1
|
Zhang M, Qiu Z. The impact of freeze-dried Baiyedancong-Oolong tea aqueous extract containing bioactive compounds on the activities of CYP450 enzymes, the transport capabilities of P-gp and OATs, and transcription levels in mice. Food Nutr Res 2024; 68:10605. [PMID: 39376904 PMCID: PMC11457910 DOI: 10.29219/fnr.v68.10605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/14/2024] [Accepted: 08/07/2024] [Indexed: 10/09/2024] Open
Abstract
In this study, (-)-epigallocatechin gallate (EGCG) and caffeine extracted from freeze-dried autumn Baiyedancong Oolong tea (FBOT) were orally administered to mice for 7 consecutive days to explore the effects of BOT and its bioactive compounds on the activities and transcription levels of CYP450 enzymes, intestinal effluence transporter P-gp, and renal ingestion Organic Anion Transporters (OATs). Concurrently, EGCG and caffeine enhanced the activities of CYP3A, CYP2E1, and CYP2C37 in the liver of mice, while impairing the transport capabilities of P-gp and OATs. Reduced levels of MDR1 encoding P-gp transcription in the small intestine and renal OAT1 and OAT3 revealed that transcription was involved in the regulation of CYP450, P-gp, and OATs. The reduced transcription level of liver CYP2E1 suggested that CYP2E1 activity may have been elevated due to alternative mechanisms, but not through transcription. The absorption, metabolism, and excretion of drugs may be influenced by the daily consumption or high-dose administration of BOT and its related products, in which EGCG and caffeine may make great contributions.
Collapse
Affiliation(s)
- Miaogao Zhang
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhenguo Qiu
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
2
|
Jin J, Zhong XB. Epigenetic Mechanisms Contribute to Intraindividual Variations of Drug Metabolism Mediated by Cytochrome P450 Enzymes. Drug Metab Dispos 2023; 51:672-684. [PMID: 36973001 PMCID: PMC10197210 DOI: 10.1124/dmd.122.001007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Significant interindividual and intraindividual variations on cytochrome P450 (CYP)-mediated drug metabolism exist in the general population globally. Genetic polymorphisms are one of the major contribution factors for interindividual variations, but epigenetic mechanisms mainly contribute to intraindividual variations, including DNA methylation, histone modifications, microRNAs, and long non-coding RNAs. The current review provides analysis of advanced knowledge in the last decade on contributions of epigenetic mechanisms to intraindividual variations on CYP-mediated drug metabolism in several situations, including (1) ontogeny, the developmental changes of CYP expression in individuals from neonates to adults; (2) increased activities of CYP enzymes induced by drug treatment; (3) increased activities of CYP enzymes in adult ages induced by drug treatment at neonate ages; and (4) decreased activities of CYP enzymes in individuals with drug-induced liver injury (DILI). Furthermore, current challenges, knowledge gaps, and future perspective of the epigenetic mechanisms in development of CYP pharmacoepigenetics are discussed. In conclusion, epigenetic mechanisms have been proven to contribute to intraindividual variations of drug metabolism mediated by CYP enzymes in age development, drug induction, and DILI conditions. The knowledge has helped understanding how intraindividual variation are generated. Future studies are needed to develop CYP-based pharmacoepigenetics to guide clinical applications for precision medicine with improved therapeutic efficacy and reduced risk of adverse drug reactions and toxicity. SIGNIFICANCE STATEMENT: Understanding epigenetic mechanisms in contribution to intraindividual variations of CYP-mediated drug metabolism may help to develop CYP-based pharmacoepigenetics for precision medicine to improve therapeutic efficacy and reduce adverse drug reactions and toxicity for drugs metabolized by CYP enzymes.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
3
|
Zhang M, Qiu Z. Effects of aqueous extract from Baiyedancong-Oolong tea on cytochrome P450 enzymes activities, P-gp and OATs transport abilities and transcription levels in mice. Front Nutr 2023; 10:1136329. [PMID: 37229476 PMCID: PMC10205018 DOI: 10.3389/fnut.2023.1136329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/09/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Recent studies have been conducted on its influence on drug metabolism and its potential mechanisms, among which the most studies have been focused on CYP3A enzymes. Methods In this study, Baiyedancong Oolong tea (BOT) was processed by freeze- and hot air-drying techniques separately to obtain the aqueous extracts of freeze-and hot-dried BOT (FBOT and HBOT, respectively). High and low doses of FBOT (1463.7 and 292.74 mg/kg/d, respectively) and HBOT (1454.46 mg/kg/d, 290.89, respectively) were administered to mice for 7 days. Results Aqueous extracts from BOT simultaneously improved liver CYP3A, CYP2E1, and CYP2C37 activities and weakened the transport ability of P-gp and OATs in a dose-dependent manner, thus affecting multiple links of oral drug metabolism in liver, intestinal absorption and metabolism, and renal excretion. Moreover, aqueous extracts from BOT significantly increased the mRNA expressions of liver CYP3A11 and CYP2C37 as well as intestinal CYP3A11. Decreased transcription levels of MDR1 encoding P-gp in small intestine and renal OAT1 and OAT3, which was in the same direction as the regulation of the above enzyme activities and transport capacities. Besides, the transcription level of liver CYP2E1 was weakened, which was inconsistent with its corresponding enzyme activity, suggesting that the increased CYP2E1 activity may be caused by other mechanisms. Conclusion Daily consumption or high dose administration of BOT and its related products may affect drug absorption, metabolisms, and excretion.
Collapse
|
4
|
Induction by Phenobarbital of Phase I and II Xenobiotic-Metabolizing Enzymes in Bovine Liver: An Overall Catalytic and Immunochemical Characterization. Int J Mol Sci 2022; 23:ijms23073564. [PMID: 35408925 PMCID: PMC8998613 DOI: 10.3390/ijms23073564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
In cattle, phenobarbital (PB) upregulates target drug-metabolizing enzyme (DME) mRNA levels. However, few data about PB's post-transcriptional effects are actually available. This work provides the first, and an almost complete, characterization of PB-dependent changes in DME catalytic activities in bovine liver using common probe substrates and confirmatory immunoblotting investigations. As expected, PB increased the total cytochrome P450 (CYP) content and the extent of metyrapone binding; moreover, an augmentation of protein amounts and related enzyme activities was observed for known PB targets such as CYP2B, 2C, and 3A, but also CYP2E1. However, contradictory results were obtained for CYP1A, while a decreased catalytic activity was observed for flavin-containing monooxygenases 1 and 3. The barbiturate had no effect on the chosen hydrolytic and conjugative DMEs. For the first time, we also measured the 26S proteasome activity, and the increase observed in PB-treated cattle would suggest this post-translational event might contribute to cattle DME regulation. Overall, this study increased the knowledge of cattle hepatic drug metabolism, and further confirmed the presence of species differences in DME expression and activity between cattle, humans, and rodents. This reinforced the need for an extensive characterization and understanding of comparative molecular mechanisms involved in expression, regulation, and function of DMEs.
Collapse
|
5
|
Kim SD, Morgan L, Hargreaves E, Zhang X, Jiang Z, Antenos M, Li B, Kirby GM. Regulation of Cytochrome P450 2a5 by Artemisia capillaris and 6,7-Dimethylesculetin in Mouse Hepatocytes. Front Pharmacol 2021; 12:730416. [PMID: 34880749 PMCID: PMC8645941 DOI: 10.3389/fphar.2021.730416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
Jaundice is a potentially fatal condition resulting from elevated serum bilirubin levels. For centuries, herbal remedies containing Artemisia capillaris Thunb. including the compound 6,7-dimethylesculetin (DE) have been used in Asia to prevent and treat jaundice in neonates. DE activates an important regulator of bilirubin metabolism, the constitutive androstane receptor (CAR), and increases bilirubin clearance. In addition, murine cytochrome P450 2a5 (Cyp2a5) is known to be involved in the oxidative metabolism of bilirubin. Moreover, treatment of mice with phenobarbital, a known inducer of both CAR and Cyp2a5, increases expression of Cyp2a5 suggesting a potential relationship between CAR and Cyp2a5 expression. The aim of this study is to investigate the influence of Artemisia capillaris and DE on the expression and regulatory control of Cyp2a5 and the potential involvement of CAR. Treatment of mouse hepatocytes in primary culture with DE (50 μM) significant increased Cyp2a5 mRNA and protein levels. In mice, Artemisia capillaris and DE treatment also increased levels of hepatic Cyp2a5 protein. Luciferase reporter assays showed that CAR increases Cyp2a5 gene transcription through a CAR response element in the Cyp2a5 gene promoter. Moreover, DE caused nuclear translocation of CAR in primary mouse hepatocytes and increased Cyp2a5 transcription in the presence of CAR. These results identify a potential CAR-mediated mechanism by which DE regulates Cyp2a5 gene expression and suggests that DE may enhance bilirubin clearance by increasing Cyp2a5 levels. Understanding this process could provide an opportunity for the development of novel therapies for neonatal and other forms of jaundice.
Collapse
Affiliation(s)
- Sangsoo Daniel Kim
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Larry Morgan
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Elyse Hargreaves
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Xiaoying Zhang
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Zhihui Jiang
- He'nan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Monica Antenos
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Ben Li
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Gordon M Kirby
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
Abstract
The regulation of brain cytochrome P450 enzymes (CYPs) is different compared with respective hepatic enzymes. This may result from anatomical bases and physiological functions of the two organs. The brain is composed of a variety of functional structures built of different interconnected cell types endowed with specific receptors that receive various neuronal signals from other brain regions. Those signals activate transcription factors or alter functioning of enzyme proteins. Moreover, the blood-brain barrier (BBB) does not allow free penetration of all substances from the periphery into the brain. Differences in neurotransmitter signaling, availability to endogenous and exogenous active substances, and levels of transcription factors between neuronal and hepatic cells lead to differentiated expression and susceptibility to the regulation of CYP genes in the brain and liver. Herein, we briefly describe the CYP enzymes of CYP1-3 families, their distribution in the brain, and discuss brain-specific regulation of CYP genes. In parallel, a comparison to liver CYP regulation is presented. CYP enzymes play an essential role in maintaining the levels of bioactive molecules within normal ranges. These enzymes modulate the metabolism of endogenous neurochemicals, such as neurosteroids, dopamine, serotonin, melatonin, anandamide, and exogenous substances, including psychotropics, drugs of abuse, neurotoxins, and carcinogens. The role of these enzymes is not restricted to xenobiotic-induced neurotoxicity, but they are also involved in brain physiology. Therefore, it is crucial to recognize the function and regulation of CYP enzymes in the brain to build a foundation for future medicine and neuroprotection and for personalized treatment of brain diseases.
Collapse
Affiliation(s)
- Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
7
|
Oliviero F, Lukowicz C, Boussadia B, Forner-Piquer I, Pascussi JM, Marchi N, Mselli-Lakhal L. Constitutive Androstane Receptor: A Peripheral and a Neurovascular Stress or Environmental Sensor. Cells 2020; 9:E2426. [PMID: 33171992 PMCID: PMC7694609 DOI: 10.3390/cells9112426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Xenobiotic nuclear receptors (NR) are intracellular players involved in an increasing number of physiological processes. Examined and characterized in peripheral organs where they govern metabolic, transport and detoxification mechanisms, accumulating data suggest a functional expression of specific NR at the neurovascular unit (NVU). Here, we focus on the Constitutive Androstane Receptor (CAR), expressed in detoxifying organs such as the liver, intestines and kidneys. By direct and indirect activation, CAR is implicated in hepatic detoxification of xenobiotics, environmental contaminants, and endogenous molecules (bilirubin, bile acids). Importantly, CAR participates in physiological stress adaptation responses, hormonal and energy homeostasis due to glucose and lipid sensing. We next analyze the emerging evidence supporting a role of CAR in NVU cells including the blood-brain barrier (BBB), a key vascular interface regulating communications between the brain and the periphery. We address the emerging concept of how CAR may regulate specific P450 cytochromes at the NVU and the associated relevance to brain diseases. A clear understanding of how CAR engages during pathological conditions could enable new mechanistic, and perhaps pharmacological, entry-points within a peripheral-brain axis.
Collapse
Affiliation(s)
- Fabiana Oliviero
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (F.O.); (C.L.)
| | - Céline Lukowicz
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (F.O.); (C.L.)
| | - Badreddine Boussadia
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Isabel Forner-Piquer
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Jean-Marc Pascussi
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Laila Mselli-Lakhal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (F.O.); (C.L.)
| |
Collapse
|
8
|
Park E, Kim HK, Jee J, Hahn S, Jeong S, Yoo J. Development of organoid-based drug metabolism model. Toxicol Appl Pharmacol 2019; 385:114790. [DOI: 10.1016/j.taap.2019.114790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/27/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022]
|
9
|
Piekos SC, Chen L, Wang P, Shi J, Yaqoob S, Zhu HJ, Ma X, Zhong XB. Consequences of Phenytoin Exposure on Hepatic Cytochrome P450 Expression during Postnatal Liver Maturation in Mice. Drug Metab Dispos 2018; 46:1241-1250. [PMID: 29884652 PMCID: PMC6053591 DOI: 10.1124/dmd.118.080861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
Abstract
The induction of cytochrome P450 (P450) enzymes in response to drug treatment is a significant contributing factor to drug-drug interactions, which may reduce therapeutic efficacy and/or cause toxicity. Since most studies on P450 induction are performed in adults, enzyme induction at neonatal, infant, and adolescent ages is not well understood. Previous work defined the postnatal ontogeny of drug-metabolizing P450s in human and mouse livers; however, there are limited data on the ontogeny of the induction potential of each enzyme in response to drug treatment. Induction of P450s at the neonatal age may also cause permanent alterations in P450 expression in adults. The goal of this study was to investigate the short- and long-term effects of phenytoin treatment on mRNA and protein expressions and enzyme activities of CYP2B10, 2C29, 3A11, and 3A16 at different ages during postnatal liver maturation in mice. Induction of mRNA immediately following phenytoin treatment appeared to depend on basal expression of the enzyme at a specific age. While neonatal mice showed the greatest fold changes in CYP2B10, 2C29, and 3A11 mRNA expression following treatment, the levels of induced protein expression and enzymatic activity were much lower than that of induced levels in adults. The expression of fetal CYP3A16 was repressed by phenytoin treatment. Neonatal treatment with phenytoin did not permanently induce enzyme expression in adulthood. Taken together, our data suggest that inducibility of drug-metabolizing P450s is much lower in neonatal mice than it is in adults and neonatal induction by phenytoin is not permanent.
Collapse
Affiliation(s)
- Stephanie C Piekos
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (S.C.P., L.C., S.Y., X.-b.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., X.M.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Liming Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (S.C.P., L.C., S.Y., X.-b.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., X.M.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Pengcheng Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (S.C.P., L.C., S.Y., X.-b.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., X.M.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Jian Shi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (S.C.P., L.C., S.Y., X.-b.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., X.M.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Sharon Yaqoob
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (S.C.P., L.C., S.Y., X.-b.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., X.M.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Hao-Jie Zhu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (S.C.P., L.C., S.Y., X.-b.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., X.M.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Xiaochao Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (S.C.P., L.C., S.Y., X.-b.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., X.M.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (S.C.P., L.C., S.Y., X.-b.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., X.M.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| |
Collapse
|
10
|
Graves JP, Gruzdev A, Bradbury JA, DeGraff LM, Edin ML, Zeldin DC. Characterization of the Tissue Distribution of the Mouse Cyp2c Subfamily by Quantitative PCR Analysis. Drug Metab Dispos 2017; 45:807-816. [PMID: 28450579 PMCID: PMC5478903 DOI: 10.1124/dmd.117.075697] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/25/2017] [Indexed: 01/08/2023] Open
Abstract
The CYP2C subfamily of the cytochrome P450 gene superfamily encodes heme-thiolate proteins that have a myriad of biologic functions. CYP2C proteins detoxify xenobiotics and metabolize endogenous lipids such as arachidonic acid to bioactive eicosanoids. We report new methods and results for the quantitative polymerase reaction (qPCR) analysis for the 15 members of the mouse Cyp2c subfamily (Cyp2c29, Cyp2c37, Cyp2c38, Cyp2c39, Cyp2c40, Cyp2c44, Cyp2c50, Cyp2c54, Cyp2c55, Cyp2c65, Cyp2c66, Cyp2c67, Cyp2c68, Cyp2c69, and Cyp2c70). Commercially available TaqMan primer/probe assays were compared with developed SYBR Green primer sets for specificity toward the mouse Cyp2c cDNAs and analysis of their tissue distribution. TaqMan primer/probe assays for 10 of the mouse Cyp2c isoforms were shown to be specific for their intended mouse Cyp2c cDNA; however, there were no TaqMan primer/probe assays specific for the mouse Cyp2c29, Cyp2c40, Cyp2c67, Cyp2c68, or Cyp2c69 transcripts. Each of the SYBR Green primer sets was specific for its intended mouse Cyp2c cDNA. The two qPCR methods confirmed similar patterns of Cyp2c tissue expression: Cyp2c37, Cyp2c38, Cyp2c39, Cyp2c44, Cyp2c50, Cyp2c54, and Cyp2c70 were most highly expressed in liver; Cyp2c55 was highly expressed in large intestine; Cyp2c65 was highly expressed in stomach, duodenum, and large intestine; and Cyp2c66 was highly expressed in both duodenum and jejunum. For isoforms without specific TaqMan primer/probe assays, the SYBR Green primer sets detected high level expression of Cyp2c29, Cyp2c40, Cyp2c67, Cyp2c68, and Cyp2c69 in the liver. Lower expression levels of the mouse Cyp2cs were also detected in other tissues.
Collapse
Affiliation(s)
- Joan P Graves
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Artiom Gruzdev
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - J Alyce Bradbury
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Laura M DeGraff
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Matthew L Edin
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Darryl C Zeldin
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
11
|
Chen X, DuBois DC, Almon RR, Jusko WJ. Characterization and Interspecies Scaling of rhTNF- α Pharmacokinetics with Minimal Physiologically Based Pharmacokinetic Models. Drug Metab Dispos 2017; 45:798-806. [PMID: 28411279 PMCID: PMC5469399 DOI: 10.1124/dmd.116.074799] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/12/2017] [Indexed: 01/26/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a soluble cytokine and target of specific monoclonal antibodies (mAbs) and other biologic agents used in the treatment of inflammatory diseases. These biologics exert their pharmacological effects through binding and neutralizing TNF-α, and thus they prevent TNF-α from interacting with its cell surface receptors. The magnitude of the pharmacological effects is governed not only by the pharmacokinetics (PK) of mAbs, but also by the kinetic fate of TNF-α We have examined the pharmacokinetics of recombinant human TNF-α (rhTNF-α) in rats at low doses and quantitatively characterized its pharmacokinetic features with a minimal physiologically based pharmacokinetic model. Our experimental and literature-digitalized PK data of rhTNF-α in rats across a wide range of doses were applied to global model fitting. rhTNF-α exhibits permeability rate-limited tissue distribution and its elimination is comprised of a saturable clearance pathway mediated by tumor necrosis factor receptor binding and disposition and renal filtration. The resulting model integrated with classic allometry was further used for interspecies PK scaling and resulted in model predictions that agreed well with experimental measurements in monkeys. In addition, a semimechanistic model was proposed and applied to explore the absorption kinetics of rhTNF-α following s.c. and other routes of administration. The model suggests substantial presystemic degradation of rhTNF-α for s.c. and i.m. routes and considerable lymph uptake contributing to the overall systemic absorption through the stomach wall and gastrointestinal wall routes of dosing. This report provides comprehensive modeling and key insights into the complexities of absorption and disposition of a major cytokine.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.C., D.C.D, R.R.A, W.J.J.), and Department of Biological Sciences (D.C.D, R.R.A), State University of New York at Buffalo, Buffalo, New York
| | - Debra C DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.C., D.C.D, R.R.A, W.J.J.), and Department of Biological Sciences (D.C.D, R.R.A), State University of New York at Buffalo, Buffalo, New York
| | - Richard R Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.C., D.C.D, R.R.A, W.J.J.), and Department of Biological Sciences (D.C.D, R.R.A), State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.C., D.C.D, R.R.A, W.J.J.), and Department of Biological Sciences (D.C.D, R.R.A), State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
12
|
Yoshida M, Cho N, Akita H, Kobayashi K. Association of a reactive intermediate derived from 1',6-dihydroxy metabolite with benzbromarone-induced hepatotoxicity. J Biochem Mol Toxicol 2017; 31. [PMID: 28598529 DOI: 10.1002/jbt.21946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/21/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022]
Abstract
Treatment with benzbromarone can be associated with liver injury, but the detailed mechanism remains unknown. Our recent studies demonstrated that benzbromarone was metabolized to 1',6-dihydroxybenzbromarone and followed by formation of reactive intermediates that were trapped by glutathione, suggesting that the reactive intermediates may be responsible for the liver injury. The aim of this study was to clarify whether the reactive intermediates derived from 1',6-dihydroxybenzbromarone is a risk factor of liver injury in mice. An incubation study using mouse liver microsomes showed that the rates of formation of 1',6-dihydroxybenzbromarone from benzbromarone were increased by pretreatment with dexamethasone. Levels of a hepatic glutathione adduct derived from 1',6-dihydroxybenzbromarone were increased by pretreatment with dexamethasone. Furthermore, plasma alanine amino transferase activities were increased in mice treated with benzbromarone after pretreatment with dexamethasone. The results suggest that the reactive intermediate derived from 1',6-dihydroxybenzbromarone may be associated with liver injury.
Collapse
Affiliation(s)
- Mina Yoshida
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Naoki Cho
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hidetaka Akita
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kaoru Kobayashi
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
13
|
Kawase A, Tanaka H, Otori T, Matsuyama K, Iwaki M. Effects of duration of phenytoin administration on mRNA expression of cytochrome P450 and P-glycoprotein in the liver and small intestine of rats. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2016.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
14
|
Schraplau A, Schewe B, Neuschäfer-Rube F, Ringel S, Neuber C, Kleuser B, Püschel GP. Enhanced thyroid hormone breakdown in hepatocytes by mutual induction of the constitutive androstane receptor (CAR, NR1I3) and arylhydrocarbon receptor by benzo[a]pyrene and phenobarbital. Toxicology 2015; 328:21-8. [DOI: 10.1016/j.tox.2014.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 12/15/2022]
|
15
|
Johnson CH, Bonzo JA, Cheng J, Krausz KW, Kang DW, Luecke H, Idle JR, Gonzalez FJ. Cytochrome P450 regulation by α-tocopherol in Pxr-null and PXR-humanized mice. Drug Metab Dispos 2013; 41:406-13. [PMID: 23160821 PMCID: PMC3558860 DOI: 10.1124/dmd.112.048009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 11/15/2012] [Indexed: 12/18/2022] Open
Abstract
The pregnane X receptor (PXR) has been postulated to play a role in the metabolism of α-tocopherol owing to the up-regulation of hepatic cytochrome P450 (P450) 3A in human cell lines and murine models after α-tocopherol treatment. However, in vivo studies confirming the role of PXR in α-tocopherol metabolism in humans presents significant difficulties and has not been performed. PXR-humanized (hPXR), wild-type, and Pxr-null mouse models were used to determine whether α-tocopherol metabolism is influenced by species-specific differences in PXR function in vivo. No significant difference in the concentration of the major α-tocopherol metabolites was observed among the hPXR, wild-type, and Pxr-null mice through mass spectrometry-based metabolomics. Gene expression analysis revealed significantly increased expression of Cyp3a11 as well as several other P450s only in wild-type mice, suggesting species-specificity for α-tocopherol activation of PXR. Luciferase reporter assay confirmed activation of mouse PXR by α-tocopherol. Analysis of the Cyp2c family of genes revealed increased expression of Cyp2c29, Cyp2c37, and Cyp2c55 in wild-type, hPXR, and Pxr-null mice, which suggests PXR-independent induction of Cyp2c gene expression. This study revealed that α-tocopherol is a partial agonist of PXR and that PXR is necessary for Cyp3a induction by α-tocopherol. The implications of a novel role for α-tocopherol in Cyp2c gene regulation are also discussed.
Collapse
Affiliation(s)
- Caroline H Johnson
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Chen WD, Fu X, Dong B, Wang YD, Shiah S, Moore DD, Huang W. Neonatal activation of the nuclear receptor CAR results in epigenetic memory and permanent change of drug metabolism in mouse liver. Hepatology 2012; 56:1499-509. [PMID: 22488010 PMCID: PMC3407349 DOI: 10.1002/hep.25766] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
UNLABELLED Aberrant epigenetic alterations during development may result in long-term epigenetic memory and have a permanent effect on the health of subjects. Constitutive androstane receptor (CAR) is a central regulator of drug/xenobiotic metabolism. Here, we report that transient neonatal activation of CAR results in epigenetic memory and a permanent change of liver drug metabolism. CAR activation by neonatal exposure to the CAR-specific ligand 1,4-bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) led to persistently induced expression of the CAR target genes Cyp2B10 and Cyp2C37 throughout the life of exposed mice. These mice showed a permanent reduction in sensitivity to zoxazolamine treatment as adults. Compared with control groups, the induction of Cyp2B10 and Cyp2C37 in hepatocytes isolated from these mice was more sensitive to low concentrations of the CAR agonist TCPOBOP. Accordingly, neonatal activation of CAR led to a permanent increase of histone 3 lysine 4 mono-, di-, and trimethylation and decrease of H3K9 trimethylation within the Cyp2B10 locus. Transcriptional coactivator activating signal cointegrator-2 and histone demethylase JMJD2d participated in this CAR-dependent epigenetic switch. CONCLUSION Neonatal activation of CAR results in epigenetic memory and a permanent change of liver drug metabolism.
Collapse
Affiliation(s)
- Wei-Dong Chen
- Division of Gene Regulation & Drug Discovery, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010,School of Medicine, Henan University, Kaifeng 475001, P. R. China
| | - Xianghui Fu
- Division of Gene Regulation & Drug Discovery, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010
| | - Bingning Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Yan-Dong Wang
- Division of Gene Regulation & Drug Discovery, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010,Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Steven Shiah
- Division of Gene Regulation & Drug Discovery, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010
| | - David D. Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Wendong Huang
- Division of Gene Regulation & Drug Discovery, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010
| |
Collapse
|
17
|
Chen Y, Tang Y, Guo C, Wang J, Boral D, Nie D. Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters. Biochem Pharmacol 2012; 83:1112-26. [PMID: 22326308 PMCID: PMC3339266 DOI: 10.1016/j.bcp.2012.01.030] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 01/18/2023]
Abstract
Chemotherapy is one of the three most common treatment modalities for cancer. However, its efficacy is limited by multidrug resistant cancer cells. Drug metabolizing enzymes (DMEs) and efflux transporters promote the metabolism, elimination, and detoxification of chemotherapeutic agents. Consequently, elevated levels of DMEs and efflux transporters reduce the therapeutic effectiveness of chemotherapeutics and, often, lead to treatment failure. Nuclear receptors, especially pregnane X receptor (PXR, NR1I2) and constitutive androstane activated receptor (CAR, NR1I3), are increasingly recognized for their role in xenobiotic metabolism and clearance as well as their role in the development of multidrug resistance (MDR) during chemotherapy. Promiscuous xenobiotic receptors, including PXR and CAR, govern the inducible expressions of a broad spectrum of target genes that encode phase I DMEs, phase II DMEs, and efflux transporters. Recent studies conducted by a number of groups, including ours, have revealed that PXR and CAR play pivotal roles in the development of MDR in various human carcinomas, including prostate, colon, ovarian, and esophageal squamous cell carcinomas. Accordingly, PXR/CAR expression levels and/or activation statuses may predict prognosis and identify the risk of drug resistance in patients subjected to chemotherapy. Further, PXR/CAR antagonists, when used in combination with existing chemotherapeutics that activate PXR/CAR, are feasible and promising options that could be utilized to overcome or, at least, attenuate MDR in cancer cells.
Collapse
Affiliation(s)
- Yakun Chen
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794, United States
| | | | | | | | | | | |
Collapse
|
18
|
Ishii M, Toda T, Ikarashi N, Ochiai W, Sugiyama K. Effects of Intestinal Flora on the Expression of Cytochrome P450 3A in the Liver. YAKUGAKU ZASSHI 2012; 132:301-10. [DOI: 10.1248/yakushi.132.301] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Makoto Ishii
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Takahiro Toda
- Department of Clinical Pharmacokinetics, Hoshi University
| | | | - Wataru Ochiai
- Department of Clinical Pharmacokinetics, Hoshi University
| | | |
Collapse
|
19
|
Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv Drug Deliv Rev 2010; 62:1238-49. [PMID: 20727377 DOI: 10.1016/j.addr.2010.08.006] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 12/24/2022]
Abstract
Drug-metabolizing enzymes (DMEs) and transporters play pivotal roles in the disposition and detoxification of numerous foreign and endogenous chemicals. To accommodate chemical challenges, the expression of many DMEs and transporters is up-regulated by a group of ligand-activated transcription factors namely nuclear receptors (NRs). The importance of NRs in xenobiotic metabolism and clearance is best exemplified by the most promiscuous xenobiotic receptors: pregnane X receptor (PXR, NR1I2) and constitutive androstane/activated receptor (CAR, NR1I3). Together, these two receptors govern the inductive expression of a largely overlapping array of target genes encoding phase I and II DMEs, and drug transporters. Moreover, PXR and CAR also represent two distinctive mechanisms of NR activation, whereby CAR demonstrates both constitutive and ligand-independent activation. In this review, recent advances in our understanding of PXR and CAR as xenosensors are discussed with emphasis placed on the differences rather than similarities of these two xenobiotic receptors in ligand recognition and target gene regulation.
Collapse
|
20
|
Wang X, Sykes DB, Miller DS. Constitutive androstane receptor-mediated up-regulation of ATP-driven xenobiotic efflux transporters at the blood-brain barrier. Mol Pharmacol 2010; 78:376-83. [PMID: 20547735 PMCID: PMC2939489 DOI: 10.1124/mol.110.063685] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 06/14/2010] [Indexed: 12/11/2022] Open
Abstract
ATP-driven efflux transporters at the blood-brain barrier both protect against neurotoxicants and limit drug delivery to the brain. In other barrier and excretory tissues, efflux transporter expression is regulated by certain ligand-activated nuclear receptors. Here we identified constitutive androstane receptor (CAR) as a positive regulator of P-glycoprotein, multidrug resistance-associated protein 2 (Mrp2), and breast cancer resistance protein (BCRP) expression in rat and mouse brain capillaries. Exposing rat brain capillaries to the CAR activator, phenobarbital (PB), increased the transport activity and protein expression (Western blots) of P-glycoprotein, Mrp2, and BCRP. Induction of transport was abolished by the protein phosphatase 2A inhibitor, OA. Similar effects on transporter activity and expression were found when mouse brain capillaries were exposed to the mouse-specific CAR ligand, 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP). In brain capillaries from CAR-null mice, TCPOBOP did not increase transporter activity. Finally, treating mice with 0.33 mg/kg TCPOBOP or rats with 80 mg/kg PB increased P-glycoprotein-, Mrp2-, and BCRP-mediated transport and protein expression in brain capillaries assayed ex vivo. Thus, CAR activation selectively tightens the blood-brain barrier by increasing transport activity and protein expression of three xenobiotic efflux pumps.
Collapse
Affiliation(s)
- Xueqian Wang
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
21
|
Konno Y, Kamino H, Moore R, Lih F, Tomer KB, Zeldin DC, Goldstein JA, Negishi M. The nuclear receptors constitutive active/androstane receptor and pregnane x receptor activate the Cyp2c55 gene in mouse liver. Drug Metab Dispos 2010; 38:1177-82. [PMID: 20371638 PMCID: PMC2908984 DOI: 10.1124/dmd.110.032334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/06/2010] [Indexed: 12/15/2022] Open
Abstract
Mouse CYP2C55 has been characterized as an enzyme that catalyzes synthesis of 19-hydroxyeicosatetraenoic acid (19-HETE), an arachidonic acid metabolite known to have important physiological functions such as regulation of renal vascular tone and ion transport. We have now found that CYP2C55 is induced by phenobarbital (PB) and pregnenolone 16alpha-carbonitrile (PCN) in both mouse kidney and liver. The nuclear xenobiotic receptors constitutive active/androstane receptor (CAR) and pregnane X receptor (PXR) regulate these drug inductions: CYP2C55 mRNA was increased 25-fold in PB-treated Car(+/+) but not in Car(-/-) mice and was induced in Pxr(+/+) but not Pxr(-/-) mice after PCN treatment. Cell-based promoter analysis and gel shift assays identified the DNA sequence (-1679)TGAACCCAGTTGAACT(-1664) as a DR4 motif that regulates CAR- and PXR-mediated transcription of the Cyp2c55 gene. Chronic PB treatment increased hepatic microsomal CYP2C55 protein and serum 19-HETE levels. These findings indicate that CAR and PXR may play a role in regulation of drug-induced synthesis of 19-HETE in the mouse.
Collapse
MESH Headings
- Animals
- Base Sequence
- Constitutive Androstane Receptor
- Cytochrome P-450 Enzyme System/biosynthesis
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P450 Family 2
- Gene Expression Regulation, Enzymologic/drug effects
- Hydroxyeicosatetraenoic Acids/blood
- Kidney/metabolism
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Microsomes, Liver/metabolism
- Phenobarbital/pharmacology
- Pregnane X Receptor
- Pregnenolone Carbonitrile/pharmacology
- Random Allocation
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/agonists
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Sequence Analysis, DNA
- Transcription Factors/genetics
- Transcriptional Activation/drug effects
Collapse
Affiliation(s)
- Yoshihiro Konno
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen Y, Goldstein JA. The transcriptional regulation of the human CYP2C genes. Curr Drug Metab 2009; 10:567-78. [PMID: 19702536 PMCID: PMC2808111 DOI: 10.2174/138920009789375397] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/14/2009] [Indexed: 01/09/2023]
Abstract
In humans, four members of the CYP2C subfamily (CYP2C8, CYP2C9, CYP2C18, and CYP2C19) metabolize more than 20% of all therapeutic drugs as well as a number of endogenous compounds. The CYP2C enzymes are found predominantly in the liver, where they comprise approximately 20% of the total cytochrome P450. A variety of xenobiotics such as phenobarbital, rifampicin, and hyperforin have been shown to induce the transcriptional expression of CYP2C genes in primary human hepatocytes and to increase the metabolism of CYP2C substrates in vivo in man. This induction can result in drug-drug interactions, drug tolerance, and therapeutic failure. Several drug-activated nuclear receptors including CAR, PXR, VDR, and GR recognize drug responsive elements within the 5' flanking promoter region of CYP2C genes to mediate the transcriptional upregulation of these genes in response to xenobiotics and steroids. Other nuclear receptors and transcriptional factors including HNF4alpha, HNF3gamma, C/EBPalpha and more recently RORs, have been reported to regulate the constitutive expression of CYP2C genes in liver. The maximum transcriptional induction of CYP2C genes appears to be achieved through a coordinative cross-talk between drug responsive nuclear receptors, hepatic factors, and coactivators. The transcriptional regulatory mechanisms of the expression of CYP2C genes in extrahepatic tissues has received less study, but these may be altered by perturbations from pathological conditions such as ischemia as well as some of the receptors mentioned above.
Collapse
Affiliation(s)
- Yuping Chen
- Laboratory of Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Joyce A. Goldstein
- Laboratory of Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| |
Collapse
|
23
|
Toda T, Saito N, Ikarashi N, Ito K, Yamamoto M, Ishige A, Watanabe K, Sugiyama K. Intestinal flora induces the expression of Cyp3a in the mouse liver. Xenobiotica 2009; 39:323-34. [PMID: 19350455 DOI: 10.1080/00498250802651984] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In order to determine the effects of intestinal flora on the expression of cytochrome P450 (CYP), the mRNA expression of CYP was compared between specific pathogen-free (SPF) and germ-free (GF) mice. Most of the major CYP isozymes showed higher expression in the livers of SPF mice compared with GF mice. Nuclear factors such as pregnane X receptor (PXR) and constitutive androstane receptor (CAR), as well as transporters and conjugation enzymes involved in the detoxification of lithocholic acid (LCA), also showed higher expression in SPF mice. The findings suggest that in the livers of SPF mice, LCA produced by intestinal flora increases the expression of CYPs via activation of PXR and CAR. Drugs such as antibiotics, some diseases and ageing, etc. are known to alter intestinal flora. The present findings suggest that such changes also affect CYP and are one of the factors responsible for individual differences in pharmacokinetics.
Collapse
Affiliation(s)
- T Toda
- Department of Clinical Pharmacokinetics, Hoshi University, Ebara, Shinagawa-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Tohyama J, Billheimer JT, Fuki IV, Rothblat GH, Rader DJ, Millar JS. Effects of nevirapine and efavirenz on HDL cholesterol levels and reverse cholesterol transport in mice. Atherosclerosis 2009; 204:418-23. [PMID: 18990393 PMCID: PMC2755296 DOI: 10.1016/j.atherosclerosis.2008.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 08/15/2008] [Accepted: 09/16/2008] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The mechanism by which non-nucleoside reverse transcriptase inhibitors (NNRTIs) increase HDL cholesterol (HDL-C) in HIV+ patients and the benefits of this with respect to cardiovascular risk are not known. Studies were conducted to test the hypothesis that NNRTIs have a beneficial effect on HDL-C and reverse cholesterol transport (RCT). METHODS LDLr-/- and hA-I transgenic mice were fed a Western diet containing either nevirapine (20mg/kg per day), efavirenz (10mg/kg per day), or diet alone. hA-I transgenic mice underwent a study to measure RCT (measured by excretion of macrophage [(3)H]-cholesterol into HDL and feces) at 8 weeks. RESULTS LDLr-/- and hA-I transgenic mice treated with nevirapine and efavirenz had a significant increase in HDL-C level (up to 23% in hA-I transgenic) at 4 weeks. However, there was no difference in HDL levels beyond 4 weeks of treatment. At 4 weeks, the FPLC profile of hA-I transgenic mice showed an increase in large HDL. hApoA-I transgenic mice treated with efavirenz for 4 weeks had increased expression of human apoA-I in liver and an increased human apoA-I production rate. Incubation of plasma from hA-I transgenic mice treated for 4 weeks with [(3)H]-cholesterol-labeled macrophages revealed increased cholesterol efflux to plasma from mice treated with efavirenz and nevirapine. Following injection of hA-I transgenic mice treated for 8 weeks with [(3)H]-cholesterol-labeled macrophages, RCT was increased in the efavirenz (p=0.01) group and trended towards an increase in the nevirapine (p=0.15) group. CONCLUSION Nevirapine and efavirenz transiently increased HDL-C in LDLr-/- and hA-I transgenic mice fed a Western diet that was associated with increased apoA-I production. An increase in RCT in hA-I transgenic mice at 8 weeks despite no difference in HDL levels indicates that these drugs affect additional factors in the RCT pathway that enhance cholesterol efflux from the macrophage and peripheral tissues to plasma and delivery to liver for excretion. These results suggest that treatment with NNRTIs has a beneficial effect on cholesterol efflux and RCT.
Collapse
Affiliation(s)
- Junichiro Tohyama
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Ross PK, Woods CG, Bradford BU, Kosyk O, Gatti DM, Cunningham ML, Rusyn I. Time-course comparison of xenobiotic activators of CAR and PPARalpha in mouse liver. Toxicol Appl Pharmacol 2009; 235:199-207. [PMID: 19136022 PMCID: PMC2654411 DOI: 10.1016/j.taap.2008.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/10/2008] [Accepted: 12/01/2008] [Indexed: 10/25/2022]
Abstract
Constitutive androstane receptor (CAR) and peroxisome proliferator activated receptor (PPAR)alpha are transcription factors known to be primary mediators of liver effects, including carcinogenesis, by phenobarbital-like compounds and peroxisome proliferators, respectively, in rodents. Many similarities exist in the phenotypes elicited by these two classes of agents in rodent liver, and we hypothesized that the initial transcriptional responses to the xenobiotic activators of CAR and PPARalpha will exhibit distinct patterns, but at later time-points these biological pathways will converge. In order to capture the global transcriptional changes that result from activation of these nuclear receptors over a time-course in the mouse liver, microarray technology was used. First, differences in basal expression of liver genes between C57Bl/6J wild-type and Car-null mice were examined and 14 significantly differentially expressed genes were identified. Next, mice were treated with phenobarbital (100 mg/kg by gavage for 24 h, or 0.085% w/w diet for 7 or 28 days), and liver gene expression changes with regards to both time and treatment were identified. While several pathways related to cellular proliferation and metabolism were affected by phenobarbital in wild-type mice, no significant changes in gene expression were found over time in the Car-nulls. Next, we determined commonalities and differences in the temporal response to phenobarbital and WY-14,643, a prototypical activator of PPAR alpha. Gene expression signatures from livers of wild-type mice C57Bl6/J mice treated with PB or WY-14,643 were compared. Similar pathways were affected by both compounds; however, considerable time-related differences were present. This study establishes common gene expression fingerprints of exposure to activators of CAR and PPARalpha in rodent liver and demonstrates that despite similar phenotypic changes, molecular pathways differ between classes of chemical carcinogens.
Collapse
Affiliation(s)
- Pamela K. Ross
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC
- ExxonMobil Biomedical Sciences, Annandale, NJ
| | - Blair U. Bradford
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC
| | - Oksana Kosyk
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC
| | - Daniel M. Gatti
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC
| | - Michael L. Cunningham
- The National Institute for Environmental Health Sciences, Research Triangle Park, NC
| | - Ivan Rusyn
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
26
|
Hernandez JP, Mota LC, Huang W, Moore DD, Baldwin WS. Sexually dimorphic regulation and induction of P450s by the constitutive androstane receptor (CAR). Toxicology 2009; 256:53-64. [PMID: 19041682 PMCID: PMC2798732 DOI: 10.1016/j.tox.2008.11.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 02/03/2023]
Abstract
The constitutive androstane receptor (CAR) is a xenosensing nuclear receptor and regulator of cytochrome P450s (CYPs). However, the role of CAR as a basal regulator of CYP expression nor its role in sexually dimorphic responses have been thoroughly studied. We investigated basal regulation and sexually dimorphic regulation and induction by the potent CAR activator TCPOBOP and the moderate CAR activator Nonylphenol (NP). NP is an environmental estrogen and one of the most commonly found environmental toxicants in Europe and the United States. Previous studies have demonstrated that NP induces several CYPs in a sexually dimorphic manner, however the role of CAR in regulating NP-mediated sexually dimorphic P450 expression and induction has not been elucidated. Therefore, wild-type and CAR-null male and female mice were treated with honey as a carrier, NP, or TCPOBOP and CYP expression monitored by QPCR and Western blotting. CAR basally regulates the expression of Cyp2c29, Cyp2b13, and potentially Cyp2b10 as demonstrated by QPCR. Furthermore, we observed a shift in the testosterone 6alpha/15alpha-hydroxylase ratio in untreated CAR-null female mice to the male pattern, which indicates an alteration in androgen status and suggests a role for androgens as CAR inverse agonists. Xenobiotic-treatments with NP and TCPOBOP induced Cyp2b10, Cyp2c29, and Cyp3a11 in a CAR-mediated fashion; however NP only induced these CYPs in females and TCPOBOP induced these CYPs in both males and females. Interestingly, Cyp2a4, was only induced in wild-type male mice by TCPOBOP suggesting Cyp2a4 induction is not sensitive to CAR-mediated induction in females. Overall, TCPOBOP and NP show similar CYP induction profiles in females, but widely different profiles in males potentially related to lower sensitivity of males to either indirect or moderate CAR activators such as NP. In summary, CAR regulates the basal and chemically inducible expression of several sexually dimorphic xenobiotic metabolizing P450s in a manner that varies depending on the ligand.
Collapse
Affiliation(s)
- J P Hernandez
- Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | | | | | | | | |
Collapse
|
27
|
Baldwin WS, Roling JA. A concentration addition model for the activation of the constitutive androstane receptor by xenobiotic mixtures. Toxicol Sci 2009; 107:93-105. [PMID: 18832183 PMCID: PMC2735418 DOI: 10.1093/toxsci/kfn206] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 09/20/2008] [Indexed: 11/13/2022] Open
Abstract
The effects of contaminants are typically studied in individual exposures; however, environmental exposures are rarely from a single contaminant. Therefore, the study of chemical mixtures is important in determining the effects of xenobiotics. The constitutive androstane receptor (CAR) responds to endobiotics and xenobiotics, and in turn induces detoxification enzymes involved in their elimination. First, we compared several androgens as inverse agonists, including androgens allegedly used by Bay Area Laboratory Co-operative to enhance athletic performance. CAR inverse agonists ranked in order of potency were dihydroandrosterone (DHA) > tetrahydrogestrinone (THG) > androstanol > norbolethone. Therefore, we used DHA as an inverse agonist during transactivation assays. Next, we examined the effects of several pesticides, plasticizers, steroids, and bile acids on CAR activation. Our data demonstrates that several pesticides and plasticizers, including diethylhexylphthalate, nonylphenol, cypermethrin, and chlorpyrifos activate CAR. Both full and partial CAR activators were discovered, and EC(50) values and Hillslopes were determined for use in the concentration addition models. Concentration addition models with and without restraint values to account for partial activators were developed. Measured results from transactivation assays with a mixture of two to five chemicals indicate that the concentration addition model without restraints correctly predicts activity unless all of the chemicals in the mixture are partial activators, and then restraint values be considered. Overall, our data indicates that it is important to consider that we are exposed to a milieu of chemicals, and the efficacy of each individual chemical is not the sole factor in determining CAR's activity in mixture modeling.
Collapse
Affiliation(s)
- William S Baldwin
- Institute of Environmental Toxicology, Clemson University, Pendleton, South Carolina 29670, USA.
| | | |
Collapse
|
28
|
He J, Xie W. Chapter 3 Nuclear Xenobiotic Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:87-116. [DOI: 10.1016/s1877-1173(09)87003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
van Waterschoot RAB, Rooswinkel RW, Wagenaar E, van der Kruijssen CMM, van Herwaarden AE, Schinkel AH. Intestinal cytochrome P450 3A plays an important role in the regulation of detoxifying systems in the liver. FASEB J 2008; 23:224-31. [PMID: 18794335 DOI: 10.1096/fj.08-114876] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
CYP3A4 is an important xenobiotic metabolizing enzyme. We previously found that CYP2C55 is highly up-regulated in Cyp3a(-/-) mice. Here, we have further investigated the mechanism of regulation of CYP2C55 and other detoxifying systems in Cyp3a(-/-) mice. Induction studies with prototypical inducers demonstrated an important role for the nuclear receptors PXR and CAR in the up-regulation of CYP2C55. Subsequent diet-switch experiments revealed that food-derived xenobiotics are primarily responsible for the increased induction of CYP2C55, as well as of several other primary detoxifying systems in Cyp3a(-/-) mice. Our data suggest that CYP3A normally metabolizes food-derived activators of PXR and/or CAR, explaining the increased levels of such activators in Cyp3a(-/-) mice and subsequent up-regulation of a range of detoxifying systems. Interestingly, our studies with tissue-specific CYP3A4 transgenic Cyp3a(-/-) mice revealed that not only hepatic but also intestinal expression of CYP3A4 could reduce the hepatic expression of detoxifying systems to near wild-type levels. Apparently, intestinal CYP3A4 can limit the hepatic exposure to food-derived activators of nuclear receptors, thereby regulating the expression of a range of detoxifying systems in the liver. This broad biological effect further emphasizes the importance of intestinal CYP3A activity and could have profound implications for the prediction of drug exposure.
Collapse
Affiliation(s)
- Robert A B van Waterschoot
- Division of Experimental Therapy, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Merrell MD, Jackson JP, Augustine LM, Fisher CD, Slitt AL, Maher JM, Huang W, Moore DD, Zhang Y, Klaassen CD, Cherrington NJ. The Nrf2 activator oltipraz also activates the constitutive androstane receptor. Drug Metab Dispos 2008; 36:1716-21. [PMID: 18474683 PMCID: PMC3693743 DOI: 10.1124/dmd.108.020867] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oltipraz (OPZ) is a well known inducer of NAD(P)H:quinone oxidoreductase (NQO1) along with other enzymes that comprise the nuclear factor E2-related factor 2 (Nrf2) battery of detoxification genes. However, OPZ treatment also induces expression of CYP2B, a gene regulated by the constitutive androstane receptor (CAR). Therefore, this study was designed to determine whether OPZ induces gene expression in the mouse liver through activation of CAR in addition to Nrf2. OPZ increased the mRNA expression of both Cyp2b10 and Nqo1 in C57BL/6 mouse livers. As expected, in livers from Nrf2-/- mice, OPZ induction of Nqo1 was reduced, indicating Nqo1 induction is dependent on Nrf2 activation, whereas Cyp2b10 induction was unchanged. The robust induction of Cyp2b10 by OPZ in wild-type mice was completely absent in CAR-/- mice, revealing a CAR-dependent induction by OPZ. OPZ also induced transcription of the human CYP2B6 promoter-reporter containing the phenobarbital (PB) responsive element in mouse liver using an in vivo transcription assay. Additionally, OPZ induced in vivo nuclear accumulation of CAR at 3 h but, as with PB, was unable to reverse androstanol repression of mouse CAR constitutive activity in transiently transfected HepG2 cells. In summary, OPZ induces expression of Cyp2b10 and Nqo1 via the activation of CAR and Nrf2, respectively.
Collapse
Affiliation(s)
- Matthew D Merrell
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wen T, Liu YC, Yang HW, Liu HY, Liu XD, Wang GJ, Xie L. Effect of 21-day exposure of phenobarbital, carbamazepine and phenytoin on P-glycoprotein expression and activity in the rat brain. J Neurol Sci 2008; 270:99-106. [DOI: 10.1016/j.jns.2008.02.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Revised: 01/29/2008] [Accepted: 02/12/2008] [Indexed: 01/08/2023]
|
32
|
van Waterschoot RAB, van Herwaarden AE, Lagas JS, Sparidans RW, Wagenaar E, van der Kruijssen CMM, Goldstein JA, Zeldin DC, Beijnen JH, Schinkel AH. Midazolam metabolism in cytochrome P450 3A knockout mice can be attributed to up-regulated CYP2C enzymes. Mol Pharmacol 2008; 73:1029-36. [PMID: 18156313 PMCID: PMC2391091 DOI: 10.1124/mol.107.043869] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The cytochrome P450 3A (CYP3A) enzymes represent one of the most important drug-metabolizing systems in humans. Recently, our group has generated cytochrome P450 3A knockout mice to study this drug-handling system in vivo. In the present study, we have characterized the Cyp3a knockout mice by studying the metabolism of midazolam, one of the most widely used probes to assess CYP3A activity. We expected that the midazolam metabolism would be severely reduced in the absence of CYP3A enzymes. We used hepatic and intestinal microsomal preparations from Cyp3a knockout and wild-type mice to assess the midazolam metabolism in vitro. In addition, in vivo metabolite formation was determined after intravenous administration of midazolam. We were surprised to find that our results demonstrated that there is still marked midazolam metabolism in hepatic (but not intestinal) microsomes from Cyp3a knockout mice. Accordingly, we found comparable amounts of midazolam as well as its major metabolites in plasma after intravenous administration in Cyp3a knockout mice compared with wild-type mice. These data suggested that other hepatic cytochrome P450 enzymes could take over the midazolam metabolism in Cyp3a knockout mice. We provide evidence that CYP2C enzymes, which were found to be up-regulated in Cyp3a knockout mice, are primarily responsible for this metabolism and that several but not all murine CYP2C enzymes are capable of metabolizing midazolam to its 1'-OH and/or 4-OH derivatives. These data illustrate interesting compensatory changes that may occur in Cyp3a knockout mice. Such flexible compensatory interplay between functionally related detoxifying systems is probably essential to their biological role in xenobiotic protection.
Collapse
Affiliation(s)
- Robert A B van Waterschoot
- Division of Experimental Therapy, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hewitt NJ, Lecluyse EL, Ferguson SS. Induction of hepatic cytochrome P450 enzymes: methods, mechanisms, recommendations, and in vitro-in vivo correlations. Xenobiotica 2008; 37:1196-224. [PMID: 17968743 DOI: 10.1080/00498250701534893] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Induction of drug-clearance pathways (Phase 1 and 2 enzymes and transporters) can have important clinical consequences. Inducers can (1) increase the clearance of other drugs, resulting in a decreased therapeutic effect, (2) increase the activation of pro-drugs, causing an alteration in their efficacy and pharmacokinetics, and (3) increase the bioactivation of drugs that contribute to hepatotoxicity via reactive intermediates. Nuclear receptors are key mediators of drug-induced changes in the expression of drug-clearance pathways. However, species differences in nuclear receptor activation make the prediction of cytochrome P450 (CYP) induction in humans from data derived from animal models problematic. Thus, in vitro human-relevant model systems are increasingly used to evaluate enzyme induction. In this review, the authors' current understanding of the mechanisms of enzyme induction and the in vitro methods for assessing the induction potential of new drugs will be discussed. Relevant issues and considerations surrounding proper study design and the interpretation of in vitro results will be discussed in light of the current US Food and Drug Administration (FDA) recommendations.
Collapse
Affiliation(s)
- N J Hewitt
- CellzDirect, 480 Hillsboro Street, Suite 130, Pittsboro, NC 27312, USA.
| | | | | |
Collapse
|
34
|
Harmsen S, Meijerman I, Beijnen JH, Schellens JHM. The role of nuclear receptors in pharmacokinetic drug–drug interactions in oncology. Cancer Treat Rev 2007; 33:369-80. [PMID: 17451886 DOI: 10.1016/j.ctrv.2007.02.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 02/06/2007] [Accepted: 02/11/2007] [Indexed: 01/17/2023]
Abstract
Drug-drug interactions can have a major impact on treatment outcome in cancer patients. These patients are at high risk of such interactions, because they are treated with combinations of multiple cytotoxic anticancer drugs or hormonal agents often co-administered with prophylactic antiemetics and analgesics to provide palliation. Interactions between drugs can affect the pharmacokinetics of concomitantly administered chemotherapeutic agents. Especially, due to the specific properties of anticancer drugs, such as a narrow therapeutic index and steep dose-toxicity curve, small pharmacokinetic changes can have significant clinical consequences like decreased therapeutic efficacy or increased toxicity. An important mechanism that underlies these interactions is the induction of enzymes or efflux transporters involved in the biotransformation and clearance of anticancer drugs. Several nuclear receptors, like the pregnane X receptor (PXR), constitutively androstane receptor (CAR), have been shown to regulate induction. Activation of these receptors will lead to induction of important enzymes like cytochrome P450 3A4 (CYP3A4), which is involved in the biotransformation of more than 50% of all clinically used drugs. Therefore, concomitant administration of agents that activate PXR will affect the pharmacokinetics of drugs that are substrate for PXRs target genes, which include CYP3A4 and MDR-1. Understanding of the molecular mechanisms that underlie enzyme induction and the identification of (new) drugs involved in pharmacokinetic drug-drug interactions may contribute to the predictability of drug-drug interactions and eventually help to develop safer anticancer regimens.
Collapse
Affiliation(s)
- S Harmsen
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Biomedical Analysis, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
35
|
Ma X, Shah Y, Cheung C, Guo GL, Feigenbaum L, Krausz KW, Idle JR, Gonzalez FJ. The PREgnane X receptor gene-humanized mouse: a model for investigating drug-drug interactions mediated by cytochromes P450 3A. Drug Metab Dispos 2007; 35:194-200. [PMID: 17093002 DOI: 10.1124/dmd.106.012831] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The most common clinical implication for the activation of the human pregnane X receptor (PXR) is the occurrence of drug-drug interactions mediated by up-regulated cytochromes P450 3A (CYP3A) isozymes. Typical rodent models do not predict drug-drug interactions mediated by human PXR because of species differences in response to PXR ligands. In the current study, a PXR-humanized mouse model was generated by bacterial artificial chromosome (BAC) transgenesis in Pxr-null mice using a BAC clone containing the complete human PXR gene and 5'- and 3'-flanking sequences. In this PXR-humanized mouse model, PXR is selectively expressed in the liver and intestine, the same tissue expression pattern as CYP3A. Treatment of PXR-humanized mice with the PXR ligands mimicked the human response, since both hepatic and intestinal CYP3As were strongly induced by rifampicin, a human-specific PXR ligand, but not by pregnenolone 16alpha-carbonitrile, a rodent-specific PXR ligand. In rifampicin-pretreated PXR-humanized mice, an approximately 60% decrease was observed for both the maximal midazolam serum concentration (C(max)) and the area under the concentration-time curve, as a result of a 3-fold increase in midazolam 1'-hydroxylation. These results illustrate the potential utility of the PXR-humanized mice in the investigation of drug-drug interactions mediated by CYP3A and suggest that the PXR-humanized mouse model would be an appropriate in vivo tool for evaluation of the overall pharmacokinetic consequences of human PXR activation by drugs.
Collapse
Affiliation(s)
- Xiaochao Ma
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|