1
|
Sangfuang N, Xie Y, McCoubrey LE, Taub M, Favaron A, Mai Y, Gaisford S, Basit AW. Investigating the bidirectional interactions between senotherapeutic agents and human gut microbiota. Eur J Pharm Sci 2025; 209:107098. [PMID: 40216167 DOI: 10.1016/j.ejps.2025.107098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/05/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Biological ageing is a time-dependent process that has implications for health and disease. Cellular senescence is a key driver in ageing and age-related diseases. Senotherapeutic agents have been shown to slow biological ageing by eliminating senescent mammalian cells. Given the increasing awareness of the gut microbiome in regulating human health, this study aimed to investigate the effects of senotherapeutic agents as pharmacological interventions on the human gut microbiota. In this study, the bidirectional effects of four senotherapeutic agents, quercetin, fisetin, dasatinib, and sirolimus, with the gut microbiota sourced from healthy human donors were investigated. The results revealed that quercetin was completely biotransformed by the gut microbiota within six hours, while dasatinib was the most stable of the four compounds. Additionally, metagenomic analysis confirmed that all four compounds increased the abundance of bacterial species associated with healthy ageing (e.g., Bacteroides fragilis, Bifidobacterium longum, and Veillonella parvula), and decreased the abundance of pathogenic bacteria primarily associated with age-related diseases (e.g., Enterococcus faecalis and Streptococcus spp.). The findings from this study provide a comprehensive understanding of the pharmacobiomics of senotherapeutic interventions, highlighting the potential of microbiome-targeted senolytics in promoting healthy ageing.
Collapse
Affiliation(s)
| | - Yuan Xie
- School of Pharmaceutical Sciences (Shenzen), Sun Yat-Sen University, Shenzen 518107, China
| | - Laura E McCoubrey
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Drug Product Development, GSK R&D, Ware SG12 0GX, UK
| | - Marissa Taub
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Alessia Favaron
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzen), Sun Yat-Sen University, Shenzen 518107, China.
| | - Simon Gaisford
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Abdul W Basit
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
2
|
Huang Y, Liao L, Jiang Y, Tao S, Tang D. Role of gut microbiota in predicting chemotherapy-induced neutropenia duration in leukemia patients. Front Microbiol 2025; 16:1507336. [PMID: 40177485 PMCID: PMC11961871 DOI: 10.3389/fmicb.2025.1507336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/18/2025] [Indexed: 04/05/2025] Open
Abstract
Background Acute leukemia is an aggressive malignancy with high morbidity and mortality, and chemotherapy is the primary treatment modality. However, chemotherapy often induces neutropenia (chemotherapy-induced neutropenia, CIN), increasing the risk of infectious complications and mortality. Current research suggests that gut microbiota may play a significant role in chemotherapy's efficacy and side effects. Objective This study aimed to investigate whether gut microbiota can predict the duration of chemotherapy-induced neutropenia in leukemia patients. Methods We included 56 leukemia patients from the Hematology Department of the Second Affiliated Hospital of Nanchang University, collecting fecal samples 1 day before and 1 day after chemotherapy. The diversity and community structure of gut microbiota were analyzed using 16S rRNA gene sequencing. Patients were divided into two groups based on the duration of neutropenia post-chemotherapy: Neutropenia ≤7 Days Group (NLE7 Group) and Neutropenia > 7 Days Group (NGT7 Group). Comparative analysis identified characteristic microbiota. Results After chemotherapy, gut microbiota diversity significantly decreased (p < 0.05). In the NGT7 Group, the relative abundance of Enterococcus before chemotherapy was significantly higher than in the NLE7 Group (p < 0.05). ROC curve analysis showed that the relative abundance of Enterococcus had high predictive accuracy for the duration of neutropenia (AUC = 0.800, 95% CI: 0.651-0.949). Conclusion The abundance of Enterococcus before chemotherapy can predict the duration of chemotherapy-induced neutropenia. These findings provide new evidence for gut microbiota as a predictive biomarker for chemotherapy side effects and may guide personalized treatment for leukemia patients.
Collapse
Affiliation(s)
- Yezi Huang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Nanchang, China
| | - Lihong Liao
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Nanchang, China
| | - Yanjun Jiang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Nanchang, China
| | - Si Tao
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Duozhuang Tang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Nanchang, China
| |
Collapse
|
3
|
Nguyen SM, Tran HTT, Long J, Shrubsole MJ, Cai H, Yang Y, Cai Q, Tran TV, Zheng W, Shu XO. Gut microbiome in association with chemotherapy-induced toxicities among patients with breast cancer. Cancer 2024; 130:2014-2030. [PMID: 38319284 DOI: 10.1002/cncr.35229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/29/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Little research has focused on the relationship between gut microbiome and chemotherapy-induced toxicity. METHODS This prospective study involves 301 patients with breast cancer who had prechemotherapy stool samples collected. Gut microbiome was sequenced by shotgun metagenomics; associations with chemotherapy-induced toxicities during first-line treatment by gut microbial diversity, composition, and metabolic pathways with severe (i.e., grade ≥3) hematological and gastrointestinal toxicities were evaluated via multivariable logistic regression. RESULTS High prechemotherapy α-diversity was associated with a significantly reduced risk of both severe hematological toxicity (odds ratio [OR] = 0.94; 95% CI, 0.89-0.99; p = .048) and neutropenia (OR = 0.94; 95% CI, 0.89-0.99; p = .016). A high abundance of phylum Synergistota, class Synergistia, and order Synergistales were significantly associated with a reduced risk of severe neutropenia; conversely, enrichment of phylum Firmicutes C, class Negativicutes, phylum Firmicutes I, and class Bacilli A, order Paenibacillales were significantly associated with an increased risk of severe neutropenia (p range: 0.012-2.32 × 10-3; false discovery rate <0.1). Significant positive associations were also observed between severe nausea/vomiting and high Chao1 indexes, β-diversity (p < .05), 20 species belonging to the family Lachnospiraceae, Oscillospiraceae, and Ruminococcaceae (p value range: 6.14 × 10-3 to 1.33 × 10-5; false discovery rate <0.1), and three metabolic pathways involved in reductive tricarboxylic acid cycle I and cycle II, and an incomplete reductive tricarboxylic acid cycle (p < .01). Conversely, a high abundance of species Odoribacter laneus and the pathway related to the L-proline biosynthesis II were inversely associated with severe nausea/vomiting. CONCLUSIONS Our study suggests that gut microbiota may be a potential preventive target to reduce chemotherapy-induced toxicity.
Collapse
Affiliation(s)
- Sang M Nguyen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Huong T T Tran
- Vietnam National Cancer Institute, National Cancer Hospital, Hanoi, Vietnam
- Hanoi Medical University, Hanoi, Vietnam
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Martha J Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yaohua Yang
- Department of Public Health Sciences, School of Medicine, Center for Public Health Genomics, UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Thuan V Tran
- Hanoi Medical University, Hanoi, Vietnam
- Ministry of Health, Hanoi, Vietnam
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Pieper LM, Spanogiannopoulos P, Volk RF, Miller CJ, Wright AT, Turnbaugh PJ. The global anaerobic metabolism regulator fnr is necessary for the degradation of food dyes and drugs by Escherichia coli. mBio 2023; 14:e0157323. [PMID: 37642463 PMCID: PMC10653809 DOI: 10.1128/mbio.01573-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 08/31/2023] Open
Abstract
IMPORTANCE This work has broad relevance due to the ubiquity of dyes containing azo bonds in food and drugs. We report that azo dyes can be degraded by human gut bacteria through both enzymatic and nonenzymatic mechanisms, even from a single gut bacterial species. Furthermore, we revealed that environmental factors, oxygen, and L-Cysteine control the ability of E. coli to degrade azo dyes due to their impacts on bacterial transcription and metabolism. These results open up new opportunities to manipulate the azoreductase activity of the gut microbiome through the manipulation of host diet, suggest that azoreductase potential may be altered in patients suffering from gastrointestinal disease, and highlight the importance of studying bacterial enzymes for drug metabolism in their natural cellular and ecological context.
Collapse
Affiliation(s)
- Lindsey M. Pieper
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
| | - Peter Spanogiannopoulos
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
| | - Regan F. Volk
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
| | - Carson J. Miller
- Biological Sciences Group, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aaron T. Wright
- Biological Sciences Group, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Biology, Baylor University, Waco, Texas, USA
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Peter J. Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
- Chan Zuckerberg Biohub-San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Yang H, Zhang Y, Zhou R, Wu T, Zhu P, Liu Y, Zhou J, Xiong Y, Xiong Y, Zhou H, Zhang W, Shu Y, Li X, Li Q. Antibiotics-Induced Depletion of Rat Microbiota Induces Changes in the Expression of Host Drug-Processing Genes and Pharmacokinetic Behaviors of CYPs Probe Drugs. Drug Metab Dispos 2023; 51:509-520. [PMID: 36623881 DOI: 10.1124/dmd.122.001173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
The metabolism of exogenous substances is affected by the gut microbiota, and the relationship between them has become a hot topic. However, the mechanisms by which the microbiota regulates drug metabolism have not been clearly defined. This study characterizes the expression profiles of host drug-processing genes (DPGs) in antibiotics-treated rats by using an unbias quantitative RNA-sequencing method and investigates the effects of antibiotics-induced depletion of rat microbiota on the pharmacokinetic behaviors of cytochrome P450s (CYPs) probe drugs, and bile acids metabolism by ultra-performance liquid chromatography-tandem mass spectrometry. Our results show that antibiotics treatments altered the mRNA expressions of 112 DPGs in the liver and jejunum of rats. The mRNA levels of CYP2A1, CYP2C11, CYP2C13, CYP2D, CYP2E1, and CYP3A of CYP family members were significantly downregulated in antibiotics-treated rats. Furthermore, antibiotics treatments also resulted in a significant decrease in the protein expressions and enzyme activities of CYP3A1 and CYP2E1 in rat liver. Pharmacokinetic results showed that, except for tolbutamide, antibiotics treatments significantly altered the pharmacokinetic behaviors of phenacetin, omeprazole, metoprolol, chlorzoxazone, and midazolam. In conclusion, the presence of stable, complex, and diverse gut microbiota plays a significant role in regulating the expression of host DPGs, which could contribute to some individual differences in pharmacokinetics. SIGNIFICANCE STATEMENT: This study investigated how the depletion of rat microbiota by antibiotics treatments influences the expression profiles of host DPGs and the pharmacokinetic behaviors of CYPs probe drugs. Combined with previous studies in germ-free mice, this study will improve the understanding of the role of gut microbiota in drug metabolism and contribute to the understanding of individual differences in the pharmacokinetics of some drugs.
Collapse
Affiliation(s)
- Haijun Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yanjuan Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Rong Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Tianyuan Wu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Peng Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yujie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Jian Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yalan Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yanling Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yan Shu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Xiong Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| |
Collapse
|
6
|
Dhurjad P, Dhavaliker C, Gupta K, Sonti R. Exploring Drug Metabolism by the Gut Microbiota: Modes of Metabolism and Experimental Approaches. Drug Metab Dispos 2022; 50:224-234. [PMID: 34969660 DOI: 10.1124/dmd.121.000669] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022] Open
Abstract
Increasing evidence uncovers the involvement of gut microbiota in the metabolism of numerous pharmaceutical drugs. The human gut microbiome harbors 10-100 trillion symbiotic gut microbial bacteria that use drugs as substrates for enzymatic processes to alter host metabolism. Thus, microbiota-mediated drug metabolism can change the conventional drug action course and cause inter-individual differences in efficacy and toxicity, making it vital for drug discovery and development. This review focuses on drug biotransformation pathways and discusses different models for evaluating the role of gut microbiota in drug metabolism. SIGNIFICANCE STATEMENT: This review emphasizes the importance of gut microbiota and different modes of drug metabolism mediated by them. It provides information on in vivo, in vitro, ex vivo, in silico and multi-omics approaches for identifying the role of gut microbiota in metabolism. Further, it highlights the significance of gut microbiota-mediated metabolism in the process of new drug discovery and development as a rationale for safe and efficacious drug therapy.
Collapse
Affiliation(s)
- Pooja Dhurjad
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chinmayi Dhavaliker
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kajal Gupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
7
|
McEvoy L, Carr DF, Pirmohamed M. Pharmacogenomics of NSAID-Induced Upper Gastrointestinal Toxicity. Front Pharmacol 2021; 12:684162. [PMID: 34234675 PMCID: PMC8256335 DOI: 10.3389/fphar.2021.684162] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are a group of drugs which are widely used globally for the treatment of pain and inflammation, and in the case of aspirin, for secondary prevention of cardiovascular disease. Chronic non-steroidal anti-inflammatory drug use is associated with potentially serious upper gastrointestinal adverse drug reactions (ADRs) including peptic ulcer disease and gastrointestinal bleeding. A few clinical and genetic predisposing factors have been identified; however, genetic data are contradictory. Further research is needed to identify clinically relevant genetic and non-genetic markers predisposing to NSAID-induced peptic ulceration.
Collapse
Affiliation(s)
- L McEvoy
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - D F Carr
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - M Pirmohamed
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Shanu-Wilson J, Evans L, Wrigley S, Steele J, Atherton J, Boer J. Biotransformation: Impact and Application of Metabolism in Drug Discovery. ACS Med Chem Lett 2020; 11:2087-2107. [PMID: 33214818 DOI: 10.1021/acsmedchemlett.0c00202] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Biotransformation has a huge impact on the efficacy and safety of drugs. Ultimately the effects of metabolism can be the lynchpin in the discovery and development cycle of a new drug. This article discusses the impact and application of biotransformation of drugs by mammalian systems, microorganisms, and recombinant enzymes, covering active and reactive metabolites, the impact of the gut microbiome on metabolism, and how insights gained from biotransformation studies can influence drug design from the combined perspectives of a CRO specializing in a range of biotransformation techniques and pharma biotransformation scientists. We include a commentary on how biology-driven approaches can complement medicinal chemistry strategies in drug optimization and the in vitro and surrogate systems available to explore and exploit biotransformation.
Collapse
Affiliation(s)
- Julia Shanu-Wilson
- Hypha Discovery Ltd., 154B Brook Drive, Milton Park, Abingdon, Oxfordshire OX14 4SD, U.K
| | - Liam Evans
- Hypha Discovery Ltd., 154B Brook Drive, Milton Park, Abingdon, Oxfordshire OX14 4SD, U.K
| | - Stephen Wrigley
- Hypha Discovery Ltd., 154B Brook Drive, Milton Park, Abingdon, Oxfordshire OX14 4SD, U.K
| | - Jonathan Steele
- Hypha Discovery Ltd., 154B Brook Drive, Milton Park, Abingdon, Oxfordshire OX14 4SD, U.K
| | - James Atherton
- Incyte Corporation, 1801 Augustine Cut-off, Wilmington, Delaware 19803, United States
| | - Jason Boer
- Incyte Corporation, 1801 Augustine Cut-off, Wilmington, Delaware 19803, United States
| |
Collapse
|
9
|
Wu L, Kang A, Lin Y, Shan C, Zhou Z, Shi X, Yu B. LC-MS/MS Method Development and Validation for the Determination of Ilexsaponin A1 and Its Application in Intestinal Bacterial Metabolic Study. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190304141416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background:
Ilexsaponin A1, one of the most representative triterpene saponin components
in the roots of I. pubescens, showed its effects in anticoagulation and antithrombosis, attenuating
ischemia-reperfusion-induced myocardial, angiogenesis and inhibiting phosphodiesterase.
Objective:
Reveal the key intestinal bacterial strains responsible for ilexsaponin A1 metabolism, and
clarify their metabolic behavior.
Methods:
An accurate and sensitive LC-MS/MS method for the determination of “ilexsaponin A1 in
General Anaerobic Medium (GAM) broth” was established and systematically validated. Then it was
applied to screen and study the metabolic potential of the intestinal bacterial strains in an anaerobic
incubation system.
Results:
Quantitation of ilexsaponin A1 could be performed within an analytical run time of 14.5 min,
in the linear range of 2 - 2000 ng/ml. Enterobacter sakazakii, Bifidobacterium breve, Bifidobacterium
adolescentis, Bifidobacterium catenulatum, and Bifidobacterium angulatum were identified to have a
potential effect to metabolize ilexsaponin A1 to different extents; and further bacterial metabolic studies
were performed to clarify their metabolic capacity and behavior.
Conclusion:
This paper contributes to a better understanding of the intestinal bacterial metabolism of
ilexsaponin A1 and provides scientific evidence for its clinical application. Additionally, the importance
of intestinal bacterial strains in the disposition of natural products was also highlighted.
Collapse
Affiliation(s)
- Liang Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - An Kang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yujie Lin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenxiao Shan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhu Zhou
- Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211, United States
| | - Xuqin Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bin Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
10
|
Current Concepts in Pharmacometabolomics, Biomarker Discovery, and Precision Medicine. Metabolites 2020; 10:metabo10040129. [PMID: 32230776 PMCID: PMC7241083 DOI: 10.3390/metabo10040129] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Pharmacometabolomics (PMx) studies use information contained in metabolic profiles (or metabolome) to inform about how a subject will respond to drug treatment. Genome, gut microbiome, sex, nutrition, age, stress, health status, and other factors can impact the metabolic profile of an individual. Some of these factors are known to influence the individual response to pharmaceutical compounds. An individual’s metabolic profile has been referred to as his or her “metabotype.” As such, metabolomic profiles obtained prior to, during, or after drug treatment could provide insights about drug mechanism of action and variation of response to treatment. Furthermore, there are several types of PMx studies that are used to discover and inform patterns associated with varied drug responses (i.e., responders vs. non-responders; slow or fast metabolizers). The PMx efforts could simultaneously provide information related to an individual’s pharmacokinetic response during clinical trials and be used to predict patient response to drugs making pharmacometabolomic clinical research valuable for precision medicine. PMx biomarkers can also be discovered and validated during FDA clinical trials. Using biomarkers during medical development is described in US Law under the 21st Century Cures Act. Information on how to submit biomarkers to the FDA and their context of use is defined herein.
Collapse
|
11
|
Maseda D, Ricciotti E. NSAID-Gut Microbiota Interactions. Front Pharmacol 2020; 11:1153. [PMID: 32848762 PMCID: PMC7426480 DOI: 10.3389/fphar.2020.01153] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAID)s relieve pain, inflammation, and fever by inhibiting the activity of cyclooxygenase isozymes (COX-1 and COX-2). Despite their clinical efficacy, NSAIDs can cause gastrointestinal (GI) and cardiovascular (CV) complications. Moreover, NSAID use is characterized by a remarkable individual variability in the extent of COX isozyme inhibition, therapeutic efficacy, and incidence of adverse effects. The interaction between the gut microbiota and host has emerged as a key player in modulating host physiology, gut microbiota-related disorders, and metabolism of xenobiotics. Indeed, host-gut microbiota dynamic interactions influence NSAID disposition, therapeutic efficacy, and toxicity. The gut microbiota can directly cause chemical modifications of the NSAID or can indirectly influence its absorption or metabolism by regulating host metabolic enzymes or processes, which may have consequences for drug pharmacokinetic and pharmacodynamic properties. NSAID itself can directly impact the composition and function of the gut microbiota or indirectly alter the physiological properties or functions of the host which may, in turn, precipitate in dysbiosis. Thus, the complex interconnectedness between host-gut microbiota and drug may contribute to the variability in NSAID response and ultimately influence the outcome of NSAID therapy. Herein, we review the interplay between host-gut microbiota and NSAID and its consequences for both drug efficacy and toxicity, mainly in the GI tract. In addition, we highlight progress towards microbiota-based intervention to reduce NSAID-induced enteropathy.
Collapse
Affiliation(s)
- Damian Maseda
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, and Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Emanuela Ricciotti,
| |
Collapse
|
12
|
Kumar M, Singh P, Murugesan S, Vetizou M, McCulloch J, Badger JH, Trinchieri G, Al Khodor S. Microbiome as an Immunological Modifier. Methods Mol Biol 2020; 2055:595-638. [PMID: 31502171 PMCID: PMC8276114 DOI: 10.1007/978-1-4939-9773-2_27] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Humans are living ecosystems composed of human cells and microbes. The microbiome is the collection of microbes (microbiota) and their genes. Recent breakthroughs in the high-throughput sequencing technologies have made it possible for us to understand the composition of the human microbiome. Launched by the National Institutes of Health in USA, the human microbiome project indicated that our bodies harbor a wide array of microbes, specific to each body site with interpersonal and intrapersonal variabilities. Numerous studies have indicated that several factors influence the development of the microbiome including genetics, diet, use of antibiotics, and lifestyle, among others. The microbiome and its mediators are in a continuous cross talk with the host immune system; hence, any imbalance on one side is reflected on the other. Dysbiosis (microbiota imbalance) was shown in many diseases and pathological conditions such as inflammatory bowel disease, celiac disease, multiple sclerosis, rheumatoid arthritis, asthma, diabetes, and cancer. The microbial composition mirrors inflammation variations in certain disease conditions, within various stages of the same disease; hence, it has the potential to be used as a biomarker.
Collapse
Affiliation(s)
- Manoj Kumar
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar
| | - Parul Singh
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar
| | - Selvasankar Murugesan
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar
| | - Marie Vetizou
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John McCulloch
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan H Badger
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Souhaila Al Khodor
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
13
|
Zhan G, Yang N, Li S, Huang N, Fang X, Zhang J, Zhu B, Yang L, Yang C, Luo A. Abnormal gut microbiota composition contributes to cognitive dysfunction in SAMP8 mice. Aging (Albany NY) 2019; 10:1257-1267. [PMID: 29886457 PMCID: PMC6046237 DOI: 10.18632/aging.101464] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease is characterized by cognitive dysfunction and aging is an important predisposing factor; however, the pathological and therapeutic mechanisms are not fully understood. Recently, the role of gut microbiota in Alzheimer’s disease has received increasing attention. The cognitive function in senescence-accelerated mouse prone 8 (SAMP8) mice was significantly decreased and the Chao 1 and Shannon indices, principal coordinates analysis, and principal component analysis results were notably abnormal compared with that of those in senescence-accelerated mouse resistant 1 (SAMR1) mice. Moreover, 27 gut bacteria at six phylogenetic levels differed between SAMP8 and SAMR1 mice. In a separate study, we transplanted fecal bacteria from SAMP8 or SAMR1 mice into pseudo germ-free mice. Interestingly, the pseudo germ-free mice had significantly lower cognitive function prior to transplant. Pseudo germ-free mice that received fecal bacteria transplants from SAMR1 mice but not from SAMP8 mice showed improvements in behavior and in α-diversity and β-diversity indices. In total, 14 bacteria at six phylogenetic levels were significantly altered by the gut microbiota transplant. These results suggest that cognitive dysfunction in SAMP8 mice is associated with abnormal composition of the gut microbiota. Thus, improving abnormal gut microbiota may provide an alternative treatment for cognitive dysfunction and Alzheimer’s disease.
Collapse
Affiliation(s)
- Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Niannian Huang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Fang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhu
- Department of Cardiology and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Suzhou, China
| | - Ling Yang
- Department of Cardiology and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Tarasiuk A, Fichna J. Gut microbiota: what is its place in pharmacology? Expert Rev Clin Pharmacol 2019; 12:921-930. [DOI: 10.1080/17512433.2019.1670058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
15
|
Hitchings R, Kelly L. Predicting and Understanding the Human Microbiome's Impact on Pharmacology. Trends Pharmacol Sci 2019; 40:495-505. [PMID: 31171383 DOI: 10.1016/j.tips.2019.04.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022]
Abstract
Our bodies each possess a unique and dynamic collection of microbes and viruses, collectively the 'microbiome', with distinct metabolic capacities from our human cells. Unforeseen modification of drugs by the microbiome can drastically alter their clinical effectiveness, with the most dramatic cases leading to fatal drug interactions. Pharmaceuticals can be activated, deactivated, toxified, or release metabolites that alter the 'canonical' pharmacokinetics of the drug. Thus, predicting and characterizing microbe-drug interactions is necessary to develop and implement personalized drug administration protocols and, more broadly, to improve drug safety and efficacy. In this review, we focus on microbiome-driven alterations to drug pharmacokinetics and provide a research framework for pharmacologists interested in characterizing microbiome interactions with any drug of interest.
Collapse
Affiliation(s)
- Reese Hitchings
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, The Bronx, NY, USA
| | - Libusha Kelly
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, The Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Bronx, NY, USA.
| |
Collapse
|
16
|
Rapamycin modulates tissue aging and lifespan independently of the gut microbiota in Drosophila. Sci Rep 2019; 9:7824. [PMID: 31127145 PMCID: PMC6534571 DOI: 10.1038/s41598-019-44106-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/09/2019] [Indexed: 12/20/2022] Open
Abstract
The FDA approved drug rapamycin can prolong lifespan in diverse species and delay the onset of age-related disease in mammals. However, a number of fundamental questions remain unanswered regarding the mechanisms by which rapamycin modulates age-related pathophysiology and lifespan. Alterations in the gut microbiota can impact host physiology, metabolism and lifespan. While recent studies have shown that rapamycin treatment alters the gut microbiota in aged animals, the causal relationships between rapamycin treatment, microbiota dynamics and aging are not known. Here, using Drosophila as a model organism, we show that rapamycin-mediated alterations in microbiota dynamics in aged flies are associated with improved markers of intestinal and muscle aging. Critically, however, we show that the beneficial effects of rapamycin treatment on tissue aging and lifespan are not dependent upon the microbiota. Indeed, germ-free flies show delayed onset of intestinal barrier dysfunction, improved proteostasis in aged muscles and a significant lifespan extension upon rapamycin treatment. In contrast, genetic inhibition of autophagy impairs the ability of rapamycin to mediate improved gut health and proteostasis during aging. Our results indicate that rapamycin-mediated modulation of the microbiota in aged animals is not causally required to slow tissue and organismal aging.
Collapse
|
17
|
Sharma A, Buschmann MM, Gilbert JA. Pharmacomicrobiomics: The Holy Grail to Variability in Drug Response? Clin Pharmacol Ther 2019; 106:317-328. [PMID: 30937887 DOI: 10.1002/cpt.1437] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/11/2019] [Indexed: 12/23/2022]
Abstract
The human body, with 3.0 × 1013 cells and more than 3.8 × 1013 microorganisms, has nearly a one-to-one ratio of resident microbes to human cells. Initiatives like the Human Microbiome Project, American Gut, and Flemish Gut have identified associations between microbial taxa and human health. The study of interactions between microbiome and pharmaceutical agents, i.e., pharmacomicrobiomics, has revealed an instrumental role of the microbiome in modulating drug response that alters the therapeutic outcomes. In this review, we present our current comprehension of the relationship of the microbiome, host biology, and pharmaceutical agents such as cardiovascular drugs, analgesics, and chemotherapeutic agents to human disease and treatment outcomes. We also discuss the significance of studying diet-gene-drug interactions and further address the key challenges associated with pharmacomicrobiomics. Finally, we examine proposed models employing systems biology for the application of pharmacomicrobiomics and other -omics data, and provide approaches to elucidate microbiome-drug interactions to improve future translation to personalized medicine.
Collapse
Affiliation(s)
- Anukriti Sharma
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | | | - Jack A Gilbert
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA.,Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
18
|
Gut microbiota, a new frontier to understand traditional Chinese medicines. Pharmacol Res 2019; 142:176-191. [PMID: 30818043 DOI: 10.1016/j.phrs.2019.02.024] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 02/06/2023]
Abstract
As an important component of complementary and alternative medicines, traditional Chinese medicines (TCM) are gaining more and more attentions around the world because of the powerful therapeutic effects and less side effects. However, there are still some doubts about TCM because of the questionable TCM theories and unclear biological active compounds. In recent years, gut microbiota has emerged as an important frontier to understand the development and progress of diseases. Together with this trend, an increasing number of studies have indicated that drug molecules can interact with gut microbiota after oral administration. In this context, more and more studies pertaining to TCM have paid attention to gut microbiota and have yield rich information for understanding TCM. After oral administration, TCM can interact with gut microbiota: (1) TCM can modulate the composition of gut microbiota; (2) TCM can modulate the metabolism of gut microbiota; (3) gut microbiota can transform TCM compounds. During the interactions, two types of metabolites can be produced: gut microbiota metabolites (of food and host origin) and gut microbiota transformed TCM compounds. In this review, we summarized the interactions between TCM and gut microbiota, and the pharmacological effects and features of metabolites produced during interactions between TCM and gut microbiota. Then, focusing on gut microbiota and metabolites, we summarized the aspects in which gut microbiota has facilitated our understanding of TCM. At the end of this review, the outlooks for further research of TCM and gut microbiota were also discussed.
Collapse
|
19
|
Ostrov BE, Amsterdam D. Immunomodulatory interplay of the microbiome and therapy of rheumatic diseases. Immunol Invest 2018; 46:769-792. [PMID: 29058546 DOI: 10.1080/08820139.2017.1373828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Modulation of the immune system by microbes, especially from the gastrointestinal tract, is increasingly considered a key factor in the onset, course and outcome of rheumatic diseases. The interplay of the microbiome, along with genetic predisposition and environmental exposure, is thought to be an important trigger for rheumatic diseases. Improved identification of the relationship of disease-specific genetic alterations and rheumatic diseases has potential diagnostic and therapeutic applications. Treatment of rheumatic disorders is influenced by microbial actions but this interplay can be challenging due to variable and unpredictable responses to therapies. Expanded knowledge of the microbiome now allows clinicians to more precisely select ideal medication regimens and to predict response to and toxicity from drugs. Rheumatic diseases and associated therapies were among the earliest microbiome interactions investigated, yet it is notable that current research is focused on clinical and immunological associations but, in comparison, a limited number of studies regarding the microbiome's impact on treatment for rheumatic diseases have been published. In the coming years, further knowledge of immunomodulating interactions between the microbiome and the immune system will aid our understanding of autoimmunity and will be increasingly important in selection of therapeutic agents for patients with autoimmune and rheumatic diseases. In this review, recent literature regarding the bidirectional immunomodulatory effects of the microbiome with rheumatic diseases and current understanding and gaps regarding the drug-microbiome interface in the management of these disorders is presented.
Collapse
Affiliation(s)
- Barbara E Ostrov
- a Pediatrics and Medicine, Pediatric Rheumatology, Department of Pediatrics, Rheumatology, Department of Medicine , Penn State College of Medicine , Hershey , PA , USA
| | - Daniel Amsterdam
- b Microbiology and Immunology, Pathology and Medicine , Jacobs School of Medicine and Biomedical Sciences, Chief of Service, Laboratory Medicine, Erie County Medical Center , Buffalo , NY , USA
| |
Collapse
|
20
|
Iebba V, Guerrieri F, Di Gregorio V, Levrero M, Gagliardi A, Santangelo F, Sobolev AP, Circi S, Giannelli V, Mannina L, Schippa S, Merli M. Combining amplicon sequencing and metabolomics in cirrhotic patients highlights distinctive microbiota features involved in bacterial translocation, systemic inflammation and hepatic encephalopathy. Sci Rep 2018; 8:8210. [PMID: 29844325 PMCID: PMC5974022 DOI: 10.1038/s41598-018-26509-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
In liver cirrhosis (LC), impaired intestinal functions lead to dysbiosis and possible bacterial translocation (BT). Bacteria or their byproducts within the bloodstream can thus play a role in systemic inflammation and hepatic encephalopathy (HE). We combined 16S sequencing, NMR metabolomics and network analysis to describe the interrelationships of members of the microbiota in LC biopsies, faeces, peripheral/portal blood and faecal metabolites with clinical parameters. LC faeces and biopsies showed marked dysbiosis with a heightened proportion of Enterobacteriaceae. Our approach showed impaired faecal bacterial metabolism of short-chain fatty acids (SCFAs) and carbon/methane sources in LC, along with an enhanced stress-related response. Sixteen species, mainly belonging to the Proteobacteria phylum, were shared between LC peripheral and portal blood and were functionally linked to iron metabolism. Faecal Enterobacteriaceae and trimethylamine were positively correlated with blood proinflammatory cytokines, while Ruminococcaceae and SCFAs played a protective role. Within the peripheral blood and faeces, certain species (Stenotrophomonas pavanii, Methylobacterium extorquens) and metabolites (methanol, threonine) were positively related to HE. Cirrhotic patients thus harbour a 'functional dysbiosis' in the faeces and peripheral/portal blood, with specific keystone species and metabolites related to clinical markers of systemic inflammation and HE.
Collapse
Affiliation(s)
- Valerio Iebba
- Istituto Pasteur Cenci Bolognetti Foundation, Public Health and Infectious Diseases Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesca Guerrieri
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Vincenza Di Gregorio
- Gastroenterology, Department of Clinical Medicine, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| | - Massimo Levrero
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), Centre Léon Bérard, Lyon, France
| | - Antonella Gagliardi
- Public Health and Infectious Diseases Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Floriana Santangelo
- Public Health and Infectious Diseases Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Anatoly P Sobolev
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Rome, Italy
- Magnetic Resonance Laboratory "Annalaura Segre", Institute of Chemical Methodologies, CNR, via Salaria km 29.300, 00015, Monterotondo, (RM), Italy
| | - Simone Circi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Rome, Italy
| | - Valerio Giannelli
- Gastroenterology, Department of Clinical Medicine, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| | - Luisa Mannina
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Rome, Italy
- Magnetic Resonance Laboratory "Annalaura Segre", Institute of Chemical Methodologies, CNR, via Salaria km 29.300, 00015, Monterotondo, (RM), Italy
| | - Serena Schippa
- Public Health and Infectious Diseases Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Manuela Merli
- Gastroenterology, Department of Clinical Medicine, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy.
| |
Collapse
|
21
|
Fan L, Zhao X, Tong Q, Zhou X, Chen J, Xiong W, Fang J, Wang W, Shi C. Interactions of Dihydromyricetin, a Flavonoid from Vine Tea (Ampelopsis grossedentata) with Gut Microbiota. J Food Sci 2018; 83:1444-1453. [PMID: 29660761 DOI: 10.1111/1750-3841.14128] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/02/2018] [Accepted: 02/22/2018] [Indexed: 01/20/2023]
Abstract
Dihydromyricetin (DMY) is the main bioactive constituent in vine tea (Ampelopsis grossedentata), which was predominantly distributed in the gastrointestinal tract and showed poor oral bioavailability. Our aim was to systematically investigate the interactions of DMY with gut microbiota. Through the metabolism study of DMY by fecal microflora in vitro, it was found that DMY could be metabolized into three metabolites by fecal microflora via reduction and dehydroxylation pathways, and the dehydroxylation metabolite was the dominant one. Meanwhile, in order to consider the influence of gut microbiota metabolism on the pharmacokinetics of DMY, the pharmacokinetics of DMY in control and pseudo-germ-free rats were compared. It was shown that area under the curve (AUC) could only slightly increase, however, peak concentration (Cmax ) could significantly increase in the pseudo-germ-free rats compared with the control rats, which indicated the gut microbiota metabolism played an important role in the pharmacokinetics of DMY. In addition, the long-term influence of DMY on gut microbiota composition by using 16S rRNA pyrosequencing was further investigated. And it was found that DMY could markedly alter the richness and diversity of the gut microbiota and modulate the gut microbiota composition. The present findings will be helpful for the future development and clinical application of DMY. PRACTICAL APPLICATION The gut microbiota plays an important role in the pharmacokinetics of flavonoids. As well, the long-term supplements of flavonoids could alter the gut microbiota composition in turn. The study aims to clarify the mutual interaction of DMY with gut microbiota, which may lead to new information with respect to the mechanism study and clinical application of DMY.
Collapse
Affiliation(s)
- Li Fan
- Dept. of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, 430030, China
| | - Xinyuan Zhao
- Dept. of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, 430030, China
| | - Qing Tong
- Dept. of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, 430030, China
| | - Xiya Zhou
- Dept. of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, 430030, China
| | - Jing Chen
- Dept. of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, 430030, China
| | - Wei Xiong
- Dept. of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, 430030, China
| | - Jianguo Fang
- Dept. of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, 430030, China
| | - Wenqing Wang
- Dept. of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, 430030, China
| | - Chunyang Shi
- Dept. of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
22
|
Yip LY, Aw CC, Lee SH, Hong YS, Ku HC, Xu WH, Chan JMX, Cheong EJY, Chng KR, Ng AHQ, Nagarajan N, Mahendran R, Lee YK, Browne ER, Chan ECY. The liver-gut microbiota axis modulates hepatotoxicity of tacrine in the rat. Hepatology 2018. [PMID: 28646502 DOI: 10.1002/hep.29327] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED The gut microbiota possesses diverse metabolic activities, but its contribution toward heterogeneous toxicological responses is poorly understood. In this study, we investigated the role of the liver-gut microbiota axis in underpinning the hepatotoxicity of tacrine. We employed an integrated strategy combining pharmacokinetics, toxicology, metabonomics, genomics, and metagenomics to elucidate and validate the mechanism of tacrine-induced hepatotoxicity in Lister hooded rats. Pharmacokinetic studies in rats demonstrated 3.3-fold higher systemic exposure to tacrine in strong responders that experienced transaminitis, revealing enhanced enterohepatic recycling of deglucuronidated tacrine in this subgroup, not attributable to variation in hepatic disposition gene expression. Metabonomic studies implicated variations in gut microbial activities that mapped onto tacrine-induced transaminitis. Metagenomics delineated greater deglucuronidation capabilities in strong responders, based on differential gut microbial composition (e.g., Lactobacillus, Bacteroides, and Enterobacteriaceae) and approximately 9% higher β-glucuronidase gene abundance compared with nonresponders. In the validation study, coadministration with oral β-glucuronidase derived from Escherichia coli and pretreatment with vancomycin and imipenem significantly modulated the susceptibility to tacrine-induced transaminitis in vivo. CONCLUSION This study establishes pertinent gut microbial influences in modifying the hepatotoxicity of tacrine, providing insights for personalized medicine initiatives. (Hepatology 2018;67:282-295).
Collapse
Affiliation(s)
- Lian Yee Yip
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
- Metabolomics, Bioprocessing Technology Institute, Singapore, Singapore
| | | | - Sze Han Lee
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yi Shuen Hong
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Han Chen Ku
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Winston Hecheng Xu
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jessalyn Mei Xuan Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Eleanor Jing Yi Cheong
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Kern Rei Chng
- Computational and Systems Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Amanda Hui Qi Ng
- Computational and Systems Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Niranjan Nagarajan
- Computational and Systems Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Ratha Mahendran
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuan Kun Lee
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Singapore, Singapore
| |
Collapse
|
23
|
Piwowarski JP, Stanisławska I, Granica S, Stefańska J, Kiss AK. Phase II Conjugates of Urolithins Isolated from Human Urine and Potential Role of β-Glucuronidases in Their Disposition. Drug Metab Dispos 2017; 45:657-665. [PMID: 28283501 DOI: 10.1124/dmd.117.075200] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/01/2017] [Indexed: 02/13/2025] Open
Abstract
In recent years, many xenobiotics derived from natural products have been shown to undergo extensive metabolism by gut microbiota. Ellagitannins, which are high molecular polyphenols, are metabolized to dibenzo[b,d]pyran-6-one derivatives-urolithins. These compounds, in contrast with their parental compounds, have good bioavailability and are found in plasma and urine at micromolar concentrations. In vivo studies conducted for ellagitannin-containing natural products indicate their beneficial health effects toward inflammation and cancer, which are associated with the formation of urolithins. However, the great majority of in vitro experiments that have revealed the molecular mechanisms responsible for the observed effects were conducted for urolithin aglycones. These studies are thus incongruent with the results of pharmacokinetic studies that clearly indicate that glucuronide conjugates are the dominant metabolites present in plasma, tissue, and urine. The aim of this study was to isolate and structurally characterize urolithin conjugates from the urine of a volunteer who ingested ellagitannin-rich natural products, and to evaluate the potential role of β-glucuronidase-triggered cleavage in urolithin disposition. Glucuronides of urolithin A, iso-urolithin A, and urolithin B were isolated and shown to be cleaved by the β-glucuronidases released by neutrophils from azurophilic granules upon N-formylmethionine-leucyl-phenylalanine stimulation as well as by Escherichia coli standard strains and clinical isolates from patients with urinary tract infections. These results justify the hypothesis that the selective activation of urolithin glucuronides by β-glucuronidase, which are present at high concentrations at inflammation and infection sites and in the microenvironments of solid tumors, could locally increase the concentration of bioactive urolithin aglycones.
Collapse
Affiliation(s)
- Jakub P Piwowarski
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy (J.P.P., I.S., S.G., A.K.K.), and Department of Pharmaceutical Microbiology, Centre for Preclinical Research and Technology (CePT) (J.S.), Medical University of Warsaw, Warsaw, Poland; Primary Laboratory of Origin: Medical University of Warsaw, Faculty of Pharmacy
| | - Iwona Stanisławska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy (J.P.P., I.S., S.G., A.K.K.), and Department of Pharmaceutical Microbiology, Centre for Preclinical Research and Technology (CePT) (J.S.), Medical University of Warsaw, Warsaw, Poland; Primary Laboratory of Origin: Medical University of Warsaw, Faculty of Pharmacy
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy (J.P.P., I.S., S.G., A.K.K.), and Department of Pharmaceutical Microbiology, Centre for Preclinical Research and Technology (CePT) (J.S.), Medical University of Warsaw, Warsaw, Poland; Primary Laboratory of Origin: Medical University of Warsaw, Faculty of Pharmacy
| | - Joanna Stefańska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy (J.P.P., I.S., S.G., A.K.K.), and Department of Pharmaceutical Microbiology, Centre for Preclinical Research and Technology (CePT) (J.S.), Medical University of Warsaw, Warsaw, Poland; Primary Laboratory of Origin: Medical University of Warsaw, Faculty of Pharmacy
| | - Anna K Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy (J.P.P., I.S., S.G., A.K.K.), and Department of Pharmaceutical Microbiology, Centre for Preclinical Research and Technology (CePT) (J.S.), Medical University of Warsaw, Warsaw, Poland; Primary Laboratory of Origin: Medical University of Warsaw, Faculty of Pharmacy
| |
Collapse
|
24
|
Abstract
The microbiota is composed of commensal bacteria and other microorganisms that live on the epithelial barriers of the host. The commensal microbiota is important for the health and survival of the organism. Microbiota influences physiological functions from the maintenance of barrier homeostasis locally to the regulation of metabolism, haematopoiesis, inflammation, immunity and other functions systemically. The microbiota is also involved in the initiation, progression and dissemination of cancer both at epithelial barriers and in sterile tissues. Recently, it has become evident that microbiota, and particularly the gut microbiota, modulates the response to cancer therapy and susceptibility to toxic side effects. In this Review, we discuss the evidence for the ability of the microbiota to modulate chemotherapy, radiotherapy and immunotherapy with a focus on the microbial species involved, their mechanism of action and the possibility of targeting the microbiota to improve anticancer efficacy while preventing toxicity.
Collapse
Affiliation(s)
- Soumen Roy
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
25
|
Yu AM, Ingelman-Sundberg M, Cherrington NJ, Aleksunes LM, Zanger UM, Xie W, Jeong H, Morgan ET, Turnbaugh PJ, Klaassen CD, Bhatt AP, Redinbo MR, Hao P, Waxman DJ, Wang L, Zhong XB. Regulation of drug metabolism and toxicity by multiple factors of genetics, epigenetics, lncRNAs, gut microbiota, and diseases: a meeting report of the 21 st International Symposium on Microsomes and Drug Oxidations (MDO). Acta Pharm Sin B 2017; 7:241-248. [PMID: 28388695 PMCID: PMC5343155 DOI: 10.1016/j.apsb.2016.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/30/2016] [Indexed: 01/16/2023] Open
Abstract
Variations in drug metabolism may alter drug efficacy and cause toxicity; better understanding of the mechanisms and risks shall help to practice precision medicine. At the 21st International Symposium on Microsomes and Drug Oxidations held in Davis, California, USA, in October 2-6, 2016, a number of speakers reported some new findings and ongoing studies on the regulation mechanisms behind variable drug metabolism and toxicity, and discussed potential implications to personalized medications. A considerably insightful overview was provided on genetic and epigenetic regulation of gene expression involved in drug absorption, distribution, metabolism, and excretion (ADME) and drug response. Altered drug metabolism and disposition as well as molecular mechanisms among diseased and special populations were presented. In addition, the roles of gut microbiota in drug metabolism and toxicology as well as long non-coding RNAs in liver functions and diseases were discussed. These findings may offer new insights into improved understanding of ADME regulatory mechanisms and advance drug metabolism research.
Collapse
|
26
|
Kim IS, Yoo DH, Jung IH, Lim S, Jeong JJ, Kim KA, Bae ON, Yoo HH, Kim DH. Reduced metabolic activity of gut microbiota by antibiotics can potentiate the antithrombotic effect of aspirin. Biochem Pharmacol 2016; 122:72-79. [DOI: 10.1016/j.bcp.2016.09.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/23/2016] [Indexed: 01/28/2023]
|
27
|
Nichols RG, Hume NE, Smith PB, Peters JM, Patterson AD. Omics Approaches To Probe Microbiota and Drug Metabolism Interactions. Chem Res Toxicol 2016; 29:1987-1997. [PMID: 27782392 DOI: 10.1021/acs.chemrestox.6b00236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The drug metabolism field has long recognized the beneficial and sometimes deleterious influence of microbiota in the absorption, distribution, metabolism, and excretion of drugs. Early pioneering work with the sulfanilamide precursor prontosil pointed toward the necessity not only to better understand the metabolic capabilities of the microbiota but also, importantly, to identify the specific microbiota involved in the generation and metabolism of drugs. However, technological limitations important for cataloging the microbiota community as well as for understanding and/or predicting their metabolic capabilities hindered progress. Current advances including mass spectrometry-based metabolite profiling as well as culture-independent sequence-based identification and functional analysis of microbiota have begun to shed light on microbial metabolism. In this review, case studies will be presented to highlight key aspects (e.g., microbiota identification, metabolic function and prediction, metabolite identification, and profiling) that have helped to clarify how the microbiota might impact or be impacted by drug metabolism. Lastly, a perspective of the future of this field is presented that takes into account what important knowledge is lacking and how to tackle these problems.
Collapse
Affiliation(s)
- Robert G Nichols
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Nicole E Hume
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Philip B Smith
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Jeffrey M Peters
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Andrew D Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
28
|
Boer J, Young-Sciame R, Lee F, Bowman KJ, Yang X, Shi JG, Nedza FM, Frietze W, Galya L, Combs AP, Yeleswaram S, Diamond S. Roles of UGT, P450, and Gut Microbiota in the Metabolism of Epacadostat in Humans. Drug Metab Dispos 2016; 44:1668-74. [PMID: 27457784 DOI: 10.1124/dmd.116.070680] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/20/2016] [Indexed: 02/13/2025] Open
Abstract
Epacadostat (EPA, INCB024360) is a first-in-class, orally active, investigational drug targeting the enzyme indoleamine 2,3-dioxygenase 1 (IDO1). In Phase I studies, EPA has demonstrated promising clinical activity when used in combination with checkpoint modulators. When the metabolism of EPA was investigated in humans, three major, IDO1-inactive, circulating plasma metabolites were detected and characterized: M9, a direct O-glucuronide of EPA; M11, an amidine; and M12, N-dealkylated M11. Glucuronidation of EPA to form M9 is the dominant metabolic pathway, and in vitro, this metabolite is formed by UGT1A9. However, negligible quantities of M11 and M12 were detected when EPA was incubated with a panel of human microsomes from multiple tissues, hepatocytes, recombinant human cytochrome P450s (P450s), and non-P450 enzymatic systems. Given the reductive nature of M11 formation and the inability to define its source, the role of gut microbiota was investigated. Analysis of plasma from mice dosed with EPA following pretreatment with either antibiotic (ciprofloxacin) to inhibit gut bacteria or 1-aminobenzotriazole (ABT) to systemically inhibit P450s demonstrated that gut microbiota is responsible for the formation of M11. Incubations of EPA in human feces confirmed the role of gut bacteria in the formation of M11. Further, incubations of M11 with recombinant P450s showed that M12 is formed via N-dealkylation of M11 by CYP3A4, CYP2C19, and CYP1A2. Thus, in humans three major plasma metabolites of EPA were characterized: two primary metabolites, M9 and M11, formed directly from EPA via UGT1A9 and gut microbiota, respectively, and M12 formed as a secondary metabolite via P450s from M11.
Collapse
Affiliation(s)
- Jason Boer
- Incyte Corporation, Wilmington, Delaware
| | | | - Fiona Lee
- Incyte Corporation, Wilmington, Delaware
| | | | | | - Jack G Shi
- Incyte Corporation, Wilmington, Delaware
| | | | | | | | | | | | | |
Collapse
|
29
|
Li H, He J, Jia W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opin Drug Metab Toxicol 2015; 12:31-40. [PMID: 26569070 DOI: 10.1517/17425255.2016.1121234] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Gut microbiota plays critical roles in drug metabolism. The variation of gut microbiota contributes to the interindividual differences toward drug therapy including drug-induced toxicity and efficacy. Accordingly, the investigation and elucidation of gut microbial impacts on drug metabolism and toxicity will not only facilitate the way of personalized medicine, but also improve rational drug design. AREAS COVERED This review provides an overview of the microbiota-host co-metabolism on drug metabolism and summarizes 30 clinical drugs that are co-metabolized by host and gut microbiota. Moreover, this review is specifically focused on elucidating the gut microbial modulation of some clinical drugs, in which the gut microbial influences on drug metabolism, drug-induced toxicity and efficacy are discussed. EXPERT OPINION The gut microbial contribution to drug metabolism and toxicity is increasingly recognized, but remains largely unexplored due to the extremely complex relationship between gut microbiota and host. The mechanistic elucidation of gut microbiota in drug metabolism is critical before any practical progress in drug design or personalized medicine could be made by modulating human gut microbiota. Analytical technique innovation is urgently required to strengthen our capability in recognizing microbial functions, including metagenomics, metabolomics and the integration of multidisciplinary knowledge.
Collapse
Affiliation(s)
- Houkai Li
- a Center for Chinese Medical Therapy and Systems Biology , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
| | - Jiaojiao He
- a Center for Chinese Medical Therapy and Systems Biology , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
| | - Wei Jia
- a Center for Chinese Medical Therapy and Systems Biology , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China.,b Cancer Epidemiology Program , University of Hawaii Cancer Center , Honolulu , HI 96813 , USA
| |
Collapse
|
30
|
Swanson HI. Drug Metabolism by the Host and Gut Microbiota: A Partnership or Rivalry? Drug Metab Dispos 2015; 43:1499-504. [PMID: 26261284 PMCID: PMC4576677 DOI: 10.1124/dmd.115.065714] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/10/2015] [Indexed: 12/12/2022] Open
Abstract
The importance of the gut microbiome in determining not only overall health, but also in the metabolism of drugs and xenobiotics, is rapidly emerging. It is becoming increasingly clear that the gut microbiota can act in concert with the host cells to maintain intestinal homeostasis, cometabolize drugs and xenobiotics, and alter the expression levels of drug-metabolizing enzymes and transporters and the expression and activity levels of nuclear receptors. In this myriad of activities, the impact of the microbiota may be beneficial or detrimental to the host. Given that the interplay between the gut microbiota and host cells is likely subject to high interindividual variability, this work has tremendous implications for our ability to predict accurately a particular drug's pharmacokinetics and a given patient population's response to drugs. In this issue of Drug Metabolism and Disposition, a series of articles is presented that illustrate the progress and challenges that lie ahead as we unravel the intricacies associated with drug and xenobiotic metabolism by the gut microbiota. These articles highlight the underlying mechanisms that are involved and the use of in vivo and in vitro approaches that are currently available for elucidating the role of the gut microbiota in drug and xenobiotic metabolism. These articles also shed light on exciting new avenues of research that may be pursued as we consider the role of the gut microbiota as an endocrine organ, a component of the brain-gut axis, and whether the gut microbiota is an appropriate and amenable target for new drugs.
Collapse
Affiliation(s)
- Hollie I Swanson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|