1
|
Zhou Y, Zhong Y, Lauschke VM. Evaluating the synergistic use of advanced liver models and AI for the prediction of drug-induced liver injury. Expert Opin Drug Metab Toxicol 2025; 21:563-577. [PMID: 39893552 DOI: 10.1080/17425255.2025.2461484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Drug-induced liver injury (DILI) is a leading cause of acute liver failure. Hepatotoxicity typically occurs only in a subset of individuals after prolonged exposure and constitutes a major risk factor for the termination of drug development projects. AREAS COVERED We provide an overview of available human liver models for DILI research and discuss how they have been used to aid in early risk assessments and to mitigate the risk of project closures due to DILI in clinical stages. We summarize the different data that can be provided by such models and illustrate how these diverse data types can be interfaced with machine learning strategies to improve predictions of liver safety liabilities. EXPERT OPINION Advanced human liver models closely mimic human liver phenotypes and functions for many weeks, allowing for the recapitulation of hepatotoxicity events in vitro. Integration of the biochemical, histological, and toxicogenomic output data from these models with physicochemical compound properties using different machine learning architectures holds promise to enhance preclinical DILI predictions. However, to realize this aim, it is important to benchmark the available liver models on test sets of DILI positive and negative compounds and to carefully annotate and share the resulting data.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Yi Zhong
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Zhang J, Hu L, Xu H. Dietary exposure to per- and polyfluoroalkyl substances: Potential health impacts on human liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167945. [PMID: 37871818 DOI: 10.1016/j.scitotenv.2023.167945] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), dubbed "forever chemicals", are widely present in the environment. Environmental contamination and food contact substances are the main sources of PFAS in food, increasing the risk of human dietary exposure. Numerous epidemiological studies have established the link between dietary exposure to PFAS and liver disease. Correspondingly, PFAS induced-hepatotoxicity (e.g., hepatomegaly, cell viability, inflammation, oxidative stress, bile acid metabolism dysregulation and glycolipid metabolism disorder) observed from in vitro models and in vivo rodent studies have been extensively reported. In this review, the pertinent literature of the last 5 years from the Web of Science database was researched. This study summarized the source and fate of PFAS, and reviewed the occurrence of PFAS in food system (natural and processed food). Subsequently, the characteristics of human dietary exposure PFAS (population characteristics, distribution trend, absorption and distribution) were mentioned. Additionally, epidemiologic evidence linking PFAS exposure and liver disease was alluded, and the PFAS-induced hepatotoxicity observed from in vitro models and in vivo rodent studies was comprehensively reviewed. Lastly, we highlighted several critical knowledge gaps and proposed future research directions. This review aims to raise public awareness about food PFAS contamination and its potential risks to human liver health.
Collapse
Affiliation(s)
- Jinfeng Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Liehai Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330299, China.
| |
Collapse
|
3
|
Lee GS, Purdy MA, Choi Y. Cell Culture Systems for Studying Hepatitis B and Hepatitis D Virus Infections. Life (Basel) 2023; 13:1527. [PMID: 37511902 PMCID: PMC10381383 DOI: 10.3390/life13071527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The hepatitis B virus (HBV) and hepatitis D virus (HDV) infections cause liver disease, including hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). HBV infection remains a major global health problem. In 2019, 296 million people were living with chronic hepatitis B and about 5% of them were co-infected with HDV. In vitro cell culture systems are instrumental in the development of therapeutic targets. Cell culture systems contribute to identifying molecular mechanisms for HBV and HDV propagation, finding drug targets for antiviral therapies, and testing antiviral agents. Current HBV therapeutics, such as nucleoside analogs, effectively suppress viral replication but are not curative. Additionally, no effective treatment for HDV infection is currently available. Therefore, there is an urgent need to develop therapies to treat both viral infections. A robust in vitro cell culture system supporting HBV and HDV infections (HBV/HDV) is a critical prerequisite to studying HBV/HDV pathogenesis, the complete life cycle of HBV/HDV infections, and consequently identifying new therapeutics. However, the lack of an efficient cell culture system hampers the development of novel antiviral strategies for HBV/HDV infections. In vitro cell culture models have evolved with significant improvements over several decades. Recently, the development of the HepG2-NTCP sec+ cell line, expressing the sodium taurocholate co-transporting polypeptide receptor (NTCP) and self-assembling co-cultured primary human hepatocytes (SACC-PHHs) has opened new perspectives for a better understanding of HBV and HDV lifecycles and the development of specific antiviral drug targets against HBV/HDV infections. We address various cell culture systems along with different cell lines and how these cell culture systems can be used to provide better tools for HBV and HDV studies.
Collapse
Affiliation(s)
- Grace Sanghee Lee
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Michael A Purdy
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Youkyung Choi
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| |
Collapse
|
4
|
Chen Z, Wu J, Wang W, Tang X, Zhou L, Lv Y, Zheng Y. Investigation of the Pathogenic Mechanism of Ciprofloxacin in Aortic Aneurysm and Dissection by an Integrated Proteomics and Network Pharmacology Strategy. J Clin Med 2023; 12:jcm12041270. [PMID: 36835806 PMCID: PMC9967027 DOI: 10.3390/jcm12041270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Aortic aneurysm and dissection (AAD) is a life-threatening disease worldwide. Recently, fluoroquinolones have been reported to significantly increase the risk of AAD. This study aimed to investigate the potential functional mechanism and molecular targets of fluoroquinolones in relation to AAD by an integrated proteomic and network pharmacology strategy. A total of 1351 differentially expressed proteins were identified in human aortic vascular smooth muscle cells (VSMCs) after ciprofloxacin (CIP) stimulation. The functional analysis emphasized the important roles of metabolism, extracellular matrix homeostasis, mitochondrial damage, focal adhesion, and apoptosis in CIP-stimulated VSMCs. CIP targets were predicted with online databases and verified by molecular docking. Protein-protein interaction (PPI) analysis and module construction of the 34 potential CIP targets and 37 selected hub molecules after CIP stimulation identified four critical target proteins in the module: PARP1, RAC1, IGF1R and MKI67. Functional analysis of the PPI module showed that the MAPK signalling pathway, focal adhesion, apoptosis, regulation of actin cytoskeleton, and PI3K-Akt signalling pathway were significantly enriched. Our results will provide novel insights into the pathogenic mechanism of fluoroquinolones in aortic diseases.
Collapse
Affiliation(s)
- Zhaoran Chen
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jianqiang Wu
- State Key Laboratory of Complex Severe and Rare Disease, Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wei Wang
- Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaoyue Tang
- State Key Laboratory of Complex Severe and Rare Disease, Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lei Zhou
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yanze Lv
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
5
|
Jiang T, Kustermann S, Wu X, Zihlmann C, Zhang M, Mao Y, Wu W, Xie J. Mitochondrial dysfunction is underlying fluoroquinolone toxicity: an integrated mitochondrial toxicity assessment. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
The monoacylglycerol acyltransferase pathway contributes to triacylglycerol synthesis in HepG2 cells. Sci Rep 2022; 12:4943. [PMID: 35322811 PMCID: PMC8943211 DOI: 10.1038/s41598-022-08946-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
The monoacylglycerol acyltransferase (MGAT) pathway has a well-established role in the small intestine where it facilitates the absorption of dietary fat. In enterocytes, MGAT participates in the resynthesis of triacylglycerol using substrates (monoacylglycerol and fatty acids) generated in the gut lumen from the breakdown of triacylglycerol consumed in the diet. MGAT activity is also present in the liver, but its role in triacylglycerol metabolism in this tissue remains unclear. The predominant MGAT isoforms present in human liver appear to be MGAT2 and MGAT3. The objective of this study was to use selective small molecule inhibitors of MGAT2 and MGAT3 to determine the contributions of these enzymes to triacylglycerol production in liver cells. We found that pharmacological inhibition of either enzyme had no effect on TG mass in HepG2 cells but did alter lipid droplet size and number. Inhibition of MGAT2 did result in decreased DG and TG synthesis and TG secretion. Interestingly, MGAT2 preferentially utilized 2-monoacylglycerol derived from free glycerol and not from exogenously added 2-monoacylglycerol. In contrast, inhibition of MGAT3 had very little effect on TG metabolism in HepG2 cells. Additionally, we demonstrated that the MGAT activity of DGAT1 only makes a minor contribution to TG synthesis in intact HepG2 cells. Our data demonstrated that the MGAT pathway has a role in hepatic lipid metabolism with MGAT2, more so than MGAT3, contributing to TG synthesis and secretion.
Collapse
|
7
|
HiPSC-Derived Hepatocyte-like Cells Can Be Used as a Model for Transcriptomics-Based Study of Chemical Toxicity. TOXICS 2021; 10:toxics10010001. [PMID: 35051043 PMCID: PMC8780865 DOI: 10.3390/toxics10010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 01/13/2023]
Abstract
Traditional toxicity risk assessment approaches have until recently focussed mainly on histochemical readouts for cell death. Modern toxicology methods attempt to deduce a mechanistic understanding of pathways involved in the development of toxicity, by using transcriptomics and other big data-driven methods such as high-content screening. Here, we used a recently described optimised method to differentiate human induced pluripotent stem cells (hiPSCs) to hepatocyte-like cells (HLCs), to assess their potential to classify hepatotoxic and non-hepatotoxic chemicals and their use in mechanistic toxicity studies. The iPSC-HLCs could accurately classify chemicals causing acute hepatocellular injury, and the transcriptomics data on treated HLCs obtained by TempO-Seq technology linked the cytotoxicity to cellular stress pathways, including oxidative stress and unfolded protein response (UPR). Induction of these stress pathways in response to amiodarone, diclofenac, and ibuprofen, was demonstrated to be concentration and time dependent. The transcriptomics data on diclofenac-treated HLCs were found to be more sensitive in detecting differentially expressed genes in response to treatment, as compared to existing datasets of other diclofenac-treated in vitro hepatocyte models. Hence iPSC-HLCs generated by transcription factor overexpression and in metabolically optimised medium appear suitable for chemical toxicity detection as well as mechanistic toxicity studies.
Collapse
|
8
|
Lauschke VM. Toxicogenomics of drug induced liver injury - from mechanistic understanding to early prediction. Drug Metab Rev 2021; 53:245-252. [PMID: 33683927 DOI: 10.1080/03602532.2021.1894571] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Despite rigorous preclinical testing, clinical attrition rates in drug development remain high with drug-induced liver injury (DILI) remaining one of the most frequent causes of project failures. To understand DILI mechanisms, major efforts are put into the development of physiologically relevant cell models and culture paradigms with the aim to enhance preclinical to clinical result translation. While the majority of toxicogenomic studies have been based on cell lines, there are emerging trends toward the predominant use of stem cell-derived organoids and primary human hepatocytes in complex 3D cell models. Such studies have been successful in disentangling diverse toxicity mechanisms, including genotoxicity, mitochondrial injury, steatogenesis and cholestasis and can aid in distinguishing hepatotoxic from nontoxic structural analogs. Furthermore, by leveraging inter-individual differences of cells from different donors, these approaches can emulate the complexity of polygenic risk scores, which facilitates personalized drug-specific DILI risk analyses. In summary, toxicogenomic studies into drug-induced hepatotoxicity have majorly contributed to our mechanistic understanding of DILI and the incorporation of organotypic human 3D liver models into the preclinical testing arsenal promises to enhance biological insights during drug discovery, increase confidence in preclinical safety and minimize the translational gap.
Collapse
Affiliation(s)
- Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Feng Y, Chen X, Ding W, Ma J, Zhang B, Li X. MicroRNA-16 participates in the cell cycle alteration of HepG2 cells induced by MC-LR. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110295. [PMID: 32066005 DOI: 10.1016/j.ecoenv.2020.110295] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 05/26/2023]
Abstract
Microcystin-LR (MC-LR) is a cyclic hepatotoxin produced by cyanobacteria in freshwater, and chronic MC-LR exposure could induce human hepatitis if consumed in drinking water. In recent years, many studies have indicated that microRNAs participate in the hepatotoxicity of MC-LR. The purpose of this study was to investigate the potential function of miR-16 in the hepatocellular toxicity and cell cycle alteration induced by MC-LR in human hepatocellular carcinoma (HepG2) cells after treatment with 10 μM MC-LR. The result of flow cytometry detection showed that a low concentration of MC-LR (10 μM) failed to induce apoptosis but promoted cell cycle G1/S transition in HepG2 cells. In addition, the expression of apoptosis-related genes was suppressed after MC-LR exposure. These results confirm that MC-LR exposure at a low dose can promote the proliferation of HepG2 cells. Furthermore, we also found that microRNA-16 (miR-16) expression was suppressed in HepG2 cells following MC-LR exposure. Hence, we overexpressed miR-16 in HepG2 cells and treated them with MC-LR, and the results showed that miR-16 overexpression induced an increase in the G0/G1 phase and a decrease in the S phase cell cycle populations in HepG2 cells, suggesting that miR-16 can inhibit the cell proliferation of HepG2 cells. In conclusion, our results suggest that miR-16 may play a vital role in the cell cycle alteration of HepG2 cells after MC-LR exposure.
Collapse
Affiliation(s)
- Yiyi Feng
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xi Chen
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Weikai Ding
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Bangjun Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
10
|
Guan Y, Chen X, Wu M, Zhu W, Arslan A, Takeda S, Nguyen MH, Majeti R, Thomas D, Zheng M, Peltz G. The phosphatidylethanolamine biosynthesis pathway provides a new target for cancer chemotherapy. J Hepatol 2020; 72:746-760. [PMID: 31760071 PMCID: PMC7085447 DOI: 10.1016/j.jhep.2019.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Since human induced pluripotent stem cells (iPSCs) develop into hepatic organoids through stages that resemble human embryonic liver development, they can be used to study developmental processes and disease pathology. Therefore, we examined the early stages of hepatic organoid formation to identify key pathways affecting early liver development. METHODS Single-cell RNA-sequencing and metabolomic analysis was performed on developing organoid cultures at the iPSC, hepatoblast (day 9) and mature organoid stage. The importance of the phosphatidylethanolamine biosynthesis pathway to early liver development was examined in developing organoid cultures using iPSC with a CRISPR-mediated gene knockout and an over the counter medication (meclizine) that inhibits the rate-limiting enzyme in this pathway. Meclizine's effect on the growth of a human hepatocarcinoma cell line in a xenotransplantation model and on the growth of acute myeloid leukemia cells in vitro was also examined. RESULTS Transcriptomic and metabolomic analysis of organoid development indicated that the phosphatidylethanolamine biosynthesis pathway is essential for early liver development. Unexpectedly, early hepatoblasts were selectively sensitive to the cytotoxic effect of meclizine. We demonstrate that meclizine could be repurposed for use in a new synergistic combination therapy for primary liver cancer: a glycolysis inhibitor reprograms cancer cell metabolism to make it susceptible to the cytotoxic effect of meclizine. This combination inhibited the growth of a human liver carcinoma cell line in vitro and in a xenotransplantation model, without causing significant side effects. This drug combination was also highly active against acute myeloid leukemia cells. CONCLUSION Our data indicate that phosphatidylethanolamine biosynthesis is a targetable pathway for cancer; meclizine may have clinical efficacy as a repurposed anti-cancer drug when used as part of a new combination therapy. LAY SUMMARY The early stages of human liver development were modeled using human hepatic organoids. We identified a pathway that was essential for early liver development. Based upon this finding, a novel combination drug therapy was identified that could be used to treat primary liver cancer and possibly other types of cancer.
Collapse
Affiliation(s)
- Yuan Guan
- Department of Anesthesia, Stanford University School of
Medicine, Stanford CA 94305
| | - Xinyu Chen
- Department of Anesthesia, Stanford University School of
Medicine, Stanford CA 94305
| | - Manhong Wu
- Department of Anesthesia, Stanford University School of
Medicine, Stanford CA 94305
| | - Wan Zhu
- Department of Anesthesia, Stanford University School of
Medicine, Stanford CA 94305
| | - Ahmed Arslan
- Department of Anesthesia, Stanford University School of
Medicine, Stanford CA 94305
| | - Saori Takeda
- Department of Anesthesia, Stanford University School of
Medicine, Stanford CA 94305
| | - Mindie H. Nguyen
- Department of Medicine, Division of Gastroenterology and
Hepatology, Stanford University School of Medicine, Stanford CA 94305
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer
Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford
University School of Medicine
| | - Dan Thomas
- Department of Medicine, Division of Hematology, Cancer
Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford
University School of Medicine
| | - Ming Zheng
- Department of Anesthesia, Stanford University School of
Medicine, Stanford CA 94305
| | - Gary Peltz
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305.
| |
Collapse
|
11
|
Giustarini G, Huppelschoten S, Barra M, Oppelt A, Wagenaar L, Weaver RJ, Bol-Schoenmakers M, Smit JJ, van de Water B, Klingmüller U, Pieters RHH. The hepatotoxic fluoroquinolone trovafloxacin disturbs TNF- and LPS-induced p65 nuclear translocation in vivo and in vitro. Toxicol Appl Pharmacol 2020; 391:114915. [PMID: 32035082 DOI: 10.1016/j.taap.2020.114915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/10/2020] [Accepted: 02/05/2020] [Indexed: 01/26/2023]
Abstract
Idiosyncratic drug-induced liver injury (IDILI) is a severe disease that cannot be detected during drug development. It has been shown that hepatotoxicity of some compounds associated with IDILI becomes apparent when these are combined in vivo and in vitro with LPS or TNF. Among these compounds trovafloxacin (TVX) induced apoptosis in the liver and increased pro-inflammatory cytokines in mice exposed to LPS/TNF. The hepatocyte survival and the cytokine release after TNF/LPS stimulation relies on a pulsatile activation of NF-κB. We set out to evaluate the dynamic activation of NF-κB in response to TVX + TNF or LPS models, both in mouse and human cells. Remarkably, TVX prolonged the first translocation of NF-κB induced by TNF both in vivo and in vitro. The prolonged p65 translocation caused by TVX was associated with an increased phosphorylation of IKK and MAPKs and accumulation of inhibitors of NF-κB such as IκBα and A20 in HepG2. Coherently, TVX suppressed further TNF-induced NF-κB translocations in HepG2 leading to decreased transcription of ICAM-1 and inhibitors of apoptosis. TVX prolonged LPS-induced NF-κB translocation in RAW264.7 macrophages increasing the secretion of TNF. In summary, this study presents new, relevant insights into the mechanism of TVX-induced liver injury underlining the resemblance between mouse and human models. In this study we convincingly show that regularly used toxicity models provide a coherent view of relevant pathways for IDILI. We propose that assessment of the kinetics of activation of NF-κB and MAPKs is an appropriate tool for the identification of hepatotoxic compounds during drug development.
Collapse
Affiliation(s)
- Giulio Giustarini
- Immunotoxicology, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Suzanna Huppelschoten
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Marco Barra
- Immunotoxicology, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; University of Pisa, Department of Pharmacy, Italy
| | - Angela Oppelt
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laura Wagenaar
- Immunotoxicology, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Richard J Weaver
- Biopharmacy, Institut de Recherches Internationales Servier (I.R.I.S.), Suresnes 92284, France
| | - Marianne Bol-Schoenmakers
- Immunotoxicology, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Joost J Smit
- Immunotoxicology, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Raymond H H Pieters
- Immunotoxicology, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
12
|
Kermanizadeh A, Brown DM, Moritz W, Stone V. The importance of inter-individual Kupffer cell variability in the governance of hepatic toxicity in a 3D primary human liver microtissue model. Sci Rep 2019; 9:7295. [PMID: 31086251 PMCID: PMC6513945 DOI: 10.1038/s41598-019-43870-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/03/2019] [Indexed: 01/08/2023] Open
Abstract
The potential for nanomaterial (NM) translocation to secondary organs is a realistic prospect, with the liver one of the most important target organs. Traditional in vitro or ex vivo hepatic toxicology models are often limiting and/or troublesome (i.e. short life-span reduced metabolic activity, lacking important cell populations, high inter-individual variability, etc.). Building on previous work, this study utilises a 3D human liver microtissue (MT) model (MT composed of mono-culture of hepatocytes or two different co-culture MT systems with non-parenchymal cell (NPC) fraction sourced from different donors) to investigate the importance of inter-donor variability of the non-parenchymal cell population in the overall governance of toxicological response following exposure to a panel of NMs. To the best of our knowledge, this is the first study of its kind to investigate inter-donor variability in hepatic NPC population. The data showed that the Kupffer cells were crucial in dictating the overall hepatic toxicity following exposure to the materials. Furthermore, a statistically significant difference was noted between the two co-culture MT models. However, the trend for particle-induced biological responses was similar between the co-cultures (cytotoxicity, cytokine production and caspase activity). Therefore, despite the recognition of some discrepancies in the absolute values between the co-culture models, the fact that the trends and patterns of biological responses were comparable between the multi-cellular models we propose the 3D liver MT to be a valuable tool in particle toxicology.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- Heriot Watt University, School of Engineering and Physical Sciences, Nano Safety Research Group, Edinburgh, UK.
| | - David M Brown
- Heriot Watt University, School of Engineering and Physical Sciences, Nano Safety Research Group, Edinburgh, UK
| | | | - Vicki Stone
- Heriot Watt University, School of Engineering and Physical Sciences, Nano Safety Research Group, Edinburgh, UK
| |
Collapse
|
13
|
Van Vleet TR, Liguori MJ, Lynch JJ, Rao M, Warder S. Screening Strategies and Methods for Better Off-Target Liability Prediction and Identification of Small-Molecule Pharmaceuticals. SLAS DISCOVERY 2018; 24:1-24. [PMID: 30196745 DOI: 10.1177/2472555218799713] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pharmaceutical discovery and development is a long and expensive process that, unfortunately, still results in a low success rate, with drug safety continuing to be a major impedance. Improved safety screening strategies and methods are needed to more effectively fill this critical gap. Recent advances in informatics are now making it possible to manage bigger data sets and integrate multiple sources of screening data in a manner that can potentially improve the selection of higher-quality drug candidates. Integrated screening paradigms have become the norm in Pharma, both in discovery screening and in the identification of off-target toxicity mechanisms during later-stage development. Furthermore, advances in computational methods are making in silico screens more relevant and suggest that they may represent a feasible option for augmenting the current screening paradigm. This paper outlines several fundamental methods of the current drug screening processes across Pharma and emerging techniques/technologies that promise to improve molecule selection. In addition, the authors discuss integrated screening strategies and provide examples of advanced screening paradigms.
Collapse
Affiliation(s)
- Terry R Van Vleet
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - Michael J Liguori
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - James J Lynch
- 2 Department of Integrated Science and Technology, AbbVie, N Chicago, IL, USA
| | - Mohan Rao
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - Scott Warder
- 3 Department of Target Enabling Science and Technology, AbbVie, N Chicago, IL, USA
| |
Collapse
|
14
|
Giustarini G, Kruijssen L, van Roest M, Bleumink R, Weaver RJ, Bol-Schoenmakers M, Smit J, Pieters R. Tissue influx of neutrophils and monocytes is delayed during development of trovafloxacin-induced tumor necrosis factor-dependent liver injury in mice. J Appl Toxicol 2018; 38:753-765. [DOI: 10.1002/jat.3585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Giulio Giustarini
- Immunotoxicology, Institute for Risk Assessment Sciences; Utrecht University; Utrecht The Netherlands
| | - Laura Kruijssen
- Immunotoxicology, Institute for Risk Assessment Sciences; Utrecht University; Utrecht The Netherlands
| | - Manon van Roest
- Immunotoxicology, Institute for Risk Assessment Sciences; Utrecht University; Utrecht The Netherlands
| | - Rob Bleumink
- Immunotoxicology, Institute for Risk Assessment Sciences; Utrecht University; Utrecht The Netherlands
| | - Richard J. Weaver
- Institut de Recherches Internationales Servier (I.R.I.S.); 50, rue Carnot 92284 Suresnes Cedex France
| | - Marianne Bol-Schoenmakers
- Immunotoxicology, Institute for Risk Assessment Sciences; Utrecht University; Utrecht The Netherlands
| | - Joost Smit
- Immunotoxicology, Institute for Risk Assessment Sciences; Utrecht University; Utrecht The Netherlands
| | - Raymond Pieters
- Immunotoxicology, Institute for Risk Assessment Sciences; Utrecht University; Utrecht The Netherlands
| |
Collapse
|
15
|
Zhao XM, Li S. HISP: a hybrid intelligent approach for identifying directed signaling pathways. J Mol Cell Biol 2018; 9:453-462. [DOI: 10.1093/jmcb/mjx054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/20/2017] [Indexed: 01/15/2023] Open
Affiliation(s)
- Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Shan Li
- Department of Mathematics, Shanghai University, Shanghai 200444, China
| |
Collapse
|
16
|
Choi YH, Lee HS, Chung CK, Kim EJ, Kang IJ. Protective effects of an ethanol extract of Angelica keiskei against acetaminophen-induced hepatotoxicity in HepG2 and HepaRG cells. Nutr Res Pract 2017; 11:97-104. [PMID: 28386382 PMCID: PMC5376537 DOI: 10.4162/nrp.2017.11.2.97] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/29/2016] [Accepted: 01/05/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND/OBJECTIVE Although Angelica keiskei (AK) has widely been utilized for the purpose of general health improvement among Asian, its functionality and mechanism of action. The aim of this study was to determine the protective effect of ethanol extract of AK (AK-Ex) on acute hepatotoxicity induced by acetaminophen (AAP) in HepG2 human hepatocellular liver carcinoma cells and HepaRG human hepatic progenitor cells. MATERIALS/METHODS AK-Ex was prepared HepG2 and HepaRG cells were cultured with various concentrations and 30 mM AAP. The protective effects of AK-Ex against AAP-induced hepatotoxicity in HepG2 and HepaRG cells were evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, lactate dehydrogenase (LDH) assay, flow cytometry, and Western blotting. RESULTS AK-Ex, when administered prior to AAP, increased cell growth and decreased leakage of LDH in a dose-dependent manner in HepG2 and HepaRG cells against AAP-induced hepatotoxicity. AK-Ex increased the level of Bcl-2 and decreased the levels of Bax, Bok and Bik decreased the permeability of the mitochondrial membrane in HepG2 cells intoxicated with AAP. AK-Ex decreased the cleavage of poly (ADP-ribose) polymerase (PARP) and the activation of caspase-9, -7, and -3. CONCLUSIONS These results demonstrate that AK-Ex downregulates apoptosis via intrinsic and extrinsic pathways against AAP-induced hepatotoxicity. We suggest that AK could be a useful preventive agent against AAP-induced apoptosis in hepatocytes.
Collapse
Affiliation(s)
- Yoon-Hee Choi
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Hyun Sook Lee
- Department of Food Science and Nutrition, Dongseo University, Busan 47011, Korea
| | - Cha-Kwon Chung
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Eun Ji Kim
- Center for Efficacy Assessment and Development of Functional Food and Drugs, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Il-Jun Kang
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| |
Collapse
|
17
|
Granitzny A, Knebel J, Müller M, Braun A, Steinberg P, Dasenbrock C, Hansen T. Evaluation of a human in vitro hepatocyte-NPC co-culture model for the prediction of idiosyncratic drug-induced liver injury: A pilot study. Toxicol Rep 2017; 4:89-103. [PMID: 28959630 PMCID: PMC5615103 DOI: 10.1016/j.toxrep.2017.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/07/2017] [Indexed: 12/16/2022] Open
Abstract
Co-cultures of liver and immune cells can be used to detect iDILI compounds. Pro-inflammatory factors are involved in the development of iDILI. The co-exposure of a drug candidate with TNF might be sufficient to predict iDILI.
Interactions between hepatocytes and immune cells as well as inflammatory episodes are frequently discussed to play a critical role in the alteration of the individual susceptibility to idiosyncratic drug-induced liver injury (iDILI). To evaluate this hypothesis and to face the urgent need for predictive in vitro models, we established two co-culture systems based on two human cell lines in presence or absence of pro-inflammatory factors (LPS, TNF), i.e. hepatoma HepG2 cells co-cultured with monocytic or macrophage-like THP-1 cells. HepG2 monocultures served as control scenario. Mono- or co-cultures were treated with iDILI reference substances (Troglitazone [TGZ], Trovafloxacin [TVX], Diclofenac [DcL], Ketoconazole [KC]) or their non-iDILI partner compounds (Rosiglitazone, Levofloxacin, Acetylsalicylic Acid, Fluconazole). The liver cell viability was subsequently determined via WST-Assay. An enhanced cytotoxicity (synergy) or a hormetic response compared to the drug effect in the HepG2 monoculture was considered as iDILI positive. TGZ synergized in co-cultures with monocytes without an additional pro-inflammatory stimulus, while DcL and KC showed a hormetic response. All iDILI drugs synergized with TNF in the simple HepG2 monoculture, indicating its relevance as an initiator of iDILI. KC showed a synergy when co-exposed to both, monocytes and LPS, while TVX and DcL showed a synergy under the same conditions with macrophages. All described iDILI responses were not observed with the corresponding non-iDILI partner compounds. Our first results confirm that an inflammatory environment increases the sensitivity of liver cells towards iDILI compounds and point to an involvement of pro-inflammatory factors, especially TNF, in the development of iDILI.
Collapse
Key Words
- CD, cluster of differentiation
- Co-culture model
- DAMP, damage-associated molecular pattern
- Drug-induced liver injury
- EC, effective concentration
- EpCAM, epithelial cellular adhesion molecule
- HSP, heat shock protein
- Idiosyncratic
- Inflammation
- JNK, c-Jun N-terminal kinase
- LPS, bacterial lipopolysaccharide
- NF-κB, nuclear factor kappa B
- NPC, non-parenchymal cell
- NSAID, nonsteriodal anti-inflammatory drug
- PAMP, pathogen-associated molecular pattern
- Preclinical research
- SD, standard deviation
- TNF, tumor necrosis factor
- iDILI, idiosyncratic drug-induced liver injury
Collapse
Affiliation(s)
- Anne Granitzny
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Jan Knebel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Meike Müller
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of the German Center for Lung Research (DZL), Biomedical Research in End stage and Obstructive Lung Disease (BREATH) research network, Member of the Cluster of Excellence Regenerative Biology to Reconstructive Therapy (REBIRTH), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Pablo Steinberg
- University of Veterinary Medicine Hannover (TiHo), Institute for Food Toxicology and Analytical Chemistry, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Clemens Dasenbrock
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Tanja Hansen
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
- Corresponding author at: Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department of In vitro and Mechanistic Toxicology, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany.Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM)Nikolai-Fuchs-Straße 1Hannover30625Germany
| |
Collapse
|
18
|
Mitsugi R, Sumida K, Fujie Y, Tukey RH, Itoh T, Fujiwara R. Acyl-glucuronide as a Possible Cause of Trovafloxacin-Induced Liver Toxicity: Induction of Chemokine (C-X-C Motif) Ligand 2 by Trovafloxacin Acyl-glucuronide. Biol Pharm Bull 2017; 39:1604-1610. [PMID: 27725437 DOI: 10.1248/bpb.b16-00195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trovafloxacin is an antibiotic that was withdrawn from the market relatively soon after its release due to the risk of hepatotoxicity. Trovafloxacin is mainly metabolized to its acyl-glucuronide by uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) 1A1. In this study, we examined whether the acyl-glucuronide is involved in the development of hepatotoxicity. A UGT1A1-induced cell model was developed and the toxicity of trovafloxacin acyl-glucuronide was evaluated. The UGT1A1-induced cell model was developed by treating HepG2 cells with chrysin for 48 h. Chemokine (C-X-C motif) ligand 2, a cytokine involved in drug-induced liver injury, was uniquely induced by trovafloxacin in the UGT1A1-induced HepG2 cells. Induction of UGT1A1 resulted in a decrease in cell viability. An in vivo animal study further demonstrated the importance of UGT1A1 in the trovafloxacin-induced liver toxicity. Although the complete mechanism of trovafloxacin-induced liver injury is still unknown, trovafloxacin acyl-glucuronide can be involved in the development of toxic reactions in vitro and in vivo.
Collapse
Affiliation(s)
- Ryo Mitsugi
- Department of Pharmaceutics, School of Pharmacy, Kitasato University
| | | | | | | | | | | |
Collapse
|
19
|
Choudhury Y, Toh YC, Xing J, Qu Y, Poh J, Li H, Tan HS, Kanesvaran R, Yu H, Tan MH. Patient-specific hepatocyte-like cells derived from induced pluripotent stem cells model pazopanib-mediated hepatotoxicity. Sci Rep 2017; 7:41238. [PMID: 28120901 PMCID: PMC5264611 DOI: 10.1038/srep41238] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022] Open
Abstract
Idiosyncratic drug-induced hepatotoxicity is a major cause of liver damage and drug pipeline failure, and is difficult to study as patient-specific features are not readily incorporated in traditional hepatotoxicity testing approaches using population pooled cell sources. Here we demonstrate the use of patient-specific hepatocyte-like cells (HLCs) derived from induced pluripotent stem cells for modeling idiosyncratic hepatotoxicity to pazopanib (PZ), a tyrosine kinase inhibitor drug associated with significant hepatotoxicity of unknown mechanistic basis. In vitro cytotoxicity assays confirmed that HLCs from patients with clinically identified hepatotoxicity were more sensitive to PZ-induced toxicity than other individuals, while a prototype hepatotoxin acetaminophen was similarly toxic to all HLCs studied. Transcriptional analyses showed that PZ induces oxidative stress (OS) in HLCs in general, but in HLCs from susceptible individuals, PZ causes relative disruption of iron metabolism and higher burden of OS. Our study establishes the first patient-specific HLC-based platform for idiosyncratic hepatotoxicity testing, incorporating multiple potential causative factors and permitting the correlation of transcriptomic and cellular responses to clinical phenotypes. Establishment of patient-specific HLCs with clinical phenotypes representing population variations will be valuable for pharmaceutical drug testing.
Collapse
Affiliation(s)
- Yukti Choudhury
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore
| | - Yi Chin Toh
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, E4 #04-08, Singapore 117583, Republic of Singapore
| | - Jiangwa Xing
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore
| | - Yinghua Qu
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore
| | - Jonathan Poh
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore
| | - Huan Li
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore
| | - Hui Shan Tan
- Division of Medical Oncology, National Cancer Centre, Singapore 169610, Republic of Singapore
| | - Ravindran Kanesvaran
- Division of Medical Oncology, National Cancer Centre, Singapore 169610, Republic of Singapore
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore.,Yong Loo Lin School of Medicine and Mechanobiology Institute, National University of Singapore, Republic of Singapore.,Gastroenterology Department, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Min-Han Tan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore.,Division of Medical Oncology, National Cancer Centre, Singapore 169610, Republic of Singapore
| |
Collapse
|
20
|
Burbank MG, Burban A, Sharanek A, Weaver RJ, Guguen-Guillouzo C, Guillouzo A. Early Alterations of Bile Canaliculi Dynamics and the Rho Kinase/Myosin Light Chain Kinase Pathway Are Characteristics of Drug-Induced Intrahepatic Cholestasis. Drug Metab Dispos 2016; 44:1780-1793. [PMID: 27538918 DOI: 10.1124/dmd.116.071373] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/11/2016] [Indexed: 01/01/2023] Open
Abstract
Intrahepatic cholestasis represents 20%-40% of drug-induced injuries from which a large proportion remains unpredictable. We aimed to investigate mechanisms underlying drug-induced cholestasis and improve its early detection using human HepaRG cells and a set of 12 cholestatic drugs and six noncholestatic drugs. In this study, we analyzed bile canaliculi dynamics, Rho kinase (ROCK)/myosin light chain kinase (MLCK) pathway implication, efflux inhibition of taurocholate [a predominant bile salt export pump (BSEP) substrate], and expression of the major canalicular and basolateral bile acid transporters. We demonstrated that 12 cholestatic drugs classified on the basis of reported clinical findings caused disturbances of both bile canaliculi dynamics, characterized by either dilatation or constriction, and alteration of the ROCK/MLCK signaling pathway, whereas noncholestatic compounds, by contrast, had no effect. Cotreatment with ROCK inhibitor Y-27632 [4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride] and MLCK activator calmodulin reduced bile canaliculi constriction and dilatation, respectively, confirming the role of these pathways in drug-induced intrahepatic cholestasis. By contrast, inhibition of taurocholate efflux and/or human BSEP overexpressed in membrane vesicles was not observed with all cholestatic drugs; moreover, examples of noncholestatic compounds were reportedly found to inhibit BSEP. Transcripts levels of major bile acid transporters were determined after 24-hour treatment. BSEP, Na+-taurocholate cotransporting polypeptide, and organic anion transporting polypeptide B were downregulated with most cholestatic and some noncholestatic drugs, whereas deregulation of multidrug resistance-associated proteins was more variable, probably mainly reflecting secondary effects. Together, our results show that cholestatic drugs consistently cause an early alteration of bile canaliculi dynamics associated with modulation of ROCK/MLCK and these changes are more specific than efflux inhibition measurements alone as predictive nonclinical markers of drug-induced cholestasis.
Collapse
Affiliation(s)
- Matthew G Burbank
- INSERM UMR991, Foie, Métabolismes et Cancer, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Université Rennes 1, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Biologie Servier, Gidy, France (M.G.B.); Institut de Recherches Internationales Servier, Suresnes, France (R.J.W.); and Biopredic International, St. Grégoire, Rennes, France (C.G.-G.)
| | - Audrey Burban
- INSERM UMR991, Foie, Métabolismes et Cancer, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Université Rennes 1, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Biologie Servier, Gidy, France (M.G.B.); Institut de Recherches Internationales Servier, Suresnes, France (R.J.W.); and Biopredic International, St. Grégoire, Rennes, France (C.G.-G.)
| | - Ahmad Sharanek
- INSERM UMR991, Foie, Métabolismes et Cancer, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Université Rennes 1, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Biologie Servier, Gidy, France (M.G.B.); Institut de Recherches Internationales Servier, Suresnes, France (R.J.W.); and Biopredic International, St. Grégoire, Rennes, France (C.G.-G.)
| | - Richard J Weaver
- INSERM UMR991, Foie, Métabolismes et Cancer, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Université Rennes 1, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Biologie Servier, Gidy, France (M.G.B.); Institut de Recherches Internationales Servier, Suresnes, France (R.J.W.); and Biopredic International, St. Grégoire, Rennes, France (C.G.-G.)
| | - Christiane Guguen-Guillouzo
- INSERM UMR991, Foie, Métabolismes et Cancer, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Université Rennes 1, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Biologie Servier, Gidy, France (M.G.B.); Institut de Recherches Internationales Servier, Suresnes, France (R.J.W.); and Biopredic International, St. Grégoire, Rennes, France (C.G.-G.)
| | - André Guillouzo
- INSERM UMR991, Foie, Métabolismes et Cancer, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Université Rennes 1, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Biologie Servier, Gidy, France (M.G.B.); Institut de Recherches Internationales Servier, Suresnes, France (R.J.W.); and Biopredic International, St. Grégoire, Rennes, France (C.G.-G.)
| |
Collapse
|
21
|
Cheng TJ, Lin SW, Chen CW, Guo HR, Wang YJ. Arsenic trioxide suppresses liver X receptor β and enhances cholesteryl ester transfer protein expression without affecting the liver X receptor α in HepG2 cells. Chem Biol Interact 2016; 258:288-296. [PMID: 27622732 DOI: 10.1016/j.cbi.2016.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/21/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022]
Abstract
Chronic arsenic exposure is associated with cerebrovascular disease and the formation of atherosclerotic lesions. Our previous study demonstrated that arsenic trioxide (ATO) exposure was associated with atherosclerotic lesion formation through alterations in lipid metabolism in the reverse cholesterol transport process. In mouse livers, the expression of the liver X receptor β (LXR-β) and the cholesteryl ester transfer protein (CETP) was suppressed without any changes to the lipid profile. The aim of this study was to elucidate whether ATO contributes to atherosclerotic lesions by suppressing LXR-β and CETP levels in hepatocytes. HepG2 cells, human hepatocytes, were exposed to different ATO concentrations in vitro. Cell viability was determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay. The liver X receptor α (LXR-α), LXR-β, sterol regulatory element-binding protein-1c (SREBP-1c) and CETP protein levels were measured by Western blotting, and their mRNA levels were measured by real-time PCR. Cholesterol efflux was analyzed by flow cytometry. The results showed ATO inhibited LXR-β mRNA and protein levels with a subsequent decrease in SREBP-1c protein levels and reduced cholesterol efflux from HepG2 cells into the extracellular space without influencing LXR-α mRNA and protein levels. CETP protein levels of HepG2 cells were significantly elevated under arsenic exposure. Transfection of LXR-β shRNA did not change CETP protein levels, implying that there is no cross-talk between LXR-β and CETP. In conclusion, arsenic not only inhibits LXR-β and SREBP-1c mRNA and protein levels but also independently increases CETP protein levels in HepG2 cells.
Collapse
Affiliation(s)
- Tain-Junn Cheng
- Department of Neurology and Occupational Medicine, Chi Mei Medical Center, 901 Zhonghua Road, Yongkang Dist., Tainan 710, Taiwan; Department of Occupational Safety and Health/Institute of Industrial Safety and Disaster Prevention, College of Sustainable Environment, Chia Nan University of Pharmacy and Science, 60 Sec. 1, Erren Road, Rende Dist., Tainan 71710, Taiwan
| | - Shu-Wen Lin
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 704, Taiwan
| | - Chih-Wei Chen
- Department of Occupational Safety and Health/Institute of Industrial Safety and Disaster Prevention, College of Sustainable Environment, Chia Nan University of Pharmacy and Science, 60 Sec. 1, Erren Road, Rende Dist., Tainan 71710, Taiwan; Division of Neurosurgery, Department of Surgery, Chi Mei Medical Center, 901 Zhonghua Road, Yongkang Dist., Tainan 710, Taiwan
| | - How-Ran Guo
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 704, Taiwan; Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, 138 Sheng-Li Road, Tainan 704, Taiwan.
| | - Ying-Jang Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 704, Taiwan; Department of Biomedical and Informatics, Asia University, 500 Lioufeng Road, Wufeng, Taichung, 41354, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, 500 Lioufeng Road, Wufeng, Taichung, 41354, Taiwan.
| |
Collapse
|
22
|
Mitsugi R, Itoh T, Fujiwara R. MicroRNA-877-5p is involved in the trovafloxacin-induced liver injury. Toxicol Lett 2016; 263:34-43. [PMID: 27713024 DOI: 10.1016/j.toxlet.2016.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/26/2016] [Accepted: 10/02/2016] [Indexed: 12/21/2022]
Abstract
Trovafloxacin develops severe hepatotoxicity; however, the underlying mechanism of the trovafloxacin-induced liver injury has not been cleared. It has been shown that microRNAs (miRNAs) can be involved in the development of drug-induced liver injuries. We performed a miRNA microarray analysis to identify hepatic miRNAs that were induced or reduced by trovafloxacin in mice. It was demonstrated that miR-877-5p was the most increased miRNA in the mouse liver 24h after the trovafloxacin administration. To investigate the role of miR-877-5p in the liver, we established miR-877-5p-overexpressed HepG2 cells. Microarray analysis detected altered expressions in 2077 (>2-fold) and 1547 (<0.5-fold) genes in the miR-877-5p overexpressing cells compared to the mock cells. Especially, SLCO4C1, PEPCK, MT1M, HIST1H2BM, LGI1, and PLA2G2A were markedly increased or decreased in the miR-877-5p overexpressing cells. We conducted a correlation analysis between the expression levels of miR-877-5p and the six genes in eight miR-877-5p stably-expressed clones. It was shown that the PEPCK expression levels were correlated with miR-877-5p expression levels. PEPCK is associated with development of apoptotic cell death; therefore, the increased miR- 877-5p-induced PEPCK can be a trigger that is involved in the development of trovafloxacin-induced liver injury.
Collapse
Affiliation(s)
- Ryo Mitsugi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomoo Itoh
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Ryoichi Fujiwara
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
23
|
Lauschke VM, Hendriks DFG, Bell CC, Andersson TB, Ingelman-Sundberg M. Novel 3D Culture Systems for Studies of Human Liver Function and Assessments of the Hepatotoxicity of Drugs and Drug Candidates. Chem Res Toxicol 2016; 29:1936-1955. [DOI: 10.1021/acs.chemrestox.6b00150] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Volker M. Lauschke
- Section
of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Delilah F. G. Hendriks
- Section
of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Catherine C. Bell
- Section
of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Tommy B. Andersson
- Section
of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Cardiovascular
and Metabolic Diseases, Innovative Medicines and Early Development
Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Magnus Ingelman-Sundberg
- Section
of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| |
Collapse
|
24
|
Herzog N, Hansen M, Miethbauer S, Schmidtke KU, Anderer U, Lupp A, Sperling S, Seehofer D, Damm G, Scheibner K, Küpper JH. Primary-like human hepatocytes genetically engineered to obtain proliferation competence display hepatic differentiation characteristics in monolayer and organotypical spheroid cultures. Cell Biol Int 2016; 40:341-53. [PMID: 26715207 DOI: 10.1002/cbin.10574] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/23/2015] [Indexed: 12/27/2022]
Abstract
Primary human hepatocytes are in great demand during drug development and in hepatology. However, both scarcity of tissue supply and donor variability of primary cells create a need for the development of alternative hepatocyte systems. By using a lentivirus vector system to transfer coding sequences of Upcyte® proliferation genes, we generated non-transformed stable hepatocyte cultures from human liver tissue samples. Here, we show data on newly generated proliferation-competent HepaFH3 cells investigated as conventional two-dimensional monolayer and as organotypical three-dimensional (3D) spheroid culture. In monolayer culture, HepaFH3 cells show typical cobblestone-like hepatocyte morphology and anchorage-dependent growth for at least 20 passages. Immunofluorescence staining revealed that characteristic hepatocyte marker proteins cytokeratin 8, human serum albumin, and cytochrome P450 (CYP) 3A4 were expressed. Quantitative real-time PCR analyses showed that expression levels of analyzed phase I CYP enzymes were at similar levels compared to those of cultured primary human hepatocytes and considerably higher than in the liver carcinoma cell line HepG2. Additionally, transcripts for phase II liver enzymes and transporter proteins OATP-C, MRP2, Oct1, and BSEP were present in HepaFH3. The cells produced urea and converted model compounds such as testosterone, diclofenac, and 7-OH-coumarin into phases I and II metabolites. Interestingly, phases I and II enzymes were expressed at about the same levels in convenient monolayer cultures and complex 3D spheroids. In conclusion, HepaFH3 cells and related primary-like hepatocyte lines seem to be promising tools for in vitro research of liver functions and as test system in drug development and toxicology analysis.
Collapse
Affiliation(s)
- Natalie Herzog
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Max Hansen
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Sebastian Miethbauer
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Kai-Uwe Schmidtke
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Ursula Anderer
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Sebastian Sperling
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine, Berlin, Germany
| | - Daniel Seehofer
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine, Berlin, Germany
| | - Georg Damm
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine, Berlin, Germany
| | - Katrin Scheibner
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Jan-Heiner Küpper
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| |
Collapse
|
25
|
Mann DA. Human induced pluripotent stem cell-derived hepatocytes for toxicology testing. Expert Opin Drug Metab Toxicol 2014; 11:1-5. [DOI: 10.1517/17425255.2015.981523] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David A Mann
- Cellular Dynamics International, Inc., 525 Science Drive, Madison, WI 53711, USA
| |
Collapse
|
26
|
Li J, Wan Y, Na S, Liu X, Dong G, Yang Z, Yang J, Yue J. Sex-dependent regulation of hepatic CYP3A by growth hormone: Roles of HNF6, C/EBPα, and RXRα. Biochem Pharmacol 2014; 93:92-103. [PMID: 25451687 DOI: 10.1016/j.bcp.2014.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/11/2014] [Accepted: 10/22/2014] [Indexed: 12/12/2022]
Abstract
Sex-based differences in the pharmacological profiles of many drugs are due in part to the female-predominant expression of CYP3A4, which is the most important CYP isoform responsible for drug metabolism. Transcription factors trigger the sexually dimorphic expression of drug-metabolizing enzymes in response to sex-dependent growth hormone (GH) secretion. We investigated the roles of HNF6, C/EBPα, and RXRα in the regulation of human female-predominant CYP3A4, mouse female-specific CYP3A41, and rat male-specific CYP3A2 expression by GH secretion patterns using HepG2 cells, growth hormone receptor (GHR) knockout mice as well as rat models of orchiectomy and hypophysectomy. The constitutive expression of HNF6 and RXRα was GH-dependent, and GHR deficiency decreased HNF6/C/EBPα complex levels and increased HNF6/RXRα complex levels. Feminine GH secretion induced the binding of HNF6 and C/EBPα to the CYP3A4 and Cyp3a41 promoters and HNF6/C/EBPα complex levels was more efficiently compared with masculine pattern. Additionally, a greater inhibition of the binding of RXRα to the CYP3A4 and Cyp3a41 promoters and HNF6/RXRα complex levels was observed by feminine GH secretion, but less inhibition was observed by masculine pattern. The binding of HNF6, C/EBPα, and RXRα to the CYP3A2 promoter was not directly regulated by androgens. RXRα completely abolished the synergistic activation of the CYP3A4, Cyp3a41, and CYP3A2 promoters by HNF6 and C/EBPα. The results demonstrate that sex-dependent GH secretion patterns affect the expressions and interactions of HNF6, C/EBPα, and RXRα as well as their binding to CYP3A genes. RXRα mediates the sex-dependent influence of GH on CYP3A expression as an important signalling molecule.
Collapse
Affiliation(s)
- Jie Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yu Wan
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Shufang Na
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xiaochan Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Guicheng Dong
- Baotou Teachers' College, Inner Mongolia University of Science & Technology, Baotou 014030, China
| | - Zheqiong Yang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jing Yang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jiang Yue
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| |
Collapse
|
27
|
Kermanizadeh A, Løhr M, Roursgaard M, Messner S, Gunness P, Kelm JM, Møller P, Stone V, Loft S. Hepatic toxicology following single and multiple exposure of engineered nanomaterials utilising a novel primary human 3D liver microtissue model. Part Fibre Toxicol 2014; 11:56. [PMID: 25326698 PMCID: PMC4207326 DOI: 10.1186/s12989-014-0056-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/08/2014] [Indexed: 01/12/2023] Open
Abstract
Background The liver has a crucial role in metabolic homeostasis as well as being the principal detoxification centre of the body, removing xenobiotics and waste products which could potentially include some nanomaterials (NM). With the ever increasing public and occupational exposure associated with accumulative production of nanomaterials, there is an urgent need to consider the possibility of detrimental health consequences of engineered NM exposure. It has been shown that exposure via inhalation, intratracheal instillation or ingestion can result in NM translocation to the liver. Traditional in vitro or ex vivo hepatic nanotoxicology models are often limiting and/or troublesome (i.e. reduced metabolism enzymes, lacking important cell populations, unstable with very high variability, etc.). Methods In order to rectify these issues and for the very first time we have utilised a 3D human liver microtissue model to investigate the toxicological effects associated with a single or multiple exposure of a panel of engineered NMs (Ag, ZnO, MWCNT and a positively charged TiO2). Results Here we demonstrate that the repeated exposure of the NMs is more damaging to the liver tissue as in comparison to a single exposure with the adverse effects more significant following treatment with the Ag and ZnO as compared with the TiO2 and MWCNT NMs (in terms of cytotoxicity, cytokine secretion, lipid peroxidation and genotoxicity). Conclusions Overall, this study demonstrates that the human microtissue model utilised herein is an excellent candidate for replacement of traditional in vitro single cell hepatic models and further progression of liver nanotoxicology.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- Department of Public Health, University of Copenhagen, Section of Environmental Health, Copenhagen, 1014, Denmark. .,Heriot Watt University, School of Life Sciences, Nanosafety research group, Edinburgh, EH14 4AS, UK.
| | - Mille Løhr
- Department of Public Health, University of Copenhagen, Section of Environmental Health, Copenhagen, 1014, Denmark.
| | - Martin Roursgaard
- Department of Public Health, University of Copenhagen, Section of Environmental Health, Copenhagen, 1014, Denmark.
| | - Simon Messner
- InSphero AG, Wagistrasse 27, Schlieren, 8952, Switzerland.
| | | | - Jens M Kelm
- InSphero AG, Wagistrasse 27, Schlieren, 8952, Switzerland.
| | - Peter Møller
- Department of Public Health, University of Copenhagen, Section of Environmental Health, Copenhagen, 1014, Denmark.
| | - Vicki Stone
- Heriot Watt University, School of Life Sciences, Nanosafety research group, Edinburgh, EH14 4AS, UK.
| | - Steffen Loft
- Department of Public Health, University of Copenhagen, Section of Environmental Health, Copenhagen, 1014, Denmark.
| |
Collapse
|
28
|
Poulsen KL, Olivero-Verbel J, Beggs KM, Ganey PE, Roth RA. Trovafloxacin enhances lipopolysaccharide-stimulated production of tumor necrosis factor-α by macrophages: role of the DNA damage response. J Pharmacol Exp Ther 2014; 350:164-70. [PMID: 24817034 PMCID: PMC4056269 DOI: 10.1124/jpet.114.214189] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022] Open
Abstract
Trovafloxacin (TVX) is a drug that has caused idiosyncratic, drug-induced liver injury (IDILI) in humans. In a murine model of IDILI, otherwise nontoxic doses of TVX and the inflammagen lipopolysaccharide (LPS) interacted to produce pronounced hepatocellular injury. The liver injury depended on a TVX-induced, small but significant prolongation of tumor necrosis factor-α (TNF) appearance in the plasma. The enhancement of TNF expression by TVX was reproduced in vitro in RAW 264.7 murine macrophages (RAW cells) stimulated with LPS. The current study was designed to identify the molecular target of TVX responsible for this response in RAW cells. An in silico analysis suggested a favorable binding profile of TVX to eukaryotic topoisomerase II-α (TopIIα), and a cell-free assay revealed that TVX inhibited eukaryotic TopIIα activity. Topoisomerase inhibition is known to lead to DNA damage, and TVX increased the DNA damage marker phosphorylated histone 2A.X in RAW cells. Moreover, TVX induced activation of the DNA damage sensor kinases, ataxia telangiectasia mutated (ATM) and Rad3-related (ATR). The ATR inhibitor NU6027 [6-(cyclohexylmethoxy)-5-nitrosopyrimidine-2,4-diamine] prevented the TVX-mediated increases in LPS-induced TNF mRNA and protein release, whereas a selective ATM inhibitor [2-(4-morpholinyl)-6-(1-thianthrenyl)-4H-pyran-4-one (KU55933)] was without effect. TVX prolonged TNF mRNA stability, and this effect was largely attenuated by NU6027. These results suggest that TVX can inhibit eukaryotic topoisomerase, leading to activation of ATR and potentiation of TNF release by macrophages, at least in part through increased mRNA stability. This off-target effect might contribute to the ability of TVX to precipitate IDILI in humans.
Collapse
Affiliation(s)
- Kyle L Poulsen
- Department of Pharmacology & Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan (K.L.P., K.M.B., P.E.G., and R.A.R.); and Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia (J.O.-V.)
| | - Jesus Olivero-Verbel
- Department of Pharmacology & Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan (K.L.P., K.M.B., P.E.G., and R.A.R.); and Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia (J.O.-V.)
| | - Kevin M Beggs
- Department of Pharmacology & Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan (K.L.P., K.M.B., P.E.G., and R.A.R.); and Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia (J.O.-V.)
| | - Patricia E Ganey
- Department of Pharmacology & Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan (K.L.P., K.M.B., P.E.G., and R.A.R.); and Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia (J.O.-V.)
| | - Robert A Roth
- Department of Pharmacology & Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan (K.L.P., K.M.B., P.E.G., and R.A.R.); and Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia (J.O.-V.)
| |
Collapse
|
29
|
Li L, Tu M, Yang X, Sun S, Wu X, Zhou H, Zeng S, Jiang H. The contribution of human OCT1, OCT3, and CYP3A4 to nitidine chloride-induced hepatocellular toxicity. Drug Metab Dispos 2014; 42:1227-34. [PMID: 24778366 DOI: 10.1124/dmd.113.056689] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Nitidine chloride (NC), a quaternary ammonium alkaloid, has numerous pharmacological effects, such as anticancer activity. However, it was found that NC also has hepatocellular toxicity. Because organic cation transporters 1 and 3 (OCT1 and OCT3) might mediate the influx of NC into hepatocytes, multidrug and toxin extrusion 1 (MATE1) probably mediates the efflux of NC from hepatocytes, while cytochrome P450 (P450) enzymes might contribute to NC metabolism, the present study was to evaluate the contribution of OCT1, OCT3, MATE1, and P450 enzymes to NC-induced hepatocellular toxicity. Our results showed that the uptake of NC in Madin-Darby canine kidney (MDCK) cells expressing human (h) OCT1 and OCT3 (MDCK-hOCT1 and MDCK-hOCT3) was significantly higher than that in mock cells; the hOCT1- and hOCT3-mediated uptake followed typical Michaelis-Menten kinetics. Meanwhile, NC was also a substrate of hMATE1, although its transport capacity was much lower than that of OCT1 NC-induced cytotoxicity in MDCK-hOCT1 or MDCK-hOCT3 cells was obviously higher than that in mock cells. Quinidine and (+)-tetrahydropalmatine [(+)-THP], OCT1 and OCT3 inhibitors, significantly reduced the uptake of NC in MDCK-hOCT1 cells, MDCK-hOCT3 cells, and rat primary hepatocytes, but only (+)-THP markedly attenuated the NC-induced toxicity. In addition, P450 enzymes, such as CYP3A4, mediated the metabolism of NC, and NC-induced toxicity in MDCK-hOCT1/hCYP3A4 cells was lower than that in MDCK-hOCT1 cells. Our results indicated that NC is a substrate of hOCT1, hOCT3, and CYP3A4; that OCT1 and OCT3 mediate the uptake of NC in hepatocytes and subsequently cause hepatotoxicity; and that NC-induced toxicity could be attenuated by CYP3A4-mediated metabolism.
Collapse
Affiliation(s)
- Liping Li
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences (L.L., M.T., X.Y., S.S., H.Z., S.Z., H.J.) and Center of Analysis and Measurement (X.W.), Zhejiang University, Hangzhou, Zhejiang, China
| | - Meijuan Tu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences (L.L., M.T., X.Y., S.S., H.Z., S.Z., H.J.) and Center of Analysis and Measurement (X.W.), Zhejiang University, Hangzhou, Zhejiang, China
| | - Xi Yang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences (L.L., M.T., X.Y., S.S., H.Z., S.Z., H.J.) and Center of Analysis and Measurement (X.W.), Zhejiang University, Hangzhou, Zhejiang, China
| | - Siyuan Sun
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences (L.L., M.T., X.Y., S.S., H.Z., S.Z., H.J.) and Center of Analysis and Measurement (X.W.), Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaodan Wu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences (L.L., M.T., X.Y., S.S., H.Z., S.Z., H.J.) and Center of Analysis and Measurement (X.W.), Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Zhou
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences (L.L., M.T., X.Y., S.S., H.Z., S.Z., H.J.) and Center of Analysis and Measurement (X.W.), Zhejiang University, Hangzhou, Zhejiang, China
| | - Su Zeng
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences (L.L., M.T., X.Y., S.S., H.Z., S.Z., H.J.) and Center of Analysis and Measurement (X.W.), Zhejiang University, Hangzhou, Zhejiang, China
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences (L.L., M.T., X.Y., S.S., H.Z., S.Z., H.J.) and Center of Analysis and Measurement (X.W.), Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Roth A, Singer T. The application of 3D cell models to support drug safety assessment: opportunities & challenges. Adv Drug Deliv Rev 2014; 69-70:179-89. [PMID: 24378580 DOI: 10.1016/j.addr.2013.12.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 12/29/2022]
Abstract
The selection of drug candidates early in development has become increasingly important to minimize the use of animals and to avoid costly failures of drugs later in development. In vitro systems to predict and assess organ toxicity have so far been of limited value due to difficulties in demonstrating in vivo-relevant toxicity at a cell culture level. To overcome the limitations of single-cell type monolayer cultures and short-lived primary cell preparations, researchers have created novel 3-dimensional culture systems which appear to more closely resemble in vivo biology. These could become a key for the pharmaceutical industry in the evaluation of drug candidates. However, the value and acceptance of those new models in standard drug safety applications have yet to be demonstrated. This review aims to provide an overview of the different approaches undertaken in the field of pre-clinical safety assessment, organ toxicity, in particular, with an emphasis on examples and technical challenges.
Collapse
Affiliation(s)
- Adrian Roth
- F. Hoffmann-La Roche Ltd., Pharma Research, 4070 Basel, Switzerland
| | - Thomas Singer
- F. Hoffmann-La Roche Ltd., Pharma Research, 4070 Basel, Switzerland
| |
Collapse
|
31
|
Van den Hof WFPM, Coonen MLJ, van Herwijnen M, Brauers K, Wodzig WKWH, van Delft JHM, Kleinjans JCS. Classification of Hepatotoxicants Using HepG2 Cells: A Proof of Principle Study. Chem Res Toxicol 2014; 27:433-42. [DOI: 10.1021/tx4004165] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wim F. P. M. Van den Hof
- Department
of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
- Netherlands Toxicogenomics
Centre, Maastricht, The Netherlands
| | - Maarten L. J. Coonen
- Department
of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
- Netherlands Toxicogenomics
Centre, Maastricht, The Netherlands
| | - Marcel van Herwijnen
- Department
of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Karen Brauers
- Department
of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Will K. W. H. Wodzig
- Department
of Clinical Chemistry, Maastricht University Medical Center, Maastricht, The Netherlands
- Netherlands Toxicogenomics
Centre, Maastricht, The Netherlands
| | - Joost H. M. van Delft
- Department
of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
- Netherlands Toxicogenomics
Centre, Maastricht, The Netherlands
| | - Jos C. S. Kleinjans
- Department
of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
- Netherlands Toxicogenomics
Centre, Maastricht, The Netherlands
| |
Collapse
|
32
|
Beggs KM, Fullerton AM, Miyakawa K, Ganey PE, Roth RA. Molecular mechanisms of hepatocellular apoptosis induced by trovafloxacin-tumor necrosis factor-alpha interaction. Toxicol Sci 2013; 137:91-101. [PMID: 24097668 DOI: 10.1093/toxsci/kft226] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (IDILI) continues to be a significant human health problem. IDILI is characterized as occurring in a minority of individuals exposed to a drug, yet it accounts for as much as 17% of all cases of acute liver failure. Despite these concerns, the mechanisms underlying IDILI remain unknown. Trovafloxacin (TVX), which causes IDILI in humans, also causes hepatocellular death in vitro when combined with tumor necrosis factor-alpha (TNF) treatment. However, the molecular mechanisms involved in this toxicity are not fully characterized. The purpose of this study was to identify mechanisms by which TVX and TNF interact to cause hepatocellular death, with a focus on a human hepatocyte cell line. TVX and TNF interacted to cause cytotoxicity in HepG2 cells at drug concentrations similar to those in people undergoing TVX therapy. TVX/TNF treatment caused apoptosis and DNA damage in HepG2 cells that depended on caspase activation. Prolonged activation of JNK occurred in TVX/TNF-induced cytotoxicity, and treatment with the JNK selective inhibitor SP600125 attenuated cytotoxicity. TVX/TNF cotreatment also caused cytotoxicity in isolated primary murine hepatocytes that was dependent on caspase activation. These results increase understanding of molecular signaling pathways involved in hepatocellular death caused by a drug with idiosyncratic liability in the presence of TNF.
Collapse
|
33
|
Jetten M, Kleinjans J, Claessen S, Chesné C, van Delft J. Baseline and genotoxic compound induced gene expression profiles in HepG2 and HepaRG compared to primary human hepatocytes. Toxicol In Vitro 2013; 27:2031-40. [DOI: 10.1016/j.tiv.2013.07.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/12/2013] [Accepted: 07/22/2013] [Indexed: 12/31/2022]
|
34
|
Tu M, Sun S, Wang K, Peng X, Wang R, Li L, Zeng S, Zhou H, Jiang H. Organic cation transporter 1 mediates the uptake of monocrotaline and plays an important role in its hepatotoxicity. Toxicology 2013; 311:225-30. [PMID: 23831208 DOI: 10.1016/j.tox.2013.06.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/02/2013] [Accepted: 06/26/2013] [Indexed: 12/14/2022]
Abstract
Monocrotaline (MCT) is a kind of toxic retronecine-type pyrrolizidine alkaloids (PAs) from plants of Crotalaria, which can be bio-activated by cytochrome P450 (CYP) enzymes in liver and then induce hepatotoxicity. Since CYPs are localized in the endoplasmic reticulum, the influx of MCT to the liver is the key step for its hepatotoxicity. The objective of the present study was to investigate the role of organic cation transporter 1 (OCT1), a transporter mainly expressed in liver, in the uptake of MCT and in hepatotoxicity induced by MCT. The results revealed that MCT markedly inhibited the uptake of 1-methyl-4-phenylpyridinium (MPP(+)), an OCT1 substrate, in Madin-Darby canine kidney (MDCK) cells stably expressing human OCT1 (MDCK-hOCT1) with the IC50 of 5.52±0.56μM. The uptake of MCT was significantly higher in MDCK-hOCT1 cells than in MDCK-mock cells, and MCT uptake in MDCK-hOCT1 cells followed Michaelis-Menten kinetics with the Km and Vmax values of 25.0±6.7μM and 266±64pmol/mg protein/min, respectively. Moreover, the OCT1 inhibitors, such as quinidine, d-tetrahydropalmatine (d-THP), obviously inhibited the uptake of MCT in MDCK-hOCT1 cells and isolated rat primary hepatocytes, and attenuated the viability reduction and LDH release of the primary cultured rat hepatocytes caused by MCT. In conclusion, OCT1 mediates the hepatic uptake of MCT and may play an important role in MCT induced-hepatotoxicity.
Collapse
Affiliation(s)
- Meijuan Tu
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Van Beek M, Oravecz-Wilson KI, Delekta PC, Gu S, Li X, Jin X, Apel IJ, Konkle KS, Feng Y, Teitelbaum DH, Ruland J, McAllister-Lucas LM, Lucas PC. Bcl10 links saturated fat overnutrition with hepatocellular NF-kB activation and insulin resistance. Cell Rep 2013; 1:444-52. [PMID: 22708078 DOI: 10.1016/j.celrep.2012.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Excess serum free fatty acids (FFAs) are fundamental to the pathogenesis of insulin resistance. With high-fat feeding, FFAs activate NF-kB in target tissues, initiating negative crosstalk with insulin signaling. However, the mechanisms underlying FFA-dependent NF-kB activation remain unclear. Here, we demonstrate that the saturated FA, palmitate, requires Bcl10 for NF-kB activation in hepatocytes. Uptake of palmitate, metabolism to diacylglycerol, and subsequent activation of protein kinase C (PKC) appear to mechanistically link palmitate with Bcl10, known as a central component of a signaling complex that, along with CARMA3 and MALT1, activates NF-kB downstream of selected cell surface receptors. Consequently, Bcl10-deficient mice are protected from hepatic NF-kB activation and insulin resistance following brief high-fat diet, suggesting that Bcl10 plays a major role in the metabolic consequences of acute overnutrition. Surprisingly, while CARMA3 also participates in the palmitate response, MALT1 is completely dispensable, thereby revealing an apparent nonclassical role for Bcl10 in NF-kB signaling.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- B-Cell CLL-Lymphoma 10 Protein
- CARD Signaling Adaptor Proteins/metabolism
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Caspases/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Diet, High-Fat
- Fatty Acids/pharmacology
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Humans
- Insulin Resistance/physiology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Knockout
- Models, Animal
- Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein
- NF-kappa B/metabolism
- Neoplasm Proteins/metabolism
- Overnutrition/metabolism
- Palmitates/pharmacology
- Rats
Collapse
Affiliation(s)
- Matthew Van Beek
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rutgersson C, Gunnarsson L, Fick J, Kristiansson E, Larsson DGJ. Oral exposure to industrial effluent with exceptionally high levels of drugs does not indicate acute toxic effects in rats. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:577-584. [PMID: 23258772 DOI: 10.1002/etc.2105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/02/2012] [Accepted: 11/02/2012] [Indexed: 06/01/2023]
Abstract
The Patancheru area near Hyderabad in India is recognized as a key link in the global supply chain for many bulk drugs. A central treatment plant receives wastewater from approximately 90 different manufacturers, and the resulting complex effluent has contaminated surface, ground, and drinking water in the region. Ecotoxicological testing of the effluent has shown adverse effects for several organisms, including aquatic vertebrates, at high dilutions. In addition, a recent study of microbial communities in river sediment indicated that the contamination of antibiotic substances might contribute to the emergence and spread of antibiotic resistance genes. In an attempt to start investigating how exposure to effluent-contaminated water may directly affect humans and other terrestrial vertebrates, rats were tube-fed effluent. Several pharmaceuticals present in the effluent could be detected in rat blood serum at low concentrations. However, results from exploratory microarray and quantitative polymerase chain reaction assays indicated no marked effects on hepatic gene transcription after 5 d of exposure. Clinical analysis of blood serum constituents, used as biomarkers for human disease did not reveal any significant changes, nor was there an effect on weight gain. The authors could not find evidence for any acute toxicity in the rat; however, the authors cannot rule out that [corrected] higher doses of effluent or a longer exposure time may still be associated with risks for terrestrial vertebrates.
Collapse
Affiliation(s)
- Carolin Rutgersson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
37
|
Korenori Y, Tanigawa S, Kumamoto T, Qin S, Daikoku Y, Miyamori K, Nagai M, Hou DX. Modulation of Nrf2/Keap1 system by Wasabi 6-methylthiohexyl isothiocyanate in ARE-mediated NQO1 expression. Mol Nutr Food Res 2013; 57:854-64. [PMID: 23390006 DOI: 10.1002/mnfr.201200689] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/28/2012] [Accepted: 12/06/2012] [Indexed: 12/20/2022]
Abstract
SCOPE 6-Methylthiohexyl isothiocyanate (6-MTITC), one of the major bioactive ingredients in Japanese Wasabi, has revealed cytoprotective and cancer chemopreventive effects. This study aims to clarify the molecular mechanisms how 6-MTITC modulates nuclear factor E2-related factor 2 (Nrf2)/Kelchlike ECH-associating protein 1 (Keap1) system in antioxidant-responsive element (ARE)-mediated nicotinamide adenine dinucleotide phosphate (NADP): quinone oxidoreductase 1 (NQO1) expression. METHODS AND RESULTS HepG2 cells were treated with 6-MTITC with varying time and dose. NQO1, Nrf2, and Keap1 proteins were detected by Western blotting. ARE transactivation was detected by electrophilic mobility shift assay and reporter gene assay. Nuclear localization of Nrf2 was determined by immunocytochemistry assay. Ubiquitination of Nrf2 and Keap1 was detected using immunoprecipitation after treatment with MG132. Small interfering RNA was used to knockdown Nrf2 or Keap1. The results revealed that 6-MTITC modulated Nrf2/ARE pathway by stimulating Keap1 modification, and inhibiting Nrf2 ubiquitination and protein turnover. These actions finally increased nuclear Nrf2 accumulation and ARE-binding activity. Moreover, silencing Nrf2 markedly reduced ARE-driven activity induced by 6-MTITC. CONCLUSION 6-MTITC modulated ARE-driven NQO1 expression by stabilizing Nrf2 with enhanced Keap1 modification and decreased Nrf2 degradation.
Collapse
Affiliation(s)
- Yoshimi Korenori
- Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kermanizadeh A, Gaiser BK, Ward MB, Stone V. Primary human hepatocytes versus hepatic cell line: assessing their suitability for in vitro nanotoxicology. Nanotoxicology 2012; 7:1255-71. [PMID: 23009365 DOI: 10.3109/17435390.2012.734341] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The use of hepatocyte cell lines as a replacement for animal models have been heavily criticised mainly due to low expression of metabolism enzymes. This study compares primary human hepatocytes with the C3A cell line and with respect to their response to a panel of nanomaterials (NMs; two ZnO, two MWCNTs, one Ag and one positively functionalised TiO₂). The cell line was very comparable with the primary hepatocytes with regards to their cytotoxic response to the NMs (Ag > uncoated ZnO > coated ZnO). The LC₅₀ was not attained in the presence of the MWCNTs and the TiO₂ NMs. All NMs significantly increased IL-8 production, with no change in levels of TNF-α and IL-6. Albumin production was measured as an indicator of hepatic function. The authors found no change in levels of albumin with the exception of the coated ZnO NM at the LC₅₀ concentration. NM uptake was similar for both the primary hepatocytes and C3A cells as investigated by TEM. Meanwhile, the authors confirmed greater levels of CYP450 activity in untreated primary cells. This study demonstrates that the C3A cell line is a good model for investigating NM-induced hepatocyte responses with respect to uptake, cytotoxicity, pro-inflammatory cytokine production and albumin production.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- Heriot-Watt University, School of Life Sciences, John Muir Building , Edinburgh, EH14 4AS, UK
| | | | | | | |
Collapse
|
39
|
Djafarzadeh S, Vuda M, Takala J, Jakob SM. Effect of remifentanil on mitochondrial oxygen consumption of cultured human hepatocytes. PLoS One 2012; 7:e45195. [PMID: 23028840 PMCID: PMC3441687 DOI: 10.1371/journal.pone.0045195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 08/17/2012] [Indexed: 11/19/2022] Open
Abstract
During sepsis, liver dysfunction is common, and failure of mitochondria to effectively couple oxygen consumption with energy production has been described. In addition to sepsis, pharmacological agents used to treat septic patients may contribute to mitochondrial dysfunction. This study addressed the hypothesis that remifentanil interacts with hepatic mitochondrial oxygen consumption. The human hepatoma cell line HepG2 and their isolated mitochondria were exposed to remifentanil, with or without further exposure to tumor necrosis factor-α (TNF-α). Mitochondrial oxygen consumption was measured by high-resolution respirometry, Caspase-3 protein levels by Western blotting, and cytokine levels by ELISA. Inhibitory κBα (IκBα) phosphorylation, measurement of the cellular ATP content and mitochondrial membrane potential in intact cells were analysed using commercial ELISA kits. Maximal cellular respiration increased after one hour of incubation with remifentanil, and phosphorylation of IκBα occurred, denoting stimulation of nuclear factor κB (NF-κB). The effect on cellular respiration was not present at 2, 4, 8 or 16 hours of incubation. Remifentanil increased the isolated mitochondrial respiratory control ratio of complex-I-dependent respiration without interfering with maximal respiration. Preincubation with the opioid receptor antagonist naloxone prevented a remifentanil-induced increase in cellular respiration. Remifentanil at 10× higher concentrations than therapeutic reduced mitochondrial membrane potential and ATP content without uncoupling oxygen consumption and basal respiration levels. TNF-α exposure reduced respiration of complex-I, -II and -IV, an effect which was prevented by prior remifentanil incubation. Furthermore, prior remifentanil incubation prevented TNF-α-induced IL-6 release of HepG2 cells, and attenuated fragmentation of pro-caspase-3 into cleaved active caspase 3 (an early marker of apoptosis). Our data suggest that remifentanil increases cellular respiration of human hepatocytes and prevents TNF-α-induced mitochondrial dysfunction. The results were not explained by uncoupling of mitochondrial respiration.
Collapse
Affiliation(s)
- Siamak Djafarzadeh
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Madhusudanarao Vuda
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Stephan M. Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
40
|
LeCluyse EL, Witek RP, Andersen ME, Powers MJ. Organotypic liver culture models: meeting current challenges in toxicity testing. Crit Rev Toxicol 2012; 42:501-48. [PMID: 22582993 PMCID: PMC3423873 DOI: 10.3109/10408444.2012.682115] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 03/26/2012] [Accepted: 03/30/2012] [Indexed: 02/07/2023]
Abstract
Prediction of chemical-induced hepatotoxicity in humans from in vitro data continues to be a significant challenge for the pharmaceutical and chemical industries. Generally, conventional in vitro hepatic model systems (i.e. 2-D static monocultures of primary or immortalized hepatocytes) are limited by their inability to maintain histotypic and phenotypic characteristics over time in culture, including stable expression of clearance and bioactivation pathways, as well as complex adaptive responses to chemical exposure. These systems are less than ideal for longer-term toxicity evaluations and elucidation of key cellular and molecular events involved in primary and secondary adaptation to chemical exposure, or for identification of important mediators of inflammation, proliferation and apoptosis. Progress in implementing a more effective strategy for in vitro-in vivo extrapolation and human risk assessment depends on significant advances in tissue culture technology and increasing their level of biological complexity. This article describes the current and ongoing need for more relevant, organotypic in vitro surrogate systems of human liver and recent efforts to recreate the multicellular architecture and hemodynamic properties of the liver using novel culture platforms. As these systems become more widely used for chemical and drug toxicity testing, there will be a corresponding need to establish standardized testing conditions, endpoint analyses and acceptance criteria. In the future, a balanced approach between sample throughput and biological relevance should provide better in vitro tools that are complementary with animal testing and assist in conducting more predictive human risk assessment.
Collapse
Affiliation(s)
- Edward L LeCluyse
- The Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC, USA.
| | | | | | | |
Collapse
|
41
|
Magkoufopoulou C, Claessen SMH, Tsamou M, Jennen DGJ, Kleinjans JCS, van Delft JHM. A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis 2012; 33:1421-9. [PMID: 22623647 DOI: 10.1093/carcin/bgs182] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The lack of accurate in vitro assays for predicting in vivo toxicity of chemicals together with new legislations demanding replacement and reduction of animal testing has triggered the development of alternative methods. This study aimed at developing a transcriptomics-based in vitro prediction assay for in vivo genotoxicity. Transcriptomics changes induced in the human liver cell line HepG2 by 34 compounds after treatment for 12, 24, and 48 h were used for the selection of gene-sets that are capable of discriminating between in vivo genotoxins (GTX) and in vivo nongenotoxins (NGTX). By combining transcriptomics with publicly available results for these chemicals from standard in vitro genotoxicity studies, we developed several prediction models. These models were validated by using an additional set of 28 chemicals. The best prediction was achieved after stratification of chemicals according to results from the Ames bacterial gene mutation assay prior to transcriptomics evaluation after 24h of treatment. A total of 33 genes were selected for discriminating GTX from NGTX for Ames-positive chemicals and 22 for Ames-negative chemicals. Overall, this method resulted in 89% accuracy and 91% specificity, thereby clearly outperforming the standard in vitro test battery. Transcription factor network analysis revealed HNF3a, HNF4a, HNF6, androgen receptor, and SP1 as main factors regulating the expression of classifiers for Ames-positive chemicals. Thus, the classical bacterial gene mutation assay in combination with in vitro transcriptomics in HepG2 is proposed as an upgraded in vitro approach for predicting in vivo genotoxicity of chemicals holding a great promise for reducing animal experimentations on genotoxicity.
Collapse
Affiliation(s)
- C Magkoufopoulou
- Department of Toxicogenomics, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
Qin S, Chen J, Tanigawa S, Hou DX. Gene expression profiling and pathway network analysis of hepatic metabolic enzymes targeted by baicalein. JOURNAL OF ETHNOPHARMACOLOGY 2012; 140:131-140. [PMID: 22265932 DOI: 10.1016/j.jep.2011.12.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/21/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baicalein is a flavone originally isolated from the roots of traditional Chinese medicinal herb, Scutellaria baicalensis, which has been proved as a promising chemopreventive compound for many chronic human diseases. AIM OF THE STUDY The present study aimed to clarify the molecular mechanism targeted by baicalein. MATERIALS AND METHODS Gene expression profiling of HepG2 cells treated with baicalein was carried out, using the Affymetrix 42K oligonucleotide microarray in the present study. Microarray data analyzed by Ingenuity Pathway Analysis (IPA), further study performed by real time PCR, reporter gene assay, and Western blot. RESULTS Among total 42K gene probes, baicalein treatment up-regulated the signals of 440 gene probes (1.04% of total gene probes) and down-regulated signals of 254 gene probes (0.6% of total gene probes) by ≥2-fold. These genes were categorized into 35 groups and hit for biological processes, molecular functions, and signaling pathways. The network and pathway analyses of these data further revealed that an Nrf2 (nuclear factor-erythroid 2 p45-related factor 2)-mediated ARE (antioxidant response element) pathway is involved in baicalein-induced gene expression of hepatic metabolic enzymes. The representative enzymes involved in Nrf2/ARE pathway were further confirmed at mRNA level by real time PCR and at protein level by Western blot analysis. Moreover, the ARE-reporter gene assay demonstrated that baicalein stimulated Nrf2-mediated ARE transactivation. CONCLUSIONS Our results provide a comprehensive data for understanding the hepatic metabolism, bioactive role and the molecular mechanisms of baicalein.
Collapse
Affiliation(s)
- Si Qin
- Course of Biological Science and Technology, United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | | | | | | |
Collapse
|
43
|
Khan IA, Siddiqui S, Rehmani S, Kazmi SU, Ali SH. Fluoroquinolones inhibit HCV by targeting its helicase. Antivir Ther 2011; 17:467-476. [PMID: 22293206 DOI: 10.3851/imp1937] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2011] [Indexed: 10/16/2022]
Abstract
BACKGROUND HCV has infected >170 million individuals worldwide. Effective therapy against HCV is still lacking and there is a need to develop potent drugs against the virus. In the present study, we have employed two culture models to test the activity of fluoroquinolone drugs against HCV: a subgenomic replicon that is able to replicate independently in the cell line Huh-8 and the Huh-7 cell culture model that employs cells transfected with synthetic HCV RNA to produce the infectious HCV particles. Fluoroquinolones have also been shown to have inhibitory activity against certain viruses, possibly by targeting the viral helicase. To tease out the mechanism of the antiviral activity of fluoroquinolones, their effect on HCV NS3 helicase protein was also tested. METHODS Huh-7 cells producing the HCV virion as well as Huh-8 cells were grown in the presence or absence of 12 different fluoroquinolones. Afterwards, Huh-7 and Huh-8 cells were lysed and viral RNA was extracted. The extracted RNA was reverse transcribed and quantified by real-time quantitative PCR. Fluoroquinolones were also tested on purified NS3 protein in a molecular-beacon-based in vitro helicase assay. RESULTS To varying degrees, all of the tested fluoroquinolones effectively inhibited HCV replication in both Huh-7 and Huh-8 culture models. The inhibition of HCV NS3 helicase activity was also observed with all 12 of the fluoroquinolones. CONCLUSIONS Fluoroquinolones inhibit HCV replication possibly by targeting the HCV NS3 helicase. These drugs hold promise for the treatment of HCV infection.
Collapse
Affiliation(s)
- Irfan A Khan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | | | | | | |
Collapse
|
44
|
Stepan AF, Walker DP, Bauman J, Price DA, Baillie TA, Kalgutkar AS, Aleo MD. Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chem Res Toxicol 2011; 24:1345-410. [PMID: 21702456 DOI: 10.1021/tx200168d] [Citation(s) in RCA: 504] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Because of a preconceived notion that eliminating reactive metabolite (RM) formation with new drug candidates could mitigate the risk of idiosyncratic drug toxicity, the potential for RM formation is routinely examined as part of lead optimization efforts in drug discovery. Likewise, avoidance of "structural alerts" is almost a norm in drug design. However, there is a growing concern that the perceived safety hazards associated with structural alerts and/or RM screening tools as standalone predictors of toxicity risks may be over exaggerated. In addition, the multifactorial nature of idiosyncratic toxicity is now well recognized based upon observations that mechanisms other than RM formation (e.g., mitochondrial toxicity and inhibition of bile salt export pump (BSEP)) also can account for certain target organ toxicities. Hence, fundamental questions arise such as: When is a molecule that contains a structural alert (RM positive or negative) a cause for concern? Could the molecule in its parent form exert toxicity? Can a low dose drug candidate truly mitigate metabolism-dependent and -independent idiosyncratic toxicity risks? In an effort to address these questions, we have retrospectively examined 68 drugs (recalled or associated with a black box warning due to idiosyncratic toxicity) and the top 200 drugs (prescription and sales) in the United States in 2009 for trends in physiochemical characteristics, daily doses, presence of structural alerts, evidence for RM formation as well as toxicity mechanism(s) potentially mediated by parent drugs. Collectively, our analysis revealed that a significant proportion (∼78-86%) of drugs associated with toxicity contained structural alerts and evidence indicating that RM formation as a causative factor for toxicity has been presented in 62-69% of these molecules. In several cases, mitochondrial toxicity and BSEP inhibition mediated by parent drugs were also noted as potential causative factors. Most drugs were administered at daily doses exceeding several hundred milligrams. There was no obvious link between idiosyncratic toxicity and physicochemical properties such as molecular weight, lipophilicity, etc. Approximately half of the top 200 drugs for 2009 (prescription and sales) also contained one or more alerts in their chemical architecture, and many were found to be RM-positive. Several instances of BSEP and mitochondrial liabilities were also noted with agents in the top 200 category. However, with relatively few exceptions, the vast majority of these drugs are rarely associated with idiosyncratic toxicity, despite years of patient use. The major differentiating factor appeared to be the daily dose; most of the drugs in the top 200 list are administered at low daily doses. In addition, competing detoxication pathways and/or alternate nonmetabolic clearance routes provided suitable justifications for the safety records of RM-positive drugs in the top 200 category. Thus, while RM elimination may be a useful and pragmatic starting point in mitigating idiosyncratic toxicity risks, our analysis suggests a need for a more integrated screening paradigm for chemical hazard identification in drug discovery. Thus, in addition to a detailed assessment of RM formation potential (in relationship to the overall elimination mechanisms of the compound(s)) for lead compounds, effects on cellular health (e.g., cytotoxicity assays), BSEP inhibition, and mitochondrial toxicity are the recommended suite of assays to characterize compound liabilities. However, the prospective use of such data in compound selection will require further validation of the cellular assays using marketed agents. Until we gain a better understanding of the pathophysiological mechanisms associated with idiosyncratic toxicities, improving pharmacokinetics and intrinsic potency as means of decreasing the dose size and the associated "body burden" of the parent drug and its metabolites will remain an overarching goal in drug discovery.
Collapse
Affiliation(s)
- Antonia F Stepan
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Magkoufopoulou C, Claessen S, Jennen D, Kleinjans J, van Delft J. Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis 2011; 26:593-604. [DOI: 10.1093/mutage/ger021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
46
|
Liu YH, Mo SL, Bi HC, Hu BF, Li CG, Wang YT, Huang L, Huang M, Duan W, Liu JP, Wei MQ, Zhou SF. Regulation of human pregnane X receptor and its target gene cytochrome P450 3A4 by Chinese herbal compounds and a molecular docking study. Xenobiotica 2010; 41:259-80. [PMID: 21117944 DOI: 10.3109/00498254.2010.537395] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pregnane X receptor (PXR) plays a critical role in the regulation of human cytochrome P450 3A4 (CYP3A4) gene. In this study, we investigated the effect of an array of compounds isolated from Chinese herbal medicines on the activity of PXR using a luciferase reporter gene assay in transiently transfected HepG2 and Huh7 cells and on the expression of PXR and CYP3A4 in LS174T cells. Furthermore, molecular docking was performed to investigate the binding modes of herbal compounds with PXR. Praeruptorin A and C, salvianolic acid B, sodium danshensu, protocatechuic aldehyde, cryptotanshinone, emodin, morin, and tanshinone IIA significantly transactivated the CYP3A4 reporter gene construct in either HepG2 or Huh7 cells. The PXR mRNA expression in LS174T cells was significantly induced by physcion, protocatechuic aldehyde, salvianolic acid B, and sodium danshensu. However, epifriedelanol, morin, praeruptorin D, mulberroside A, tanshinone I, and tanshinone IIA significantly down-regulated the expression of PXR mRNA in LS174T cells. All the herbal compounds tested can be readily docked into the ligand-binding cavity of PXR mainly through hydrogen bond and aromatic interactions with Ser247, Gln285, His407, and Arg401. These findings suggest that herbal medicines can significantly regulate PXR and CYP3A4 and this has important implication in herb-drug interactions.
Collapse
Affiliation(s)
- Ya-He Liu
- School of Health Sciences & Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hsiao CJJ, Younis H, Boelsterli UA. Trovafloxacin, a fluoroquinolone antibiotic with hepatotoxic potential, causes mitochondrial peroxynitrite stress in a mouse model of underlying mitochondrial dysfunction. Chem Biol Interact 2010; 188:204-13. [DOI: 10.1016/j.cbi.2010.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/14/2010] [Accepted: 07/16/2010] [Indexed: 01/09/2023]
|
48
|
Identification of classifier genes for hepatotoxicity prediction in non steroidal anti inflammatory drugs. Mol Cell Toxicol 2010. [DOI: 10.1007/s13273-010-0034-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Bhogal RH, Afford SC. Blockade of Janus kinase 2 signaling ameliorates mouse liver damage due to ischemia and reperfusion. Liver Transpl 2010; 16:1112-3; author reply 114-5. [PMID: 20818749 DOI: 10.1002/lt.22112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
50
|
Reply. Liver Transpl 2010. [DOI: 10.1002/lt.22124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|