1
|
Procyk CA, Melati A, Ribeiro J, Liu J, Branch MJ, Delicata JD, Tariq M, Kalarygrou AA, Kapadia J, Khorsani MM, West EL, Smith AJ, Gonzalez-Cordero A, Ali RR, Pearson RA. Human cone photoreceptor transplantation stimulates remodeling and restores function in AIPL1 model of end-stage Leber congenital amaurosis. Stem Cell Reports 2025; 20:102470. [PMID: 40154478 PMCID: PMC12069896 DOI: 10.1016/j.stemcr.2025.102470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 04/01/2025] Open
Abstract
Photoreceptor degeneration is a leading cause of untreatable sight loss. Previously, we showed that human pluripotent stem cell-derived cone photoreceptors (hCones) can rescue retinal function in the Rd1 mouse model of rod-cone dystrophy. However, retinal degenerations display markedly different severities and concomitant remodeling of the remaining retina; for photoreceptor replacement therapy to be broadly effective, it must work for a variety of disease phenotypes. Here, we sought to rescue the Aipl1-/- model of Leber congenital amaurosis, a particularly fast, severe condition. After transplantation of hCones, host cone bipolar cells underwent extensive remodeling and formed nascent synaptic-like connections. Electrophysiological recordings showed robust rescue of light-evoked activity across visually relevant photopic intensities, and treated mice exhibited visually evoked optokinetic head-tracking behavior. Thus, human cone photoreceptor replacement therapy is feasible even in very severe cases of retinal dystrophy, offering promise as a disease-agnostic therapy in Leber congenital amaurosis (LCA) and in other advanced retinal degenerations.
Collapse
Affiliation(s)
- Christopher A Procyk
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Anna Melati
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Joana Ribeiro
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Jingshu Liu
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Matthew J Branch
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Jamie D Delicata
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Menahil Tariq
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Aikaterini A Kalarygrou
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Jessica Kapadia
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Majid Moshtagh Khorsani
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Emma L West
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Alexander J Smith
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Anai Gonzalez-Cordero
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Robin R Ali
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Rachael A Pearson
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK.
| |
Collapse
|
2
|
Barta CL, Thoreson WB. Retinal inputs that drive optomotor responses of mice under mesopic conditions. IBRO Neurosci Rep 2024; 17:138-144. [PMID: 39170059 PMCID: PMC11338136 DOI: 10.1016/j.ibneur.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 08/23/2024] Open
Abstract
Optomotor responses are a popular way to assess sub-cortical visual responses in mice. We studied photoreceptor inputs into optomotor circuits using genetically-modified mice lacking the exocytotic calcium sensors synaptotagmin 1 (Syt1) and 7 (Syt7) in rods or cones. We also tested mice that in which cone transducin, GNAT2, had been eliminated. We studied spatial frequency sensitivity under mesopic conditions by varying the spatial frequency of a grating rotating at 12 deg/s and contrast sensitivity by varying luminance contrast of 0.2c/deg gratings. We found that eliminating Syt1 from rods reduced responses to a low spatial frequency grating (0.05c/deg) consistent with low resolution in this pathway. Conversely, eliminating the ability of cones to respond to light (by eliminating GNAT2) or transmit light responses (by selectively eliminating Syt1) showed weaker responses to a high spatial frequency grating (3c/deg). Eliminating Syt7 from the entire optomotor pathway in a global knockout had no significant effect on optomotor responses. We isolated the secondary rod pathway involving transmission of rod responses to cones via gap junctions by simultaneously eliminating Syt1 from rods and GNAT2 from cones. We found that the secondary rod pathway is sufficient to drive robust optomotor responses under mesopic conditions. Finally, eliminating Syt1 from both rods and cones almost completely abolished optomotor responses, but we detected weak responses to large, bright rotating gratings that are likely driven by input from intrinsically photosensitive retinal ganglion cells.
Collapse
Affiliation(s)
- CL Barta
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA
| | - WB Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
3
|
Lee T, Weinberg-Wolf H, Zapadka TE, Rudenko A, Demb JB, Kim IJ. Specific retinal neurons regulate context-dependent defensive responses to visual threat. PNAS NEXUS 2024; 3:pgae423. [PMID: 39359403 PMCID: PMC11443969 DOI: 10.1093/pnasnexus/pgae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
While encountering a visual threat, an animal assesses multiple factors to choose an appropriate defensive strategy. For example, when a rodent detects a looming aerial predator, its behavioral response can be influenced by a specific environmental context, such as the availability of a shelter. Indeed, rodents typically escape from a looming stimulus when a shelter is present; otherwise, they typically freeze. Here we report that context-dependent behavioral responses can be initiated at the earliest stage of the visual system by distinct types of retinal ganglion cells (RGCs), the retina's output neurons. Using genetically defined cell ablation in mature mice, we discovered that some RGC types were necessary for either escaping (alpha RGCs) or freezing (intrinsically photosensitive RGCs) in response to a looming stimulus but not for both behaviors; whereas other RGC types were not required for either behavior (direction-selective RGCs preferring vertical motion). Altogether, our results suggest that specific RGC types regulate distinct behavioral responses elicited by the same threatening stimulus depending on contextual signals in the environment. These findings emphasize the unique contribution of early visual pathways to evolutionally conserved behavioral reactions.
Collapse
Affiliation(s)
- Tracy Lee
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Hannah Weinberg-Wolf
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Thomas E Zapadka
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Andrii Rudenko
- Department of Biology, Graduate Programs in Biology and Biochemistry, City College and City University of New York, New York, NY 10031, USA
| | - Jonathan B Demb
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06511, USA
| | - In-Jung Kim
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
4
|
Fitzpatrick MJ, Krizan J, Hsiang JC, Shen N, Kerschensteiner D. A pupillary contrast response in mice and humans: Neural mechanisms and visual functions. Neuron 2024; 112:2404-2422.e9. [PMID: 38697114 PMCID: PMC11257825 DOI: 10.1016/j.neuron.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/21/2023] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
In the pupillary light response (PLR), increases in ambient light constrict the pupil to dampen increases in retinal illuminance. Here, we report that the pupillary reflex arc implements a second input-output transformation; it senses temporal contrast to enhance spatial contrast in the retinal image and increase visual acuity. The pupillary contrast response (PCoR) is driven by rod photoreceptors via type 6 bipolar cells and M1 ganglion cells. Temporal contrast is transformed into sustained pupil constriction by the M1's conversion of excitatory input into spike output. Computational modeling explains how the PCoR shapes retinal images. Pupil constriction improves acuity in gaze stabilization and predation in mice. Humans exhibit a PCoR with similar tuning properties to mice, which interacts with eye movements to optimize the statistics of the visual input for retinal encoding. Thus, we uncover a conserved component of active vision, its cell-type-specific pathway, computational mechanisms, and optical and behavioral significance.
Collapse
Affiliation(s)
- Michael J Fitzpatrick
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jenna Krizan
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jen-Chun Hsiang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Ning Shen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
5
|
Gaire BP, Koronyo Y, Fuchs DT, Shi H, Rentsendorj A, Danziger R, Vit JP, Mirzaei N, Doustar J, Sheyn J, Hampel H, Vergallo A, Davis MR, Jallow O, Baldacci F, Verdooner SR, Barron E, Mirzaei M, Gupta VK, Graham SL, Tayebi M, Carare RO, Sadun AA, Miller CA, Dumitrascu OM, Lahiri S, Gao L, Black KL, Koronyo-Hamaoui M. Alzheimer's disease pathophysiology in the Retina. Prog Retin Eye Res 2024; 101:101273. [PMID: 38759947 PMCID: PMC11285518 DOI: 10.1016/j.preteyeres.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
The retina is an emerging CNS target for potential noninvasive diagnosis and tracking of Alzheimer's disease (AD). Studies have identified the pathological hallmarks of AD, including amyloid β-protein (Aβ) deposits and abnormal tau protein isoforms, in the retinas of AD patients and animal models. Moreover, structural and functional vascular abnormalities such as reduced blood flow, vascular Aβ deposition, and blood-retinal barrier damage, along with inflammation and neurodegeneration, have been described in retinas of patients with mild cognitive impairment and AD dementia. Histological, biochemical, and clinical studies have demonstrated that the nature and severity of AD pathologies in the retina and brain correspond. Proteomics analysis revealed a similar pattern of dysregulated proteins and biological pathways in the retina and brain of AD patients, with enhanced inflammatory and neurodegenerative processes, impaired oxidative-phosphorylation, and mitochondrial dysfunction. Notably, investigational imaging technologies can now detect AD-specific amyloid deposits, as well as vasculopathy and neurodegeneration in the retina of living AD patients, suggesting alterations at different disease stages and links to brain pathology. Current and exploratory ophthalmic imaging modalities, such as optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy, and hyperspectral imaging, may offer promise in the clinical assessment of AD. However, further research is needed to deepen our understanding of AD's impact on the retina and its progression. To advance this field, future studies require replication in larger and diverse cohorts with confirmed AD biomarkers and standardized retinal imaging techniques. This will validate potential retinal biomarkers for AD, aiding in early screening and monitoring.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ron Danziger
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jean-Philippe Vit
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jonah Doustar
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ousman Jallow
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Filippo Baldacci
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | | | - Ernesto Barron
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia; Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Roxana O Carare
- Department of Clinical Neuroanatomy, University of Southampton, Southampton, UK
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Carol A Miller
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Shouri Lahiri
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Liang Gao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Chang KW, Wang X, Wong KY, Xu G. Label-free photoacoustic computed tomography of visually evoked responses in the primary visual cortex and four subcortical retinorecipient nuclei of anesthetized mice. NEUROPHOTONICS 2024; 11:035005. [PMID: 39081284 PMCID: PMC11286379 DOI: 10.1117/1.nph.11.3.035005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Significance Many techniques exist for screening retinal phenotypes in mouse models in vision research, but significant challenges remain for efficiently probing higher visual centers of the brain. Photoacoustic computed tomography (PACT), with optical sensitivity to hemodynamic response (HR) in brain and ultrasound resolution, provides unique advantages in comprehensively assessing higher visual function in the mouse brain. Aim We aim to examine the reliability of PACT in the functional phenotyping of mouse models for vision research. Approach A PACT-ultrasound (US) parallel imaging system was established with a one-dimensional (1D) US transducer array and a tunable laser. Imaging was performed at three coronal planes of the brain, covering the primary visual cortex and the four subcortical nuclei, including the superior colliculus, the dorsal lateral geniculate nucleus, the suprachiasmatic nucleus, and the olivary pretectal nucleus. The visual-evoked HR was isolated from background signals using an impulse-based data processing protocol. rd1 mice with rod/cone degeneration, melanopsin-knockout (mel-KO) mice with photoreceptive ganglion cells that lack intrinsic photosensitivity, and wild-type mice as controls were imaged. The quantitative characteristics of the visual-evoked HR were compared. Results Quantitative analysis of the HRs shows significant differences among the three mouse strains: (1) rd1 mice showed both smaller and slower responses compared with wild type ( n = 10,10 , p < 0.01 ) and (2) mel-KO mice had lower amplitude but not significantly delayed photoresponses than wild-type mice ( n = 10,10 , p < 0.01 ). These results agree with the known visual deficits of the mouse strains. Conclusions PACT demonstrated sufficient sensitivity to detecting post-retinal functional deficits.
Collapse
Affiliation(s)
- Kai-Wei Chang
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, Michigan, United States
| | - Xueding Wang
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, Michigan, United States
- University of Michigan, Department of Radiology, Ann Arbor, Michigan, United States
| | - Kwoon Y. Wong
- University of Michigan, Department of Ophthalmology and Visual Sciences, Ann Arbor, Michigan, United States
- University of Michigan, Department of Molecular, Cellular and Developmental Biology, Ann Arbor, Michigan, United States
| | - Guan Xu
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, Michigan, United States
- University of Michigan, Department of Ophthalmology and Visual Sciences, Ann Arbor, Michigan, United States
| |
Collapse
|
7
|
Contreras E, Liang C, Mahoney HL, Javier JL, Luce ML, Labastida Medina K, Bozza T, Schmidt TM. Flp-recombinase mouse line for genetic manipulation of ipRGCs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592761. [PMID: 38766000 PMCID: PMC11100754 DOI: 10.1101/2024.05.06.592761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Light has myriad impacts on behavior, health, and physiology. These signals originate in the retina and are relayed to the brain by more than 40 types of retinal ganglion cells (RGCs). Despite a growing appreciation for the diversity of RGCs, how these diverse channels of light information are ultimately integrated by the ~50 retinorecipient brain targets to drive these light-evoked effects is a major open question. This gap in understanding primarily stems from a lack of genetic tools that specifically label, manipulate, or ablate specific RGC types. Here, we report the generation and characterization of a new mouse line (Opn4FlpO), in which FlpO is expressed from the Opn4 locus, to manipulate the melanopsin-expressing, intrinsically photosensitive retinal ganglion cells. We find that the Opn4FlpO line, when crossed to multiple reporters, drives expression that is confined to ipRGCs and primarily labels the M1-M3 subtypes. Labeled cells in this mouse line show the expected intrinsic, melanopsin-based light response and morphological features consistent with the M1-M3 subtypes. In alignment with the morphological and physiological findings, we see strong innervation of non-image forming brain targets by ipRGC axons, and weaker innervation of image forming targets in Opn4FlpO mice labeled using AAV-based and FlpO-reporter lines. Consistent with the FlpO insertion disrupting the endogenous Opn4 transcript, we find that Opn4FlpO/FlpO mice show deficits in the pupillary light reflex, demonstrating their utility for behavioral research in future experiments. Overall, the Opn4FlpO mouse line drives Flp-recombinase expression that is confined to ipRGCs and most effectively drives recombination in M1-M3 ipRGCs. This mouse line will be of broad use to those interested in manipulating ipRGCs through a Flp-based recombinase for intersectional studies or in combination with other, non-Opn4 Cre driver lines.
Collapse
Affiliation(s)
- E Contreras
- Department of Neurobiology, Northwestern University, Evanston, IL
- Northwestern University Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - C Liang
- Department of Neurobiology, Northwestern University, Evanston, IL
| | - H L Mahoney
- Department of Neurobiology, Northwestern University, Evanston, IL
| | - J L Javier
- Department of Neurobiology, Northwestern University, Evanston, IL
| | - M L Luce
- Department of Neurobiology, Northwestern University, Evanston, IL
| | | | - T Bozza
- Department of Neurobiology, Northwestern University, Evanston, IL
| | - T M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL
- Department of Ophthalmology, Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
8
|
Mahoney HL, Schmidt TM. The cognitive impact of light: illuminating ipRGC circuit mechanisms. Nat Rev Neurosci 2024; 25:159-175. [PMID: 38279030 DOI: 10.1038/s41583-023-00788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/28/2024]
Abstract
Ever-present in our environments, light entrains circadian rhythms over long timescales, influencing daily activity patterns, health and performance. Increasing evidence indicates that light also acts independently of the circadian system to directly impact physiology and behaviour, including cognition. Exposure to light stimulates brain areas involved in cognition and appears to improve a broad range of cognitive functions. However, the extent of these effects and their mechanisms are unknown. Intrinsically photosensitive retinal ganglion cells (ipRGCs) have emerged as the primary conduit through which light impacts non-image-forming behaviours and are a prime candidate for mediating the direct effects of light on cognition. Here, we review the current state of understanding of these effects in humans and mice, and the tools available to uncover circuit-level and photoreceptor-specific mechanisms. We also address current barriers to progress in this area. Current and future efforts to unravel the circuits through which light influences cognitive functions may inform the tailoring of lighting landscapes to optimize health and cognitive function.
Collapse
Affiliation(s)
- Heather L Mahoney
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
9
|
Maloney R, Quattrochi L, Yoon J, Souza R, Berson D. Efficacy and specificity of melanopsin reporters for retinal ganglion cells. J Comp Neurol 2024; 532:e25591. [PMID: 38375612 PMCID: PMC11000424 DOI: 10.1002/cne.25591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/03/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are specialized retinal output neurons that mediate behavioral, neuroendocrine, and developmental responses to environmental light. There are diverse molecular strategies for marking ipRGCs, especially in mice, making them among the best characterized retinal ganglion cells (RGCs). With the development of more sensitive reporters, new subtypes of ipRGCs have emerged. We therefore tested high-sensitivity reporter systems to see whether we could reveal yet more. Substantial confusion remains about which of the available methods, if any, label all and only ipRGCs. Here, we compared many different methods for labeling of ipRGCs, including anti-melanopsin immunofluorescence, Opn4-GFP BAC transgenic mice, and Opn4cre mice crossed with three different Cre-specific reporters (Z/EG, Ai9, and Ai14) or injected with Cre-dependent (DIO) AAV2. We show that Opn4cre mice, when crossed with sensitive Cre-reporter mice, label numerous ganglion cell types that lack intrinsic photosensitivity. Though other methods label ipRGCs specifically, they do not label the entire population of ipRGCs. We conclude that no existing method labels all and only ipRGCs. We assess the appropriateness of each reporter for particular applications and integrate findings across reporters to estimate that the overall abundance of ipRGCs among mouse RGCs may approach 11%.
Collapse
Affiliation(s)
- Ryan Maloney
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Lauren Quattrochi
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | - James Yoon
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Rachel Souza
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | - David Berson
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
10
|
Xiao N, Xu S, Li ZK, Tang M, Mao R, Yang T, Ma SX, Wang PH, Li MT, Sunilkumar A, Rouyer F, Cao LH, Luo DG. A single photoreceptor splits perception and entrainment by cotransmission. Nature 2023; 623:562-570. [PMID: 37880372 PMCID: PMC10651484 DOI: 10.1038/s41586-023-06681-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
Vision enables both image-forming perception, driven by a contrast-based pathway, and unconscious non-image-forming circadian photoentrainment, driven by an irradiance-based pathway1,2. Although two distinct photoreceptor populations are specialized for each visual task3-6, image-forming photoreceptors can additionally contribute to photoentrainment of the circadian clock in different species7-15. However, it is unknown how the image-forming photoreceptor pathway can functionally implement the segregation of irradiance signals required for circadian photoentrainment from contrast signals required for image perception. Here we report that the Drosophila R8 photoreceptor separates image-forming and irradiance signals by co-transmitting two neurotransmitters, histamine and acetylcholine. This segregation is further established postsynaptically by histamine-receptor-expressing unicolumnar retinotopic neurons and acetylcholine-receptor-expressing multicolumnar integration neurons. The acetylcholine transmission from R8 photoreceptors is sustained by an autocrine negative feedback of the cotransmitted histamine during the light phase of light-dark cycles. At the behavioural level, elimination of histamine and acetylcholine transmission impairs R8-driven motion detection and circadian photoentrainment, respectively. Thus, a single type of photoreceptor can achieve the dichotomy of visual perception and circadian photoentrainment as early as the first visual synapses, revealing a simple yet robust mechanism to segregate and translate distinct sensory features into different animal behaviours.
Collapse
Affiliation(s)
- Na Xiao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shuang Xu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Ze-Kai Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Min Tang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Renbo Mao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Tian Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Si-Xing Ma
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Peng-Hao Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Meng-Tong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, USA
| | - Ajay Sunilkumar
- Institut des Neurosciences Paris-Saclay, Université Paris-Sud, Université Paris-Saclay, CNRS, Gif-sur-Yvette, France
| | - François Rouyer
- Institut des Neurosciences Paris-Saclay, Université Paris-Sud, Université Paris-Saclay, CNRS, Gif-sur-Yvette, France
| | - Li-Hui Cao
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Dong-Gen Luo
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- School of Life Sciences, Peking University, Beijing, China.
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
11
|
Orlowska‐Feuer P, Bano‐Otalora B, Rodgers J, Martial FP, Storchi R, Lucas RJ. The mouse suprachiasmatic nucleus encodes irradiance via a diverse population of neurons monotonically tuned to different ranges of intensity. J Physiol 2023; 601:4737-4749. [PMID: 37777993 PMCID: PMC10953322 DOI: 10.1113/jp285000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023] Open
Abstract
Many neurons of the mammalian master circadian oscillator in the suprachiasmatic nuclei (SCN) respond to light pulses with irradiance-dependent changes in firing. Here, we set out to better understand this irradiance coding ability by considering how the SCN tracks more continuous changes in irradiance at both population and single unit level. To this end, we recorded extracellular activity in the SCN of anaesthetised mice presented with up + down irradiance staircase stimuli covering moonlight to daylight conditions and incorporating epochs with steady light or superimposed higher frequency modulations (temporal white noise (WN) and frequency/contrast chirps). Single unit activity was extracted by spike sorting. The population response of SCN units to this stimulus was a progressive increase in firing rate at higher irradiances. This relationship was symmetrical for up vs. down phases of the ramp in the presence of white noise or chirps but exhibited hysteresis for steady light, with firing systematically higher during increasing irradiance. Single units also showed a monotonic relationship between firing and irradiance but exhibited diversity not only in response polarity (increases vs. decreases in firing), but also in the sensitivity (EC50 ) and slope of fitted functions. These data show that individual SCN neurons exhibit monotonic relationships between irradiance and firing rate but differ in the irradiance range over which they respond. This property may help the SCN to encode the large differences in irradiance found in nature using neurons with a constrained range of firing rates. KEY POINTS: Daily changes in environmental light (irradiance) entrain the suprachiasmatic nucleus (SCN) circadian clock. The mouse SCN shows graded increases in neurophysiological activity with light pulses of increasing irradiance. We show that this monotonic relationship between firing rate and irradiance is retained at population and single unit level when probed with more naturalistic staircase increases and decreases in irradiance. The irradiance response is more reliable in the presence of ongoing higher temporal frequency modulations in light intensity than under steady light. Single units varied in sensitivity allowing the population to cover a wide range of irradiances. Irradiance coding in the SCN has characteristics of a sparse code with individual neurons tracking different portions of the natural irradiance range. This property may address the challenge of encoding a 109 -fold day:night difference in irradiance within the constrained range of firing rates available to individual neurons.
Collapse
Affiliation(s)
- Patrycja Orlowska‐Feuer
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterOxford RoadManchesterUK
| | - Beatriz Bano‐Otalora
- Centre for Biological Timing, Faculty of Biology, Medicine and HealthUniversity of ManchesterOxford RoadManchesterUK
| | - Jessica Rodgers
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterOxford RoadManchesterUK
| | - Franck P. Martial
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterOxford RoadManchesterUK
| | - Riccardo Storchi
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterOxford RoadManchesterUK
| | - Robert James Lucas
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterOxford RoadManchesterUK
| |
Collapse
|
12
|
Kahan A, Mahe K, Dutta S, Kassraian P, Wang A, Gradinaru V. Immediate responses to ambient light in vivo reveal distinct subpopulations of suprachiasmatic VIP neurons. iScience 2023; 26:107865. [PMID: 37766975 PMCID: PMC10520357 DOI: 10.1016/j.isci.2023.107865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/21/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The circadian rhythm pacemaker, the suprachiasmatic nucleus (SCN), mediates light entrainment via vasoactive intestinal peptide (VIP) neurons (SCNVIP). Yet, how these neurons uniquely respond and connect to intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing melanopsin (Opn4) has not been determined functionally in freely behaving animals. To address this, we first used monosynaptic tracing from SCNVIP neurons in mice and identified two SCNVIP subpopulations. Second, we recorded calcium changes in response to ambient light, at both bulk and single-cell levels, and found two unique activity patterns in response to high- and low-intensity blue light. The activity patterns of both subpopulations could be manipulated by application of an Opn4 antagonist. These results suggest that the two SCNVIP subpopulations connect to two types of Opn4-expressing ipRGCs, likely M1 and M2, but only one is responsive to red light. These findings have important implications for our basic understanding of non-image-forming circadian light processing.
Collapse
Affiliation(s)
- Anat Kahan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Karan Mahe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sayan Dutta
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pegah Kassraian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexander Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
13
|
Stowe SR, LeBourgeois MK, Behn CD. Modeling the Effects of Napping and Non-napping Patterns of Light Exposure on the Human Circadian Oscillator. J Biol Rhythms 2023; 38:492-509. [PMID: 37427666 PMCID: PMC10524998 DOI: 10.1177/07487304231180953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In early childhood, consolidation of sleep from a biphasic to a monophasic sleep-wake pattern, that is, the transition from sleeping during an afternoon nap and at night to sleeping only during the night, represents a major developmental milestone. Reduced napping behavior is associated with an advance in the timing of the circadian system; however, it is unknown if this advance represents a standard response of the circadian clock to altered patterns of light exposure or if it additionally reflects features of the developing circadian system. Using a mathematical model of the human circadian pacemaker, we investigated the impact of napping and non-napping patterns of light exposure on entrained circadian phases. Simulated light schedules were based on published data from 20 children (34.2 ± 2.0 months) with habitual napping or non-napping sleep patterns (15 nappers). We found the model predicted different circadian phases for napping and non-napping light patterns: both the decrease in afternoon light during the nap and the increase in evening light associated with napping toddlers' later bedtimes contributed to the observed circadian phase difference produced between napping and non-napping light schedules. We systematically quantified the effects on phase shifting of nap duration, timing, and light intensity, finding larger phase delays occurred for longer and earlier naps. In addition, we simulated phase response curves to a 1-h light pulse and 1-h dark pulse to predict phase and intensity dependence of these changes in light exposure. We found the light pulse produced larger shifts compared with the dark pulse, and we analyzed the model dynamics to identify the features contributing to this asymmetry. These findings suggest that napping status affects circadian timing due to altered patterns of light exposure, with the dynamics of the circadian clock and light processing mediating the effects of the dark pulse associated with a daytime nap.
Collapse
Affiliation(s)
- Shelby R. Stowe
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado
| | | | - Cecilia Diniz Behn
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado
- Division of Endocrinology, Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
14
|
Berry MH, Leffler J, Allen CN, Sivyer B. Functional subtypes of rodent melanopsin ganglion cells switch roles between night and day illumination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554902. [PMID: 38168436 PMCID: PMC10760181 DOI: 10.1101/2023.08.26.554902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs), contain the photopigment melanopsin, and influence both image and non-image forming behaviors. Despite being categorized into multiple types (M1-M6), physiological variability within these types suggests our current understanding of ipRGCs is incomplete. We used multi-electrode array (MEA) recordings and unbiased cluster analysis under synaptic blockade to identify 8 functional clusters of ipRGCs, each with distinct photosensitivity and response timing. We used Cre mice to drive the expression of channelrhodopsin in SON-ipRGCs, enabling the localization of distinct ipRGCs in the dorsal retina. Additionally, we conducted a retrospective unbiased cluster analysis of ipRGC photoresponses to light stimuli across scotopic, mesopic, and photopic intensities, aimed at activating both rod and cone inputs to ipRGCs. Our results revealed shared and distinct synaptic inputs to the identified functional clusters, demonstrating that ipRGCs encode visual information with high fidelity at low light intensities, but poorly at photopic light intensities, when melanopsin activation is highest. Collectively, our findings support a framework with at least 8 functional subtypes of ipRGCs, each encoding luminance with distinct spike outputs, highlighting the inherent functional diversity and complexity of ipRGCs and suggesting a reevaluation of their contributions to retinal function and visual perception under varying light conditions.
Collapse
Affiliation(s)
- Michael H. Berry
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239
- Medical Scientist Training program, Oregon Health & Science University, Portland, OR, 97239
| | - Joseph Leffler
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239
| | - Charles N. Allen
- Oregon Institute of Occupational Health Sciences, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239
| | - Benjamin Sivyer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239
| |
Collapse
|
15
|
Tamayo E, Mouland JW, Lucas RJ, Brown TM. Regulation of mouse exploratory behaviour by irradiance and cone-opponent signals. BMC Biol 2023; 21:178. [PMID: 37605163 PMCID: PMC10441731 DOI: 10.1186/s12915-023-01663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/14/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Animal survival depends on the ability to adjust behaviour according to environmental conditions. The circadian system plays a key role in this capability, with diel changes in the quantity (irradiance) and spectral content ('colour') of ambient illumination providing signals of time-of-day that regulate the timing of rest and activity. Light also exerts much more immediate effects on behaviour, however, that are equally important in shaping daily activity patterns. Hence, nocturnal mammals will actively avoid light and dramatically reduce their activity when light cannot be avoided. The sensory mechanisms underlying these acute effects of light are incompletely understood, particularly the importance of colour. RESULTS To define sensory mechanisms controlling mouse behaviour, we used photoreceptor-isolating stimuli and mice with altered cone spectral sensitivity (Opn1mwR), lacking melanopsin (Opn1mwR; Opn4-/-) or cone phototransduction (Cnga3-/-) in assays of light-avoidance and activity suppression. In addition to roles for melanopsin-dependent irradiance signals, we find a major influence of spectral content in both cases. Hence, remarkably, selective increases in S-cone irradiance (producing a blue-shift in spectrum replicating twilight) drive light-seeking behaviour and promote activity. These effects are opposed by signals from longer-wavelength sensitive cones, indicating a true spectrally-opponent mechanism. Using c-Fos-mapping and multielectrode electrophysiology, we further show these effects are associated with a selective cone-opponent modulation of neural activity in the key brain site implicated in acute effects of light on behaviour, the subparaventricular zone. CONCLUSIONS Collectively, these data reveal a mechanism whereby blue-shifts in the spectrum of environmental illumination, such as during twilight, promote mouse exploratory behaviour.
Collapse
Affiliation(s)
- E Tamayo
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - J W Mouland
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - R J Lucas
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - T M Brown
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
16
|
Chien SE, Yeh SL, Yamashita W, Tsujimura SI. Enhanced human contrast sensitivity with increased stimulation of melanopsin in intrinsically photosensitive retinal ganglion cells. Vision Res 2023; 209:108271. [PMID: 37331304 DOI: 10.1016/j.visres.2023.108271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
The intrinsically photosensitive retinal ganglion cells (ipRGCs) are known to serve non-image-forming functions, such as photoentrainment of the circadian rhythm and pupillary light reflex. However, how they affect human spatial vision is largely unknown. The spatial contrast sensitivity function (CSF), which measures contrast sensitivity as a function of spatial frequency, was used in the current study to investigate the function of ipRGCs in pattern vision. To compare the effects of different background lights on the CSF, we utilized the silent substitution technique. We manipulated the stimulation level of melanopsin (i.e., the visual pigment of ipRGCs) from the background light while keeping the cone stimulations constant, or vice versa. We conducted four experiments to measure the CSFs at various spatial frequencies, eccentricities, and levels of background luminance. Results showed that melanopsin stimulation from the background light enhances spatial contrast sensitivity across different eccentricities and luminance levels. Our finding that melanopsin contributes to CSF, combined with the receptive field analysis, suggests a role for the magnocellular pathway and challenges the conventional view that ipRGCs are primarily responsible for non-visual functions.
Collapse
Affiliation(s)
- Sung-En Chien
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; Ganzin Technology Inc., New Taipei City 23141, Taiwan
| | - Su-Ling Yeh
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei 10617, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan; Center for Advanced Studies in the Behavioral Sciences, Stanford University, Stanford, CA 94305, USA.
| | - Wakayo Yamashita
- Faculty of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | - Sei-Ichi Tsujimura
- Faculty of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan; Faculty of Design and Architecture, Nagoya City University, Nagoya 467-8501, Japan.
| |
Collapse
|
17
|
Kim AB, Beaver EM, Collins SG, Kriegsfeld LJ, Lockley SW, Wong KY, Yan L. S-Cone Photoreceptors Regulate Daily Rhythms and Light-Induced Arousal/Wakefulness in Diurnal Grass Rats ( Arvicanthis niloticus). J Biol Rhythms 2023; 38:366-378. [PMID: 37222434 PMCID: PMC10364626 DOI: 10.1177/07487304231170068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Beyond visual perception, light has non-image-forming effects mediated by melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs). The present study first used multielectrode array recordings to show that in a diurnal rodent, Nile grass rats (Arvicanthis niloticus), ipRGCs generate rod/cone-driven and melanopsin-based photoresponses that stably encode irradiance. Subsequently, two ipRGC-mediated non-image-forming effects, namely entrainment of daily rhythms and light-induced arousal, were examined. Animals were first housed under a 12:12 h light/dark cycle (lights-on at 0600 h) with the light phase generated by a low-irradiance fluorescent light (F12), a daylight spectrum (D65) stimulating all photoreceptors, or a narrowband 480 nm spectrum (480) that maximized melanopsin stimulation and minimized S-cone stimulation (λmax 360 nm) compared to D65. Daily rhythms of locomotor activities showed onset and offset closer to lights-on and lights-off, respectively, in D65 and 480 than in F12, and higher day/night activity ratio under D65 versus 480 and F12, suggesting the importance of S-cone stimulation. To assess light-induced arousal, 3-h light exposures using 4 spectra that stimulated melanopsin equally but S-cones differentially were superimposed on F12 background lighting: D65, 480, 480 + 365 (narrowband 365 nm), and D65 - 365. Compared to the F12-only condition, all four pulses increased in-cage activity and promoted wakefulness, with 480 + 365 having the greatest and longest-lasting wakefulness-promoting effects, again indicating the importance of stimulating S-cones as well as melanopsin. These findings provide insights into the temporal dynamics of photoreceptor contributions to non-image-forming photoresponses in a diurnal rodent that may help guide future studies of lighting environments and phototherapy protocols that promote human health and productivity.
Collapse
Affiliation(s)
- Antony B. Kim
- Department of Architecture, University of California,
Berkeley, Berkeley, California
| | - Emma M. Beaver
- Department of Psychology, Michigan State University,
East Lansing, Michigan
| | - Stephen G. Collins
- Department of Psychology, Michigan State University,
East Lansing, Michigan
| | - Lance J. Kriegsfeld
- Department of Psychology, University of California,
Berkeley, Berkeley, California
- Department of Integrative Biology, University of
California, Berkeley, Berkeley, California
- The Helen Wills Neuroscience Institute, University of
California, Berkeley, Berkeley, California
| | - Steven W. Lockley
- Division of Sleep and Circadian Disorders,
Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston,
Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston,
Massachusetts
| | - Kwoon Y. Wong
- Department of Ophthalmology & Visual Sciences, Kellogg
Eye Center, University of Michigan, Ann Arbor, Michigan
- Department of Molecular, Cellular &
Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Lily Yan
- Department of Psychology, Michigan State University,
East Lansing, Michigan
- Neuroscience Program, Michigan State
University, East Lansing, Michigan
| |
Collapse
|
18
|
Campbell I, Sharifpour R, Vandewalle G. Light as a Modulator of Non-Image-Forming Brain Functions—Positive and Negative Impacts of Increasing Light Availability. Clocks Sleep 2023; 5:116-140. [PMID: 36975552 PMCID: PMC10047820 DOI: 10.3390/clockssleep5010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Light use is rising steeply, mainly because of the advent of light-emitting diode (LED) devices. LEDs are frequently blue-enriched light sources and may have different impacts on the non-image forming (NIF) system, which is maximally sensitive to blue-wavelength light. Most importantly, the timing of LED device use is widespread, leading to novel light exposure patterns on the NIF system. The goal of this narrative review is to discuss the multiple aspects that we think should be accounted for when attempting to predict how this situation will affect the NIF impact of light on brain functions. We first cover both the image-forming and NIF pathways of the brain. We then detail our current understanding of the impact of light on human cognition, sleep, alertness, and mood. Finally, we discuss questions concerning the adoption of LED lighting and screens, which offer new opportunities to improve well-being, but also raise concerns about increasing light exposure, which may be detrimental to health, particularly in the evening.
Collapse
|
19
|
Berry MH, Moldavan M, Garrett T, Meadows M, Cravetchi O, White E, Leffler J, von Gersdorff H, Wright KM, Allen CN, Sivyer B. A melanopsin ganglion cell subtype forms a dorsal retinal mosaic projecting to the supraoptic nucleus. Nat Commun 2023; 14:1492. [PMID: 36932080 PMCID: PMC10023714 DOI: 10.1038/s41467-023-36955-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
Visual input to the hypothalamus from intrinsically photosensitive retinal ganglion cells (ipRGCs) influences several functions including circadian entrainment, body temperature, and sleep. ipRGCs also project to nuclei such as the supraoptic nucleus (SON), which is involved in systemic fluid homeostasis, maternal behavior, social behaviors, and appetite. However, little is known about the SON-projecting ipRGCs or their relationship to well-characterized ipRGC subtypes. Using a GlyT2Cre mouse line, we show a subtype of ipRGCs restricted to the dorsal retina that selectively projects to the SON. These ipRGCs tile a dorsal region of the retina, forming a substrate for encoding ground luminance. Optogenetic activation of their axons demonstrates they release the neurotransmitter glutamate in multiple regions, including the suprachiasmatic nucleus (SCN) and SON. Our results challenge the idea that ipRGC dendrites overlap to optimize photon capture and suggests non-image forming vision operates to sample local regions of the visual field to influence diverse behaviors.
Collapse
Affiliation(s)
- Michael H Berry
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR, USA
| | - Michael Moldavan
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Tavita Garrett
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Neuroscience Graduate program, Oregon Health & Science University, Portland, OR, USA
| | - Marc Meadows
- Neuroscience Graduate program, Oregon Health & Science University, Portland, OR, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Olga Cravetchi
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Elizabeth White
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Joseph Leffler
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Henrique von Gersdorff
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Charles N Allen
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Benjamin Sivyer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA.
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
20
|
Mouland JW, Watson AJ, Martial FP, Lucas RJ, Brown TM. Colour and melanopsin mediated responses in the murine retina. Front Cell Neurosci 2023; 17:1114634. [PMID: 36993934 PMCID: PMC10040579 DOI: 10.3389/fncel.2023.1114634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 03/15/2023] Open
Abstract
Introduction: Intrinsically photosensitive retinal ganglion cells (ipRGCs) integrate melanopsin and rod/cone-mediated inputs to signal to the brain. Whilst originally identified as a cell type specialised for encoding ambient illumination, several lines of evidence indicate a strong association between colour discrimination and ipRGC-driven responses. Thus, cone-mediated colour opponent responses have been widely found across ipRGC target regions in the mouse brain and influence a key ipRGC-dependent function, circadian photoentrainment. Although ipRGCs exhibiting spectrally opponent responses have also been identified, the prevalence of such properties have not been systematically evaluated across the mouse retina or yet been found in ipRGC subtypes known to influence the circadian system. Indeed, there is still uncertainty around the overall prevalence of cone-dependent colour opponency across the mouse retina, given the strong retinal gradient in S and M-cone opsin (co)-expression and overlapping spectral sensitivities of most mouse opsins.Methods: To address this, we use photoreceptor isolating stimuli in multielectrode recordings from human red cone opsin knock-in mouse (Opn1mwR) retinas to systematically survey cone mediated responses and the occurrence of colour opponency across ganglion cell layer (GCL) neurons and identify ipRGCs based on spectral comparisons and/or the persistence of light responses under synaptic blockade.Results: Despite detecting robust cone-mediated responses across the retina, we find cone opponency is rare, especially outside of the central retina (overall ~3% of GCL neurons). In keeping with previous suggestions we also see some evidence of rod-cone opponency (albeit even more rare under our experimental conditions), but find no evidence for any enrichment of cone (or rod) opponent responses among functionally identified ipRGCs.Conclusion: In summary, these data suggest the widespread appearance of cone-opponency across the mouse early visual system and ipRGC-related responses may be an emergent feature of central visual processing mechanisms.
Collapse
Affiliation(s)
- Joshua W. Mouland
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- *Correspondence: Joshua W. Mouland
| | - Alex J. Watson
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Franck P. Martial
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Robert J. Lucas
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Timothy M. Brown
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
21
|
Tangled up in blue: Contribution of short-wavelength sensitive cones in human circadian photoentrainment. Proc Natl Acad Sci U S A 2023; 120:e2219617120. [PMID: 36598954 PMCID: PMC9926240 DOI: 10.1073/pnas.2219617120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
22
|
Flood MD, Veloz HLB, Hattar S, Carvalho-de-Souza JL. Robust visual cortex evoked potentials (VEP) in Gnat1 and Gnat2 knockout mice. Front Cell Neurosci 2022; 16:1090037. [PMID: 36605613 PMCID: PMC9807669 DOI: 10.3389/fncel.2022.1090037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin, imparting to themselves the ability to respond to light in the absence of input from rod or cone photoreceptors. Since their discovery ipRGCs have been found to play a significant role in non-image-forming aspects of vision, including circadian photoentrainment, neuroendocrine regulation, and pupillary control. In the past decade it has become increasingly clear that some ipRGCs also contribute directly to pattern-forming vision, the ability to discriminate shapes and objects. However, the degree to which melanopsin-mediated phototransduction, versus that of rods and cones, contributes to this function is still largely unknown. Earlier attempts to quantify this contribution have relied on genetic knockout models that target key phototransductive proteins in rod and cone photoreceptors, ideally to isolate melanopsin-mediated responses. In this study we used the Gnat1-/-; Gnat2cpfl3/cpfl3 mouse model, which have global knockouts for the rod and cone α-transducin proteins. These genetic modifications completely abolish rod and cone photoresponses under light-adapted conditions, locking these cells into a "dark" state. We recorded visually evoked potentials in these animals and found that they still showed robust light responses, albeit with reduced light sensitivity, with similar magnitudes to control mice. These responses had characteristics that were in line with a melanopsin-mediated signal, including delayed kinetics and increased saturability. Additionally, we recorded electroretinograms in a sub-sample of these mice and were unable to find any characteristic waveform related the activation of photoreceptors or second-order retinal neurons, suggesting ipRGCs as the origin of light responses. Our results show a profound ability for melanopsin phototransduction to directly contribute to the primary pattern-forming visual pathway.
Collapse
Affiliation(s)
- Michael D. Flood
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Hannah L. B. Veloz
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Samer Hattar
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, MD, United States
| | - Joao L. Carvalho-de-Souza
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States,Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ, United States,Department of Ophthalmology and Vision Science, College of Medicine, The University of Arizona, Tucson, AZ, United States,BIO5 Institute, The University of Arizona, Tucson, AZ, United States,*Correspondence: Joao L. Carvalho-de-Souza,
| |
Collapse
|
23
|
Endogenous opioid signaling in the retina modulates sleep/wake activity in mice. Neurobiol Sleep Circadian Rhythms 2022; 13:100078. [PMID: 35800978 PMCID: PMC9254600 DOI: 10.1016/j.nbscr.2022.100078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 12/26/2022] Open
|
24
|
Gao J, Provencio I, Liu X. Intrinsically photosensitive retinal ganglion cells in glaucoma. Front Cell Neurosci 2022; 16:992747. [PMID: 36212698 PMCID: PMC9537624 DOI: 10.3389/fncel.2022.992747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Glaucoma is a group of eye diseases afflicting more than 70 million people worldwide. It is characterized by damage to retinal ganglion cells (RGCs) that ultimately leads to the death of the cells and vision loss. The diversity of RGC types has been appreciated for decades, and studies, including ours, have shown that RGCs degenerate and die in a type-specific manner in rodent models of glaucoma. The type-specific loss of RGCs results in differential damage to visual and non-visual functions. One type of RGC, the intrinsically photosensitive retinal ganglion cell (ipRGC), expressing the photopigment melanopsin, serves a broad array of non-visual responses to light. Since its discovery, six subtypes of ipRGC have been described, each contributing to various image-forming and non-image-forming functions such as circadian photoentrainment, the pupillary light reflex, the photic control of mood and sleep, and visual contrast sensitivity. We recently demonstrated a link between type-specific ipRGC survival and behavioral deficits in a mouse model of chronic ocular hypertension. This review focuses on the type-specific ipRGC degeneration and associated behavioral changes in animal models and glaucoma patients. A better understanding of how glaucomatous insult impacts the ipRGC-based circuits will have broad impacts on improving the treatment of glaucoma-associated non-visual disorders.
Collapse
Affiliation(s)
- Jingyi Gao
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Ignacio Provencio
- Department of Biology, University of Virginia, Charlottesville, VA, United States
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, VA, United States
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
25
|
Polese D, Riccio ML, Fagioli M, Mazzetta A, Fagioli F, Parisi P, Fagioli M. The Newborn's Reaction to Light as the Determinant of the Brain's Activation at Human Birth. Front Integr Neurosci 2022; 16:933426. [PMID: 36118115 PMCID: PMC9478760 DOI: 10.3389/fnint.2022.933426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Developmental neuroscience research has not yet fully unveiled the dynamics involved in human birth. The trigger of the first breath, often assumed to be the marker of human life, has not been characterized nor has the process entailing brain modification and activation at birth been clarified yet. To date, few researchers only have investigated the impact of the extrauterine environment, with its strong stimuli, on birth. This ‘hypothesis and theory' article assumes the role of a specific stimulus activating the central nervous system (CNS) at human birth. This stimulus must have specific features though, such as novelty, efficacy, ubiquity, and immediacy. We propose light as a robust candidate for the CNS activation via the retina. Available data on fetal and neonatal neurodevelopment, in particular with reference to retinal light-responsive pathways, will be examined together with the GABA functional switch, and the subplate disappearance, which, at an experimental level, differentiate the neonatal brain from the fetal brain. In this study, we assume how a very rapid activation of retinal photoreceptors at birth initiates a sudden brain shift from the prenatal pattern of functions to the neonatal setup. Our assumption implies the presence of a photoreceptor capable of capturing and transducing light/photon stimulus, transforming it into an effective signal for the activation of new brain functions at birth. Opsin photoreception or, more specifically, melanopsin-dependent photoreception, which is provided by intrinsically photosensitive retinal ganglion cells (ipRGCs), is considered as a valid candidate. Although what is assumed herein cannot be verified in humans based on knowledge available so far, proposing an important and novel function can trigger a broad range of diversified research in different domains, from neurophysiology to neurology and psychiatry.
Collapse
Affiliation(s)
- Daniela Polese
- PhD Program on Sensorineural Plasticity, Department of Neuroscience, Mental Health and Sensory Organs NESMOS, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
- *Correspondence: Daniela Polese
| | | | - Marcella Fagioli
- Department of Mental Health, National Health System ASL Rome 1, Rome, Italy
| | - Alessandro Mazzetta
- PhD Program on Neuroscience, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Francesca Fagioli
- Department of Mental Health, National Health System ASL Rome 1, Rome, Italy
| | - Pasquale Parisi
- Chair of Pediatrics, Department of Neuroscience, Mental Health and Sensory Organs NESMOS, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
26
|
Tapia ML, Nascimento-Dos-Santos G, Park KK. Subtype-specific survival and regeneration of retinal ganglion cells in response to injury. Front Cell Dev Biol 2022; 10:956279. [PMID: 36035999 PMCID: PMC9411869 DOI: 10.3389/fcell.2022.956279] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Retinal ganglion cells (RGCs) are a heterogeneous population of neurons that function synchronously to convey visual information through the optic nerve to retinorecipient target areas in the brain. Injury or disease to the optic nerve results in RGC degeneration and loss of visual function, as few RGCs survive, and even fewer can be provoked to regenerate their axons. Despite causative insults being broadly shared, regeneration studies demonstrate that RGC types exhibit differential resilience to injury and undergo selective survival and regeneration of their axons. While most early studies have identified these RGC types based their morphological and physiological characteristics, recent advances in transgenic and gene sequencing technologies have further enabled type identification based on unique molecular features. In this review, we provide an overview of the well characterized RGC types and identify those shown to preferentially survive and regenerate in various regeneration models. Furthermore, we discuss cellular characteristics of both the resilient and susceptible RGC types including the combinatorial expression of different molecular markers that identify these specific populations. Lastly, we discuss potential molecular mechanisms and genes found to be selectively expressed by specific types that may contribute to their reparative capacity. Together, we describe the studies that lay the important groundwork for identifying factors that promote neural regeneration and help advance the development of targeted therapy for the treatment of RGC degeneration as well as neurodegenerative diseases in general.
Collapse
Affiliation(s)
- Mary L Tapia
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gabriel Nascimento-Dos-Santos
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kevin K Park
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
27
|
Uprety S, Adhikari P, Feigl B, Zele AJ. Melanopsin photoreception differentially modulates rod-mediated and cone-mediated human temporal vision. iScience 2022; 25:104529. [PMID: 35754721 PMCID: PMC9218364 DOI: 10.1016/j.isci.2022.104529] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
To evaluate the nature of interactions between visual pathways transmitting the slower melanopsin and faster rod and cone signals, we implement a temporal phase summation paradigm in human observers using photoreceptor-directed stimuli. We show that melanopsin stimulation interacts with and alters both rod-mediated and cone-mediated vision regardless of whether it is perceptually visible or not. Melanopsin-rod interactions result in either inhibitory or facilitatory summation depending on the temporal frequency and photoreceptor pathway contrast sensitivity. Moreover, by isolating rod vision, we reveal a bipartite intensity response property of the rod pathway in photopic lighting that extends its operational range at lower frequencies to beyond its classic saturation limits but at the expense of attenuating sensitivity at higher frequencies. In comparison, melanopsin-cone interactions always lead to facilitation. These interactions can be described by linear or probability summations and potentially involve multiple intraretinal and visual cortical pathways to set human visual contrast sensitivity. Melanopsin ipRGCs support vision independent of the rod and cone signals Rod pathways mediate robust visual responses in daylight Temporal contrast sensitivity is contingent on the melanopsin excitation level Visual performance is collectively regulated by melanopsin, rod and cone pathways
Collapse
Affiliation(s)
- Samir Uprety
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.,School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Prakash Adhikari
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.,School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Beatrix Feigl
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.,School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.,Queensland Eye Institute, Brisbane, QLD 4101, Australia
| | - Andrew J Zele
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.,School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| |
Collapse
|
28
|
Divergent outer retinal circuits drive image and non-image visual behaviors. Cell Rep 2022; 39:111003. [PMID: 35767957 PMCID: PMC9400924 DOI: 10.1016/j.celrep.2022.111003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/25/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022] Open
Abstract
Image- and non-image-forming vision are essential for animal behavior. Here we use genetically modified mouse lines to examine retinal circuits driving image- and non-image-functions. We describe the outer retinal circuits underlying the pupillary light response (PLR) and circadian photoentrainment, two non-image-forming behaviors. Rods and cones signal light increments and decrements through the ON and OFF pathways, respectively. We find that the OFF pathway drives image-forming vision but cannot drive circadian photoentrainment or the PLR. Cone light responses drive image formation but fail to drive the PLR. At photopic levels, rods use the primary and secondary rod pathways to drive the PLR, whereas at the scotopic and mesopic levels, rods use the primary pathway to drive the PLR, and the secondary pathway is insufficient. Circuit dynamics allow rod ON pathways to drive two non-image-forming behaviors across a wide range of light intensities, whereas the OFF pathway is potentially restricted to image formation.
Collapse
|
29
|
Abstract
Retinal circuits transform the pixel representation of photoreceptors into the feature representations of ganglion cells, whose axons transmit these representations to the brain. Functional, morphological, and transcriptomic surveys have identified more than 40 retinal ganglion cell (RGC) types in mice. RGCs extract features of varying complexity; some simply signal local differences in brightness (i.e., luminance contrast), whereas others detect specific motion trajectories. To understand the retina, we need to know how retinal circuits give rise to the diverse RGC feature representations. A catalog of the RGC feature set, in turn, is fundamental to understanding visual processing in the brain. Anterograde tracing indicates that RGCs innervate more than 50 areas in the mouse brain. Current maps connecting RGC types to brain areas are rudimentary, as is our understanding of how retinal signals are transformed downstream to guide behavior. In this article, I review the feature selectivities of mouse RGCs, how they arise, and how they are utilized downstream. Not only is knowledge of the behavioral purpose of RGC signals critical for understanding the retinal contributions to vision; it can also guide us to the most relevant areas of visual feature space. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences; Department of Neuroscience; Department of Biomedical Engineering; and Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, Missouri, USA;
| |
Collapse
|
30
|
Joyce DS, Spitschan M, Zeitzer JM. Duration invariance and intensity dependence of the human circadian system phase shifting response to brief light flashes. Proc Biol Sci 2022; 289:20211943. [PMID: 35259981 PMCID: PMC8905166 DOI: 10.1098/rspb.2021.1943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/14/2022] [Indexed: 01/09/2023] Open
Abstract
The melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) are characterized by a delayed off-time following the cessation of light stimulation. Here, we exploited this unusual physiologic property to characterize the exquisite sensitivity of the human circadian system to flashed light. In a 34 h in-laboratory between-subjects design, we examined phase shifting in response to variable-intensity (3-9500 photopic lux) flashes at fixed duration (2 ms; n = 28 participants) and variable-duration (10 µs-10 s) flashes at fixed intensity (2000 photopic lux; n = 31 participants). Acute melatonin suppression, objective alertness and subjective sleepiness during the flash sequence were also assessed. We find a dose-response relationship between flash intensity and circadian phase shift, with an indication of a possible threshold-like behaviour. We find a slight parametric relationship between flash duration and circadian phase shift. Consistent with prior studies, we observe no dose-response relationship to either flash intensity or duration and the acute impact of light on melatonin suppression, objective alertness or subjective sleepiness. Our findings are consistent with circadian responses to a sequence of flashes being mediated by rod or cone photoreceptors via ipRGC integration.
Collapse
Affiliation(s)
- Daniel S. Joyce
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychology, University of Nevada Reno, Reno, NV, USA
| | - Manuel Spitschan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Translational Sensory and Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TUM Department of Sport and Health Sciences (TUM SG), Technical University of Munich, Munich, Germany
| | - Jamie M. Zeitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
31
|
Goodenow D, Greer AJ, Cone SJ, Gaddameedhi S. Circadian effects on UV-induced damage and mutations. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108413. [PMID: 35690416 PMCID: PMC9188652 DOI: 10.1016/j.mrrev.2022.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
Skin cancer is the most diagnosed type of cancer in the United States, and while most of these malignancies are highly treatable, treatment costs still exceed $8 billion annually. Over the last 50 years, the annual incidence of skin cancer has steadily grown; therefore, understanding the environmental factors driving these types of cancer is a prominent research-focus. A causality between ultraviolet radiation (UVR) exposure and skin cancer is well-established, but exposure to UVR alone is not necessarily sufficient to induce carcinogenesis. The emerging field of circadian biology intersects strongly with the physiological systems of the mammalian body and introduces a unique opportunity for analyzing mechanisms of homeostatic disruption. The circadian clock refers to the approximate 24-hour cycle, in which protein levels of specific clock-controlled genes (CCGs) fluctuate based on the time of day. Though these CCGs are tissue specific, the skin has been observed to have a robust circadian clock that plays a role in its response to UVR exposure. This in-depth review will detail the mechanisms of the circadian clock and its role in cellular homeostasis. Next, the skin's response to UVR exposure and its induction of DNA damage and mutations will be covered - with an additional focus placed on how the circadian clock influences this response through nucleotide excision repair. Lastly, this review will discuss current models for studying UVR-induced skin lesions and perturbations of the circadian clock, as well as the impact of these factors on human health.
Collapse
Affiliation(s)
- Donna Goodenow
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Adam J Greer
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Sean J Cone
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Shobhan Gaddameedhi
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
32
|
Contreras E, Nobleman AP, Robinson PR, Schmidt TM. Melanopsin phototransduction: beyond canonical cascades. J Exp Biol 2021; 224:273562. [PMID: 34842918 PMCID: PMC8714064 DOI: 10.1242/jeb.226522] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Melanopsin is a visual pigment that is expressed in a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs). It is involved in regulating non-image forming visual behaviors, such as circadian photoentrainment and the pupillary light reflex, while also playing a role in many aspects of image-forming vision, such as contrast sensitivity. Melanopsin was initially discovered in the melanophores of the skin of the frog Xenopus, and subsequently found in a subset of ganglion cells in rat, mouse and primate retinas. ipRGCs were initially thought to be a single retinal ganglion cell population, and melanopsin was thought to activate a single, invertebrate-like Gq/transient receptor potential canonical (TRPC)-based phototransduction cascade within these cells. However, in the 20 years since the discovery of melanopsin, our knowledge of this visual pigment and ipRGCs has expanded dramatically. Six ipRGC subtypes have now been identified in the mouse, each with unique morphological, physiological and functional properties. Multiple subtypes have also been identified in other species, suggesting that this cell type diversity is a general feature of the ipRGC system. This diversity has led to a renewed interest in melanopsin phototransduction that may not follow the canonical Gq/TRPC cascade in the mouse or in the plethora of other organisms that express the melanopsin photopigment. In this Review, we discuss recent findings and discoveries that have challenged the prevailing view of melanopsin phototransduction as a single pathway that influences solely non-image forming functions.
Collapse
Affiliation(s)
- Ely Contreras
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Alexis P. Nobleman
- University of Maryland Baltimore County, Department of Biological Sciences, Baltimore, MD 21250, USA,Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Phyllis R. Robinson
- University of Maryland Baltimore County, Department of Biological Sciences, Baltimore, MD 21250, USA,Authors for correspondence (; )
| | - Tiffany M. Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA,Department of Ophthalmology, Feinberg School of Medicine, Chicago, IL 60611, USA,Authors for correspondence (; )
| |
Collapse
|
33
|
Lee S, Chen M, Shi Y, Zhou ZJ. Selective glycinergic input from vGluT3 amacrine cells confers a suppressed-by-contrast trigger feature in a subtype of M1 ipRGCs in the mouse retina. J Physiol 2021; 599:5047-5060. [PMID: 34292589 PMCID: PMC8741526 DOI: 10.1113/jp281717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS M1 intrinsically photosensitive retinal ganglion cells (ipRGCs) are known to encode absolute light intensity (irradiance) for non-image-forming visual functions (subconscious vision), such as circadian photoentrainment and the pupillary light reflex. It remains unclear how M1 cells respond to relative light intensity (contrast) and patterned visual signals. The present study identified a special form of contrast sensitivity (suppressed-by-contrast) in M1 cells, suggesting a role of patterned visual signals in regulating non-image-forming vision and a potential role of M1 ipRGCs in encoding image-forming visual cues. The study also uncovered a synaptic mechanism and a retinal circuit mediated by vesicular glutamate transporter 3 (vGluT3) amacrine cells that underlie the suppressed-by-contrast response of M1 cells. M1 ipRGC subtypes (M1a and M1b) were revealed that are distinguishable based on synaptic connectivity with vGluT3 amacrine cells, receptive field properties, intrinsic photo sensitivity and membrane excitability, and morphological features, suggesting a division of visual tasks among discrete M1 subpopulations. ABSTRACT The M1 type ipRGC (intrinsically photosensitive retinal ganglion cell) is known to encode ambient light signals for non-image-forming visual functions such as circadian photo-entrainment and the pupillary light reflex. Here, we report that a subpopulation of M1 cells (M1a) in the mouse retina possess the suppressed-by-contrast (sbc) trigger feature that is a receptive field property previously found only in ganglion cells mediating image-forming vision. Using optogenetics and the dual patch clamp technique, we found that vesicular glutamate transporter 3 (vGluT3) (vGluT3) amacrine cells make glycinergic, but not glutamatergic, synapses specifically onto M1a cells. The spatiotemporal and pharmacological properties of visually evoked responses of M1a cells closely matched the receptive field characteristics of vGluT3 cells, suggesting a major role of the vGluT3 amacrine cell input in shaping the sbc trigger feature of M1a cells. We found that the other subpopulation of M1 cells (M1b), which did not receive a direct vGluT3 cell input, lacked the sbc trigger feature, being distinctively different from M1a cells in intrinsic photo responses, membrane excitability, receptive-field characteristics and morphological features. Together, the results reveal a retinal circuit that uses the sbc trigger feature to regulate irradiance coding and potentially send image-forming cues to non-image-forming visual centres in the brain.
Collapse
Affiliation(s)
- Seunghoon Lee
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, USA
| | - Minggang Chen
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, USA
| | - Yuelin Shi
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, USA
| | - Z Jimmy Zhou
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
34
|
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) signal not only anterogradely to drive behavioral responses, but also retrogradely to some amacrine interneurons to modulate retinal physiology. We previously found that all displaced amacrine cells with spiking, tonic excitatory photoresponses receive gap-junction input from ipRGCs, but the connectivity patterns and functional roles of ipRGC-amacrine coupling remained largely unknown. Here, we injected PoPro1 fluorescent tracer into all six types of mouse ipRGCs to identify coupled amacrine cells, and analyzed the latter's morphological and electrophysiological properties. We also examined how genetically disrupting ipRGC-amacrine coupling affected ipRGC photoresponses. Results showed that ipRGCs couple with not just ON- and ON/OFF-stratified amacrine cells in the ganglion-cell layer as previously reported, but also OFF-stratified amacrine cells in both ganglion-cell and inner nuclear layers. M1- and M3-type ipRGCs couple mainly with ON/OFF-stratified amacrine cells, whereas the other ipRGC types couple almost exclusively with ON-stratified ones. ipRGCs transmit melanopsin-based light responses to at least 93% of the coupled amacrine cells. Some of the ON-stratifying ipRGC-coupled amacrine cells exhibit transient hyperpolarizing light responses. We detected bidirectional electrical transmission between an ipRGC and a coupled amacrine cell, although transmission was asymmetric for this particular cell pair, favoring the ipRGC-to-amacrine direction. We also observed electrical transmission between two amacrine cells coupled to the same ipRGC. In both scenarios of coupling, the coupled cells often spiked synchronously. While ipRGC-amacrine coupling somewhat reduces the peak firing rates of ipRGCs' intrinsic melanopsin-based photoresponses, it renders these responses more sustained and longer-lasting. In summary, ipRGCs' gap junctional network involves more amacrine cell types and plays more roles than previously appreciated.
Collapse
|
35
|
Spitschan M, Garbazza C, Kohl S, Cajochen C. Sleep and circadian phenotype in people without cone-mediated vision: a case series of five CNGB3 and two CNGA3 patients. Brain Commun 2021; 3:fcab159. [PMID: 34447932 PMCID: PMC8385249 DOI: 10.1093/braincomms/fcab159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 01/28/2023] Open
Abstract
Light exposure entrains the circadian clock through the intrinsically photosensitive retinal ganglion cells, which sense light in addition to the cone and rod photoreceptors. In congenital achromatopsia (prevalence 1:30-50 000), the cone system is non-functional, resulting in severe light avoidance and photophobia at daytime light levels. How this condition affects circadian and neuroendocrine responses to light is not known. In this case series of genetically confirmed congenital achromatopsia patients (n = 7; age 30-72 years; 6 women, 1 male), we examined survey-assessed sleep/circadian phenotype, self-reported visual function, sensitivity to light and use of spectral filters that modify chronic light exposure. In all but one patient, we measured rest-activity cycles using actigraphy over 3 weeks and measured the melatonin phase angle of entrainment using the dim-light melatonin onset. Owing to their light sensitivity, congenital achromatopsia patients used filters to reduce retinal illumination. Thus, congenital achromatopsia patients experienced severely attenuated light exposure. In aggregate, we found a tendency to a late chronotype. We found regular rest-activity patterns in all patients and normal phase angles of entrainment in participants with a measurable dim-light melatonin onset. Our results reveal that a functional cone system and exposure to daytime light intensities are not necessary for regular behavioural and hormonal entrainment, even when survey-assessed sleep and circadian phenotype indicated a tendency for a late chronotype and sleep problems in our congenital achromatopsia cohort.
Collapse
Affiliation(s)
- Manuel Spitschan
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
- Centre for Chronobiology, Psychiatry Hospital of the University of Basel (UPK), CH-4002 Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, CH-4055 Basel, Switzerland
| | - Corrado Garbazza
- Centre for Chronobiology, Psychiatry Hospital of the University of Basel (UPK), CH-4002 Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, CH-4055 Basel, Switzerland
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, D-72076 Tübingen, Germany
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatry Hospital of the University of Basel (UPK), CH-4002 Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, CH-4055 Basel, Switzerland
| |
Collapse
|
36
|
Ali EN, Carle CF, Lueck CJ, Kolic M, Maddess T. Assessing migraine patients with multifocal pupillographic objective perimetry. BMC Neurol 2021; 21:211. [PMID: 34039302 PMCID: PMC8152334 DOI: 10.1186/s12883-021-02239-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/14/2021] [Indexed: 12/22/2022] Open
Abstract
Background To establish the effects of stimulating intrinsically-photosensitive retinal ganglion cells (ipRGCs) on migraine severity, and to determine if migraine produces objectively-measured visual field defects. Methods A randomized, open labelled, crossover study tested migraineurs and normal controls using multifocal pupillographic objective perimetry (mfPOP) with 44 test-regions/eye. A slow blue protocol (BP) stimulated ipRGCs, and a fast yellow protocol (YP) stimulated luminance channels. Migraine diaries assessed migraine severity. Per-region responses were analyzed according to response amplitude and time-to-peak. Results Thirty-eight migraineurs (42.0 ± 16.5 years, 23 females) and 24 normal controls (39.2 ± 15.2 years, 14 females) were tested. The proportion of subjects developing a migraine did not differ after either protocol, either during the 1st day (odds ratio 1.0; 95% confidence interval 0.2–4.4, p = 0.48) or during the first 3 days after testing (odds ratio 0.8; 95% confidence interval 0.3–2.1, p = 0.68). Migraine days/week did not increase following testing with either protocol in comparison to the baseline week (1.4 ± 1.6 pre-testing (mean ± SD), 1.3 ± 1.4 post-BP, and 1.3 ± 1.2 post-YP; p = 0.96), neither did other measures of severity. Migraine occurring up to 2 weeks before testing significantly lowered amplitudes, − 0.64 ± 0.14 dB (mean ± SE), while triptan use increased amplitudes by 0.45 ± 0.10 dB, both at p < 0.001. Conclusions Stimulating ipRGCs did not affect migraine occurrence or severity. Pupillary response characteristics were influenced by the occurrence of a recent migraine attack and a history of triptan use.
Collapse
Affiliation(s)
- Eman N Ali
- Eccles Institute of Neuroscience, the John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia.,Department of Neuroscience, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Corinne F Carle
- Eccles Institute of Neuroscience, the John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
| | - Christian J Lueck
- Australian National University Medical School, Acton, ACT, Australia.,Department of Neurology, The Canberra Hospital, Canberra, ACT, Australia
| | - Maria Kolic
- Eccles Institute of Neuroscience, the John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
| | - Ted Maddess
- Eccles Institute of Neuroscience, the John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia.
| |
Collapse
|
37
|
Stinchcombe AR, Hu C, Walch OJ, Faught SD, Wong KY, Forger DB. M1-Type, but Not M4-Type, Melanopsin Ganglion Cells Are Physiologically Tuned to the Central Circadian Clock. Front Neurosci 2021; 15:652996. [PMID: 34025341 PMCID: PMC8134526 DOI: 10.3389/fnins.2021.652996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
Proper circadian photoentrainment is crucial for the survival of many organisms. In mammals, intrinsically photosensitive retinal ganglion cells (ipRGCs) can use the photopigment melanopsin to sense light independently from rod and cone photoreceptors and send this information to many brain nuclei such as the suprachiasmatic nucleus (SCN), the site of the central circadian pacemaker. Here, we measure ionic currents and develop mathematical models of the electrical activity of two types of ipRGCs: M1, which projects to the SCN, and M4, which does not. We illustrate how their ionic properties differ, mainly how ionic currents generate lower spike rates and depolarization block in M1 ipRGCs. Both M1 and M4 cells have large geometries and project to higher visual centers of the brain via the optic nerve. Using a partial differential equation model, we show how axons of M1 and M4 cells faithfully convey information from the soma to the synapse even when the signal at the soma is attenuated due to depolarization block. Finally, we consider an ionic model of circadian photoentrainment from ipRGCs synapsing on SCN neurons and show how the properties of M1 ipRGCs are tuned to create accurate transmission of visual signals from the retina to the central pacemaker, whereas M4 ipRGCs would not evoke nearly as efficient a postsynaptic response. This work shows how ipRGCs and SCN neurons' electrical activities are tuned to allow for accurate circadian photoentrainment.
Collapse
Affiliation(s)
| | - Caiping Hu
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Olivia J Walch
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Samuel D Faught
- Department of Mathematics, University of Michigan, Ann Arbor, MI, United States
| | - Kwoon Y Wong
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Daniel B Forger
- Department of Mathematics, University of Michigan, Ann Arbor, MI, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States.,Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
38
|
Ribeiro J, Procyk CA, West EL, O'Hara-Wright M, Martins MF, Khorasani MM, Hare A, Basche M, Fernando M, Goh D, Jumbo N, Rizzi M, Powell K, Tariq M, Michaelides M, Bainbridge JWB, Smith AJ, Pearson RA, Gonzalez-Cordero A, Ali RR. Restoration of visual function in advanced disease after transplantation of purified human pluripotent stem cell-derived cone photoreceptors. Cell Rep 2021; 35:109022. [PMID: 33882303 PMCID: PMC8065177 DOI: 10.1016/j.celrep.2021.109022] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/08/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration and other macular diseases result in the loss of light-sensing cone photoreceptors, causing irreversible sight impairment. Photoreceptor replacement may restore vision by transplanting healthy cells, which must form new synaptic connections with the recipient retina. Despite recent advances, convincing evidence of functional connectivity arising from transplanted human cone photoreceptors in advanced retinal degeneration is lacking. Here, we show restoration of visual function after transplantation of purified human pluripotent stem cell-derived cones into a mouse model of advanced degeneration. Transplanted human cones elaborate nascent outer segments and make putative synapses with recipient murine bipolar cells (BCs), which themselves undergo significant remodeling. Electrophysiological and behavioral assessments demonstrate restoration of surprisingly complex light-evoked retinal ganglion cell responses and improved light-evoked behaviors in treated animals. Stringent controls exclude alternative explanations, including material transfer and neuroprotection. These data provide crucial validation for photoreceptor replacement therapy and for the potential to rescue cone-mediated vision.
Collapse
Affiliation(s)
- Joana Ribeiro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Emma L West
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Monica F Martins
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Aura Hare
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Mark Basche
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Milan Fernando
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Debbie Goh
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Neeraj Jumbo
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Matteo Rizzi
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Kate Powell
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Menahil Tariq
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | | - Alexander J Smith
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Rachael A Pearson
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Robin R Ali
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; Kellogg Eye Centre, University of Michigan, 1000 Wall St., Ann Arbor, MI 48105, USA.
| |
Collapse
|
39
|
Mure LS. Intrinsically Photosensitive Retinal Ganglion Cells of the Human Retina. Front Neurol 2021; 12:636330. [PMID: 33841306 PMCID: PMC8027232 DOI: 10.3389/fneur.2021.636330] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Light profoundly affects our mental and physical health. In particular, light, when not delivered at the appropriate time, may have detrimental effects. In mammals, light is perceived not only by rods and cones but also by a subset of retinal ganglion cells that express the photopigment melanopsin that renders them intrinsically photosensitive (ipRGCs). ipRGCs participate in contrast detection and play critical roles in non-image-forming vision, a set of light responses that include circadian entrainment, pupillary light reflex (PLR), and the modulation of sleep/alertness, and mood. ipRGCs are also found in the human retina, and their response to light has been characterized indirectly through the suppression of nocturnal melatonin and PLR. However, until recently, human ipRGCs had rarely been investigated directly. This gap is progressively being filled as, over the last years, an increasing number of studies provided descriptions of their morphology, responses to light, and gene expression. Here, I review the progress in our knowledge of human ipRGCs, in particular, the different morphological and functional subtypes described so far and how they match the murine subtypes. I also highlight questions that remain to be addressed. Investigating ipRGCs is critical as these few cells play a major role in our well-being. Additionally, as ipRGCs display increased vulnerability or resilience to certain disorders compared to conventional RGCs, a deeper knowledge of their function could help identify therapeutic approaches or develop diagnostic tools. Overall, a better understanding of how light is perceived by the human eye will help deliver precise light usage recommendations and implement light-based therapeutic interventions to improve cognitive performance, mood, and life quality.
Collapse
Affiliation(s)
- Ludovic S Mure
- Institute of Physiology, University of Bern, Bern, Switzerland.,Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland
| |
Collapse
|
40
|
Blue light insertion at night is involved in sleep and arousal-promoting response delays and depressive-like emotion in mice. Biosci Rep 2021; 41:227923. [PMID: 33624794 PMCID: PMC7938454 DOI: 10.1042/bsr20204033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
Light plays a direct crucial role in the switch between sleep and arousal and the regulation of physiology and behaviour, such as circadian rhythms and emotional change. Artificial lights, which are different from natural light sources with a continuous light spectrum, are composed of three single-colour lights and are increasingly applied in modern society. However, in vivo research on the mechanisms of blue light-regulated sleep and arousal is still insufficient. In this work, we detected the effects of inserting white or blue light for 1 h during the dark period on the wheel-running activity and sucrose preference of C57 mice. The results showed that blue light could induce delays in sleep and arousal-promoting responses. Furthermore, this lighting pattern, including blue light alone, induced depressive-like emotions. The c-fos expression in the blue light group was significantly higher in the arcuate hypothalamic nucleus (Arc) and significantly lower in the cingulate cortex (Cg) and anterior part of the paraventricular thalamic nucleus (PVA) than in the white light group. Compared with the white light group, the phospho-ERK expression in the paraventricular hypothalamic nucleus (PVN) and PVA was lower in the blue light group. These molecular changes indicated that certain brain regions are involved in blue light-induced response processes. This study may provide useful information to explore the specific mechanism of special light-regulated physiological function.
Collapse
|
41
|
Schlangen LJM, Price LLA. The Lighting Environment, Its Metrology, and Non-visual Responses. Front Neurol 2021; 12:624861. [PMID: 33746879 PMCID: PMC7970181 DOI: 10.3389/fneur.2021.624861] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
International standard CIE S 026:2018 provides lighting professionals and field researchers in chronobiology with a method to characterize light exposures with respect to non-visual photoreception and responses. This standard defines five spectral sensitivity functions that describe optical radiation for its ability to stimulate each of the five α-opic retinal photoreceptor classes that contribute to the non-visual effects of light in humans via intrinsically-photosensitive retinal ganglion cells (ipRGCs). The CIE also recently published an open-access α-opic toolbox that calculates all the quantities and ratios of the α-opic metrology in the photometric, radiometric and photon systems, based on either a measured (user-defined) spectrum or selected illuminants (A, D65, E, FL11, LED-B3) built into the toolbox. For a wide variety of ecologically-valid conditions, the melanopsin-based photoreception of ipRGCs has been shown to account for the spectral sensitivity of non-visual responses, from shifting the timing of nocturnal sleep and melatonin secretion to regulating steady-state pupil diameter. Recent findings continue to confirm that the photopigment melanopsin also plays a role in visual responses, and that melanopsin-based photoreception may have a significant influence on brightness perception and aspects of spatial vision. Although knowledge concerning the extent to which rods and cones interact with ipRGCs in driving non-visual effects is still growing, a CIE position statement recently used melanopic equivalent daylight (D65) illuminance in preliminary guidance on applying "proper light at the proper time" to manipulate non-visual responses. Further guidance on this approach is awaited from the participants of the 2nd International Workshop on Circadian and Neurophysiological Photometry (in Manchester, August 2019). The new α-opic metrology of CIE S 026 enables traceable measurements and a formal, quantitative specification of personal light exposures, photic interventions and lighting designs. Here, we apply this metrology to everyday light sources including a natural daylight time series, a range of LED lighting products and, using the toobox, to a smartphone display screen. This collection of examples suggests ways in which variations in the melanopic content of light over the day can be adopted in strategies that use light to support human health and well-being.
Collapse
Affiliation(s)
- Luc J. M. Schlangen
- Department Human-Technology Interaction, Intelligent Lighting Institute, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Luke L. A. Price
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, United Kingdom
| |
Collapse
|
42
|
Pottackal J, Walsh HL, Rahmani P, Zhang K, Justice NJ, Demb JB. Photoreceptive Ganglion Cells Drive Circuits for Local Inhibition in the Mouse Retina. J Neurosci 2021; 41:1489-1504. [PMID: 33397711 PMCID: PMC7896016 DOI: 10.1523/jneurosci.0674-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/11/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) exhibit melanopsin-dependent light responses that persist in the absence of rod and cone photoreceptor-mediated input. In addition to signaling anterogradely to the brain, ipRGCs signal retrogradely to intraretinal circuitry via gap junction-mediated electrical synapses with amacrine cells (ACs). However, the targets and functions of these intraretinal signals remain largely unknown. Here, in mice of both sexes, we identify circuitry that enables M5 ipRGCs to locally inhibit retinal neurons via electrical synapses with a nonspiking GABAergic AC. During pharmacological blockade of rod- and cone-mediated input, whole-cell recordings of corticotropin-releasing hormone-expressing (CRH+) ACs reveal persistent visual responses that require both melanopsin expression and gap junctions. In the developing retina, ipRGC-mediated input to CRH+ ACs is weak or absent before eye opening, indicating a primary role for this input in the mature retina (i.e., in parallel with rod- and cone-mediated input). Among several ipRGC types, only M5 ipRGCs exhibit consistent anatomical and physiological coupling to CRH+ ACs. Optogenetic stimulation of local CRH+ ACs directly drives IPSCs in M4 and M5, but not M1-M3, ipRGCs. CRH+ ACs also inhibit M2 ipRGC-coupled spiking ACs, demonstrating direct interaction between discrete networks of ipRGC-coupled interneurons. Together, these results demonstrate a functional role for electrical synapses in translating ipRGC activity into feedforward and feedback inhibition of local retinal circuits.SIGNIFICANCE STATEMENT Melanopsin directly generates light responses in intrinsically photosensitive retinal ganglion cells (ipRGCs). Through gap junction-mediated electrical synapses with retinal interneurons, these uniquely photoreceptive RGCs may also influence the activity and output of neuronal circuits within the retina. Here, we identified and studied an electrical synaptic circuit that, in principle, could couple ipRGC activity to the chemical output of an identified retinal interneuron. Specifically, we found that M5 ipRGCs form electrical synapses with corticotropin-releasing hormone-expressing amacrine cells, which locally release GABA to inhibit specific RGC types. Thus, ipRGCs are poised to influence the output of diverse retinal circuits via electrical synapses with interneurons.
Collapse
Affiliation(s)
| | | | | | | | - Nicholas J Justice
- Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas 77030
| | - Jonathan B Demb
- Interdepartmental Neuroscience Program
- Department of Ophthalmology and Visual Science
- Department of Cellular and Molecular Physiology
- Department of Neuroscience, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
43
|
Wong KY, Fernandez FX. Circadian Responses to Light-Flash Exposure: Conceptualization and New Data Guiding Future Directions. Front Neurol 2021; 12:627550. [PMID: 33643205 PMCID: PMC7905211 DOI: 10.3389/fneur.2021.627550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/21/2021] [Indexed: 01/03/2023] Open
Abstract
A growing number of studies document circadian phase-shifting after exposure to millisecond light flashes. When strung together by intervening periods of darkness, these stimuli evoke pacemaker responses rivaling or outmatching those created by steady luminance, suggesting that the circadian system's relationship to light can be contextualized outside the principle of simple dose-dependence. In the current review, we present a brief chronology of this work. We then develop a conceptual model around it that attempts to relate the circadian effects of flashes to a natural integrative process the pacemaker uses to intermittently sample the photic information available at dawn and dusk. Presumably, these snapshots are employed as building blocks in the construction of a coherent representation of twilight the pacemaker consults to orient the next day's physiology (in that way, flash-resetting of pacemaker rhythms might be less an example of a circadian visual illusion and more an example of the kinds of gestalt inferences that the image-forming system routinely makes when identifying objects within the visual field; i.e., closure). We conclude our review with a discussion on the role of cones in the pacemaker's twilight predictions, providing new electrophysiological data suggesting that classical photoreceptors—but not melanopsin—are necessary for millisecond, intermediate-intensity flash responses in ipRGCs (intrinsically photosensitive retinal ganglion cells). Future investigations are necessary to confirm this “Cone Sentinel Model” of circadian flash-integration and twilight-prediction, and to further define the contribution of cones vs. rods in transducing pacemaker flash signals.
Collapse
Affiliation(s)
- Kwoon Y Wong
- Department of Molecular, Cellular, & Developmental Biology, University of Michigan, Ann Arbor, MI, United States.,Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Fabian-Xosé Fernandez
- Department of Psychology, BIO5 Research Institute, University of Arizona, Tucson, AZ, United States.,Department of Neurology, McKnight Brain Research Institute, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
44
|
Rea MS, Nagare R, Figueiro MG. Modeling Circadian Phototransduction: Retinal Neurophysiology and Neuroanatomy. Front Neurosci 2021; 14:615305. [PMID: 33613175 PMCID: PMC7892603 DOI: 10.3389/fnins.2020.615305] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
The retina is a complex, but well-organized neural structure that converts optical radiation into neural signals that convey photic information to a wide variety of brain structures. The present paper is concerned with the neural circuits underlying phototransduction for the central pacemaker of the human circadian system. The proposed neural framework adheres to orthodox retinal neuroanatomy and neurophysiology. Several postulated mechanisms are also offered to account for the high threshold and for the subadditive response to polychromatic light exhibited by the human circadian phototransduction circuit. A companion paper, modeling circadian phototransduction: Quantitative predictions of psychophysical data, provides a computational model for predicting psychophysical data associated with nocturnal melatonin suppression while staying within the constraints of the neurophysiology and neuroanatomy offered here.
Collapse
Affiliation(s)
- Mark S. Rea
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States
- Icahn School of Medicine, Mount Sinai, New York, NY, United States
| | - Rohan Nagare
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States
- Icahn School of Medicine, Mount Sinai, New York, NY, United States
| | - Mariana G. Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States
- Icahn School of Medicine, Mount Sinai, New York, NY, United States
| |
Collapse
|
45
|
Orexin-A Intensifies Mouse Pupillary Light Response by Modulating Intrinsically Photosensitive Retinal Ganglion Cells. J Neurosci 2021; 41:2566-2580. [PMID: 33536197 DOI: 10.1523/jneurosci.0217-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 12/24/2022] Open
Abstract
We show for the first time that the neuropeptide orexin modulates pupillary light response, a non-image-forming visual function, in mice of either sex. Intravitreal injection of the orexin receptor (OXR) antagonist TCS1102 and orexin-A reduced and enhanced pupillary constriction in response to light, respectively. Orexin-A activated OX1Rs on M2-type intrinsically photosensitive retinal ganglion cells (M2 cells), and caused membrane depolarization of these cells by modulating inward rectifier potassium channels and nonselective cation channels, thus resulting in an increase in intrinsic excitability. The increased intrinsic excitability could account for the orexin-A-evoked increase in spontaneous discharges and light-induced spiking rates of M2 cells, leading to an intensification of pupillary constriction. Orexin-A did not alter the light response of M1 cells, which could be because of no or weak expression of OX1Rs on them, as revealed by RNAscope in situ hybridization. In sum, orexin-A is likely to decrease the pupil size of mice by influencing M2 cells, thereby improving visual performance in awake mice via enhancing the focal depth of the eye's refractive system.SIGNIFICANCE STATEMENT This study reveals the role of the neuropeptide orexin in mouse pupillary light response, a non-image-forming visual function. Intravitreal orexin-A administration intensifies light-induced pupillary constriction via increasing the excitability of M2 intrinsically photosensitive retinal ganglion cells by activating the orexin receptor subtype OX1R. Modulation of inward rectifier potassium channels and nonselective cation channels were both involved in the ionic mechanisms underlying such intensification. Orexin could improve visual performance in awake mice by reducing the pupil size and thereby enhancing the focal depth of the eye's refractive system.
Collapse
|
46
|
Aranda ML, Schmidt TM. Diversity of intrinsically photosensitive retinal ganglion cells: circuits and functions. Cell Mol Life Sci 2021; 78:889-907. [PMID: 32965515 PMCID: PMC8650628 DOI: 10.1007/s00018-020-03641-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
Abstract
The melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) are a relatively recently discovered class of atypical ganglion cell photoreceptor. These ipRGCs are a morphologically and physiologically heterogeneous population that project widely throughout the brain and mediate a wide array of visual functions ranging from photoentrainment of our circadian rhythms, to driving the pupillary light reflex to improve visual function, to modulating our mood, alertness, learning, sleep/wakefulness, regulation of body temperature, and even our visual perception. The presence of melanopsin as a unique molecular signature of ipRGCs has allowed for the development of a vast array of molecular and genetic tools to study ipRGC circuits. Given the emerging complexity of this system, this review will provide an overview of the genetic tools and methods used to study ipRGCs, how these tools have been used to dissect their role in a variety of visual circuits and behaviors in mice, and identify important directions for future study.
Collapse
Affiliation(s)
- Marcos L Aranda
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
47
|
Melanopic Limits of Metamer Spectral Optimisation in Multi-Channel Smart Lighting Systems. ENERGIES 2021. [DOI: 10.3390/en14030527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Modern indoor lighting faces the challenge of finding an appropriate balance between energy consumption, legal requirements, visual performance, and the circadian effectiveness of a spectrum. Multi-channel LED luminaires have the option of keeping image-forming metrics steady while varying the melanopic radiance through metamer spectra for non-visual purposes. Here, we propose the theoretical concept of an automated smart lighting system that is designed to satisfy the user’s visual preference through neural networks while triggering the non-visual pathway via metamers. To quantify the melanopic limits of metamers at a steady chromaticity point, we have used 561 chromaticity coordinates along the Planckian locus (2700 K to 7443 K, ±Duv 0 to 0.048) as optimisation targets and generated the spectra by using a 6-channel, 8-channel, and 11-channel LED combination at three different luminance levels. We have found that in a best-case scenario, the melanopic radiance can be varied up to 65% while keeping the chromaticity coordinates constant (Δu′v′≤7.05×10−5) by using metamer spectra. The highest melanopic metamer contrast can be reached near the Planckian locus between 3292 and 4717 K within a Duv range of −0.009 to 0.006. Additionally, we publish over 1.2 million optimised spectra generated by multichannel LED luminaires as an open-source dataset along with this work.
Collapse
|
48
|
Zandi B, Khanh TQ. Deep learning-based pupil model predicts time and spectral dependent light responses. Sci Rep 2021; 11:841. [PMID: 33436693 PMCID: PMC7803766 DOI: 10.1038/s41598-020-79908-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
Although research has made significant findings in the neurophysiological process behind the pupillary light reflex, the temporal prediction of the pupil diameter triggered by polychromatic or chromatic stimulus spectra is still not possible. State of the art pupil models rested in estimating a static diameter at the equilibrium-state for spectra along the Planckian locus. Neither the temporal receptor-weighting nor the spectral-dependent adaptation behaviour of the afferent pupil control path is mapped in such functions. Here we propose a deep learning-driven concept of a pupil model, which reconstructs the pupil's time course either from photometric and colourimetric or receptor-based stimulus quantities. By merging feed-forward neural networks with a biomechanical differential equation, we predict the temporal pupil light response with a mean absolute error below 0.1 mm from polychromatic (2007 [Formula: see text] 1 K, 4983 [Formula: see text] 3 K, 10,138 [Formula: see text] 22 K) and chromatic spectra (450 nm, 530 nm, 610 nm, 660 nm) at 100.01 ± 0.25 cd/m2. This non-parametric and self-learning concept could open the door to a generalized description of the pupil behaviour.
Collapse
Affiliation(s)
- Babak Zandi
- Department of Electrical Engineering and Information Technology, Laboratory of Lighting Technology, Technical University of Darmstadt, 64289, Darmstadt, Germany.
| | - Tran Quoc Khanh
- Department of Electrical Engineering and Information Technology, Laboratory of Lighting Technology, Technical University of Darmstadt, 64289, Darmstadt, Germany
| |
Collapse
|
49
|
Harrison KR, Chervenak AP, Resnick SM, Reifler AN, Wong KY. Amacrine Cells Forming Gap Junctions With Intrinsically Photosensitive Retinal Ganglion Cells: ipRGC Types, Neuromodulator Contents, and Connexin Isoform. Invest Ophthalmol Vis Sci 2021; 62:10. [PMID: 33410914 PMCID: PMC7804497 DOI: 10.1167/iovs.62.1.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Intrinsically photosensitive retinal ganglion cells (ipRGCs) signal not only centrally to non-image-forming visual centers of the brain but also intraretinally to amacrine interneurons through gap junction electrical coupling, potentially modulating image-forming retinal processing. We aimed to determine (1) which ipRGC types couple with amacrine cells, (2) the neuromodulator contents of ipRGC-coupled amacrine cells, and (3) whether connexin36 (Cx36) contributes to ipRGC-amacrine coupling. Methods Gap junction-permeable Neurobiotin tracer was injected into green fluorescent protein (GFP)-labeled ipRGCs in Opn4Cre/+; Z/EG mice to stain coupled amacrine cells, and immunohistochemistry was performed to reveal the neuromodulator contents of the Neurobiotin-stained amacrine cells. We also created Opn4Cre/+; Cx36flox/flox; Z/EG mice to knock out Cx36 in GFP-labeled ipRGCs and looked for changes in the number of ipRGC-coupled amacrine cells. Results Seventy-three percent of ipRGCs, including all six types (M1-M6), were tracer-coupled with amacrine somas 5.7 to 16.5 µm in diameter but not with ganglion cells. Ninety-two percent of the ipRGC-coupled somas were in the ganglion cell layer and the rest in the inner nuclear layer. Some ipRGC-coupled amacrine cells were found to accumulate serotonin or to contain nitric oxide synthase or neuropeptide Y. Knocking out Cx36 in M2 and M4 dramatically reduced the number of coupled somas. Conclusions Heterologous gap junction coupling with amacrine cells is widespread across mouse ipRGC types. ipRGC-coupled amacrine cells probably comprise multiple morphologic types and use multiple neuromodulators, suggesting that gap junctional ipRGC-to-amacrine signaling likely exerts diverse modulatory effects on retinal physiology. ipRGC-amacrine coupling is mediated partly, but not solely, by Cx36.
Collapse
Affiliation(s)
- Krystal R. Harrison
- Department of Molecular, Cellular, & Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| | - Andrew P. Chervenak
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Sarah M. Resnick
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Aaron N. Reifler
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Kwoon Y. Wong
- Department of Molecular, Cellular, & Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
50
|
Abstract
Melanopsin retinal ganglion cells (mRGCs) are the third class of retinal photoreceptors with unique anatomical, electrophysiological, and biological features. There are different mRGC subtypes with differential projections to the brain. These cells contribute to many nonimage-forming functions of the eye, the most relevant being the photoentrainment of circadian rhythms through the projections to the suprachiasmatic nucleus of the hypothalamus. Other relevant biological functions include the regulation of the pupillary light reflex, mood, alertness, and sleep, as well as a possible role in formed vision. The relevance of the mRGC-related pathways in the brain is highlighted by the role that the dysfunction and/or loss of these cells may play in affecting circadian rhythms and sleep in many neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease and in aging. Moreover, the occurrence of circadian dysfunction is a known risk factor for dementia. In this chapter, the anatomy, physiology, and functions of these cells as well as their resistance to neurodegeneration in mitochondrial optic neuropathies or their predilection to be lost in other neurodegenerative disorders will be discussed.
Collapse
|