1
|
Rascher J, Cheng S, Johnston C, Härtter S, Jan-Georg W, Marquard J, Tartakovsky I, Laffel LMB. Pharmacokinetics and pharmacodynamics of empagliflozin in paediatric patients aged 10-17 years with type 2 diabetes mellitus. Br J Clin Pharmacol 2025. [PMID: 40390307 DOI: 10.1002/bcp.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 05/21/2025] Open
Abstract
AIMS To characterize the pharmacokinetics (PK) and PK/pharmacodynamics (PD) regarding glycosylated haemoglobin (HbA1c) lowering using the paediatric data from DINAMO and to assess differences compared with adults. METHODS Population PK and PK/PD models previously developed for empagliflozin in adults and adolescents were re-estimated in a Bayesian framework. The PK model included 223 observations from 74 patients receiving empagliflozin 10 mg and 25 mg and the PK/PD model used 394 observations from 103 patients receiving empagliflozin (n = 52) or placebo (n = 51). RESULTS Empagliflozin PK was well described by a 2-compartment model with sequential zero-order and first-order absorption, with tested covariate effects of sex, age, race and estimated glomerular filtration rate on apparent clearance, and fixed allometric exponents on apparent clearance, apparent central volume of distribution, apparent intercompartmental clearance and apparent peripheral volume of distribution. Simulations of area under the curve at steady state (AUCss) demonstrated that adult and paediatric subjects exhibit similar AUCss. The PK/PD data were adequately described by a turnover model with disease progression and AUCss inhibiting the HbA1c synthesis through an inhibitory maximum effect relationship. Simulations showed that the placebo-adjusted HbA1c decrease at Week 26 in the paediatric population was larger than that in the adult population (-0.699 vs. -0.528%). CONCLUSION A Bayesian estimation framework enabled the characterization of empagliflozin PK and PK/PD with a limited number of samples in paediatric patients aged 10-17 years. Overall, the results confirm 10 and 25 mg as the appropriate empagliflozin doses in paediatric patients aged 10-17 years with type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | - Shen Cheng
- Metrum Research Group, Tariffville, CT, USA
| | | | | | | | - Jan Marquard
- Boehringer Ingelheim Pharma, Ridgefield, CT, USA
| | | | - Lori M B Laffel
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Wang Z, Yang Y, Cao Z, Dallmann A, Hu W, Zhang W, Zhang Q, Zheng L. Physiologically based pharmacokinetic modeling of tapentadol in children to support pediatric dose selection. J Pharm Sci 2025; 114:103830. [PMID: 40349928 DOI: 10.1016/j.xphs.2025.103830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Tapentadol, an effective opioid analgesic, is indicated for the treatment of pain that cannot be managed with non-opioid medications. This study employed a physiologically based pharmacokinetic (PBPK) model to characterize the disposition of tapentadol in children across different age groups and to refine pediatric dosing strategies. Initially, an adult PBPK model was developed using the 'middle-out' strategy, which was then adjusted by scaling anatomical and physiological parameters to apply it to pediatric populations. The model's precision was confirmed by comparing the simulated plasma concentrations in a virtual population with empirical data. Utilizing this model, we translated dosages from adults to children and assessed weight-adjusted dosages for children aged 2 to 18 years and those under 2 years. The ratios of predicted to observed pharmacokinetic (PK) parameters for adult tapentadol ranged from 0.80 to 1.40 with the pediatric population's predictive mean absolute prediction error (MAPE) being less than 0.45. Based on model validation, we have established the following fixed-dose regimen for tapentadol oral solution for children across various age groups: 2.5 mg for 0-1 month, 3.5 mg for 1-3 months, 5 mg for 3-6 months, 8.5 mg for 6 months to 1 year, 13 mg for 1-2 years, 20 mg for 2-6 years, 35 mg for 6-12 years, and 60 mg for 12-18 years. The results of this study may offer guidance for the clinical investigation of tapentadol in pediatric patients and for developing PBPK models for drugs undergoing multiple metabolic pathways.
Collapse
Affiliation(s)
- Zilong Wang
- School of Pharmacy, Anhui Medical University, Hefei 230601, China; Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yujie Yang
- Department of Pharmacy, The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Zhihai Cao
- School of Pharmacy, Anhui Medical University, Hefei 230601, China; Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - André Dallmann
- Bayer HealthCare SAS Lille, France on behalf of, Model-Informed Drug Development, Research & Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Zhang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Qian Zhang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Liang Zheng
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
3
|
Farhan N, Dahal UP, Wahlstrom J. Development and Evaluation of Ontogeny Functions of the Major UDP-Glucuronosyltransferase Enzymes to Underwrite Physiologically Based Pharmacokinetic Modeling in Pediatric Populations. J Clin Pharmacol 2024; 64:1222-1235. [PMID: 38898531 DOI: 10.1002/jcph.2484] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
Uridine 5'-diphospho-glucuronosyltransferases (UGTs) demonstrate variable expression in the pediatric population. Thus, understanding of age-dependent maturation of UGTs is critical for accurate pediatric pharmacokinetics (PK) prediction of drugs that are susceptible for glucuronidation. Ontogeny functions of major UGTs have been previously developed and reported. However, those ontogeny functions are based on in vitro data (i.e., enzyme abundance, in vitro substrate activity, and so on) and therefore, may not translate to in vivo maturation of UGTs in the clinical setting. This report describes meta-analysis of the literature to develop and compare ontogeny functions for 8 primary UGTs (UGT1A1, UGT1A4, UGT1A6, UGT1A9, UGT2B7, UGT2B10, UGT2B15, and UGT2B17) based on published in vitro and in vivo studies. Once integrated with physiologically based pharmacokinetics modeling models, in vivo activity-based ontogeny functions demonstrated somewhat greater prediction accuracy (mean squared error, MSE: 0.05) compared to in vitro activity (MSE: 0.104) and in vitro abundance-based ontogeny functions (MSE: 0.129).
Collapse
Affiliation(s)
- Nashid Farhan
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California, USA
| | - Upendra P Dahal
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California, USA
| | - Jan Wahlstrom
- Pharmacokinetics and Drug Metabolism, Amgen Inc., Thousand Oaks, California, USA
| |
Collapse
|
4
|
Watanabe H, Nagano N, Tsuji Y, Noto N, Ayusawa M, Morioka I. Challenges of pediatric pharmacotherapy: A narrative review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Eur J Clin Pharmacol 2024; 80:203-221. [PMID: 38078929 DOI: 10.1007/s00228-023-03598-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/20/2023] [Indexed: 02/07/2024]
Abstract
PURPOSE Personalized pharmacotherapy, including for the pediatric population, provides optimal treatment and has emerged as a major trend owing to advanced drug therapeutics and diversified drug selection. However, it is essential to understand the growth and developmental characteristics of this population to provide appropriate drug therapy. In recent years, clinical pharmacogenetics has accumulated knowledge in pediatric pharmacotherapy, and guidelines from professional organizations, such as the Clinical Pharmacogenetics Implementation Consortium, can be consulted to determine the efficacy of specific drugs and the risk of adverse effects. However, the existence of a large knowledge gap hinders the use of these findings in clinical practice. METHODS We provide a narrative review of the knowledge gaps in pharmacokinetics (PK) and pharmacodynamics (PD) in the pediatric population, focusing on the differences from the perspective of growth and developmental characteristics. In addition, we explored PK/PD in relation to pediatric clinical pharmacogenetics. RESULTS The lack of direct and indirect biomarkers for more accurate assessment of the effects of drug administration limits the current knowledge of PD. In addition, incorporating pharmacogenetic insights as pivotal covariates is indispensable in this comprehensive synthesis for precision therapy; therefore, we have provided recommendations regarding the current status and challenges of personalized pediatric pharmacotherapy. The integration of clinical pharmacogenetics with the health care system and institution of educational programs for health care providers is necessary for its safe and effective implementation. A comprehensive understanding of the physiological and genetic complexities of the pediatric population will facilitate the development of effective and personalized pharmacotherapeutic strategies.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Kami-cho Ooyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Nobuhiko Nagano
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Kami-cho Ooyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Yasuhiro Tsuji
- Laboratory of Clinical Pharmacometrics, School of Pharmacy, Nihon University, Chiba, Japan
| | - Nobutaka Noto
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Kami-cho Ooyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Mamoru Ayusawa
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Kami-cho Ooyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Kami-cho Ooyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan
| |
Collapse
|
5
|
Dinh J, Johnson TN, Grimstein M, Lewis T. Physiologically Based Pharmacokinetics Modeling in the Neonatal Population-Current Advances, Challenges, and Opportunities. Pharmaceutics 2023; 15:2579. [PMID: 38004559 PMCID: PMC10675397 DOI: 10.3390/pharmaceutics15112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Physiologically based pharmacokinetic (PBPK) modeling is an approach to predicting drug pharmacokinetics, using knowledge of the human physiology involved and drug physiochemical properties. This approach is useful when predicting drug pharmacokinetics in under-studied populations, such as pediatrics. PBPK modeling is a particularly important tool for dose optimization for the neonatal population, given that clinical trials rarely include this patient population. However, important knowledge gaps exist for neonates, resulting in uncertainty with the model predictions. This review aims to outline the sources of variability that should be considered with developing a neonatal PBPK model, the data that are currently available for the neonatal ontogeny, and lastly to highlight the data gaps where further research would be needed.
Collapse
Affiliation(s)
- Jean Dinh
- Certara UK Limited, Sheffield S1 2BJ, UK; (J.D.); (T.N.J.)
| | | | - Manuela Grimstein
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Tamorah Lewis
- Pediatric Clinical Pharmacology & Toxicology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
6
|
Yeung CHT, Beers JL, Jackson KD, Edginton AN. Verifying in vitro-determined enzyme contributions to cannabidiol clearance for exposure predictions in human through physiologically-based pharmacokinetic modeling. CPT Pharmacometrics Syst Pharmacol 2023; 12:320-332. [PMID: 36540909 PMCID: PMC10014054 DOI: 10.1002/psp4.12908] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Cannabidiol (CBD) is approved for treatment of seizures associated with two forms of epilepsy that become apparent in infancy or early childhood. To consider an adult physiologically-based pharmacokinetic (PBPK) model for pediatric scaling, we assessed in vitro-derived cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzyme contributions to CBD clearance in human. An i.v. PBPK model was constructed using CBD physicochemical properties and knowledge of disposition. The i.v. datasets were used for model building and evaluation. Oral PBPK models for CBD administered in fasted and fed states were developed using single dose oral datasets and parameters optimized from the i.v. model and evaluated with multiple dose datasets. Relative contributions of CBD metabolizing enzymes were partitioned according to in vitro studies. Clinical drug-drug interaction (DDI) studies were simulated using CBD fed state, itraconazole, fluconazole, and rifampicin PBPK models. Linear mixed effect modeling was used to estimate area under the concentration-time curve from zero to infinity (AUC0-∞ ) perpetrator + CBD versus CBD alone. The i.v. and oral datasets used in model evaluation produced acceptable average fold error (AFE) of 1.28 and absolute AFE of 1.65. Relative contributions of drug-metabolizing enzymes to CBD clearance were proposed from in vitro data: UGT1A7 4%, UGT1A9 16%, UGT2B7 10%, CYP3A4 38%, CYP2C19 21%, and CYP2C9 11%. The simulated DDI studies using the in vitro-derived values produced AUC0-∞ treatment ratios comparable to observed: itraconazole 1.24 versus 1.07, fluconazole 1.45 versus 1.22, and rifampicin 0.49 versus 0.69. The constructed CBD PBPK models can predict adult exposures and have potential for use in pediatrics where exposure estimates are limited.
Collapse
Affiliation(s)
| | - Jessica L. Beers
- Division of Pharmacotherapy and Experimental TherapeuticsUNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillCaliforniaUSA
| | - Klarissa D. Jackson
- Division of Pharmacotherapy and Experimental TherapeuticsUNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillCaliforniaUSA
| | | |
Collapse
|
7
|
Buyssens L, Valenzuela A, Prims S, Ayuso M, Thymann T, Van Ginneken C, Van Cruchten S. Ontogeny of CYP3A and UGT activity in preterm piglets: a translational model for drug metabolism in preterm newborns. Front Pharmacol 2023; 14:1177541. [PMID: 37124224 PMCID: PMC10133700 DOI: 10.3389/fphar.2023.1177541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Despite considerable progress in understanding drug metabolism in the human pediatric population, data remains scarce in preterm neonates. Improving our knowledge of the ADME properties in this vulnerable age group is of utmost importance to avoid suboptimal dosing, which may lead to adverse drug reactions. The juvenile (mini)pig is a representative model for hepatic drug metabolism in human neonates and infants, especially phase I reactions. However, the effect of prematurity on the onset of hepatic phase I and phase II enzyme activity has yet to be investigated in this animal model. Therefore, the aim of this study was to assess the ontogeny of CYP3A and UGT enzyme activity in the liver of preterm (gestational day 105-107) and term-born (gestational day 115-117) domestic piglets. In addition, the ontogeny pattern between the preterm and term group was compared to examine whether postconceptional or postnatal age affects the onset of enzyme activity. The following age groups were included: preterm postnatal day (PND) 0 (n = 10), PND 5 (n = 10), PND 11 (n = 8), PND 26 (n = 10) and term PND 0 (n = 10), PND 5 (n = 10), PND 11 (n = 8), PND 19 (n = 18) and PND 26 (n = 10). Liver microsomes were extracted, and the metabolism of CYP3A and UGT-specific substrates assessed enzyme activity. Preterm CYP3A activity was only detectable at PND 26, whereas term CYP3A activity showed a gradual postnatal increase from PND 11 onwards. UGT activity gradually increased between PND 0 and PND 26 in preterm and term-born piglets, albeit, being systematically lower in the preterm group. Thus, postconceptional age is suggested as the main driver affecting porcine CYP3A and UGT enzyme ontogeny. These data are a valuable step forward in the characterization of the preterm piglet as a translational model for hepatic drug metabolism in the preterm human neonate.
Collapse
Affiliation(s)
- Laura Buyssens
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Allan Valenzuela
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sara Prims
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Miriam Ayuso
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Chris Van Ginneken
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Steven Van Cruchten
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
- *Correspondence: Steven Van Cruchten,
| |
Collapse
|
8
|
Abstract
Almost 50% of prescription drugs lack age-appropriate dosing guidelines and therefore are used "off-label." Only ~10% drugs prescribed to neonates and infants have been studied for safety or efficacy. Immaturity of drug metabolism in children is often associated with drug toxicity. This chapter summarizes data on the ontogeny of major human metabolizing enzymes involved in oxidation, reduction, hydrolysis, and conjugation of drugs. The ontogeny data of individual drug-metabolizing enzymes are important for accurate prediction of drug pharmacokinetics and toxicity in children. This information is critical for designing clinical studies to appropriately test pharmacological hypotheses and develop safer pediatric drugs, and to replace the long-standing practice of body weight- or surface area-normalized drug dosing. The application of ontogeny data in physiologically based pharmacokinetic model and regulatory submission are discussed.
Collapse
|
9
|
van den Anker J, Allegaert K. Considerations for Drug Dosing in Premature Infants. J Clin Pharmacol 2021; 61 Suppl 1:S141-S151. [PMID: 34185893 DOI: 10.1002/jcph.1884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022]
Abstract
In premature infants, effective and safe drug therapy depends on optimal dose selection and requires a thorough understanding of the underlying disease(s) of these fragile infants as well as the pharmacokinetics and pharmacodynamics of the drugs selected to treat their diseases. Differences in gestational and postnatal age or weight are the major determinants of the observed variability in drug disposition and effect in these infants. This article presents an outline on how to translate the results of a population pharmacokinetic/pharmacodynamic study into rational dosing regimens, and how physiologically based pharmacokinetic modeling, electronic health records, and the abundantly available data of vital functions of premature infants during their stay in the neonatal intensive care unit for evaluation of their pharmacotherapy can be used to tailor the most safe and effective dose in these infants.
Collapse
Affiliation(s)
- John van den Anker
- Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA.,Division of Paediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, University of Basel, Basel, Switzerland.,Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Karel Allegaert
- Department of Hospital Pharmacy, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Kitabi E, Bensman TJ, Earp JC, Chilukuri DM, Smith H, Ball L, O'Shaughnessy E, Yasinskaya Y, Colangelo PM, Reynolds KS. Effect of Body Weight and Age on the Pharmacokinetics of Dihydroartemisinin: FDA Basis for Dose Determination of Artesunate for Injection in Pediatric Patients with Severe Malaria. Clin Infect Dis 2021; 73:903-906. [PMID: 33605994 DOI: 10.1093/cid/ciab149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/12/2021] [Indexed: 11/12/2022] Open
Abstract
For treatment of severe malaria, the WHO recommends 3 mg/kg intravenous artesunate in pediatric patients weighing less than 20 kg. Here we describe FDA's rationale for selecting 2.4 mg/kg in pediatric patients weighing less than 20 kg based on literature review and independent analyses.
Collapse
Affiliation(s)
- Eliford Kitabi
- Division of Pharmacometrics, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration
| | - Timothy J Bensman
- Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration
| | - Justin C Earp
- Division of Pharmacometrics, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration
| | - Dakshina M Chilukuri
- Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration
| | - Heidi Smith
- Division of Anti-infectives, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration
| | - Leslie Ball
- Division of Anti-infectives, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration
| | - Elizabeth O'Shaughnessy
- Division of Anti-infectives, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration
| | - Yuliya Yasinskaya
- Division of Anti-infectives, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration
| | - Philip M Colangelo
- Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration
| | - Kellie S Reynolds
- Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration
| |
Collapse
|
11
|
Liu XI, Momper JD, Rakhmanina NY, Green DJ, Burckart GJ, Cressey TR, Mirochnick M, Best BM, van den Anker JN, Dallmann A. Physiologically Based Pharmacokinetic Modeling Framework to Predict Neonatal Pharmacokinetics of Transplacentally Acquired Emtricitabine, Dolutegravir, and Raltegravir. Clin Pharmacokinet 2021; 60:795-809. [PMID: 33527213 DOI: 10.1007/s40262-020-00977-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Little is understood about neonatal pharmacokinetics immediately after delivery and during the first days of life following intrauterine exposure to maternal medications. Our objective was to develop and evaluate a novel, physiologically based pharmacokinetic modeling workflow for predicting perinatal and postnatal disposition of commonly used antiretroviral drugs administered prenatally to pregnant women living with human immunodeficiency virus. METHODS Using previously published, maternal-fetal, physiologically based pharmacokinetic models for emtricitabine, dolutegravir, and raltegravir built with PK-Sim/MoBi®, placental drug transfer was predicted in late pregnancy. The total drug amount in fetal compartments at term delivery was estimated and subsequently integrated as initial conditions in different tissues of a whole-body, neonatal, physiologically based pharmacokinetic model to predict drug concentrations in the neonatal elimination phase after birth. Neonatal elimination processes were parameterized according to published data. Model performance was assessed by clinical data. RESULTS Neonatal physiologically based pharmacokinetic models generally captured the initial plasma concentrations after delivery but underestimated concentrations in the terminal phase. The mean percentage error for predicted plasma concentrations was - 71.5%, - 33.8%, and 76.7% for emtricitabine, dolutegravir, and raltegravir, respectively. A sensitivity analysis suggested that the activity of organic cation transporter 2 and uridine diphosphate glucuronosyltransferase 1A1 during the first postnatal days in term newborns is ~11% and ~30% of that in adults, respectively. CONCLUSIONS These findings demonstrate the general feasibility of applying physiologically based pharmacokinetic models to predict washout concentrations of transplacentally acquired drugs in newborns. These models can increase the understanding of pharmacokinetics during the first postnatal days and allow the prediction of drug exposure in this vulnerable population.
Collapse
Affiliation(s)
- Xiaomei I Liu
- Division of Clinical Pharmacology, Children's National Hospital, 10430 Owen Brown Road, Columbia, Maryland, 21044, USA. .,Division of Infectious Diseases, Children's National Hospital, Washington, DC, USA.
| | - Jeremiah D Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, USA.,Pediatric Department, School of Medicine, Rady Children's Hospital San Diego, La Jolla, CA, USA
| | - Natella Y Rakhmanina
- Division of Infectious Diseases, Children's National Hospital, Washington, DC, USA.,Elizabeth Glaser Pediatric AIDS Foundation, Washington, DC, USA
| | - Dionna J Green
- Office of Pediatric Therapeutics, US Food and Drug Administration, Silver Spring, MD, USA
| | - Gilbert J Burckart
- Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, MD, USA
| | - Tim R Cressey
- PHPT/IRD 174, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | | | - Brookie M Best
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, USA.,Pediatric Department, School of Medicine, Rady Children's Hospital San Diego, La Jolla, CA, USA
| | - John N van den Anker
- Division of Clinical Pharmacology, Children's National Hospital, 10430 Owen Brown Road, Columbia, Maryland, 21044, USA.,Division of Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | | |
Collapse
|
12
|
Khalil F, Choi SL, Watson E, Tzschentke TM, Lefeber C, Eerdekens M, Freijer J. Population Pharmacokinetics of Tapentadol in Children from Birth to <18 Years Old. J Pain Res 2020; 13:3107-3123. [PMID: 33262645 PMCID: PMC7700087 DOI: 10.2147/jpr.s269549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The main aim of this analysis was to characterize the pharmacokinetics (PK) of tapentadol in pediatric patients from birth to <18 years old who experience acute pain, requiring treatment with an opioid analgesic. PATIENTS AND METHODS Data from four clinical trials and 148 pediatric patients who received a single dose of tapentadol oral or intravenous solution were included. Population PK analysis was performed to determine the contribution of size-related (bodyweight) and function-related (maturation) factors to the changes in oral bioavailability (F), volume of distribution (V), and clearance (CL) with age. Simulations were carried out to compare pediatric exposures to reference adult values. RESULTS A one-compartment model with allometric scaling on disposition parameters (using theoretical or estimated exponents) and maturation functions on CL and F best described tapentadol PK. The estimated allometric exponents for CL (0.603) and V (0.820) differed slightly from the theoretical values of 0.75 for CL and 1 for V. A maximum in CL/F was observed at about 2-3 years when expressed on a bodyweight basis. Results for younger children as well as the F estimate were sensitive to the scaling approach, but CL/F and V/F as a function of age for the two scaling approaches led to similar curves within the bioequivalence range except below 5 weeks of age. Model-based simulations indicated that the doses used in the included clinical trials lead to exposures within the lower half of the targeted adult exposure. CONCLUSION The development of tapentadol is one of the first examples following a systematic approach for analgesic drug development for children. Our analysis enabled a full characterization and robust understanding of tapentadol PK in children from birth to <18 years, including preterm infants, and showed the importance of evaluating the sensitivity of the inferences of the PK parameters to the selected scaling approach.
Collapse
|
13
|
Sandra L, Smits A, Allegaert K, Nicolaï J, Annaert P, Bouillon T. Population pharmacokinetics of propofol in neonates and infants: Gestational and postnatal age to determine clearance maturation. Br J Clin Pharmacol 2020; 87:2089-2097. [PMID: 33085795 DOI: 10.1111/bcp.14620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/31/2020] [Accepted: 09/12/2020] [Indexed: 11/28/2022] Open
Abstract
AIMS Develop a population pharmacokinetic model describing propofol pharmacokinetics in (pre)term neonates and infants, that can be used for precision dosing (e.g. during target-controlled infusion) of propofol in this population. METHODS A nonlinear mixed effects pharmacokinetic analysis (Monolix 2018R2) was performed, based on a pooled study population in 107 (pre)term neonates and infants. RESULTS In total, 836 blood samples were collected from 66 (pre)term neonates and 41 infants originating from 3 studies. Body weight (BW) of the pooled study population was 3.050 (0.580-11.440) kg, postmenstrual age (PMA) was 36.56 (27.00-43.00) weeks and postnatal age (PNA) was 1.14 (0-104.00) weeks (median and min-max range). A 3-compartment structural model was identified and the effect of BW was modelled using fixed allometric exponents. Elimination clearance maturation was modelled accounting for the maturational effect on elimination clearance until birth (by gestational age [GA]) and postpartum (by PNA and GA). The extrapolated adult (70 kg) population propofol elimination clearance (1.64 L min-1 , estimated relative standard error = 6.02%) is in line with estimates from previous population pharmacokinetic studies. Empirical scaling of BW on the central distribution volume in function of PNA improved the model fit. CONCLUSIONS It is recommended to describe elimination clearance maturation by GA and PNA instead of PMA on top of size effects when analyzing propofol pharmacokinetics in populations including preterm neonates. Changes in body composition in addition to weight changes or other physio-anatomical changes may explain the changes in central distribution volume. The developed model may serve as a prior for propofol dose finding and target-controlled infusion in (preterm) neonates.
Collapse
Affiliation(s)
- Louis Sandra
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Anne Smits
- KU Leuven Department of Development and Regeneration, Leuven, Belgium.,Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Karel Allegaert
- KU Leuven Department of Development and Regeneration, Leuven, Belgium.,Division of Clinical Pharmacy, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Johan Nicolaï
- Development Science, UCB BioPharma SPRL, Braine-l'Alleud, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Thomas Bouillon
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium.,Bionotus, Niel, Belgium
| |
Collapse
|
14
|
Badée J, Qiu N, Collier AC, Takahashi RH, Forrest WF, Parrott N, Schmidt S, Fowler S. Characterization of the Ontogeny of Hepatic UDP-Glucuronosyltransferase Enzymes Based on Glucuronidation Activity Measured in Human Liver Microsomes. J Clin Pharmacol 2020; 59 Suppl 1:S42-S55. [PMID: 31502688 DOI: 10.1002/jcph.1493] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
An understanding of the postnatal development of hepatic UDP-glucuronosyltransferase (UGT) enzymes is required for accurate prediction of the age-dependent changes in pharmacokinetics of many drugs used in children. However, the maturation rate of hepatic UGT isoforms remains a major knowledge gap. This study aimed to establish the age-associated changes in glucuronidation activity of 10 major hepatic UGT isoforms in humans, namely, UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B4, UGT2B7, UGT2B10, UGT2B15, and UGT2B17. Human liver microsomes from pediatric and adult donors were incubated under optimized incubation conditions to assess the activity rates of hepatic UGT isoforms using a panel of 19 in vitro UGT probe substrates and clinically used drugs. Statistically strong correlations of glucuronidation activities allowed the ontogeny of UGT1A1, UGT1A4, UGT2B7, UGT2B10, and UGT2B15 to be established using multiple selective UGT substrates and matched human liver microsome samples. The postnatal development of hepatic UGTs is isoform-dependent using either individual or cross-correlated selective isoform substrates. Maximal adult activity was reached at different times ranging from within a month (UGT1A1, UGT2B4, UGT2B7, UGT2B10, and UGT2B15), during infancy (UGT1A3, UGT1A4, and UGT1A9), to adolescence (UGT1A6 and UGT2B17). This study provides an extensive characterization of the postnatal ontogeny profiles of hepatic UGT enzymes that are instrumental for predicting drug disposition via in vitro-in vivo extrapolation algorithms and verifying pharmacokinetic predictions against in vivo observations via pediatric physiologically based pharmacokinetic modeling in pediatric patients.
Collapse
Affiliation(s)
- Justine Badée
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida, USA
| | - Nahong Qiu
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Abby C Collier
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan H Takahashi
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - William F Forrest
- Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, California, USA
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Stephan Schmidt
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida, USA
| | - Stephen Fowler
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| |
Collapse
|
15
|
Borrego-Soto G, Perez-Paramo YX, Chen G, Santuario-Facio SK, Santos-Guzman J, Posadas-Valay R, Alvarado-Monroy FM, Balderas-Renteria I, Medina-Gonzalez R, Ortiz-Lopez R, Lazarus P, Rojas-Martinez A. Genetic variants in CYP2A6 and UGT1A9 genes associated with urinary nicotine metabolites in young Mexican smokers. THE PHARMACOGENOMICS JOURNAL 2020; 20:586-594. [PMID: 31959879 PMCID: PMC7375952 DOI: 10.1038/s41397-020-0147-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022]
Abstract
Nicotine is the major pharmacologically active substance in tobacco. Several studies have examined genotypes related to nicotine metabolism, but few studies have been performed in the Mexican population. The objective was to identify associations between gene variants in metabolizing enzymes and the urinary levels of nicotine metabolites among Mexican smokers. The levels of nicotine and its metabolites were determined in the urine of 88 young smokers from Mexico, and 167 variants in 24 genes associated with nicotine metabolism were genotyped by next-generation sequencing (NGS). Trans-3'-hydroxy-cotinine (3HC) and 4-hydroxy-4-(3-pyridyl)-butanoic acid were the most abundant metabolites (35 and 17%, respectively). CYP2A6*12 was associated with 3HC (p = 0.014). The rs145014075 was associated with creatinine-adjusted levels of nicotine (p = 0.035), while the rs12471326 (UGT1A9) was associated to cotinine-N-glucuronide (p = 0.030). CYP2A6 and UGT1A9 variants are associated to nicotine metabolism. 4HPBA metabolite was an abundant urinary metabolite in young Mexican smokers.
Collapse
Affiliation(s)
- Gissela Borrego-Soto
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Yadira X Perez-Paramo
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Gang Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | | | - Jesus Santos-Guzman
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Rodolfo Posadas-Valay
- Facultad de Medicina, Centro Universitario de Salud, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | | | | | - Ramses Medina-Gonzalez
- Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Rocio Ortiz-Lopez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Augusto Rojas-Martinez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico.
| |
Collapse
|
16
|
He Y, Yang T, Du Y, Qin L, Ma F, Wu Z, Ling H, Yang L, Wang Z, Zhou Q, Ge G, Lu Y. High fat diet significantly changed the global gene expression profile involved in hepatic drug metabolism and pharmacokinetic system in mice. Nutr Metab (Lond) 2020; 17:37. [PMID: 32489392 PMCID: PMC7245748 DOI: 10.1186/s12986-020-00456-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 05/07/2020] [Indexed: 12/25/2022] Open
Abstract
Background High fat diet impact transcription of hepatic genes responsible for drug metabolism and pharmacokinetics. Until now, researches just focused on a couple specific genes without a global profile showing. Age-dependent manner was also not noted well. This study aims to investigate the high fat diet effect on transcriptome of drug metabolism and pharmacokinetic system in mouse livers and show the age-dependent evidence. Methods C57BL/6 male mice were used in this experiment. High fat diet was used to treat mice for 16 and 38 weeks. Serum total cholesterol, low density lipoprotein cholesterol, aspartate transaminase, and alanine transaminaselevels were measured. Meanwhile, Histology, RNA-Seq, RT-PCR analysis and fourteen major hepatic bile acids quantification were performed for the liver tissues. Data was mined at levels of genes, drug metabolism and pharmacokinetic sysem, and genome wide. Results Treatment with high fat diet for 38 weeks significantly increased levels of serum lipids as well as aspartate transaminase, and alanine transaminase. Meanwhile, lipid accumulation in livers was observed. At week 38 of the experiment, the profile of 612 genes involved in drug metabolism and pharmacokinetics was significantly changed, indicated by a heatmap visulization and a principal component analysis. In total 210 genes were significantly regulated. Cyp3a11, Cyp4a10, and Cyp4a14 were down-regulated by 10–35 folds, while these three genes also were highly expressed in the liver. High fat diet regulated 11% of genome-wide gene while 30% of genes involved in the hepatic drug metabolism and pharmacokinetic system. Genes, including Adh4, Aldh1b1, Cyp3a11, Cyp4a10, Cyp8b1, Fmo2, Gsta3, Nat8f1, Slc22a7, Slco1a4, Sult5a1, and Ugt1a9, were regulated by high fat diet as an aging-dependent manner. Bile acids homeostasis, in which many genes related to metabolism and transportation were enriched, was also changed by high fat diet with an aging-dependet manner. Expression of genes in drug metabolism and disposition system significantly correlated to serum lipid profiles, and frequently correlated with each other. Conclusions High fat diet changed the global transcription profile of hepatic drug metabolism and pharmacokinetic system with a age-dependent manner.
Collapse
Affiliation(s)
- Yuqi He
- The Key Laboratory of the Minstry of Education of the Basic Pharmacology and the Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi City, 563009 Guizhou China.,Institute of Chinese Materia Medica, Shanghai Key Laboratory of Complex Prescription and the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines , Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Yang
- The Key Laboratory of the Minstry of Education of the Basic Pharmacology and the Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi City, 563009 Guizhou China
| | - Yimei Du
- The Key Laboratory of the Minstry of Education of the Basic Pharmacology and the Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi City, 563009 Guizhou China
| | - Lin Qin
- The Key Laboratory of the Minstry of Education of the Basic Pharmacology and the Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi City, 563009 Guizhou China
| | - Feifei Ma
- The Key Laboratory of the Minstry of Education of the Basic Pharmacology and the Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi City, 563009 Guizhou China
| | - Zunping Wu
- The Key Laboratory of the Minstry of Education of the Basic Pharmacology and the Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi City, 563009 Guizhou China
| | - Hua Ling
- School of Pharmacy, Philadelphia College of Osteopathic Medicine, Suwanee, GA USA
| | - Li Yang
- Institute of Chinese Materia Medica, Shanghai Key Laboratory of Complex Prescription and the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines , Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai Key Laboratory of Complex Prescription and the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines , Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingdi Zhou
- School of Chemistry, The University of Sydney, Camperdown, NSW2006 Australia
| | - Guangbo Ge
- The Key Laboratory of the Minstry of Education of the Basic Pharmacology and the Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi City, 563009 Guizhou China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanliu Lu
- The Key Laboratory of the Minstry of Education of the Basic Pharmacology and the Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi City, 563009 Guizhou China.,Institute of Chinese Materia Medica, Shanghai Key Laboratory of Complex Prescription and the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines , Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Badée J, Fowler S, de Wildt SN, Collier AC, Schmidt S, Parrott N. The Ontogeny of UDP-glucuronosyltransferase Enzymes, Recommendations for Future Profiling Studies and Application Through Physiologically Based Pharmacokinetic Modelling. Clin Pharmacokinet 2020; 58:189-211. [PMID: 29862468 DOI: 10.1007/s40262-018-0681-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Limited understanding of drug pharmacokinetics in children is one of the major challenges in paediatric drug development. This is most critical in neonates and infants owing to rapid changes in physiological functions, especially in the activity of drug-metabolising enzymes. Paediatric physiologically based pharmacokinetic models that integrate ontogeny functions for cytochrome P450 enzymes have aided our understanding of drug exposure in children, including those under the age of 2 years. Paediatric physiologically based pharmacokinetic models have consequently been recognised by the European Medicines Agency and the US Food and Drug Administration as innovative tools in paediatric drug development and regulatory decision making. However, little is currently known about age-related changes in UDP-glucuronosyltransferase-mediated metabolism, which represents the most important conjugation reaction for xenobiotics. Therefore, the objective of the review was to conduct a thorough literature survey to summarise our current understanding of age-related changes in UDP-glucuronosyltransferases as well as associated clinical and experimental sources of variance. Our findings indicate that there are distinct differences in UDP-glucuronosyltransferase expression and activity between isoforms for different age groups. In addition, there is substantial variability between individuals and laboratories reported for human liver microsomes, which results in part from a lack of standardised experimental conditions. Therefore, we provide a number of best practice recommendations for experimental conditions, which ultimately may help improve the quality of data used for quantitative clinical pharmacology approaches, and thus for safe and effective pharmacotherapy in children.
Collapse
Affiliation(s)
- Justine Badée
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, FL, USA
| | - Stephen Fowler
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands.,Intensive Care and Department of Paediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Abby C Collier
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Stephan Schmidt
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, FL, USA
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
18
|
Yang X, Naylor J, Matazel K, Goodwin A, Jacob CC, Bryant M, Loukotková L, Gamboa da Costa G, Chemerynski S, Deng-Bryant Y, Reissig C, Jackson K, Fisher J. Use of a physiologically-based pharmacokinetic model to explore the potential disparity in nicotine disposition between adult and adolescent nonhuman primates. Toxicol Appl Pharmacol 2020; 386:114826. [PMID: 31730783 DOI: 10.1016/j.taap.2019.114826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/23/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
The widespread use and high abuse liability of tobacco products has received considerable public health attention, in particular for youth, who are vulnerable to nicotine addiction. In this study, adult and adolescent squirrel monkeys were used to evaluate age-related metabolism and pharmacokinetics of nicotine after intravenous administration. A physiologically-based pharmacokinetic (PBPK) model was created to characterize the pharmacokinetic behaviors of nicotine and its metabolites, cotinine, trans-3'-hydroxycotinine (3'-OH cotinine), and trans-3'-hydroxycotinine glucuronide (3'-OH cotinine glucuronide) for both adult and adolescent squirrel monkeys. The PBPK nicotine model was first calibrated for adult squirrel monkeys utilizing in vitro nicotine metabolic data, plasma concentration-time profiles and cumulative urinary excretion data for nicotine and metabolites. Further model refinement was conducted when the calibrated adult model was scaled to the adolescents, because adolescents appeared to clear nicotine and cotinine more rapidly relative to adults. More specifically, the resultant model parameters representing systemic clearance of nicotine and cotinine for adolescent monkeys were approximately two- to three-fold of the adult values on a per body weight basis. The nonhuman primate PBPK model in general captured experimental observations that were used for both model calibration and evaluation, with acceptable performance metrics for precision and bias. The model also identified differences in nicotine pharmacokinetics between adolescent and adult nonhuman primates which might also be present in humans.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Jennifer Naylor
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Katelin Matazel
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Amy Goodwin
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Cristina C Jacob
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Matthew Bryant
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Lucie Loukotková
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Gonçalo Gamboa da Costa
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Susan Chemerynski
- Division of Nonclinical Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Ying Deng-Bryant
- Division of Nonclinical Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Chad Reissig
- Division of Individual Health Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Kia Jackson
- Division of Individual Health Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jeffrey Fisher
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
19
|
Liu Y, Badée J, Takahashi RH, Schmidt S, Parrott N, Fowler S, Mackenzie PI, Coughtrie MWH, Collier AC. Coexpression of Human Hepatic Uridine Diphosphate Glucuronosyltransferase Proteins: Implications for Ontogenetic Mechanisms and Isoform Coregulation. J Clin Pharmacol 2019; 60:722-733. [DOI: 10.1002/jcph.1571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/02/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Yuejian Liu
- Faculty of Pharmaceutical SciencesThe University of British Columbia Vancouver British Columbia Canada
| | - Justine Badée
- Novartis Institutes for BioMedical Research–Translational Medicine PK Sciences–Modeling & Simulation PBPK Novartis Campus Basel Switzerland
| | | | - Stephan Schmidt
- Center for Pharmacometrics & Systems PharmacologyDepartment of Pharmaceutics Lake Nona (Orlando)University of Florida Orlando Florida USA
| | - Neil Parrott
- Pharmaceutical SciencesRoche Pharma Research and Early DevelopmentRoche Innovation Centre Basel Basel Switzerland
| | - Stephen Fowler
- Pharmaceutical SciencesRoche Pharma Research and Early DevelopmentRoche Innovation Centre Basel Basel Switzerland
| | - Peter I. Mackenzie
- Department of Clinical PharmacologyFlinders University of South Australia Adelaide Australia
| | - Michael W. H. Coughtrie
- Faculty of Pharmaceutical SciencesThe University of British Columbia Vancouver British Columbia Canada
| | - Abby C. Collier
- Faculty of Pharmaceutical SciencesThe University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
20
|
Polymorphic Expression of UGT1A9 is Associated with Variable Acetaminophen Glucuronidation in Neonates: A Population Pharmacokinetic and Pharmacogenetic Study. Clin Pharmacokinet 2019; 57:1325-1336. [PMID: 29654492 DOI: 10.1007/s40262-018-0634-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Acetaminophen (paracetamol, APAP) is widely used as an analgesic and antipyretic drug in children and neonates. A number of enzymes contribute to the metabolism of acetaminophen, and genetic factors might be important to explain variability in acetaminophen metabolism among individuals. METHODS The current investigation utilized a previously published parent-metabolite population pharmacokinetic model describing acetaminophen glucuronidation, sulfation, and oxidation to examine the potential role of genetic variability on the relevant metabolic pathways. Neonates were administered 30-min intravenous infusions of acetaminophen 15 mg/kg every 12 h (< 28 weeks' gestational age [GA]) or every 8 h (≥ 28 weeks GA) for 48 h. A total of 18 sequence variations (SVs) in UDP-glucuronosyltransferase (UGT), sulfotransferase (SULT), and cytochrome P450 (CYP) genes from 33 neonates (aged 1-26 days) were examined in a stepwise manner for an effect on the metabolic formation clearance of acetaminophen by glucuronidation (UGT), sulfation (SULT), and oxidation (CYP). The stepwise covariate modeling procedure was performed using NONMEM® version 7.3. RESULTS Incorporation of genotype as a covariate for one SV located in the UGT1A9 gene promoter region (rs3832043, - 118 > insT, T9 > T10) significantly improved model fit (likelihood ratio test, p < 0.001) and reduced between-subject variability in glucuronide formation clearance. Individuals with the UGT1A9 T10 polymorphism, indicating insertion of an additional thymidine nucleotide, had a 42% reduction in clearance to APAP-glucuronide as compared to their wild-type counterparts. CONCLUSION This study shows a pharmacogenetic effect of an SV in the UGT1A9 promoter region on the metabolism of acetaminophen in neonates.
Collapse
|
21
|
Stephanou C, Tamana S, Minaidou A, Papasavva P, Kleanthous M, Kountouris P. Genetic Modifiers at the Crossroads of Personalised Medicine for Haemoglobinopathies. J Clin Med 2019; 8:E1927. [PMID: 31717530 PMCID: PMC6912721 DOI: 10.3390/jcm8111927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/25/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
Haemoglobinopathies are common monogenic disorders with diverse clinical manifestations, partly attributed to the influence of modifier genes. Recent years have seen enormous growth in the amount of genetic data, instigating the need for ranking methods to identify candidate genes with strong modifying effects. Here, we present the first evidence-based gene ranking metric (IthaScore) for haemoglobinopathy-specific phenotypes by utilising curated data in the IthaGenes database. IthaScore successfully reflects current knowledge for well-established disease modifiers, while it can be dynamically updated with emerging evidence. Protein-protein interaction (PPI) network analysis and functional enrichment analysis were employed to identify new potential disease modifiers and to evaluate the biological profiles of selected phenotypes. The most relevant gene ontology (GO) and pathway gene annotations for (a) haemoglobin (Hb) F levels/Hb F response to hydroxyurea included urea cycle, arginine metabolism and vascular endothelial growth factor receptor (VEGFR) signalling, (b) response to iron chelators included xenobiotic metabolism and glucuronidation, and (c) stroke included cytokine signalling and inflammatory reactions. Our findings demonstrate the capacity of IthaGenes, together with dynamic gene ranking, to expand knowledge on the genetic and molecular basis of phenotypic variation in haemoglobinopathies and to identify additional candidate genes to potentially inform and improve diagnosis, prognosis and therapeutic management.
Collapse
Affiliation(s)
| | | | | | | | - Marina Kleanthous
- Correspondence: (M.K.); (P.K.); Tel.:+357-2239-2652 (M.K.); +357-2239-2623 (P.K.)
| | - Petros Kountouris
- Correspondence: (M.K.); (P.K.); Tel.:+357-2239-2652 (M.K.); +357-2239-2623 (P.K.)
| |
Collapse
|
22
|
Liu T, Lewis TR, Moore JN, Kraft WK, Gauda EB, Sartori D, Moody DE, Gobburu JVS, Ivaturi V. Could Postnatal Age-Related Uridine Diphosphate Glucuronic Acid Be a Rate-Limiting Factor in the Metabolism of Morphine During the First Week of Life? CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2019; 8:469-477. [PMID: 31044547 PMCID: PMC6656938 DOI: 10.1002/psp4.12407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
Neonates experience dramatic changes in the disposition of drugs after birth as a result of enzyme maturation and environmental adjustment, challenging therapeutic decision making. In this research, we establish postnatal age, postmenstrual age, and body weight as physiologically reasonable predictors of morphine's clearance in neonates. By integrating knowledge of bilirubin, morphine, and other drugs metabolized by glucuronidation pathways from previously published studies, we hypothesize that uridine diphosphate glucuronic acid, a postnatal age-dependent sugar, plays an important role in the metabolism of morphine during the first week of life. This finding can be extended to other drugs metabolized by uridine diphosphate glucuronosyltransferase pathways in neonates and thus has important clinical implications for the use of drugs in this population.
Collapse
Affiliation(s)
- Tao Liu
- Center for Translational Medicine, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Tamorah R Lewis
- Division of Neonatology, Department of Pediatrics, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Jason N Moore
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Walter K Kraft
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Estelle B Gauda
- Division of Neonatology, Department of Pediatrics, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - David Sartori
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - David E Moody
- Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Jogarao V S Gobburu
- Center for Translational Medicine, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Vijay Ivaturi
- Center for Translational Medicine, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Howard M, Barber J, Alizai N, Rostami-Hodjegan A. Dose adjustment in orphan disease populations: the quest to fulfill the requirements of physiologically based pharmacokinetics. Expert Opin Drug Metab Toxicol 2018; 14:1315-1330. [PMID: 30465453 DOI: 10.1080/17425255.2018.1546288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION While the media is engaged and fascinated by the idea of 'Precision Medicine', the nuances related to 'Precision Dosing' seem to be largely ignored. Assuming the 'right drug' is selected, clinicians still need to decide on the 'right dose' for individuals. Ideally, optimal dosing should be studied in clinical trials; however, many drugs on the market lack evidence-based dosing recommendations, and small groups of patients (orphan disease populations) are dependent on local guidance and clinician experience to determine drug dosage adjustments. Areas Covered: This report explores the current understanding of dosing adjustment in special populations and examines the requirements for developing 'in silico' models for pediatric, elderly and pregnant patients. The report also highlights current use of modeling to provide evidence-based recommendations for drug labeling in the absence of complete clinical trials in orphan disease populations. Expert Opinion: Physiologically based pharmacokinetics (PBPK) is an attractive prospect for determining the best drug dosage adjustments in special populations. However, it is not sufficient for individualized, or even stratified dosing, unless the systems (drug-independent) data required to build robust PBPK models are obtained. Such models are not a substitute for clinical trials, but they are an alternative to undocumented and inconsistent guesswork.
Collapse
Affiliation(s)
- Martyn Howard
- a Centre for Applied Pharmacokinetic Research , University of Manchester , Manchester , UK
| | - Jill Barber
- a Centre for Applied Pharmacokinetic Research , University of Manchester , Manchester , UK
| | - Naved Alizai
- b Leeds General Infirmary , Leeds Children's Hospital , Leeds , UK
| | - Amin Rostami-Hodjegan
- a Centre for Applied Pharmacokinetic Research , University of Manchester , Manchester , UK
| |
Collapse
|
24
|
Michelet R, Van Bocxlaer J, Allegaert K, Vermeulen A. The use of PBPK modeling across the pediatric age range using propofol as a case. J Pharmacokinet Pharmacodyn 2018; 45:765-785. [PMID: 30298439 DOI: 10.1007/s10928-018-9607-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022]
Abstract
The project SAFEPEDRUG aims to provide guidelines for drug research in children, based on bottom-up and top-down approaches. Propofol, one of the studied model compounds, was selected because it is extensively metabolized in liver and kidney, with an important role for the glucuronidation pathway. Besides, being a lipophilic molecule, it is distributed into fat tissues, from where it redistributes into the systemic circulation. In the past, both bottom-up (Physiologically based pharmacokinetic, PBPK) and top-down approaches (population pharmacokinetic, popPK) were applied to describe its pharmacokinetics (PK). In this work, a combination of the two was used to check their performance to describe PK in children and neonates (both term and preterm) using propofol as a case compound. First, in vitro data was generated in human liver microsomes and recombinant enzymes and used to develop an adult PBPK model in Simcyp®. Activity adjustment factors (AAFs) were calculated to account for differences between in vitro and in vivo enzyme activity. Clinical data were analyzed using a 3-compartment model in NONMEM. These data were used to construct a retrograde PBPK model and for qualification of the PBPK models. Once an accurate in vivo clearance was obtained accounting for the contribution of the different metabolic pathways, the resulting PBPK models were challenged with new data for qualification. After that, the constructed adult PPBK model for propofol was extrapolated to the pediatric population. Both the default built-in and in vivo derived ontogeny functions were used to do so. The models were qualified by comparing their predicted PK parameters to published values, and by comparison of predicted concentration-time profiles to available clinical data. Clearance values were predicted well, especially when compared with values obtained from trials where long-term sampling was applied, whereas volume of distribution was lower compared to the most common popPK model predictions. Concentration-time profiles were predicted well up until and including the preterm neonatal population. In this work, it was thus shown that PBPK can be used to predict the PK up to and including the preterm neonatal population without the use of pediatric in vivo data. This work adds weight to the need for further development of PBPK models, especially regarding distribution modeling and the use of in vivo derived ontogeny functions.
Collapse
Affiliation(s)
- Robin Michelet
- Laboratory of Medical Biochemistry and Clinical Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - Jan Van Bocxlaer
- Laboratory of Medical Biochemistry and Clinical Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Karel Allegaert
- Department of Development & Regeneration, KU Leuven, Leuven, Belgium.,Division of Neonatology, Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - An Vermeulen
- Laboratory of Medical Biochemistry and Clinical Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
van den Anker J, Reed MD, Allegaert K, Kearns GL. Developmental Changes in Pharmacokinetics and Pharmacodynamics. J Clin Pharmacol 2018; 58 Suppl 10:S10-S25. [DOI: 10.1002/jcph.1284] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/21/2018] [Indexed: 12/22/2022]
Affiliation(s)
- John van den Anker
- Division of Clinical Pharmacology; Children's National Health System; Washington DC USA
- Division of Paediatric Pharmacology and Pharmacometrics; University of Basel Children's Hospital; Basel Switzerland
- Intensive Care and Department of Pediatric Surgery; Erasmus Medical Center-Sophia Children's Hospital; Rotterdam the Netherlands
| | - Michael D. Reed
- Emeritus Professor of Pediatrics; School of Medicine; Case Western Reserve University; Cleveland OH USA
| | - Karel Allegaert
- Intensive Care and Department of Pediatric Surgery; Erasmus Medical Center-Sophia Children's Hospital; Rotterdam the Netherlands
- Department of Pediatrics; Division of Neonatology; Erasmus Medical Center-Sophia Children's Hospital; Rotterdam the Netherlands
- Department of Development and Regeneration; KU Leuven; Leuven Belgium
| | | |
Collapse
|
26
|
Clinical Pharmacokinetics and Pharmacodynamics of Antihyperglycemic Medications in Children and Adolescents with Type 2 Diabetes Mellitus. Clin Pharmacokinet 2018; 56:561-571. [PMID: 27832452 DOI: 10.1007/s40262-016-0472-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The incidence of type 2 diabetes mellitus (T2DM) among children and adolescents has been rising. This condition is associated with obesity, and it's prevalence is higher among minority or female youth. Lifestyle modification including diet and exercise is only successful in a small proportion of patients; therefore, pharmacotherapy approaches are needed to treat T2DM among youth. Currently, in the USA, only metformin and insulin are approved for the treatment of T2DM in children. However, several antihyperglycemic agents including exenatide, glimepiride, glyburide, liraglutide, pioglitazone, and rosiglitazone are also used off-label in this population. Moreover, a number of clinical trials are ongoing that are aimed at addressing the safety and efficacy of newer antihyperglycemic agents in this population. Little is known about the safety, efficacy, or pharmacokinetics of antihyperglycemic agents in children or adolescents. Our ability to predict the pharmacokinetics of these agents in youth is hampered first by the lack of information about the expression and activity of drug-metabolizing enzymes and transporters in this population and second by the presence of comorbid conditions such as obesity and fatty liver disease. This article reviews the prevalence of obesity and T2DM in children and adolescents (youth). We then summarize published studies on safety and effectiveness of antihyperglycemic medications in youth. Drug disposition may be affected by age or puberty and thus the expression and activity of different pathways for drug metabolism and xenobiotic transporters are compared between youth and adults followed by a summary of pharmacokinetics studies of antihyperglycemic agents currently used in this population.
Collapse
|
27
|
Smits A, Annaert P, Allegaert K. Biomarkers of propofol metabolism in neonates: the quest beyond ontogeny. Biomark Med 2017; 11:933-936. [PMID: 29057662 DOI: 10.2217/bmm-2017-0184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Anne Smits
- Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery & Disposition, Department of Pharmaceutical & Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Karel Allegaert
- Department of Development & Regeneration, KU Leuven, Leuven, Belgium.,Intensive Care & Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
28
|
Walia G, Smith AD, Riches Z, Collier AC, Coughtrie MWH. The effects of UDP-sugars, UDP and Mg 2+on uridine diphosphate glucuronosyltransferase activity in human liver microsomes. Xenobiotica 2017; 48:882-890. [PMID: 28868965 DOI: 10.1080/00498254.2017.1376260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
1. The UDP-glucuronosyltransferase (UGT) enzymes are important in the metabolism, elimination and detoxification of many xenobiotics and endogenous compounds. As extrapolation of in vitro kinetics of drug metabolizing enzymes to predict in vivo clearance rates becomes more sophisticated, it is important to ensure proper optimization of enzyme assays. The luminal location of the enzyme active site (i.e. latency), and the complexity of UGT kinetics, results in consistent under-prediction of clearance of drugs metabolized by glucuronidation. 2. We examined inhibition of UGT activity in alamethicin-disrupted human liver microsomes (HLM) by uridine diphosphate (UDP), a UGT reaction product, and its reversal by Mg2+ ions. We also determined whether UDP-sugars other than the co-substrate UDP-glucuronic acid (UDP-GlcA) affected glucuronidation. 3. We show that other UDP-sugars do not significantly influence glucuronidation. We also demonstrate that UDP inhibits HLM UGT activity and that this is reversed by including Mg2+ in the assay. The Mg2+ effect can be offset using EDTA, and is dependent on the concentration of UDP-GlcA in the assay. 4. We propose that formation of a Mg2+-UDP complex prevents UDP from affecting the enzyme. Our results suggest that 5 mM UDP-GlcA and 10 mM Mg2+ be used for UGT assays in fully disrupted HLM.
Collapse
Affiliation(s)
- Gurinder Walia
- a Faculty of Pharmaceutical Sciences, The University of British Columbia , Vancouver , Canada
| | - Alexander D Smith
- a Faculty of Pharmaceutical Sciences, The University of British Columbia , Vancouver , Canada
| | - Zoe Riches
- a Faculty of Pharmaceutical Sciences, The University of British Columbia , Vancouver , Canada
| | - Abby C Collier
- a Faculty of Pharmaceutical Sciences, The University of British Columbia , Vancouver , Canada
| | - Michael W H Coughtrie
- a Faculty of Pharmaceutical Sciences, The University of British Columbia , Vancouver , Canada
| |
Collapse
|
29
|
Song G, Sun X, Hines RN, McCarver DG, Lake BG, Osimitz TG, Creek MR, Clewell HJ, Yoon M. Determination of Human Hepatic CYP2C8 and CYP1A2 Age-Dependent Expression to Support Human Health Risk Assessment for Early Ages. Drug Metab Dispos 2017; 45:468-475. [PMID: 28228413 DOI: 10.1124/dmd.116.074583] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/13/2017] [Indexed: 11/22/2022] Open
Abstract
Predicting age-specific metabolism is important for evaluating age-related drug and chemical sensitivity. Multiple cytochrome P450s and carboxylesterase enzymes are responsible for human pyrethroid metabolism. Complete ontogeny data for each enzyme are needed to support in vitro to in vivo extrapolation (IVIVE). This study was designed to determine age-dependent human hepatic CYP2C8 expression, for which only limited ontogeny data are available, and to further define CYP1A2 ontogeny. CYP2C8 and 1A2 protein levels were measured by quantitative Western blotting using liver microsomal samples prepared from 222 subjects with ages ranging from 8 weeks gestation to 18 years after birth. The median CYP2C8 expression was significantly greater among samples from subjects older than 35 postnatal days (n = 122) compared with fetal samples and those from very young infants (fetal to 35 days postnatal, n = 100) (0.00 vs. 13.38 pmol/mg microsomal protein; p < 0.0001). In contrast, the median CYP1A2 expression was significantly greater after 15 months postnatal age (n = 55) than in fetal and younger postnatal samples (fetal to 15 months postnatal, n = 167) (0.0167 vs. 2.354 pmol/mg microsomal protein; p < 0.0001). CYP2C8, but not CYP1A2, protein levels significantly correlated with those of CYP2C9, CYP2C19, and CYP3A4 (p < 0.001), consistent with CYP2C8 and CYP1A2 ontogeny probably being controlled by different mechanisms. This study provides key data for the physiologically based pharmacokinetic model-based prediction of age-dependent pyrethroid metabolism, which will be used for IVIVE to support pyrethroid risk assessment for early life stages.
Collapse
Affiliation(s)
- Gina Song
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina (G.S., X.S., H.J.C., M.Y.); ScitoVation, LLC, Research Triangle Park, North Carolina (G.S., X.S., H.J.C., M.Y.); U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.); Medical College of Wisconsin, Milwaukee, Wisconsin (D.G.M.); Centre for Toxicology, University of Surrey, Surrey, United Kingdom (B.G.L.); Science Strategies, LLC, Charlottesville, Virginia (T.G.O.); and Valent USA Corporation, Walnut Creek, California (M.R.C.)
| | - Xueying Sun
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina (G.S., X.S., H.J.C., M.Y.); ScitoVation, LLC, Research Triangle Park, North Carolina (G.S., X.S., H.J.C., M.Y.); U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.); Medical College of Wisconsin, Milwaukee, Wisconsin (D.G.M.); Centre for Toxicology, University of Surrey, Surrey, United Kingdom (B.G.L.); Science Strategies, LLC, Charlottesville, Virginia (T.G.O.); and Valent USA Corporation, Walnut Creek, California (M.R.C.)
| | - Ronald N Hines
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina (G.S., X.S., H.J.C., M.Y.); ScitoVation, LLC, Research Triangle Park, North Carolina (G.S., X.S., H.J.C., M.Y.); U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.); Medical College of Wisconsin, Milwaukee, Wisconsin (D.G.M.); Centre for Toxicology, University of Surrey, Surrey, United Kingdom (B.G.L.); Science Strategies, LLC, Charlottesville, Virginia (T.G.O.); and Valent USA Corporation, Walnut Creek, California (M.R.C.)
| | - D Gail McCarver
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina (G.S., X.S., H.J.C., M.Y.); ScitoVation, LLC, Research Triangle Park, North Carolina (G.S., X.S., H.J.C., M.Y.); U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.); Medical College of Wisconsin, Milwaukee, Wisconsin (D.G.M.); Centre for Toxicology, University of Surrey, Surrey, United Kingdom (B.G.L.); Science Strategies, LLC, Charlottesville, Virginia (T.G.O.); and Valent USA Corporation, Walnut Creek, California (M.R.C.)
| | - Brian G Lake
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina (G.S., X.S., H.J.C., M.Y.); ScitoVation, LLC, Research Triangle Park, North Carolina (G.S., X.S., H.J.C., M.Y.); U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.); Medical College of Wisconsin, Milwaukee, Wisconsin (D.G.M.); Centre for Toxicology, University of Surrey, Surrey, United Kingdom (B.G.L.); Science Strategies, LLC, Charlottesville, Virginia (T.G.O.); and Valent USA Corporation, Walnut Creek, California (M.R.C.)
| | - Thomas G Osimitz
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina (G.S., X.S., H.J.C., M.Y.); ScitoVation, LLC, Research Triangle Park, North Carolina (G.S., X.S., H.J.C., M.Y.); U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.); Medical College of Wisconsin, Milwaukee, Wisconsin (D.G.M.); Centre for Toxicology, University of Surrey, Surrey, United Kingdom (B.G.L.); Science Strategies, LLC, Charlottesville, Virginia (T.G.O.); and Valent USA Corporation, Walnut Creek, California (M.R.C.)
| | - Moire R Creek
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina (G.S., X.S., H.J.C., M.Y.); ScitoVation, LLC, Research Triangle Park, North Carolina (G.S., X.S., H.J.C., M.Y.); U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.); Medical College of Wisconsin, Milwaukee, Wisconsin (D.G.M.); Centre for Toxicology, University of Surrey, Surrey, United Kingdom (B.G.L.); Science Strategies, LLC, Charlottesville, Virginia (T.G.O.); and Valent USA Corporation, Walnut Creek, California (M.R.C.)
| | - Harvey J Clewell
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina (G.S., X.S., H.J.C., M.Y.); ScitoVation, LLC, Research Triangle Park, North Carolina (G.S., X.S., H.J.C., M.Y.); U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.); Medical College of Wisconsin, Milwaukee, Wisconsin (D.G.M.); Centre for Toxicology, University of Surrey, Surrey, United Kingdom (B.G.L.); Science Strategies, LLC, Charlottesville, Virginia (T.G.O.); and Valent USA Corporation, Walnut Creek, California (M.R.C.)
| | - Miyoung Yoon
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina (G.S., X.S., H.J.C., M.Y.); ScitoVation, LLC, Research Triangle Park, North Carolina (G.S., X.S., H.J.C., M.Y.); U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.); Medical College of Wisconsin, Milwaukee, Wisconsin (D.G.M.); Centre for Toxicology, University of Surrey, Surrey, United Kingdom (B.G.L.); Science Strategies, LLC, Charlottesville, Virginia (T.G.O.); and Valent USA Corporation, Walnut Creek, California (M.R.C.)
| |
Collapse
|
30
|
Lobular Distribution and Variability in Hepatic ATP Binding Cassette Protein B1 (ABCB1, P-gp): Ontogenetic Differences and Potential for Toxicity. Pharmaceutics 2017; 9:pharmaceutics9010008. [PMID: 28218636 PMCID: PMC5374374 DOI: 10.3390/pharmaceutics9010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 01/16/2023] Open
Abstract
The ATP Binding Cassette B1 (ABCB1) transporter has critical roles in endo- and xenobiotic efficacy and toxicity. To understand population variability in hepatic transport we determined ABCB1 mRNA and protein levels in total liver lysates sampled from 8 pre-defined sites (n = 24, 18–69 years), and in S9 from randomly acquired samples (n = 87, 7 days–87 years). ABCB1 levels did not differ significantly throughout individual livers and showed 4.4-fold protein variation between subjects. Neither mRNA nor protein levels varied with sex, ethnicity, obesity or triglycerides in lysates or S9 (that showed the same relationships), but protein levels were lower in pediatric S9 (p < 0.0001), with 76% of adult ABCB1 present at birth and predicted to mature in 5 years. Pediatric total liver lysates were not available. In summary, opportunistic collection for studying human hepatic ABCB1 is acceptable. Additionally, ABCB1 may be lower in children, indicating differential potential for toxicity and response to therapy in this special population.
Collapse
|
31
|
Filler G, Alvarez-Elías AC, McIntyre C, Medeiros M. The compelling case for therapeutic drug monitoring of mycophenolate mofetil therapy. Pediatr Nephrol 2017; 32:21-29. [PMID: 26921212 DOI: 10.1007/s00467-016-3352-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/25/2016] [Accepted: 01/29/2016] [Indexed: 11/26/2022]
Abstract
We have reviewed current evidence on the therapeutic drug monitoring (TDM) of mycophenolic acid (MPA) in relationship to drug efficacy and safety. The relationship between actual MPA exposure and mycophenolate mofetil (MMF) dose has been shown to be weak in children and adolescents. The TDM of MPA exposure should ideally be performed using full pharmacokinetic profiles or limited sampling strategies. Recent evidence has provided some rationale for using the post-dose trough level as a single measure. In terms of short-term efficacy, there is strong evidence that a MPA area under the time-concentration curve of >30 mg × h/L reduces acute rejection episodes early after renal transplantation, and there is evolving evidence that aiming for the same exposure over the long term may be a viable strategy to reduce the formation of donor-specific antibodies. Strong evidence also supports the existence of important drug interactions and age/developmental dependent differences in drug metabolism that may necessitate the need for TDM of MMF therapy. Based on these findings and given the substantial inter- and intra-patient variability of MPA exposure, it would appear that MMF therapy should be subject to TDM to avoid over- and under-dosing. This may be a viable strategy to reduce treatment-emergent adverse events and to increase the effective pediatric transplant survival rates.
Collapse
Affiliation(s)
- Guido Filler
- Department of Pediatrics, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 5 W9, Canada.
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N5A 5A5, Canada.
- Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 5 W9, Canada.
- Department of Pediatrics, Children's Hospital, London Health Science Centre, Western University, 800 Commissioners Road East, London, ON, N6A 5 W9, Canada.
| | - Ana Catalina Alvarez-Elías
- Department of Pediatrics, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 5 W9, Canada
- Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
- Laboratorio de Investigacion en Nefrologia, Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
| | - Christopher McIntyre
- Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 5 W9, Canada
| | - Mara Medeiros
- Laboratorio de Investigacion en Nefrologia, Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
32
|
Neumann E, Mehboob H, Ramírez J, Mirkov S, Zhang M, Liu W. Age-Dependent Hepatic UDP-Glucuronosyltransferase Gene Expression and Activity in Children. Front Pharmacol 2016; 7:437. [PMID: 27899892 PMCID: PMC5110524 DOI: 10.3389/fphar.2016.00437] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 11/01/2016] [Indexed: 11/22/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) are important phase II drug metabolism enzymes. The aim of this study was to explore the relationship between age and changes in mRNA expression and activity of major human hepatic UGTs, as well as to understand the potential regulatory mechanism underlying this relationship. Using previously generated data, we investigated age-dependent mRNA expression levels of 11 hepatic UGTs (UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A9, UGT2B4, UGT2B7, UGT2B10, UGT2B15, and UGT2B17) and 16 transcription factors (AHR, AR, CAR, ESR2, FXR, GCCR, HNF1a, HNF3a, HNF3b, HNF4a, PPARA, PPARG, PPARGC, PXR, SP1, and STAT3) in liver tissue of donors (n = 38) ranging from 0 to 25 years of age. We also examined the correlation between age and microsomal activities using 14 known UGT drug substrates in the liver samples (n = 19) of children donors. We found a statistically significant increase (nominal p < 0.05) in the expression of UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT2B7, and UGT2B17, as well as glucuronidation activities of serotonin, testosterone, and vorinostat during the first 25 years of life. Expression of estrogen receptor 1 and pregnane X receptor, two strong UGT transcriptional regulators, were significantly correlated with both age and UGT mRNA expression (p ≤ 0.05). These results suggest that both UGT expression and activity increase during childhood and adolescence, possibly driven in part by hormonal signaling. Our findings may help explain inter-patient variability in response to medications among children.
Collapse
Affiliation(s)
- Elizabeth Neumann
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University West Lafayette, IN, USA
| | - Huma Mehboob
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue UniversityWest Lafayette, IN, USA; Department of Biochemistry, University of AgricultureFaisalabad, Pakistan
| | - Jacqueline Ramírez
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago Chicago, IL, USA
| | - Snezana Mirkov
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago Chicago, IL, USA
| | - Min Zhang
- Department of Statistics, College of Science, Purdue UniversityWest Lafayette, IN, USA; Beijing Institute for Brain Disorders, Capital Medical UniversityBeijing, China
| | - Wanqing Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University West Lafayette, IN, USA
| |
Collapse
|
33
|
Alternative Cell Sources to Adult Hepatocytes for Hepatic Cell Therapy. Methods Mol Biol 2016; 1506:17-42. [PMID: 27830543 DOI: 10.1007/978-1-4939-6506-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Adult hepatocyte transplantation is limited by scarce availability of suitable donor liver tissue for hepatocyte isolation. New cell-based therapies are being developed to supplement whole-organ liver transplantation, to reduce the waiting-list mortality rate, and to obtain more sustained and significant metabolic correction. Fetal livers and unsuitable neonatal livers for organ transplantation have been proposed as potential useful sources of hepatic cells for cell therapy. However, the major challenge is to use alternative cell sources for transplantation that can be derived from reproducible methods. Different types of stem cells with hepatic differentiation potential are eligible for generating large numbers of functional hepatocytes for liver cell therapy to treat degenerative disorders, inborn hepatic metabolic diseases, and organ failure. Clinical trials are designed to fully establish the safety profile of such therapies and to define target patient groups and standardized protocols.
Collapse
|
34
|
Neonatal pain management: still in search for the Holy Grail. Int J Clin Pharmacol Ther 2016; 54:514-23. [PMID: 27087155 PMCID: PMC5012190 DOI: 10.5414/cp202561] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2016] [Indexed: 12/31/2022] Open
Abstract
Inadequate pain management but also inappropriate use of analgesics in early infancy has negative effects on neurodevelopmental outcome. As a consequence, neonatal pain management is still in search for the Holy Grail. At best, effective pain management is based on prevention, assessment, and treatment followed by a re-assessment of the pain to determine if additional treatment is still necessary. Unfortunately, epidemiological observations suggest that neonates are undergoing painful procedures very frequently, unveiling the need for effective preventive, non-pharmacological strategies. In addition, assessment is still based on validated, multimodal, but subjective pain assessment tools. Finally, in neonatal intensive care units, there is a shift in clinical practices (e.g., shorter intubation and ventilation), and this necessitates the development and validation of new pharmacological treatment modalities. To illustrate this, a shift in the use of opioids to paracetamol has occurred and short-acting agents (remifentanil, propofol) are more commonly administered to neonates. In addition to these new modalities and as part of a more advanced approach of the developmental pharmacology of analgesics, pharmacogenetics also emerged as a tool for precision medicine in neonates. To assure further improvement of neonatal pain management the integration of pharmacogenetics with the usual covariates like weight, age and/or disease characteristics is needed.
Collapse
|
35
|
Tirucherai GS, LaCreta F, Ismat FA, Tang W, Boulton DW. Pharmacokinetics and pharmacodynamics of dapagliflozin in children and adolescents with type 2 diabetes mellitus. Diabetes Obes Metab 2016; 18:678-84. [PMID: 27291448 DOI: 10.1111/dom.12638] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 12/13/2022]
Abstract
AIMS To evaluate the pharmacokinetic (PK)/pharmacodynamic (PD) and safety profile of dapagliflozin in paediatric patients aged 10-17 years with type 2 diabetes mellitus (T2DM). METHODS Patients were randomized to a single oral dose of dapagliflozin 2.5, 5 or 10 mg. The PK characteristics for individual patients were derived by non-compartmental methods. Urinary glucose excretion (UGE), fasting plasma glucose (FPG) and ease of swallowing were also evaluated. RESULTS A total of 24 patients with a mean (range) body weight of 99.7 (61.5-169.5) kg received dapagliflozin. Dapagliflozin was rapidly absorbed after oral administration (median time to maximum plasma concentration ∼1.5 h) and systemic exposures to dapagliflozin and its 3-O-glucuronide metabolite appeared dose-proportional. The mean 24-h UGE increased in a dose-related manner (52.8, 62.4 and 89.0 g for the 2.5, 5 and 10 mg groups, respectively). Mean FPG concentrations were lower for all dose groups on day 2 (6.9, 6.2 and 6.8 mmol/l for 2.5, 5 and 10 mg groups, respectively) than they were predose on day 1 (9.5, 8.5 and 8.2 mmol/l for 2.5, 5 and 10 mg groups, respectively). Six patients (25%) experienced ≥1 adverse event (AE), however, there was no dose-related pattern. All AEs occurred only once and most were mild in intensity. Nearly all patients (n = 23; 95.8%) reported easy swallowing of the dapagliflozin tablets. CONCLUSIONS Dapagliflozin was well tolerated in this paediatric population, with no significant safety findings. PK/PD characteristics were similar to those observed in adults with T2DM, thereby supporting the hypothesis that the same dapagliflozin dosage as that used in adults can be evaluated in future phase III paediatric studies.
Collapse
Affiliation(s)
| | - F LaCreta
- Bristol-Myers Squibb, Princeton, NJ, USA
| | - F A Ismat
- Bristol-Myers Squibb, Princeton, NJ, USA
| | - W Tang
- AstraZeneca, Gaithersburg, MD, USA
| | | |
Collapse
|
36
|
Fay MJ, Nguyen MT, Snouwaert JN, Dye R, Grant DJ, Bodnar WM, Koller BH. Xenobiotic Metabolism in Mice Lacking the UDP-Glucuronosyltransferase 2 Family. Drug Metab Dispos 2015; 43:1838-46. [PMID: 26354949 PMCID: PMC4658492 DOI: 10.1124/dmd.115.065482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/08/2015] [Indexed: 11/22/2022] Open
Abstract
UDP-Glucuronosyltransferases (UGTs) conjugate a glucuronyl group from glucuronic acid to a wide range of lipophilic substrates to form a hydrophilic glucuronide conjugate. The glucuronide generally has decreased bioactivity and increased water solubility to facilitate excretion. Glucuronidation represents an important detoxification pathway for both endogenous waste products and xenobiotics, including drugs and harmful industrial chemicals. Two clinically significant families of UGT enzymes are present in mammals: UGT1s and UGT2s. Although the two families are distinct in gene structure, studies using recombinant enzymes have shown considerable overlap in their ability to glucuronidate many substrates, often obscuring the relative importance of the two families in the clearance of particular substrates in vivo. To address this limitation, we have generated a mouse line, termed ΔUgt2, in which the entire Ugt2 gene family, extending over 609 kilobase pairs, is excised. This mouse line provides a means to determine the contributions of the two UGT families in vivo. We demonstrate the utility of these animals by defining for the first time the in vivo contributions of the UGT1 and UGT2 families to glucuronidation of the environmental estrogenic agent bisphenol A (BPA). The highest activity toward this chemical is reported for human and rodent UGT2 enzymes. Surprisingly, our studies using the ΔUgt2 mice demonstrate that, while both UGT1 and UGT2 isoforms can conjugate BPA, clearance is largely dependent on UGT1s.
Collapse
Affiliation(s)
- Matthew J Fay
- Department of Genetics (M.J.F., M.T.N., J.N.S., R.D.), Department of Environmental Sciences and Engineering (W.M.B.), and Department of Medicine, Pulmonary and Critical Care Division (B.H.K.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Biology and Cancer Research Program, JLC-Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina (D.J.G.)
| | - My Trang Nguyen
- Department of Genetics (M.J.F., M.T.N., J.N.S., R.D.), Department of Environmental Sciences and Engineering (W.M.B.), and Department of Medicine, Pulmonary and Critical Care Division (B.H.K.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Biology and Cancer Research Program, JLC-Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina (D.J.G.)
| | - John N Snouwaert
- Department of Genetics (M.J.F., M.T.N., J.N.S., R.D.), Department of Environmental Sciences and Engineering (W.M.B.), and Department of Medicine, Pulmonary and Critical Care Division (B.H.K.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Biology and Cancer Research Program, JLC-Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina (D.J.G.)
| | - Rebecca Dye
- Department of Genetics (M.J.F., M.T.N., J.N.S., R.D.), Department of Environmental Sciences and Engineering (W.M.B.), and Department of Medicine, Pulmonary and Critical Care Division (B.H.K.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Biology and Cancer Research Program, JLC-Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina (D.J.G.)
| | - Delores J Grant
- Department of Genetics (M.J.F., M.T.N., J.N.S., R.D.), Department of Environmental Sciences and Engineering (W.M.B.), and Department of Medicine, Pulmonary and Critical Care Division (B.H.K.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Biology and Cancer Research Program, JLC-Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina (D.J.G.)
| | - Wanda M Bodnar
- Department of Genetics (M.J.F., M.T.N., J.N.S., R.D.), Department of Environmental Sciences and Engineering (W.M.B.), and Department of Medicine, Pulmonary and Critical Care Division (B.H.K.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Biology and Cancer Research Program, JLC-Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina (D.J.G.)
| | - Beverly H Koller
- Department of Genetics (M.J.F., M.T.N., J.N.S., R.D.), Department of Environmental Sciences and Engineering (W.M.B.), and Department of Medicine, Pulmonary and Critical Care Division (B.H.K.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Biology and Cancer Research Program, JLC-Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina (D.J.G.)
| |
Collapse
|
37
|
Tran TH, Smith C, Mangione RA. Theoretical pharmacokinetic drug alterations in pediatric celiac disease. Expert Opin Drug Metab Toxicol 2015; 11:1539-1550. [PMID: 26155875 DOI: 10.1517/17425255.2015.1065813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The incidence of pediatric celiac disease has risen and many of these children will receive medications at some time in their life. However, the absorption of drugs in pediatric patients with celiac disease has never been studied. The few studies that do exist have only been performed in adults and indicate that drug concentrations can be altered for some drugs. It is also noteworthy that few researchers have conducted studies to determine if the distribution, metabolism, and excretion of drugs are altered in celiac disease. AREAS COVERED The pharmacokinetics of drugs greatly differ between children and adults. Combined with the pathophysiological changes known to occur with celiac disease, there is compelling evidence to support that drug exposure in pediatric celiac disease may be altered. Relevant characteristics of celiac disease that may affect drug disposition include intestinal atrophy, hypoalbuminemia, reduced CYP3A enzymes, and thyroid dysfunction. EXPERT OPINION The safety and efficacy of drug dosing in children with celiac disease can be enhanced with additional pharmacokinetic studies of commonly prescribed drugs in this population. Ideally, these studies should include drugs that have high bioavailability, are highly protein bound, undergo extensive CYP3A enzyme metabolism, and/or have a narrow therapeutic range.
Collapse
Affiliation(s)
- Tran H Tran
- a 1 St. John's University, College of Pharmacy and Health Sciences , 8000 Utopia Parkway, St. Albert Hall, Room 114, Queens, NY 11439, USA +1 202 957 4306 ; +1 718 990 1986 ;
- b 2 Clinical Pharmacy Manager,NewYork-Presbyterian Hospital/Columbia University Medical Center , New York, NY, USA
| | - Candace Smith
- c 3 St. John's University College of Pharmacy and Health Sciences, Chair, Clinical Pharmacy Practice Department , Queens, NY 11439, USA
| | | |
Collapse
|
38
|
Riches Z, Collier AC. Posttranscriptional regulation of uridine diphosphate glucuronosyltransferases. Expert Opin Drug Metab Toxicol 2015; 11:949-65. [PMID: 25797307 DOI: 10.1517/17425255.2015.1028355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The uridine diphosphate (UDP)-glucuronosyltransferase (UGT) superfamily of enzymes (EC 2.4.1.17) conjugates glucuronic acid to an aglycone substrate to make them more polar and readily excreted. In general, this reaction terminates the activities of chemicals, drugs and toxins, although occasionally a more active or toxic species is produced. AREAS COVERED In addition to their well-known transcriptional responsiveness, UGTs are also regulated by posttranscriptional mechanisms. Here, the authors review these mechanisms, including latency, modulation of co-substrate accessibility and binding, dimerization and oligomerization, protein-protein interactions, allosteric inhibition and activation, posttranslational structural and functional modifications and developmental switching for UGTs. EXPERT OPINION Posttranscriptional regulation of UGTs has traditionally received less attention than nuclear regulation, in part because mechanisms involving ribosomes and endoplasmic reticula are challenging to investigate. Most promising of the posttranscriptional mechanisms reviewed are likely to be effects on co-substrate (UDP-glucuronic acid) transport and availability and structure-function changes to UGT proteins through, for example, glycosylation and phosphorylation. Although classical biochemistry continues to illuminate many aspects of UGT function, advances in proteomics and structural biology are beginning to assist in the determination of posttranscriptional regulation mechanisms for UGTs.
Collapse
Affiliation(s)
- Zoe Riches
- University of British Columbia, Faculty of Pharmaceutical Sciences , 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3 , Canada +1 604 827 2380 ;
| | | |
Collapse
|
39
|
Collier AC, Thévenon AD, Goh W, Hiraoka M, Kendal-Wright CE. Placental profiling of UGT1A enzyme expression and activity and interactions with preeclampsia at term. Eur J Drug Metab Pharmacokinet 2014; 40:471-80. [PMID: 25465229 DOI: 10.1007/s13318-014-0243-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/26/2014] [Indexed: 11/28/2022]
Abstract
Placental UDP-glucuronosyltransferase (UGT) enzymes have critical roles in hormone, nutrient, chemical balance and fetal exposure during pregnancy. Placental UGT1A isoforms were profiled and differences between preeclamptic (PE) and non-PE placental UGT expression determined. In third trimester villous placenta, UGT1A1, 1A4, 1A6 and 1A9 were expressed and active in all specimens (n = 10), but UGT1A3, 1A5, 1A7, 1A8 and 1A10 were absent. The UGT1A activities were comparable to human liver microsomes per milligram, but placental microsome yields were only 2 % of liver (1 mg/g of tissue vs. 45 mg/g of tissue). For successful PCR, placental collection and processing within 60 min from delivery, including DNAse and ≥300 ng of RNA in reverse transcription were essential and snap freezing in liquid nitrogen immediately was the best preservation method. Although UGT1A6 mRNA was lower in PE (P < 0.001), there were no other significant effects on UGT mRNA, protein or activities. A more comprehensive tissue sample set is required for confirmation of PE interactions with UGT. Placental UGT1A enzyme expression patterns are similar to the liver and a detoxicative role for placental UGT1A is inferred.
Collapse
Affiliation(s)
- Abby C Collier
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI, 96813, USA. .,Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Audrey D Thévenon
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI, 96813, USA
| | - William Goh
- Department of Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, Kapi'olani Medical Center for Women and Children, 1319 Punahou Street, Honolulu, HI, 96826, USA
| | - Mark Hiraoka
- Department of Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, Kapi'olani Medical Center for Women and Children, 1319 Punahou Street, Honolulu, HI, 96826, USA
| | - Claire E Kendal-Wright
- Department of Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, Kapi'olani Medical Center for Women and Children, 1319 Punahou Street, Honolulu, HI, 96826, USA.,Division of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Avenue, Honolulu, HI, 96816, USA
| |
Collapse
|
40
|
Sage DP, Kulczar C, Roth W, Liu W, Knipp GT. Persistent pharmacokinetic challenges to pediatric drug development. Front Genet 2014; 5:281. [PMID: 25221567 PMCID: PMC4145254 DOI: 10.3389/fgene.2014.00281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/31/2014] [Indexed: 12/11/2022] Open
Abstract
The development of new therapeutic agents for the mitigation of pediatric disorders is largely hindered by the inability for investigators to assess pediatric pharmacokinetics (PK) in healthy patients due to substantial safety concerns. Pediatric patients are a clinical moving target for drug delivery due to changes in absorption, distribution, metabolism and excretion (ADME) and the potential for PK related toxicological (T) events to occur throughout development. These changes in ADMET can have profound effects on drug delivery, and may lead to toxic or sub-therapeutic outcomes. Ethical, economical, logistical, and technical barriers have resulted in insufficient investigation of these changes by industrial, regulatory, and academic bodies, leading to the classification of pediatric patients as therapeutic orphans. In response to these concerns, regulatory agencies have incentivized investigation into these ontogenic changes and their effects on drug delivery in pediatric populations. The intent of this review is to briefly present a synopsis of the development changes that occur in pediatric patients, discuss the effects of these changes on ADME and drug delivery strategies, highlight the hurdles that are still being faced, and present some opportunities to overcome these challenges.
Collapse
Affiliation(s)
- Daniel P Sage
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University West Lafayette, IN, USA
| | - Christopher Kulczar
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University West Lafayette, IN, USA
| | - Wyatt Roth
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University West Lafayette, IN, USA
| | - Wanqing Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University West Lafayette, IN, USA
| | - Gregory T Knipp
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University West Lafayette, IN, USA
| |
Collapse
|
41
|
Abstract
Human hepatic UGT2B15 developmental expression changes may alter the metabolism of important drugs and toxicants such as bisphenol A (BPA). Previously, UGT2B15 ontogeny knowledge consisted of transcript data, a dubious surrogate for protein expression. Herein, UGT2B15 protein content was determined in human hepatic microsomes (n = 236, 8 weeks gestation to 18 years). The impact of a common, functional single nucleotide polymorphism (g.253G>T), present in UGT2B15*2 and *5 alleles, was also tested. UGT2B15 expression began during late fetal life, at about 18% of mature values (medians = 48, 267 pmoles/mg of microsomal protein, respectively; p < 0.001). UGT2B15 neonatal (n = 39) and late fetal (≥28 weeks, n = 10) content was similar, but lower than that of infants between 3 and 15 weeks age (n = 46; medians = 38, 48, 404 pmoles/mg microsomal protein, respectively; p < 0.001). Values for the latter group were higher compared with the remaining age group (15 weeks to 18 years; n = 82, p < 0.001). UGT2B15 expression varied 31-fold across the entire sample, and within groups, ranged from 4- to 27-fold. Among postnatal samples, age group, the presence of g.253T and male gender were each significantly associated with greater UGT2B15 expression (p < 0.001, <0.01, and <0.05, respectively; stepwise linear regression). In summary, hepatic UGT2B15 protein onset begins in late gestation; however, the greatest rate of change occurs during the first few weeks after birth. We speculate that the fetus and neonate may have lower clearance of some UGT2B15 substrates, such as BPA, compared with older individuals.
Collapse
Affiliation(s)
- Karthika Divakaran
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ronald N Hines
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - D Gail McCarver
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
42
|
De Bock L, Boussery K, De Bruyne R, Van Winckel M, Stephenne X, Sokal E, Van Bocxlaer J. Microsomal protein per gram of liver (MPPGL) in paediatric biliary atresia patients. Biopharm Drug Dispos 2014; 35:308-12. [PMID: 24644121 DOI: 10.1002/bdd.1895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/15/2014] [Accepted: 03/09/2014] [Indexed: 11/10/2022]
Abstract
The microsomal protein per gram of liver (MPPGL) is an important scaling factor in the in vitro-in vivo extrapolation of metabolic data obtained in liver microsomes. This study aimed to determine the MPPGL in four biliary atresia patients (0.6-1.6 years old) undergoing liver transplantation, as it is known that the MPPGL is affected by age and possibly by liver disease. Due to the presence of bilirubin in the homogenates and microsomes, the NADPH-cytochrome reductase activity was used to determine the recovery factor, rather than methods using the dithionite difference spectrum. A mean value of 18.73 (± 2.82) mg/g (geometric mean ± SD, n = 4) was observed, which is lower than the expected MPPGL based on the age of the patients (26.60 ± 0.40 mg/g). This suggests a decreased amount of microsomal protein in the livers of biliary atresia patients. Moreover, no differences in MPPGL between different zones of the liver could be detected.
Collapse
Affiliation(s)
- Lies De Bock
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
43
|
Jiang XL, Zhao P, Barrett JS, Lesko LJ, Schmidt S. Application of physiologically based pharmacokinetic modeling to predict acetaminophen metabolism and pharmacokinetics in children. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2013; 2:e80. [PMID: 24132164 PMCID: PMC3817375 DOI: 10.1038/psp.2013.55] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/27/2013] [Indexed: 01/08/2023]
Abstract
Acetaminophen (APAP) is a widely used analgesic and antipyretic drug that undergoes extensive phase I and II metabolism. To better understand the kinetics of this process and to characterize the dynamic changes in metabolism and pharmacokinetics (PK) between children and adults, we developed a physiologically based PK (PBPK) model for APAP integrating in silico, in vitro, and in vivo PK data into a single model. The model was developed and qualified for adults and subsequently expanded for application in children by accounting for maturational changes from birth. Once developed and qualified, it was able to predict clinical PK data in neonates (0–28 days), infants (29 days to <2 years), children (2 to <12 years), and adolescents (12–17 years) following intravenous and orally administered APAP. This approach represents a general strategy for projecting drug exposure in children, in the absence of pediatric PK information, using previous drug- and system-specific information of adults and children through PBPK modeling.
Collapse
Affiliation(s)
- X-L Jiang
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona (Orlando), Orlando, Florida, USA
| | | | | | | | | |
Collapse
|
44
|
Tolosa L, Pareja-Ibars E, Donato MT, Cortés M, López S, Jiménez N, Mir J, Castell JV, Gómez-Lechón MJ. Neonatal livers: a source for the isolation of good-performing hepatocytes for cell transplantation. Cell Transplant 2013; 23:1229-42. [PMID: 23803290 DOI: 10.3727/096368913x669743] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hepatocyte transplantation is an alternative therapy to orthotopic liver transplantation for the treatment of liver diseases. However, the supply of hepatocytes is limited given the shortage of organs available to isolate good-functioning quality cells. Neonatal livers may be a potential source alternative to adult livers to obtain good-performing hepatic cells for hepatocyte transplantation, which has not yet been explored profoundly. High-yield preparations of viable hepatocytes were isolated from 1- to 23-day-old liver donors, cryopreserved, and banked. Cell integrity and functional quality assessment were performed after thawing. Neonatal hepatocytes showed better postthawing recovery compared with adult hepatocytes, as shown by the viability values that did not differ significantly from freshly isolated cells, a higher expression of adhesion molecules (β1-integrin, β-catenin, and E-cadherin), better attachment efficiency, cell survival, and a lower number of apoptotic cells. The metabolic performance of thawed hepatocytes has been assessed by ureogenesis and drug-metabolizing capability (cytochrome P450 and UDP-glucuronosyltransferase enzymes). CYP2A6, CYP2C9, CYP2E1, and CYP3A4 activities were found in all cell preparations, while CYP1A2, CYP2B6, CYP2C19, and CYP2D6 activities were detected only in hepatocytes from a few neonatal donors. The expression of UGT1A1 and UGT1A9 (transcripts and protein) was detected in all hepatocyte preparations, while activity was measured only in some preparations, probably due to lack of maturity of the enzymes. However, isoforms UGT1A6 and UGT2B7 showed considerable activity in all preparations. Compared to adult liver, the hepatocyte isolation procedure in neonatal livers also provides thawed cell suspensions with a higher proportion of hepatic progenitor cells (EpCAM(+) staining), which could also participate in regeneration of liver parenchyma after transplantation. These results could imply important advantages of neonatal hepatocytes as a source of high-quality cells to improve human hepatocyte transplantation applicability.
Collapse
Affiliation(s)
- Laia Tolosa
- Unidad de Hepatología Experimental, Centro de Investigación, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
The UDP-glucuronosyltransferases: Their role in drug metabolism and detoxification. Int J Biochem Cell Biol 2013; 45:1121-32. [DOI: 10.1016/j.biocel.2013.02.019] [Citation(s) in RCA: 508] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 01/17/2023]
|
46
|
Abdel-Rahman S, Amidon GL, Kaul A, Lukacova V, Vinks AA, Knipp G, the Members of the BCS Task Force. Summary of the National Institute of Child Health and Human Development-best pharmaceuticals for Children Act Pediatric Formulation Initiatives Workshop-Pediatric Biopharmaceutics Classification System Working Group. Clin Ther 2012; 34:S11-24. [PMID: 23149009 PMCID: PMC3534959 DOI: 10.1016/j.clinthera.2012.09.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 10/04/2012] [Indexed: 11/15/2022]
Abstract
BACKGROUND The Biopharmaceutics Classification System (BCS) allows compounds to be classified based on their in vitro solubility and intestinal permeability. The BCS has found widespread use in the pharmaceutical community to be an enabling guide for the rational selection of compounds, formulation for clinical advancement, and generic biowaivers. The Pediatric Biopharmaceutics Classification System (PBCS) Working Group was convened to consider the possibility of developing an analogous pediatric-based classification system. Because there are distinct developmental differences that can alter intestinal contents, volumes, permeability, and potentially biorelevant solubilities at different ages, the PBCS Working Group focused on identifying age-specific issues that need to be considered in establishing a flexible, yet rigorous PBCS. OBJECTIVE We summarized the findings of the PBCS Working Group and provided insights into considerations required for the development of a PBCS. METHODS Through several meetings conducted both at The Eunice Kennedy Shriver National Institute of Child Health, Human Development-US Pediatric Formulation Initiative Workshop (November 2011) and via teleconferences, the PBCS Working Group considered several high-level questions that were raised to frame the classification system. In addition, the PBCS Working Group identified a number of knowledge gaps that need to be addressed to develop a rigorous PBCS. RESULTS It was determined that for a PBCS to be truly meaningful, it needs to be broken down into several different age groups that account for developmental changes in intestinal permeability, luminal contents, and gastrointestinal (GI) transit. Several critical knowledge gaps were identified, including (1) a lack of fully understanding the ontogeny of drug metabolizing enzymes and transporters along the GI tract, in the liver, and in the kidney; (2) an incomplete understanding of age-based changes in the GI, liver, and kidney physiology; (3) a clear need to better understand age-based intestinal permeability and fraction absorbed required to develop the PBCS; (4) a clear need for the development and organization of pediatric tissue biobanks to serve as a source for ontogenic research; and (5) a lack of literature published in age-based pediatric pharmacokinetics to build physiologically- and population-based pharmacokinetic (PBPK) databases. CONCLUSIONS To begin the process of establishing a PBPK model, 10 pediatric therapeutic agents were selected (based on their adult BCS classifications). These agents should be targeted for additional research in the future. The PBCS Working Group also identified several areas where greater emphasis on research was needed to enable the development of a PBCS.
Collapse
Affiliation(s)
- Susan Abdel-Rahman
- Division of Pediatric Pharmacology and Medical Toxicology, The Children’s Mercy Hospital, Kansas City, MO
| | - Gordon L. Amidon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI
| | - Ajay Kaul
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | - Alexander A. Vinks
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Gregory Knipp
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN
| | | |
Collapse
|