1
|
Ogawa I, Nakai T, Iwao T, Matsunaga T. Air-liquid interface culture combined with differentiation factors reproducing intestinal cell structure formation in vitro. Biol Open 2025; 14:bio061612. [PMID: 39832187 PMCID: PMC11789277 DOI: 10.1242/bio.061612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/21/2024] [Indexed: 01/22/2025] Open
Abstract
Reproducing intestinal cells in vitro is important in pharmaceutical research and drug development. Caco-2 cells and human iPS cell-derived intestinal epithelial cells are widely used, but few evaluation systems can mimic the complex crypt-villus-like structure. We attempted to generate intestinal cells mimicking the three-dimensional structure from human iPS cells. After inducing the differentiation of iPS cells into intestinal organoids, these were dispersed into single cells and cultured two-dimensionally. An air-liquid interface culture was used, with CHIR99021, forskolin, and A-83-01 used as key compounds. Long-term culture was also performed by adding Wnt3a, Noggin, and RSPO1, which are frequently used in organoid culture. The air-liquid interface culture combined several compounds that successfully induced the formation of a crypt-villus-like structure, which grew rapidly at around day 6. The expression of pharmacokinetic genes such as CYP3A4 was also enhanced. The intestinal stem cells were efficiently maintained by the addition of Wnt3a, Noggin, and RSPO1. We were able to construct a crypt-villus-like structure on cell culture inserts, which is considered a very simple culture platform. This structure had characteristics extremely similar to living intestinal tissues and may have a superior homeostatic mechanism.
Collapse
Affiliation(s)
- Isamu Ogawa
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Takaaki Nakai
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| |
Collapse
|
2
|
Miyazaki K, Sasaki A, Mizuuchi H. Advances in the Evaluation of Gastrointestinal Absorption Considering the Mucus Layer. Pharmaceutics 2023; 15:2714. [PMID: 38140055 PMCID: PMC10747107 DOI: 10.3390/pharmaceutics15122714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Because of the increasing sophistication of formulation technology and the increasing polymerization of compounds directed toward undruggable drug targets, the influence of the mucus layer on gastrointestinal drug absorption has received renewed attention. Therefore, understanding the complex structure of the mucus layer containing highly glycosylated glycoprotein mucins, lipids bound to the mucins, and water held by glycans interacting with each other is critical. Recent advances in cell culture and engineering techniques have led to the development of evaluation systems that closely mimic the ecological environment and have been applied to the evaluation of gastrointestinal drug absorption while considering the mucus layer. This review provides a better understanding of the mucus layer components and the gastrointestinal tract's biological defense barrier, selects an assessment system for drug absorption in the mucus layer based on evaluation objectives, and discusses the overview and features of each assessment system.
Collapse
Affiliation(s)
- Kaori Miyazaki
- DMPK Research Laboratories, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida, Aoba-ku, Yokohama 227-0033, Japan; (A.S.); (H.M.)
| | | | | |
Collapse
|
3
|
Sahoo DK, Martinez MN, Dao K, Gabriel V, Zdyrski C, Jergens AE, Atherly T, Iennarella-Servantez CA, Burns LE, Schrunk D, Volpe DA, Allenspach K, Mochel JP. Canine Intestinal Organoids as a Novel In Vitro Model of Intestinal Drug Permeability: A Proof-of-Concept Study. Cells 2023; 12:cells12091269. [PMID: 37174669 PMCID: PMC10177590 DOI: 10.3390/cells12091269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
A key component of efforts to identify the biological and drug-specific aspects contributing to therapeutic failure or unexpected exposure-associated toxicity is the study of drug-intestinal barrier interactions. While methods supporting such assessments are widely described for human therapeutics, relatively little information is available for similar evaluations in support of veterinary pharmaceuticals. There is, therefore, a critical need to develop novel approaches for evaluating drug-gut interactions in veterinary medicine. Three-dimensional (3D) organoids can address these difficulties in a reasonably affordable system that circumvents the need for more invasive in vivo assays in live animals. However, a first step in developing such systems is understanding organoid interactions in a 2D monolayer. Given the importance of orally administered medications for meeting the therapeutic need of companion animals, we demonstrate growth conditions under which canine-colonoid-derived intestinal epithelial cells survive, mature, and differentiate into confluent cell systems with high monolayer integrity. We further examine the applicability of this canine-colonoid-derived 2D model to assess the permeability of three structurally diverse, passively absorbed β-blockers (e.g., propranolol, metoprolol, and atenolol). Both the absorptive and secretive apparent permeability (Papp) of these drugs at two different pH conditions were evaluated in canine-colonoid-derived monolayers and compared with that of Caco-2 cells. This proof-of-concept study provides promising preliminary results with regard to the utility of canine-derived organoid monolayers for species-specific assessments of therapeutic drug passive permeability.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Marilyn N Martinez
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, Food and Drug Administration, Rockville, MD 20852, USA
| | - Kimberly Dao
- 3D Health Solutions, Iowa State University, Ames, IA 50011, USA
| | - Vojtech Gabriel
- Department of Biomedical Sciences, SMART Pharmacology, Iowa State University, Ames, IA 50011, USA
| | - Christopher Zdyrski
- 3D Health Solutions, Iowa State University, Ames, IA 50011, USA
- Department of Biomedical Sciences, SMART Pharmacology, Iowa State University, Ames, IA 50011, USA
| | - Albert E Jergens
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Todd Atherly
- 3D Health Solutions, Iowa State University, Ames, IA 50011, USA
| | | | - Laura E Burns
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Dwayne Schrunk
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Donna A Volpe
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20852, USA
| | - Karin Allenspach
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA
- 3D Health Solutions, Iowa State University, Ames, IA 50011, USA
| | - Jonathan P Mochel
- 3D Health Solutions, Iowa State University, Ames, IA 50011, USA
- Department of Biomedical Sciences, SMART Pharmacology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
4
|
Suspension culture of human induced pluripotent stem cell-derived intestinal organoids using natural polysaccharides. Biomaterials 2022; 288:121696. [DOI: 10.1016/j.biomaterials.2022.121696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/25/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
|
5
|
Michiba K, Maeda K, Shimomura O, Miyazaki Y, Hashimoto S, Oda T, Kusuhara H. Usefulness of Human Jejunal Spheroid-Derived Differentiated Intestinal Epithelial Cells for the Prediction of Intestinal Drug Absorption in Humans. Drug Metab Dispos 2022; 50:204-213. [PMID: 34992074 DOI: 10.1124/dmd.121.000796] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/02/2022] [Indexed: 11/22/2022] Open
Abstract
This study aimed to demonstrate the usefulness of human jejunal spheroid-derived differentiated intestinal epithelial cells as a novel in vitro model for clarifying the impact of intestinal drug-metabolizing enzymes and transporters on the intestinal absorption of substrate drugs in humans. Three-dimensional human intestinal spheroids were successfully established from surgical human jejunal specimens and expanded for a long period using L-WRN-conditioned medium, which contains Wnt3a, R-spondin 3, and noggin. The mRNA expression levels of intestinal pharmacokinetics-related genes in the human jejunal spheroid-derived differentiated intestinal epithelial cells were drastically increased over a 5-day period after seeding compared with those in human jejunal spheroids and were approximately the same as those in human jejunal tissue over a culture period of at least 13 days. Activities of typical drug-metabolizing enzymes [cytochrome P450 (CYP) 3A, CYP2C9, uridine 5'-diphospho-glucuronosyltransferase 1A, and carboxylesterase 2] and uptake/efflux transporters [peptide transporter 1/solute carrier 15A1], P-glycoprotein, and breast cancer resistance protein) in the differentiated cells were confirmed. Furthermore, intestinal availability (Fg) values estimated from the apical-to-basolateral permeation clearance across cell monolayer showed a good correlation with the in vivo Fg values in humans for five CYP3A substrate drugs (Fg range, 0.35-0.98). In conclusion, the functions of major intestinal drug-metabolizing enzymes and transporters could be maintained in human jejunal spheroid-derived differentiated intestinal epithelial cells. This model would be useful for the quantitative evaluation of the impact of intestinal drug-metabolizing enzymes and transporters on the intestinal absorption of substrate drugs in humans. SIGNIFICANCE STATEMENT: Limited information is available regarding the quantitative prediction of the impact of drug-metabolizing enzymes and transporters on the human intestinal absorption of substrates using in vitro assays with differentiated cells derived from human intestinal spheroids/organoids. This study confirmed the functions of typical drug-metabolizing enzymes and transporters in human jejunal spheroid-derived differentiated intestinal epithelial cells and demonstrated that intestinal availability (Fg) estimated from apical-to-basolateral permeation clearance across cell monolayers showed a good correlation with in vivo human Fg for CYP3A substrates.
Collapse
Affiliation(s)
- Kazuyoshi Michiba
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan (K.Ma.); and Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (O.S., Y.M., S.H., T.O.)
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan (K.Ma.); and Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (O.S., Y.M., S.H., T.O.)
| | - Osamu Shimomura
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan (K.Ma.); and Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (O.S., Y.M., S.H., T.O.)
| | - Yoshihiro Miyazaki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan (K.Ma.); and Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (O.S., Y.M., S.H., T.O.)
| | - Shinji Hashimoto
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan (K.Ma.); and Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (O.S., Y.M., S.H., T.O.)
| | - Tatsuya Oda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan (K.Ma.); and Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (O.S., Y.M., S.H., T.O.)
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan (K.Ma.); and Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (O.S., Y.M., S.H., T.O.)
| |
Collapse
|
6
|
Saari J, Siddique F, Korpela S, Mäntylä E, Ihalainen TO, Kaukinen K, Aalto-Setälä K, Lindfors K, Juuti-Uusitalo K. Toward Xeno-Free Differentiation of Human Induced Pluripotent Stem Cell-Derived Small Intestinal Epithelial Cells. Int J Mol Sci 2022; 23:ijms23031312. [PMID: 35163236 PMCID: PMC8835723 DOI: 10.3390/ijms23031312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 11/30/2022] Open
Abstract
The small intestinal epithelium has an important role in nutrition, but also in drug absorption and metabolism. There are a few two-dimensional (2D) patient-derived induced pluripotent stem cell (iPSC)-based intestinal models enabling easy evaluation of transcellular transport. It is known that animal-derived components induce variation in the experimental outcomes. Therefore, we aimed to refine the differentiation protocol by using animal-free components. More specifically, we compared maturation of 2D-cultured iPCSs toward small intestinal epithelial cells when cultured either with or without serum, and either on Geltrex or on animal-free, recombinant laminin-based substrata. Differentiation status was characterized by qPCR, immunofluorescence imaging, and functionality assays. Our data suggest that differentiation toward definitive endoderm is more efficient without serum. Both collagen- and recombinant laminin-based coating supported differentiation of definitive endoderm, posterior definitive endoderm, and small intestinal epithelial cells from iPS-cells equally well. Small intestinal epithelial cells differentiated on recombinant laminin exhibited slightly more enterocyte specific cellular functionality than cells differentiated on Geltrex. Our data suggest that functional small intestinal epithelial cells can be generated from iPSCs in serum-free method on xeno-free substrata. This method is easily converted to an entirely xeno-free method.
Collapse
Affiliation(s)
- Jaakko Saari
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland; (J.S.); (F.S.); (S.K.); (E.M.); (T.O.I.); (K.K.); (K.A.-S.); (K.L.)
| | - Fatima Siddique
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland; (J.S.); (F.S.); (S.K.); (E.M.); (T.O.I.); (K.K.); (K.A.-S.); (K.L.)
| | - Sanna Korpela
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland; (J.S.); (F.S.); (S.K.); (E.M.); (T.O.I.); (K.K.); (K.A.-S.); (K.L.)
| | - Elina Mäntylä
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland; (J.S.); (F.S.); (S.K.); (E.M.); (T.O.I.); (K.K.); (K.A.-S.); (K.L.)
| | - Teemu O. Ihalainen
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland; (J.S.); (F.S.); (S.K.); (E.M.); (T.O.I.); (K.K.); (K.A.-S.); (K.L.)
| | - Katri Kaukinen
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland; (J.S.); (F.S.); (S.K.); (E.M.); (T.O.I.); (K.K.); (K.A.-S.); (K.L.)
- Department of Internal Medicine, Tampere University Hospital, 33521 Tampere, Finland
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland; (J.S.); (F.S.); (S.K.); (E.M.); (T.O.I.); (K.K.); (K.A.-S.); (K.L.)
- Heart Hospital, Tampere University Hospital, 33521 Tampere, Finland
| | - Katri Lindfors
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland; (J.S.); (F.S.); (S.K.); (E.M.); (T.O.I.); (K.K.); (K.A.-S.); (K.L.)
| | - Kati Juuti-Uusitalo
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland; (J.S.); (F.S.); (S.K.); (E.M.); (T.O.I.); (K.K.); (K.A.-S.); (K.L.)
- Correspondence: ; Tel.: +358-40-1904292
| |
Collapse
|
7
|
Agustina R, Masuo Y, Kido Y, Shinoda K, Ishimoto T, Kato Y. Identification of Food-Derived Isoflavone Sulfates as Inhibition Markers for Intestinal Breast Cancer Resistance Proteins. Drug Metab Dispos 2021; 49:972-984. [PMID: 34413161 DOI: 10.1124/dmd.121.000534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022] Open
Abstract
Potential inhibition of the breast cancer resistance protein (BCRP), a drug efflux transporter, is a key issue during drug development, and the use of its physiologic substrates as biomarkers can be advantageous to assess inhibition. In this study, we aimed to identify BCRP substrates by an untargeted metabolomic approach. Mice were orally administered lapatinib to inhibit BCRP in vivo, and plasma samples were assessed by liquid chromatography/time of flight/mass spectrometry with all-ion fragmentation acquisition and quantified by liquid chromatography with tandem mass spectrometry. A differential metabolomic analysis was also performed for plasma from Bcrp -/- and wild-type mice. Plasma peaks of food-derived isoflavone metabolites, daidzein sulfate (DS), and genistein sulfate (GS) increased after lapatinib administration and in Bcrp -/- mice. Administration of lapatinib and another BCRP inhibitor febuxostat increased the area under the plasma concentration-time curve (AUC) of DS, GS, and equol sulfate (ES) by 3.6- and 1.8-, 5.6- and 4.1-, and 1.6- and 4.8-fold, respectively. BCRP inhibitors also increased the AUC and maximum plasma concentration of DS and ES after coadministration with each parent compound. After adding parent compounds to the apical side of induced pluripotent stem cell-derived small intestinal epithelial-like cells, DS, GS, and ES in the basal compartment significantly increased in the presence of lapatinib and febuxostat, suggesting the inhibition of intestinal BCRP. ATP-dependent uptake of DS and ES in BCRP-expressing membrane vesicles was reduced by both inhibitors, indicating inhibition of BCRP-mediated DS and ES transport. Thus, we propose the first evidence of surrogate markers for BCRP inhibition. SIGNIFICANCE STATEMENT: This study performed untargeted metabolomics to identify substrates of BCRP/ABCG2 to assess changes in its transport activity in vivo by BCRP/ABCG2 inhibitors. Food-derived isoflavone sulfates were identified as useful markers for evaluating changes in BCRP-mediated transport in the small intestine by its inhibitors.
Collapse
Affiliation(s)
- Rina Agustina
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (R.A., Y.M., K.S., T.I., Y.Ka.); Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia (R.A.); and Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan (Y.Ki.)
| | - Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (R.A., Y.M., K.S., T.I., Y.Ka.); Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia (R.A.); and Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan (Y.Ki.)
| | - Yasuto Kido
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (R.A., Y.M., K.S., T.I., Y.Ka.); Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia (R.A.); and Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan (Y.Ki.)
| | - Kyosuke Shinoda
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (R.A., Y.M., K.S., T.I., Y.Ka.); Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia (R.A.); and Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan (Y.Ki.)
| | - Takahiro Ishimoto
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (R.A., Y.M., K.S., T.I., Y.Ka.); Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia (R.A.); and Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan (Y.Ki.)
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (R.A., Y.M., K.S., T.I., Y.Ka.); Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia (R.A.); and Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan (Y.Ki.)
| |
Collapse
|
8
|
Nickerson KP, Llanos-Chea A, Ingano L, Serena G, Miranda-Ribera A, Perlman M, Lima R, Sztein MB, Fasano A, Senger S, Faherty CS. A Versatile Human Intestinal Organoid-Derived Epithelial Monolayer Model for the Study of Enteric Pathogens. Microbiol Spectr 2021; 9:e0000321. [PMID: 34106568 PMCID: PMC8552518 DOI: 10.1128/spectrum.00003-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 01/09/2023] Open
Abstract
Gastrointestinal infections cause significant morbidity and mortality worldwide. The complexity of human biology and limited insights into host-specific infection mechanisms are key barriers to current therapeutic development. Here, we demonstrate that two-dimensional epithelial monolayers derived from human intestinal organoids, combined with in vivo-like bacterial culturing conditions, provide significant advancements for the study of enteropathogens. Monolayers from the terminal ileum, cecum, and ascending colon recapitulated the composition of the gastrointestinal epithelium, in which several techniques were used to detect the presence of enterocytes, mucus-producing goblet cells, and other cell types following differentiation. Importantly, the addition of receptor activator of nuclear factor kappa-B ligand (RANKL) increased the presence of M cells, critical antigen-sampling cells often exploited by enteric pathogens. For infections, bacteria were grown under in vivo-like conditions known to induce virulence. Overall, interesting patterns of tissue tropism and clinical manifestations were observed. Shigella flexneri adhered efficiently to the cecum and colon; however, invasion in the colon was best following RANKL treatment. Both Salmonella enterica serovars Typhi and Typhimurium displayed different infection patterns, with S. Typhimurium causing more destruction of the terminal ileum and S. Typhi infecting the cecum more efficiently than the ileum, particularly with regard to adherence. Finally, various pathovars of Escherichia coli validated the model by confirming only adherence was observed with these strains. This work demonstrates that the combination of human-derived tissue with targeted bacterial growth conditions enables powerful analyses of human-specific infections that could lead to important insights into pathogenesis and accelerate future vaccine development. IMPORTANCE While traditional laboratory techniques and animal models have provided valuable knowledge in discerning virulence mechanisms of enteric pathogens, the complexity of the human gastrointestinal tract has hindered our understanding of physiologically relevant, human-specific interactions; and thus, has significantly delayed successful vaccine development. The human intestinal organoid-derived epithelial monolayer (HIODEM) model closely recapitulates the diverse cell populations of the intestine, allowing for the study of human-specific infections. Differentiation conditions permit the expansion of various cell populations, including M cells that are vital to immune recognition and the establishment of infection by some bacteria. We provide details of reproducible culture methods and infection conditions for the analyses of Shigella, Salmonella, and pathogenic Escherichia coli in which tissue tropism and pathogen-specific infection patterns were detected. This system will be vital for future studies that explore infection conditions, health status, or epigenetic differences and will serve as a novel screening platform for therapeutic development.
Collapse
Affiliation(s)
- Kourtney P. Nickerson
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alejandro Llanos-Chea
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura Ingano
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Gloria Serena
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alba Miranda-Ribera
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Meryl Perlman
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Rosiane Lima
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefania Senger
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Christina S. Faherty
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Yoshida S, Honjo T, Iino K, Ishibe R, Leo S, Shimada T, Watanabe T, Ishikawa M, Maeda K, Kusuhara H, Shiraki N, Kume S. Generation of Human-Induced Pluripotent Stem Cell-Derived Functional Enterocyte-Like Cells for Pharmacokinetic Studies. Stem Cell Reports 2021; 16:295-308. [PMID: 33513361 PMCID: PMC7878837 DOI: 10.1016/j.stemcr.2020.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
We aimed to establish an in vitro differentiation procedure to generate matured small intestinal cells mimicking human small intestine from human-induced pluripotent stem cells (iPSCs). We previously reported the efficient generation of CDX2-expressing intestinal progenitor cells from embryonic stem cells (ESCs) using 6-bromoindirubin-3'-oxime (BIO) and (3,5-difluorophenylacetyl)-L-alanyl-L-2-phenylglycine tert-butyl ester (DAPT) to treat definitive endodermal cells. Here, we demonstrate the generation of enterocyte-like cells by culturing human iPSC-derived intestinal progenitor cells on a collagen vitrigel membrane (CVM) and treating cells with a simple maturation medium containing BIO, DMSO, dexamethasone, and activated vitamin D3. Functional tests further confirmed that these iPSC-derived enterocyte-like cells exhibit P-gp- and BCRP-mediated efflux and cytochrome P450 3A4 (CYP3A4)-mediated metabolism. We concluded that hiPS cell-derived enterocyte-like cells can be used as a model for the evaluation of drug transport and metabolism studies in the human small intestine.
Collapse
Affiliation(s)
- Shinpei Yoshida
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan; Drug Metabolism & Pharmacokinetics, Research Laboratory for Development, Shionogi & Co., Ltd., 1-1, Futabacho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Takayuki Honjo
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Keita Iino
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Ryunosuke Ishibe
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Sylvia Leo
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Tomoka Shimada
- Analytical Chemistry & Technology, Shionogi TechnoAdvance Research Co., Ltd., 1-1, Futabacho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Teruhiko Watanabe
- Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co. Inc., 21 Suzukawa, Isehara, Kanagawa 259-1146, Japan
| | - Masaya Ishikawa
- Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co. Inc., 21 Suzukawa, Isehara, Kanagawa 259-1146, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| |
Collapse
|
10
|
Kabeya T, Mima S, Imakura Y, Miyashita T, Ogura I, Yamada T, Yasujima T, Yuasa H, Iwao T, Matsunaga T. Pharmacokinetic functions of human induced pluripotent stem cell-derived small intestinal epithelial cells. Drug Metab Pharmacokinet 2020; 35:374-382. [PMID: 32651148 DOI: 10.1016/j.dmpk.2020.04.334] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/25/2022]
Abstract
To develop a novel intestinal drug absorption system using intestinal epithelial cells derived from human induced pluripotent stem (iPS) cells, the cells must possess sufficient pharmacokinetic functions. However, the CYP3A4/5 activities of human iPS cell-derived small intestinal epithelial cells prepared using conventional differentiation methods is low. Further, studies of the CYP3A4/5 activities of human iPS-derived and primary small intestinal cells are not available. To fill this gap in our knowledge, here we used forskolin to develop a new differentiation protocol that activates adenosine monophosphate signaling. mRNA expressions of human iPS cell-derived small intestinal epithelial cells, such as small intestine markers, drug-metabolizing enzymes, and drug transporters, were comparable to or greater than those of the adult small intestine. The activities of CYP3A4/5 in the differentiated cells were equal to those of human primary small intestinal cells. The differentiated cells had P-glycoprotein and PEPT1 activities equivalent to those of Caco-2 cells. Differentiated cells were superior to Caco-2 cells for predicting the membrane permeability of drugs that were absorbed through a paracellular pathway and via drug transporters. In summary, here we produced human iPS cell-derived small intestinal epithelial cells with CYP3A4/5 activities equivalent to those of human primary small intestinal cells.
Collapse
Affiliation(s)
- Tomoki Kabeya
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Shinji Mima
- Bioscience & Engineering Laboratory, Research & Development Management Headquarters, FUJIFILM Corporation, Japan
| | - Yuki Imakura
- Bioscience & Engineering Laboratory, Research & Development Management Headquarters, FUJIFILM Corporation, Japan
| | - Toshihide Miyashita
- Bioscience & Engineering Laboratory, Research & Development Management Headquarters, FUJIFILM Corporation, Japan
| | - Izumi Ogura
- Bioscience & Engineering Laboratory, Research & Development Management Headquarters, FUJIFILM Corporation, Japan
| | - Tadanori Yamada
- Bioscience & Engineering Laboratory, Research & Development Management Headquarters, FUJIFILM Corporation, Japan
| | - Tomoya Yasujima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroaki Yuasa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
11
|
Negoro R, Kawai K, Ichikawa M, Deguchi S, Takayama K, Mizuguchi H. Establishment of MDR1-knockout human induced pluripotent stem cell line. Drug Metab Pharmacokinet 2020; 35:288-296. [PMID: 32303458 DOI: 10.1016/j.dmpk.2020.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
Multiple drug resistance 1 (MDR1) is highly expressed in various organs, including the liver, small intestine, and blood-brain barrier (BBB). Because MDR1 plays important roles in the excretion of many drugs, it is necessary to evaluate whether drug candidates are potential substrates of MDR1. Recently, many researchers have shown that human induced pluripotent stem (iPS) cell-derived differentiated cells such as hepatocytes and enterocytes can be applied for pharmacokinetic testing. Here, we attempted to generate MDR1-knockout (KO) iPS cell lines using genome editing technology. The correctly targeted human iPS cell lines were successfully obtained. The expression levels of pluripotent markers in human iPS cells were not changed by MDR1 knockout. The gene expression levels of hepatic markers in MDR1-KO iPS-derived hepatocyte-like cells were higher than those in undifferentiated MDR1-KO iPS cells, suggesting that MDR1-KO iPS cells have hepatic differentiation capacity. In addition, MDR1 expression levels were hardly detected in MDR1-KO iPS cell-derived hepatocyte-like cells. We thus succeeded in establishing MDR1-KO iPS cell lines that could be utilized for pharmacokinetic testing.
Collapse
Affiliation(s)
- Ryosuke Negoro
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Kanae Kawai
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Moe Ichikawa
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Sayaka Deguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan; Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan; PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan.
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan; Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka, 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
12
|
Volpe DA. Advances in cell-based permeability assays to screen drugs for intestinal absorption. Expert Opin Drug Discov 2020; 15:539-549. [DOI: 10.1080/17460441.2020.1735347] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Donna A. Volpe
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
13
|
Kondo S, Mizuno S, Hashita T, Iwao T, Matsunaga T. Establishment of a novel culture method for maintaining intestinal stem cells derived from human induced pluripotent stem cells. Biol Open 2020; 9:bio049064. [PMID: 31919043 PMCID: PMC6955217 DOI: 10.1242/bio.049064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
The small intestine plays an important role in the pharmacokinetics of orally administered drugs due to the presence of drug transporters and drug-metabolizing enzymes. However, few appropriate methods exist to investigate intestinal pharmacokinetics. Induced pluripotent stem (iPS) cells can form various types of cells and represent a potentially useful tool for drug discovery. We previously reported that differentiated enterocytes from human iPS cells are useful for pharmacokinetic studies; however, the process is time and resource intensive. Here, we established a new two-dimensional culture method for maintaining human iPS-cell-derived intestinal stem cells (ISCs) with differentiation potency and evaluated their ability to differentiate into enterocytes exhibiting appropriate pharmacokinetic function. The culture method used several factors to activate signalling pathways required for maintaining stemness, followed by differentiation into enterocytes. Functional evaluation was carried out to verify epithelial-marker expression and inducibility and activity of metabolic enzymes and transporters. Our results confirmed the establishment of an ISC culture method for maintaining stemness and verified that the differentiated enterocytes from the maintained ISCs demonstrated proper pharmacokinetic function. Thus, our findings describe a time- and cost-effective approach that can be used as a general evaluation tool for evaluating intestinal pharmacokinetics.
Collapse
Affiliation(s)
- Satoshi Kondo
- Department of Drug Safety Research, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Shota Mizuno
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
14
|
Yamada S, Kanda Y. Retinoic acid promotes barrier functions in human iPSC-derived intestinal epithelial monolayers. J Pharmacol Sci 2019; 140:337-344. [DOI: 10.1016/j.jphs.2019.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/20/2022] Open
|
15
|
Akazawa T, Yoshida S, Ohnishi S, Kanazu T, Kawai M, Takahashi K. Application of Intestinal Epithelial Cells Differentiated from Human Induced Pluripotent Stem Cells for Studies of Prodrug Hydrolysis and Drug Absorption in the Small Intestine. Drug Metab Dispos 2018; 46:1497-1506. [PMID: 30135242 DOI: 10.1124/dmd.118.083246] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/17/2018] [Indexed: 01/09/2023] Open
Abstract
Cell models to investigate intestinal absorption functions, such as those of transporters and metabolic enzymes, are essential for oral drug discovery and development. The purpose of this study was to generate intestinal epithelial cells from human induced pluripotent stem cells (hiPSC-IECs) and then clarify whether the functions of hydrolase and transporters in them reflect oral drug absorption in the small intestine. The hiPSC-IECs showed the transport activities of P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and peptide transporter 1 (PEPT1), revealed by using their probe substrates ([3H]digoxin, sulfasalazine, and [14C]glycylsarcosine), and the metabolic activities of CYP3A4, CES2, and CES1, which were clarified using their probe substrates (midazolam, irinotecan, and temocapril). The intrinsic clearance by hydrolysis of six ester prodrugs into the active form in hiPSC-IECs was correlated with the plasma exposure (Cmax , AUC, and bioavailability) of the active form after oral administration of these prodrugs to rats. Also, the permeability coefficients of 14 drugs, containing two substrates of P-gp (doxorubicin and [3H]digoxin), one substrate of BCRP (sulfasalazine), and 11 nonsubstrates of transporters (ganciclovir, [14C]mannitol, famotidine, sulpiride, atenolol, furosemide, ranitidine, hydrochlorothiazide, acetaminophen, propranolol, and antipyrine) in hiPSC-IECs were correlated with their values of the fraction of intestinal absorption (Fa) in human clinical studies. These findings suggest that hiPSC-IECs would be a useful cell model to investigate the hydrolysis of ester prodrugs and to predict drug absorption in the small intestine.
Collapse
Affiliation(s)
- Takanori Akazawa
- Research Laboratory for Development (T.A., S.Y., S.O., T.K.), Medicinal Chemistry Research Laboratory (M.K.), and Drug Discovery and Disease Research Laboratory (K.T.), Shionogi & Co., Ltd, Toyonaka, Osaka, Japan
| | - Shinpei Yoshida
- Research Laboratory for Development (T.A., S.Y., S.O., T.K.), Medicinal Chemistry Research Laboratory (M.K.), and Drug Discovery and Disease Research Laboratory (K.T.), Shionogi & Co., Ltd, Toyonaka, Osaka, Japan
| | - Shuichi Ohnishi
- Research Laboratory for Development (T.A., S.Y., S.O., T.K.), Medicinal Chemistry Research Laboratory (M.K.), and Drug Discovery and Disease Research Laboratory (K.T.), Shionogi & Co., Ltd, Toyonaka, Osaka, Japan
| | - Takushi Kanazu
- Research Laboratory for Development (T.A., S.Y., S.O., T.K.), Medicinal Chemistry Research Laboratory (M.K.), and Drug Discovery and Disease Research Laboratory (K.T.), Shionogi & Co., Ltd, Toyonaka, Osaka, Japan
| | - Makoto Kawai
- Research Laboratory for Development (T.A., S.Y., S.O., T.K.), Medicinal Chemistry Research Laboratory (M.K.), and Drug Discovery and Disease Research Laboratory (K.T.), Shionogi & Co., Ltd, Toyonaka, Osaka, Japan
| | - Koji Takahashi
- Research Laboratory for Development (T.A., S.Y., S.O., T.K.), Medicinal Chemistry Research Laboratory (M.K.), and Drug Discovery and Disease Research Laboratory (K.T.), Shionogi & Co., Ltd, Toyonaka, Osaka, Japan
| |
Collapse
|
16
|
Kondo S, Mizuno S, Hashita T, Iwao T, Matsunaga T. Using human iPS cell-derived enterocytes as novel in vitro model for the evaluation of human intestinal mucosal damage. Inflamm Res 2018; 67:975-984. [PMID: 30317465 DOI: 10.1007/s00011-018-1193-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/23/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE AND DESIGN The primary component in gut mucus is mucin 2 (MUC2) secreted by goblet cells. Fluctuations in MUC2 expression are considered a useful indicator for evaluating mucosal damage and protective effect of various agents using animal studies. However, there are few in vitro studies evaluating mucosal damage using MUC2 as the indicator. Hence, we attempted to establish a novel in vitro model with MUC2 as the indicator for evaluating drug-induced mucosal damage and protective effect using enterocytes derived from human iPS cells. METHODS Compounds were added into enterocytes derived from human iPS cells, and MUC2 mRNA and protein expression levels were evaluated. Further, the effect of compounds on membrane permeability was investigated. RESULTS Nonsteroidal anti-inflammatory drugs were found to decrease MUC2 mRNA expression in enterocytes, whereas mucosal protective agents increased mRNA levels. Changes in MUC2 protein expression were consistent with those of mRNA. Additionally, our results indicated that indomethacin caused mucosal damage, affecting membrane permeability of the drug. Moreover, we observed protective effect of rebamipide against the indomethacin-induced permeability increase. CONCLUSIONS The developed model could facilitate evaluating drug-induced mucosal damage and protective effects of various agents and could impact drug development studies regarding pharmacological efficacy and safety.
Collapse
Affiliation(s)
- Satoshi Kondo
- Department of Drug Safety Research, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima, 771-0192, Japan
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Shota Mizuno
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| |
Collapse
|
17
|
Iwao T. [Development of an In Vitro System for Evaluating Intestinal Drug Disposition Using Human Induced Pluripotent Stem Cell-Derived Intestinal Epithelial Cells]. YAKUGAKU ZASSHI 2018; 138:1241-1247. [PMID: 30270266 DOI: 10.1248/yakushi.18-00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tissues of the small intestine are crucial to understanding drug disposition because these tissues regulate the bioavailability of drugs. However, no evaluation system is currently available for precise and comprehensive analysis of intestinal pharmacokinetics. To address this, functional intestinal epithelial cells were generated from human induced pluripotent stem (iPS) cells for use in pharmacokinetic studies. An improved intestinal differentiation method was established by screening a variety of small molecule compounds against cells during differentiation. The mRNA expression levels of intestinal markers, drug transporters, and CYP3A4 were found to increase following treatment with compounds that act as inhibitors of mitogen-activated protein kinase, DNA methyltransferase, and transforming growth factor-β. Therefore, we inferred that these compounds enhanced differentiation into intestinal epithelial cells. The differentiated intestinal epithelial cells in the presence of these compounds possessed drug-metabolizing enzyme activities, such as those of CYPs, UDP-glucuronosyltransferase, and sulfotransferase. In addition, these cells had the ability to induce CYP3A4 in the presence of 1α,25-dihydroxyvitamin D3. The differentiated intestinal epithelial cells seeded on cell culture inserts formed loose-tight junctions, similar to those in the human small intestine, rather than Caco-2 cells. The cells exhibited polarity, such as apical and basal sides. We also demonstrated that the uptake and efflux transport activities in the cells occurred via peptide transporter and breast cancer resistance protein, respectively. Taken together, it was suggested that human iPS cell-derived intestinal epithelial cells are pharmacokinetically functional, and represent a promising model system for pharmacokinetic studies of drug candidates.
Collapse
Affiliation(s)
- Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
18
|
Kabeya T, Qiu S, Hibino M, Nagasaki M, Kodama N, Iwao T, Matsunaga T. Cyclic AMP Signaling Promotes the Differentiation of Human Induced Pluripotent Stem Cells into Intestinal Epithelial Cells. Drug Metab Dispos 2018; 46:1411-1419. [PMID: 30068521 DOI: 10.1124/dmd.118.082123] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022] Open
Abstract
To develop a novel in vitro system for predicting intestinal drug absorption using human induced pluripotent stem (iPS) cell-derived intestinal epithelial cells, the cells need to have sufficient drug-metabolizing enzyme and drug transporter activities. We found that cyclic adenosine monophosphate (cAMP) signaling plays an important role in the differentiation of human iPS cells into intestinal epithelial cells. In this study, we aimed to demonstrate the effects of signaling activation in the intestinal differentiation of human iPS cells and the pharmacokinetic characteristics of human iPS cell-derived intestinal epithelial cells. Human iPS cells were differentiated into intestinal stem cells using activin A and fibroblast growth factor 2. Subsequently, the intestinal stem cells were maturated into intestinal epithelial cells by treatment with 8-bromo-cyclic adenosine monophosphate (8-Br-cAMP) and 3-isobutyl-1-methylxanthine (IBMX), which activate cAMP signaling. The expression levels of intestinal markers and pharmacokinetics-related genes in the differentiated cells were markedly increased by using 8-Br-cAMP and IBMX. In the cells differentiated with the compound we observed cytochrome P450 (CYP) 3A4 inducibility via pregnane X receptor and vitamin D receptor. The metabolic activities of CYP2C9, CYP2C19, CYP2D6, CYP3A4/5, and UDP-glucuronosyltransferase, which are expressed in the human small intestine, were also markedly increased. Furthermore, uptake of glycylsarcosine via peptide transporter 1 was markedly increased. The cells differentiated with the compounds also had drug transporter activities via organic anion transporters and P-glycoprotein. This study is the first to report that the activation of cAMP signaling promotes differentiation of human iPS cell-derived intestinal epithelial cells.
Collapse
Affiliation(s)
- Tomoki Kabeya
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (T.K., S.Q., N.K., T.I., T.M.) and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (M.H., M.N., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Shimeng Qiu
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (T.K., S.Q., N.K., T.I., T.M.) and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (M.H., M.N., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Momona Hibino
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (T.K., S.Q., N.K., T.I., T.M.) and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (M.H., M.N., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Mizuka Nagasaki
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (T.K., S.Q., N.K., T.I., T.M.) and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (M.H., M.N., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Nao Kodama
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (T.K., S.Q., N.K., T.I., T.M.) and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (M.H., M.N., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (T.K., S.Q., N.K., T.I., T.M.) and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (M.H., M.N., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (T.K., S.Q., N.K., T.I., T.M.) and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (M.H., M.N., T.I., T.M.), Nagoya City University, Nagoya, Japan
| |
Collapse
|
19
|
Puech C, Hodin S, Forest V, He Z, Mismetti P, Delavenne X, Perek N. Assessment of HBEC-5i endothelial cell line cultivated in astrocyte conditioned medium as a human blood-brain barrier model for ABC drug transport studies. Int J Pharm 2018; 551:281-289. [PMID: 30240829 DOI: 10.1016/j.ijpharm.2018.09.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022]
Abstract
Endothelial cells are main components of the Blood-Brain Barrier (BBB) and form a tight monolayer that regulates the passage of molecules, with the ATP-Binding Cassette (ABC) transporters efflux pumps. We have developed a human in vitro model of HBEC-5i endothelial cells cultivated alone or with human astrocytes conditioned medium on insert. HBEC-5i cells showed a tight monolayer within 14 days, expressing ZO-1 and claudin 5, a low apparent permeability to small molecules, with a TEER stability during five days. The P-gp, BCRP, MRPs transporters were well expressed and functional. Accumulation and efflux ratio measurement with different ABC transporters substrates (Rhodamine 123, BCECF AM, Hoechst 33342) and inhibitors (verapamil, Ko143, probenecid and cyclosporin A) were conducted. At barrier level, the functionality of ABC transporters was three-fold enhanced in astrocyte conditioned medium. We validated our model by the transport of pharmacological substrates: caffeine, rivaroxaban, and methotrexate. The rivaroxaban and methotrexate were released with an efflux ratio >3 and were decreased by more than half with inhibitors. HBEC-5i model could be used as relevant tool in preclinical studies for assessing the permeability of therapeutic molecules to cross human BBB.
Collapse
Affiliation(s)
- Clémentine Puech
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France.
| | - Sophie Hodin
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France
| | - Valérie Forest
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Zhiguo He
- Université de Lyon, Saint-Etienne, F-42023, France; EA 2521 Biologie, Ingénierie et Imagerie de la Greffe de Cornée (BIIGC), Saint-Etienne, France
| | - Patrick Mismetti
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France; Unité de Recherche Clinique Innovation et Pharmacologie, CHU de Saint-Etienne, F-42055 Saint Etienne, France
| | - Xavier Delavenne
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France; Laboratoire de Pharmacologie Toxicologie, CHU Saint-Etienne, F-42055 Saint-Etienne, France
| | - Nathalie Perek
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France
| |
Collapse
|
20
|
iPSC-Derived Enterocyte-like Cells for Drug Absorption and Metabolism Studies. Trends Mol Med 2018; 24:696-708. [PMID: 29945758 DOI: 10.1016/j.molmed.2018.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/27/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022]
Abstract
Intestinal cell models have been widely studied and used to evaluate absorption and metabolism of drugs in the small intestine, constituting valuable tools as a first approach to evaluate the behavior of new drugs. However, such cell models might not be able to fully predict the absorption mechanisms and metabolic pathways of the tested compounds. In recent years, induced pluripotent stem cells (iPSCs) differentiated into enterocyte-like cells have been proposed as more biorelevant intestinal models. In this review, we describe mechanisms underlying the differentiation of iPSCs into enterocyte-like cells, appraise the usefulness of these cells in tridimensional intestinal models, and discuss their suitability to be used in the future for drug screening.
Collapse
|
21
|
Mercier C, Hodin S, He Z, Perek N, Delavenne X. Pharmacological Characterization of the RPMI 2650 Model as a Relevant Tool for Assessing the Permeability of Intranasal Drugs. Mol Pharm 2018; 15:2246-2256. [PMID: 29709196 DOI: 10.1021/acs.molpharmaceut.8b00087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The RPMI 2650 cell line has been described as a potent model of the human nasal mucosa. Nevertheless, pharmacological data are still insufficient, and the role of drug efflux transporters has not been fully elucidated. We therefore pursued the pharmacological characterization of this model, initially investigating the expression of four well-known adenosine triphosphate [ATP]-binding cassette (ABC) transporters (P-glycoprotein (P-gp), multidrug resistance associated protein (MRP)1, MRP2, and breast cancer resistance protein (BCRP)) by means of ELISA and immunofluorescence staining. The functional activity of the selected transporters was assessed by accumulation studies based on specific substrates and inhibitors. We then performed standardized bidirectional transport experiments under air-liquid interface (ALI) culture conditions, using four therapeutic compounds of local intranasal relevance in upper airway diseases. Protein expression of P-gp, MRP1, MRP2, and BCRP was detected at the membrane of the RPMI 2650 cells. In addition, all four transporters exhibited functional activity at the cellular level. In the bidirectional transport experiments, the RPMI 2650 model was able to accurately discriminate the four therapeutic compounds according to their physicochemical properties. The ABC transporters tested did not play a major role in the efflux of these compounds at the barrier level. In conclusion, the RPMI 2650 model represents a promising tool for assessing the nasal absorption of drugs on the basis of preclinical pharmacological data.
Collapse
Affiliation(s)
- Clément Mercier
- Dysfonction Vasculaire et Hémostase , INSERM, U1059 , Saint-Etienne CS 82301 , France
| | - Sophie Hodin
- Dysfonction Vasculaire et Hémostase , INSERM, U1059 , Saint-Etienne CS 82301 , France.,Université de Lyon , Saint-Etienne F-42023 , France
| | - Zhiguo He
- Université de Lyon , Saint-Etienne F-42023 , France.,Laboratoire de Biologie, d'Ingénierie et d'Imagerie de la Greffe de Cornée , BiiGC , EA2521 Saint-Etienne , France
| | - Nathalie Perek
- Dysfonction Vasculaire et Hémostase , INSERM, U1059 , Saint-Etienne CS 82301 , France.,Université de Lyon , Saint-Etienne F-42023 , France
| | - Xavier Delavenne
- Dysfonction Vasculaire et Hémostase , INSERM, U1059 , Saint-Etienne CS 82301 , France.,Université de Lyon , Saint-Etienne F-42023 , France.,Laboratoire de Pharmacologie Toxicologie Gaz du sang , CHU de Saint-Etienne , Saint-Etienne CS 82301 , France
| |
Collapse
|
22
|
Zang X, Wang G, Cai Q, Zheng X, Zhang J, Chen Q, Wu B, Zhu X, Hao H, Zhou F. A Promising Microtubule Inhibitor Deoxypodophyllotoxin Exhibits Better Efficacy to Multidrug-Resistant Breast Cancer than Paclitaxel via Avoiding Efflux Transport. Drug Metab Dispos 2018; 46:542-551. [PMID: 29523600 DOI: 10.1124/dmd.117.079442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/22/2018] [Indexed: 02/13/2025] Open
Abstract
Multidrug resistance (MDR) is a common limitation for the clinical use of microtubule-targeting chemotherapeutic agents, and it is the main factor for poor prognoses in cancer therapy. Here, we report on deoxypodophyllotoxin (DPT), a promising microtubule inhibitor in phase 1, as a promising candidate to circumvent this obstacle. DPT remarkably suppressed tumor growth in xenograft mice bearing either paclitaxel (PTX)-sensitive MCF-7/S or acquired resistance MCF-7/Adr (MCF-7/A) cells. Also, DPT exhibited similar accumulation in both tumors, whereas PTX displayed much a lower accumulation in the resistant tumors. In vitro, DPT exhibited a much lower resistance index (0.552) than those of PTX (754.5) or etoposide (38.94) in both MCF-7/S and MCF-7/A cells. Flow cytometry analysis revealed that DPT (5 and 10 nM) caused arrest of the G2/M phase in the two cell lines, whereas PTX (up to 10 nM) had no effect on cell-cycle progression of the MCF-7/A cells. Microtubule dynamics assays revealed that DPT destabilized microtubule assembly in a different mode. Cellular pharmacokinetic assays indicated comparable intracellular and subcellular accumulations of DPT in the two cell lines but a much lower retention of PTX in the MCF-7/A cells. Additionally, transport assays revealed that DPT was not the substrate of P-glycoprotein, breast cancer resistance protein, or MDR-associated protein 2, indicating a lower occurrence rate of MDR. DPT might be a promising microtubule inhibitor for breast cancer therapy, especially for treatment of drug-resistant tumors.
Collapse
Affiliation(s)
- Xiaojie Zang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (X.Za., G.W., Q.Ca., X.Zhe., J.Z., Q.Ch., H.H., F.Z.), and Medical and Chemical Institute (B.W., X.Zhu.), China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (X.Za., G.W., Q.Ca., X.Zhe., J.Z., Q.Ch., H.H., F.Z.), and Medical and Chemical Institute (B.W., X.Zhu.), China Pharmaceutical University, Nanjing, China
| | - Qingyun Cai
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (X.Za., G.W., Q.Ca., X.Zhe., J.Z., Q.Ch., H.H., F.Z.), and Medical and Chemical Institute (B.W., X.Zhu.), China Pharmaceutical University, Nanjing, China
| | - Xiao Zheng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (X.Za., G.W., Q.Ca., X.Zhe., J.Z., Q.Ch., H.H., F.Z.), and Medical and Chemical Institute (B.W., X.Zhu.), China Pharmaceutical University, Nanjing, China
| | - Jingwei Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (X.Za., G.W., Q.Ca., X.Zhe., J.Z., Q.Ch., H.H., F.Z.), and Medical and Chemical Institute (B.W., X.Zhu.), China Pharmaceutical University, Nanjing, China
| | - Qianying Chen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (X.Za., G.W., Q.Ca., X.Zhe., J.Z., Q.Ch., H.H., F.Z.), and Medical and Chemical Institute (B.W., X.Zhu.), China Pharmaceutical University, Nanjing, China
| | - Baojin Wu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (X.Za., G.W., Q.Ca., X.Zhe., J.Z., Q.Ch., H.H., F.Z.), and Medical and Chemical Institute (B.W., X.Zhu.), China Pharmaceutical University, Nanjing, China
| | - Xiong Zhu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (X.Za., G.W., Q.Ca., X.Zhe., J.Z., Q.Ch., H.H., F.Z.), and Medical and Chemical Institute (B.W., X.Zhu.), China Pharmaceutical University, Nanjing, China
| | - Haiping Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (X.Za., G.W., Q.Ca., X.Zhe., J.Z., Q.Ch., H.H., F.Z.), and Medical and Chemical Institute (B.W., X.Zhu.), China Pharmaceutical University, Nanjing, China
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (X.Za., G.W., Q.Ca., X.Zhe., J.Z., Q.Ch., H.H., F.Z.), and Medical and Chemical Institute (B.W., X.Zhu.), China Pharmaceutical University, Nanjing, China
| |
Collapse
|
23
|
Ishizaki Y, Furihata T, Oyama Y, Ohura K, Imai T, Hosokawa M, Akita H, Chiba K. Development of a Caco-2 Cell Line Carrying the Human Intestine-Type CES Expression Profile as a Promising Tool for Ester-Containing Drug Permeability Studies. Biol Pharm Bull 2018; 41:697-706. [DOI: 10.1248/bpb.b17-00880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuma Ishizaki
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Tomomi Furihata
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University
- Department of Pharmacology, Graduate School of Medicine, Chiba University
| | - Yusuke Oyama
- Department of Metabolism-Based Drug Design and Delivery, Graduate School of Pharmaceutical Science, Kumamoto University
| | - Kayoko Ohura
- Department of Metabolism-Based Drug Design and Delivery, Graduate School of Pharmaceutical Science, Kumamoto University
| | - Teruko Imai
- Department of Metabolism-Based Drug Design and Delivery, Graduate School of Pharmaceutical Science, Kumamoto University
| | - Masakiyo Hosokawa
- Laboratory of Drug Metabolism and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Chiba Institute of Science
| | - Hidetaka Akita
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Kan Chiba
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|