreover OEA increased DBH expression in AP and NST neurons of SHAM rats while the effect in the NST was absent in APX rats, thus suggesting the possible involvement of noradrenergic AP neurons. These results support the hypothesis of a necessary role of the AP in mediating OEA's central effects that sustain its pro-satiety action.
Collapse
|
35
|
Whiting L, McCutcheon JE, Boyle CN, Roitman MF, Lutz TA. The area postrema (AP) and the parabrachial nucleus (PBN) are important sites for salmon calcitonin (sCT) to decrease evoked phasic dopamine release in the nucleus accumbens (NAc). Physiol Behav 2017; 176:9-16. [PMID: 28342771 DOI: 10.1016/j.physbeh.2017.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 12/26/2022]
Abstract
The pancreatic hormone amylin and its agonist salmon calcitonin (sCT) act via the area postrema (AP) and the lateral parabrachial nucleus (PBN) to reduce food intake. Investigations of amylin and sCT signaling in the ventral tegmental area (VTA) and nucleus accumbens (NAc) suggest that the eating inhibitory effect of amylin is, in part, mediated through the mesolimbic 'reward' pathway. Indeed, administration of the sCT directly to the VTA decreased phasic dopamine release (DA) in the NAc. However, it is not known if peripheral amylin modulates the mesolimbic system directly or whether this occurs via the AP and PBN. To determine whether and how peripheral amylin or sCT affect mesolimbic reward circuitry we utilized fast scan cyclic voltammetry under anesthesia to measure phasic DA release in the NAc evoked by electrical stimulation of the VTA in intact, AP lesioned and bilaterally PBN lesioned rats. Amylin (50μg/kg i.p.) did not change phasic DA responses compared to saline control rats. However, sCT (50μg/kg i.p.) decreased evoked DA release to VTA-stimulation over 1h compared to saline treated control rats. Further investigations determined that AP and bilateral PBN lesions abolished the ability of sCT to suppress evoked phasic DA responses to VTA-stimulation. These findings implicate the AP and the PBN as important sites for peripheral sCT to decrease evoked DA release in the NAc and suggest that these nuclei may influence hedonic and motivational processes to modulate food intake.
Collapse
Affiliation(s)
- Lynda Whiting
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - James E McCutcheon
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, England
| | - Christina N Boyle
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Centre of Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
36
|
Chacrabati R, Gong Z, Ikenoya C, Kondo D, Zigman JM, Sakai T, Sakata I. The effect of glutamate on ghrelin release in mice. Cell Biol Int 2017; 41:320-327. [DOI: 10.1002/cbin.10728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/30/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Rakhi Chacrabati
- Area of Regulatory Biology; Division of Life Science; Graduate School of Science and Engineering; Saitama University; 255 Shimo-ohkubo Sakuraku Saitama 338-8570 Japan
| | - Zhi Gong
- Area of Regulatory Biology; Division of Life Science; Graduate School of Science and Engineering; Saitama University; 255 Shimo-ohkubo Sakuraku Saitama 338-8570 Japan
| | - Chika Ikenoya
- Area of Regulatory Biology; Division of Life Science; Graduate School of Science and Engineering; Saitama University; 255 Shimo-ohkubo Sakuraku Saitama 338-8570 Japan
| | - Daisuke Kondo
- Area of Regulatory Biology; Division of Life Science; Graduate School of Science and Engineering; Saitama University; 255 Shimo-ohkubo Sakuraku Saitama 338-8570 Japan
| | - Jeffrey M. Zigman
- Departments of Internal Medicine (Divisions of Hypothalamic Research and Endocrinology & Metabolism) and Psychiatry; University of Texas Southwestern Medical Center; 5323 Harry Hines Blvd Dallas TX 75390-9077 USA
| | - Takafumi Sakai
- Area of Life-NanoBio, Division of Strategy, Graduate School of Science and Engineering; Saitama University; 255 Shimo-ohkubo Sakuraku Saitama 338-8570 Japan
| | - Ichiro Sakata
- Area of Regulatory Biology; Division of Life Science; Graduate School of Science and Engineering; Saitama University; 255 Shimo-ohkubo Sakuraku Saitama 338-8570 Japan
| |
Collapse
|
37
|
Uchida M, Kobayashi O, Iwasawa K, Shimizu K. Effects of straight alkyl chain, extra hydroxylated alkyl chain and branched chain amino acids on gastric emptying evaluated using a non-invasive breath test in conscious rats. J Smooth Muscle Res 2016; 52:36-44. [PMID: 27169776 PMCID: PMC5137309 DOI: 10.1540/jsmr.52.36] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: Some amino acids been known to influence gastric emptying. Thus we have evaluated
the effects of straight alkyl chain, extra hydroxylated alkyl chain and branched chain
amino acids on gastric emptying. Materials and Methods: Gastric emptying was evaluated in
rats after feeding with Racol (nutrient formulae) containing [1-13C] acetic
acid. Using a breath test, the content of 13CO2 in their expired air
was measured by infrared analyzers. Rats were orally administered with test amino acids,
while control rats were administered orally with distilled water. Results: The expired
13CO2 content in the expired air increased with time, peaked after
about 30 min and decreased thereafter. Among the amino acids having an alkyl chain,
l-serine, l-alanine and l-glycine, significantly decreased the
13CO2 content and Cmax, and delayed Tmax, suggesting inhibition
and delay of gastric emptying. AUC120 min values of l-alanine and l-glycine also decreased significantly.
l-Threonine significantly decreased
13CO2 content and delayed Tmax, but had no influence on Cmax and
AUC120 min values, suggesting a delay of gastric emptying. l-Isoleucine and l-leucine and l-valine significantly decreased 13CO2 content,
suggesting inhibition of the gastric emptying, but Cmax, Tmax and AUC120 min
values were not significantly affected. Conclusion: The results show that the amino acids
used in the present study had different effects on gastric emptying. Moreover, it was
found that inhibition and delay of gastric emptying were clearly classifiable by analyzing
the change in 13CO2 content of the expired air and the Cmax, Tmax
and AUC120 min values.
Collapse
Affiliation(s)
- Masayuki Uchida
- Food Science Research Laboratories, Research and Development Division, Meiji Co., Ltd., Kanagawa, Japan
| | | | | | | |
Collapse
|
38
|
Jia Y, Ling M, Zhang L, Jiang S, Sha Y, Zhao R. Downregulation of miR-150 Expression by DNA Hypermethylation Is Associated with High 2-Hydroxy-(4-methylthio)butanoic Acid-Induced Hepatic Cholesterol Accumulation in Nursery Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7530-7539. [PMID: 27648945 DOI: 10.1021/acs.jafc.6b03615] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Excess 2-hydroxy-(4-methylthio)butanoic acid (HMB) supplementation induces hyperhomocysteinemia, which contributes to hepatic cholesterol accumulation. However, it is unclear whether and how high levels of HMB break hepatic cholesterol homeostasis in nursery piglets. In this study, HMB oversupplementation suppressed food intake and decreased body weight in nursery piglets. Hyperhomocysteinemia and higher hepatic cholesterol accumulation were observed in HMB groups. Accordingly, HMB significantly increased the protein content of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and glycine N-methyltransferase (GNMT) but decreased that of acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1). Significant downregulation of miR-150, miR-181d-5p, and miR-296-3p targeting the 3'-untranslated regions (UTRs) of GNMT and HMGCR was detected in the liver of HMB-treated piglets, and their functional validation was confirmed by dual-luciferase reporter assay. Furthermore, hypermethylation of miR-150 promoter was detected in association with suppressed miR-150 expression in the livers of HMB-treated piglets. This study indicated a new mechanism of hepatic cholesterol unhomeostasis by dietary methyl donor supplementation.
Collapse
Affiliation(s)
- Yimin Jia
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Mingfa Ling
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Luchu Zhang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Shuxia Jiang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Yusheng Sha
- China Feed Industry Association, Ministry of Agriculture , Peking 100125, People's Republic of China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| |
Collapse
|
39
|
Mycoprotein reduces energy intake and postprandial insulin release without altering glucagon-like peptide-1 and peptide tyrosine-tyrosine concentrations in healthy overweight and obese adults: a randomised-controlled trial. Br J Nutr 2016; 116:360-74. [PMID: 27198187 PMCID: PMC4910676 DOI: 10.1017/s0007114516001872] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dietary mycoprotein decreases energy intake in lean individuals. The effects in overweight individuals are unclear, and the mechanisms remain to be elucidated. This study aimed to investigate the effect of mycoprotein on energy intake, appetite regulation, and the metabolic phenotype in overweight and obese volunteers. In two randomised-controlled trials, fifty-five volunteers (age: 31 (95 % CI 27, 35) years), BMI: 28·0 (95 % CI 27·3, 28·7) kg/m2) consumed a test meal containing low (44 g), medium (88 g) or high (132 g) mycoprotein or isoenergetic chicken meals. Visual analogue scales and blood samples were collected to measure appetite, glucose, insulin, peptide tyrosine-tyrosine (PYY) and glucagon-like peptide-1 (GLP-1). Ad libitum energy intake was assessed after 3 h in part A (n 36). Gastric emptying by the paracetamol method, resting energy expenditure and substrate oxidation were recorded in part B (n 14). Metabonomics was used to compare plasma and urine samples in response to the test meals. Mycoprotein reduced energy intake by 10 % (280 kJ (67 kcal)) compared with chicken at the high content (P=0·009). All mycoprotein meals reduced insulin concentrations compared with chicken (incremental AUClow (IAUClow): -8 %, IAUCmedium: -12 %, IAUChigh: -21 %, P=0·004). There was no significant difference in glucose, PYY, GLP-1, gastric emptying rate and energy expenditure. Following chicken intake, paracetamol-glucuronide was positively associated with fullness. After mycoprotein, creatinine and the deamination product of isoleucine, α-keto-β-methyl-N-valerate, were inversely related to fullness, whereas the ketone body, β-hydroxybutyrate, was positively associated. In conclusion, mycoprotein reduces energy intake and insulin release in overweight volunteers. The mechanism does not involve changes in PYY and GLP-1. The metabonomics analysis may bring new understanding to the appetite regulatory properties of food.
Collapse
|
40
|
Alamshah A, McGavigan AK, Spreckley E, Kinsey-Jones JS, Amin A, Tough IR, O'Hara HC, Moolla A, Banks K, France R, Hyberg G, Norton M, Cheong W, Lehmann A, Bloom SR, Cox HM, Murphy KG. L-arginine promotes gut hormone release and reduces food intake in rodents. Diabetes Obes Metab 2016; 18:508-18. [PMID: 26863991 PMCID: PMC4982043 DOI: 10.1111/dom.12644] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/31/2016] [Accepted: 02/07/2016] [Indexed: 12/14/2022]
Abstract
AIMS To investigate the anorectic effect of L-arginine (L-Arg) in rodents. METHODS We investigated the effects of L-Arg on food intake, and the role of the anorectic gut hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), the G-protein-coupled receptor family C group 6 member A (GPRC6A) and the vagus nerve in mediating these effects in rodents. RESULTS Oral gavage of L-Arg reduced food intake in rodents, and chronically reduced cumulative food intake in diet-induced obese mice. Lack of the GPRC6A in mice and subdiaphragmatic vagal deafferentation in rats did not influence these anorectic effects. L-Arg stimulated GLP-1 and PYY release in vitro and in vivo. Pharmacological blockade of GLP-1 and PYY receptors did not influence the anorectic effect of L-Arg. L-Arg-mediated PYY release modulated net ion transport across the gut mucosa. Intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) administration of L-Arg suppressed food intake in rats. CONCLUSIONS L-Arg reduced food intake and stimulated gut hormone release in rodents. The anorectic effect of L-Arg is unlikely to be mediated by GLP-1 and PYY, does not require GPRC6A signalling and is not mediated via the vagus. I.c.v. and i.p. administration of L-Arg suppressed food intake in rats, suggesting that L-Arg may act on the brain to influence food intake. Further work is required to determine the mechanisms by which L-Arg suppresses food intake and its utility in the treatment of obesity.
Collapse
MESH Headings
- Animals
- Appetite Depressants/administration & dosage
- Appetite Depressants/adverse effects
- Appetite Depressants/pharmacology
- Appetite Depressants/therapeutic use
- Arginine/administration & dosage
- Arginine/adverse effects
- Arginine/therapeutic use
- Cells, Cultured
- Dietary Supplements/adverse effects
- Energy Intake/drug effects
- Energy Metabolism/drug effects
- Gastrointestinal Agents/administration & dosage
- Gastrointestinal Agents/adverse effects
- Gastrointestinal Agents/pharmacology
- Gastrointestinal Agents/therapeutic use
- Glucagon-Like Peptide 1/agonists
- Glucagon-Like Peptide 1/blood
- Glucagon-Like Peptide 1/metabolism
- In Vitro Techniques
- Injections, Intraperitoneal
- Injections, Intraventricular
- Intestinal Mucosa/cytology
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Obesity/diet therapy
- Obesity/drug therapy
- Obesity/metabolism
- Obesity/pathology
- Peptide YY/agonists
- Peptide YY/blood
- Peptide YY/metabolism
- Random Allocation
- Rats, Wistar
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Weight Loss/drug effects
Collapse
Affiliation(s)
- A Alamshah
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - A K McGavigan
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - E Spreckley
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - J S Kinsey-Jones
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - A Amin
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - I R Tough
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - H C O'Hara
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - A Moolla
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - K Banks
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - R France
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - G Hyberg
- AstraZeneca R&D, Mölndal, Sweden
| | - M Norton
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - W Cheong
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - A Lehmann
- AstraZeneca R&D, Mölndal, Sweden
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - S R Bloom
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - H M Cox
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - K G Murphy
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
41
|
Abstract
Dietary restriction (DR), a moderate reduction in food intake, improves health during aging and extends life span across multiple species. Specific nutrients, rather than overall calories, mediate the effects of DR, with protein and specific amino acids (AAs) playing a key role. Modulations of single dietary AAs affect traits including growth, reproduction, physiology, health, and longevity in animals. Epidemiological data in humans also link the quality and quantity of dietary proteins to long-term health. Intricate nutrient-sensing pathways fine tune the metabolic responses to dietary AAs in a highly conserved manner. In turn, these metabolic responses can affect the onset of insulin resistance, obesity, neurodegenerative disease, and other age-related diseases. In this review we discuss how AA requirements are shaped and how ingested AAs regulate a spectrum of homeostatic processes. Finally, we highlight the resulting opportunity to develop nutritional strategies to improve human health during aging.
Collapse
Affiliation(s)
- George A Soultoukis
- Max Planck Institute for Biology of Ageing, Department of Biological Mechanisms of Ageing, Cologne 50931, Germany; ,
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Department of Biological Mechanisms of Ageing, Cologne 50931, Germany; , .,Institute of Healthy Ageing and Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
42
|
Hypotensive effect of S-adenosyl-L-methionine in hypertensive rats is reduced by autonomic ganglia and KATP channel blockers. Amino Acids 2016; 48:1581-90. [PMID: 27108137 DOI: 10.1007/s00726-016-2213-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/08/2016] [Indexed: 12/12/2022]
Abstract
S-adenosyl-L-methionine (SAM) is an amino acid involved in a number of physiological processes in the nervous system. Some evidence suggests a therapeutic potential of SAM in hypertension. In this study we investigated the effect of intracerebroventricular (ICV) infusions of SAM on arterial blood pressure in rats. Mean arterial blood pressure (MABP) and heart rate (HR) were measured at baseline and during ICV infusion of either SAM or vehicle (aCSF; controls) in conscious, male normotensive Wistar Kyoto rats (WKY) and Spontaneously Hypertensive Rats (SHR). MABP and HR were not affected by the vehicle. WKY rats infused with SAM (10 μM, 100 μM and 1 mM) showed a biphasic hemodynamic response i.e., mild hypotension and bradycardia followed by a significant increase in MABP and HR. On the contrary, SHR infused with SAM showed a dose-dependent hypotensive response. In separate series of experiments, pretreatment with hexamethonium, a ganglionic blocker as well as pretreatment with glibenclamide, a KATP channel blocker reduced the hemodynamic effects of SAM. SAM may affect the nervous control of arterial blood pressure via the autonomic nervous system and KATP channel-dependent mechanisms.
Collapse
|
43
|
Martineau R, Ouellet D, Kebreab E, Lapierre H. Casein infusion rate influences feed intake differently depending on metabolizable protein balance in dairy cows: A multilevel meta-analysis. J Dairy Sci 2016; 99:2748-2761. [DOI: 10.3168/jds.2015-10427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/18/2015] [Indexed: 01/08/2023]
|
44
|
Fromentin G, Darcel N, Chaumontet C, Even P, Tomé D, Gaudichon C. Control of Food Intake by Dietary Amino Acids and Proteins. THE MOLECULAR NUTRITION OF AMINO ACIDS AND PROTEINS 2016:221-232. [DOI: 10.1016/b978-0-12-802167-5.00016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
45
|
Yin J, Ren W, Yang G, Duan J, Huang X, Fang R, Li C, Li T, Yin Y, Hou Y, Kim SW, Wu G. L-Cysteine metabolism and its nutritional implications. Mol Nutr Food Res 2016; 60:134-146. [PMID: 25929483 DOI: 10.1002/mnfr.201500031] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/08/2015] [Accepted: 04/23/2015] [Indexed: 01/17/2023]
Abstract
L-Cysteine is a nutritionally semiessential amino acid and is present mainly in the form of L-cystine in the extracellular space. With the help of a transport system, extracellular L-cystine crosses the plasma membrane and is reduced to L-cysteine within cells by thioredoxin and reduced glutathione (GSH). Intracellular L-cysteine plays an important role in cellular homeostasis as a precursor for protein synthesis, and for production of GSH, hydrogen sulfide (H(2)S), and taurine. L-Cysteine-dependent synthesis of GSH has been investigated in many pathological conditions, while the pathway for L-cysteine metabolism to form H(2)S has received little attention with regard to prevention and treatment of disease in humans. The main objective of this review is to highlight the metabolic pathways of L-cysteine catabolism to GSH, H(2)S, and taurine, with special emphasis on therapeutic and nutritional use of L-cysteine to improve the health and well-being of animals and humans.
Collapse
Affiliation(s)
- Jie Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenkai Ren
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guan Yang
- Department of Animal Science, University of Florida, Gainesville, FL, USA
| | - Jielin Duan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingguo Huang
- Department of Animal Science, Hunan Agriculture University, Changsha, China
| | - Rejun Fang
- Department of Animal Science, Hunan Agriculture University, Changsha, China
| | - Chongyong Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Tiejun Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yulong Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Yongqing Hou
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Guoyao Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
46
|
Tran PV, Chowdhury VS, Do PH, Bahry MA, Yang H, Furuse M. L-Ornithine is a potential acute satiety signal in the brain of neonatal chicks. Physiol Behav 2015; 155:141-8. [PMID: 26687893 DOI: 10.1016/j.physbeh.2015.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/04/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
Abstract
Recently, we observed that neonatal chicks exhibit feeding behavior characterized by frequent food intake and short resting intervals, with changes detected in the brain amino acid and monoamine concentrations. In this study, we aimed to clarify further the relationship between the appetite of neonatal chicks and brain amino acid metabolism. In Experiment 1, changes were investigated in free amino acids in the brain under conditions of regulated appetite induced by fasting and subsequent short-term re-feeding. Chicks (5 days old) were distributed into four treatment groups--namely, fasting for 3h, and fasting for 3h followed by re-feeding for 10, 20 or 30 min. Brain samples were collected after treatment to analyze free amino acid concentrations. Amino adipic acid and proline in all brain parts as well as arginine and ornithine in all brain parts--except mesencephalic arginine and cerebellar ornithine--were increased in a time-dependent manner following re-feeding. In Experiment 2, we further examined the effect of exogenous administration of some amino acids altered in association with feeding behavior in Experiment 1. We chose L-arginine and its functional metabolite, L-ornithine, to analyze their effects on food intake in chicks. Intracerebroventricular injection (2 μmol) of L-ornithine, but not L-arginine, significantly inhibited food intake in neonatal chicks. In Experiment 3, we found that central injection of L-ornithine (2, 4, and 6 μmol) dose-dependently suppressed food intake in chicks. These results suggested that L-ornithine may have an important role in the control of food intake as an acute satiety signal in the neonatal chick brain.
Collapse
Affiliation(s)
- Phuong V Tran
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Vishwajit S Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Phong H Do
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Mohammad A Bahry
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Hui Yang
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan.
| |
Collapse
|
47
|
Chemosensory signalling pathways involved in sensing of amino acids by the ghrelin cell. Sci Rep 2015; 5:15725. [PMID: 26510380 PMCID: PMC4625164 DOI: 10.1038/srep15725] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/01/2015] [Indexed: 01/06/2023] Open
Abstract
Taste receptors on enteroendocrine cells sense nutrients and transmit signals that control gut hormone release. This study aimed to investigate the amino acid (AA) sensing mechanisms of the ghrelin cell in a gastric ghrelinoma cell line, tissue segments and mice. Peptone and specific classes of amino acids stimulate ghrelin secretion in the ghrelinoma cell line. Sensing of L-Phe occurs via the CaSR, monosodium glutamate via the TAS1R1-TAS1R3 while L-Ala and peptone act via 2 different amino acid taste receptors: CaSR &TAS1R1-TAS1R3 and CaSR &GPRC6A, respectively. The stimulatory effect of peptone on ghrelin release was mimicked ex vivo in gastric but not in jejunal tissue segments, where peptone inhibited ghrelin release. The latter effect could not be blocked by receptor antagonists for CCK, GLP-1 or somatostatin. In vivo, plasma ghrelin levels were reduced both upon intragastric (peptone or L-Phe) or intravenous (L-Phe) administration, indicating that AA- sensing is not polarized and is due to inhibition of ghrelin release from the stomach or duodenum respectively. In conclusion, functional AA taste receptors regulate AA-induced ghrelin release in vitro. The effects differ between stomach and jejunum but these local nutrient sensing mechanisms are overruled in vivo by indirect mechanisms inhibiting ghrelin release.
Collapse
|
48
|
Leib DE, Knight ZA. Re-examination of Dietary Amino Acid Sensing Reveals a GCN2-Independent Mechanism. Cell Rep 2015; 13:1081-1089. [PMID: 26526991 PMCID: PMC4836942 DOI: 10.1016/j.celrep.2015.09.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/16/2015] [Accepted: 09/18/2015] [Indexed: 12/02/2022] Open
Abstract
Animals cannot synthesize nine essential amino acids (EAAs) and must therefore obtain them from food. Mice reportedly reject food lacking a single EAA within the first hour of feeding. This remarkable phenomenon is proposed to involve post-ingestive sensing of amino acid imbalance by the protein kinase GCN2 in the brain. Here, we systematically re-examine dietary amino acid sensing in mice. In contrast to previous results, we find that mice cannot rapidly identify threonine- or leucine-deficient food in common feeding paradigms. However, mice attain the ability to identify EAA-deficient food following 2 days of EAA deprivation, suggesting a requirement for physiologic need. In addition, we report that mice can rapidly identify lysine-deficient food without prior EAA deficit, revealing a distinct sensing mechanism for this amino acid. These behaviors are independent of the proposed amino acid sensor GCN2, pointing to the existence of an undescribed mechanism for rapid sensing of dietary EAAs.
Collapse
Affiliation(s)
- David E Leib
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
49
|
Jordi J, Guggiana-Nilo D, Soucy E, Song EY, Lei Wee C, Engert F. A high-throughput assay for quantifying appetite and digestive dynamics. Am J Physiol Regul Integr Comp Physiol 2015; 309:R345-57. [PMID: 26108871 DOI: 10.1152/ajpregu.00225.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/16/2015] [Indexed: 01/23/2023]
Abstract
Food intake and digestion are vital functions, and their dysregulation is fundamental for many human diseases. Current methods do not support their dynamic quantification on large scales in unrestrained vertebrates. Here, we combine an infrared macroscope with fluorescently labeled food to quantify feeding behavior and intestinal nutrient metabolism with high temporal resolution, sensitivity, and throughput in naturally behaving zebrafish larvae. Using this method and rate-based modeling, we demonstrate that zebrafish larvae match nutrient intake to their bodily demand and that larvae adjust their digestion rate, according to the ingested meal size. Such adaptive feedback mechanisms make this model system amenable to identify potential chemical modulators. As proof of concept, we demonstrate that nicotine, l-lysine, ghrelin, and insulin have analogous impact on food intake as in mammals. Consequently, the method presented here will promote large-scale translational research of food intake and digestive function in a naturally behaving vertebrate.
Collapse
Affiliation(s)
- Josua Jordi
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts; and
| | - Drago Guggiana-Nilo
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts; and Committee for Higher Degrees in Biophysics, Harvard University, Cambridge, Massachusetts
| | - Edward Soucy
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts; and
| | - Erin Yue Song
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts; and
| | - Caroline Lei Wee
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts; and
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts; and
| |
Collapse
|
50
|
Kinsey-Jones JS, Alamshah A, McGavigan AK, Spreckley E, Banks K, Cereceda Monteoliva N, Norton M, Bewick GA, Murphy KG. GPRC6a is not required for the effects of a high-protein diet on body weight in mice. Obesity (Silver Spring) 2015; 23:1194-200. [PMID: 25958858 PMCID: PMC4692088 DOI: 10.1002/oby.21083] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/19/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The G-protein coupled receptor family C group 6 member A (GPRC6A) is activated by proteinogenic amino acids and may sense amino acids in the gastrointestinal tract and the brain. The study investigated whether GPRC6A was necessary for the effects of low- and high-protein diets on body weight and food intake in mice. METHODS The role of GPRC6A in mediating the effects of a low-protein diet on body weight was investigated in GPRC6a knockout (GPRC6a-KO) and wild-type (WT) mice fed a control diet (18% protein) or a low-protein diet (6% protein) for 9 days. The role of GPRC6A in mediating the effects of a high-protein diet on body weight was investigated in GPRC6a-KO and WT mice fed a control diet (18% protein) or a high-protein diet (50% protein) for 5 weeks. RESULTS A high-protein diet reduced body weight gain and food intake compared with a control diet in both WT and GPRC6a-KO mice. A low-protein diet decreased body weight gain in GPRC6a-KO mice. CONCLUSIONS GPRC6A was not necessary for the effects of a low- or high-protein diet on body weight and likely does not play a role in protein-induced satiety.
Collapse
Affiliation(s)
- James S Kinsey-Jones
- Section of Investigative Medicine, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Amin Alamshah
- Section of Investigative Medicine, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Anne K McGavigan
- Section of Investigative Medicine, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Eleanor Spreckley
- Section of Investigative Medicine, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Katherine Banks
- Section of Investigative Medicine, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Nicholas Cereceda Monteoliva
- Section of Investigative Medicine, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Mariana Norton
- Section of Investigative Medicine, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Gavin A Bewick
- Section of Investigative Medicine, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
- Division of Diabetes and Nutritional Sciences, King's College London, Guy's Campus, London, UK
| | - Kevin G Murphy
- Section of Investigative Medicine, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|