1
|
Crisford A, Cook H, Bourdakos K, Venkateswaran S, Dunlop D, Oreffo ROC, Mahajan S. Harnessing Raman spectroscopy and multimodal imaging of cartilage for osteoarthritis diagnosis. Sci Rep 2024; 14:31466. [PMID: 39733214 PMCID: PMC11682361 DOI: 10.1038/s41598-024-83155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
Osteoarthritis (OA) is a complex disease of cartilage characterised by joint pain, functional limitation, and reduced quality of life with affected joint movement leading to pain and limited mobility. Current methods to diagnose OA are predominantly limited to X-ray, MRI and invasive joint fluid analysis, all of which lack chemical or molecular specificity and are limited to detection of the disease at later stages. A rapid minimally invasive and non-destructive approach to disease diagnosis is a critical unmet need. Label-free techniques such as Raman Spectroscopy (RS), Coherent anti-Stokes Raman scattering (CARS), Second Harmonic Generation (SHG) and Two Photon Fluorescence (TPF) are increasingly being used to characterise cartilage tissue. However, current studies are based on whole tissue analysis and do not consider the different and structurally distinct layers in cartilage. In this work, we use Raman spectroscopy to obtain signatures from the superficial (top) and deep (bottom) layer of healthy and osteoarthritic cartilage samples from 64 patients (19 control and 45 OA). Spectra were acquired both in the 'fingerprint' region from 700 to 1720 cm- 1 and high-frequency stretching region from 2500 to 3300 cm- 1. Principal component and linear discriminant analysis was used to identify the peaks that contributed significantly to classification accuracy of the different samples. The most pronounced differences were observed at the proline (855 cm- 1 and 921 cm- 1) and hydroxyproline (877 cm- 1 and 938 cm- 1), sulphated glycosaminoglycan (sGAG) (1064 cm- 1 and 1380 cm- 1) frequencies for both control and OA as well as the 1245 cm- 1 and 1272 cm- 1, 1320 cm- 1 and 1345 cm- 1, 1451 cm- 1 collagen modes were altered in OA samples, consistent with expected collagen structural changes. Classification accuracy based on Raman fingerprint spectral analysis of superficial and deep layer cartilage for controls was found to be 97% and 93% on using individual/all spectra and, 100% and 95% on using mean spectra per patient, respectively. OA diseased cartilage was classified with an accuracy of 88% and 84% for individual/all spectra, and 96% and 95% for mean spectra per patient based on analysis of the superficial and the deep layers, respectively. Raman spectra from the C-H stretching region (2500-3300 cm- 1) resulted in high classification accuracy for identification of different layers and OA diseased cartilage but low accuracy for controls. Differential changes in superficial and deep layer cartilage signatures were observed with age (under 60 and over 60 years), in contrast, less significant differences were observed with gender. Prominent chemical changes in the different layers of cartilage were preliminarily imaged using CARS, SHG and TPF. Cell clustering was observed in OA together with differences in pericellular matrix and collagen structure in the superficial and the deep layers correlating with the Raman spectral analysis. The current study demonstrates the potential of Raman Spectroscopy and multimodal imaging to interrogate cartilage tissue and provides insight into the chemical and structural composition of its different layers with significant implications for OA diagnosis for an increasing aging demographic.
Collapse
Affiliation(s)
- Anna Crisford
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK.
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Hiroki Cook
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK
| | - Konstantinos Bourdakos
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK
| | | | - Douglas Dunlop
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Richard O C Oreffo
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Sumeet Mahajan
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
2
|
Cho B, Jang SJ, Hwang HS, Kim T. Convergent Evolution of Armor: Thermal Resistance in Deep-Sea Hydrothermal Vent Crustaceans. BIOLOGY 2024; 13:956. [PMID: 39765623 PMCID: PMC11673863 DOI: 10.3390/biology13120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/09/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Organisms occupy diverse ecological niches worldwide, each with characteristics finely evolved for their environments. Crustaceans residing in deep-sea hydrothermal vents, recognized as one of Earth's extreme environments, may have adapted to withstand severe conditions, including elevated temperatures and pressure. This study compares the exoskeletons of two vent crustaceans (bythograeid crab Austinograea sp. and squat lobster Munidopsis lauensis) with four coastal species (Asian paddle crabs, blue crab, hermit crab, and mantis shrimp) to identify traits influenced by vent environments. The goal was to identify distinctive exoskeletal characteristics commonly observed in vent crustaceans, resulting from their exposure to severe abiotic factors, including elevated temperatures and pressures, found in vent environments. Results show that the exoskeletons of vent crustaceans demonstrated significantly enhanced thermal stability compared to coastal species. These vent crustaceans consistently featured exoskeletons characterized by a reduced proportion of volatile components, such as water, and an increased proportion of CaCO3, compared with coastal crustaceans. Furthermore, vent crustaceans lacked carotenoid pigments that had low heat resistance. However, no apparent differences were observed in the mechanical properties. Our findings suggest that the similar composition of exoskeletons in vent crustaceans evolved convergently to withstand high temperatures.
Collapse
Affiliation(s)
- Boongho Cho
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China;
- Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Sook-Jin Jang
- Ocean Georesources Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea;
- BK21 Center for Precision Medicine & Smart Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Hee-seung Hwang
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA;
| | - Taewon Kim
- Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
3
|
Drewke EE, Brand RL, Geels CG, Jensen HK, Wong K, Sanders JD, Rajaram N. Noncontact Diffuse Reflectance Spectroscopy of Synovial Fluid Samples for Rapid Identification of Infections. JOURNAL OF BIOPHOTONICS 2024; 17:e202400213. [PMID: 39233380 DOI: 10.1002/jbio.202400213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024]
Abstract
Severe joint infections, such as septic arthritis, require rapid diagnostic testing of the synovial fluid aspirated from joints level so that a surgical team can be assembled quickly. We present a diffuse reflectance spectroscopy (DRS) system for noncontact determination of infection. Using a light-tight syringe holder and fiber optic probe, diffusely reflected light from 475 to 655 nm was acquired from 18 patient samples through the wall of a syringe in a noncontact and sterile manner. We determined the reflectance ratios at two different wavelengths-R 490/R 600 and R 580/R 600 and found statistically significant differences (p < 0.05) in both ratios between the infected and noninfected groups. Critically, the R 490/R 600 and R 580/R 600 ratios were significantly correlated with clinical biomarkers-the white blood cell (WBC) and red blood cell (RBC) counts, respectively. This study demonstrates the potential of DRS as a rapid diagnostic tool for joint infections.
Collapse
Affiliation(s)
- Erin E Drewke
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Robert L Brand
- College of Medicine, University of Arkansas for Medical Sciences, Fayetteville, Arkansas, USA
| | - Caroline G Geels
- College of Medicine, University of Arkansas for Medical Sciences, Fayetteville, Arkansas, USA
| | - Hanna K Jensen
- Department of Surgery, University of Arkansas for Medical Sciences, Fayetteville, Arkansas, USA
| | - Kevin Wong
- Department of Radiology, University of South Alabama, Mobile, Alabama, USA
| | | | - Narasimhan Rajaram
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
4
|
Shahini F, Oskouei S, Nippolainen E, Mohammadi A, Sarin JK, Moller NCRT, Brommer H, Shaikh R, Korhonen RK, van Weeren PR, Töyräs J, Afara IO. Infrared Spectroscopy Can Differentiate Between Cartilage Injury Models: Implication for Assessment of Cartilage Integrity. Ann Biomed Eng 2024; 52:2521-2533. [PMID: 38902468 PMCID: PMC11329391 DOI: 10.1007/s10439-024-03540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/08/2024] [Indexed: 06/22/2024]
Abstract
In order to improve the ability of clinical diagnosis to differentiate articular cartilage (AC) injury of different origins, this study explores the sensitivity of mid-infrared (MIR) spectroscopy for detecting structural, compositional, and functional changes in AC resulting from two injury types. Three grooves (two in parallel in the palmar-dorsal direction and one in the mediolateral direction) were made via arthrotomy in the AC of the radial facet of the third carpal bone (middle carpal joint) and of the intermediate carpal bone (the radiocarpal joint) of nine healthy adult female Shetland ponies (age = 6.8 ± 2.6 years; range 4-13 years) using blunt and sharp tools. The defects were randomly assigned to each of the two joints. Ponies underwent a 3-week box rest followed by 8 weeks of treadmill training and 26 weeks of free pasture exercise before being euthanized for osteochondral sample collection. The osteochondral samples underwent biomechanical indentation testing, followed by MIR spectroscopic assessment. Digital densitometry was conducted afterward to estimate the tissue's proteoglycan (PG) content. Subsequently, machine learning models were developed to classify the samples to estimate their biomechanical properties and PG content based on the MIR spectra according to injury type. Results show that MIR is able to discriminate healthy from injured AC (91%) and between injury types (88%). The method can also estimate AC properties with relatively low error (thickness = 12.7% mm, equilibrium modulus = 10.7% MPa, instantaneous modulus = 11.8% MPa). These findings demonstrate the potential of MIR spectroscopy as a tool for assessment of AC integrity changes that result from injury.
Collapse
Affiliation(s)
- Fatemeh Shahini
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
| | - Soroush Oskouei
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Ervin Nippolainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Ali Mohammadi
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Jaakko K Sarin
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Medical Physics, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland
| | - Nikae C R Te Moller
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Harold Brommer
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rubina Shaikh
- Centre for Radiation and Environmental Science, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - P René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Utrecht, Utrecht, The Netherlands
| | - Juha Töyräs
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Australia
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - Isaac O Afara
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Australia
| |
Collapse
|
5
|
Cho B, Seo H, Hong J, Jang SJ, Kim T. Exoskeletal Trade-off between Claws and Carapace in Deep-sea Hydrothermal Vent Decapod Crustaceans. Integr Comp Biol 2024; 64:80-91. [PMID: 38599630 DOI: 10.1093/icb/icae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
Limitations on energetic resources create evolutionary trade-offs, prompting us to investigate if investment in claw strength remains consistent across crustaceans living in diverse habitats. Decapod crustaceans living in deep-sea hydrothermal vents are ideal for this study due to their extreme environment. In this study, we investigated whether decapods (blind crab Austinograea sp. and the squat lobster Munidopsis lauensis) living in deep-sea hydrothermal vents prioritize investing in strong claws compared to the carapace, like coastal decapods. We analyzed exoskeleton morphology, mechanical properties, structures, and elemental composition in both the carapace and claws of four Decapoda species (two each from Brachyura and Anomura infraorders) in vent and coastal habitats. Coastal decapods had ∼4-9 times more teeth on their claw cutting edge than the vent species. Further, only the coastal species exhibited higher firmness in their claws than in their carapaces. Each infraorder controlled exoskeletal hardness differently: Brachyura changed the stacking height of the Bouligand structure, while Anomura regulated magnesium content in the exoskeleton. The vent decapods may prioritize strengthening their carapace over developing robust claws, allocating resources to adapt to the harsh conditions of deep-sea hydrothermal vents. This choice might enhance their survival in the extreme environment, where carapace strength is crucial for protecting internal organs from environmental factors, rather than relying on the powerful claws seen in coastal decapods for a competitive advantage.
Collapse
Affiliation(s)
- Boongho Cho
- Program in Biomedical Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Hyein Seo
- Program in Biomedical Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Junyoung Hong
- Program in Biomedical Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Sook-Jin Jang
- BK21 Center for Precision Medicine & Smart Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Ocean Georesources Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Taewon Kim
- Program in Biomedical Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
6
|
Ghaithi AKA, Al Maskari SM, Al Mutani MM, Bimani AMA, Al Jabri Z, Badi KSA, Husband J. Specific discrimination of pathogenic bacteria causing septic arthritis using Raman spectroscopy: In-vitro study. Diagn Microbiol Infect Dis 2024; 109:116339. [PMID: 38735148 DOI: 10.1016/j.diagmicrobio.2024.116339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
In this study we performed preliminary experiments using Raman spectroscopy as an evolving technology in biofluid and microbial characterization, to explore its potential for rapid diagnosis of pathogenic bacteria in an in-vitro synovial fluid infection model. Normal human synovial fluids samples were collected from patients undergoing knee surgery and the three most common pathogenic bacteria introduced in-vitro into the samples. The bacterial growth was systematically monitored using a Raman spectroscopy. Multivariate regression analysis of acquired spectra showed bacterial characteristic Raman bands related to bacterial cell membranes and DNA structures to increase continuously as the incubation period was increased. Spectra signature recorded from cultured synovial fluid samples showed a significant loss in synovial quality and protein morphology over time compared to control samples. In this study, Raman spectroscopy shows promise for rapid pathogenic bacteria identification in synovial fluid. Marker peaks distinguished inoculated bacteria, while chemical changes reveal infection dynamics.
Collapse
Affiliation(s)
- Ahmed K Al Ghaithi
- Department of Surgery, Division of Orthopedic, Sultan Qaboos University, Muscat, Oman.
| | - Sultan M Al Maskari
- Department of Surgery, Division of Orthopedic, Sultan Qaboos University, Muscat, Oman
| | - Mohammad M Al Mutani
- Department of Surgery, Division of Orthopedic, Sultan Qaboos University, Muscat, Oman
| | - Atika M Al Bimani
- Department of Microbiology, College of Medicine, Sultan Qaboos University, Muscat, Oman
| | - Zaaima Al Jabri
- Department of Microbiology, College of Medicine, Sultan Qaboos University, Muscat, Oman
| | - Khoula S Al Badi
- Department of Surgery, Division of Orthopedic, Sultan Qaboos University, Muscat, Oman
| | - John Husband
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
7
|
Onu I, Gherghel R, Nacu I, Cojocaru FD, Verestiuc L, Matei DV, Cascaval D, Serban IL, Iordan DA, Tucaliuc A, Galaction AI. Can Combining Hyaluronic Acid and Physiotherapy in Knee Osteoarthritis Improve the Physicochemical Properties of Synovial Fluid? Biomedicines 2024; 12:449. [PMID: 38398051 PMCID: PMC10886650 DOI: 10.3390/biomedicines12020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Known as the degenerative disease of the knee with the highest prevalence, knee osteoarthritis (KOA) is characterized by a gradual destructive mechanism that, in severe cases, can provoke the need for total knee substitution. As the disease progresses, various enzymatic, immunological, and inflammatory processes abnormally degrade hyaluronic acid (HA), SF's main component, and affect the concentrations of specific proteins, with the final results seriously endangering synovial fluid (SF)'s rheological and tribological features and characteristics. No effective treatments have been found to stop the progression of KOA, but the injection of HA-based viscoelastic gels has been considered (alone or combined with physiotherapy (PT)) as an alternative to symptomatic therapies. In order to evaluate the effect of viscosupplementation and PT on the characteristics of SF, SF aspirated from groups treated for KOA (HA Kombihylan® and groups that received Kombihylan® and complex PT) was analyzed and compared from analytical, spectrophotometrical, and rheological perspectives. In the patients treated with PT, the SF extracted 6 weeks after viscosupplementation had a superior elastic modulus (G') and viscous moduli (G″), as well as a homogeneous distribution of proteins and polysaccharides. The viscosupplementation fluid improved the bioadhesive properties of the SF, and the use of the viscosupplementation fluid in conjunction with PT was found to be favorable for the distribution of macromolecules and phospholipids, contributing to the lubrication process and the treatment of OA-affected joints.
Collapse
Affiliation(s)
- Ilie Onu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
- Department of Physiotherapy, Micromedica Clinic, 610119 Piatra Neamt, Romania
| | - Robert Gherghel
- Department of Physiotherapy, Micromedica Clinic, 610119 Piatra Neamt, Romania
- Department of Morpho-Functional Sciences II, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Isabella Nacu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
- Petru Poni Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Florina-Daniela Cojocaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
| | - Liliana Verestiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
| | - Daniela-Viorelia Matei
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
| | - Dan Cascaval
- Department of Organic, Biochemical and Food Engineering, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, Technical University “Gheorghe Asachi”, 700050 Iasi, Romania; (D.C.); (A.T.)
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Daniel Andrei Iordan
- Department of Individual Sports and Kinetotherapy, Faculty of Physical Education and Sport, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
- Center of Physical Therapy and Rehabilitation, “Dunărea de Jos” University of Galati, 800008 Galati, Romania
| | - Alexandra Tucaliuc
- Department of Organic, Biochemical and Food Engineering, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, Technical University “Gheorghe Asachi”, 700050 Iasi, Romania; (D.C.); (A.T.)
| | - Anca-Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
| |
Collapse
|
8
|
Shehata E, Nippolainen E, Shaikh R, Ronkainen AP, Töyräs J, Sarin JK, Afara IO. Raman Spectroscopy and Machine Learning Enables Estimation of Articular Cartilage Structural, Compositional, and Functional Properties. Ann Biomed Eng 2023; 51:2301-2312. [PMID: 37328704 PMCID: PMC10518284 DOI: 10.1007/s10439-023-03271-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/01/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE To differentiate healthy from artificially degraded articular cartilage and estimate its structural, compositional, and functional properties using Raman spectroscopy (RS). DESIGN Visually normal bovine patellae (n = 12) were used in this study. Osteochondral plugs (n = 60) were prepared and artificially degraded either enzymatically (via Collagenase D or Trypsin) or mechanically (via impact loading or surface abrasion) to induce mild to severe cartilage damage; additionally, control plugs were prepared (n = 12). Raman spectra were acquired from the samples before and after artificial degradation. Afterwards, reference biomechanical properties, proteoglycan (PG) content, collagen orientation, and zonal (%) thickness of the samples were measured. Machine learning models (classifiers and regressors) were then developed to discriminate healthy from degraded cartilage based on their Raman spectra and to predict the aforementioned reference properties. RESULTS The classifiers accurately categorized healthy and degraded samples (accuracy = 86%), and successfully discerned moderate from severely degraded samples (accuracy = 90%). On the other hand, the regression models estimated cartilage biomechanical properties with reasonable error (≤ 24%), with the lowest error observed in the prediction of instantaneous modulus (12%). With zonal properties, the lowest prediction errors were observed in the deep zone, i.e., PG content (14%), collagen orientation (29%), and zonal thickness (9%). CONCLUSION RS is capable of discriminating between healthy and damaged cartilage, and can estimate tissue properties with reasonable errors. These findings demonstrate the clinical potential of RS.
Collapse
Affiliation(s)
- Eslam Shehata
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Ervin Nippolainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Rubina Shaikh
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | | | - Juha Töyräs
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Jaakko K. Sarin
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Medical Physics, Medical Imaging Center, Pirkanmaa Hospital District, Tampere, Finland
| | - Isaac O. Afara
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| |
Collapse
|
9
|
Sun K, Shoaib T, Rutland MW, Beller J, Do C, Espinosa-Marzal RM. Insight into the assembly of lipid-hyaluronan complexes in osteoarthritic conditions. Biointerphases 2023; 18:021005. [PMID: 37041102 DOI: 10.1116/6.0002502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Interactions between molecules in the synovial fluid and the cartilage surface may play a vital role in the formation of adsorbed films that contribute to the low friction of cartilage boundary lubrication. Osteoarthritis (OA) is the most common degenerative joint disease. Previous studies have shown that in OA-diseased joints, hyaluronan (HA) not only breaks down resulting in a much lower molecular weight (MW), but also its concentration is reduced ten times. Here, we have investigated the structural changes of lipid-HA complexes as a function of HA concentration and MW to simulate the physiologically relevant conditions that exist in healthy and diseased joints. Small angle neutron scattering and dynamic light scattering were used to determine the structure of HA-lipid vesicles in bulk solution, while a combination of atomic force microscopy and quartz crystal microbalance was applied to study their assembly on a gold surface. We infer a significant influence of both MW and HA concentrations on the structure of HA-lipid complexes in bulk and assembled on a gold surface. Our results suggest that low MW HA cannot form an amorphous layer on the gold surface, which is expected to negatively impact the mechanical integrity and longevity of the boundary layer and could contribute to the increased wear of the cartilage that has been reported in joints diseased with OA.
Collapse
Affiliation(s)
- Kangdi Sun
- Materials Science and Engineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Tooba Shoaib
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
| | - Mark W Rutland
- KTH Royal Institute of Technology, Department of Chemistry, Stockholm SE-100 44, Sweden; School of Chemistry, University of New South Wales, Sydney 2052, Australia; Laboratoire de Tribologie et Dynamique des Systèmes, École Centrale de Lyon, Lyon 69130, France; and Bioeconomy and Health, Materials and Surface Design, RISE Research Institutes of Sweden, Stockholm, Sweden
| | | | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
| | - Rosa M Espinosa-Marzal
- Materials Science and Engineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
10
|
Design and Development of a Bimodal Optical Instrument for Simultaneous Vibrational Spectroscopy Measurements. Int J Mol Sci 2022; 23:ijms23126834. [PMID: 35743277 PMCID: PMC9223838 DOI: 10.3390/ijms23126834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023] Open
Abstract
Vibrational spectroscopy techniques are widely used in analytical chemistry, physics and biology. The most prominent techniques are Raman and Fourier-transform infrared spectroscopy (FTIR). Combining both techniques delivers complementary information of the test sample. We present the design, construction, and calibration of a novel bimodal spectroscopy system featuring both Raman and infrared measurements simultaneously on the same sample without mutual interference. The optomechanical design provides a modular flexible system for solid and liquid samples and different configurations for Raman. As a novel feature, the Raman module can be operated off-axis for optical sectioning. The calibrated system demonstrates high sensitivity, precision, and resolution for simultaneous operation of both techniques and shows excellent calibration curves with coefficients of determination greater than 0.96. We demonstrate the ability to simultaneously measure Raman and infrared spectra of complex biological material using bovine serum albumin. The performance competes with commercial systems; moreover, it presents the additional advantage of simultaneously operating Raman and infrared techniques. To the best of our knowledge, it is the first demonstration of a combined Raman-infrared system that can analyze the same sample volume and obtain optically sectioned Raman signals. Additionally, quantitative comparison of confocality of backscattering micro-Raman and off-axis Raman was performed for the first time.
Collapse
|
11
|
Shin KS, Men S, Wong A, Cobb-Bruno C, Chen EY, Fu D. Quantitative Chemical Imaging of Bone Tissue for Intraoperative and Diagnostic Applications. Anal Chem 2022; 94:3791-3799. [PMID: 35188370 PMCID: PMC8944199 DOI: 10.1021/acs.analchem.1c04354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bone is difficult to image using traditional histopathological methods, leading to challenges in intraoperative pathological evaluation that is critical in guiding surgical treatment, particularly in orthopedic oncology. In this study, we demonstrate that a multimodal quantitative imaging approach that combines stimulated Raman scattering (SRS) microscopy, two-photon fluorescence (TPF) microscopy, and second-harmonic generation (SHG) microscopy can provide useful diagnostic information regarding intact bone tissue fragments from surgical excision or biopsy specimens. We imaged bone samples from 17 patient cases and performed quantitative chemical and morphological analyses of both mineral and organic components of bone. Our main findings show that carbonate content combined with morphometric analysis of bone organic matrix can separate several major classes of bone cancer-associated diagnostic categories with an average accuracy of 92%. This proof-of-principle study demonstrates that quantitative multimodal imaging and machine learning-based analysis of bony tissue can provide crucial diagnostic information for guiding clinical decisions in orthopedic oncology. Moreover, the general methodology of morphological and chemical imaging combined with machine learning can be readily extended to other tissue types for tissue diagnosis in intraoperative and other clinical settings.
Collapse
Affiliation(s)
- Kseniya S Shin
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,School of Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Shuaiqian Men
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Angel Wong
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Colburn Cobb-Bruno
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Eleanor Y Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, United States
| | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
12
|
Bhattacharjee M, Escobar Ivirico JL, Kan HM, Shah S, Otsuka T, Bordett R, Barajaa M, Nagiah N, Pandey R, Nair LS, Laurencin CT. Injectable amnion hydrogel-mediated delivery of adipose-derived stem cells for osteoarthritis treatment. Proc Natl Acad Sci U S A 2022; 119:e2120968119. [PMID: 35046053 PMCID: PMC8794776 DOI: 10.1073/pnas.2120968119] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
Current treatment strategies for osteoarthritis (OA) predominantly address symptoms with limited disease-modifying potential. There is a growing interest in the use of adipose-derived stem cells (ADSCs) for OA treatment and developing biomimetic injectable hydrogels as cell delivery systems. Biomimetic injectable hydrogels can simulate the native tissue microenvironment by providing appropriate biological and chemical cues for tissue regeneration. A biomimetic injectable hydrogel using amnion membrane (AM) was developed which can self-assemble in situ and retain the stem cells at the target site. In the present study, we evaluated the efficacy of intraarticular injections of AM hydrogels with and without ADSCs in reducing inflammation and cartilage degeneration in a collagenase-induced OA rat model. A week after the induction of OA, rats were treated with control (phosphate-buffered saline), ADSCs, AM gel, and AM-ADSCs. Inflammation and cartilage regeneration was evaluated by joint swelling, analysis of serum by cytokine profiling and Raman spectroscopy, gross appearance, and histology. Both AM and ADSC possess antiinflammatory and chondroprotective properties to target the sites of inflammation in an osteoarthritic joint, thereby reducing the inflammation-mediated damage to the articular cartilage. The present study demonstrated the potential of AM hydrogel to foster cartilage tissue regeneration, a comparable regenerative effect of AM hydrogel and ADSCs, and the synergistic antiinflammatory and chondroprotective effects of AM and ADSC to regenerate cartilage tissue in a rat OA model.
Collapse
Affiliation(s)
- Maumita Bhattacharjee
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT 06030
| | - Jorge L Escobar Ivirico
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT 06030
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269
| | - Ho-Man Kan
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT 06030
| | - Shiv Shah
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269
| | - Takayoshi Otsuka
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT 06030
| | - Rosalie Bordett
- Connecticut Children's Innovation Center, School of Medicine, University of Connecticut Health, Farmington, CT 06032
| | - Mohammed Barajaa
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT 06030
| | - Naveen Nagiah
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT 06030
| | - Rishikesh Pandey
- Connecticut Children's Innovation Center, School of Medicine, University of Connecticut Health, Farmington, CT 06032
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - Lakshmi S Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT 06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030;
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT 06030
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
13
|
Sefiane K, Duursma G, Arif A. Patterns from dried drops as a characterisation and healthcare diagnosis technique, potential and challenges: A review. Adv Colloid Interface Sci 2021; 298:102546. [PMID: 34717206 DOI: 10.1016/j.cis.2021.102546] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
When particulate-laden droplets evaporate, they leave behind complex patterns on the substrate depending on their composition and the dynamics of their evaporation. Over the past two decades, there has been an increased interest in interpreting these patterns due to their numerous applications in biomedicine, forensics, food quality analysis and inkjet printing. The objective of this review is to investigate the use of patterns from dried drops as a characterisation and diagnosis technique. The patterns left behind by dried drops of various complex fluids are categorised. The potential applications of these patterns are presented, focussing primarily on healthcare, where the future impact could be greatest. A discussion on the limitations which must be overcome and prospective works that may be carried out to allow for widespread implementation of this technique is presented in conclusion.
Collapse
|
14
|
Fosca M, Basoli V, Della Bella E, Russo F, Vadala G, Alini M, Rau JV, Verrier S. Raman spectroscopy in skeletal tissue disorders and tissue engineering: present and prospective. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:949-965. [PMID: 34579558 DOI: 10.1089/ten.teb.2021.0139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Musculoskeletal disorders are the most common reason of chronic pain and disability representing worldwide an enormous socio-economic burden. In this review, new biomedical application fields for Raman spectroscopy (RS) technique related to skeletal tissues are discussed showing that it can provide a comprehensive profile of tissue composition in situ, in a rapid, label-free, and non-destructive manner. RS can be used as a tool to study tissue alterations associated to aging, pathologies, and disease treatments. The main advantage with respect to currently applied methods in clinics is its ability to provide specific information on molecular composition, which goes beyond other diagnostic tools. Being compatible with water, RS can be performed without pre-treatment on unfixed, hydrated tissue samples, without any labelling and chemical fixation used in histochemical methods. This review provides first the description of basic principles of RS as a biotechnology tool and introduces into the field of currently available RS based techniques, developed to enhance Raman signal. The main spectral processing statistical tools, fingerprint identification and available databases are mentioned. The recent literature has been analysed for such applications of RS as tendon and ligaments, cartilage, bone, and tissue engineered constructs for regenerative medicine. Several cases of proof-of-concept preclinical studies have been described. Finally, advantages, limitations, future perspectives, and challenges for translation of RS into clinical practice have been also discussed.
Collapse
Affiliation(s)
- Marco Fosca
- Istituto di Struttura della Materia Consiglio Nazionale delle Ricerche, 204549, Roma, Lazio, Italy;
| | - Valentina Basoli
- AO Research Institute Davos, 161930, Regenerative Orthopaedics, Davos, Graubünden, Switzerland;
| | - Elena Della Bella
- AO Research Institute Davos, 161930, Regenerative Orthopaedics, Davos, Graubünden, Switzerland;
| | - Fabrizio Russo
- Campus Bio-Medico University Hospital, 220431, Roma, Lazio, Italy;
| | - Gianluca Vadala
- Campus Bio-Medico University Hospital, 220431, Roma, Lazio, Italy;
| | - Mauro Alini
- AO Research Institute Davos, 161930, Regenerative Orthopaedics, Davos, Graubünden, Switzerland;
| | - Julietta V Rau
- Istituto di Struttura della Materia Consiglio Nazionale delle Ricerche, 204549, Roma, Lazio, Italy.,I M Sechenov First Moscow State Medical University, 68477, Moskva, Moskva, Russian Federation;
| | - Sophie Verrier
- AO Research Institute Davos, 161930, Regenerative Orthopaedics, Davos, Graubünden, Switzerland;
| |
Collapse
|
15
|
Rufaqua R, Vrbka M, Hemzal D, Choudhury D, Rebenda D, Křupka I, Hartl M. Raman analysis of chemisorbed tribofilm for metal‐on‐polyethylene hip joint prostheses. BIOSURFACE AND BIOTRIBOLOGY 2021. [DOI: 10.1049/bsb2.12008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Risha Rufaqua
- Faculty of Mechanical Engineering Brno University of Technology Brno Czech Republic
| | - Martin Vrbka
- Faculty of Mechanical Engineering Brno University of Technology Brno Czech Republic
| | - Dušan Hemzal
- Department of Condensed Matter Physics Faculty of Science Masaryk University Brno Czech Republic
| | - Dipankar Choudhury
- Nano Mechanics and Tribology Laboratory Department of Mechanical Engineering University of Arkansas Fayetteville Arkansas USA
| | - David Rebenda
- Faculty of Mechanical Engineering Brno University of Technology Brno Czech Republic
| | - Ivan Křupka
- Faculty of Mechanical Engineering Brno University of Technology Brno Czech Republic
| | - Martin Hartl
- Faculty of Mechanical Engineering Brno University of Technology Brno Czech Republic
| |
Collapse
|
16
|
Vibrational Spectroscopy in Assessment of Early Osteoarthritis-A Narrative Review. Int J Mol Sci 2021; 22:ijms22105235. [PMID: 34063436 PMCID: PMC8155859 DOI: 10.3390/ijms22105235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease, and there is currently no effective medicine to cure it. Early prevention and treatment can effectively reduce the pain of OA patients and save costs. Therefore, it is necessary to diagnose OA at an early stage. There are various diagnostic methods for OA, but the methods applied to early diagnosis are limited. Ordinary optical diagnosis is confined to the surface, while laboratory tests, such as rheumatoid factor inspection and physical arthritis checks, are too trivial or time-consuming. Evidently, there is an urgent need to develop a rapid nondestructive detection method for the early diagnosis of OA. Vibrational spectroscopy is a rapid and nondestructive technique that has attracted much attention. In this review, near-infrared (NIR), infrared, (IR) and Raman spectroscopy were introduced to show their potential in early OA diagnosis. The basic principles were discussed first, and then the research progress to date was discussed, as well as its limitations and the direction of development. Finally, all methods were compared, and vibrational spectroscopy was demonstrated that it could be used as a promising tool for early OA diagnosis. This review provides theoretical support for the application and development of vibrational spectroscopy technology in OA diagnosis, providing a new strategy for the nondestructive and rapid diagnosis of arthritis and promoting the development and clinical application of a component-based molecular spectrum detection technology.
Collapse
|
17
|
Rufaqua R, Vrbka M, Hemzal D, Choudhury D, Rebenda D, Křupka I, Hartl M. Analysis of Chemisorbed Tribo-Film for Ceramic-on-Ceramic Hip Joint Prostheses by Raman Spectroscopy. J Funct Biomater 2021; 12:jfb12020029. [PMID: 34062752 PMCID: PMC8167604 DOI: 10.3390/jfb12020029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/03/2023] Open
Abstract
To understand the possible lubricant mechanism in ceramic-on-ceramic hip joint prostheses, biochemical reactions of the synovial fluid and the corresponding frictional coefficients were studied. The experiments were performed in a hip joint simulator using the ball-on-cup configuration with balls and cups made from two types of ceramics, BIOLOX®forte and BIOLOX®delta. Different lubricants, namely albumin, γ-globulin, hyaluronic acid and three model synovial fluids, were studied in the experiments and Raman spectroscopy was used to analyze the biochemical responses of these lubricants at the interface. BIOLOX®delta surface was found less reactive to proteins and model fluid lubricants. In contrast, BIOLOX®forte ball surface has shown chemisorption with both proteins, hyaluronic acid and model fluids imitating total joint replacement and osteoarthritic joint. There was no direct correlation between the measured frictional coefficient and the observed chemical reactions. In summary, the study reveals chemistry of lubricant film formation on ceramic hip implant surfaces with various model synovial fluids and their components.
Collapse
Affiliation(s)
- Risha Rufaqua
- Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic; (M.V.); (D.R.); (I.K.); (M.H.)
- Correspondence:
| | - Martin Vrbka
- Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic; (M.V.); (D.R.); (I.K.); (M.H.)
| | - Dušan Hemzal
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic;
| | - Dipankar Choudhury
- Nano Mechanics and Tribology Laboratory, Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
| | - David Rebenda
- Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic; (M.V.); (D.R.); (I.K.); (M.H.)
| | - Ivan Křupka
- Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic; (M.V.); (D.R.); (I.K.); (M.H.)
| | - Martin Hartl
- Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic; (M.V.); (D.R.); (I.K.); (M.H.)
| |
Collapse
|
18
|
Hackshaw KV, Miller JS, Aykas DP, Rodriguez-Saona L. Vibrational Spectroscopy for Identification of Metabolites in Biologic Samples. Molecules 2020; 25:E4725. [PMID: 33076318 PMCID: PMC7587585 DOI: 10.3390/molecules25204725] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Vibrational spectroscopy (mid-infrared (IR) and Raman) and its fingerprinting capabilities offer rapid, high-throughput, and non-destructive analysis of a wide range of sample types producing a characteristic chemical "fingerprint" with a unique signature profile. Nuclear magnetic resonance (NMR) spectroscopy and an array of mass spectrometry (MS) techniques provide selectivity and specificity for screening metabolites, but demand costly instrumentation, complex sample pretreatment, are labor-intensive, require well-trained technicians to operate the instrumentation, and are less amenable for implementation in clinics. The potential for vibration spectroscopy techniques to be brought to the bedside gives hope for huge cost savings and potential revolutionary advances in diagnostics in the clinic. We discuss the utilization of current vibrational spectroscopy methodologies on biologic samples as an avenue towards rapid cost saving diagnostics.
Collapse
Affiliation(s)
- Kevin V. Hackshaw
- Department of Internal Medicine, Division of Rheumatology, Dell Medical School, The University of Texas, 1601 Trinity St, Austin, TX 78712, USA
| | - Joseph S. Miller
- Department of Medicine, Ohio University Heritage College of Osteopathic Medicine, Dublin, OH 43016, USA;
| | - Didem P. Aykas
- Department of Food Science and Technology, Ohio State University, Columbus, OH 43210, USA; (D.P.A.); (L.R.-S.)
- Department of Food Engineering, Faculty of Engineering, Adnan Menderes University, Aydin 09100, Turkey
| | - Luis Rodriguez-Saona
- Department of Food Science and Technology, Ohio State University, Columbus, OH 43210, USA; (D.P.A.); (L.R.-S.)
| |
Collapse
|
19
|
Pezzotti G, Adachi T, Miyamoto N, Yamamoto T, Boschetto F, Marin E, Zhu W, Kanamura N, Ohgitani E, Pizzi M, Sowa Y, Mazda O. Raman Probes for In Situ Molecular Analyses of Peripheral Nerve Myelination. ACS Chem Neurosci 2020; 11:2327-2339. [PMID: 32603086 DOI: 10.1021/acschemneuro.0c00284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The myelinating activity of living Schwann cells in coculture with neuronal cells was examined in situ in a Raman microprobe spectroscope. The Raman label-free approach revealed vibrational fingerprints directly related to the activity of Schwann cells' metabolites and identified molecular species peculiar to myelinating cells. The identified chemical species included antioxidants, such as hypotaurine and glutathione, and compartmentalized water, in addition to sphingolipids, phospholipids, and nucleoside triphosphates also present in neuronal and nonmyelinating Schwann cells. Raman maps at specific frequencies could be collected, which clearly visualized the myelinating action of Schwann cells and located the demyelinated ones. An important finding was the spectroscopic visualization of confined water in the myelin structure, which exhibited a quite pronounced Raman signal at ∼3470 cm-1. This peculiar signal, whose spatial location precisely corresponded to a low-frequency fingerprint of hypotaurine, was absent in unmyelinating cells and in bulk water. Raman enhancement was attributed to frustration in the hydrogen-bond network as induced by interactions with lipids in the myelin sheaths. According to a generally accepted morphological model of myelin, an explanation was offered of the peculiar Raman scattering of water confined in intraperiod lines, according to an ordered hydrogen bonding structure. The possibility of concurrently mapping antioxidant molecules and compartmentalized water structure with high spectral accuracy and microscopic spatial resolution enables probing myelinating activity and might play a key-role in future studies of neuronal pathologies. Compatible with life, Raman microprobe spectroscopy with the newly discovered probes could be suitable for developing advanced strategies in the reconstruction of injured nerves and nerve terminals at neuromuscular junctions.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0854, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Nao Miyamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Francesco Boschetto
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Yoshihiro Sowa
- Department of Plastic and Reconstructive Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
20
|
Casal-Beiroa P, González P, Blanco FJ, Magalhães J. Molecular analysis of the destruction of articular joint tissues by Raman spectroscopy. Expert Rev Mol Diagn 2020; 20:789-802. [PMID: 32538250 DOI: 10.1080/14737159.2020.1782747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Osteoarthritis (OA) is a highly heterogenous disease influenced by different molecular, anatomic, and physiologic imbalances. Some of the bottlenecks for enhanced diagnosis and therapeutic assessment are the lack of validated biomarkers and early diagnosis tools. In this narrative review, we analyze the potential of Raman spectroscopy (RS) as a label-free optical tool for the characterization of articular joint tissues and its application as a diagnosis tool for OA. AREAS COVERED Raman spectra produce a unique 'molecular fingerprint' providing rotational and vibrational molecular information, allowing the identification and follow-up of molecular changes associated with OA pathological mechanisms. Focusing on multiple joint tissues (cartilage, synovium, bone, tendons, ligaments, and meniscus) and their contribution in disease incidence and progression, this review highlights the current knowledge on the application of RS in the characterization of organic and inorganic molecules present at these tissues and alterations that occur in the onset of OA. EXPERT OPINION Vibrational spectroscopy techniques, such as RS, are low cost, rapid and minimally invasive approaches that offer high specificity in the assessment of the molecular composition of complex tissues. Combined with multivariate statistical methods, RS offers great potential for optical biomarkers discovery or disease diagnosis applications, and we hereby discuss clinical translational progresses on the field.
Collapse
Affiliation(s)
- Paula Casal-Beiroa
- Unidad de Medicina Regenerativa, Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC) ., A Coruña, Spain.,Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña (UDC) ,A Coruña, Spain
| | - Pío González
- New Materials Group, Department of Applied Physics, University of Vigo , Vigo, Spain
| | - Francisco J Blanco
- Unidad de Medicina Regenerativa, Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC) ., A Coruña, Spain.,Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña (UDC) ,A Coruña, Spain
| | - Joana Magalhães
- Unidad de Medicina Regenerativa, Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC) ., A Coruña, Spain.,Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña (UDC) ,A Coruña, Spain.,Centro de Investigación Biomédica en Red (CIBER) , Madrid, Spain
| |
Collapse
|
21
|
Bocsa CD, Moisoiu V, Stefancu A, Leopold LF, Leopold N, Fodor D. Knee osteoarthritis grading by resonant Raman and surface-enhanced Raman scattering (SERS) analysis of synovial fluid. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:102012. [PMID: 31085345 DOI: 10.1016/j.nano.2019.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/30/2019] [Accepted: 04/27/2019] [Indexed: 01/18/2023]
Abstract
In this preliminary study on synovial fluid (SF), knee osteoarthritis (OA) grading of n = 23 patients was accomplished by combining two methods: resonant Raman spectroscopy, and surface-enhanced Raman scattering (SERS) of native proteins acquired with iodide-modified silver nanoparticles and a laser emitting at 633 nm. Based on principal component analysis-linear discriminant analysis (PCA-LDA), the SERS spectra of proteins enabled the classification of low-grade and high-grade OA groups with an accuracy of 91%. Resonant Raman spectra of SF, recorded with laser excitation at 532 nm, exhibited carotenoid-associated bands that were less intense in the case of high-grade knee OA patients. Based on the resonant Raman spectra, the grading of OA patients was accomplished with an accuracy of 74%. Concatenating SERS and Raman spectral information increased the classification accuracy between the two groups to 100%. These results demonstrate the potential of Raman and SERS as a point-of-care method for aiding OA grading.
Collapse
Affiliation(s)
- Corina D Bocsa
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vlad Moisoiu
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Andrei Stefancu
- Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Loredana F Leopold
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Nicolae Leopold
- Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania.
| | - Daniela Fodor
- 2(nd) Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
22
|
Paraskevaidi M, Hook PD, Morais CLM, Anderson JR, White R, Martin-Hirsch PL, Peffers MJ, Martin FL. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy to diagnose osteoarthritis in equine serum. Equine Vet J 2019; 52:46-51. [PMID: 30900769 DOI: 10.1111/evj.13115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 03/15/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Reliable and validated biomarkers for osteoarthritis (OA) are currently lacking. OBJECTIVES To develop an accurate and minimally invasive method to assess OA-affected horses and provide potential spectral markers indicative of disease. STUDY DESIGN Observational, cross-sectional study. METHODS Our cohort consisted of 15 horses with OA and 48 without clinical signs of the disease, which were used as controls. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy was used to investigate serum samples (50 μL) collected from these horses. Spectral processing and multivariate analysis revealed differences and similarities, allowing for detection of spectral biomarkers that discriminated between the two cohorts. A supervised classification algorithm, namely principal component analysis coupled with quadratic discriminant analysis (PCA-QDA), was applied to evaluate the diagnostic accuracy. RESULTS Segregation between the two different cohorts, OA-affected and controls, was achieved with 100% sensitivity and specificity. The six most discriminatory peaks were attributed to proteins and lipids. Four of the spectral peaks were elevated in OA horses, which could be potentially due to an increase in lipids, protein expression levels and collagen, all of which have been previously reported in OA. Two peaks were found decreased and were tentatively assigned to the reduction of proteoglycan content that is observed during OA. MAIN LIMITATIONS The control group had a wide range of ages and breeds. Presymptomatic OA cases were not included. Therefore, it remains unknown whether this test could also be used as an early diagnostic tool. CONCLUSIONS This spectrochemical approach could provide an accurate and cost-effective blood test, facilitating point-of-care diagnosis of equine OA.
Collapse
Affiliation(s)
- M Paraskevaidi
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - P D Hook
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - C L M Morais
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - J R Anderson
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - R White
- Myerscough College, Preston, UK
| | - P L Martin-Hirsch
- Sharoe Green Unit, Lancashire Teaching Hospitals NHS Foundation, Preston, UK
| | - M J Peffers
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - F L Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| |
Collapse
|
23
|
Hackshaw KV, Aykas DP, Sigurdson GT, Plans M, Madiai F, Yu L, Buffington CAT, Giusti MM, Rodriguez-Saona L. Metabolic fingerprinting for diagnosis of fibromyalgia and other rheumatologic disorders. J Biol Chem 2019; 294:2555-2568. [PMID: 30523152 PMCID: PMC6378985 DOI: 10.1074/jbc.ra118.005816] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/28/2018] [Indexed: 12/13/2022] Open
Abstract
Diagnosis and treatment of fibromyalgia (FM) remains a challenge owing to the lack of reliable biomarkers. Our objective was to develop a rapid biomarker-based method for diagnosing FM by using vibrational spectroscopy to differentiate patients with FM from those with rheumatoid arthritis (RA), osteoarthritis (OA), or systemic lupus erythematosus (SLE) and to identify metabolites associated with these differences. Blood samples were collected from patients with a diagnosis of FM (n = 50), RA (n = 29), OA (n = 19), or SLE (n = 23). Bloodspot samples were prepared, and spectra collected with portable FT-IR and FT-Raman microspectroscopy and subjected to metabolomics analysis by ultra-HPLC (uHPLC), coupled to a photodiode array (PDA) and tandem MS/MS. Unique IR and Raman spectral signatures were identified by pattern recognition analysis and clustered all study participants into classes (FM, RA, and SLE) with no misclassifications (p < 0.05, and interclass distances > 2.5). Furthermore, the spectra correlated (r = 0.95 and 0.83 for IR and Raman, respectively) with FM pain severity measured with fibromyalgia impact questionnaire revised version (FIQR) assessments. Protein backbones and pyridine-carboxylic acids dominated this discrimination and might serve as biomarkers for syndromes such as FM. uHPLC-PDA-MS/MS provided insights into metabolites significantly differing among the disease groups, not only in molecular m/z+ and m/z- values but also in UV-visible chromatograms. We conclude that vibrational spectroscopy may provide a reliable diagnostic test for differentiating FM from other disorders and for establishing serologic biomarkers of FM-associated pain.
Collapse
Affiliation(s)
- Kevin V Hackshaw
- From the Department of Internal Medicine, Division of Rheumatology and Immunology,
| | | | | | - Marcal Plans
- the Department of Food Science and Technology, and
| | - Francesca Madiai
- From the Department of Internal Medicine, Division of Rheumatology and Immunology
| | - Lianbo Yu
- the Center of Biostatistics and Bioinformatics, Ohio State University, Columbus, Ohio 43210 and
| | - Charles A T Buffington
- the Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California 95616
| | | | | |
Collapse
|
24
|
Raman spectroscopy applications in rheumatology. Lasers Med Sci 2019; 34:827-834. [DOI: 10.1007/s10103-019-02719-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/10/2019] [Indexed: 12/27/2022]
|
25
|
Stefancu A, Moisoiu V, Couti R, Andras I, Rahota R, Crisan D, Pavel IE, Socaciu C, Leopold N, Crisan N. Combining SERS analysis of serum with PSA levels for improving the detection of prostate cancer. Nanomedicine (Lond) 2018; 13:2455-2467. [DOI: 10.2217/nnm-2018-0127] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim: Previous studies regarding surface-enhanced Raman scattering (SERS) of serum have shown promising initial results in discriminating prostate cancer, a strategy which could complement standard tests such as the prostate-specific antigen (PSA). Materials & methods: SERS spectra of serum samples were combined with serum PSA levels to improve the discrimination accuracy between prostate cancer and nonmalignant pathologies in a cohort of 54 patients using principal component analysis-linear discriminant analysis (PCA-LDA). Results & discussion: Combining SERS spectra with serum PSA levels in a single PCA-LDA model could discriminate between the two groups with an overall accuracy of 94%, yielding better results than either method alone. Conclusion: These results highlight that combining SERS-based cancer screening with serum PSA levels represents a promising strategy for improving the accuracy of prostate cancer diagnosis.
Collapse
Affiliation(s)
- Andrei Stefancu
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania
- MEDFUTURE Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Vlad Moisoiu
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania
- IMOGEN Medical Research Institute, County Clinical Emergency Hospital, Cluj-Napoca, Romania
| | - Razvan Couti
- Department of Urology, Clinical Municipal Hospital, Cluj-Napoca, Romania
| | - Iulia Andras
- Department of Urology, Clinical Municipal Hospital, Cluj-Napoca, Romania
- Department of Urology, Iuliu Hatieganu University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Razvan Rahota
- Department of Urology, Clinical Municipal Hospital, Cluj-Napoca, Romania
| | - Dana Crisan
- 5th Medical Clinic, Iuliu Hatieganu University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Ioana E Pavel
- MEDFUTURE Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine & Pharmacy, Cluj-Napoca, Romania
- Department of Chemistry, Wright State University, Dayton, OH 45435, USA
| | - Carmen Socaciu
- BIODIATECH Research Center for Applied Biotechnology, SC Proplanta, Cluj-Napoca, Romania
- Faculty of Food Science & Technology, University of Agricultural Sciences & Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Nicolae Leopold
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania
- MEDFUTURE Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Nicolae Crisan
- Department of Urology, Clinical Municipal Hospital, Cluj-Napoca, Romania
- Department of Urology, Iuliu Hatieganu University of Medicine & Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
26
|
Cameron JM, Butler HJ, Palmer DS, Baker MJ. Biofluid spectroscopic disease diagnostics: A review on the processes and spectral impact of drying. JOURNAL OF BIOPHOTONICS 2018; 11:e201700299. [PMID: 29377638 DOI: 10.1002/jbio.201700299] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
The complex patterns observed from evaporated liquid drops have been examined extensively over the last 20 years. Complete understanding of drop deposition is vital in many medical processes, and one which is essential to the translation of biofluid spectroscopic disease diagnostics. The promising use of spectroscopy in disease diagnosis has been hindered by the complicated patterns left by dried biological fluids which may inhibit the clinical translation of this technology. Coffee-ring formation, cracking and gelation patterns have all been observed in biofluid drops, and with surface homogeneity being a key element to many spectroscopic techniques, experimental issues have been found to arise. A better understanding of the fundamental processes involved in a drying droplet could allow efficient progression in this research field, and ultimately benefit the population with the development of a reliable cancer diagnostic.
Collapse
Affiliation(s)
- James M Cameron
- WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, UK
| | - Holly J Butler
- WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, UK
| | - David S Palmer
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Matthew J Baker
- WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, UK
| |
Collapse
|
27
|
Tong L, Hao Z, Wan C, Wen S. Detection of depth-depend changes in porcine cartilage after wear test using Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2018; 11:e201700217. [PMID: 29227045 DOI: 10.1002/jbio.201700217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/05/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Cartilage damage and wear can lead to severe diseases, such as osteoarthritis, thus, many studies on the cartilage wear process have already been performed to better understand the cartilage wear mechanism. However, most characterization methods focus on the cartilage surface or the total wear extent. With the advantages of high spatial resolution and easy characterization, Raman microspectroscopy was employed for the first time to characterize full-depth changes in the cartilage extracellular matrix (ECM) after wear test. Sections from the cartilage samples after wear were compared with sections from the control group. Univariate and multivariate analyses both indicated that collagen content loss at certain depths (20%-30% relative to the cartilage surface) is possibly the dominating alteration during wear rather than changes in collagen fiber orientation or proteoglycan content. These findings are consistent with the observations obtained by scanning electron microscopy and histological staining. This study successfully used Raman microspectroscopy efficiently assess full-depth changes in cartilage ECM after wear test, thus providing new insight into cartilage damage and wear.
Collapse
Affiliation(s)
- Lingying Tong
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Zhixiu Hao
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Chao Wan
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Shizhu Wen
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| |
Collapse
|
28
|
Momenpour A, Lima PDA, Chen YA, Tzeng CR, Tsang BK, Anis H. Surface-enhanced Raman scattering for the detection of polycystic ovary syndrome. BIOMEDICAL OPTICS EXPRESS 2018; 9:801-817. [PMID: 29552414 PMCID: PMC5854080 DOI: 10.1364/boe.9.000801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 05/09/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a multi-factorial heterogeneous syndrome that affects many women of reproductive age. This work demonstrates how the surface-enhanced Raman scattering (SERS) technique can be used to differentiate between PCOS and non-PCOS patients. We determine that the use of SERS, in conjunction with partial least squares (PLS) and principal component analysis (PCA), allows us to detect PCOS in patient samples. Although the role of chemerin in the pathogenesis of PCOS patients is not clear, this work enables us to measure their chemerin levels using the PLS regression method.
Collapse
Affiliation(s)
- Ali Momenpour
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Equal contribution
| | - Patrícia D A Lima
- Department of Obstetrics & Gynecology and Cellular & Molecular Medicine, University of Ottawa, Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
- Equal contribution
| | - Yi-An Chen
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chii-Ruey Tzeng
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Benjamin K Tsang
- Department of Obstetrics & Gynecology and Cellular & Molecular Medicine, University of Ottawa, Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
- Correspondence:
| | - Hanan Anis
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Correspondence:
| |
Collapse
|
29
|
d'Apuzzo F, Perillo L, Delfino I, Portaccio M, Lepore M, Camerlingo C. Monitoring early phases of orthodontic treatment by means of Raman spectroscopies. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-10. [PMID: 29110445 DOI: 10.1117/1.jbo.22.11.115001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/12/2017] [Indexed: 05/06/2023]
Abstract
Gingival crevicular fluid (GCF) is a site-specific exudate in the gingival sulcus. GCF composition changes in response to diseases or mechanical stimuli, such as those occurring during orthodontic treatments. Raman microspectroscopy (μ-RS) and surface-enhanced Raman spectroscopy (SERS) were adopted for a GCF analysis during different initial phases of orthodontic force application. GCF samples were pooled from informed patients using paper cones. SERS spectra were obtained from GCF extracted from these cones, whereas μ-RS spectra were directly acquired on paper cones without any manipulation. The spectral characteristics of the main functional groups and the changes in cytochrome, amide III, and amide I contributions were highlighted in the different phases of orthodontic treatment with both SERS and μ-RS analysis. μ-RS directly performed on the paper cones together with proper statistical methods can offer an effective approach for the development of a tool for monitoring the processes occurring during orthodontic treatments, which may help the clinician in the choice of type of treatment individually for each patient and accelerate and improve the orthodontic therapy.
Collapse
Affiliation(s)
- Fabrizia d'Apuzzo
- Università degli Studi della Campania "Luigi Vanvitelli," Dipartimento Multidisciplinare di Speciali, Italy
| | - Letizia Perillo
- Università degli Studi della Campania "Luigi Vanvitelli," Dipartimento Multidisciplinare di Speciali, Italy
| | - Ines Delfino
- Università della Tuscia, Dipartimento di Scienze Ecologiche e Biologiche, Viterbo, Italy
| | - Marianna Portaccio
- Università degli Studi della Campania "Luigi Vanvitelli," Dipartimento di Medicina Sperimentale, Nap, Italy
| | - Maria Lepore
- Università degli Studi della Campania "Luigi Vanvitelli," Dipartimento di Medicina Sperimentale, Nap, Italy
| | - Carlo Camerlingo
- CNR-SPIN, Istituto Superconduttori, Materiali Innovativi e Dispositivi, Pozzuoli, Napoli, Italy
| |
Collapse
|
30
|
Baker MJ, Hussain SR, Lovergne L, Untereiner V, Hughes C, Lukaszewski RA, Thiéfin G, Sockalingum GD. Developing and understanding biofluid vibrational spectroscopy: a critical review. Chem Soc Rev 2016; 45:1803-18. [DOI: 10.1039/c5cs00585j] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biofluid vibrational spectroscopy, a promising tool for rapid disease diagnosis.
Collapse
Affiliation(s)
- Matthew J. Baker
- WESTChem
- Department of Pure and Applied Chemistry
- Technology and Innovation Centre
- University of Strathclyde
- Glasgow
| | - Shawn R. Hussain
- Equipe MéDIAN-Biophotonique et Technologies pour la Santé
- Université de Reims Champagne-Ardenne
- CNRS UMR 7369-MEDyC
- UFR de Pharmacie
- 51096 Reims Cedex
| | - Lila Lovergne
- WESTChem
- Department of Pure and Applied Chemistry
- Technology and Innovation Centre
- University of Strathclyde
- Glasgow
| | - Valérie Untereiner
- Equipe MéDIAN-Biophotonique et Technologies pour la Santé
- Université de Reims Champagne-Ardenne
- CNRS UMR 7369-MEDyC
- UFR de Pharmacie
- 51096 Reims Cedex
| | - Caryn Hughes
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | | | - Gérard Thiéfin
- Equipe MéDIAN-Biophotonique et Technologies pour la Santé
- Université de Reims Champagne-Ardenne
- CNRS UMR 7369-MEDyC
- UFR de Pharmacie
- 51096 Reims Cedex
| | - Ganesh D. Sockalingum
- Equipe MéDIAN-Biophotonique et Technologies pour la Santé
- Université de Reims Champagne-Ardenne
- CNRS UMR 7369-MEDyC
- UFR de Pharmacie
- 51096 Reims Cedex
| |
Collapse
|
31
|
Richardson W, Wilkinson D, Wu L, Petrigliano F, Dunn B, Evseenko D. Ensemble multivariate analysis to improve identification of articular cartilage disease in noisy Raman spectra. JOURNAL OF BIOPHOTONICS 2015; 8:555-566. [PMID: 25264131 PMCID: PMC4472573 DOI: 10.1002/jbio.201300200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 07/27/2014] [Accepted: 08/29/2014] [Indexed: 06/03/2023]
Abstract
The development of new methods for the early diagnosis of cartilage disease could offer significant improvement in patient care. Raman spectroscopy is an emerging biomedical technology with unique potential to recognize disease tissues, though difficulty in obtaining the samples needed to train a diagnostic and excessive signal noise could slow its development into a clinical tool. In the current report we detail the use of principal component analysis--linear discriminant analysis (PCA-LDA) on spectra from pairs of materials modeling cartilage disease to create multiple spectral scoring metrics, which could limit the reliance on primary training data for identifying disease in low signal-to-noise-ratio (SNR) Raman spectra. Our proof-of-concept experiments show that combinations of these model-metrics has the potential to improve the classification of low-SNR Raman spectra from human normal and osteoarthritic (OA) cartilage over a single metric trained with spectra from the same healthy and OA tissues. Scatter plot showing the PCA-LDA derived human-disease-metric scores versus rat-model-metric scores for 7656 low signal-to-noise spectra from healthy (blue) and osteoarthritic (red) cartilage. Light vertical and horizontal lines represent the optimized single metric classification boundary. Dark diagonal line represents the classification of boundary resulting from the optimized combination of the two metrics.
Collapse
Affiliation(s)
- Wade Richardson
- Department of Materials Science and Engineering, University of California, Los Angeles
| | - Dan Wilkinson
- Department of Materials Science and Engineering, University of California, Los Angeles
| | - Ling Wu
- Department of Orthopaedic Surgery, University of California, Los Angeles
| | - Frank Petrigliano
- Department of Orthopaedic Surgery, University of California, Los Angeles
| | - Bruce Dunn
- Department of Materials Science and Engineering, University of California, Los Angeles.
| | - Denis Evseenko
- Department of Orthopaedic Surgery, University of California, Los Angeles.
| |
Collapse
|
32
|
Levillain A, Boulocher C, Kaderli S, Viguier E, Hannouche D, Hoc T, Magoariec H. Meniscal biomechanical alterations in an ACLT rabbit model of early osteoarthritis. Osteoarthritis Cartilage 2015; 23:1186-93. [PMID: 25725391 DOI: 10.1016/j.joca.2015.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/11/2015] [Accepted: 02/18/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The purpose of this study was to analyze the early biomechanical alterations of menisci during the early stage of osteoarthritis (OA) development and to correlate them with the chemical composition and matrix alteration. A particular focus was paid to pathological changes in glycosaminoglycan (GAG) content and collagen fiber architecture. DESIGN Menisci (n = 24) were removed from rabbits' knee joints 6 weeks following surgical anterior cruciate ligament transection (ACLT). Both the anterior and posterior regions of medial and lateral menisci were characterized using indentation tests, Raman microspectroscopy (RM), biphotonic confocal microscopy (BCM) and histology. RESULTS Mechanical and matrix alterations occurred in both regions of medial and lateral menisci. A significant decrease in the mechanical properties was observed in OA menisci, with a mean reduced modulus from 2.3 to 1.1 MPa. Microstructural observations revealed less organized and less compact collagen bundles in operated menisci than in contralateral menisci, as well as a loss of fiber tension. GAG content was increased in OA menisci, especially in the damaged areas. Neither changes in the secondary structure of collagen nor mineralization were detected through RM at this stage of OA. CONCLUSION ACLT led to a disorganization of the collagen framework at the early stage of OA development, which decreases the mechanical resistance of the menisci. GAG content increases in response to this degradation. All of these results demonstrate the strong correlation between matrix and mechanical alterations.
Collapse
Affiliation(s)
- A Levillain
- LTDS, UMR CNRS 5513, Université de Lyon, Ecole centrale de Lyon, 36 av Guy de Collongue, 69134 Ecully Cedex, France
| | - C Boulocher
- Research Unit ICE, UPSP 2011.03.101, Université de Lyon, Veterinary Campus of VetAgro Sup, 69 280 Marcy l'Etoile, France
| | - S Kaderli
- School of Pharmaceutical Sciences, University of Geneva and Lausanne, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - E Viguier
- Research Unit ICE, UPSP 2011.03.101, Université de Lyon, Veterinary Campus of VetAgro Sup, 69 280 Marcy l'Etoile, France
| | - D Hannouche
- B2OA, UMR CNRS 7052 CHU Lariboisière Saint Louis, 10 av de Verdun, 75020 Paris France
| | - T Hoc
- LTDS, UMR CNRS 5513, Université de Lyon, Ecole centrale de Lyon, 36 av Guy de Collongue, 69134 Ecully Cedex, France.
| | - H Magoariec
- LTDS, UMR CNRS 5513, Université de Lyon, Ecole centrale de Lyon, 36 av Guy de Collongue, 69134 Ecully Cedex, France
| |
Collapse
|
33
|
Mangueira NM, Xavier M, de Souza RA, Salgado MAC, Silveira L, Villaverde AB. Effect of low-level laser therapy in an experimental model of osteoarthritis in rats evaluated through Raman spectroscopy. Photomed Laser Surg 2015; 33:145-53. [PMID: 25714387 DOI: 10.1089/pho.2014.3744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE This work aimed to investigate the biochemical changes associated with low-level laser therapy (LLLT) using 660 and 780 nm, on a well-established experimental model of osteoarthritis (OA) in the knees of rats with induced collagenase, using histomorphometry and Raman spectroscopy. MATERIALS AND METHODS Thirty-six Wistar rats were divided into four groups: control (GCON, n=9), collagenase without treatment (GCOL, n=9), collagenase with LLLT 660 nm treatment (G660, n=8), and collagenase with LLLT 780 nm treatment (G780, n=10). LLLT protocol was: 30 mW power output, 10 sec irradiation time, 0.04 cm(2) spot size, 0.3 J energy, 0.75 W/cm(2) irradiance, and 7.5 J/cm(2) fluence per session per day, during 14 days. Then, knees were withdrawn and submitted to histomorphometry and Raman spectroscopy analysis. Principal components analysis (PCA) and Mahalanobis distance were employed to characterize the spectral findings. RESULTS Histomorphometry revealed a significant increase in the amount of collagen III for the group irradiated with 660 nm. The Raman bands at 1247, 1273, and 1453 cm(-1) (from principal component score PC2), attributed to collagen type II, and 1460 cm(-1) (from PC3), attributed to collagen type III, suggested that the LLLT causes acceleration in cellular activity, especially on the cells that repair cartilage, accelerating the breakdown of cartilage destroyed by collagenase and stimulating the fibroblast to synthesize repairing collagen III. CONCLUSIONS LLLT accelerated the initial breakdown of cartilage destroyed by collagenase and stimulated the fibroblast to synthesize the repairing collagen III, suggesting a beneficial effect of LLLT on OA.
Collapse
|
34
|
Abstract
Tendon, ligament, and joint tissues are important in maintaining daily function. They can be affected by disease, age, and injury. Slow tissue turnover, hierarchical structure and function, and nonlinear mechanical properties present challenges to diagnosing and treating soft musculoskeletal tissues. Understanding these tissues in health, disease, and injury is important to improving pharmacologic and surgical repair outcomes. Raman spectroscopy is an important tool in the examination of soft musculoskeletal tissues. This article highlights exciting basic science and clinical/translational Raman studies of cartilage, tendon, and ligament.
Collapse
Affiliation(s)
- Karen Esmonde-White
- Department of Internal Medicine, Rheumatology Division, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| |
Collapse
|
35
|
Esmonde-White KA, Esmonde-White FWL, Morris MD, Roessler BJ. Characterization of biofluids prepared by sessile drop formation. Analyst 2014; 139:2734-41. [PMID: 24757707 PMCID: PMC4077870 DOI: 10.1039/c3an02175k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sessile drop formation, also called drop deposition, has been studied as a potential medical diagnostic, but the effects of complex biofluid rheology on the final deposition pattern are not well understood. We studied two model biofluids, blood plasma and synovial fluid, when deposited onto slightly hydrophilic substrates forming a contact angle of 50-90°. Drops were imaged during the evaporation process and geometric properties of the drop, such as contact angle and drop height, were calculated from the images. The resulting dried biofluid drops were then examined using light microscopy and Raman spectroscopy to assess morphological and chemical composition of the dried drop. The effect of substrate contact angle (surface wetting) and fluid concentration was examined. We found that when biofluids are deposited onto slightly hydrophilic surfaces, with a contact angle of 50-90°, a ring-shaped deposit was formed. Analysis of the drying drop's geometric properties indicates that biofluid dynamics follow the piling model of drop formation, as proposed by Deegan et al. The final deposition pattern varied with substrate surface and concentration, as shown by light microscopy photos of dried drops. The chemical composition of the outer ring was minimally affected by substrate surface, but the spatial heterogeneity of protein distribution within the ring varied with concentration. These results indicate that biofluid drop deposition produces ring-shaped deposits which can be examined by multiple analytical techniques.
Collapse
Affiliation(s)
- Karen A Esmonde-White
- Department of Internal Medicine, Rheumatology Division, University of Michigan Medical School, Medical Science Research Building II, 1150 West Medical Center Drive, Room 3560, Ann Arbor, MI 48109-5688, USA.
| | | | | | | |
Collapse
|
36
|
de Souza RA, Xavier M, Mangueira NM, Santos AP, Pinheiro ALB, Villaverde AB, Silveira L. Raman spectroscopy detection of molecular changes associated with two experimental models of osteoarthritis in rats. Lasers Med Sci 2013; 29:797-804. [PMID: 23979802 DOI: 10.1007/s10103-013-1423-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 08/11/2013] [Indexed: 11/30/2022]
Abstract
The aim of the present study was to evaluate the feasibility of applying Raman spectroscopy in probing the molecular changes in terms of collagen deposition and tissue remodeling associated with two well-established experimental models of osteoarthritis (OA) in knee of rats. In order to evaluate alterations in the articular surface area, the menisci-covered tibial region was assessed into three groups as follows: control (joint preserved) and two models of experimental knee OA: collagenase-induced model (n = 8) and treadmill exercise-induced model (n = 8). Each group was examined for molecular changes using spectral parameters related to cartilage, subchondral bone, and bone tissues. A significant increase of Raman ratios related to mineralization and tissue remodeling was found (p < 0.05), suggesting that both models were successful for inducing OA in rats. The significantly lower phenylalanine content and higher crystallinity in the treadmill exercise-induced model of OA than collagenase-induced model of OA (p < 0.05) indicated that the OA pathogenesis was model-dependent. Thus, this work suggests that the Raman spectroscopy technique has potential for the diagnosis and detection of cartilage damage and monitoring of subchondral bone and bone in OA pathogenesis at the molecular level.
Collapse
Affiliation(s)
- Renato Aparecido de Souza
- Grupo de Estudos e Pesquisa em Ciências da Saúde (GEP-CS), Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais, Campus Muzambinho. Estrada de Muzambinho, km 35, Caixa Postal 02, 37890-000, Muzambinho, Minas Gerais, Brazil,
| | | | | | | | | | | | | |
Collapse
|
37
|
Yang S, Li B, Slipchenko MN, Akkus A, Singer NG, Yeni YN, Akkus O. Laser Wavelength Dependence of Background Fluorescence in Raman Spectroscopic Analysis of Synovial Fluid from Symptomatic Joints. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2013; 44:1089-1095. [PMID: 24058259 PMCID: PMC3775384 DOI: 10.1002/jrs.4338] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Gout is a disease process where the nucleation and growth of crystals in the synovial fluid of joints elicit painful arthritis-like symptoms. Raman spectroscopy is evolving as a potential diagnostic tool in identifying such crystals; however, attainment of sufficient Raman signal while overcoming the background fluorescence remains as a major challenge. The current study focused on assessing whether excitation in 532-700 nm range will provide greater signal intensity than the standard 785 nm while not being impeded by background fluorescence. We characterized the fluorescence spectra, absorption spectra and Raman spectra of synovial fluid from patients who presented "gout-like symptoms" (symptomatic) and controls (asymptomatic). A digestion and filtration method was developed to isolate crystals from synovial fluid while reducing the organic burden. Spectral profile and photobleaching dynamics during Raman spectroscopy were observed under an excitation wavelength range spanning 532 to 785 nm. Absorbance and fluorescence profiles indicated the digestion and filtration worked effectively to extract crystals from symptomatic synovial fluid without introducing additional fluorescence. Raman spectral analyses at 532 nm, 660 nm, 690 nm and 785 nm indicated that both asymptomatic and symptomatic samples had significant levels of fluorescence at excitation wavelengths below 700 nm, which either hindered the collection of Raman signal or necessitated prolonged durations of photobleaching. Raman-based diagnostics were more feasible at the longest excitation wavelength of 785 nm without employing photobleaching. This study further demonstrated that a near-infrared OEM based lower-cost Raman system at 785 nm excitation has sufficient sensitivity to identify crystals isolated from the synovial fluid. In conclusion, while lower excitation wavelengths provide greater signal, the fluorescence necessitates near-infrared wavelengths for Raman analysis of crystal species observed in synovial aspirates.
Collapse
Affiliation(s)
- Shan Yang
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Bolan Li
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Mikhail N. Slipchenko
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Anna Akkus
- School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Nora G. Singer
- Division of Rheumatology, MetroHealth Medical Center, Cleveland, OH 44109 and School of Medicine, Case Western Reserve University, Cleveland OH, 44106
| | - Yener N. Yeni
- Bone and Joint Center, Department of Orthopaedics and Rehabilitation, Henry Ford Hospital, Detroit, MI 48202
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106
- Department of Orthopaedics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
38
|
Kunstar A, Leferink AM, Okagbare PI, Morris MD, Roessler BJ, Otto C, Karperien M, van Blitterswijk CA, Moroni L, van Apeldoorn AA. Label-free Raman monitoring of extracellular matrix formation in three-dimensional polymeric scaffolds. J R Soc Interface 2013; 10:20130464. [PMID: 23825118 DOI: 10.1098/rsif.2013.0464] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Monitoring extracellular matrix (ECM) components is one of the key methods used to determine tissue quality in three-dimensional scaffolds for regenerative medicine and clinical purposes. Raman spectroscopy can be used for non-invasive sensing of cellular and ECM biochemistry. We have investigated the use of conventional (confocal and semiconfocal) Raman microspectroscopy and fibre-optic Raman spectroscopy for in vitro monitoring of ECM formation in three-dimensional poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) scaffolds. Chondrocyte-seeded PEOT/PBT scaffolds were analysed for ECM formation by Raman microspectroscopy, biochemical analysis, histology and scanning electron microscopy. ECM deposition in these scaffolds was successfully detected by biochemical and histological analysis and by label-free non-destructive Raman microspectroscopy. In the spectra collected by the conventional Raman set-ups, the Raman bands at 937 and at 1062 cm(-1) which, respectively, correspond to collagen and sulfated glycosaminoglycans could be used as Raman markers for ECM formation in scaffolds. Collagen synthesis was found to be different in single chondrocyte-seeded scaffolds when compared with microaggregate-seeded samples. Normalized band-area ratios for collagen content of single cell-seeded samples gradually decreased during a 21-day culture period, whereas collagen content of the microaggregate-seeded samples significantly increased during this period. Moreover, a fibre-optic Raman set-up allowed for the collection of Raman spectra from multiple pores inside scaffolds in parallel. These fibre-optic measurements could give a representative average of the ECM Raman signal present in tissue-engineered constructs. Results in this study provide proof-of-principle that Raman microspectroscopy is a promising non-invasive tool to monitor ECM production and remodelling in three-dimensional porous cartilage tissue-engineered constructs.
Collapse
Affiliation(s)
- Aliz Kunstar
- Department of Tissue Regeneration, Institute for Biomedical Technology and Technical Medicine, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abdolahzadeh S, Boyle NM, Draksharapu A, Dennis AC, Hage R, de Boer JW, Browne WR. Off-line reaction monitoring of the oxidation of alkenes in water using drop coating deposition Raman (DCDR) spectroscopy. Analyst 2013; 138:3163-71. [DOI: 10.1039/c3an00330b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Gorr HM, Zueger JM, McAdams DR, Barnard JA. Salt-induced pattern formation in evaporating droplets of lysozyme solutions. Colloids Surf B Biointerfaces 2012. [PMID: 23201720 DOI: 10.1016/j.colsurfb.2012.09.043] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solute self-organization during evaporation of colloidal sessile droplets has attracted the attention of researchers over the past few decades due to a variety of technological applications. Recently, pattern formation during evaporation of various biofluids has been studied due to potential applications in screening and diagnosis. The complex morphological patterns in the deposit are unique to various disorders and are influenced by various physical mechanisms occurring during evaporation. These complex patterns can be better understood by studying evaporation of model solutions of biological relevance. Here, we examine the general features of pattern formation during sessile droplet evaporation of aqueous lysozyme solutions with varying concentrations of NaCl. Lysozyme is a globular protein found in biological fluids such as tears and saliva. The morphological evolution of the droplet is studied by time-lapse video during evaporation via reflection optical microscopy. The final deposits exhibit an amorphous peripheral ring and interior regions containing crystallites and dendritic forms, dependent on NaCl concentration. Scanning electron microscopy (SEM) images demonstrate the multi-scale hierarchical nature of these structures.
Collapse
Affiliation(s)
- Heather Meloy Gorr
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | |
Collapse
|
41
|
Gorr HM, Zueger JM, Barnard JA. Characteristic size for onset of coffee-ring effect in evaporating lysozyme-water solution droplets. J Phys Chem B 2012; 116:12213-20. [PMID: 22998072 DOI: 10.1021/jp307933a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Liquid droplets containing suspended particles deposited on a solid surface often form a ring-like structure due to the redistribution of solute during evaporation, a phenomenon known as the "coffee ring effect". The complex patterns left on the substrate after evaporation are characteristic of the nature of the solute and the particle transport mechanisms. In this study, the morphological evolution and conditions for coffee ring formation for simplified model biological solutions of DI water and lysozyme are examined by AFM and optical microscopy. Lysozyme is a globular protein found in high concentration, for example, in human tears and saliva. The drop diameters studied are very small, ranging from 1 to 50 μm. In this size range, protein motion and the resulting dried residue morphology are highly influenced by the decreased evaporation time of the drop. In this work, we consider the effect of droplet size and concentration on the morphology of the deposited drop as well as the minimal conditions for coffee ring formation in this system. Two distinct deposit types are observed: a simple cap-shaped deposit for drops with small diameters and a ring-like deposit at larger diameters. Ring formation occurs at a critical diameter, which depends systematically on initial lysozyme concentration.
Collapse
Affiliation(s)
- Heather Meloy Gorr
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
42
|
Bertram KL, Krawetz RJ. Osmolarity regulates chondrogenic differentiation potential of synovial fluid derived mesenchymal progenitor cells. Biochem Biophys Res Commun 2012; 422:455-61. [DOI: 10.1016/j.bbrc.2012.05.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/03/2012] [Indexed: 01/10/2023]
|
43
|
Dingari NC, Horowitz GL, Kang JW, Dasari RR, Barman I. Raman spectroscopy provides a powerful diagnostic tool for accurate determination of albumin glycation. PLoS One 2012; 7:e32406. [PMID: 22393405 PMCID: PMC3290592 DOI: 10.1371/journal.pone.0032406] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/30/2012] [Indexed: 01/15/2023] Open
Abstract
We present the first demonstration of glycated albumin detection and quantification using Raman spectroscopy without the addition of reagents. Glycated albumin is an important marker for monitoring the long-term glycemic history of diabetics, especially as its concentrations, in contrast to glycated hemoglobin levels, are unaffected by changes in erythrocyte life times. Clinically, glycated albumin concentrations show a strong correlation with the development of serious diabetes complications including nephropathy and retinopathy. In this article, we propose and evaluate the efficacy of Raman spectroscopy for determination of this important analyte. By utilizing the pre-concentration obtained through drop-coating deposition, we show that glycation of albumin leads to subtle, but consistent, changes in vibrational features, which with the help of multivariate classification techniques can be used to discriminate glycated albumin from the unglycated variant with 100% accuracy. Moreover, we demonstrate that the calibration model developed on the glycated albumin spectral dataset shows high predictive power, even at substantially lower concentrations than those typically encountered in clinical practice. In fact, the limit of detection for glycated albumin measurements is calculated to be approximately four times lower than its minimum physiological concentration. Importantly, in relation to the existing detection methods for glycated albumin, the proposed method is also completely reagent-free, requires barely any sample preparation and has the potential for simultaneous determination of glycated hemoglobin levels as well. Given these key advantages, we believe that the proposed approach can provide a uniquely powerful tool for quantification of glycation status of proteins in biopharmaceutical development as well as for glycemic marker determination in routine clinical diagnostics in the future.
Collapse
Affiliation(s)
- Narahara Chari Dingari
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Gary L. Horowitz
- Division of Clinical Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ramachandra R. Dasari
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ishan Barman
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
44
|
Buchwald T, Niciejewski K, Kozielski M, Szybowicz M, Siatkowski M, Krauss H. Identifying compositional and structural changes in spongy and subchondral bone from the hip joints of patients with osteoarthritis using Raman spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:017007. [PMID: 22352673 DOI: 10.1117/1.jbo.17.1.017007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Raman microspectroscopy was used to examine the biochemical composition and molecular structure of extracellular matrix in spongy and subchondral bone collected from patients with clinical and radiological evidence of idiopathic osteoarthritis of the hip and from patients who underwent a femoral neck fracture, as a result of trauma, without previous clinical and radiological evidence of osteoarthritis. The objectives of the study were to determine the levels of mineralization, carbonate accumulation and collagen quality in bone tissue. The subchondral bone from osteoarthritis patients in comparison with control subject is less mineralized due to a decrease in the hydroxyapatite concentration. However, the extent of carbonate accumulation in the apatite crystal lattice increases, most likely due to deficient mineralization. The alpha helix to random coil band area ratio reveals that collagen matrix in subchondral bone is more ordered in osteoarthritis disease. The hydroxyapatite to collagen, carbonate apatite to hydroxyapatite and alpha helix to random coil band area ratios are not significantly changed in the differently loaded sites of femoral head. The significant differences also are not visible in mineral and organic constituents' content in spongy bone beneath the subchondral bone in osteoarthritis disease.
Collapse
Affiliation(s)
- Tomasz Buchwald
- Poznan University of Technology, Faculty of Technical Physics, Nieszawska 13a, 60-965 Poznań, Poland.
| | | | | | | | | | | |
Collapse
|
45
|
Huang Z, Chen X, Chen Y, Chen J, Dou M, Feng S, Zeng H, Chen R. Raman spectroscopic characterization and differentiation of seminal plasma. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:110501. [PMID: 22112099 DOI: 10.1117/1.3650310] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Raman spectroscopy (RS) was applied for the analysis of seminal plasma in order to detect spectral parameters, which might be used for differentiating the normal and abnormal semen samples. Raman spectra of seminal plasma separated from normal and abnormal semen samples, showed a distinct difference in peak ratios between 1449 and 1418 cm(-1) (P < 0.05). More efficient alternative method of using principal component analysis-linear discriminate analysis based on Raman spectroscopic data yielded a diagnostic sensitivity of 73% and specificity of 82%. The results suggest that RS combined with the multivariate analysis method has the potential for differentiating semen samples by examination of the corresponding seminal plasma.
Collapse
|
46
|
|