1
|
Toth E, Li H, Frost K, Sample P, Jilek J, Greenfield S, You D, Kozlosky D, Goedken M, Paine MF, Aleksunes L, Cherrington N. Nonalcoholic steatohepatitis increases plasma retention of sorafenib-glucuronide in a mouse model by altering hepatocyte hopping. Acta Pharm Sin B 2024; 14:4874-4882. [PMID: 39664440 PMCID: PMC11628858 DOI: 10.1016/j.apsb.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/05/2024] [Accepted: 05/28/2024] [Indexed: 12/13/2024] Open
Abstract
Hepatocyte hopping is the hepatocyte-to-sinusoid-to-hepatocyte shuttling that increases the efficiency of hepatic elimination of xenobiotics. This phenomenon is mediated via efflux of hepatic metabolites by Mrp3 and reuptake by Oatp transporters in sequential hepatocytes until eventual biliary efflux by Mrp2. Sorafenib-glucuronide (SFB-G), the major metabolite of sorafenib (SFB), undergoes hepatocyte hopping, leading to efficient biliary elimination. Nonalcoholic steatohepatitis (NASH) alters the functioning of transporters involved in hepatocyte hopping. The purpose of this study was to quantify the effect of NASH on the three drug disposition processes of hepatocyte hopping. Male FVB and C57BL/6 wild-type (WT), Oatp1a/1b cluster knockout (O-/-), and Mrp2 knockout (Mrp2 -/-) mice were fed a methionine and choline deficient (MCD) diet to induce NASH. Mice were administered 10 mg/kg SFB via oral gavage and concentrations of SFB and SFB-G in plasma quantified using liquid-chromatography tandem mass spectrometry. Compared to WT, plasma area under the concentration-time curve (AUC) of SFB-G increased by 108-fold in the O-/--C group and by 345-fold in the Mrp2 -/--C group. In the WT-NASH group, up-regulation of Mrp3 and decreased Mrp2 function, along with reduced Oatp uptake, elevated SFB-G AUC by 165-fold. SFB-G AUC in the O-/--NASH group increased by 108-fold compared to WT-C (3.2-fold compared to O-/--C). SFB-G AUC in the Mrp2 -/--NASH group increased by 450-fold (1.2-fold compared to Mrp2-/--C). Taken together, the mislocalization of Mrp2 in NASH is a major contributor to the decrease in SFB-G biliary efflux, but decreased Oatp uptake and enhanced sinusoidal efflux also limit the contribution of downstream hepatocytes, resulting in plasma retention that recapitulates the altered pharmacokinetics observed in human NASH.
Collapse
Affiliation(s)
- Erica Toth
- University of Arizona, Tucson, AZ 85721, USA
| | - Hui Li
- University of Arizona, Tucson, AZ 85721, USA
| | - Kayla Frost
- University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | - Dahea You
- Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
2
|
Govaere O, Cockell SJ, Zatorska M, Wonders K, Tiniakos D, Frey AM, Palmowksi P, Walker R, Porter A, Trost M, Anstee QM, Daly AK. Pharmacogene expression during progression of metabolic dysfunction-associated steatotic liver disease: Studies on mRNA and protein levels and their relevance to drug treatment. Biochem Pharmacol 2024; 228:116249. [PMID: 38697308 DOI: 10.1016/j.bcp.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is common worldwide. Genes and proteins contributing to drug disposition may show altered expression as MASLD progresses. To assess this further, we undertook transcriptomic and proteomic analysis of 137 pharmacogenes in liver biopsies from a large MASLD cohort. We performed sequencing on RNA from 216 liver biopsies (206 MASLD and 10 controls). Untargeted mass spectrometry proteomics was performed on a 103 biopsy subgroup. Selected RNA sequencing signals were replicated with an additional 187 biopsies. Comparison of advanced MASLD (fibrosis score 3/4) with milder disease (fibrosis score 0-2) by RNA sequencing showed significant alterations in expression of certain phase I, phase II and ABC transporters. For cytochromes P450, CYP2C19 showed the most significant decreased expression (30 % of that in mild disease) but significant decreased expression of other CYPs (including CYP2C8 and CYP2E1) also occurred. CYP2C19 also showed a significant decrease comparing the inflammatory form of MASLD (MASH) with non-MASH biopsies. Findings for CYP2C19 were confirmed in the replication cohort. Proteomics on the original discovery cohort confirmed decreased levels of several CYPs as MASLD advanced but this decrease was greatest for CYP2C19 where levels fell to 40 % control. This decrease may result in decreased CYP2C19 activity that could be problematic for prescription of drugs activated or metabolized by CYP2C19 as MASLD advances. More limited decreases for other P450s suggest fewer issues with non-CYP2C19 drug substrates. Negative correlations at RNA level between CYP2C19 and several cytokine genes provided initial insights into the mechanism underlying decreased expression.
Collapse
Affiliation(s)
- Olivier Govaere
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Simon J Cockell
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Michalina Zatorska
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Kristy Wonders
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Dina Tiniakos
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Department of Pathology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Andrew M Frey
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Pawel Palmowksi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ruth Walker
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew Porter
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Matthias Trost
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Ann K Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
3
|
Hossam Abdelmonem B, Abdelaal NM, Anwer EKE, Rashwan AA, Hussein MA, Ahmed YF, Khashana R, Hanna MM, Abdelnaser A. Decoding the Role of CYP450 Enzymes in Metabolism and Disease: A Comprehensive Review. Biomedicines 2024; 12:1467. [PMID: 39062040 PMCID: PMC11275228 DOI: 10.3390/biomedicines12071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 (CYP450) is a group of enzymes that play an essential role in Phase I metabolism, with 57 functional genes classified into 18 families in the human genome, of which the CYP1, CYP2, and CYP3 families are prominent. Beyond drug metabolism, CYP enzymes metabolize endogenous compounds such as lipids, proteins, and hormones to maintain physiological homeostasis. Thus, dysregulation of CYP450 enzymes can lead to different endocrine disorders. Moreover, CYP450 enzymes significantly contribute to fatty acid metabolism, cholesterol synthesis, and bile acid biosynthesis, impacting cellular physiology and disease pathogenesis. Their diverse functions emphasize their therapeutic potential in managing hypercholesterolemia and neurodegenerative diseases. Additionally, CYP450 enzymes are implicated in the onset and development of illnesses such as cancer, influencing chemotherapy outcomes. Assessment of CYP450 enzyme expression and activity aids in evaluating liver health state and differentiating between liver diseases, guiding therapeutic decisions, and optimizing drug efficacy. Understanding the roles of CYP450 enzymes and the clinical effect of their genetic polymorphisms is crucial for developing personalized therapeutic strategies and enhancing drug responses in diverse patient populations.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA), Giza 12451, Egypt
| | - Noha M. Abdelaal
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Alaa A. Rashwan
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Mohamed Ali Hussein
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Yasmin F. Ahmed
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Rana Khashana
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| |
Collapse
|
4
|
Korhan P, Bağırsakçı E, Islakoğlu YÖ, Solmaz G, Sarıkaya B, Nart D, Yılmaz F, Atabey N. MASLD-mimicking microenvironment drives an aggressive phenotype and represses IDH2 expression in hepatocellular carcinoma. HEPATOMA RESEARCH 2024. [DOI: 10.20517/2394-5079.2023.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Aim: Hepatocellular carcinoma (HCC) in patients with Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly NAFLD) is expected to be a significant public health issue in the near future. Therefore, understanding the tumor microenvironment interactions in MASLD-induced HCC is crucial, and the development of relevant preclinical models is needed. Hence, we aimed to determine the effects of a MASLD-mimicking microenvironment (ME) on the aggressiveness of HCC cells and identify target genes that drive HCC by developing a 3D-in vitro co-culture system.
Methods: A 3D co-culture system mimicking the MASLD-ME was created with LX-2 liver stellate cells embedded in 3D collagen gel in the lower and SNU-449 HCC cells on the upper parts of Boyden chambers, and cells were grown in an optimized metabolic medium (MM). The effects of NAFLD-ME on motility, sphere formation, proliferation, and cell cycle of SNU-449 cells were tested by Boyden chamber, 3D sphere formation, XTT, and Flow cytometry, respectively. The protein expression/activation profiles of motile SNU-449 cells that passed the membrane toward NAFLD-ME or control condition were investigated using a multiplex protein profiling system DigiWest and confirmed with RT-PCR, WB, and Flow cytometry. IDH2 levels were examined in primary human HCC and adjacent liver tissues by IHC and in TCGA and CPTAC cohorts by bioinformatics tools.
Results: MM treatment increased fat accumulation, motility, and spheroid formation of both SNU-449 and LX-2 cells. MASLD-ME induced activation of LX2 cells, leading to the formation of bigger colonies with many intrusions compared to related controls. DigiWest analysis showed that metabolism-related proteins such as IDH2 were the most affected molecules in SNU-449 cells that migrated toward the MASLD-ME compared to those that migrated toward the control condition. Downregulation of IDH2 expression was confirmed in SNU-449 cells grown in MASLD-ME, in primary HCC tumor samples by IHC, and in HCC patient cohorts by bioinformatics analysis.
Conclusion: This study reports the potential involvement of MASLD-ME in the downregulation of IDH2 expression and promoted motility and colonization capacity of HCC cells. The 3D MASLD model presented in this study may be useful in investigating the mechanistic roles of MASLD-ME in HCC.
Collapse
|
5
|
Yousof TR, Bouchard CC, Alb M, Lynn EG, Lhoták S, Jiang H, MacDonald M, Li H, Byun JH, Makda Y, Athanasopoulos M, Maclean KN, Cherrington NJ, Naqvi A, Igdoura SA, Krepinsky JC, Steinberg GR, Austin RC. Restoration of the ER stress response protein TDAG51 in hepatocytes mitigates NAFLD in mice. J Biol Chem 2024; 300:105655. [PMID: 38237682 PMCID: PMC10875272 DOI: 10.1016/j.jbc.2024.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024] Open
Abstract
Endoplasmic reticulum stress is associated with insulin resistance and the development of nonalcoholic fatty liver disease. Deficiency of the endoplasmic reticulum stress response T-cell death-associated gene 51 (TDAG51) (TDAG51-/-) in mice promotes the development of high-fat diet (HFD)-induced obesity, fatty liver, and hepatic insulin resistance. However, whether this effect is due specifically to hepatic TDAG51 deficiency is unknown. Here, we report that hepatic TDAG51 protein levels are consistently reduced in multiple mouse models of liver steatosis and injury as well as in liver biopsies from patients with liver disease compared to normal controls. Delivery of a liver-specific adeno-associated virus (AAV) increased hepatic expression of a TDAG51-GFP fusion protein in WT, TDAG51-/-, and leptin-deficient (ob/ob) mice. Restoration of hepatic TDAG51 protein was sufficient to increase insulin sensitivity while reducing body weight and fatty liver in HFD fed TDAG51-/- mice and in ob/ob mice. TDAG51-/- mice expressing ectopic TDAG51 display improved Akt (Ser473) phosphorylation, post-insulin stimulation. HFD-fed TDAG51-/- mice treated with AAV-TDAG51-GFP displayed reduced lipogenic gene expression, increased beta-oxidation and lowered hepatic and serum triglycerides, findings consistent with reduced liver weight. Further, AAV-TDAG51-GFP-treated TDAG51-/- mice exhibited reduced hepatic precursor and cleaved sterol regulatory-element binding proteins (SREBP-1 and SREBP-2). In vitro studies confirmed the lipid-lowering effect of TDAG51 overexpression in oleic acid-treated Huh7 cells. These studies suggest that maintaining hepatic TDAG51 protein levels represents a viable therapeutic approach for the treatment of obesity and insulin resistance associated with nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Tamana R Yousof
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Celeste C Bouchard
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Mihnea Alb
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Edward G Lynn
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Sárka Lhoták
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Hua Jiang
- Department of Pediatrics, School of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Melissa MacDonald
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Hui Li
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | - Jae H Byun
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Yumna Makda
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | | | - Kenneth N Maclean
- Department of Pediatrics, School of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | - Asghar Naqvi
- Department of Pathology and Molecular Medicine, St. Joseph's Healthcare Hamilton, McMaster University, Hamilton, Ontario, Canada
| | - Suleiman A Igdoura
- Department of Biology, McMaster University, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Division of Endocrinology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
6
|
Wagner JB, Abdel-Rahman S, Raghuveer G, Gaedigk A, Boone EC, Gaedigk R, Staggs VS, Reed GA, Zhang N, Leeder JS. SLCO1B1 Genetic Variation Influence on Atorvastatin Systemic Exposure in Pediatric Hypercholesterolemia. Genes (Basel) 2024; 15:99. [PMID: 38254988 PMCID: PMC10815823 DOI: 10.3390/genes15010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
This clinical study examined the influence of SLCO1B1 c.521T>C (rs4149056) on plasma atorvastatin concentrations in pediatric hypercholesterolemia. The participants (8-21 years), including heterozygous (c.521T/C, n = 13), homozygous (c.521C/C, n = 2) and controls (c.521T/T, n = 13), completed a single-oral-dose pharmacokinetic study. Similar to in adults, the atorvastatin (AVA) area-under-concentration-time curve from 0 to 24 h (AUC0-24) was 1.7-fold and 2.8-fold higher in participants with c.521T/C and c.521C/C compared to the c.521T/T participants, respectively. The inter-individual variability in AVA exposure within these genotype groups ranged from 2.3 to 4.8-fold, indicating that additional factors contribute to the inter-individual variability in the AVA dose-exposure relationship. A multivariate model reinforced the SLCO1B1 c.521T>C variant as the central factor contributing to AVA systemic exposure in this pediatric cohort, accounting for ~65% of the variability in AVA AUC0-24. Furthermore, lower AVA lactone concentrations in participants with increased body mass index contributed to higher exposure within the c.521T/T and c.521T/C genotype groups. Collectively, these factors contributing to higher systemic exposure could increase the risk of toxicity and should be accounted for when individualizing the dosing of atorvastatin in eligible pediatric patients.
Collapse
Affiliation(s)
- Jonathan B. Wagner
- Ward Family Heart Center, Children’s Mercy, Kansas City, MO 64108, USA
- Division of Clinical Pharmacology and Toxicology, Children’s Mercy, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Susan Abdel-Rahman
- Division of Clinical Pharmacology and Toxicology, Children’s Mercy, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Geetha Raghuveer
- Ward Family Heart Center, Children’s Mercy, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology and Toxicology, Children’s Mercy, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Erin C. Boone
- Division of Clinical Pharmacology and Toxicology, Children’s Mercy, Kansas City, MO 64108, USA
| | - Roger Gaedigk
- Division of Clinical Pharmacology and Toxicology, Children’s Mercy, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Vincent S. Staggs
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- Health Services & Outcomes Research, Children’s Mercy, Kansas City, MO 64108, USA
| | - Gregory A. Reed
- Clinical Pharmacology Shared Resource, University of Kansas Cancer Center, Fairway, KS 66205, USA
| | - Na Zhang
- Clinical Pharmacology Shared Resource, University of Kansas Cancer Center, Fairway, KS 66205, USA
| | - J. Steven Leeder
- Division of Clinical Pharmacology and Toxicology, Children’s Mercy, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
7
|
Wu F, Cui M, Wang S, Yu C, Yin W, Li J, Yan X. Effect of berberine on pharmacokinetics and pharmacodynamics of atorvastatin in hyperlipidemia rats. Xenobiotica 2023; 53:644-652. [PMID: 38054840 DOI: 10.1080/00498254.2023.2290648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Atorvastatin, an effective lipid-lowering drug, could reduce the risks of morbidity and mortality of cardiovascular diseases. Patients with cardiovascular diseases often use atorvastatin along with berberine. Atorvastatin is the substrate of CYP3A4 and P-gp. However, berberine is the inhibitor. The combination might lead to DDIs. The aim of this study was to assess the effect of berberine on pharmacokinetics and pharmacodynamics of atorvastatin in rats.Plasma concentrations of atorvastatin with or without berberine were determined by HPLC. Pharmacokinetics parameters were calculated and used to evaluate pharmacokinetics interactions. The effect of berberine on pharmacodynamics of atorvastatin was investigated by detecting blood lipid, SOD, MDA, GSH-Px, AST, ALT, and liver histopathology.Cmax, tmax, and AUC0-t of atorvastatin in combination group significantly increased both in normal and model rats (p < 0.01). The increase of t1/2, AUC0-t in model rats was more significant than that in normal rats (p < 0.05). Pharmacodynamics indexes in treatment groups were significantly improved, especially combination group (p < 0.05). Moreover, it could be found that there is a significant recovery in liver histopathology.In conclusion, berberine could affect pharmacokinetics of atorvastatin, enhance lipid-lowering effect and improve liver injury in rats. More attention should be paid to plasma exposure in clinical to avoid adverse reactions.
Collapse
Affiliation(s)
- Fan Wu
- Department of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mingyu Cui
- Department of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siwen Wang
- Department of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chao Yu
- Department of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weihong Yin
- Department of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiao Li
- Department of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xueying Yan
- Department of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Bai J, Zhu L, Mi W, Gao Z, Ouyang M, Sheng W, Song L, Bao L, Ma Y, Xu Y. Multiscale integrative analyses unveil immune-related diagnostic signature for the progression of MASLD. Hepatol Commun 2023; 7:e0298. [PMID: 37851406 PMCID: PMC10586828 DOI: 10.1097/hc9.0000000000000298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/25/2023] [Indexed: 10/19/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver disease prevalent worldwide, with an increasing incidence associated with obesity, diabetes, and metabolic syndrome. The progression of MASLD to metabolic dysfunction-associated steatohepatitis (MASH) poses a pressing health concern, highlighting the significance of accurately identifying MASLD and its progression to MASH as a primary challenge in the field. In this study, a systematic integration of 66 immune cell types was conducted. Comprehensive analyses were performed on bulk, single-cell RNA-Seq, and clinical data to investigate the immune cell types implicated in MASLD progression thoroughly. Multiple approaches, including immune infiltration, gene expression trend analysis, weighted gene coexpression network analysis, and 4 machine learning algorithms, were used to examine the dynamic changes in genes and immune cells during MASLD progression. C-X-C motif chemokine receptor 4 and dedicator of cytokinesis 8 have been identified as potential diagnostic biomarkers for MASLD progression. Furthermore, cell communication analysis at the single-cell level revealed that the involvement of C-X-C motif chemokine receptor 4 and dedicator of cytokinesis 8 in MASLD progression is mediated through their influence on T cells. Overall, our study identified vital immune cells and a 2-gene diagnostic signature for the progression of MASLD, providing a new perspective on the diagnosis and immune-related molecular mechanisms of MASLD. These findings have important implications for developing innovative diagnostic tools and therapies for MASLD.
Collapse
Affiliation(s)
- Jing Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lun Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wanqi Mi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhengzheng Gao
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Minyue Ouyang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wanlu Sheng
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Lin Song
- College of Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Lidao Bao
- Hohhot Mongolian Medicine of Traditional Chinese Medicine Hospital, Hohhot, China
| | - Yuheng Ma
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yingqi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
- College of Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
9
|
El-Khobar KE, Tay E, Diefenbach E, Gloss BS, George J, Douglas MW. Polo-like kinase-1 mediates hepatitis C virus-induced cell migration, a drug target for liver cancer. Life Sci Alliance 2023; 6:e202201630. [PMID: 37648284 PMCID: PMC10468647 DOI: 10.26508/lsa.202201630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a regulator of cell mitosis and cytoskeletal dynamics. PLK1 overexpression in liver cancer is associated with tumour progression, metastasis, and vascular invasion. Hepatitis C virus (HCV) NS5A protein stimulates PLK1-mediated phosphorylation of host proteins, so we hypothesised that HCV-PLK1 interactions might be a mechanism for HCV-induced liver cancer. We used a HCV cell-culture model (Jc1) to investigate the effects of virus infection on the cytoskeleton. In HCV-infected cells, a novel posttranslational modification in β-actin was observed with phosphorylation at Ser239. Using in silico and in vitro approaches, we identified PLK1 as the mediating kinase. In functional experiments with a phosphomimetic mutant form of β-actin, Ser239 phosphorylation influences β-actin polymerization and distribution, resulting in increased cell motility. The changes were prevented by treating cells with the PLK1 inhibitor volasertib. In HCV-infected hepatocytes, increased cell motility contributes to cancer cell migration, invasion, and metastasis. PLK1 is an important mediator of these effects and early treatment with PLK1 inhibitors may prevent or reduce HCC progression, particularly in people with HCV-induced HCC.
Collapse
Affiliation(s)
- Korri E El-Khobar
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Hospital, Westmead, Australia
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Enoch Tay
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Hospital, Westmead, Australia
| | - Eve Diefenbach
- Protein Core Facility, Westmead Institute for Medical Research, Westmead, Australia
| | - Brian S Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Westmead, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Hospital, Westmead, Australia
| | - Mark W Douglas
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Hospital, Westmead, Australia
- Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, University of Sydney at Westmead Hospital, Westmead, Australia
| |
Collapse
|
10
|
Wang S, Friedman SL. Found in translation-Fibrosis in metabolic dysfunction-associated steatohepatitis (MASH). Sci Transl Med 2023; 15:eadi0759. [PMID: 37792957 PMCID: PMC10671253 DOI: 10.1126/scitranslmed.adi0759] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a severe form of liver disease that poses a global health threat because of its potential to progress to advanced fibrosis, leading to cirrhosis and liver cancer. Recent advances in single-cell methodologies, refined disease models, and genetic and epigenetic insights have provided a nuanced understanding of MASH fibrogenesis, with substantial cellular heterogeneity in MASH livers providing potentially targetable cell-cell interactions and behavior. Unlike fibrogenesis, mechanisms underlying fibrosis regression in MASH are still inadequately understood, although antifibrotic targets have been recently identified. A refined antifibrotic treatment framework could lead to noninvasive assessment and targeted therapies that preserve hepatocellular function and restore the liver's architectural integrity.
Collapse
Affiliation(s)
- Shuang Wang
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
11
|
Song Z, Wang Y, Lin P, Yang K, Jiang X, Dong J, Xie S, Rao R, Cui L, Liu F, Huang X. Identification of key modules and driving genes in nonalcoholic fatty liver disease by weighted gene co-expression network analysis. BMC Genomics 2023; 24:414. [PMID: 37488473 PMCID: PMC10364401 DOI: 10.1186/s12864-023-09458-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 06/16/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive liver fat deposition, and progresses to liver cirrhosis, and even hepatocellular carcinoma. However, the invasive diagnosis of NAFLD with histopathological evaluation remains risky. This study investigated potential genes correlated with NAFLD, which may serve as diagnostic biomarkers and even potential treatment targets. METHODS The weighted gene co-expression network analysis (WGCNA) was constructed based on dataset E-MEXP-3291. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to evaluate the function of genes. RESULTS Blue module was positively correlated, and turquoise module negatively correlated with the severity of NAFLD. Furthermore, 8 driving genes (ANXA9, FBXO2, ORAI3, NAGS, C/EBPα, CRYAA, GOLM1, TRIM14) were identified from the overlap of genes in blue module and GSE89632. And another 8 driving genes were identified from the overlap of turquoise module and GSE89632. Among these driving genes, C/EBPα (CCAAT/enhancer binding protein α) was the most notable. By validating the expression of C/EBPα in the liver of NAFLD mice using immunohistochemistry, we discovered a significant upregulation of C/EBPα protein in NAFLD. CONCLUSION we identified two modules and 16 driving genes associated with the progression of NAFLD, and confirmed the protein expression of C/EBPα, which had been paid little attention to in the context of NAFLD, in the present study. Our study will advance the understanding of NAFLD. Moreover, these driving genes may serve as biomarkers and therapeutic targets of NAFLD.
Collapse
Affiliation(s)
- Zhengmao Song
- The Fifth Hospital of Xiamen & Xiamen University, Xiamen, China
| | - Yun Wang
- The Fifth Hospital of Xiamen & Xiamen University, Xiamen, China
| | - Pingli Lin
- The Fifth Hospital of Xiamen & Xiamen University, Xiamen, China
| | - Kaichun Yang
- The Fifth Hospital of Xiamen & Xiamen University, Xiamen, China
| | - Xilin Jiang
- Zhongshan Hospital, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Junchen Dong
- School of Medicine, Xiamen University, Xiamen, China
| | - Shangjin Xie
- Xiang'an Hospital, Xiamen University, Xiamen, China
| | - Rong Rao
- The Fifth Hospital of Xiamen & Xiamen University, Xiamen, China.
| | - Lishan Cui
- The Fifth Hospital of Xiamen & Xiamen University, Xiamen, China.
| | - Feng Liu
- The Fifth Hospital of Xiamen & Xiamen University, Xiamen, China.
- Xiang'an Hospital, Xiamen University, Xiamen, China.
| | - Xuefeng Huang
- Zhongshan Hospital, Xiamen University, Xiamen, China.
| |
Collapse
|
12
|
Stiglund N, Hagström H, Stål P, Cornillet M, Björkström NK. Dysregulated peripheral proteome reveals NASH-specific signatures identifying patient subgroups with distinct liver biology. Front Immunol 2023; 14:1186097. [PMID: 37342340 PMCID: PMC10277514 DOI: 10.3389/fimmu.2023.1186097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Background and aims Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. The prognosis may vary from simple steatosis to more severe outcomes such as nonalcoholic steatohepatitis (NASH), liver cirrhosis, and hepatocellular carcinoma. The understanding of the biological processes leading to NASH is limited and non-invasive diagnostic tools are lacking. Methods The peripheral immunoproteome in biopsy-proven NAFL (n=35) and NASH patients (n=35) compared to matched, normal-weight healthy controls (n=15) was studied using a proximity extension assay, combined with spatial and single cell hepatic transcriptome analysis. Results We identified 13 inflammatory serum proteins that, independent of comorbidities and fibrosis stage, distinguished NASH from NAFL. Analysis of co-expression patterns and biological networks further revealed NASH-specific biological perturbations indicative of temporal dysregulation of IL-4/-13, -10, -18, and non-canonical NF-kβ signaling. Of the identified inflammatory serum proteins, IL-18 and EN-RAGE as well as ST1A1 mapped to hepatic macrophages and periportal hepatocytes, respectively, at the single cell level. The signature of inflammatory serum proteins further permitted identification of biologically distinct subgroups of NASH patients. Conclusion NASH patients have a distinct inflammatory serum protein signature, which can be mapped to the liver parenchyma, disease pathogenesis, and identifies subgroups of NASH patients with altered liver biology.
Collapse
Affiliation(s)
- Natalie Stiglund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hannes Hagström
- Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Per Stål
- Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Martin Cornillet
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Powell NR, Liang T, Ipe J, Cao S, Skaar TC, Desta Z, Qian HR, Ebert PJ, Chen Y, Thomas MK, Chalasani N. Clinically important alterations in pharmacogene expression in histologically severe nonalcoholic fatty liver disease. Nat Commun 2023; 14:1474. [PMID: 36927865 PMCID: PMC10020163 DOI: 10.1038/s41467-023-37209-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Polypharmacy is common in patients with nonalcoholic fatty liver disease (NAFLD) and previous reports suggest that NAFLD is associated with altered drug disposition. This study aims to determine if patients with NAFLD are at risk for altered drug response by characterizing changes in hepatic mRNA expression of genes mediating drug disposition (pharmacogenes) across the histological NAFLD severity spectrum. We utilize RNA-seq for 93 liver biopsies with histologically staged NAFLD Activity Score (NAS), fibrosis stage, and steatohepatitis (NASH). We identify 37 significant pharmacogene-NAFLD severity associations including CYP2C19 downregulation. We chose to validate CYP2C19 due to its actionability in drug prescribing. Meta-analysis of 16 independent studies demonstrate that CYP2C19 is significantly downregulated to 46% in NASH, to 58% in high NAS, and to 43% in severe fibrosis. Our data demonstrate the downregulation of CYP2C19 in NAFLD which supports developing personalized medicine approaches for drugs sensitive to metabolism by the CYP2C19 enzyme.
Collapse
Affiliation(s)
- Nicholas R Powell
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | - Tiebing Liang
- Indiana University School of Medicine, Department of Medicine, Division of Gastroenterology Hepatology, Indianapolis, IN, USA
| | - Joseph Ipe
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | - Sha Cao
- Indiana University School of Medicine, Department of Medicine, Division of Gastroenterology Hepatology, Indianapolis, IN, USA
| | - Todd C Skaar
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | - Zeruesenay Desta
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | | | | | - Yu Chen
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Naga Chalasani
- Indiana University School of Medicine, Department of Medicine, Division of Gastroenterology Hepatology, Indianapolis, IN, USA.
| |
Collapse
|
14
|
Abstract
The epidemic of obesity, type 2 diabetes and nonalcoholic liver disease (NAFLD) favors drug consumption, which augments the risk of adverse events including liver injury. For more than 30 years, a series of experimental and clinical investigations reported or suggested that the common pain reliever acetaminophen (APAP) could be more hepatotoxic in obesity and related metabolic diseases, at least after an overdose. Nonetheless, several investigations did not reproduce these data. This discrepancy might come from the extent of obesity and steatosis, accumulation of specific lipid species, mitochondrial dysfunction and diabetes-related parameters such as ketonemia and hyperglycemia. Among these factors, some of them seem pivotal for the induction of cytochrome P450 2E1 (CYP2E1), which favors the conversion of APAP to the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI). In contrast, other factors might explain why obesity and NAFLD are not always associated with more frequent or more severe APAP-induced acute hepatotoxicity, such as increased volume of distribution in the body, higher hepatic glucuronidation and reduced CYP3A4 activity. Accordingly, the occurrence and outcome of APAP-induced liver injury in an obese individual with NAFLD would depend on a delicate balance between metabolic factors that augment the generation of NAPQI and others that can mitigate hepatotoxicity.
Collapse
|
15
|
Cordes H, Rapp H. Gene expression databases for physiologically based pharmacokinetic modeling of humans and animal species. CPT Pharmacometrics Syst Pharmacol 2023; 12:311-319. [PMID: 36715173 PMCID: PMC10014062 DOI: 10.1002/psp4.12904] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 01/31/2023] Open
Abstract
In drug research, developing a sound understanding of the key mechanistic drivers of pharmacokinetics (PK) for new molecular entities is essential for human PK and dose predictions. Here, characterizing the absorption, distribution, metabolism, and excretion (ADME) processes is crucial for a mechanistic understanding of the drug-target and drug-body interactions. Sufficient knowledge on ADME processes enables reliable interspecies and human PK estimations beyond allometric scaling. The physiologically based PK (PBPK) modeling framework allows the explicit consideration of organ-specific ADME processes. The sum of all passive and active ADME processes results in the observed plasma PK. Gene expression information can be used as surrogate for protein abundance and activity within PBPK models. The absolute and relative expression of ADME genes can differ between species and strains. This is affecting both, the PK and pharmacodynamics and is therefore posing a challenge for the extrapolation from preclinical findings to humans. We developed an automated workflow that generates whole-body gene expression databases for humans and other species relevant in drug development, animal health, nutritional sciences, and toxicology. Solely, bulk RNA-seq data curated and provided by the Swiss Institute of Bioinformatics from healthy, normal, and untreated primary tissue samples were considered as an unbiased reference of normal gene expression. The databases are interoperable with the Open Systems Pharmacology Suite (PK-Sim and MoBi) and enable seamless access to a central source of curated cross-species gene expression data. This will increase data transparency, increase reliability and reproducibility of PBPK model simulations, and accelerate mechanistic PBPK model development in the future.
Collapse
Affiliation(s)
- Henrik Cordes
- Drug Metabolism & Pharmacokinetics, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt am Main, Germany
| | - Hermann Rapp
- Research Drug Metabolism & Pharmacokinetics, Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
16
|
Zhou B, Luo Y, Ji N, Mao F, Xiang L, Bian H, Zheng MH, Hu C, Li Y, Lu Y. Promotion of nonalcoholic steatohepatitis by RNA N 6-methyladenosine reader IGF2BP2 in mice. LIFE METABOLISM 2022; 1:161-174. [PMID: 39872354 PMCID: PMC11749640 DOI: 10.1093/lifemeta/loac006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/20/2022] [Accepted: 06/07/2022] [Indexed: 01/30/2025]
Abstract
Nonalcoholic steatohepatitis (NASH) has emerged as the major cause of end-stage liver diseases. However, an incomplete understanding of its molecular mechanisms severely dampens the development of pharmacotherapies. In the present study, through systematic screening of genome-wide mRNA expression from three mouse models of hepatic inflammation and fibrosis, we identified IGF2BP2, an N6-methyladenosine modification reader, as a key regulator that promotes NASH progression in mice. Adenovirus or adeno-associated virus-mediated overexpression of IGF2BP2 could induce liver steatosis, inflammation, and fibrosis in mice, at least in part, by increasing Tab2 mRNA stability. Besides, hepatic overexpression of IGF2BP2 mimicked gene expression profiles and molecular pathways of human NASH livers. Of potential clinical significance, IGF2BP2 expression is significantly upregulated in the livers of NASH patients. Moreover, knockdown of IGF2BP2 substantially alleviated liver injury, inflammation, and fibrosis in diet-induced NASH mice. Taken together, our findings reveal an important role of IGF2BP2 in NASH, which may provide a new therapeutic target for the treatment of NASH.
Collapse
Affiliation(s)
- Bing Zhou
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunchen Luo
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Nana Ji
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism, Qingpu Branch of Zhongshan Hospital, Fudan University, Wenzhou, China
| | - Fei Mao
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liping Xiang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hua Bian
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai, China
| | - Yao Li
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Metabolism and Regenerative Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
17
|
Roy N, Alencastro F, Roseman BA, Wilson SR, Delgado ER, May MC, Bhushan B, Bello FM, Jurczak MJ, Shiva S, Locker J, Gingras S, Duncan AW. Dysregulation of Lipid and Glucose Homeostasis in Hepatocyte-Specific SLC25A34 Knockout Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1259-1281. [PMID: 35718058 PMCID: PMC9472157 DOI: 10.1016/j.ajpath.2022.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an epidemic affecting 30% of the US population. It is characterized by insulin resistance, and by defective lipid metabolism and mitochondrial dysfunction in the liver. SLC25A34 is a major repressive target of miR-122, a miR that has a central role in NAFLD and liver cancer. However, little is known about the function of SLC25A34. To investigate SLC25A34 in vitro, mitochondrial respiration and bioenergetics were examined using hepatocytes depleted of Slc25a34 or overexpressing Slc25a34. To test the function of SLC25A34 in vivo, a hepatocyte-specific knockout mouse was generated, and loss of SLC25A34 was assessed in mice maintained on a chow diet and a fast-food diet (FFD), a model for NAFLD. Hepatocytes depleted of Slc25a34 displayed increased mitochondrial biogenesis, lipid synthesis, and ADP/ATP ratio; Slc25a34 overexpression had the opposite effect. In the knockout model on chow diet, SLC25A34 loss modestly affected liver function (altered glucose metabolism was the most pronounced defect). RNA-sequencing revealed changes in metabolic processes, especially fatty acid metabolism. After 2 months on FFD, knockouts had a more severe phenotype, with increased lipid content and impaired glucose tolerance, which was attenuated after longer FFD feeding (6 months). This work thus presents a novel model for studying SLC25A34 in vivo in which SLC25A34 plays a role in mitochondrial respiration and bioenergetics during NAFLD.
Collapse
Affiliation(s)
- Nairita Roy
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Frances Alencastro
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bayley A Roseman
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sierra R Wilson
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Evan R Delgado
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Meredith C May
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bharat Bhushan
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Fiona M Bello
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael J Jurczak
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Departments of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph Locker
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew W Duncan
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
18
|
Lin H, Wang L, Liu Z, Long K, Kong M, Ye D, Chen X, Wang K, Wu KKL, Fan M, Song E, Wang C, Hoo RLC, Hui X, Hallenborg P, Piao H, Xu A, Cheng KKY. Hepatic MDM2 Causes Metabolic Associated Fatty Liver Disease by Blocking Triglyceride-VLDL Secretion via ApoB Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200742. [PMID: 35524581 PMCID: PMC9284139 DOI: 10.1002/advs.202200742] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Indexed: 05/06/2023]
Abstract
Dysfunctional triglyceride-very low-density lipoprotein (TG-VLDL) metabolism is linked to metabolic-associated fatty liver disease (MAFLD); however, the underlying cause remains unclear. The study shows that hepatic E3 ubiquitin ligase murine double minute 2 (MDM2) controls MAFLD by blocking TG-VLDL secretion. A remarkable upregulation of MDM2 is observed in the livers of human and mouse models with different levels of severity of MAFLD. Hepatocyte-specific deletion of MDM2 protects against high-fat high-cholesterol diet-induced hepatic steatosis and inflammation, accompanied by a significant elevation in TG-VLDL secretion. As an E3 ubiquitin ligase, MDM2 targets apolipoprotein B (ApoB) for proteasomal degradation through direct protein-protein interaction, which leads to reduced TG-VLDL secretion in hepatocytes. Pharmacological blockage of the MDM2-ApoB interaction alleviates dietary-induced hepatic steatohepatitis and fibrosis by inducing hepatic ApoB expression and subsequent TG-VLDL secretion. The effect of MDM2 on VLDL metabolism is p53-independent. Collectively, these findings suggest that MDM2 acts as a negative regulator of hepatic ApoB levels and TG-VLDL secretion in MAFLD. Inhibition of the MDM2-ApoB interaction may represent a potential therapeutic approach for MAFLD treatment.
Collapse
Affiliation(s)
- Huige Lin
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Lin Wang
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongPokfulamHong Kong
- Department of MedicineThe University of Hong KongPokfulamHong Kong
| | - Zhuohao Liu
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongPokfulamHong Kong
- Department of MedicineThe University of Hong KongPokfulamHong Kong
- Department of NeurosurgeryShenzhen HospitalSouthern Medical UniversityShenzhen518000P. R. China
| | - Kekao Long
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Mengjie Kong
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Dewei Ye
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of EducationGuangdong Pharmaceutical UniversityGuangzhou510000P. R. China
| | - Xi Chen
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Kai Wang
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Kelvin KL Wu
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Mengqi Fan
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of EducationGuangdong Pharmaceutical UniversityGuangzhou510000P. R. China
| | - Erfei Song
- Department of Metabolic and Bariatric SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhou510000P. R. China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhou510000P. R. China
| | - Ruby LC Hoo
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongPokfulamHong Kong
- Department of Pharmacology and PharmacyThe University of Hong KongPokfulamHong Kong
| | - Xiaoyan Hui
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongPokfulamHong Kong
- Department of MedicineThe University of Hong KongPokfulamHong Kong
| | - Philip Hallenborg
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkSouthern Denmark5230Denmark
| | - Hailong Piao
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116000P. R. China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongPokfulamHong Kong
- Department of MedicineThe University of Hong KongPokfulamHong Kong
- Department of Pharmacology and PharmacyThe University of Hong KongPokfulamHong Kong
| | - Kenneth KY Cheng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| |
Collapse
|
19
|
Chu X, Prasad B, Neuhoff S, Yoshida K, Leeder JS, Mukherjee D, Taskar K, Varma MVS, Zhang X, Yang X, Galetin A. Clinical Implications of Altered Drug Transporter Abundance/Function and PBPK Modeling in Specific Populations: An ITC Perspective. Clin Pharmacol Ther 2022; 112:501-526. [PMID: 35561140 DOI: 10.1002/cpt.2643] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022]
Abstract
The role of membrane transporters on pharmacokinetics (PKs), drug-drug interactions (DDIs), pharmacodynamics (PDs), and toxicity of drugs has been broadly recognized. However, our knowledge of modulation of transporter expression and/or function in the diseased patient population or specific populations, such as pediatrics or pregnancy, is still emerging. This white paper highlights recent advances in studying the changes in transporter expression and activity in various diseases (i.e., renal and hepatic impairment and cancer) and some specific populations (i.e., pediatrics and pregnancy) with the focus on clinical implications. Proposed alterations in transporter abundance and/or activity in diseased and specific populations are based on (i) quantitative transporter proteomic data and relative abundance in specific populations vs. healthy adults, (ii) clinical PKs, and emerging transporter biomarker and/or pharmacogenomic data, and (iii) physiologically-based pharmacokinetic modeling and simulation. The potential for altered PK, PD, and toxicity in these populations needs to be considered for drugs and their active metabolites in which transporter-mediated uptake/efflux is a major contributor to their absorption, distribution, and elimination pathways and/or associated DDI risk. In addition to best practices, this white paper discusses current challenges and knowledge gaps to study and quantitatively predict the effects of modulation in transporter activity in these populations, together with the perspectives from the International Transporter Consortium (ITC) on future directions.
Collapse
Affiliation(s)
- Xiaoyan Chu
- Department of ADME and Discovery Toxicology, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | | | - Kenta Yoshida
- Clinical Pharmacology, Genentech Research and Early Development, South San Francisco, California, USA
| | - James Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Dwaipayan Mukherjee
- Clinical Pharmacology & Pharmacometrics, Research & Development, AbbVie, Inc., North Chicago, Illinois, USA
| | | | - Manthena V S Varma
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Xinyuan Zhang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Xinning Yang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
20
|
Rajak S, Gupta P, Anjum B, Raza S, Tewari A, Ghosh S, Tripathi M, Singh BK, Sinha RA. Role of AKR1B10 and AKR1B8 in the pathogenesis of non-alcoholic steatohepatitis (NASH) in mouse. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166319. [PMID: 34954342 DOI: 10.1016/j.bbadis.2021.166319] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/18/2021] [Accepted: 12/05/2021] [Indexed: 01/07/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a clinically important spectrum of non-alcoholic fatty liver disease (NAFLD) in humans. NASH is a stage of NAFLD progression wherein liver steatosis accompanies inflammation and pro-fibrotic events. Presently, there are no approved drugs for NASH, which has become a leading cause of liver transplant worldwide. To discover novel drug targets for NASH, we analyzed a human transcriptomic NASH dataset and found Aldo-keto reductase family 1 member B10 (AKR1B10) as a significantly upregulated gene in livers of human NASH patients. Similarly murine Akr1b10 and Aldo-keto reductase family 1 member B8 (Akr1b8) gene, which is a murine ortholog of human AKR1B10, were also found to be upregulated in a mouse model of diet-induced NASH. Furthermore, pharmacological inhibitors of AKR1B10 significantly reduced the pathological features of NASH such as steatosis, inflammation and fibrosis in mouse. In addition, genetic silencing of both mouse Akr1b10 and Akr1b8 significantly reduced the expression of proinflammatory cytokines from hepatocytes. These results, thus, underscore the involvement of murine AKR1B10 and AKR1B8 in the pathogenesis of murine NASH and raise an intriguing possibility of a similar role of AKR1B10 in human NASH.
Collapse
Affiliation(s)
- Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Pratima Gupta
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Baby Anjum
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Archana Tewari
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Sujoy Ghosh
- Centre for Computational Biology, Duke-NUS Medical School, Singapore; Cardiovascular and Metabolic Disorder Program, Duke-NUS Medical School, Singapore
| | - Madhulika Tripathi
- Cardiovascular and Metabolic Disorder Program, Duke-NUS Medical School, Singapore
| | - Brijesh K Singh
- Cardiovascular and Metabolic Disorder Program, Duke-NUS Medical School, Singapore
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India.
| |
Collapse
|
21
|
Boeckmans J, Gatzios A, Heymans A, Rombaut M, Rogiers V, De Kock J, Vanhaecke T, Rodrigues RM. Transcriptomics Reveals Discordant Lipid Metabolism Effects between In Vitro Models Exposed to Elafibranor and Liver Samples of NAFLD Patients after Bariatric Surgery. Cells 2022; 11:893. [PMID: 35269515 PMCID: PMC8909190 DOI: 10.3390/cells11050893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND AIMS Non-alcoholic steatohepatitis (NASH) is a life-threatening stage of non-alcoholic fatty liver disease (NAFLD) for which no drugs have been approved. We have previously shown that human-derived hepatic in vitro models can be used to mimic key cellular mechanisms involved in the progression of NASH. In the present study, we first characterize the transcriptome of multiple in vitro NASH models. Subsequently, we investigate how elafibranor, which is a peroxisome proliferator-activated receptor (PPAR)-α/δ agonist that has recently failed a phase 3 clinical trial as a potential anti-NASH compound, modulates the transcriptome of these models. Finally, we compare the elafibranor-induced gene expression modulation to transcriptome data of patients with improved/resolved NAFLD/NASH upon bariatric surgery, which is the only proven clinical NASH therapy. METHODS Human whole genome microarrays were used for the transcriptomics evaluation of hepatic in vitro models. Comparison to publicly available clinical datasets was conducted using multiple bioinformatic application tools. RESULTS Primary human hepatocytes (PHH), HepaRG, and human skin stem cell-derived hepatic progenitors (hSKP-HPC) exposed to NASH-inducing triggers exhibit up to 35% overlap with datasets of liver samples from NASH patients. Exposure of the in vitro NASH models to elafibranor partially reversed the transcriptional modulations, predicting an inhibition of toll-like receptor (TLR)-2/4/9-mediated inflammatory responses, NFκB-signaling, hepatic fibrosis, and leukocyte migration. These transcriptomic changes were also observed in the datasets of liver samples of patients with resolved NASH. Peroxisome Proliferator Activated Receptor Alpha (PPARA), PPARG Coactivator 1 Alpha (PPARGC1A), and Sirtuin 1 (SIRT1) were identified as the major common upstream regulators upon exposure to elafibranor. Analysis of the downstream mechanistic networks further revealed that angiopoietin Like 4 (ANGPTL4), pyruvate dehydrogenase kinase 4 (PDK4), and perilipin 2 (PLIN2), which are involved in the promotion of hepatic lipid accumulation, were also commonly upregulated by elafibranor in all in vitro NASH models. Contrarily, these genes were not upregulated in liver samples of patients with resolved NASH. CONCLUSION Transcriptomics comparison between in vitro NASH models exposed to elafibranor and clinical datasets of NAFLD patients after bariatric surgery reveals commonly modulated anti-inflammatory responses, but discordant modulations of key factors in lipid metabolism. This discordant adverse effect of elafibranor deserves further investigation when assessing PPAR-α/δ agonism as a potential anti-NASH therapy.
Collapse
Affiliation(s)
- Joost Boeckmans
- Correspondence: (J.B.); (R.M.R.); Tel.: +32-(0)-2-477-45-19 (R.M.R.)
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Day K, Seale LA, Graham RM, Cardoso BR. Selenotranscriptome Network in Non-alcoholic Fatty Liver Disease. Front Nutr 2021; 8:744825. [PMID: 34869521 PMCID: PMC8635790 DOI: 10.3389/fnut.2021.744825] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Observational studies indicate that selenium may contribute to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Transcriptomic exploration of the aetiology and progression of NAFLD may offer insight into the role selenium plays in this disease. This study compared gene expression levels of known selenoprotein pathways between individuals with a healthy liver to those with NAFLD. Publicly available gene expression databases were searched for studies that measured global gene expression in liver samples from patients with steatosis and non-alcoholic steatohepatitis (NASH) and healthy controls (with [HOC] or without [HC] obesity). A subset of five selenoprotein-related pathways (164 genes) were assessed in the four datasets included in this analysis. The gene TXNRD3 was less expressed in both disease groups when compared with HOC. SCLY and SELENOO were less expressed in NASH when compared with HC. SELENOM, DIO1, GPX2, and GPX3 were highly expressed in NASH when compared to HOC. Disease groups had lower expression of iron-associated transporters and higher expression of ferritin-encoding sub-units, consistent with dysregulation of iron metabolism often observed in NAFLD. Our bioinformatics analysis suggests that the NAFLD liver may have lower selenium levels than a disease-free liver, which may be associated with a disrupted iron metabolism. Our findings indicate that gene expression variation may be associated with the progressive risk of NAFLD.
Collapse
Affiliation(s)
- Kaitlin Day
- Department of Nutrition, Dietetics, and Food, Monash University, Notting Hill, VIC, Australia
| | - Lucia A Seale
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, HI, United States
| | - Ross M Graham
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Barbara R Cardoso
- Department of Nutrition, Dietetics, and Food, Monash University, Notting Hill, VIC, Australia
| |
Collapse
|
23
|
Modelling human liver fibrosis in the context of non-alcoholic steatohepatitis using a microphysiological system. Commun Biol 2021; 4:1080. [PMID: 34526653 PMCID: PMC8443589 DOI: 10.1038/s42003-021-02616-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a common form of chronic liver disease characterised by lipid accumulation, infiltration of immune cells, hepatocellular ballooning, collagen deposition and liver fibrosis. There is a high unmet need to develop treatments for NASH. We have investigated how liver fibrosis and features of advanced clinical disease can be modelled using an in vitro microphysiological system (MPS). The NASH MPS model comprises a co-culture of primary human liver cells, which were cultured in a variety of conditions including+/- excess sugar, fat, exogenous TGFβ or LPS. The transcriptomic, inflammatory and fibrotic phenotype of the model was characterised and compared using a system biology approach to identify conditions that mimic more advanced clinical disease. The transcriptomic profile of the model was shown to closely correlate with the profile of patient samples and the model displayed a quantifiable fibrotic phenotype. The effects of Obeticholic acid and Elafibranor, were evaluated in the model, as wells as the effects of dietary intervention, with all able to significantly reduce inflammatory and fibrosis markers. Overall, we demonstrate how the MPS NASH model can be used to model different aspects of clinical NASH but importantly demonstrate its ability to model advanced disease with a quantifiable fibrosis phenotype.
Collapse
|
24
|
Gianmoena K, Gasparoni N, Jashari A, Gabrys P, Grgas K, Ghallab A, Nordström K, Gasparoni G, Reinders J, Edlund K, Godoy P, Schriewer A, Hayen H, Hudert CA, Damm G, Seehofer D, Weiss TS, Boor P, Anders HJ, Motrapu M, Jansen P, Schiergens TS, Falk-Paulsen M, Rosenstiel P, Lisowski C, Salido E, Marchan R, Walter J, Hengstler JG, Cadenas C. Epigenomic and transcriptional profiling identifies impaired glyoxylate detoxification in NAFLD as a risk factor for hyperoxaluria. Cell Rep 2021; 36:109526. [PMID: 34433051 DOI: 10.1016/j.celrep.2021.109526] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/12/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Epigenetic modifications (e.g. DNA methylation) in NAFLD and their contribution to disease progression and extrahepatic complications are poorly explored. Here, we use an integrated epigenome and transcriptome analysis of mouse NAFLD hepatocytes and identify alterations in glyoxylate metabolism, a pathway relevant in kidney damage via oxalate release-a harmful waste product and kidney stone-promoting factor. Downregulation and hypermethylation of alanine-glyoxylate aminotransferase (Agxt), which detoxifies glyoxylate, preventing excessive oxalate accumulation, is accompanied by increased oxalate formation after metabolism of the precursor hydroxyproline. Viral-mediated Agxt transfer or inhibiting hydroxyproline catabolism rescues excessive oxalate release. In human steatotic hepatocytes, AGXT is also downregulated and hypermethylated, and in NAFLD adolescents, steatosis severity correlates with urinary oxalate excretion. Thus, this work identifies a reduced capacity of the steatotic liver to detoxify glyoxylate, triggering elevated oxalate, and provides a mechanistic explanation for the increased risk of kidney stones and chronic kidney disease in NAFLD patients.
Collapse
Affiliation(s)
- Kathrin Gianmoena
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), 44139 Dortmund, Germany
| | - Nina Gasparoni
- Department of Genetics, Saarland University, 66123 Saarbrücken, Germany
| | - Adelina Jashari
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), 44139 Dortmund, Germany
| | - Philipp Gabrys
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), 44139 Dortmund, Germany
| | - Katharina Grgas
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), 44139 Dortmund, Germany
| | - Ahmed Ghallab
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), 44139 Dortmund, Germany; Department of Forensic and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Karl Nordström
- Department of Genetics, Saarland University, 66123 Saarbrücken, Germany
| | - Gilles Gasparoni
- Department of Genetics, Saarland University, 66123 Saarbrücken, Germany
| | - Jörg Reinders
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), 44139 Dortmund, Germany
| | - Karolina Edlund
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), 44139 Dortmund, Germany
| | - Patricio Godoy
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), 44139 Dortmund, Germany
| | - Alexander Schriewer
- Department of Analytical Chemistry, Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Heiko Hayen
- Department of Analytical Chemistry, Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Christian A Hudert
- Department of Pediatric Gastroenterology, Hepatology and Metabolic Diseases, Charité-University Medicine Berlin, 13353 Berlin, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany; Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany; Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Thomas S Weiss
- University Children Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Peter Boor
- Institute of Pathology and Department of Nephrology, University Clinic of RWTH Aachen, 52074 Aachen, Germany
| | - Hans-Joachim Anders
- Department of Medicine IV, Renal Division, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Manga Motrapu
- Department of Medicine IV, Renal Division, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Peter Jansen
- Maastricht Centre for Systems Biology, University of Maastricht, 6229 Maastricht, the Netherlands
| | - Tobias S Schiergens
- Biobank of the Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology (IKMB), Kiel University and University Hospital Schleswig Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology (IKMB), Kiel University and University Hospital Schleswig Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Clivia Lisowski
- Institute of Experimental Immunology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms University Bonn, 53127 Bonn, Germany
| | - Eduardo Salido
- Hospital Universitario de Canarias, Universidad La Laguna, CIBERER, 38320 Tenerife, Spain
| | - Rosemarie Marchan
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), 44139 Dortmund, Germany
| | - Jörn Walter
- Department of Genetics, Saarland University, 66123 Saarbrücken, Germany
| | - Jan G Hengstler
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), 44139 Dortmund, Germany
| | - Cristina Cadenas
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), 44139 Dortmund, Germany.
| |
Collapse
|
25
|
Rodrigues RM, He Y, Hwang S, Bertola A, Mackowiak B, Ahmed YA, Seo W, Ma J, Wang X, Park SH, Guan Y, Fu Y, Vanhaecke T, Feng D, Gao B. E-Selectin-Dependent Inflammation and Lipolysis in Adipose Tissue Exacerbate Steatosis-to-NASH Progression via S100A8/9. Cell Mol Gastroenterol Hepatol 2021; 13:151-171. [PMID: 34390865 PMCID: PMC8593619 DOI: 10.1016/j.jcmgh.2021.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease, characterized by steatosis and hallmark liver neutrophil infiltration. NASH also is associated with adipose tissue inflammation, but the role of adipose tissue inflammation in NASH pathogenesis remains obscure. The aim of this study was to investigate the interplay between neutrophil recruitment in adipose tissue and the progression of NASH. METHODS A mouse model of NASH was obtained by high-fat diet (HFD) feeding plus adenovirus-Cxcl1 overexpression (HFD+AdCxcl1). Genetic deletion of E-selectin (Sele) and treatment with an S100A9 inhibitor (Paquinimod) were investigated using this model. RESULTS By analyzing transcriptomic data sets of adipose tissue from NASH patients, we found that E-selectin, a key adhesion molecule for neutrophils, is the highest up-regulated gene among neutrophil recruitment-related factors in adipose tissue of NASH patients compared with those in patients with simple steatosis. A marked up-regulation of Sele in adipose tissue also was observed in HFD+AdCxcl1 mice. The HFD+AdCxcl1-induced NASH phenotype was ameliorated in Sele knockout mice and was accompanied by reduced lipolysis and inflammation in adipose tissue, which resulted in decreased serum free fatty acids and proinflammatory adipokines. S100A8/A9, a major proinflammatory protein secreted by neutrophils, was highly increased in adipose tissue of HFD+AdCxcl1 mice. This increase was blunted in the Sele knockout mice. Therapeutically, treatment with the S100A9 inhibitor Paquinimod reduced lipolysis, inflammation, and adipokine production, ameliorating the NASH phenotype in mice. CONCLUSIONS E-selectin plays an important role in inducing neutrophil recruitment in adipose tissue, which subsequently promotes inflammation and lipolysis via the production of S100A8/A9, thereby exacerbating the steatosis-to-NASH progression. Targeting adipose tissue inflammation therefore may represent a potential novel therapy for treatment of NASH.
Collapse
Affiliation(s)
- Robim M. Rodrigues
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland,Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Adeline Bertola
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Yeni Ait Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Wonhyo Seo
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Jing Ma
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Xiaolin Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Seol Hee Park
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland,Correspondence Address correspondence to: Bin Gao, MD, PhD, Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Bethesda, Maryland 20892. fax: (301) 480-0257.
| |
Collapse
|
26
|
Kozaczek M, Bottje W, Albataineh D, Hakkak R. Effects of Short- and Long-Term Soy Protein Feeding on Hepatic Cytochrome P450 Expression in Obese Nonalcoholic Fatty Liver Disease Rat Model. Front Nutr 2021; 8:699620. [PMID: 34262928 PMCID: PMC8273275 DOI: 10.3389/fnut.2021.699620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity can lead to chronic health complications such as nonalcoholic fatty liver disease (NAFLD). NAFLD is characterized by lipid aggregation in the hepatocytes and inflammation of the liver tissue as a consequence that can contribute to the development of cirrhosis and hepatocellular carcinoma (HCC). Previously, we reported that feeding obese Zucker rats with soy protein isolate (SPI) can reduce liver steatosis when compared with a casein (CAS) diet as a control. However, the effects of SPI on cytochrome P450 (CYP) in an obese rat model are less known. In addition, there is a lack of information concerning the consumption of soy protein in adolescents and its effect in reducing the early onset of NAFLD in this group. Our main goal was to understand if the SPI diet had any impact on the hepatic CYP gene expression when compared with the CAS diet. For this purpose, we used the transcriptomic data obtained in a previous study in which liver samples were collected from obese rats after short-term (eight-week) and long-term (16-week) feeding of SPI (n = 8 per group). To analyze this RNAseq data, we used Ingenuity Pathway Analysis (IPA) software. Comparing short- vs long-term feeding revealed an increase in the number of downregulated CYP genes from three at 8 weeks of SPI diet to five at 16 weeks of the same diet (P ≤ 0.05). On the other hand, upregulated CYP gene numbers showed a small increase in the long-term SPI diet compared to the short-term SPI diet, from 14 genes at 8 weeks to 17 genes at 16 weeks (P ≤ 0.05). The observed changes may have an important role in the attenuation of liver steatosis.
Collapse
Affiliation(s)
- Melisa Kozaczek
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Walter Bottje
- Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Diyana Albataineh
- Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Reza Hakkak
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, United States
| |
Collapse
|
27
|
Wu P, Zhang M, Webster NJG. Alternative RNA Splicing in Fatty Liver Disease. Front Endocrinol (Lausanne) 2021; 12:613213. [PMID: 33716968 PMCID: PMC7953061 DOI: 10.3389/fendo.2021.613213] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Alternative RNA splicing is a process by which introns are removed and exons are assembled to construct different RNA transcript isoforms from a single pre-mRNA. Previous studies have demonstrated an association between dysregulation of RNA splicing and a number of clinical syndromes, but the generality to common disease has not been established. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease affecting one-third of adults worldwide, increasing the risk of cirrhosis and hepatocellular carcinoma (HCC). In this review we focus on the change in alternative RNA splicing in fatty liver disease and the role for splicing regulation in disease progression.
Collapse
Affiliation(s)
- Panyisha Wu
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, United States
| | - Moya Zhang
- University of California Los Angeles, Los Angeles, CA, United States
| | - Nicholas J. G. Webster
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
28
|
Jensen VS, Fledelius C, Zachodnik C, Damgaard J, Nygaard H, Tornqvist KS, Kirk RK, Viuff BM, Wulff EM, Lykkesfeldt J, Hvid H. Insulin treatment improves liver histopathology and decreases expression of inflammatory and fibrogenic genes in a hyperglycemic, dyslipidemic hamster model of NAFLD. J Transl Med 2021; 19:80. [PMID: 33596938 PMCID: PMC7890970 DOI: 10.1186/s12967-021-02729-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/29/2021] [Indexed: 11/24/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are highly prevalent comorbidities in patients with Type 2 diabetes. While many of these patients eventually will need treatment with insulin, little is known about the effects of insulin treatment on histopathological parameters and hepatic gene expression in diabetic patients with co-existing NAFLD and NASH. To investigate this further, we evaluated the effects of insulin treatment in NASH diet-fed hamsters with streptozotocin (STZ) -induced hyperglycemia. Methods Forty male Syrian hamsters were randomized into four groups (n = 10/group) receiving either a NASH-inducing (high fat, fructose and cholesterol) or control diet (CTRL) for four weeks, after which they were treated with STZ or sham-injected and from week five treated with either vehicle (CTRL, NASH, NASH-STZ) or human insulin (NASH-STZ-HI) for four weeks by continuous s.c. infusion via osmotic minipumps. Results NASH-STZ hamsters displayed pronounced hyperglycemia, dyslipidemia and more severe liver pathology compared to both CTRL and NASH groups. Insulin treatment attenuated dyslipidemia in NASH-STZ-HI hamsters and liver pathology was considerably improved compared to the NASH-STZ group, with prevention/reversal of hepatic steatosis, hepatic inflammation and stellate cell activation. In addition, expression of inflammatory and fibrotic genes was decreased compared to the NASH-STZ group. Conclusions These results suggest that hyperglycemia is important for development of inflammation and profibrotic processes in the liver, and that insulin administration has beneficial effects on liver pathology and expression of genes related to inflammation and fibrosis in a hyperglycemic, dyslipidemic hamster model of NAFLD.
Collapse
Affiliation(s)
- Victoria Svop Jensen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg, Denmark. .,Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark.
| | - Christian Fledelius
- Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | - Christina Zachodnik
- Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | - Jesper Damgaard
- Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | - Helle Nygaard
- Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | | | - Rikke Kaae Kirk
- Pathology & Imaging, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | | | - Erik Max Wulff
- Gubra ApS, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Jens Lykkesfeldt
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg, Denmark
| | - Henning Hvid
- Pathology & Imaging, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| |
Collapse
|
29
|
Inhibition of hyaluronan synthesis by 4-methylumbelliferone ameliorates non-alcoholic steatohepatitis in choline-deficient L-amino acid-defined diet-induced murine model. Arch Pharm Res 2021; 44:230-240. [PMID: 33486695 DOI: 10.1007/s12272-021-01309-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
Hyaluronan (HA) as a glycosaminoglycan can bind to cell-surface receptors, such as TLR4, to regulate inflammation, tissue injury, repair, and fibrosis. 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, is a drug used for the treatment of biliary spasms. Currently, therapeutic interventions are not available for non-alcoholic steatohepatitis (NASH). In this study, we investigated the effects of 4-MU on NASH using a choline-deficient amino acid (CDAA) diet model. CDAA diet-fed mice showed NASH characteristics, including hepatocyte injury, hepatic steatosis, inflammation, and fibrogenesis. 4-MU treatment significantly reduced hepatic lipid contents in CDAA diet-fed mice. 4-MU reversed CDAA diet-mediated inhibition of Ppara and induction of Srebf1 and Slc27a2. Analysis of serum ALT and AST levels revealed that 4-MU treatment protected against hepatocellular damage induced by CDAA diet feeding. TLR4 regulates low molecular weight-HA-induced chemokine expression in hepatocytes. In CDAA diet-fed, 4-MU-treated mice, the upregulated chemokine/cytokine expression, such as Cxcl1, Cxcl2, and Tnf was attenuated with the decrease of macrophage infiltration into the liver. Moreover, HA inhibition repressed CDAA diet-induced mRNA expression of fibrogenic genes, Notch1, and Hes1 in the liver. In conclusion, 4-MU treatment inhibited liver steatosis and steatohepatitis in a mouse model of NASH, implicating that 4-MU may have therapeutic potential for NASH.
Collapse
|
30
|
Bechtold B, Clarke J. Multi-factorial pharmacokinetic interactions: unraveling complexities in precision drug therapy. Expert Opin Drug Metab Toxicol 2020; 17:397-412. [PMID: 33339463 DOI: 10.1080/17425255.2021.1867105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Precision drug therapy requires accounting for pertinent factors in pharmacokinetic (PK) inter-individual variability (i.e., pharmacogenetics, diseases, polypharmacy, and natural product use) that can cause sub-therapeutic or adverse effects. Although each of these individual factors can alter victim drug PK, multi-factorial interactions can cause additive, synergistic, or opposing effects. Determining the magnitude and direction of these complex multi-factorial effects requires understanding the rate-limiting redundant and/or sequential PK processes for each drug.Areas covered: Perturbations in drug-metabolizing enzymes and/or transporters are integral to single- and multi-factorial PK interactions. Examples of single factor PK interactions presented include gene-drug (pharmacogenetic), disease-drug, drug-drug, and natural product-drug interactions. Examples of multi-factorial PK interactions presented include drug-gene-drug, natural product-gene-drug, gene-gene-drug, disease-natural product-drug, and disease-gene-drug interactions. Clear interpretation of multi-factorial interactions can be complicated by study design, complexity in victim drug PK, and incomplete mechanistic understanding of victim drug PK.Expert opinion: Incorporation of complex multi-factorial PK interactions into precision drug therapy requires advances in clinical decision tools, intentional PK study designs, drug-metabolizing enzyme and transporter fractional contribution determinations, systems and computational approaches (e.g., physiologically-based pharmacokinetic modeling), and PK phenotyping of progressive diseases.
Collapse
Affiliation(s)
- Baron Bechtold
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - John Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| |
Collapse
|
31
|
Pande P, Zhong XB, Ku WW. Histone Methyltransferase G9a Regulates Expression of Nuclear Receptors and Cytochrome P450 Enzymes in HepaRG Cells at Basal Level and in Fatty Acid Induced Steatosis. Drug Metab Dispos 2020; 48:1321-1329. [PMID: 33077425 DOI: 10.1124/dmd.120.000195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/11/2020] [Indexed: 02/13/2025] Open
Abstract
Obesity and nonalcoholic fatty liver disease (NAFLD) affect expression and function of cytochrome P450 genes (P450s). The increased expression of inflammatory cytokines is a major driver of the downregulation of P450 expression in NAFLD. Decrease in P450 expression could potentially lead to drug-drug interaction, inefficient pharmacological effect of a drug, or hepatotoxicity. An epigenetic modifier, histone 3 lysine 9 methyl transferase enzyme (G9a), known to increase histone 3 lysine 9 methylation, is downregulated in diet-induced obesity animal models. In a liver-specific G9a knockout animal model, expression of P450s was downregulated. Currently, the role of G9a in regulation of P450s in steatosis is unknown. Our hypothesis is that in steatosis G9a plays a role in downregulation of P450 expression. In this study, we used HepaRG cells to induce steatosis using a combination of free fatty acids oleic acid and palmitic acid. The G9a was knocked down and overexpressed using small interfering RNA and adenovirus mediated approaches, respectively. Knockdown and overexpression of G9a in the absence of steatosis decreased and increased expression of nuclear receptors constitutive androstane receptor (CAR), pregnane X receptor, small heterodimer partner, and CYP2B6, 2E1, 2C8, 2C9, and 3A4, respectively. In steatotic conditions, overexpression of G9a prevented fatty acid mediated decreased expression of CAR, CYP2C19, 2C8, 7A1, and 3A4. Our current study suggests that G9a might serve as a key regulator of P450 expression at both the basal level and in early steatotic conditions. Single nucleotide polymorphism of G9a leading to loss/gain of function could lead to the poor metabolizer or ultrarapid metabolizer phenotypes. SIGNIFICANCE STATEMENT: The current study demonstrates that histone modification enzyme G9a is involved in the regulation of expression of nuclear receptors constitutive androstane receptor, pregnane X receptor, and small heterodimer partner as well as drug-metabolizing cytochrome P450s (P450s) at basal conditions and in fatty acid induced cellular model of steatosis. Histone 3 lysine 9 methylation should be considered together with histone 3 lysine 4 and histone 3 lysine 27 methylation as the epigenetic mechanisms controlling gene expression of P450s.
Collapse
Affiliation(s)
- Parimal Pande
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (P.P., W.W.K.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (P.P., X.-b.Z.)
| | - Xiao-Bo Zhong
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (P.P., W.W.K.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (P.P., X.-b.Z.)
| | - Warren W Ku
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (P.P., W.W.K.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (P.P., X.-b.Z.)
| |
Collapse
|
32
|
Nonalcoholic Fatty Liver Disease (NAFLD) and Hepatic Cytochrome P450 (CYP) Enzymes. Pharmaceuticals (Basel) 2020; 13:ph13090222. [PMID: 32872474 PMCID: PMC7560175 DOI: 10.3390/ph13090222] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive fat in the liver. An international consensus panel has recently proposed to rename the disease to metabolic dysfunction associated with fatty liver disease (MAFLD). The disease can range from simple steatosis (fat accumulation) to nonalcoholic steatohepatitis (NASH) which represents a severe form of NAFLD and is accompanied by inflammation, fibrosis, and hepatocyte damage in addition to significant steatosis. This review collates current knowledge of changes in human hepatic cytochrome P450 enzymes in NAFLD. While the expression of these enzymes is well studied in healthy volunteers, our understanding of the alterations of these proteins in NAFLD is limited. Much of the existing knowledge on the subject is derived from preclinical studies, and clinical translation of these findings is poor. Wherever available, the effect of NAFLD on these proteins in humans is debatable and currently lacks a consensus among different reports. Protein expression is an important in vitro physiological parameter controlling the pharmacokinetics of drugs and the last decade has seen a rise in the accurate estimation of these proteins for use with physiologically based pharmacokinetic (PBPK) modeling to predict drug pharmacokinetics in special populations. The application of label-free, mass spectrometry-based quantitative proteomics as a promising tool to study NAFLD-associated changes has also been discussed.
Collapse
|
33
|
Hwang S, He Y, Xiang X, Seo W, Kim SJ, Ma J, Ren T, Park SH, Zhou Z, Feng D, Kunos G, Gao B. Interleukin-22 Ameliorates Neutrophil-Driven Nonalcoholic Steatohepatitis Through Multiple Targets. Hepatology 2020; 72:412-429. [PMID: 31705800 PMCID: PMC7210045 DOI: 10.1002/hep.31031] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease encompasses a spectrum of diseases ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and liver cancer. At present, how simple steatosis progresses to NASH remains obscure and effective pharmacological therapies are lacking. Hepatic expression of C-X-C motif chemokine ligand 1 (CXCL1), a key chemokine for neutrophil infiltration (a hallmark of NASH), is highly elevated in NASH patients but not in fatty livers in obese individuals or in high-fat diet (HFD)-fed mice. The aim of this study was to test whether overexpression of CXCL1 itself in the liver can induce NASH in HFD-fed mice and to test the therapeutic potential of IL-22 in this new NASH model. APPROACH AND RESULTS Overexpression of Cxcl1 in the liver alone promotes steatosis-to-NASH progression in HFD-fed mice by inducing neutrophil infiltration, oxidative stress, and stress kinase (such as apoptosis signal-regulating kinase 1 and p38 mitogen-activated protein kinase) activation. Myeloid cell-specific deletion of the neutrophil cytosolic factor 1 (Ncf1)/p47phox gene, which encodes a component of the NADPH oxidase 2 complex that mediates neutrophil oxidative burst, markedly reduced CXCL1-induced NASH and stress kinase activation in HFD-fed mice. Treatment with interleukin (IL)-22, a cytokine with multiple targets, ameliorated CXCL1/HFD-induced NASH or methionine-choline deficient diet-induced NASH in mice. Mechanistically, IL-22 blocked hepatic oxidative stress and its associated stress kinases via the induction of metallothionein, one of the most potent antioxidant proteins. Moreover, although it does not target immune cells, IL-22 treatment attenuated the inflammatory functions of hepatocyte-derived, mitochondrial DNA-enriched extracellular vesicles, thereby suppressing liver inflammation in NASH. CONCLUSIONS Hepatic overexpression of CXCL1 is sufficient to drive steatosis-to-NASH progression in HFD-fed mice through neutrophil-derived reactive oxygen species and activation of stress kinases, which can be reversed by IL-22 treatment via the induction of metallothionein.
Collapse
Affiliation(s)
- Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaogang Xiang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wonhyo Seo
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seung-Jin Kim
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jing Ma
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tianyi Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seol Hee Park
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhou Zhou
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
34
|
O’Dwyer C, Yaworski R, Katsumura S, Ghorbani P, Gobeil Odai K, Nunes JR, LeBlond ND, Sanjana S, Smith TT, Han S, Margison KD, Alain T, Morita M, Fullerton MD. Hepatic Choline Transport Is Inhibited During Fatty Acid-Induced Lipotoxicity and Obesity. Hepatol Commun 2020; 4:876-889. [PMID: 32490323 PMCID: PMC7262319 DOI: 10.1002/hep4.1516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 01/11/2023] Open
Abstract
Choline is an essential nutrient and a critical component of the membrane phospholipid phosphatidylcholine (PC), the neurotransmitter acetylcholine, while also contributing to the methylation pathway. In the liver specifically, PC is the major membrane constituent and can be synthesized by the cytidine diphosphate-choline or the phosphatidylethanolamine N-methyltransferase pathway. With the continuing global rise in the rates of obesity and nonalcoholic fatty liver disease, we sought to explore how excess fatty acids on primary hepatocytes and diet-induced obesity affect choline uptake and metabolism. Our results demonstrate that hepatocytes chronically treated with palmitate, but not oleate or a mixture, had decreased choline uptake, which was associated with lower choline incorporation into PC and lower expression of choline transport proteins. Interestingly, a reduction in the rate of degradation spared PC levels in response to palmitate when compared with control. The effects of palmitate treatment were independent of endoplasmic reticulum stress, which counterintuitively augmented choline transport and transporter expression. In a model of obesity-induced hepatic steatosis, male mice fed a 60% high-fat diet for 10 weeks had significantly diminished hepatic choline uptake compared with lean mice fed a control diet. Although the transcript and protein expression of various choline metabolic enzymes fluctuated slightly, we observed reduced protein expression of choline transporter-like 1 (CTL1) in the liver of mice fed a high-fat diet. Polysome profile analyses revealed that in livers of obese mice, the CTL1 transcript, despite being more abundant, was translated to a lesser extent compared with lean controls. Finally, human liver cells demonstrated a similar response to palmitate treatment. Conclusion: Our results suggest that the altered fatty acid milieu seen in obesity-induced fatty liver disease progression may adversely affect choline metabolism, potentially through CTL1, but that compensatory mechanisms work to maintain phospholipid homeostasis.
Collapse
Affiliation(s)
- Conor O’Dwyer
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
| | - Rebecca Yaworski
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
| | - Sakie Katsumura
- Department of Molecular MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTX
| | - Peyman Ghorbani
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
| | - Kaelan Gobeil Odai
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
| | - Julia R.C. Nunes
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
| | - Nicholas D. LeBlond
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
| | - Sabrin Sanjana
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
| | - Tyler T.K. Smith
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
| | - Shauna Han
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
| | - Kaitlyn D. Margison
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
| | - Tommy Alain
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
- Children’s Hospital of Eastern Ontario Research InstituteOttawaONCanada
| | - Masahiro Morita
- Department of Molecular MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTX
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX
- Institute of Resource Development and AnalysisKumamoto UniversityKumamotoJapan
| | - Morgan D. Fullerton
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
| |
Collapse
|
35
|
Wen Y, Chen J, Li J, Arif W, Kalsotra A, Irudayaraj J. Effect of PFOA on DNA Methylation and Alternative Splicing in Mouse Liver. Toxicol Lett 2020; 329:38-46. [PMID: 32320774 DOI: 10.1016/j.toxlet.2020.04.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent organic pollutant prevalent in the environment and implicated in damage to the liver leading to a fatty liver phenotype called hepatocellular steatosis. Our goal is to provide a basis for PFOA-induced hepatocellular steatosis in relation to epigenetic alterations and mRNA splicing. Young adult female mice exposed to different concentrations of PFOA showed an increase in liver weight with decreased global DNA methylation (5-mC). At higher concentrations, the expression of DNA methyltransferase 3A (Dnmt3a) was significantly reduced and the expression of tet methycytosine dioxygenase 1 (Tet1) was significantly increased. There was no significant change in the other Dnmts and Tets. PFOA exposure significantly increased the expression of cell cycle regulators and anti-apoptotic genes. The expression of multiple genes involved in mTOR (mammalian target of rapamycin) signaling pathway were altered significantly with reduction in Pten (phosphatase and tensin homolog, primary inhibitor of mTOR pathway) expression. Multiple splicing factors whose protein but not mRNA levels affected by PFOA exposure were identified. The changes in protein abundance of the splicing factors was also reflected in altered splicing pattern of their target genes, which provided new insights on the previously unexplored mechanisms of PFOA-mediated hepatotoxicity and pathogenesis.
Collapse
Affiliation(s)
- Yi Wen
- Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA; Cancer Center at Illinois (CCIL), University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jackie Chen
- Department of Biochemistry, School of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Junya Li
- Department of Biochemistry, School of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Waqar Arif
- Department of Biochemistry, School of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, School of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois (CCIL), University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Joseph Irudayaraj
- Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA; Micro and Nanotechnology Laboratory. University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Cancer Center at Illinois (CCIL), University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
36
|
Wagner JB, Abdel-Rahman S, Gaedigk A, Gaedigk R, Raghuveer G, Staggs VS, Van Haandel L, Leeder JS. Impact of SLCO1B1 Genetic Variation on Rosuvastatin Systemic Exposure in Pediatric Hypercholesterolemia. Clin Transl Sci 2020; 13:628-637. [PMID: 31981411 PMCID: PMC7214659 DOI: 10.1111/cts.12749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022] Open
Abstract
This study investigated the impact of SLCO1B1 genotype on rosuvastatin systemic exposure in hypercholesterolemic children and adolescents. Participants (8–21 years) with at least one allelic variant of SLCO1B1 c.521T>C (521TC, n = 13; 521CC, n = 2) and wild type controls (521TT, n = 13) completed a single oral dose pharmacokinetic study. The variability contributed by SLCO1B1 c.521 sequence variation to rosuvastatin (RVA) systemic exposure among our pediatric cohort was comparable to previous studies in adults. RVA concentration‐time curve from 0–24 hours (AUC0–24) was 1.4‐fold and 2.2‐fold higher in participants with c.521TC and c.521CC genotype compared 521TT participants, respectively. Interindividual variability of RVA exposure within SLCO1B1 genotype groups exceeded the ~ 1.5‐fold to 2‐fold difference in mean RVA exposure observed among SLCO1B1 genotype groups, suggesting that other factors also contribute to interindividual variability in the rosuvastatin dose‐exposure relationship. A multivariate model performed confirmed SLCO1B1 c.521T>C genotype as the primary factor contributing to RVA systemic exposure in this pediatric cohort, accounting for ~ 30% of the variability RVA AUC0–24. However, of the statins investigated to date in the pediatric population, RVA has the lowest magnitude of variability in systemic exposure.
Collapse
Affiliation(s)
- Jonathan B Wagner
- Ward Family Heart Center, Children's Mercy, Kansas City, Missouri, USA.,Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Susan Abdel-Rahman
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Roger Gaedigk
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Geetha Raghuveer
- Ward Family Heart Center, Children's Mercy, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Vincent S Staggs
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA.,Health Services & Outcomes Research, Children's Mercy, Kansas City, Missouri, USA
| | - Leon Van Haandel
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| |
Collapse
|
37
|
Subali D, Kwon MH, Bang WS, Kang HE. The pharmacokinetics of mycophenolic acid in rats with orotic acid induced nonalcoholic fatty liver disease. Can J Physiol Pharmacol 2020; 98:169-176. [DOI: 10.1139/cjpp-2019-0383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Post-transplantation nonalcoholic fatty liver disease (NAFLD) is common in liver transplant recipients. Changes in the expression levels and activities of drug-metabolizing enzymes and drug transporters have been reported in patients with NAFLD and relevant rodent models. Here, we evaluated whether the pharmacokinetics of mycophenolic acid (MPA), an immunosuppressant, would be altered in rats with NAFLD. NAFLD was induced by feeding a diet containing 1% (w/w) orotic acid for 20 days. The extent of hepatic glucuronidation of MPA to a major metabolite, mycophenolic acid-7-O-glucuronide (MPAG), did not differ between rats with NAFLD and controls. The expression levels of hepatic multidrug resistance-associated protein 2, responsible for biliary excretion of MPAG, were comparable in rats with NAFLD and controls; the biliary excretion of MPAG was also similar in the two groups. Compared with control rats, rats with NAFLD did not exhibit significant changes in the areas under the plasma concentration – time curves of MPA or MPAG after intravenous (5 mg/kg) or oral (10 mg/kg) administration of MPA. However, delayed oral absorption of MPA was observed in rats with NAFLD compared with controls; the MPA and MPAG peak plasma concentrations fell significantly and the times to achieve them were prolonged following oral administration of MPA.
Collapse
Affiliation(s)
- Dionysius Subali
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, Catholic University of Korea, Bucheon 14662, South Korea
| | - Mi Hye Kwon
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, Catholic University of Korea, Bucheon 14662, South Korea
| | - Won Seok Bang
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, Catholic University of Korea, Bucheon 14662, South Korea
| | - Hee Eun Kang
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, Catholic University of Korea, Bucheon 14662, South Korea
| |
Collapse
|
38
|
Veyel D, Wenger K, Broermann A, Bretschneider T, Luippold AH, Krawczyk B, Rist W, Simon E. Biomarker discovery for chronic liver diseases by multi-omics - a preclinical case study. Sci Rep 2020; 10:1314. [PMID: 31992752 PMCID: PMC6987209 DOI: 10.1038/s41598-020-58030-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a major cause of liver fibrosis with increasing prevalence worldwide. Currently there are no approved drugs available. The development of new therapies is difficult as diagnosis and staging requires biopsies. Consequently, predictive plasma biomarkers would be useful for drug development. Here we present a multi-omics approach to characterize the molecular pathophysiology and to identify new plasma biomarkers in a choline-deficient L-amino acid-defined diet rat NASH model. We analyzed liver samples by RNA-Seq and proteomics, revealing disease relevant signatures and a high correlation between mRNA and protein changes. Comparison to human data showed an overlap of inflammatory, metabolic, and developmental pathways. Using proteomics analysis of plasma we identified mainly secreted proteins that correlate with liver RNA and protein levels. We developed a multi-dimensional attribute ranking approach integrating multi-omics data with liver histology and prior knowledge uncovering known human markers, but also novel candidates. Using regression analysis, we show that the top-ranked markers were highly predictive for fibrosis in our model and hence can serve as preclinical plasma biomarkers. Our approach presented here illustrates the power of multi-omics analyses combined with plasma proteomics and is readily applicable to human biomarker discovery.
Collapse
Affiliation(s)
- Daniel Veyel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Birkendorfer Str. 65, D-88397, Biberach Riss, Germany
| | - Kathrin Wenger
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Birkendorfer Str. 65, D-88397, Biberach Riss, Germany
| | - Andre Broermann
- Boehringer Ingelheim Pharma GmbH & Co. KG, CardioMetabolic Diseases Research, Birkendorfer Str. 65, D-88397, Biberach Riss, Germany
| | - Tom Bretschneider
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Birkendorfer Str. 65, D-88397, Biberach Riss, Germany
| | - Andreas H Luippold
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Birkendorfer Str. 65, D-88397, Biberach Riss, Germany
| | - Bartlomiej Krawczyk
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Birkendorfer Str. 65, D-88397, Biberach Riss, Germany
| | - Wolfgang Rist
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Birkendorfer Str. 65, D-88397, Biberach Riss, Germany.
| | - Eric Simon
- Boehringer Ingelheim Pharma GmbH & Co. KG, Computational Biology, Birkendorfer Str. 65, D-88397, Biberach Riss, Germany.
| |
Collapse
|
39
|
Vildhede A, Kimoto E, Pelis RM, Rodrigues AD, Varma MV. Quantitative Proteomics and Mechanistic Modeling of Transporter‐Mediated Disposition in Nonalcoholic Fatty Liver Disease. Clin Pharmacol Ther 2019; 107:1128-1137. [DOI: 10.1002/cpt.1699] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Anna Vildhede
- Medicine Design Worldwide R&D Pfizer Inc. Groton Connecticut USA
| | - Emi Kimoto
- Medicine Design Worldwide R&D Pfizer Inc. Groton Connecticut USA
| | - Ryan M. Pelis
- Department of Pharmaceutical Sciences Binghamton University Binghamton New York USA
| | | | | |
Collapse
|
40
|
Toth EL, Clarke JD, Csanaky IL, Cherrington NJ. Interaction of Oatp1b2 expression and nonalcoholic steatohepatitis on pravastatin plasma clearance. Biochem Pharmacol 2019; 174:113780. [PMID: 31881192 DOI: 10.1016/j.bcp.2019.113780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/23/2019] [Indexed: 02/09/2023]
Abstract
The downregulation of hepatic uptake transporters, including those of the OATP family, are a well known consequence of nonalcoholic steatohepatitis (NASH). Prior studies have shown that the combination of NASH and Oatp1b2 knockout synergistically reduces the clearance of pravastatin (PRAV) in the methionine and choline deficient (MCD) mouse model of NASH, and the current study therefore aimed to determine the impact of NASH and genetic heterozygosity of Oatp1b2 on PRAV clearance, modeling the overlap between the 24% of the human population who are heterozygous for non-functioning OATP1B1, and the ~15% with NASH, potentially placing these people at higher risk of statin-induced myopathy. Therefore, male C57BL/6 wild-type (WT), Oatp1b2+/- (HET), and Oatp1b2-/- (KO) mice were fed either a control (methionine and choline sufficient) or methionine and choline-deficient (MCD) diet to induce NASH. After six weeks of feeding, pravastatin was administered via the carotid artery. Blood and bile samples were collected throughout 90 min after PRAV administration. The concentration of PRAV in plasma, bile, liver, kidney, and muscle was determined by liquid chromatography-tandem mass spectrometry. MCD diet did not alter the plasma AUC values of PRAV in either WT or HET mice. However, the MCD diet increased plasma AUC by 4.4-fold in KO mice. MCD diet and nonfunctional Oatp1b2 synergistically increased not only plasma AUC but also the extrahepatic tissue concentration of pravastatin, whereas the partially decreased function of Oatp1b2 and NASH together were insufficient in significantly altering PRAV pharmacokinetics. These data suggest that a single copy of fully functional OATP1B1 in NASH patients may be sufficient to avoid the increase of pravastatin toxicity.
Collapse
Affiliation(s)
- Erica L Toth
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States
| | - John D Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, United States
| | - Iván L Csanaky
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation & Division of Gastroenterology, Children's Mercy Hospital, Kansas City, MO 64108, United States; Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
41
|
Li T, Yan H, Geng Y, Shi H, Li H, Wang S, Wang Y, Xu J, Zhao G, Lu X. Target genes associated with lipid and glucose metabolism in non-alcoholic fatty liver disease. Lipids Health Dis 2019; 18:211. [PMID: 31805951 PMCID: PMC6894500 DOI: 10.1186/s12944-019-1154-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
Background Insulin resistance (IR) and lipid peroxidation are accepted as ‘two-hit’ hypothesis of Non-alcoholic fatty liver disease (NAFLD). However, there are few published research on identifying genes which connect lipid and glucose metabolism by gene microarray. Objective To identify target genes related to lipid and glucose metabolism that might be responsible for the pathogenesis of NAFLD. Methods A rat model of NAFLD was established by feeding male rats with high-fat diet and gene expression profiles of liver tissues were determined using Agilent DNA microarray. We then investigated differentially expressed genes (DEGs) and intersection of them by using Gene Ontology (GO) and Pathway Analyses. Target genes were verified by Real-time polymerase chain reaction (RT-PCR). Results Compared with control, 932 genes, including 783 up-regulated and 149 down-regulated, exhibited differences in expression. The up-regulated genes were involved in biosynthesis, cell development, cell differentiation and down-regulated genes contributed to biological metabolic process, adipokine metabolic pathway and insulin signaling pathway. We identified genes involved in insulin signaling pathway, Notch signaling pathway and lipid synthetic process to be closely related to liver fat accumulation and insulin resistance. Among them, IGFBP7, Notch1 and HMGCR were up-regulated (2.85-fold, 3.22-fold, and 2.06-fold, respectively, all P < 0.05) and ACACB was down-regulated (2.08-fold, P < 0.01). These four genes supposed to connect lipid and glucose metabolism after GO and Pathway analyses. Conclusions These findings provide innovative information on the whole genome expression profile due to high-fat diet feeding, and bring new insight into the regulating effects of genes on the lipid and glucose metabolism of NAFLD.
Collapse
Affiliation(s)
- Ting Li
- Health Science Center, Xi'an Jiaotong University, NO.76 Yanta West Road, Xi'an, 710061, China
| | - Hua Yan
- Department of Geratology, Shaanxi Provincal People's Hospital, Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, China
| | - Yan Geng
- Department of Paediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157 West 5th Road, Xi'an, 710004, China
| | - Hong Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157 West 5th Road, Xi'an, 710004, China
| | - Shenhao Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157 West 5th Road, Xi'an, 710004, China
| | - Yatao Wang
- Health Science Center, Xi'an Jiaotong University, NO.76 Yanta West Road, Xi'an, 710061, China
| | - Jingyuan Xu
- Health Science Center, Xi'an Jiaotong University, NO.76 Yanta West Road, Xi'an, 710061, China
| | - Gang Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157 West 5th Road, Xi'an, 710004, China
| | - Xiaolan Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157 West 5th Road, Xi'an, 710004, China. .,Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China.
| |
Collapse
|
42
|
Lykke Eriksen P, Sørensen M, Grønbæk H, Hamilton-Dutoit S, Vilstrup H, Thomsen KL. Non-alcoholic fatty liver disease causes dissociated changes in metabolic liver functions. Clin Res Hepatol Gastroenterol 2019; 43:551-560. [PMID: 30770336 DOI: 10.1016/j.clinre.2019.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a major health concern affecting 25% of the world's population. It is generally held that a fatty liver does not influence liver function, but quantitative measurements of metabolic liver functions have not been systematically performed. We aimed to study selected hepatocellular metabolic functions in patients with different stages of NAFLD. METHODS Twenty-five non-diabetic, biopsy-proven NAFLD patients [12 with simple steatosis; 13 with non-alcoholic steatohepatitis (NASH)] and ten healthy controls were included in a cross-sectional study. Hepatocyte cytosolic function was assessed by the galactose elimination capacity (GEC), mitochondrial-cytosolic metabolic capacity by the functional hepatic nitrogen clearance (FHNC), microsomal function by the aminopyrine breath test, and excretory liver function by indocyanine green (ICG) elimination. RESULTS GEC was 20% higher in NAFLD than in controls [3.15 mmol/min (2.9-3.41) vs. 2.62 (2.32-2.93); P = 0.02]. FHNC was 30% lower in NAFLD [23.3 L/h (18.7-28.9) vs. 33.1 (28.9-37.9); P = 0.04], more so in simple steatosis [19.1 L/h (13.9-26.2); P = 0.003] and non-significantly in NASH [27.9 L/h (20.6-37.8); P = 0.19]. Aminopyrine metabolism was 25% lower in simple steatosis [8.9% (7.0-10.7)] and 50% lower in NASH [6.0% (4.5-7.5)] than in controls [11.9% (9.3-12.8)] (P < 0.001). ICG elimination was intact. CONCLUSIONS The hepatocellular metabolic functions were altered in a manner that was dissociated both by different effects on different liver functions and by different effects of different stages of NAFLD. Thus, NAFLD has widespread consequences for metabolic liver function, even in simple steatosis.
Collapse
Affiliation(s)
- Peter Lykke Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens boulevard 99, Aarhus, Denmark.
| | - Michael Sørensen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens boulevard 99, Aarhus, Denmark
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens boulevard 99, Aarhus, Denmark
| | - Stephen Hamilton-Dutoit
- Institute of Pathology, Aarhus University Hospital, Palle Juul-Jensens boulevard 99, Aarhus, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens boulevard 99, Aarhus, Denmark
| | - Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens boulevard 99, Aarhus, Denmark
| |
Collapse
|
43
|
He Y, Hwang S, Cai Y, Kim SJ, Xu M, Yang D, Guillot A, Feng D, Seo W, Hou X, Gao B. MicroRNA-223 Ameliorates Nonalcoholic Steatohepatitis and Cancer by Targeting Multiple Inflammatory and Oncogenic Genes in Hepatocytes. Hepatology 2019; 70:1150-1167. [PMID: 30964207 PMCID: PMC6783322 DOI: 10.1002/hep.30645] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of diseases ranging from simple steatosis to more severe forms of liver injury including nonalcoholic steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma (HCC). In humans, only 20%-40% of patients with fatty liver progress to NASH, and mice fed a high-fat diet (HFD) develop fatty liver but are resistant to NASH development. To understand how simple steatosis progresses to NASH, we examined hepatic expression of anti-inflammatory microRNA-223 (miR-223) and found that this miRNA was highly elevated in hepatocytes in HFD-fed mice and in human NASH samples. Genetic deletion of miR-223 induced a full spectrum of NAFLD in long-term HFD-fed mice including steatosis, inflammation, fibrosis, and HCC. Furthermore, microarray analyses revealed that, compared to wild-type mice, HFD-fed miR-223 knockout (miR-223KO) mice had greater hepatic expression of many inflammatory genes and cancer-related genes, including (C-X-C motif) chemokine 10 (Cxcl10) and transcriptional coactivator with PDZ-binding motif (Taz), two well-known factors that promote NASH development. In vitro experiments demonstrated that Cxcl10 and Taz are two downstream targets of miR-223 and that overexpression of miR-223 reduced their expression in cultured hepatocytes. Hepatic levels of miR-223, CXCL10, and TAZ mRNA were elevated in human NASH samples, which positively correlated with hepatic levels of several miR-223 targeted genes as well as several proinflammatory, cancer-related, and fibrogenic genes. Conclusion: HFD-fed miR-223KO mice develop a full spectrum of NAFLD, representing a clinically relevant mouse NAFLD model; miR-223 plays a key role in controlling steatosis-to-NASH progression by inhibiting hepatic Cxcl10 and Taz expression and may be a therapeutic target for the treatment of NASH.
Collapse
Affiliation(s)
- Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yan Cai
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seung-Jin Kim
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mingjiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dingcheng Yang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adrien Guillot
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wonhyo Seo
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xin Hou
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
44
|
Tsoulfas G. Hepatocellular carcinoma and metabolic syndrome: The times are changing and so should we. World J Gastroenterol 2019; 25:3842-3848. [PMID: 31413522 PMCID: PMC6689805 DOI: 10.3748/wjg.v25.i29.3842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/03/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Although hepatocellular carcinoma (HCC) is as prevalent as ever as a cancer-related mortality, and some would even argue that it is increasing, the pattern of its etiologies has been changing. Specifically, the domination of viral hepatitis C virus is being overcome, partly because of the emergence of the antiviral treatments, and partly because of the significant increase, especially in developed countries, of the combination of obesity, diabetes, metabolic syndrome, non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. This editorial will explore the interconnection of this group of diseases and how they are linked to HCC. More importantly, it will argue that this shift in HCC etiology essentially means that we have to change how we approach the treatment of HCC, by changing our focus (and resources) to earlier stages of the disease development in order to prevent the appearance and progression of HCC.
Collapse
Affiliation(s)
- Georgios Tsoulfas
- Department of Surgery, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
45
|
Lyall MJ, Thomson JP, Cartier J, Ottaviano R, Kendall TJ, Meehan RR, Drake AJ. Non-alcoholic fatty liver disease (NAFLD) is associated with dynamic changes in DNA hydroxymethylation. Epigenetics 2019; 15:61-71. [PMID: 31389294 PMCID: PMC6961686 DOI: 10.1080/15592294.2019.1649527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now the commonest cause of liver disease in developed countries affecting 25-33% of the general population and up to 75% of those with obesity. Recent data suggest that alterations in DNA methylation may be related to NAFLD pathogenesis and progression and we have previously shown that dynamic changes in the cell lineage identifier 5-hydroxymethylcytosine (5hmC) may be important in the pathogenesis of liver disease. We used a model of diet-induced obesity, maintaining male mice on a high-fat diet (HFD) to generate hepatic steatosis. We profiled hepatic gene expression, global and locus-specific 5hmC and additionally investigated the effects of weight loss on the phenotype. HFD led to increased weight gain, fasting hyperglycaemia, glucose intolerance, insulin resistance and hepatic periportal macrovesicular steatosis. Diet-induced hepatic steatosis associated with reversible 5hmC changes at a discrete number of functionally important genes. We propose that 5hmC profiles are a useful signature of gene transcription and a marker of cell state in NAFLD and suggest that 5hmC profiles hold potential as a biomarker of abnormal liver physiology.
Collapse
Affiliation(s)
- Marcus J Lyall
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - John P Thomson
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Jessy Cartier
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Raffaele Ottaviano
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Timothy J Kendall
- MRC Centre for Inflammation Research, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.,Division of Pathology, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Richard R Meehan
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
46
|
Li J, Halfter K, Zhang M, Saad C, Xu K, Bauer B, Huang Y, Shi L, Mansmann UR. Computational analysis of receptor tyrosine kinase inhibitors and cancer metabolism: implications for treatment and discovery of potential therapeutic signatures. BMC Cancer 2019; 19:600. [PMID: 31208363 PMCID: PMC6580552 DOI: 10.1186/s12885-019-5804-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/06/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Receptor tyrosine kinase (RTK) inhibitors are frequently used to treat cancers and the results have been mixed, some of these small molecule drugs are highly successful while others show a more modest response. A high number of studies have been conducted to investigate the signaling mechanisms and corresponding therapeutic influence of RTK inhibitors in order to explore the therapeutic potential of RTK inhibitors. However, most of these studies neglected the potential metabolic impact of RTK inhibitors, which could be highly associated with drug efficacy and adverse effects during treatment. METHODS In order to fill these knowledge gaps and improve the therapeutic utilization of RTK inhibitors a large-scale computational simulation/analysis over multiple types of cancers with the treatment responses of RTK inhibitors was performed. The pharmacological data of all eight RTK inhibitor and gene expression profiles of 479 cell lines from The Cancer Cell Line Encyclopedia were used. RESULTS The potential metabolic impact of RTK inhibitors on different types of cancers were analyzed resulting in cancer-specific (breast, liver, pancreas, central nervous system) metabolic signatures. Many of these are in line with results from different independent studies, thereby providing indirect verification of the obtained results. CONCLUSIONS Our study demonstrates the potential of using a computational approach on signature-based-analysis over multiple cancer types. The results reveal the strength of multiple-cancer analysis over conventional signature-based analysis on a single cancer type.
Collapse
Affiliation(s)
- Jian Li
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University München, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kathrin Halfter
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University München, Munich, Germany
| | - Mengying Zhang
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University München, Munich, Germany
| | - Christian Saad
- Department of Computational Science, University of Augsburg, Augsburg, Germany
| | - Kai Xu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Bernhard Bauer
- Department of Computational Science, University of Augsburg, Augsburg, Germany
| | - Yijiang Huang
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU, Munich, Germany
| | - Lei Shi
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Ulrich R. Mansmann
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University München, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
47
|
Pandey V, Hatzimanikatis V. Investigating the deregulation of metabolic tasks via Minimum Network Enrichment Analysis (MiNEA) as applied to nonalcoholic fatty liver disease using mouse and human omics data. PLoS Comput Biol 2019; 15:e1006760. [PMID: 31002661 PMCID: PMC6493771 DOI: 10.1371/journal.pcbi.1006760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 05/01/2019] [Accepted: 01/06/2019] [Indexed: 01/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with metabolic syndromes spanning a wide spectrum of diseases, from simple steatosis to the more complex nonalcoholic steatohepatitis. To identify the deregulation that occurs in metabolic processes at the molecular level that give rise to these various NAFLD phenotypes, algorithms such as pathway enrichment analysis (PEA) can be used. These analyses require the use of predefined pathway maps, which are composed of reactions describing metabolic processes/subsystems. Unfortunately, the annotation of the metabolic subsystems can differ depending on the pathway database used, making these approaches subject to biases associated with different pathway annotations, and these methods cannot capture the balancing of cofactors and byproducts through the complex nature and interactions of genome-scale metabolic networks (GEMs). Here, we introduce a framework entitled Minimum Network Enrichment Analysis (MiNEA) that is applied to GEMs to generate all possible alternative minimal networks (MiNs), which are possible and feasible networks composed of all the reactions pertaining to various metabolic subsystems that can synthesize a target metabolite. We applied MiNEA to investigate deregulated MiNs and to identify key regulators in different NAFLD phenotypes, such as a fatty liver and liver inflammation, in both humans and mice by integrating condition-specific transcriptomics data from liver samples. We identified key deregulations in the synthesis of cholesteryl esters, cholesterol, and hexadecanoate in both humans and mice, and we found that key regulators of the hydrogen peroxide synthesis network were regulated differently in humans and mice. We further identified which MiNs demonstrate the general and specific characteristics of the different NAFLD phenotypes. MiNEA is applicable to any GEM and to any desired target metabolite, making MiNEA flexible enough to study condition-specific metabolism for any given disease or organism. This work aims to introduce a network-based enrichment analysis using metabolic networks and transcriptomics data. Previous pathways/subsystems enrichment methods use predefined gene annotations of metabolic processes and gene annotations can differ based on different resources and can produce bias in pathway definitions. Thus, we introduce a framework, Minimum Network Enrichment Analysis (MiNEA), which first finds all possible minimal-size networks for a given metabolic process/task and then identifies deregulated minimal networks using deregulated genes between two conditions. MiNEA also identifies the deregulation in key reactions that are overlapped across all possible minimal-size networks. We applied MiNEA to identify deregulated metabolic tasks and their synthesis networks in the steatosis and the nonalcoholic steatohepatitis (NASH) diseases using a metabolic network and transcriptomics data of mouse and human liver samples. We identified key regulators of NASH for the synthesis networks of hydrogen peroxide and ceramide in both humans and mice. We also identified opposite deregulation in NASH for the phosphatidylserine synthesis network between humans and mice. MiNEA finds synthesis networks for a given target metabolite and due to this it is flexible to study deregulation in different phenotypes. MiNEA can be widely applicable for studying context-specific metabolism for any organism because the metabolic networks and context-specific gene expression data are now available for many organisms.
Collapse
Affiliation(s)
- Vikash Pandey
- Laboratory of Computational Systems Biotechnology, EPFL, Lausanne, Switzerland
| | | |
Collapse
|
48
|
Kurzawski M, Szeląg-Pieniek S, Łapczuk-Romańska J, Wrzesiński M, Sieńko J, Oswald S, Droździk M. The reference liver - ABC and SLC drug transporters in healthy donor and metastatic livers. Pharmacol Rep 2019; 71:738-745. [PMID: 31207436 DOI: 10.1016/j.pharep.2019.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Analysis of results and conclusions in studies dedicated to pathology of the liver are usually based on comparison of pathological liver specimens and control/reference (considered as healthy) tissues. There are two main sources of the control liver samples used as the reference livers, i.e. deceased organ donor livers and non-tumorous tissue from metastatic livers, which are also applied for drug transporter investigations. However, no information has yet been published on drug transporters in these two major types of reference livers. METHODS We explored ABC (P-gp, MRP1, MRP2, MRP3, MRP4, BCRP, BSEP) and SLC (NTCP, MCT1, OCT1, OCT3, OAT2, OATP1B1, OATP1B3, OATP2B1) family transporters expression (qPCR) and protein abundance (LC-MS/MS) in healthy donors (n = 9) and metastatic (n = 13) livers. RESULTS The analysis of mRNA content revealed significant differences in ABCB11, ABCC1, ABCG2, SLC10A1, SLC16A1, SLCO1B1 and SLCO2B1 gene expression between livers from organ donors and patients who underwent surgical resection of metastatic tumors. The protein abundance of NTCP was significantly higher, whereas of P-gp significantly lower in non-tumorous tissues from metastatic livers. Greater inter-individual variability in protein abundance of all studied transporters in subjects with metastatic colon cancer was also observed. CONCLUSIONS The results suggest that final conclusions in liver pathology studies may depend on the reference liver tissue used, especially in gene expression studies.
Collapse
Affiliation(s)
- Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland.
| | - Sylwia Szeląg-Pieniek
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Joanna Łapczuk-Romańska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Maciej Wrzesiński
- Department of General and Transplantation Surgery, Marie Curie Regional Hospital, Szczecin, Poland
| | - Jerzy Sieńko
- Department of General and Transplantation Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Stefan Oswald
- Department of Clinical Pharmacology, University Medicine of Greifswald, Greifswald, Germany
| | - Marek Droździk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
49
|
Wagner JB, Abdel-Rahman S, Gaedigk R, Gaedigk A, Raghuveer G, Staggs VS, Kauffman R, Van Haandel L, Leeder JS. Impact of Genetic Variation on Pravastatin Systemic Exposure in Pediatric Hypercholesterolemia. Clin Pharmacol Ther 2019; 105:1501-1512. [PMID: 30549267 DOI: 10.1002/cpt.1330] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/20/2018] [Indexed: 11/07/2022]
Abstract
This study investigated the impact of SLCO1B1 genotype on pravastatin systemic exposure in children and adolescents with hypercholesterolemia. Participants (8-20 years) with at least one allelic variant of SLCO1B1 c.521T>C (521TC, n = 15; 521CC, n = 2) and wild-type controls (521TT, n = 15) completed a single oral dose pharmacokinetic study. Interindividual variability of pravastatin acid (PVA) exposure within SLCO1B1 genotype groups exceeded the approximately twofold difference in mean PVA exposure observed between SLCO1B1 genotype groups (P > 0.05, q > 0.10). The 3'α-iso-pravastatin acid and lactone isomer formation in the acidic environment of the stomach prior to absorption also was variable and affected PVA exposure in all genotype groups. The SLCO1B1 c.521 gene variant contributing to variability in systemic exposure to PVA in our pediatric cohort was comparable to previous studies in adults. However, other demographic and physicochemical factors seem to also contribute to interindividual variability in the dose-exposure relationship.
Collapse
Affiliation(s)
- Jonathan B Wagner
- Ward Family Heart Center, Children's Mercy, Kansas City, Missouri, USA
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Susan Abdel-Rahman
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Roger Gaedigk
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Geetha Raghuveer
- Ward Family Heart Center, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Vincent S Staggs
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
- Health Services & Outcomes Research, Children's Mercy, Kansas City, Missouri, USA
| | - Ralph Kauffman
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Leon Van Haandel
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| |
Collapse
|
50
|
Toth EL, Li H, Dzierlenga AL, Clarke JD, Vildhede A, Goedken M, Cherrington NJ. Gene-by-Environment Interaction of Bcrp -/- and Methionine- and Choline-Deficient Diet-Induced Nonalcoholic Steatohepatitis Alters SN-38 Disposition. Drug Metab Dispos 2018; 46:1478-1486. [PMID: 30166404 PMCID: PMC6193212 DOI: 10.1124/dmd.118.082081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022] Open
Abstract
Disease progression to nonalcoholic steatohepatitis (NASH) has profound effects on the expression and function of drug-metabolizing enzymes and transporters, which provide a mechanistic basis for variable drug response. Breast cancer resistance protein (BCRP), a biliary efflux transporter, exhibits increased liver mRNA expression in NASH patients and preclinical NASH models, but the impact on function is unknown. It was shown that the transport capacity of multidrug resistance protein 2 (MRP2) is decreased in NASH. SN-38, the active irinotecan metabolite, is reported to be a substrate for Bcrp, whereas SN-38 glucuronide (SN-38G) is a Mrp2 substrate. The purpose of this study was to determine the function of Bcrp in NASH through alterations in the disposition of SN-38 and SN-38G in a Bcrp knockout (Bcrp-/- KO) and methionine- and choline-deficient (MCD) model of NASH. Sprague Dawley [wild-type (WT)] rats and Bcrp-/- rats were fed either a methionine- and choline-sufficient (control) or MCD diet for 8 weeks to induce NASH. SN-38 (10 mg/kg) was administered i.v., and blood and bile were collected for quantification by liquid chromatography-tandem mass spectrometry. In Bcrp-/- rats on the MCD diet, biliary efflux of SN-38 decreased to 31.9%, and efflux of SN-38G decreased to 38.7% of control, but WT-MCD and KO-Control were unaffected. These data indicate that Bcrp is not solely responsible for SN-38 biliary efflux, but rather implicate a combined role for BCRP and MRP2. Furthermore, the disposition of SN-38 and SN-38G is altered by Bcrp-/- and NASH in a gene-by-environment interaction and may result in variable drug response to irinotecan therapy in polymorphic patients.
Collapse
Affiliation(s)
- Erica L Toth
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (E.L.T., H.L., A.L.D., N.J.C.); Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.D.C.); Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide Research and Development, Groton, Connecticut (A.V.); and Research Pathology Services, Rutgers University, Newark, New Jersey (M.G.)
| | - Hui Li
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (E.L.T., H.L., A.L.D., N.J.C.); Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.D.C.); Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide Research and Development, Groton, Connecticut (A.V.); and Research Pathology Services, Rutgers University, Newark, New Jersey (M.G.)
| | - Anika L Dzierlenga
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (E.L.T., H.L., A.L.D., N.J.C.); Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.D.C.); Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide Research and Development, Groton, Connecticut (A.V.); and Research Pathology Services, Rutgers University, Newark, New Jersey (M.G.)
| | - John D Clarke
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (E.L.T., H.L., A.L.D., N.J.C.); Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.D.C.); Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide Research and Development, Groton, Connecticut (A.V.); and Research Pathology Services, Rutgers University, Newark, New Jersey (M.G.)
| | - Anna Vildhede
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (E.L.T., H.L., A.L.D., N.J.C.); Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.D.C.); Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide Research and Development, Groton, Connecticut (A.V.); and Research Pathology Services, Rutgers University, Newark, New Jersey (M.G.)
| | - Michael Goedken
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (E.L.T., H.L., A.L.D., N.J.C.); Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.D.C.); Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide Research and Development, Groton, Connecticut (A.V.); and Research Pathology Services, Rutgers University, Newark, New Jersey (M.G.)
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (E.L.T., H.L., A.L.D., N.J.C.); Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.D.C.); Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide Research and Development, Groton, Connecticut (A.V.); and Research Pathology Services, Rutgers University, Newark, New Jersey (M.G.)
| |
Collapse
|