1
|
Huang X, Chang J, Tian B. GLMCyp: A Deep Learning-Based Method for CYP450-Mediated Reaction Site Prediction. J Chem Inf Model 2025. [PMID: 40013456 DOI: 10.1021/acs.jcim.4c02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Cytochrome P450 enzymes (CYP450s) play crucial roles in metabolizing many drugs, and thus, local chemical structure can profoundly influence drug efficacy and toxicity. Therefore, the accurate prediction of CYP450-mediated reaction sites can increase the efficiency of drug discovery and development. Here, we present GLMCyp, a deep learning-based approach, for predicting CYP450 reaction sites on small molecules. By integrating two-dimensional (2D) molecular graph features, three-dimensional (3D) features from Uni-Mol, and relevant CYP450 protein features generated by ESM-2, GLMCyp could accurately predict bonds of metabolism (BoMs) targeted by a panel of nine human CYP450s. Incorporating protein features allowed GLMCyp application in broader CYP450 metabolism prediction tasks. Additionally, substrate molecular feature processing enhanced the accuracy and interpretability of the predictions. The model was trained on the EBoMD data set and reached an area under the receiver operating characteristic curve (ROC-AUC) of 0.926. GLMCyp also showed a relatively strong capacity for feature extraction and generalizability in validation with external data sets. The GLMCyp model and data sets are available for public use (https://github.com/lvimmind/GLMCyp-Predictor) to facilitate drug metabolism screening.
Collapse
Affiliation(s)
- Xuhai Huang
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jiamin Chang
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Boxue Tian
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Yamazoe Y, Murayama N. Construction of a CYP2J2-Template System and Its Application for Ligand Metabolism Prediction. Food Saf (Tokyo) 2024; 12:69-82. [PMID: 39713276 PMCID: PMC11649976 DOI: 10.14252/foodsafetyfscj.d-24-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
A Template system for the understanding of human CYP2J2-mediated reactions was constructed from the assembly of the ligands with the introduction of ideas of allowable width, Trigger-residue and the residue-initiated movement of ligands in the active site, which were in common with other Template* systems for human CYP1A1, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2E1, CYP3A4, CYP3A5, and CYP3A7 (Drug Metab Pharmacokinet 2016, 2017, 2019, 2020, 2021, 2022, 2023, 2024, and in press 2024). CYP2J2 system also includes ideas of bi-molecule binding of ligands on the Template. From their placements on the Template and rules for interaction modes, verifications of good and poor substrates, regio/stereo-selectivity, and inhibitory interaction became available faithfully for these ligands. The refined CYP2J2-Template system will thus offer reliable estimations of this human CYP catalysis toward ligands of diverse structures, together with their deciphering information to lead to judgments.
Collapse
Affiliation(s)
- Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology, Graduate
School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai
980-8578, Japan
- Division of Risk Assessment, National Institute of Health
Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Norie Murayama
- Showa Pharmaceutical University, Machida, Tokyo 194-8543,
Japan
| |
Collapse
|
3
|
Zhou J, Qin X, Zhou S, MacKenzie KR, Li F. CYP3A-Mediated Carbon-Carbon Bond Cleavages in Drug Metabolism. Biomolecules 2024; 14:1125. [PMID: 39334891 PMCID: PMC11430781 DOI: 10.3390/biom14091125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Cytochrome P450 enzymes (P450s) play a critical role in drug metabolism, with the CYP3A subfamily being responsible for the biotransformation of over 50% of marked drugs. While CYP3A enzymes are known for their extensive catalytic versatility, one intriguing and less understood function is the ability to mediate carbon-carbon (C-C) bond cleavage. These uncommon reactions can lead to unusual metabolites and potentially influence drug safety and efficacy. This review focuses on examining examples of C-C bond cleavage catalyzed by CYP3A, exploring the mechanisms, physiological significance, and implications for drug metabolism. Additionally, examples of CYP3A-mediated ring expansion via C-C bond cleavages are included in this review. This work will enhance our understanding of CYP3A-catalyzed C-C bond cleavages and their mechanisms by carefully examining and analyzing these case studies. It may also guide future research in drug metabolism and drug design, improving drug safety and efficacy in clinical practice.
Collapse
Affiliation(s)
- Junhui Zhou
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (J.Z.); (X.Q.); (S.Z.); (K.R.M.)
| | - Xuan Qin
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (J.Z.); (X.Q.); (S.Z.); (K.R.M.)
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shenzhi Zhou
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (J.Z.); (X.Q.); (S.Z.); (K.R.M.)
| | - Kevin R. MacKenzie
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (J.Z.); (X.Q.); (S.Z.); (K.R.M.)
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng Li
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (J.Z.); (X.Q.); (S.Z.); (K.R.M.)
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Kamel AA, Aboelhadid SM, Abdel-Baki AAS, Ibrahium SM, Al-Quraishy S, Hassan AO, Abd El-Kareem SG, Gadelhaq SM. Benzoate Derivatives Toxicity to Musca domestica Results in Severe Muscle Relaxation and Body Distortion. NEOTROPICAL ENTOMOLOGY 2024; 53:972-983. [PMID: 38724884 DOI: 10.1007/s13744-024-01154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/28/2024] [Indexed: 07/18/2024]
Abstract
The house fly, Musca domestica (Linnaeus) (Diptera: Muscidae), is a significant threat to human and animal health and is also resistant to a variety of insecticides. Plant-derived benzoates are known to have insecticidal activities against various insects. In this study, the larvicidal, pupicidal, and adulticidal activities of benzoate derivatives (benzyl alcohol BA, benzyl benzoate BB, and methyl benzoate MB) were assessed and investigated for their effects on larval structure and acetylcholinesterase activity. Six concentrations (2.5 to 100 mg/mL) of benzoate derivatives were applied to larvae and pupae through the residual film method and topical application, respectively. Meanwhile, concentrations from 0.625 to 50 mg/L air were applied to adult flies through a fumigation assay. BA and MB achieved promising results against larvae with LC50 values of 10.90 and 11.53 mg/mL, respectively. Moreover, BA killed 100% of the larvae at a concentration of 25 mg/mL, and MB achieved the same effect at a concentration of 50 mg/mL. Regarding the pupicidal activity, MB showed a percentage inhibition rate (PIR) of 100% at a concentration of 100 mg/mL, while the same effect was achieved by BA at a concentration of 50 mg/mL. Meanwhile, BB did not show any effect on the larvae or pupae at any of the tested concentrations. Moreover, the scanning microscopy observations on the treated larvae by BA and MB estimated flaccid and deformity in the larva body with a shrunken cuticle. Additionally, both BA and MB suppress nerve signal transmission by inhibiting acetylcholinesterase. In conclusion, the results of this study indicate that BA and MB may be useful in control housefly populations. These substances cause severe muscular relaxation and deformities in insects.
Collapse
Affiliation(s)
- Asmaa A Kamel
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Shawky M Aboelhadid
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | | | - Samar M Ibrahium
- Department of Parasitology, Animal Health Research Institute, Fayum Branch, Egypt
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Sahar M Gadelhaq
- Parasitology Department, Faculty of Veterinary Medicine, Minia University, Minia, Egypt
| |
Collapse
|
5
|
El-Serafi I, Steele S. Cyclophosphamide Pharmacogenomic Variation in Cancer Treatment and Its Effect on Bioactivation and Pharmacokinetics. Adv Pharmacol Pharm Sci 2024; 2024:4862706. [PMID: 38966316 PMCID: PMC11223907 DOI: 10.1155/2024/4862706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024] Open
Abstract
Cyclophosphamide (Cy) is a prodrug that is mainly bioactivated by cytochrome P450 (CYP) 2B6 enzyme. Several other enzymes are also involved in its bioactivation and affect its kinetics. Previous studies have shown the effect of the enzymes' genetic polymorphisms on Cy kinetics and its clinical outcome. These results were controversial primarily because of the involvement of several interacting enzymes in the Cy metabolic pathway, which can also be affected by several clinical factors as well as other drug interactions. In this review article, we present the effect of CYP2B6 polymorphisms on Cy kinetics since it is the main bioactivating enzyme, as well as discussing all previously reported enzymes and clinical factors that can alter Cy efficacy. Additionally, we present explanations for key Cy side effects related to the nature and site of its bioactivation. Finally, we discuss the role of busulphan in conditioning regimens in the Cy metabolic pathway as a clinical example of drug-drug interactions involving several enzymes. By the end of this article, our aim is to have provided a comprehensive summary of Cy pharmacogenomics and the effect on its kinetics. The utility of these findings in the development of new strategies for Cy personalized patient dose adjustment will aid in the future optimization of patient specific Cy dosages and ultimately in improving clinical outcomes. In conclusion, CYP2B6 and several other enzyme polymorphisms can alter Cy kinetics and consequently the clinical outcomes. However, the precise quantification of Cy kinetics in any individual patient is complex as it is clearly under multifactorial genetic control. Additionally, other clinical factors such as the patient's age, diagnosis, concomitant medications, and clinical status should also be considered.
Collapse
Affiliation(s)
- Ibrahim El-Serafi
- Basic Medical Sciences DepartmentCollege of MedicineAjman University, Ajman, UAE
- Department of Hand Surgery, and Plastic Surgery and BurnsLinköping University Hospital, Linkoöping, Sweden
| | - Sinclair Steele
- Pathological Sciences DepartmentCollege of MedicineAjman University, Ajman, UAE
| |
Collapse
|
6
|
Leow JWH, Chan ECY. CYP2J2-mediated metabolism of arachidonic acid in heart: A review of its kinetics, inhibition and role in heart rhythm control. Pharmacol Ther 2024; 258:108637. [PMID: 38521247 DOI: 10.1016/j.pharmthera.2024.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Cytochrome P450 2 J2 (CYP2J2) is primarily expressed extrahepatically and is the predominant epoxygenase in human cardiac tissues. This highlights its key role in the metabolism of endogenous substrates. Significant scientific interest lies in cardiac CYP2J2 metabolism of arachidonic acid (AA), an omega-6 polyunsaturated fatty acid, to regioisomeric bioactive epoxyeicosatrienoic acid (EET) metabolites that show cardioprotective effects including regulation of cardiac electrophysiology. From an in vitro perspective, the accurate characterization of the kinetics of CYP2J2 metabolism of AA including its inhibition and inactivation by drugs could be useful in facilitating in vitro-in vivo extrapolations to predict drug-AA interactions in drug discovery and development. In this review, background information on the structure, regulation and expression of CYP2J2 in human heart is presented alongside AA and EETs as its endogenous substrate and metabolites. The in vitro and in vivo implications of the kinetics of this endogenous metabolic pathway as well as its perturbation via inhibition and inactivation by drugs are elaborated. Additionally, the role of CYP2J2-mediated metabolism of AA to EETs in cardiac electrophysiology will be expounded.
Collapse
Affiliation(s)
- Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
7
|
Gebreyesus TD, Makonnen E, Telele NF, Barry A, Mnkugwe RH, Gerba H, Dahl ML, Aklillu E. CYP2C19 and CYP2J2 genotypes predict praziquantel plasma exposure among Ethiopian school-aged children. Sci Rep 2024; 14:11730. [PMID: 38778126 PMCID: PMC11111788 DOI: 10.1038/s41598-024-62669-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Metabolism of praziquantel (PZQ), a racemic mixture and the only drug approved to treat S. mansoni infection, is mediated by genetically polymorphic enzymes. Periodic school-based mass drug administration (MDA) with PZQ is the core intervention to control schistosomiasis. However data on the impact of pharmacogenetic variation, nutrition, and infection status on plasma PZQ exposure is scarce. We investigated genetic and non-genetic factors influencing PZQ plasma concentration and its metabolic ratios (trans-4-OH-PZQ/PZQ and cis-4-OH-PZQ/PZQ). Four hundred forty-six school children aged 7-15 years from four primary schools in southern Ethiopia who received albendazole and PZQ preventive chemotherapy through MDA campaign were enrolled. Genotyping for common functional variants of CYP3A4 (*1B), CYP3A5 (*3, *6), CYP2C19 (*2, *3, *17), CYP2C9 (*2, *3), and CYP2J2*7 was performed. Plasma concentrations of PZQ, trans-4-OH-PZQ, and cis-4-OH-PZQ were quantified using UPLCMS/MS. Carriers of CYP2C19 defective variant alleles (*2 and *3) had significantly higher mean PZQ plasma concentration than CYP2C19*1/*1 or *17 carriers (p = 0.005). CYP2C19*1/*1 and CYP2C19*17 carriers had higher trans-4-OH-PZQ/PZQ and cis-4-OH-PZQ/PZQ metabolic ratios compared with CYP2C19*2 or *3 carriers (p < 0.001). CYP2J2*7 carriers had lower mean PZQ plasma concentration (p = 0.05) and higher trans-4-OH-PZQ/PZQ and cis-4-OH-PZQ/PZQ metabolic ratios. Male participants had significantly higher PZQ concentration (p = 0.006) and lower metabolic ratios (p = 0.001) than females. There was no significant effect of stunting, wasting, S. mansoni or soil-transmitted helminth infections, CYP3A4, CYP3A5, or CYP2C9 genotypes on plasma PZQ or its metabolic ratios. In conclusion, sex, CYP2C19 and CYP2J2 genotypes significantly predict PZQ plasma exposure among Ethiopian children. The impact of CYP2C19 and CYP2J2 genotypes on praziquantel treatment outcomes requires further investigation.
Collapse
Affiliation(s)
- Tigist Dires Gebreyesus
- Department of Global Public Health, Karolinska Institutet, Karolinska University Hospital, Tomtebodavägen 18A, 171 77, Stockholm, Sweden
- Ethiopian Food and Drug Authority, Addis Ababa, Ethiopia
| | - Eyasu Makonnen
- Center for Innovative Drug Development and Therapeutic Trials for Africa, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Nigus Fikrie Telele
- Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Abbie Barry
- Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rajabu Hussein Mnkugwe
- Department of Clinical Pharmacology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Heran Gerba
- Ethiopian Food and Drug Authority, Addis Ababa, Ethiopia
| | - Marja-Liisa Dahl
- Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eleni Aklillu
- Department of Global Public Health, Karolinska Institutet, Karolinska University Hospital, Tomtebodavägen 18A, 171 77, Stockholm, Sweden.
| |
Collapse
|
8
|
Sun J, Li R, Zhang J, Huang Y, Lu Y, Liu C, Li Y, Liu T. Analysis of compatibility mechanism of shenxiong glucose injection after multiple dosing based on differences of PK-PD correlation and cytochrome P450 enzyme. J Pharm Biomed Anal 2024; 239:115899. [PMID: 38103414 DOI: 10.1016/j.jpba.2023.115899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Shenxiong glucose injection (SGI) containing a water extract from the roots of Danshen and Ligustrazine hydrochloride, is the main drug used for the prevention and treatment of acute myocardial ischemia (AMI) in China. Based on the characteristics of drug clinical applications, this study aims to uncover the compatibility mechanism of SGI by investigating pharmacokinetic (PK) and pharmacodynamic (PD) differences between Danshen glucose injection (DGI), Ligustrazine glucose injection (LGI) and SGI groups after multiple dosing during the pathological state from the perspective of metabolic enzymes. Compared to the LGI group, the absorption (Cmax) and exposure (AUC) of ligustrazine increased significantly, and the protein expression of CYP1A2, CYP2C11 and CYP3A2 in the SGI group decreased significantly. Furthermore, the PK and PD experimental data for Danshen and ligustrazine in AMI rats were fitted to obtain a PK-PD binding model with three components. PK-PD parameter analysis showed that in the SGI group the IC50 values of ligustrazine and danshensu on AST, CK-MB, cTn-I and the IC50 values of rosmarinic acid on AST and CK-MB were lower than the DGI or LGI group. It is speculated that Danshen inhibited CYP1A2, CYP2C11 and CYP3A2 mediating the metabolism of ligustrazine and decreased the expression of these three isozymes, which further affected the in vivo process of ligustrazine. Moreover, the combination of Danshen and ligustrazine could have better regulating effect on AST, CK-MB and cTn-I. This preliminary study has provided a scientific basis for understanding the compatibility mechanism of SGI from the viewpoint of the regulation of CYP enzymes in the PK-PD model.
Collapse
Affiliation(s)
- Jia Sun
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines, Guiyang 550004, China
| | - Rong Li
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Jingya Zhang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yong Huang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines, Guiyang 550004, China
| | - Yuan Lu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Chunhua Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and Traditional Chinese Medicine Development and Application, Guizhou Medical University, Guiyang 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and Traditional Chinese Medicine Development and Application, Guizhou Medical University, Guiyang 550004, China.
| | - Ting Liu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
9
|
Wiley AM, Yang J, Madhani R, Nath A, Totah RA. Investigating the association between CYP2J2 inhibitors and QT prolongation: a literature review. Drug Metab Rev 2024; 56:145-163. [PMID: 38478383 DOI: 10.1080/03602532.2024.2329928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Drug withdrawal post-marketing due to cardiotoxicity is a major concern for drug developers, regulatory agencies, and patients. One common mechanism of cardiotoxicity is through inhibition of cardiac ion channels, leading to prolongation of the QT interval and sometimes fatal arrythmias. Recently, oxylipin signaling compounds have been shown to bind to and alter ion channel function, and disruption in their cardiac levels may contribute to QT prolongation. Cytochrome P450 2J2 (CYP2J2) is the predominant CYP isoform expressed in cardiomyocytes, where it oxidizes arachidonic acid to cardioprotective epoxyeicosatrienoic acids (EETs). In addition to roles in vasodilation and angiogenesis, EETs bind to and activate various ion channels. CYP2J2 inhibition can lower EET levels and decrease their ability to preserve cardiac rhythm. In this review, we investigated the ability of known CYP inhibitors to cause QT prolongation using Certara's Drug Interaction Database. We discovered that among the multiple CYP isozymes, CYP2J2 inhibitors were more likely to also be QT-prolonging drugs (by approximately 2-fold). We explored potential binding interactions between these inhibitors and CYP2J2 using molecular docking and identified four amino acid residues (Phe61, Ala223, Asn231, and Leu402) predicted to interact with QT-prolonging drugs. The four residues are located near the opening of egress channel 2, highlighting the potential importance of this channel in CYP2J2 binding and inhibition. These findings suggest that if a drug inhibits CYP2J2 and interacts with one of these four residues, then it may have a higher risk of QT prolongation and more preclinical studies are warranted to assess cardiovascular safety.
Collapse
Affiliation(s)
- Alexandra M Wiley
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| | - Jade Yang
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| | - Rivcka Madhani
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| | - Abhinav Nath
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| |
Collapse
|
10
|
Hernández-Cerón M, Chavarria V, Ríos C, Pineda B, Palomares-Alonso F, Rojas-Tomé IS, Jung-Cook H. Melatonin in Combination with Albendazole or Albendazole Sulfoxide Produces a Synergistic Cytotoxicity against Malignant Glioma Cells through Autophagy and Apoptosis. Brain Sci 2023; 13:869. [PMID: 37371349 DOI: 10.3390/brainsci13060869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma is the most aggressive and lethal brain tumor in adults, presenting diffuse brain infiltration, necrosis, and drug resistance. Although new drugs have been approved for recurrent patients, the median survival rate is two years; therefore, new alternatives to treat these patients are required. Previous studies have reported the anticancer activity of albendazole, its active metabolite albendazole sulfoxide, and melatonin; therefore, the present study was performed to evaluate if the combination of melatonin with albendazole or with albendazole sulfoxide induces an additive or synergistic cytotoxic effect on C6 and RG2 rat glioma cells, as well as on U87 human glioblastoma cells. Drug interaction was determined by the Chou-Talalay method. We evaluated the mechanism of cell death by flow cytometry, immunofluorescence, and crystal violet staining. The cytotoxicity of the combinations was mainly synergistic. The combined treatments induced significantly more apoptotic and autophagic cell death on the glioma cell lines. Additionally, albendazole and albendazole sulfoxide inhibited proliferation independently of melatonin. Our data justify continuing with the evaluation of this proposal since the combinations could be a potential strategy to aid in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Miguel Hernández-Cerón
- Doctorate in Biological and Health Sciences, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Víctor Chavarria
- Neuroimmunology and Neuro-Oncology Unit, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City 14269, Mexico
| | - Camilo Ríos
- Doctorate in Biological and Health Sciences, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
- Laboratorio de Neurofarmacología Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City 04960, Mexico
| | - Benjamin Pineda
- Neuroimmunology and Neuro-Oncology Unit, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City 14269, Mexico
| | | | - Irma Susana Rojas-Tomé
- Neuropsycopharmacology Lab, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico
| | - Helgi Jung-Cook
- Pharmacy Department, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
11
|
Leow JWH, Gu Y, Chan ECY. Investigating the relevance of CYP2J2 inhibition for drugs known to cause intermediate to high risk torsades de pointes. Eur J Pharm Sci 2023; 187:106475. [PMID: 37225005 DOI: 10.1016/j.ejps.2023.106475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/10/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Cardiac cytochrome P450 2J2 (CYP2J2) metabolizes endogenous polyunsaturated fatty acid, arachidonic acid (AA), to bioactive regioisomeric epoxyeicosatrienoic acid (EET) metabolites. This endogenous metabolic pathway has been postulated to play a homeostatic role in cardiac electrophysiology. However, it is unknown if drugs that cause intermediate to high risk torsades de pointes (TdP) exhibit inhibitory effects against CYP2J2 metabolism of AA to EETs. In this study, we demonstrated that 11 out of 16 drugs screened with intermediate to high risk of TdP as defined by the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative are concurrently reversible inhibitors of CYP2J2 metabolism of AA, with unbound inhibitory constant (Ki,AA,u) values ranging widely from 0.132 to 19.9 µM. To understand the physiological relevancy of Ki,AA,u, the in vivo unbound drug concentration within human heart tissue (Cu,heart) was calculated via experimental determination of in vitro unbound partition coefficient (Kpuu) for 10 CYP2J2 inhibitors using AC16 human ventricular cardiomyocytes as well as literature-derived values of fraction unbound in plasma (fu,p) and plasma drug concentrations in clinical scenarios leading to TdP. Notably, all CYP2J2 inhibitors screened belonging to the high TdP risk category, namely vandetanib and bepridil, exhibited highest Kpuu values of 18.2 ± 1.39 and 7.48 ± 1.16 respectively although no clear relationship between Cu,heart and risk of TdP could eventually be determined. R values based on basic models of reversible inhibition as per FDA guidelines were calculated using unbound plasma drug concentrations (Cu,plasma) and adapted using Cu,heart which suggested that 4 out of 10 CYP2J2 inhibitors with intermediate to high risk of TdP demonstrate greatest potential for clinically relevant in vivo cardiac drug-AA interactions. Our results shed novel insights on the relevance of CYP2J2 inhibition in drugs with risk of TdP. Further studies ascertaining the role of CYP2J2 metabolism of AA in cardiac electrophysiology, characterizing inherent cardiac ion channel activities of drugs with risk of TdP as well as in vivo evidence of drug-AA interactions will be required prior to determining if CYP2J2 inhibition could be an alternative mechanism contributing to drug-induced TdP.
Collapse
Affiliation(s)
- Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543
| | - Yuxiang Gu
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543.
| |
Collapse
|
12
|
Uno Y, Murayama N, Ijiri M, Kawaguchi H, Yamato O, Shiraishi M, Asano A, Teraoka H, Mizukawa H, Nakayama SMM, Ikenaka Y, Ishizuka M, Yamazaki H. Cytochrome P450 2J Genes Are Expressed in Dogs, Cats, and Pigs, and Encode Functional Drug-Metabolizing Enzymes. Drug Metab Dispos 2022; 50:1434-1441. [PMID: 35701183 DOI: 10.1124/dmd.122.000930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450s (P450s) have been identified and analyzed in dogs and pigs, species that are often used in preclinical drug studies. Moreover, P450s are clinically important for drug therapy not only in humans, but also in species under veterinary care, including dogs and cats. In the present study, seven P450s homologous to human CYP2J2, namely, dog CYP2J2; cat CYP2J2; and pig CYP2J33, CYP2J35, CYP2J91, and CYP2J93, were newly identified and characterized, along with pig CYP2J34 previously identified. The cDNAs of these CYP2Js contain open reading frames of 502 amino acids, except for CYP2J35 (498 amino acids), and share high sequence identity (77%-80%) with human CYP2J2. Phylogenetic analysis revealed that dog and cat CYP2J2 were closely related, whereas pig CYP2Js formed a cluster. All seven CYP2J genes contain nine coding exons and are located in corresponding genomic regions, with the pig CYP2J genes forming a gene cluster. These CYP2J2 mRNAs were predominantly expressed in the small intestine with additional expression in the kidney and brain for dog CYP2J2 and pig CYP2J91 mRNAs, respectively. All seven CYP2Js metabolized human CYP2J2 substrates terfenadine, ebastine, and astemizole, indicating that they are functional enzymes. Dog CYP2J2 and pig CYP2J34 and CYP2J35 efficiently catalyzed ebastine primary hydroxylation and secondary carebastine formation at low substrate concentrations, just as human CYP2J2 does. Velocity-versus-substate plots exhibited sigmoidal relationships for dog CYP2J2, cat CYP2J2, and pig CYP2J33, indicating allosteric interactions. These results suggest that dog, cat, and pig CYP2Js have similar functional characteristics to human CYP2J2, with slight differences in ebastine and astemizole oxidations. SIGNIFICANCE STATEMENT: Dog CYP2J2; cat CYP2J2; and pig CYP2J33, CYP2J34, CYP2J35, CYP2J91, and CYP2J93, homologous to human CYP2J2, were identified and characterized by sequence, phylogenetic, and genomic structure analyses. Intestinal expression patterns of CYP2J mRNAs were characteristic in dogs, cats, and pigs. Dog, cat, and pig CYP2Js likely play roles as drug-metabolizing enzymes in the small intestine, similar to human CYP2J2.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.Ij., O.Y., M.S., A.A.); Showa Pharmaceutical University, Machida, Japan (N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Towadashi, Japan (H.K.); School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan (H.T.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (H.M., S.M.M.N., Y.I., M.Is.); and Graduate School of Agriculture, Ehime University, Matsuyama, Japan (H.M.)
| | - Norie Murayama
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.Ij., O.Y., M.S., A.A.); Showa Pharmaceutical University, Machida, Japan (N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Towadashi, Japan (H.K.); School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan (H.T.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (H.M., S.M.M.N., Y.I., M.Is.); and Graduate School of Agriculture, Ehime University, Matsuyama, Japan (H.M.)
| | - Moe Ijiri
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.Ij., O.Y., M.S., A.A.); Showa Pharmaceutical University, Machida, Japan (N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Towadashi, Japan (H.K.); School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan (H.T.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (H.M., S.M.M.N., Y.I., M.Is.); and Graduate School of Agriculture, Ehime University, Matsuyama, Japan (H.M.)
| | - Hiroaki Kawaguchi
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.Ij., O.Y., M.S., A.A.); Showa Pharmaceutical University, Machida, Japan (N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Towadashi, Japan (H.K.); School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan (H.T.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (H.M., S.M.M.N., Y.I., M.Is.); and Graduate School of Agriculture, Ehime University, Matsuyama, Japan (H.M.)
| | - Osamu Yamato
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.Ij., O.Y., M.S., A.A.); Showa Pharmaceutical University, Machida, Japan (N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Towadashi, Japan (H.K.); School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan (H.T.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (H.M., S.M.M.N., Y.I., M.Is.); and Graduate School of Agriculture, Ehime University, Matsuyama, Japan (H.M.)
| | - Mitsuya Shiraishi
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.Ij., O.Y., M.S., A.A.); Showa Pharmaceutical University, Machida, Japan (N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Towadashi, Japan (H.K.); School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan (H.T.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (H.M., S.M.M.N., Y.I., M.Is.); and Graduate School of Agriculture, Ehime University, Matsuyama, Japan (H.M.)
| | - Atsushi Asano
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.Ij., O.Y., M.S., A.A.); Showa Pharmaceutical University, Machida, Japan (N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Towadashi, Japan (H.K.); School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan (H.T.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (H.M., S.M.M.N., Y.I., M.Is.); and Graduate School of Agriculture, Ehime University, Matsuyama, Japan (H.M.)
| | - Hiroki Teraoka
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.Ij., O.Y., M.S., A.A.); Showa Pharmaceutical University, Machida, Japan (N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Towadashi, Japan (H.K.); School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan (H.T.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (H.M., S.M.M.N., Y.I., M.Is.); and Graduate School of Agriculture, Ehime University, Matsuyama, Japan (H.M.)
| | - Hazuki Mizukawa
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.Ij., O.Y., M.S., A.A.); Showa Pharmaceutical University, Machida, Japan (N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Towadashi, Japan (H.K.); School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan (H.T.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (H.M., S.M.M.N., Y.I., M.Is.); and Graduate School of Agriculture, Ehime University, Matsuyama, Japan (H.M.)
| | - Shouta M M Nakayama
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.Ij., O.Y., M.S., A.A.); Showa Pharmaceutical University, Machida, Japan (N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Towadashi, Japan (H.K.); School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan (H.T.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (H.M., S.M.M.N., Y.I., M.Is.); and Graduate School of Agriculture, Ehime University, Matsuyama, Japan (H.M.)
| | - Yoshinori Ikenaka
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.Ij., O.Y., M.S., A.A.); Showa Pharmaceutical University, Machida, Japan (N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Towadashi, Japan (H.K.); School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan (H.T.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (H.M., S.M.M.N., Y.I., M.Is.); and Graduate School of Agriculture, Ehime University, Matsuyama, Japan (H.M.)
| | - Mayumi Ishizuka
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.Ij., O.Y., M.S., A.A.); Showa Pharmaceutical University, Machida, Japan (N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Towadashi, Japan (H.K.); School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan (H.T.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (H.M., S.M.M.N., Y.I., M.Is.); and Graduate School of Agriculture, Ehime University, Matsuyama, Japan (H.M.)
| | - Hiroshi Yamazaki
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.Ij., O.Y., M.S., A.A.); Showa Pharmaceutical University, Machida, Japan (N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Towadashi, Japan (H.K.); School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan (H.T.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (H.M., S.M.M.N., Y.I., M.Is.); and Graduate School of Agriculture, Ehime University, Matsuyama, Japan (H.M.)
| |
Collapse
|
13
|
Liu L, Liu Y, Zhou X, Xu Z, Zhang Y, Ji L, Hong C, Li C. Analyzing the metabolic fate of oral administration drugs: A review and state-of-the-art roadmap. Front Pharmacol 2022; 13:962718. [PMID: 36278150 PMCID: PMC9585159 DOI: 10.3389/fphar.2022.962718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The key orally delivered drug metabolism processes are reviewed to aid the assessment of the current in vivo/vitro experimental systems applicability for evaluating drug metabolism and the interaction potential. Orally administration is the most commonly used state-of-the-art road for drug delivery due to its ease of administration, high patient compliance and cost-effectiveness. Roles of gut metabolic enzymes and microbiota in drug metabolism and absorption suggest that the gut is an important site for drug metabolism, while the liver has long been recognized as the principal organ responsible for drugs or other substances metabolism. In this contribution, we explore various experimental models from their development to the application for studying oral drugs metabolism of and summarized advantages and disadvantages. Undoubtedly, understanding the possible metabolic mechanism of drugs in vivo and evaluating the procedure with relevant models is of great significance for screening potential clinical drugs. With the increasing popularity and prevalence of orally delivered drugs, sophisticated experimental models with higher predictive capacity for the metabolism of oral drugs used in current preclinical studies will be needed. Collectively, the review seeks to provide a comprehensive roadmap for researchers in related fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
14
|
Wang Z, Yong Chan EC. Inhibition of Cytochrome P450 2J2-Mediated Metabolism of Rivaroxaban and Arachidonic Acid by Ibrutinib and Osimertinib. Drug Metab Dispos 2022; 50:1332-1341. [PMID: 35817438 DOI: 10.1124/dmd.122.000928] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Covalent tyrosine kinase inhibitors (TKIs) ibrutinib and osimertinib are associated with cardiac arrhythmia. The interactions between these TKIs with CYP2J2 that is highly expressed in the human heart are unknown. In vitro metabolism experiments were performed to characterize CYP2J2-mediated metabolism of ibrutinib and osimertinib. Unbound distribution coefficient (Kpuu) for both TKIs was determined in AC16 cardiomyocytes. In vitro reversible and time-dependent CYP2J2 inhibition experiments were conducted with exogenous and endogenous substrates, namely rivaroxaban and arachidonic acid (AA), respectively, where kinetic parameters were estimated via one-site and multisite kinetic modeling. Ibrutinib was efficiently metabolized by CYP2J2 to a hydroxylated metabolite, M35, following substrate inhibition kinetics. Osimertinib is not a substrate of CYP2J2. Both TKIs depicted Kpuu values above 1 and equipotently inhibited CYP2J2-mediated hydroxylation of rivaroxaban in a concentration-dependent manner without time-dependency. The mode of reversible inhibition of CYP2J2-mediated metabolism of rivaroxaban and AA by osimertinib was described by Michaelis-Menten kinetics, whereas a two-site kinetic model recapitulated the atypical inhibitory kinetics of ibrutinib, assuming multiple substrate-binding domains within the CYP2J2 active site. The inhibition of ibrutinib and osimertinib on cardiac AA metabolism could be clinically significant considering the preferable distribution of both TKIs to cardiomyocytes with R cut-off values of 1.160 and 1.026, respectively. The dysregulation of CYP2J2-mediated metabolism of AA to cardioprotective epoxyeicosatrienoic acids by ibrutinib and osimertinib serves as a novel mechanism for TKI-induced cardiac arrhythmia. Mechanistic characterization of CYP2J2-mediated typical and atypical enzyme kinetics further illuminates the unique catalytic properties of CYP2J2. SIGNIFICANCE STATEMENT: We reported for the first time that ibrutinib is efficiently metabolized by CYP2J2. By using rivaroxaban and arachidonic acid (AA) as substrates, we characterized the typical and atypical inhibition kinetics of CYP2J2 by ibrutinib and osimertinib. The inhibition of both drugs on cardiac AA metabolism could be clinically significant considering their preferable distribution to cardiomyocytes. Our findings serve as a novel mechanism for drug-induced cardiac arrhythmia and shed insights into the multisite interactions between CYP2J2 and ligands.
Collapse
Affiliation(s)
- Ziteng Wang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
15
|
Abstract
INTRODUCTION Cytochrome P450s (CYPs) are a superfamily of monooxygenases with diverse biological roles. CYP2J2 is an isozyme highly expressed in the heart where it metabolizes endogenous substrates such as N-3/N-6 polyunsaturated fatty acids (PUFA) to produce lipid mediators involved in homeostasis and cardioprotective responses. Expanding our knowledge of the role CYP2J2 has within the heart is important for understanding its impact on cardiac health and disease. AREAS COVERED The objective of this review was to assess the state of knowledge regarding cardiac CYP2J2. A literature search was conducted using PubMed-MEDLINE (from 2022 and earlier) to evaluate relevant studies regarding CYP2J2 mediated cardioprotection, small molecule modulators, effects of CYP2J2 substrates toward biologically relevant effects and implications of CYP2J2 polymorphisms and sexual dimorphism in the heart. EXPERT OPINION Cardiac CYP2J2-mediated metabolism of endogenous and exogenous substrates have been shown to impact cardiac function. Identifying individual factors, like sex and age, that affect CYP2J2 require further elucidation to better understand CYP2J2's clinical relevance. Resolving the biological targets and activities of CYP2J2-derived PUFA metabolites will be necessary to safely target CYP2J2 and design novel analogues. Targeting CYP2J2 for therapeutic aims offers a potential novel approach to regulating cardiac homeostasis, drug metabolism and cardioprotection.
Collapse
|
16
|
Tang LWT, Wu G, Chan ECY. Identification of Infigratinib as a Potent Reversible Inhibitor and Mechanism-Based Inactivator of CYP2J2: Nascent Evidence for a Potential In Vivo Metabolic Drug-Drug Interaction with Rivaroxaban. J Pharmacol Exp Ther 2022; 382:123-134. [PMID: 35640957 PMCID: PMC9639665 DOI: 10.1124/jpet.122.001222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
Infigratinib (INF) is a fibroblast growth factor receptor inhibitor that was recently United States Food and Drug Administration-approved for the treatment of advanced or metastatic cholangiocarcinoma. We previously established that INF inhibited and inactivated cytochrome P450 3A4 (CYP3A4). Here, in a follow up to our previous study, we identified for the first time that INF also elicited potent competitive inhibition and mechanism-based inactivation of CYP2J2 with kinetic parameters K i, K I, k inact, and a partition ratio of 1.94 µM, 0.10 µM, 0.026 minute-1, and ∼3, respectively, when rivaroxaban was harnessed as the probe substrate. Inactivation was revealed to exhibit cofactor-dependency and was attenuated by an alternative substrate (astemizole) and direct inhibitor (nilotinib) of CYP2J2. Additionally, the nature of inactivation was unlikely to be pseudo-irreversible and instead arose from covalent modification due to the lack of substantial enzyme activity recovery after dialysis and chemical oxidation, as well as the lack of a resolvable Soret band in spectral scans. Glutathione trapping confirmed that the identity of the putative reactive intermediate implicated in the covalent inactivation of both CYP2J2 and CYP3A4 was identical and likely attributable to an electrophilic p-benzoquinonediimine intermediate of INF. Finally, mechanistic static modeling revealed that by integrating the previously arcane inhibition and inactivation kinetic parameters of CYP2J2-mediated rivaroxaban hydroxylation by INF illuminated in this work, together with those previously documented for CYP3A4, a 49% increase in the systemic exposure of rivaroxaban was projected. Our modeling results predicted a potential risk of metabolic drug-drug interactions between the clinically relevant combination of rivaroxaban and INF in the setting of cancer. SIGNIFICANCE STATEMENT: This study reported that INF elicits potent reversible inhibition and mechanism-based inactivation of CYP2J2. Furthermore, static modelling predicted that its coadministration with the direct oral anticoagulant rivaroxaban may potentially culminate in a metabolic drug-drug interaction (DDI) leading to an increased risk of major bleeding. As rivaroxaban is steadily gaining prominence as the anticoagulant of choice in the treatment of cancer-associated venous thromboembolism, the DDI projections reported here are clinically relevant and warrant further investigation via physiologically based pharmacokinetic modelling and simulation.
Collapse
Affiliation(s)
- Lloyd Wei Tat Tang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Guoyi Wu
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
17
|
Tian X, Liu T, Zhu M, Peng J, Cui J, Feng L, Huo X, Yuan J, Ma X. Endoplasmic Reticulum-Targeting Near-Infrared Fluorescent Probe for CYP2J2 Activity and Its Imaging Application in Endoplasmic Reticulum Stress and Tumor. Anal Chem 2022; 94:9572-9577. [PMID: 35770896 DOI: 10.1021/acs.analchem.2c00425] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CYP2J2 as an endoplasmic reticulum (ER)-expressed vital cytochrome P450 isoform participates in the metabolism of endogenous polyunsaturated fatty acids. Its abnormal expression and function are closely related to the progress of cancer and cardiovascular diseases. Herein, an ER-targeting near-infrared (NIR) fluorescent probe ER-BnXPI was developed for monitoring CYP2J2 activity, which possessed a high selectivity and sensitivity toward CYP2J2 among various CYP450 isoforms and exhibited excellent subcellular localization for ER. Then, the CYP2J2 variation behavior under the ER stress model was imaged by ER-BnXPI in living cells and successfully used for the in vivo imaging in different tumors that well distinguished tumor tissues from para-cancerous tissues. All these findings fully demonstrated that ER-BnXPI could be used as a promising tool for exploring the physiological function of CYP2J2 and provided some novel approach for the diagnosis and therapy of CYP2J2-related vascular inflammation and cancer.
Collapse
Affiliation(s)
- Xiangge Tian
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen 518036, China.,Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.,Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Mingyue Zhu
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Jiao Peng
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiaokui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Jinsong Yuan
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xiaochi Ma
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen 518036, China.,Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| |
Collapse
|
18
|
Li L, Liu R, Peng C, Chen X, Li J. Pharmacogenomics for the efficacy and side effects of antihistamines. Exp Dermatol 2022; 31:993-1004. [PMID: 35538735 DOI: 10.1111/exd.14602] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 11/27/2022]
Abstract
Antihistamines, especially H1 antihistamines, are widely used in the treatment of allergic diseases such as urticaria and allergic rhinitis, mainly for reversing elevated histamine and anti-allergic effects. Antihistamines are generally safe, but some patients experience adverse reactions, such as cardiotoxicity, central inhibition, and anticholinergic effects. There are also individual differences in antihistamine efficacy in clinical practice. The concept of individualized medicine has been deeply rooted in people's minds since it was put forward. Pharmacogenomics is the study of the role of inheritance in individual variations in drug response. In recent decades, pharmacogenomics has been developing rapidly, which provides new ideas for individualized medicine. Polymorphisms in the genes encoding metabolic enzymes, transporters, and target receptors have been shown to affect the efficacy of antihistamines. In addition, recent evidence suggests that gene polymorphisms influence urticaria susceptibility and antihistamine therapy. Here, we summarize current reports in this area, aiming to contribute to future research in antihistamines and clinical guidance for antihistamines use in individualized medicine.
Collapse
Affiliation(s)
- Liqiao Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Runqiu Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
19
|
Obach RS. Linezolid Metabolism Is Catalyzed by Cytochrome P450 2J2, 4F2, and 1B1. Drug Metab Dispos 2022; 50:413-421. [PMID: 35042700 DOI: 10.1124/dmd.121.000776] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/05/2022] [Indexed: 02/13/2025] Open
Abstract
The oxazolidinone antibacterial linezolid has been in clinical use for over 20 years, yet knowledge of the contributions of specific cytochrome (CYP) 450 enzymes to the metabolic clearance of this drug were mostly unknown. In this investigation, it was revealed that three P450 enzymes that had not been previously explored in linezolid metabolism, CYP2J2, CYP4F2, and CYP1B1, catalyzed the 2-hydroxylation and de-ethyleneation of the morpholine moiety of linezolid. The intrinsic clearance for linezolid metabolism in pooled human liver microsomes was low at 0.51 μL/min/mg protein, consistent with its in vivo clearance in humans, and the KM was high (>200 μM). In recombinant human P450 enzymes, a rank order of intrinsic clearance values for linezolid 2-hydroxylation were CYP2J2 ≫ CYP4F2 > CYP2C8 > CYP1B1 ≈ CYP2D6 ≈ CYP3A4 > CYP1A1 > CYP3A5, with nine other P450 enzymes showing no linezolid metabolism. The effect of selective inhibitors for these eight P450 enzymes on linezolid metabolism in pooled human liver microsomes was evaluated to provide estimates of the relative fractional contributions of these enzymes to linezolid metabolism. These experiments suggest that CYP2J2 and CYP4F2 contribute about 50% each to linezolid hepatic metabolism. It is proposed that the oxidative metabolic clearance of linezolid is primarily catalyzed by these two unusual P450 enzymes and that this explains the lack of observation of meaningful effects of common perpetrators of drug interactions on linezolid pharmacokinetics. SIGNIFICANCE STATEMENT: Linezolid is an important antibacterial drug, but the enzymes involved in its oxidative metabolism were unknown. In this study, evidence is shown that supports an important role for two enzymes not frequently associated with the metabolism of drugs: cytochrome P450 2J2 and cytochrome P450 4F2. These observations offer insight to understand the results of clinical drug-drug interaction studies conducted on linezolid.
Collapse
|
20
|
Site-directed deuteration of dronedarone preserves cytochrome P4502J2 activity and mitigates its cardiac adverse effects in canine arrhythmic hearts. Acta Pharm Sin B 2022; 12:3905-3923. [PMID: 36213535 PMCID: PMC9532722 DOI: 10.1016/j.apsb.2022.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 01/08/2023] Open
Abstract
Cytochrome P4502J2 (CYP2J2) metabolizes arachidonic acid (AA) to cardioprotective epoxyeicosatrienoic acids (EETs). Dronedarone, an antiarrhythmic drug prescribed for treatment of atrial fibrillation (AF) induces cardiac adverse effects (AEs) with poorly understood mechanisms. We previously demonstrated that dronedarone inactivates CYP2J2 potently and irreversibly, disrupts AA-EET pathway leading to cardiac mitochondrial toxicity rescuable via EET enrichment. In this study, we investigated if mitigation of CYP2J2 inhibition prevents dronedarone-induced cardiac AEs. We first synthesized a deuterated analogue of dronedarone (termed poyendarone) and demonstrated that it neither inactivates CYP2J2, disrupts AA-EETs metabolism nor causes cardiac mitochondrial toxicity in vitro. Our patch-clamp experiments demonstrated that pharmacoelectrophysiology of dronedarone is unaffected by deuteration. Next, we show that dronedarone treatment or CYP2J2 knockdown in spontaneously beating cardiomyocytes indicative of depleted CYP2J2 activity exacerbates beat-to-beat (BTB) variability reflective of proarrhythmic phenotype. In contrast, poyendarone treatment yields significantly lower BTB variability compared to dronedarone in cardiomyocytes indicative of preserved CYP2J2 activity. Importantly, poyendarone and dronedarone display similar antiarrhythmic properties in the canine model of persistent AF, while poyendarone substantially reduces beat-to-beat variability of repolarization duration suggestive of diminished proarrhythmic risk. Our findings prove that deuteration of dronedarone prevents CYP2J2 inactivation and mitigates dronedarone-induced cardiac AEs.
Collapse
|
21
|
Tian X, Zhou M, Ning J, Deng X, Feng L, Huang H, Yao D, Ma X. The development of novel cytochrome P450 2J2 (CYP2J2) inhibitor and the underlying interaction between inhibitor and CYP2J2. J Enzyme Inhib Med Chem 2021; 36:737-748. [PMID: 33682565 PMCID: PMC7946002 DOI: 10.1080/14756366.2021.1896500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Human Cytochrome P450 2J2 (CYP2J2) as an important metabolic enzyme, plays a crucial role in metabolism of polyunsaturated fatty acids (PUFAs). Elevated levels of CYP2J2 have been associated with various types of cancer, and therefore it serves as a potential drug target. Herein, using a high-throughput screening approach based on enzymic activity of CYP2J2, we rapidly and effectively identified a novel natural inhibitor (Piperine, 9a) with IC50 value of 0.44 μM from 108 common herbal medicines. Next, a series of its derivatives were designed and synthesised based on the underlying interactions of Piperine with CYP2J2. As expected, the much stronger inhibitors 9k and 9l were developed and their inhibition activities increased about 10 folds than Piperine with the IC50 values of 40 and 50 nM, respectively. Additionally, the inhibition kinetics illustrated the competitive inhibition types of 9k and 9l towards CYP2J2, and Ki were calculated to be 0.11 and 0.074 μM, respectively. Furthermore, the detailed interaction mechanism towards CYP2J2 was explicated by docking and molecular dynamics, and our results revealed the residue Thr114 and Thr 315 of CYP2J2 were the critical sites of action, moreover the spatial distance between the carbon atom of ligand methylene and Fe atom of iron porphyrin coenzyme was the vital interaction factor towards human CYP2J2.
Collapse
Affiliation(s)
- Xiangge Tian
- Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Meirong Zhou
- Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jing Ning
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, Dalian Medical University, Dalian, China
| | - Xiaopeng Deng
- Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lei Feng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, Dalian Medical University, Dalian, China
| | - Huilian Huang
- Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, China
| | - Xiaochi Ma
- Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
22
|
Kahma H, Aurinsalo L, Neuvonen M, Katajamäki J, Paludetto MN, Viinamäki J, Launiainen T, Filppula AM, Tornio A, Niemi M, Backman JT. An automated cocktail method for in vitro assessment of direct and time-dependent inhibition of nine major cytochrome P450 enzymes - application to establishing CYP2C8 inhibitor selectivity. Eur J Pharm Sci 2021; 162:105810. [PMID: 33753217 DOI: 10.1016/j.ejps.2021.105810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
We developed an in vitro high-throughput cocktail assay with nine major drug-metabolizing CYP enzymes, optimized for screening of time-dependent inhibition. The method was applied to determine the selectivity of the time-dependent CYP2C8 inhibitors gemfibrozil 1-O-β-glucuronide and clopidogrel acyl-β-D-glucuronide. In vitro incubations with CYP selective probe substrates and pooled human liver microsomes were conducted in 96-well plates with automated liquid handler techniques and metabolite concentrations were measured with quantitative UHPLC-MS/MS analysis. After determination of inter-substrate interactions and Km values for each reaction, probe substrates were divided into cocktails I (tacrine/CYP1A2, bupropion/CYP2B6, amodiaquine/CYP2C8, tolbutamide/CYP2C9 and midazolam/CYP3A4/5) and II (coumarin/CYP2A6, S-mephenytoin/CYP2C19, dextromethorphan/CYP2D6 and astemizole/CYP2J2). Time-dependent inhibitors (furafylline/CYP1A2, selegiline/CYP2A6, clopidogrel/CYP2B6, gemfibrozil 1-O-β-glucuronide/CYP2C8, tienilic acid/CYP2C9, ticlopidine/CYP2C19, paroxetine/CYP2D6 and ritonavir/CYP3A) and direct inhibitor (terfenadine/CYP2J2) showed similar inhibition with single substrate and cocktail methods. Established time-dependent inhibitors caused IC50 fold shifts ranging from 2.2 to 30 with the cocktail method. Under time-dependent inhibition conditions, gemfibrozil 1-O-β-glucuronide was a strong (>90% inhibition) and selective (<< 20% inhibition of other CYPs) inhibitor of CYP2C8 at concentrations ranging from 60 to 300 μM, while the selectivity of clopidogrel acyl-β-D-glucuronide was limited at concentrations above its IC80 for CYP2C8. The time-dependent IC50 values of these glucuronides for CYP2C8 were 8.1 and 38 µM, respectively. In conclusion, a reliable cocktail method including the nine most important drug-metabolizing CYP enzymes was developed, optimized and validated for detecting time-dependent inhibition. Moreover, gemfibrozil 1-O-β-glucuronide was established as a selective inhibitor of CYP2C8 for use as a diagnostic inhibitor in in vitro studies.
Collapse
Affiliation(s)
- Helinä Kahma
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Laura Aurinsalo
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jani Katajamäki
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marie-Noëlle Paludetto
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jenni Viinamäki
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | - Terhi Launiainen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | - Anne M Filppula
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aleksi Tornio
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
23
|
Feng L, Ning J, Tian X, Wang C, Yu Z, Huo X, Xie T, Zhang B, James TD, Ma X. Fluorescent probes for the detection and imaging of Cytochrome P450. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Leow JWH, Verma RK, Lim ABH, Fan H, Chan ECY. Atypical kinetics of cytochrome P450 2J2: Epoxidation of arachidonic acid and reversible inhibition by xenobiotic inhibitors. Eur J Pharm Sci 2021; 164:105889. [PMID: 34044117 DOI: 10.1016/j.ejps.2021.105889] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023]
Abstract
Extrahepatic CYP2J2 metabolism of arachidonic acid (AA) to bioactive regioisomeric epoxyeicosatrienoic acids (EETs) is implicated in both physiological and pathological conditions. Here, we aimed to characterize atypical substrate inhibition kinetics of this endogenous metabolic pathway and its reversible inhibition by xenobiotic inhibitors when AA is used as the physiologically-relevant substrate vis-à-vis conventional probe substrate astemizole (AST). As compared to typical Michaelis-Menten kinetics observed for AST, complete substrate inhibition was observed for CYP2J2 metabolism of AA to 14,15-EET whereby velocity of the reaction declined significantly at concentrations of AA above 20-30 µM with an estimated substrate inhibition constant (Ks) of 31 µM. In silico sequential docking of two AA substrates to orthosteric (OBS) and adjacent secondary binding sites (SBS) within a 3-dimensional homology model of CYP2J2 revealed favorable and comparable binding poses of glide-scores -3.1 and -3.8 respectively. Molecular dynamics (MD) simulations ascertained CYP2J2 conformational stability with dual AA substrate binding as time-dependent root mean squared deviation (RMSD) of protein Cα atoms and ligand heavy atoms stabilized to a plateau in all but one trajectory (n=6). The distance between heme-iron and ω6 (C14, C15) double bond of AA in OBS also increased from 7.5 ± 1.4 Å to 8.5 ± 1.8 Å when CYP2J2 was simulated with only AA in OBS versus the presence of AA in both OBS and SBS (p<0.001), supporting the observed in vitro substrate inhibition phenomenon. Poor correlation was observed between inhibitory constants (Ki) determined for a panel of nine competitive and mixed mode xenobiotic inhibitors against CYP2J2 metabolism of AA as compared to AST, whereby 4 out of 9 drugs had a greater than 5-fold difference between Ki values. Nonlinear Eadie-Hofstee plots illustrated that complete substrate inhibition of CYP2J2 by AA was not attenuated even at high concentrations of xenobiotic inhibitors which further corroborates that CYP2J2 may accommodate three or more ligands simultaneously. In light of the atypical kinetics, our results highlight the importance of using physiologically-relevant substrates in in vitro enzymatic inhibition assays for the characterization of xenobiotic-endobiotic interactions which is applicable to other complex endogenous metabolic pathways beyond CYP2J2 metabolism of AA to EETs. The accurate determination of Ki would further facilitate the association of xenobiotic-endobiotic interactions to observed therapeutic or toxic outcomes.
Collapse
Affiliation(s)
- Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543
| | - Ravi Kumar Verma
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Amos Boon Hao Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543.
| |
Collapse
|
25
|
Zhao M, Mi J, Wang B, Xiao Q, Tian Y, Hu J, Li Y. Insights into the metabolic characteristics of aminopropanediol analogues of SYLs as S1P 1 modulators: from structure to metabolism. Eur J Pharm Sci 2021; 158:105608. [PMID: 33122008 DOI: 10.1016/j.ejps.2020.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/02/2020] [Accepted: 10/17/2020] [Indexed: 11/30/2022]
Abstract
SYL927 and SYL930, two aminopropanediol analogues, are novel Sphingosine-1-phosphate receptor 1 (S1P1) modulators with higher selectivity and pharmacological activity compared with FTY720. Although the immunosuppressive activity of SYLs has been well demonstrated, information regarding the metabolic fates of the two chemicals is limited except for the CYP-catalyzed hydroxylation of SYL930. In this study, the biotransformation schemes of the two promising chemicals were investigated and compared using liver microsomes, S9 fractions and recombinant enzymes, and relevant molecular mechanism was primarily demonstrated by ligand-enzyme docking analysis (CDOCKER). As a result, the hydroxylation at alkyl chain on oxazole ring by the action of CYPs was found for both SYLs in vivo. The SULT-catalyzed sulfonation of the hydroxide was observed for SYL927 while the ADH/ALDH-catalyzed oxidation was only discovered for SYL930. The docking analysis suggested that specific non-covalent forces and/or bonding conformations of the hydroxides with biomacromolecules might be involved in the disparate metabolism of SYLs. Exploring the metabolic characteristics will help clarify the substance base for efficacy and safety of the two drugs. The uncovered structure-metabolism relationship in this study may provide an implication for the design and optimization for other S1P modulators.
Collapse
Affiliation(s)
- Manman Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing 100176, China
| | - Jiaqi Mi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Baolian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qiong Xiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yulin Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Yan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
26
|
Pidkovka N, Rachkevych O, Belkhiri A. Extrahepatic cytochrome P450 epoxygenases: pathophysiology and clinical significance in human gastrointestinal cancers. Oncotarget 2021; 12:379-391. [PMID: 33659048 PMCID: PMC7899545 DOI: 10.18632/oncotarget.27893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/01/2021] [Indexed: 12/29/2022] Open
Abstract
Cytochrome P450 (CYP) epoxygenases, a multi-gene superfamily of heme-containing enzymes, are commonly known to metabolize endogenous arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs). The role of CYPs is mostly studied in liver drugs metabolism, cardiac pathophysiology, and hypertension fields. Particularly, the biological functions of these enzymes have increasingly attracted a growing interest in cancer biology. Most published studies on CYPs in cancer have been limited to their role as drug metabolizing systems. The activity of these enzymes may affect drug pharmacokinetics and bioavailability as well as exogenous compounds turnover. Some CYP isoforms are selectively highly expressed in tumors, suggesting a potential mechanistic role in promoting resistance to chemotherapy. Majority of drugs elicit their effects in extrahepatic tissues whereby their metabolism can significantly determine treatment outcome. Nonetheless, the role of extrahepatic CYPs is not fully understood and targeting these enzymes as effective anti-cancer therapies are yet to be developed. This review article summarizes an up-to-date body of information from published studies on CYP enzymes expression levels and pathophysiological functions in human normal and malignant gastrointestinal (GI) tract tissues. Specifically, we reviewed and discussed the current research initiatives by emphasizing on the clinical significance and the pathological implication of CYPs in GI malignancies of esophagus, stomach, and colon.
Collapse
Affiliation(s)
| | - Olena Rachkevych
- Department of Obstetrics and Gynecology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
27
|
|
28
|
Khatri R, Kulick N, Rementer RJB, Fallon JK, Sykes C, Schauer AP, Malinen MM, Mosedale M, Watkins PB, Kashuba ADM, Boggess KA, Smith PC, Brouwer KLR, Lee CR. Pregnancy-Related Hormones Increase Nifedipine Metabolism in Human Hepatocytes by Inducing CYP3A4 Expression. J Pharm Sci 2021; 110:412-421. [PMID: 32931777 PMCID: PMC7750305 DOI: 10.1016/j.xphs.2020.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
Abstract
Pregnancy-related hormones (PRH) have emerged as key regulators of hepatic cytochrome P450 (CYP) enzyme expression and function. The impact of PRH on protein levels of CYP3A4 and other key CYP enzymes, and the metabolism of nifedipine (a CYP3A4 substrate commonly prescribed during pregnancy), was evaluated in primary human hepatocytes. Sandwich-cultured human hepatocytes (SCHH) from female donors were exposed to PRH (estradiol, estriol, estetrol, progesterone, and cortisol), individually or in combination as a cocktail. Absolute protein concentrations of twelve CYP isoforms in SCHH membrane fractions were quantified by nanoLC-MS/MS, and metabolism of nifedipine to dehydronifedipine in SCHH was evaluated. PRH significantly increased CYP3A4 protein concentrations and nifedipine metabolism to dehydronifedipine in a concentration-dependent manner. CYP3A4 mRNA levels in hepatocyte-derived exosomes positively correlated with CYP3A4 protein levels and dehydronifedipine formation in SCHH. PRH also increased CYP2B6, CYP2C8 and CYP2A6 levels. Our findings demonstrate that PRH increase nifedipine metabolism in SCHH by inducing CYP3A4 expression and alter expression of other key CYP proteins in an isoform-specific manner, and suggest that hepatocyte-derived exosomes warrant further investigation as biomarkers of hepatic CYP3A4 metabolism. Together, these results offer mechanistic insight into the increases in nifedipine metabolism and clearance observed in pregnant women.
Collapse
Affiliation(s)
- Raju Khatri
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natasha Kulick
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca J B Rementer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig Sykes
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amanda P Schauer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melina M Malinen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Merrie Mosedale
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul B Watkins
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angela D M Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kim A Boggess
- Department of Obstetrics and Gynecology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Philip C Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig R Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
29
|
Molecular determinant of substrate binding and specificity of cytochrome P450 2J2. Sci Rep 2020; 10:22267. [PMID: 33335233 PMCID: PMC7746748 DOI: 10.1038/s41598-020-79284-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Cytochrome P450 2J2 (CYP2J2) is responsible for the epoxidation of endogenous arachidonic acid, and is involved in the metabolism of exogenous drugs. To date, no crystal structure of CYP2J2 is available, and the proposed structural basis for the substrate recognition and specificity in CYP2J2 varies with the structural models developed using different computational protocols. In this study, we developed a new structural model of CYP2J2, and explored its sensitivity to substrate binding by molecular dynamics simulations of the interactions with chemically similar fluorescent probes. Our results showed that the induced-fit binding of these probes led to the preferred active poses ready for the catalysis by CYP2J2. Divergent conformational dynamics of CYP2J2 due to the binding of each probe were observed. However, a stable hydrophobic clamp composed of residues I127, F310, A311, V380, and I487 was identified to restrict any substrate access to the active site of CYP2J2. Molecular docking of a series of compounds including amiodarone, astemizole, danazol, ebastine, ketoconazole, terfenadine, terfenadone, and arachidonic acid to CYP2J2 confirmed the role of those residues in determining substrate binding and specificity of CYP2J2. In addition to the flexibility of CYP2J2, the present work also identified other factors such as electrostatic potential in the vicinity of the active site, and substrate strain energy and property that have implications for the interpretation of CYP2J2 metabolism.
Collapse
|
30
|
Matsumoto K, Hasegawa T, Ohara K, Kamei T, Koyanagi J, Akimoto M. Role of human flavin-containing monooxygenase (FMO) 5 in the metabolism of nabumetone: Baeyer-Villiger oxidation in the activation of the intermediate metabolite, 3-hydroxy nabumetone, to the active metabolite, 6-methoxy-2-naphthylacetic acid in vitro. Xenobiotica 2020; 51:155-166. [PMID: 33146575 DOI: 10.1080/00498254.2020.1843089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nabumetone (NAB) is a non-steroidal anti-inflammatory drug used clinically, and its biotransformation includes the major active metabolite 6-methoxy-2-naphthylacetic acid (6-MNA). One of the key intermediates between NAB and 6-MNA may be 3-hydroxy nabumetone (3-OH-NAB). The aim of the present study was to investigate the role of flavin-containing monooxygenase (FMO) isoform 5 in the formation of 6-MNA from 3-OH-NAB. To elucidate the biotransformation of 3-OH-NAB to 6-MNA, an authentic standard of 3-OH-NAB was synthesised and used as a substrate in an incubation with human liver samples or recombinant enzymes. The formation of 3-OH-NAB was observed after the incubation of NAB with various cytochrome P450 (CYP) isoforms. However, 6-MNA itself was rarely detected from NAB and 3-OH-NAB. Further experiments revealed a 6-MNA peak derived from 3-OH-NAB in human hepatocytes. 6-MNA was also detected in the extract obtained from 3-OH-NAB by a combined incubation of recombinant human FMO5 and human liver S9. We herein demonstrated that the reaction involves carbon-carbon cleavage catalyzed by the Baeyer-Villiger oxidation (BVO) of a carbonyl compound, the BVO substrate, such as a ketol, by FMO5. Further in vitro inhibition experiments showed that multiple non-CYP enzymes are involved in the formation of 6-MNA from 3-OH-NAB.
Collapse
Affiliation(s)
- Kaori Matsumoto
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| | - Tetsuya Hasegawa
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| | - Kosuke Ohara
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| | - Tomoyo Kamei
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| | - Junichi Koyanagi
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| | - Masayuki Akimoto
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| |
Collapse
|
31
|
Das A, Weigle AT, Arnold WR, Kim JS, Carnevale LN, Huff HC. CYP2J2 Molecular Recognition: A New Axis for Therapeutic Design. Pharmacol Ther 2020; 215:107601. [PMID: 32534953 PMCID: PMC7773148 DOI: 10.1016/j.pharmthera.2020.107601] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases are a special subset of heme-containing CYP enzymes capable of performing the epoxidation of polyunsaturated fatty acids (PUFA) and the metabolism of xenobiotics. This dual functionality positions epoxygenases along a metabolic crossroad. Therefore, structure-function studies are critical for understanding their role in bioactive oxy-lipid synthesis, drug-PUFA interactions, and for designing therapeutics that directly target the epoxygenases. To better exploit CYP epoxygenases as therapeutic targets, there is a need for improved understanding of epoxygenase structure-function. Of the characterized epoxygenases, human CYP2J2 stands out as a potential target because of its role in cardiovascular physiology. In this review, the early research on the discovery and activity of epoxygenases is contextualized to more recent advances in CYP epoxygenase enzymology with respect to PUFA and drug metabolism. Additionally, this review employs CYP2J2 epoxygenase as a model system to highlight both the seminal works and recent advances in epoxygenase enzymology. Herein we cover CYP2J2's interactions with PUFAs and xenobiotics, its tissue-specific physiological roles in diseased states, and its structural features that enable epoxygenase function. Additionally, the enumeration of research on CYP2J2 identifies the future needs for the molecular characterization of CYP2J2 to enable a new axis of therapeutic design.
Collapse
Affiliation(s)
- Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, Neuroscience Program, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Austin T Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Lauren N Carnevale
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hannah C Huff
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
32
|
Chen F, Yin X, Wang Y, Lv Y, Sheng S, Ouyang S, Zhong Y. Pharmacokinetics, Tissue Distribution, and Druggability Prediction of the Natural Anticancer Active Compound Cytisine N-Isoflavones Combined with Computer Simulation. Biol Pharm Bull 2020; 43:976-984. [DOI: 10.1248/bpb.b20-00004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Fangmei Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science
| | - Xiaoying Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science
| | - Yanqing Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science
| | - Yixin Lv
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine
| | - Si Sheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science
| | - Sheng Ouyang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine
| | - Youquan Zhong
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine
| |
Collapse
|
33
|
Cui Y, Claus S, Schnell D, Runge F, MacLean C. In-Depth Characterization of EpiIntestinal Microtissue as a Model for Intestinal Drug Absorption and Metabolism in Human. Pharmaceutics 2020; 12:pharmaceutics12050405. [PMID: 32354111 PMCID: PMC7284918 DOI: 10.3390/pharmaceutics12050405] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/31/2022] Open
Abstract
The Caco-2 model is a well-accepted in vitro model for the estimation of fraction absorbed in human intestine. Due to the lack of cytochrome P450 3A4 (CYP3A4) activities, Caco-2 model is not suitable for the investigation of intestinal first-pass metabolism. The purpose of this study is to evaluate a new human intestine model, EpiIntestinal microtissues, as a tool for the prediction of oral absorption and metabolism of drugs in human intestine. The activities of relevant drug transporters and drug metabolizing enzymes, including MDR1 P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), CYP3A4, CYP2J2, UDP-glucuronosyltransferases (UGT), carboxylesterases (CES), etc., were detected in functional assays with selective substrates and inhibitors. Compared to Caco-2, EpiIntestinal microtissues proved to be a more holistic model for the investigation of drug absorption and metabolism in human gastrointestinal tract.
Collapse
Affiliation(s)
- Yunhai Cui
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach, Germany; (D.S.); (F.R.)
- Correspondence: ; Tel.: +49-7351-54-92193
| | - Stephanie Claus
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach, Germany; (S.C.); (C.M.)
| | - David Schnell
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach, Germany; (D.S.); (F.R.)
| | - Frank Runge
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach, Germany; (D.S.); (F.R.)
| | - Caroline MacLean
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach, Germany; (S.C.); (C.M.)
| |
Collapse
|
34
|
Ahmed JH, Makonnen E, Bisaso RK, Mukonzo JK, Fotoohi A, Aseffa A, Howe R, Hassan M, Aklillu E. Population Pharmacokinetic, Pharmacogenetic, and Pharmacodynamic Analysis of Cyclophosphamide in Ethiopian Breast Cancer Patients. Front Pharmacol 2020; 11:406. [PMID: 32390827 PMCID: PMC7191301 DOI: 10.3389/fphar.2020.00406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Cyclophosphamide (CPA) containing chemotherapy regimen is the standard of care for breast cancer treatment in sub-Saharan Africa. Wide inter-individual variations in pharmacokinetics (PK) of cyclophosphamide (CPA) influence the efficacy and toxicity of CPA containing chemotherapy. Data on the pharmacokinetics (PK) profile of CPA and its covariates among black African patients is lacking. We investigated population pharmacokinetic/pharmacogenetic/pharmacodynamic (PK-PG-PD) of CPA in Ethiopian breast cancer patients. During the first cycle of CPA-based chemotherapy, the population PK parameters for CPA were determined in 267 breast cancer patients. Absolute neutrophil count was recorded at baseline and day 20 post-CPA administration. A population PK and covariate model analysis was performed using non-linear mixed effects modeling. Semi-mechanistic and empiric drug response models were explored to describe the relationship between the area under concentration-time curve (AUC), and neutrophil toxicity. One compartment model better described CPA PK with population clearance and apparent volume of distribution (VD) of 5.41 L/h and 46.5 L, respectively. Inter-patient variability in CPA clearance was 54.5%. Patients carrying CYP3A5*3 or *6 alleles had lower elimination rate constant and longer half-life compared to wild type carriers. CYP2C9 *2 or *3 carriers were associated with increased clearance of CPA. Patients who received 500 mg/m2 based CPA regimen were associated with a 32.3% lower than average clearance and 37.1% lower than average VD compared to patients who received 600 mg/m2. A 0.1 m2 unit increase in body surface area (BSA) was associated with a 5.6% increment in VD. The mean VD (33.5 L) in underweight group (BMI < 18.5 kg/m2) was significantly lower compared to those of overweight (48.1 L) or obese patients (51.9 L) (p < 0.001). AUC of CPA was positively correlated with neutropenic toxicity. In conclusion, we report large between-patient variability in clearance of CPA. CYP3A5 and CYP2C9 genotypes, BSA, BMI, and CPA dosage regimen influence PK of CPA. Plasma CPA exposure positively predicts chemotherapy-associated neutropenic toxicity.
Collapse
Affiliation(s)
- Jemal Hussien Ahmed
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia.,Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eyasu Makonnen
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia.,Center for Innovative Drug Development and Therapeutic Trials, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ronald Kuteesa Bisaso
- Department of Pharmacology and Therapeutics, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jackson Kijumba Mukonzo
- Department of Pharmacology and Therapeutics, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Alan Fotoohi
- Division of Clinical Pharmacology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Abraham Aseffa
- Non-Communicable Diseases (NCD) Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Rawleigh Howe
- Non-Communicable Diseases (NCD) Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Moustapha Hassan
- Experimental Cancer Medicine (ECM), Clinical Research Center (KFC), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
35
|
Matsumoto K, Hasegawa T, Ohara K, Takei C, Kamei T, Koyanagi J, Takahashi T, Akimoto M. A metabolic pathway for the prodrug nabumetone to the pharmacologically active metabolite, 6-methoxy-2-naphthylacetic acid (6-MNA) by non-cytochrome P450 enzymes. Xenobiotica 2019; 50:783-792. [DOI: 10.1080/00498254.2019.1704097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kaori Matsumoto
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| | - Tetsuya Hasegawa
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| | - Kosuke Ohara
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| | - Chihiro Takei
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| | - Tomoyo Kamei
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| | - Junichi Koyanagi
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| | - Tamiko Takahashi
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| | - Masayuki Akimoto
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| |
Collapse
|
36
|
A Pilot Study towards the Impact of Type 2 Diabetes on the Expression and Activities of Drug Metabolizing Enzymes and Transporters in Human Duodenum. Int J Mol Sci 2019; 20:ijms20133257. [PMID: 31269743 PMCID: PMC6651059 DOI: 10.3390/ijms20133257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 12/24/2022] Open
Abstract
To characterize effects of type 2 diabetes (T2D) on mRNA expression levels for 10 Cytochromes P450 (CYP450s), two carboxylesterases, and three drug transporters (ABCB1, ABCG2, SLCO2B1) in human duodenal biopsies. To compare drug metabolizing enzyme activities of four CYP450 isoenzymes in duodenal biopsies from patients with or without T2D. mRNA levels were quantified (RT-qPCR) in human duodenal biopsies obtained from patients with (n = 20) or without (n = 16) T2D undergoing a scheduled gastro-intestinal endoscopy. CYP450 activities were determined following incubation of biopsy homogenates with probe substrates for CYP2B6 (bupropion), CYP2C9 (tolbutamide), CYP2J2 (ebastine), and CYP3A4/5 (midazolam). Covariables related to inflammation, T2D, demographic, and genetics were investigated. T2D had no major effects on mRNA levels of all enzymes and transporters assessed. Formation rates of metabolites (pmoles mg protein−1 min−1) determined by LC-MS/MS for CYP2C9 (0.48 ± 0.26 vs. 0.41 ± 0.12), CYP2J2 (2.16 ± 1.70 vs. 1.69 ± 0.93), and CYP3A (5.25 ± 3.72 vs. 5.02 ± 4.76) were not different between biopsies obtained from individuals with or without T2D (p > 0.05). No CYP2B6 specific activity was measured. TNF-α levels were higher in T2D patients but did not correlate with any changes in mRNA expression levels for drug metabolizing enzymes or transporters in the duodenum. T2D did not modulate expression or activity of tested drug metabolizing enzymes and transporters in the human duodenum. Previously reported changes in drug oral clearances in patients with T2D could be due to a tissue-specific disease modulation occurring in the liver and/or in other parts of the intestines.
Collapse
|
37
|
Hausner EA, Elmore SA, Yang X. Overview of the Components of Cardiac Metabolism. Drug Metab Dispos 2019; 47:673-688. [PMID: 30967471 PMCID: PMC7333657 DOI: 10.1124/dmd.119.086611] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Metabolism in organs other than the liver and kidneys may play a significant role in how a specific organ responds to chemicals. The heart has metabolic capability for energy production and homeostasis. This homeostatic machinery can also process xenobiotics. Cardiac metabolism includes the expression of numerous organic anion transporters, organic cation transporters, organic carnitine (zwitterion) transporters, and ATP-binding cassette transporters. Expression and distribution of the transporters within the heart may vary, depending on the patient's age, disease, endocrine status, and various other factors. Several cytochrome P450 (P450) enzyme classes have been identified within the heart. The P450 hydroxylases and epoxygenases within the heart produce hydroxyeicosatetraneoic acids and epoxyeicosatrienoic acids, metabolites of arachidonic acid, which are critical in regulating homeostatic processes of the heart. The susceptibility of the cardiac P450 system to induction and inhibition from exogenous materials is an area of expanding knowledge, as are the metabolic processes of glucuronidation and sulfation in the heart. The susceptibility of various transcription factors and signaling pathways of the heart to disruption by xenobiotics is not fully characterized but is an area with implications for disruption of normal postnatal development, as well as modulation of adult cardiac health. There are knowledge gaps in the timelines of physiologic maturation and deterioration of cardiac metabolism. Cross-species characterization of cardiac-specific metabolism is needed for nonclinical work of optimum translational value to predict possible adverse effects, identify sensitive developmental windows for the design and conduct of informative nonclinical and clinical studies, and explore the possibilities of organ-specific therapeutics.
Collapse
Affiliation(s)
- Elizabeth A Hausner
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| | - Susan A Elmore
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| | - Xi Yang
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| |
Collapse
|
38
|
Pade D, Jamei M, Turner DB, Mistry B, Martinez MN. Danazol oral absorption modelling in the fasted dog: An example of mechanistic understanding of formulation effects on drug pharmacokinetics. Eur J Pharm Biopharm 2019; 141:191-209. [PMID: 31150808 DOI: 10.1016/j.ejpb.2019.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 05/01/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
Oral bioavailability of poorly water soluble (BCS II) drugs like danazol can be minimal without the necessary formulation strategies. Availability of in vitro physicochemical and in vivo pharmacokinetic studies can be valuable when designing these strategies but cannot reveal the drug-formulation-gastrointestinal physiology interplay that impact the successful optimization of intestinal solubilization and resulting oral drug absorption. In silico mechanistic oral drug absorption models can serve as a tool for providing this important perspective and for integrating information generated across various in vivo and in vitro studies. In this work, we detail the development and application of the Simcyp canine ADAM model to nine danazol oral formulations and compare the model predictions to caninein vivo pharmacokinetic data from published literature. The application of this mechanistic approach revealed insights suggesting: (1) complete danazol solubilization in vitro may lead to an over-estimation of oral bioavailability when predictions are not corrected for the in vivo conditions promoting gut luminal precipitation; (2) some solubilizing excipients can influence intestinal physiology in a manner that may reduce danazol absorption; (3) danazol-formulation-luminal bile salts interplay can result in the formation of mixed micelles that negatively impact danazol intestinal permeability; and (4) the magnitude of danazol bioavailability enhancement associated with the use of solubilizing agents can be affected by the presence of saturable gut metabolism that can lead to concentration-dependent differences in its influence in vivo formulation behaviour at high versus low doses.
Collapse
Affiliation(s)
- Devendra Pade
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield S1 2BJ, United Kingdom
| | - Masoud Jamei
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield S1 2BJ, United Kingdom
| | - David B Turner
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield S1 2BJ, United Kingdom
| | - Bipin Mistry
- US FDA Center for Veterinary Medicine, Rockville, MD 20852, United States; Eisai Inc., Woodcliff Lake, NJ 07677, United States(1)
| | - Marilyn N Martinez
- US FDA Center for Veterinary Medicine, Rockville, MD 20852, United States.
| |
Collapse
|
39
|
Apaya MK, Shiau JY, Liao GS, Liang YJ, Chen CW, Yang HC, Chu CH, Yu JC, Shyur LF. Integrated omics-based pathway analyses uncover CYP epoxygenase-associated networks as theranostic targets for metastatic triple negative breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:187. [PMID: 31072371 PMCID: PMC6507159 DOI: 10.1186/s13046-019-1187-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022]
Abstract
Background Current prognostic tools and targeted therapeutic approaches have limited value for metastatic triple negative breast cancer (TNBC). Building upon current knowledge, we hypothesized that epoxyeicosatrienoic acids (EETs) and related CYP450 epoxygenases may have differential roles in breast cancer signaling, and better understanding of which may uncover potential directions for molecular stratification and personalized therapy for TNBC patients. Methods We analyzed the oxylipin metabolome of paired tumors and adjacent normal mammary tissues from patients with pathologically confirmed breast cancer (N = 62). We used multivariate statistical analysis to identify important metabolite contributors and to determine the predictive power of tumor tissue metabolite clustering. In vitro functional assays using a panel of breast cancer cell lines were carried out to further confirm the crucial roles of endogenous and exogenous EETs in the metastasis transformation of TNBC cells. Deregulation of associated downstream signaling networks associated with EETs/CYPs was established using transcriptomics datasets from The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC). Comparative TNBC proteomics using the same tissue specimens subjected to oxylipin metabolomics analysis was used as validation set. Results Metabolite-by-metabolite comparison, tumor immunoreactivity, and gene expression analyses showed that CYP epoxygenases and arachidonic acid-epoxygenation products, EET metabolites, are strongly associated with TNBC metastasis. Notably, all the 4 EET isomers (5,6-, 8,9-, 11,12-, and 14,15-EET) was observed to profoundly drive the metastasis transformation of mesenchymal-like TNBC cells among the TNBC (basal- and mesenchymal-like), HER2-overexpressing and luminal breast cancer cell lines examined. Our pathway analysis revealed that, in hormone-positive breast cancer subtype, CYP epoxygenase overexpression is more related to immune cell-associated signaling, while EET-mediated Myc, Ras, MAPK, EGFR, HIF-1α, and NOD1/2 signaling are the molecular vulnerabilities of metastatic CYP epoxygenase-overexpressing TNBC tumors. Conclusions This study suggests that categorizing breast tumors according to their EET metabolite ratio classifiers and CYP epoxygenase profiles may be useful for prognostic and therapeutic assessment. Modulation of CYP epoxygenase and EET-mediated signaling networks may offer an effective approach for personalized treatment of breast cancer, and may be an effective intervention option for metastatic TNBC patients. Electronic supplementary material The online version of this article (10.1186/s13046-019-1187-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Karmella Apaya
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan and National Chung Hsing University, Taichung, 402, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jeng-Yuan Shiau
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Guo-Shiou Liao
- Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Yu-Jen Liang
- Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan
| | - Chia-Wei Chen
- Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan
| | - Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan
| | - Chi-Hong Chu
- Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Jyh-Cherng Yu
- Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan.
| | - Lie-Fen Shyur
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan and National Chung Hsing University, Taichung, 402, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan. .,Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan. .,PhD Program in Translational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
40
|
Sausville LN, Williams SM, Pozzi A. Cytochrome P450 epoxygenases and cancer: A genetic and a molecular perspective. Pharmacol Ther 2019; 196:183-194. [DOI: 10.1016/j.pharmthera.2018.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Fernández-Torras A, Duran-Frigola M, Aloy P. Encircling the regions of the pharmacogenomic landscape that determine drug response. Genome Med 2019; 11:17. [PMID: 30914058 PMCID: PMC6436215 DOI: 10.1186/s13073-019-0626-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The integration of large-scale drug sensitivity screens and genome-wide experiments is changing the field of pharmacogenomics, revealing molecular determinants of drug response without the need for previous knowledge about drug action. In particular, transcriptional signatures of drug sensitivity may guide drug repositioning, prioritize drug combinations, and point to new therapeutic biomarkers. However, the inherent complexity of transcriptional signatures, with thousands of differentially expressed genes, makes them hard to interpret, thus giving poor mechanistic insights and hampering translation to clinics. METHODS To simplify drug signatures, we have developed a network-based methodology to identify functionally coherent gene modules. Our strategy starts with the calculation of drug-gene correlations and is followed by a pathway-oriented filtering and a network-diffusion analysis across the interactome. RESULTS We apply our approach to 189 drugs tested in 671 cancer cell lines and observe a connection between gene expression levels of the modules and mechanisms of action of the drugs. Further, we characterize multiple aspects of the modules, including their functional categories, tissue-specificity, and prevalence in clinics. Finally, we prove the predictive capability of the modules and demonstrate how they can be used as gene sets in conventional enrichment analyses. CONCLUSIONS Network biology strategies like module detection are able to digest the outcome of large-scale pharmacogenomic initiatives, thereby contributing to their interpretability and improving the characterization of the drugs screened.
Collapse
Affiliation(s)
- Adrià Fernández-Torras
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Miquel Duran-Frigola
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.
| | - Patrick Aloy
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
42
|
Neal-Kluever A, Fisher J, Grylack L, Kakiuchi-Kiyota S, Halpern W. Physiology of the Neonatal Gastrointestinal System Relevant to the Disposition of Orally Administered Medications. Drug Metab Dispos 2019; 47:296-313. [PMID: 30567878 DOI: 10.1124/dmd.118.084418] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/14/2018] [Indexed: 02/13/2025] Open
Abstract
A thorough knowledge of the newborn (age, birth to 1 month postpartum) infant's gastrointestinal tract (GIT) is critical to the evaluation of the absorption, distribution, metabolism, and excretion (ADME) of orally administered drugs in this population. Developmental changes in the GIT during the newborn period are important for nutrient uptake as well as the disposition of orally administered medications. Some aspects of gastrointestinal function do not mature until driven by increased dietary complexity and nutritional demands later in the postnatal period. The functionalities present at birth, and subsequent maturation, can also impact the ADME parameters of orally administered compounds. This review will examine some specific contributors to the ADME processes in human neonates, as well as what is currently understood about the drivers for their maturation. Key species differences will be highlighted, with a focus on laboratory animals used in juvenile toxicity studies. Because of the gaps and inconsistencies in our knowledge, we will also highlight areas where additional study is warranted to better inform the appropriate use of medicines specifically intended for neonates.
Collapse
Affiliation(s)
- April Neal-Kluever
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland (A.N.-K.); US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas (J.F.); Independent Consultant, Vienna, Virginia (L.G.); and Genentech Inc., South San Francisco, California (S.K.-K., W.H.)
| | - Jeffrey Fisher
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland (A.N.-K.); US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas (J.F.); Independent Consultant, Vienna, Virginia (L.G.); and Genentech Inc., South San Francisco, California (S.K.-K., W.H.)
| | - Lawrence Grylack
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland (A.N.-K.); US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas (J.F.); Independent Consultant, Vienna, Virginia (L.G.); and Genentech Inc., South San Francisco, California (S.K.-K., W.H.)
| | - Satoko Kakiuchi-Kiyota
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland (A.N.-K.); US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas (J.F.); Independent Consultant, Vienna, Virginia (L.G.); and Genentech Inc., South San Francisco, California (S.K.-K., W.H.)
| | - Wendy Halpern
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland (A.N.-K.); US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas (J.F.); Independent Consultant, Vienna, Virginia (L.G.); and Genentech Inc., South San Francisco, California (S.K.-K., W.H.)
| |
Collapse
|
43
|
Ning J, Liu T, Dong P, Wang W, Ge G, Wang B, Yu Z, Shi L, Tian X, Huo X, Feng L, Wang C, Sun C, Cui J, James TD, Ma X. Molecular Design Strategy to Construct the Near-Infrared Fluorescent Probe for Selectively Sensing Human Cytochrome P450 2J2. J Am Chem Soc 2019; 141:1126-1134. [PMID: 30525564 DOI: 10.1021/jacs.8b12136] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytochrome P450 2J2 (CYP2J2), a key enzyme responsible for oxidative metabolism of various xenobiotics and endogenous compounds, participates in a diverse array of physiological and pathological processes in humans. Its biological role in tumorigenesis and cancer diagnosis remains poorly understood, owing to the lack of molecular tools suitable for real-time monitoring CYP2J2 in complex biological systems. Using molecular design principles, we were able to modify the distance between the catalytic unit and metabolic recognition moiety, allowing us to develop a CYP2J2 selective fluorescent probe using a near-infrared fluorophore ( E)-2-(2-(6-hydroxy-2, 3-dihydro-1 H-xanthen-4-yl)vinyl)-3,3-dimethyl-1-propyl-3 H-indol-1-ium iodide (HXPI). To improve the reactivity and isoform specificity, a self-immolative linker was introduced to the HXPI derivatives in order to better fit the narrow substrate channel of CYP2J2, the modification effectively shortened the spatial distance between the metabolic moiety ( O-alkyl group) and catalytic center of CYP2J2. After screening a panel of O-alkylated HXPI derivatives, BnXPI displayed the best combination of specificity, sensitivity and applicability for detecting CYP2J2 in vitro and in vivo. Upon O-demethylation by CYP2J2, a self-immolative reaction occurred spontaneously via 1,6-elimination of p-hydroxybenzyl resulting in the release of HXPI. Allowing BnXPI to be successfully used to monitor CYP2J2 activity in real-time for various living systems including cells, tumor tissues, and tumor-bearing animals. In summary, our practical strategy could help the development of a highly specific and broadly applicable tool for monitoring CYP2J2, which offers great promise for exploring the biological functions of CYP2J2 in tumorigenesis.
Collapse
Affiliation(s)
- Jing Ning
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy , Dalian Medical University , Dalian 116044 , China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024 , China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024 , China
| | - Peipei Dong
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy , Dalian Medical University , Dalian 116044 , China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Sino-Pakistan TCM and Ethnomedicine Research 8 Center, School of Pharmacy , Hunan University of Chinese Medicine , Changsha 410208 , China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
| | - Bo Wang
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy , Dalian Medical University , Dalian 116044 , China
| | - Zhenlong Yu
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy , Dalian Medical University , Dalian 116044 , China
| | - Lei Shi
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy , Dalian Medical University , Dalian 116044 , China
| | - Xiangge Tian
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy , Dalian Medical University , Dalian 116044 , China
| | - Xiaokui Huo
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy , Dalian Medical University , Dalian 116044 , China
| | - Lei Feng
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy , Dalian Medical University , Dalian 116044 , China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024 , China
| | - Chao Wang
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy , Dalian Medical University , Dalian 116044 , China
| | - Chengpeng Sun
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy , Dalian Medical University , Dalian 116044 , China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024 , China
| | - Tony D James
- Department of Chemistry , University of Bath , Bath BA2 7AY , United Kingdom
| | - Xiaochi Ma
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy , Dalian Medical University , Dalian 116044 , China
| |
Collapse
|
44
|
Yang S, Hu J, Li Y, Zhao Z. CYP2J2 is the major enzyme in human liver microsomes responsible for hydroxylation of SYL-927, a novel and selective sphingosine 1-phosphate receptor 1 (S1P 1 ) agonist. Biopharm Drug Dispos 2018; 39:431-436. [PMID: 30362120 DOI: 10.1002/bdd.2161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/10/2018] [Accepted: 10/20/2018] [Indexed: 01/20/2023]
Abstract
SYL-927, a novel and selective S1P1 agonist, is transferred to its active phosphate for the regulation of lymphocyte recirculation. This in vitro metabolism study is to elucidate the P450-mediated oxidation pathway of SYL-927 in human liver microsomes (HLMs). The results demonstrated that the ω-1 hydroxylated metabolite SYL-927-M was formed after incubation of SYL-927 with HLMs. Recombinant human CYP1A1 and CYP2J2 can efficiently catalyse SYL-927-M formation, followed by markedly less substrate conversion with CYP1A2, CYP2C19 and CYP2D6. Inhibition studies with chemical inhibitors and antibodies suggested that arachidonic acid, the substrate of CYP2J2, and CYP2J2-specific antibody effectively inhibited the formation of SYL-927-M in HLMs whereas no significant inhibition was observed with the inhibitors for CYP1A1, CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4, demonstrating that CYP2J2 was primarily responsible for the formation of SYL-927-M.
Collapse
Affiliation(s)
- Shu Yang
- Department of Drug Metabolism of Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, China
| | - Jinping Hu
- Department of Drug Metabolism of Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Li
- Department of Drug Metabolism of Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, China
| |
Collapse
|
45
|
Expression of cytochrome P450 epoxygenases and soluble epoxide hydrolase is regulated by hypolipidemic drugs in dose-dependent manner. Toxicol Appl Pharmacol 2018; 355:156-163. [DOI: 10.1016/j.taap.2018.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/30/2023]
|
46
|
Solanki M, Pointon A, Jones B, Herbert K. Cytochrome P450 2J2: Potential Role in Drug Metabolism and Cardiotoxicity. Drug Metab Dispos 2018; 46:1053-1065. [PMID: 29695613 DOI: 10.1124/dmd.117.078964] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/19/2018] [Indexed: 02/13/2025] Open
Abstract
Drug-induced cardiotoxicity may be modulated by endogenous arachidonic acid (AA)-derived metabolites known as epoxyeicosatrienoic acids (EETs) synthesized by cytochrome P450 2J2 (CYP2J2). The biologic effects of EETs, including their protective effects on inflammation and vasodilation, are diverse because, in part, of their ability to act on a variety of cell types. In addition, CYP2J2 metabolizes both exogenous and endogenous substrates and is involved in phase 1 metabolism of a variety of structurally diverse compounds, including some antihistamines, anticancer agents, and immunosuppressants. This review addresses current understanding of the role of CYP2J2 in the metabolism of xenobiotics and endogenous AA, focusing on the effects on the cardiovascular system. In particular, we have promoted here the hypothesis that CYP2J2 influences drug-induced cardiotoxicity through potentially conflicting effects on the production of protective EETs and the metabolism of drugs.
Collapse
Affiliation(s)
- Meetal Solanki
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences, Glenfield Hospital, Leicester (M.S., K.H.), and Safety and ADME Translational Sciences Department, Drug Safety and Metabolism (A.P.), and DMPK, Oncology, IMED Biotech Unit (B.J.), AstraZeneca, Cambridge, United Kingdom
| | - Amy Pointon
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences, Glenfield Hospital, Leicester (M.S., K.H.), and Safety and ADME Translational Sciences Department, Drug Safety and Metabolism (A.P.), and DMPK, Oncology, IMED Biotech Unit (B.J.), AstraZeneca, Cambridge, United Kingdom
| | - Barry Jones
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences, Glenfield Hospital, Leicester (M.S., K.H.), and Safety and ADME Translational Sciences Department, Drug Safety and Metabolism (A.P.), and DMPK, Oncology, IMED Biotech Unit (B.J.), AstraZeneca, Cambridge, United Kingdom
| | - Karl Herbert
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences, Glenfield Hospital, Leicester (M.S., K.H.), and Safety and ADME Translational Sciences Department, Drug Safety and Metabolism (A.P.), and DMPK, Oncology, IMED Biotech Unit (B.J.), AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
47
|
Lafite P, André F, Graves JP, Zeldin DC, Dansette PM, Mansuy D. Role of Arginine 117 in Substrate Recognition by Human Cytochrome P450 2J2. Int J Mol Sci 2018; 19:ijms19072066. [PMID: 30012976 PMCID: PMC6073854 DOI: 10.3390/ijms19072066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 01/10/2023] Open
Abstract
The influence of Arginine 117 of human cytochrome P450 2J2 in the recognition of ebastine and a series of terfenadone derivatives was studied by site-directed mutagenesis. R117K, R117E, and R117L mutants were produced, and the behavior of these mutants in the hydroxylation of ebastine and terfenadone derivatives was compared to that of wild-type CYP2J2. The data clearly showed the importance of the formation of a hydrogen bond between R117 and the keto group of these substrates. The data were interpreted on the basis of 3D homology models of the mutants and of dynamic docking of the substrates in their active site. These modeling studies also suggested the existence of a R117-E222 salt bridge between helices B’ and F that would be important for maintaining the overall folding of CYP2J2.
Collapse
Affiliation(s)
- Pierre Lafite
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Descartes, 75270 Paris CEDEX 06, France.
| | - François André
- Institute for Integrative Biology of the Cell (I2BC), DRF/Joliot/SB2SM, CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette CEDEX, France.
| | - Joan P Graves
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA.
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA.
| | - Patrick M Dansette
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Descartes, 75270 Paris CEDEX 06, France.
| | - Daniel Mansuy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Descartes, 75270 Paris CEDEX 06, France.
| |
Collapse
|
48
|
Aliwarga T, Evangelista EA, Sotoodehnia N, Lemaitre RN, Totah RA. Regulation of CYP2J2 and EET Levels in Cardiac Disease and Diabetes. Int J Mol Sci 2018; 19:E1916. [PMID: 29966295 PMCID: PMC6073148 DOI: 10.3390/ijms19071916] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
Cytochrome P450 2J2 (CYP2J2) is a known arachidonic acid (AA) epoxygenase that mediates the formation of four bioactive regioisomers of cis-epoxyeicosatrienoic acids (EETs). Although its expression in the liver is low, CYP2J2 is mainly observed in extrahepatic tissues, including the small intestine, pancreas, lung, and heart. Changes in CYP2J2 levels or activity by xenobiotics, disease states, or polymorphisms are proposed to lead to various organ dysfunctions. Several studies have investigated the regulation of CYP2J2 and EET formation in various cell lines and have demonstrated that such regulation is tissue-dependent. In addition, studies linking CYP2J2 polymorphisms to the risk of developing cardiovascular disease (CVD) yielded contradictory results. This review will focus on the mechanisms of regulation of CYP2J2 by inducers, inhibitors, and oxidative stress modeling certain disease states in various cell lines and tissues. The implication of CYP2J2 expression, polymorphisms, activity and, as a result, EET levels in the pathophysiology of diabetes and CVD will also be discussed.
Collapse
Affiliation(s)
- Theresa Aliwarga
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98101, USA.
| | - Eric A Evangelista
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98101, USA.
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA 98195, USA.
- Department of Medicine, University of Washington, Seattle, WA 98195, USA.
- Division of Cardiology, University of Washington, Seattle, WA 98195, USA.
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA 98195, USA.
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98101, USA.
| |
Collapse
|
49
|
Alqahtani S, Bukhari I, Albassam A, Alenazi M. An update on the potential role of intestinal first-pass metabolism for the prediction of drug–drug interactions: the role of PBPK modeling. Expert Opin Drug Metab Toxicol 2018; 14:625-634. [DOI: 10.1080/17425255.2018.1482277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Saeed Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Clinical Pharmacokinetics and Pharmacodynamics Unit, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Ishfaq Bukhari
- Department of Pharmacology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Albassam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Maha Alenazi
- Pharmacy Department, Prince Sultan Cardiac Center, Riyadh, Saudi Arabia
| |
Collapse
|
50
|
Lee E, Kim JH, Shon JC, Wu Z, Kim HJ, Gim M, Lee T, Liu KH. Terfenadone is a strong inhibitor of CYP2J2 present in the human liver and intestinal microsomes. Drug Metab Pharmacokinet 2018; 33:159-163. [DOI: 10.1016/j.dmpk.2018.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/07/2017] [Accepted: 02/23/2018] [Indexed: 10/17/2022]
|