1
|
Price ZK, Lokman NA, Morrison J, Mhlanga SN, Sugiyama M, Koya Y, Davies LT, Pitson SM, Oehler MK, Pitman MR, Yoshihara M, Kajiyama H, Ricciardelli C. Identification of Sphingosine Kinase 1 as a Novel Protein Regulated by High Molecular Weight Hyaluronan in Ovarian Cancer. J Cell Mol Med 2025; 29:e70574. [PMID: 40356021 PMCID: PMC12069020 DOI: 10.1111/jcmm.70574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/09/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
The effects of hyaluronan (HA) in cancer are widely studied; however, the role of different molecular weight HA is poorly understood. Identifying novel proteins regulated by different molecular weight HA may highlight novel therapeutic targets. Proteomics analysis was performed to identify novel proteins regulated by different molecular weight HA (27, 183 and 1000 kDa) in ES-2 ovarian cancer cells over-expressing Notch3 intra-cellular domain. Our analyses identified sphingosine kinase 1 (SPHK1), a novel protein regulated by 183- and 1000-kDa HA. Utilising online databases and high-grade serous ovarian cancer (HGSOC) patient tissue microarray cohorts, we assessed the relationship between SPHK1 expression and ovarian cancer metastasis, recurrence and patient outcome. We assessed the effects of the HA synthesis inhibitor 4-methylumbelliferone (4-MU) on SPHK1 expression in ovarian cancer cells and HGSOC patient tissues using ex vivo tissue explant assays. SPHK1 was significantly increased in ovarian cancer compared to normal tissues, elevated in metastatic and recurrent HGSOC tissues and associated with poor patient outcome. 4-MU significantly inhibited SPHK1 expression in ovarian cancer cells (ES-2, CaOV3 and A2780) and HGSOC patient tissues. This study highlights a link between HA and SPHK1 expression in ovarian cancer. Our findings confirm an adverse effect on ovarian cancer prognosis. SPHK1 constitutes a novel promising target against ovarian cancer that warrants further investigation.
Collapse
Affiliation(s)
- Zoe K. Price
- Discipline of Obstetrics and GynaecologyAdelaide Medical School, University of AdelaideAdelaideSouth AustraliaAustralia
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Noor A. Lokman
- Discipline of Obstetrics and GynaecologyAdelaide Medical School, University of AdelaideAdelaideSouth AustraliaAustralia
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Jessica Morrison
- Discipline of Obstetrics and GynaecologyAdelaide Medical School, University of AdelaideAdelaideSouth AustraliaAustralia
| | - Sisanda N. Mhlanga
- Discipline of Obstetrics and GynaecologyAdelaide Medical School, University of AdelaideAdelaideSouth AustraliaAustralia
| | - Mai Sugiyama
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yoshihiro Koya
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Lorena T. Davies
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth AustraliaAustralia
| | - Stuart M. Pitson
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth AustraliaAustralia
- Molecular and Biomedical Science, Molecular Life SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Martin K. Oehler
- Discipline of Obstetrics and GynaecologyAdelaide Medical School, University of AdelaideAdelaideSouth AustraliaAustralia
- Department of Gynaecological OncologyRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia
| | - Melissa R. Pitman
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Molecular and Biomedical Science, Molecular Life SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Masato Yoshihara
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Hiroaki Kajiyama
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Carmela Ricciardelli
- Discipline of Obstetrics and GynaecologyAdelaide Medical School, University of AdelaideAdelaideSouth AustraliaAustralia
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
2
|
Karmelić I, Jurilj Sajko M, Sajko T, Rotim K, Fabris D. The role of sphingolipid rheostat in the adult-type diffuse glioma pathogenesis. Front Cell Dev Biol 2024; 12:1466141. [PMID: 39723240 PMCID: PMC11668798 DOI: 10.3389/fcell.2024.1466141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/11/2024] [Indexed: 12/28/2024] Open
Abstract
Gliomas are highly aggressive primary brain tumors, with glioblastoma multiforme being the most severe and the most common one. Aberrations in sphingolipid metabolism are a hallmark of glioma cells. The sphingolipid rheostat represents the balance between the pro-apoptotic ceramide and pro-survival sphingosine-1-phosphate (S1P), and in gliomas it is shifted toward cell survival and proliferation, promoting gliomas' aggressiveness, cellular migration, metastasis, and invasiveness. The sphingolipid rheostat can be altered by targeting enzymes that directly or indirectly affect the ratio of ceramide to S1P, leading to increased ceramide or decreased S1P levels. Targeting the sphingolipid rheostat offers a potential therapeutic pathway for glioma treatment which can be considered through reducing S1P levels or modulating S1P receptors to reduce cell proliferation, as well as through increasing ceramide levels to induce apoptosis in glioma cells. Although the practical translation into clinical therapy is still missing, sphingolipid rheostat targeting in gliomas has been of great research interest in recent years with several interesting achievements in the glioma therapy approach, offering hope for patients suffering from these vicious malignancies.
Collapse
Affiliation(s)
- Ivana Karmelić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mia Jurilj Sajko
- Department of Neurosurgery, University Hospital Center “Sestre milosrdnice”, Zagreb, Croatia
| | - Tomislav Sajko
- Department of Neurosurgery, University Hospital Center “Sestre milosrdnice”, Zagreb, Croatia
| | - Krešimir Rotim
- Department of Neurosurgery, University Hospital Center “Sestre milosrdnice”, Zagreb, Croatia
| | - Dragana Fabris
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
3
|
Wajapeyee N, Beamon TC, Gupta R. Roles and therapeutic targeting of ceramide metabolism in cancer. Mol Metab 2024; 83:101936. [PMID: 38599378 PMCID: PMC11031839 DOI: 10.1016/j.molmet.2024.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Ceramides are sphingolipids that act as signaling molecules involved in regulating cellular processes including apoptosis, proliferation, and metabolism. Deregulation of ceramide metabolism contributes to cancer development and progression. Therefore, regulation of ceramide levels in cancer cells is being explored as a new approach for cancer therapy. SCOPE OF THE REVIEW This review discusses the multiple roles of ceramides in cancer cells and strategies to modulate ceramide levels for cancer therapy. Ceramides attenuate cell survival signaling and metabolic pathways, while activating apoptotic mechanisms, making them tumor-suppressive. Approaches to increase ceramide levels in cancer cells include using synthetic analogs, inhibiting ceramide degradation, and activating ceramide synthesis. We also highlight combination therapies such as use of ceramide modulators with chemotherapies, immunotherapies, apoptosis inducers, and anti-angiogenics, which offer synergistic antitumor effects. Additionally, we also describe ongoing clinical trials evaluating ceramide nanoliposomes and analogs. Finally, we discuss the challenges of these therapeutic approaches including the complexity of ceramide metabolism, targeted delivery, cancer heterogeneity, resistance mechanisms, and long-term safety. MAJOR CONCLUSIONS Ceramide-based therapy is a potentially promising approach for cancer therapy. However, overcoming hurdles in pharmacokinetics, specificity, and resistance is needed to optimize its efficacy and safety. This requires comprehensive preclinical/clinical studies into ceramide signaling, formulations, and combination therapies. Ceramide modulation offers opportunities for developing novel cancer treatments, but a deeper understanding of ceramide biology is vital to advance its clinical applications.
Collapse
Affiliation(s)
- Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| | - Teresa Chiyanne Beamon
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
4
|
Coant N, Rendja K, Bellini L, Flamment M, Lherminier J, Portha B, Codogno P, Le Stunff H. Role of Sphingosine Kinase 1 in Glucolipotoxicity-Induced Early Activation of Autophagy in INS-1 Pancreatic β Cells. Cells 2024; 13:636. [PMID: 38607078 PMCID: PMC11011436 DOI: 10.3390/cells13070636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/04/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Insulin-producing pancreatic β cells play a crucial role in the regulation of glucose homeostasis, and their failure is a key event for diabetes development. Prolonged exposure to palmitate in the presence of elevated glucose levels, termed gluco-lipotoxicity, is known to induce β cell apoptosis. Autophagy has been proposed to be regulated by gluco-lipotoxicity in order to favor β cell survival. However, the role of palmitate metabolism in gluco-lipotoxcity-induced autophagy is presently unknown. We therefore treated INS-1 cells for 6 and 24 h with palmitate in the presence of low and high glucose concentrations and then monitored autophagy. Gluco-lipotoxicity induces accumulation of LC3-II levels in INS-1 at 6 h which returns to basal levels at 24 h. Using the RFP-GFP-LC3 probe, gluco-lipotoxicity increased both autophagosomes and autolysosmes structures, reflecting early stimulation of an autophagy flux. Triacsin C, a potent inhibitor of the long fatty acid acetyl-coA synthase, completely prevents LC3-II formation and recruitment to autophagosomes, suggesting that autophagic response requires palmitate metabolism. In contrast, etomoxir and bromo-palmitate, inhibitors of fatty acid mitochondrial β-oxidation, are unable to prevent gluco-lipotoxicity-induced LC3-II accumulation and recruitment to autophagosomes. Moreover, bromo-palmitate and etomoxir potentiate palmitate autophagic response. Even if gluco-lipotoxicity raised ceramide levels in INS-1 cells, ceramide synthase 4 overexpression does not potentiate LC3-II accumulation. Gluco-lipotoxicity also still stimulates an autophagic flux in the presence of an ER stress repressor. Finally, selective inhibition of sphingosine kinase 1 (SphK1) activity precludes gluco-lipotoxicity to induce LC3-II accumulation. Moreover, SphK1 overexpression potentiates autophagic flux induced by gluco-lipotxicity. Altogether, our results indicate that early activation of autophagy by gluco-lipotoxicity is mediated by SphK1, which plays a protective role in β cells.
Collapse
Affiliation(s)
- Nicolas Coant
- Unité BFA, Université Paris Cité, CNRS UMR 8251, 75006 Paris, France; (N.C.); (B.P.)
- Department of Pathology and Stony Brook Cancer Center, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA
| | - Karima Rendja
- Unité BFA, Université Paris Cité, CNRS UMR 8251, 75006 Paris, France; (N.C.); (B.P.)
| | - Lara Bellini
- Unité BFA, Université Paris Cité, CNRS UMR 8251, 75006 Paris, France; (N.C.); (B.P.)
| | - Mélissa Flamment
- Inserm, UMR-S 872, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Jeannine Lherminier
- INRA, UMR1347 Agroécologie, ERL CNRS 6300, Plateforme DImaCell, Centre de Microscopie INRA/Université de Bourgogne, 21065 Dijon, France
| | - Bernard Portha
- Unité BFA, Université Paris Cité, CNRS UMR 8251, 75006 Paris, France; (N.C.); (B.P.)
| | - Patrice Codogno
- INSERM U1151-CNRS UMR 8253, Institut Necker Enfants-Malades, University Paris Descartes, 75006 Paris, France
| | - Hervé Le Stunff
- Unité BFA, Université Paris Cité, CNRS UMR 8251, 75006 Paris, France; (N.C.); (B.P.)
- CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, Saclay, University Paris, 91400 Saclay, France
| |
Collapse
|
5
|
Hengst JA, Nduwumwami AJ, Sharma A, Yun JK. Fanning the Flames of Endoplasmic Reticulum (ER) Stress: Can Sphingolipid Metabolism Be Targeted to Enhance ER Stress-Associated Immunogenic Cell Death in Cancer? Mol Pharmacol 2024; 105:155-165. [PMID: 38164594 PMCID: PMC10877730 DOI: 10.1124/molpharm.123.000786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
The three arms of the unfolded protein response (UPR) surveil the luminal environment of the endoplasmic reticulum (ER) and transmit information through the lipid bilayer to the cytoplasm to alert the cell of stress conditions within the ER lumen. That same lipid bilayer is the site of de novo synthesis of phospholipids and sphingolipids. Thus, it is no surprise that lipids are modulated by and are modulators of ER stress. Given that sphingolipids have both prosurvival and proapoptotic effects, they also exert opposing effects on life/death decisions in the face of prolonged ER stress detected by the UPR. In this review, we will focus on several recent studies that demonstrate how sphingolipids affect each arm of the UPR. We will also discuss the role of sphingolipids in the process of immunogenic cell death downstream of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiating factor 2α (eIF2α) arm of the UPR. Furthermore, we will discuss strategies to target the sphingolipid metabolic pathway that could potentially act synergistically with agents that induce ER stress as novel anticancer treatments. SIGNIFICANCE STATEMENT: This review provides the readers with a brief discussion of the sphingolipid metabolic pathway and the unfolded protein response. The primary focus of the review is the mechanism(s) by which sphingolipids modulate the endoplasmic reticulum (ER) stress response pathways and the critical role of sphingolipids in the process of immunogenic cell death associated with the ER stress response.
Collapse
Affiliation(s)
- Jeremy A Hengst
- Departments of Pediatrics (J.A.H.) and Pharmacology (A.S., J.K.Y.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Drug Metabolism and Pharmacokinetics, National Center for Advancing Translational Science, Rockville, Maryland (A.J.N.)
| | - Asvelt J Nduwumwami
- Departments of Pediatrics (J.A.H.) and Pharmacology (A.S., J.K.Y.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Drug Metabolism and Pharmacokinetics, National Center for Advancing Translational Science, Rockville, Maryland (A.J.N.)
| | - Arati Sharma
- Departments of Pediatrics (J.A.H.) and Pharmacology (A.S., J.K.Y.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Drug Metabolism and Pharmacokinetics, National Center for Advancing Translational Science, Rockville, Maryland (A.J.N.)
| | - Jong K Yun
- Departments of Pediatrics (J.A.H.) and Pharmacology (A.S., J.K.Y.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Drug Metabolism and Pharmacokinetics, National Center for Advancing Translational Science, Rockville, Maryland (A.J.N.)
| |
Collapse
|
6
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
7
|
Kim KM, Shin EJ, Yang JH, Ki SH. Integrative roles of sphingosine kinase in liver pathophysiology. Toxicol Res 2023; 39:549-564. [PMID: 37779595 PMCID: PMC10541397 DOI: 10.1007/s43188-023-00193-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 10/03/2023] Open
Abstract
Bioactive sphingolipids and enzymes that metabolize sphingolipid-related substances have been considered as critical messengers in various signaling pathways. One such enzyme is the crucial lipid kinase, sphingosine kinase (SphK), which mediates the conversion of sphingosine to the potent signaling substance, sphingosine-1-phosphate. Several studies have demonstrated that SphK metabolism is strictly regulated to maintain the homeostatic balance of cells. Here, we summarize the role of SphK in the course of liver disease and illustrate its effects on both physiological and pathological conditions of the liver. SphK has been implicated in a variety of liver diseases, such as steatosis, liver fibrosis, hepatocellular carcinoma, and hepatic failure. This study may advance the understanding of the cellular and molecular foundations of liver disease and establish therapeutic approaches via SphK modulation.
Collapse
Affiliation(s)
- Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-Do 58245 Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452 Republic of Korea
| |
Collapse
|
8
|
Sousa N, Geiß C, Bindila L, Lieberwirth I, Kim E, Régnier-Vigouroux A. Targeting sphingolipid metabolism with the sphingosine kinase inhibitor SKI-II overcomes hypoxia-induced chemotherapy resistance in glioblastoma cells: effects on cell death, self-renewal, and invasion. BMC Cancer 2023; 23:762. [PMID: 37587449 PMCID: PMC10433583 DOI: 10.1186/s12885-023-11271-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Glioblastoma patients commonly develop resistance to temozolomide chemotherapy. Hypoxia, which supports chemotherapy resistance, favors the expansion of glioblastoma stem cells (GSC), contributing to tumor relapse. Because of a deregulated sphingolipid metabolism, glioblastoma tissues contain high levels of the pro-survival sphingosine-1-phosphate and low levels of the pro-apoptotic ceramide. The latter can be metabolized to sphingosine-1-phosphate by sphingosine kinase (SK) 1 that is overexpressed in glioblastoma. The small molecule SKI-II inhibits SK and dihydroceramide desaturase 1, which converts dihydroceramide to ceramide. We previously reported that SKI-II combined with temozolomide induces caspase-dependent cell death, preceded by dihydrosphingolipids accumulation and autophagy in normoxia. In the present study, we investigated the effects of a low-dose combination of temozolomide and SKI-II under normoxia and hypoxia in glioblastoma cells and patient-derived GCSs. METHODS Drug synergism was analyzed with the Chou-Talalay Combination Index method. Dose-effect curves of each drug were determined with the Sulforhodamine B colorimetric assay. Cell death mechanisms and autophagy were analyzed by immunofluorescence, flow cytometry and western blot; sphingolipid metabolism alterations by mass spectrometry and gene expression analysis. GSCs self-renewal capacity was determined using extreme limiting dilution assays and invasion of glioblastoma cells using a 3D spheroid model. RESULTS Temozolomide resistance of glioblastoma cells was increased under hypoxia. However, combination of temozolomide (48 µM) with SKI-II (2.66 µM) synergistically inhibited glioblastoma cell growth and potentiated glioblastoma cell death relative to single treatments under hypoxia. This low-dose combination did not induce dihydrosphingolipids accumulation, but a decrease in ceramide and its metabolites. It induced oxidative and endoplasmic reticulum stress and triggered caspase-independent cell death. It impaired the self-renewal capacity of temozolomide-resistant GSCs, especially under hypoxia. Furthermore, it decreased invasion of glioblastoma cell spheroids. CONCLUSIONS This in vitro study provides novel insights on the links between sphingolipid metabolism and invasion, a hallmark of cancer, and cancer stem cells, key drivers of cancer. It demonstrates the therapeutic potential of approaches that combine modulation of sphingolipid metabolism with first-line agent temozolomide in overcoming tumor growth and relapse by reducing hypoxia-induced resistance to chemotherapy and by targeting both differentiated and stem glioblastoma cells.
Collapse
Affiliation(s)
- Nadia Sousa
- Institute of Developmental Biology & Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carsten Geiß
- Institute of Developmental Biology & Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Laura Bindila
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, Medical University Mainz, Mainz, Germany
| | | | - Ella Kim
- Department of Neurosurgery, Medical University of Mainz, Mainz, Germany
| | - Anne Régnier-Vigouroux
- Institute of Developmental Biology & Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
9
|
Mebarek S, Skafi N, Brizuela L. Targeting Sphingosine 1-Phosphate Metabolism as a Therapeutic Avenue for Prostate Cancer. Cancers (Basel) 2023; 15:2732. [PMID: 37345069 DOI: 10.3390/cancers15102732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Prostate cancer (PC) is the second most common cancer in men worldwide. More than 65% of men diagnosed with PC are above 65. Patients with localized PC show high long-term survival, however with the disease progression into a metastatic form, it becomes incurable, even after strong radio- and/or chemotherapy. Sphingosine 1-phosphate (S1P) is a bioactive lipid that participates in all the steps of oncogenesis including tumor cell proliferation, survival, migration, invasion, and metastatic spread. The S1P-producing enzymes sphingosine kinases 1 and 2 (SK1 and SK2), and the S1P degrading enzyme S1P lyase (SPL), have been shown to be highly implicated in the onset, development, and therapy resistance of PC during the last 20 years. In this review, the most important studies demonstrating the role of S1P and S1P metabolic partners in PC are discussed. The different in vitro, ex vivo, and in vivo models of PC that were used to demonstrate the implication of S1P metabolism are especially highlighted. Furthermore, the most efficient molecules targeting S1P metabolism that are under preclinical and clinical development for curing PC are summarized. Finally, the possibility of targeting S1P metabolism alone or combined with other therapies in the foreseeable future as an alternative option for PC patients is discussed. Research Strategy: PubMed from INSB was used for article research. First, key words "prostate & sphingosine" were used and 144 articles were found. We also realized other combinations of key words as "prostate cancer bone metastasis" and "prostate cancer treatment". We used the most recent reviews to illustrate prostate cancer topic and sphingolipid metabolism overview topic.
Collapse
Affiliation(s)
- Saida Mebarek
- CNRS UMR 5246, INSA Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), 69622 Lyon, France
| | - Najwa Skafi
- CNRS, LAGEPP UMR 5007, University of Lyon, Université Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Leyre Brizuela
- CNRS UMR 5246, INSA Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), 69622 Lyon, France
| |
Collapse
|
10
|
Di Paolo A, Vignini A, Alia S, Membrino V, Delli Carpini G, Giannella L, Ciavattini A. Pathogenic Role of the Sphingosine 1-Phosphate (S1P) Pathway in Common Gynecologic Disorders (GDs): A Possible Novel Therapeutic Target. Int J Mol Sci 2022; 23:13538. [PMID: 36362323 PMCID: PMC9658294 DOI: 10.3390/ijms232113538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid, noteworthy for its involvement both in the modulation of various biological processes and in the development of many diseases. S1P signaling can be either pro or anti-inflammatory, and the sphingosine kinase (SphK)-S1P-S1P receptor (S1PR) axis is a factor in accelerating the growth of several cells, including endometriotic cells and fibrosis. Gynecologic disorders, including endometriosis, adenomyosis, and uterine fibroids are characterized by inflammation and fibrosis. S1P signaling and metabolism have been shown to be dysregulated in those disorders and they are likely implicated in their pathogenesis and pathophysiology. Enzymes responsible for inactivating S1P are the most affected by the dysregulation of S1P balanced levels, thus causing accumulation of sphingolipids within these cells and tissues. The present review highlights the past and latest evidence on the role played by the S1P pathways in common gynecologic disorders (GDs). Furthermore, it discusses potential future approaches in the regulation of this signaling pathway that could represent an innovative and promising therapeutical target, also for ovarian cancer treatment.
Collapse
Affiliation(s)
- Alice Di Paolo
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, 60121 Ancona, Italy
- Research Center of Health Education and Health Promotion, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Sonila Alia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Valentina Membrino
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Giovanni Delli Carpini
- Department of Clinical Sciences, Section of Obstetrics and Gynecology, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Luca Giannella
- Department of Clinical Sciences, Section of Obstetrics and Gynecology, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Andrea Ciavattini
- Department of Clinical Sciences, Section of Obstetrics and Gynecology, Università Politecnica delle Marche, 60121 Ancona, Italy
| |
Collapse
|
11
|
Wilkerson JL, Basu SK, Stiles MA, Prislovsky A, Grambergs RC, Nicholas SE, Karamichos D, Allegood JC, Proia RL, Mandal N. Ablation of Sphingosine Kinase 1 Protects Cornea from Neovascularization in a Mouse Corneal Injury Model. Cells 2022; 11:2914. [PMID: 36139489 PMCID: PMC9497123 DOI: 10.3390/cells11182914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to investigate the role of sphingosine kinase 1 (SphK1), which generates sphingosine-1-phosphate (S1P), in corneal neovascularization (NV). Wild-type (WT) and Sphk1 knockout (Sphk1-/-) mice received corneal alkali-burn treatment to induce corneal NV by placing a 2 mm round piece of Whatman No. 1 filter paper soaked in 1N NaOH on the center of the cornea for 20 s. Corneal sphingolipid species were extracted and identified using liquid chromatography/mass spectrometry (LC/MS). The total number of tip cells and those positive for ethynyl deoxy uridine (EdU) were quantified. Immunocytochemistry was done to examine whether pericytes were present on newly forming blood vessels. Cytokine signaling and angiogenic markers were compared between the two groups using multiplex assays. Data were analyzed using appropriate statistical tests. Here, we show that ablation of SphK1 can significantly reduce NV invasion in the cornea following injury. Corneal sphingolipid analysis showed that total levels of ceramides, monohexosyl ceramides (HexCer), and sphingomyelin were significantly elevated in Sphk-/- corneas compared to WT corneas, with a comparable level of sphingosine among the two genotypes. The numbers of total and proliferating endothelial tip cells were also lower in the Sphk1-/- corneas following injury. This study underscores the role of S1P in post-injury corneal NV and raises further questions about the roles played by ceramide, HexCer, and sphingomyelin in regulating corneal NV. Further studies are needed to unravel the role played by bioactive sphingolipids in maintenance of corneal transparency and clear vision.
Collapse
Affiliation(s)
- Joseph L. Wilkerson
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sandip K. Basu
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Megan A. Stiles
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amanda Prislovsky
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Richard C. Grambergs
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jeremy C. Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Richard L. Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nawajes Mandal
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
- Departments of Anatomy and Neurobiology, and Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
- Memphis VA Medical Center, Memphis, TN 38104, USA
| |
Collapse
|
12
|
Targeting the Sphingolipid Rheostat in Gliomas. Int J Mol Sci 2022; 23:ijms23169255. [PMID: 36012521 PMCID: PMC9408832 DOI: 10.3390/ijms23169255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/26/2022] Open
Abstract
Gliomas are highly aggressive cancer types that are in urgent need of novel drugs and targeted therapies. Treatment protocols have not improved in over a decade, and glioma patient survival remains among the worst of all cancer types. As a result, cancer metabolism research has served as an innovative approach to identifying novel glioma targets and improving our understanding of brain tumors. Recent research has uncovered a unique metabolic vulnerability in the sphingolipid pathways of gliomas that possess the IDH1 mutation. Sphingolipids are a family of lipid signaling molecules that play a variety of second messenger functions in cellular regulation. The two primary metabolites, sphingosine-1-phosphate (S1P) and ceramide, maintain a rheostat balance and play opposing roles in cell survival and proliferation. Altering the rheostat such that the pro-apoptotic signaling of the ceramides outweighs the pro-survival S1P signaling in glioma cells diminishes the hallmarks of cancer and enhances tumor cell death. Throughout this review, we discuss the sphingolipid pathway and identify the enzymes that can be most effectively targeted to alter the sphingolipid rheostat and enhance apoptosis in gliomas. We discuss each pathway’s steps based on their site of occurrence in the organelles and postulate novel targets that can effectively exploit this vulnerability.
Collapse
|
13
|
Targeting sphingosine kinase 1/2 by a novel dual inhibitor SKI-349 suppresses non-small cell lung cancer cell growth. Cell Death Dis 2022; 13:602. [PMID: 35831279 PMCID: PMC9279331 DOI: 10.1038/s41419-022-05049-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Sphingosine kinase 1 (SphK1) and sphingosine kinase (SphK2) are both important therapeutic targets of non-small cell lung cancer (NSCLC). SKI-349 is a novel, highly efficient and small molecular SphK1/2 dual inhibitor. Here in primary human NSCLC cells and immortalized cell lines, SKI-349 potently inhibited cell proliferation, cell cycle progression, migration and viability. The dual inhibitor induced mitochondrial depolarization and apoptosis activation in NSCLC cells, but it was non-cytotoxic to human lung epithelial cells. SKI-349 inhibited SphK activity and induced ceramide accumulation in primary NSCLC cells, without affecting SphK1/2 expression. SKI-349-induced NSCLC cell death was attenuated by sphingosine-1-phosphate and by the SphK activator K6PC-5, but was potentiated by the short-chain ceramide C6. Moreover, SKI-349 induced Akt-mTOR inactivation, JNK activation, and oxidative injury in primary NSCLC cells. In addition, SKI-349 decreased bromodomain-containing protein 4 (BRD4) expression and downregulated BRD4-dependent genes (Myc, cyclin D1 and Klf4) in primary NSCLC cells. At last, SKI-349 (10 mg/kg) administration inhibited NSCLC xenograft growth in nude mice. Akt-mTOR inhibition, JNK activation, oxidative injury and BRD4 downregulation were detected in SKI-349-treated NSCLC xenograft tissues. Taken together, targeting SphK1/2 by SKI-349 potently inhibits NSCLC cell growth in vitro and in vivo.
Collapse
|
14
|
Sun X, Shan HJ, Yin G, Zhang XY, Huang YM, Li HJ. The anti-osteosarcoma cell activity by the sphingosine kinase 1 inhibitor SKI-V. Cell Death Dis 2022; 8:48. [PMID: 35115496 PMCID: PMC8814198 DOI: 10.1038/s41420-022-00838-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 01/04/2023]
Abstract
Sphingosine kinase 1 (SphK1) expression and activity are elevated in human osteosarcoma (OS) and is a promising target of therapy. SKI-V is a non-competitive and highly-efficient non-lipid SphK1 inhibitor. The potential anti-OS cell activity by the SphK1 inhibitor was studied here. In primary OS cells and immortalized cell lines, SKI-V robustly suppressed cell survival, growth and proliferation as well as cell mobility, and inducing profound OS cell death and apoptosis. The SphK1 inhibitor was however non-cytotoxic nor pro-apoptotic in human osteoblasts. SKI-V robustly inhibited SphK1 activation and induced accumulation of ceramides, without affecting SphK1 expression in primary OS cells. The SphK1 activator K6PC-5 or sphingosine-1-phosphate partially inhibited SKI-V-induced OS cell death. We showed that SKI-V concurrently blocked Akt-mTOR activation in primary OS cells. A constitutively-active Akt1 (ca-Akt1, S473D) construct restored Akt-mTOR activation and mitigated SKI-V-mediated cytotoxicity in primary OS cells. In vivo, daily injection of SKI-V potently suppressed OS xenograft tumor growth in nude mice. In SKI-V-administrated OS xenograft tissues, SphK1 inhibition, ceramide increase and Akt-mTOR inhibition were detected. Together, SKI-V exerts significant anti-OS activity by inhibiting SphK1 and Akt-mTOR cascades in OS cells.
Collapse
Affiliation(s)
- Xu Sun
- Department of Hand and Foot Surgery, Hospital Affiliated 5 to Nantong University, Taizhou People's Hospital, Taizhou, China
| | - Hua-Jian Shan
- Department of Orthopaedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Yin
- Department of Orthopaedics, Wujin Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Xiang-Yang Zhang
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Min Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Hai-Jun Li
- Department of Hand and Foot Surgery, Hospital Affiliated 5 to Nantong University, Taizhou People's Hospital, Taizhou, China.
| |
Collapse
|
15
|
Companioni O, Mir C, Garcia-Mayea Y, LLeonart ME. Targeting Sphingolipids for Cancer Therapy. Front Oncol 2021; 11:745092. [PMID: 34737957 PMCID: PMC8560795 DOI: 10.3389/fonc.2021.745092] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids are an extensive class of lipids with different functions in the cell, ranging from proliferation to cell death. Sphingolipids are modified in multiple cancers and are responsible for tumor proliferation, progression, and metastasis. Several inhibitors or activators of sphingolipid signaling, such as fenretinide, safingol, ABC294640, ceramide nanoliposomes (CNLs), SKI-II, α-galactosylceramide, fingolimod, and sonepcizumab, have been described. The objective of this review was to analyze the results from preclinical and clinical trials of these drugs for the treatment of cancer. Sphingolipid-targeting drugs have been tested alone or in combination with chemotherapy, exhibiting antitumor activity alone and in synergism with chemotherapy in vitro and in vivo. As a consequence of treatments, the most frequent mechanism of cell death is apoptosis, followed by autophagy. Aslthough all these drugs have produced good results in preclinical studies of multiple cancers, the outcomes of clinical trials have not been similar. The most effective drugs are fenretinide and α-galactosylceramide (α-GalCer). In contrast, minor adverse effects restricted to a few subjects and hepatic toxicity have been observed in clinical trials of ABC294640 and safingol, respectively. In the case of CNLs, SKI-II, fingolimod and sonepcizumab there are some limitations and absence of enough clinical studies to demonstrate a benefit. The effectiveness or lack of a major therapeutic effect of sphingolipid modulation by some drugs as a cancer therapy and other aspects related to their mechanism of action are discussed in this review.
Collapse
Affiliation(s)
- Osmel Companioni
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Matilde E LLeonart
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Spanish Biomedical Research Network Center in Oncology, CIBERONC, Madrid, Spain
| |
Collapse
|
16
|
Bu Y, Wu H, Deng R, Wang Y. Therapeutic Potential of SphK1 Inhibitors Based on Abnormal Expression of SphK1 in Inflammatory Immune Related-Diseases. Front Pharmacol 2021; 12:733387. [PMID: 34737701 PMCID: PMC8560647 DOI: 10.3389/fphar.2021.733387] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/04/2021] [Indexed: 01/12/2023] Open
Abstract
Sphingosine kinase 1(SphK1) a key enzyme that catalyzes the conversion of sphingosine (Sph) to sphingosine 1-phosphate (S1P), so as to maintain the dynamic balance of sphingolipid-rheostat in cells and participate in cell growth and death, proliferation and migration, vasoconstriction and remodeling, inflammation and metabolism. The normal expression of SphK1 maintains the balance of physiological and pathological states, which is reflected in the regulation of inflammatory factor secretion, immune response in traditional immune cells and non-traditional immune cells, and complex signal transduction. However, abnormal SphK1 expression and activity are found in various inflammatory and immune related-diseases, such as hypertension, atherosclerosis, Alzheimer’s disease, inflammatory bowel disease and rheumatoid arthritis. In view of the therapeutic potential of regulating SphK1 and its signal, the current research is aimed at SphK1 inhibitors, such as SphK1 selective inhibitors and dual SphK1/2 inhibitor, and other compounds with inhibitory potency. This review explores the regulatory role of over-expressed SphK1 in inflammatory and immune related-diseases, and investigate the latest progress of SphK1 inhibitors and the improvement of disease or pathological state.
Collapse
Affiliation(s)
- Yanhong Bu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
17
|
Butler KJ, Castro AA, Dwyer TS, Hardwick LM, Iacino MC, Manore SG, Mays KM, McGlade CA, Hair LN, Parker EW, Smith MR, Turnow MT, Wilson MR, Woodson SR, Cotham WE, Walla MD, Hurlbert JC, Christian Grattan T. Design, synthesis and analysis of novel sphingosine kinase-1 inhibitors to improve oral bioavailability. Bioorg Med Chem Lett 2021; 50:128329. [PMID: 34418572 DOI: 10.1016/j.bmcl.2021.128329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/16/2021] [Accepted: 08/11/2021] [Indexed: 11/27/2022]
Abstract
The sphingomyelin pathway is important in cell regulation and determining cellular fate. Inhibition of sphingosine kinase isoform 1 (SK1) within this pathway, leads to a buildup of sphingosine and ceramide, two molecules directly linked to cell apoptosis, while decreasing the intracellular concentration of sphingosine-1-phosphate (S1P), a molecule linked to cellular proliferation. Recently, an inhibitor capable of inhibiting SK1 in vitro was identified, but also shown to be ineffective in vivo. A set of compounds designed to assess the impact of synthetic modifications to the hydroxynaphthalene ring region of the template inhibitor with SK1 to obtain a compound with increased efficacy in vivo. Of these fifteen compounds, 4A was shown to have an IC50 = 6.55 μM with improved solubility and in vivo potential.
Collapse
Affiliation(s)
- Kendarius J Butler
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Angel A Castro
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Tiffany S Dwyer
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Louise M Hardwick
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Melody C Iacino
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Sara G Manore
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Kevin M Mays
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Caylie A McGlade
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Lisa N Hair
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Erin W Parker
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Mikala R Smith
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Morgan T Turnow
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Matthew R Wilson
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Stephanie R Woodson
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - William E Cotham
- University of South Carolina, Department of Chemistry and Biochemistry, GSRC Rm 108M, Columbia, SC 29208, United States
| | - Michael D Walla
- University of South Carolina, Department of Chemistry and Biochemistry, GSRC Rm 108M, Columbia, SC 29208, United States
| | - Jason C Hurlbert
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - T Christian Grattan
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| |
Collapse
|
18
|
A chemical screen for modulators of mRNA translation identifies a distinct mechanism of toxicity for sphingosine kinase inhibitors. PLoS Biol 2021; 19:e3001263. [PMID: 34033645 PMCID: PMC8183993 DOI: 10.1371/journal.pbio.3001263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 06/07/2021] [Accepted: 05/05/2021] [Indexed: 11/19/2022] Open
Abstract
We here conducted an image-based chemical screen to evaluate how medically approved drugs, as well as drugs that are currently under development, influence overall translation levels. None of the compounds up-regulated translation, which could be due to the screen being performed in cancer cells grown in full media where translation is already present at very high levels. Regarding translation down-regulators, and consistent with current knowledge, inhibitors of the mechanistic target of rapamycin (mTOR) signaling pathway were the most represented class. In addition, we identified that inhibitors of sphingosine kinases (SPHKs) also reduce mRNA translation levels independently of mTOR. Mechanistically, this is explained by an effect of the compounds on the membranes of the endoplasmic reticulum (ER), which activates the integrated stress response (ISR) and contributes to the toxicity of SPHK inhibitors. Surprisingly, the toxicity and activation of the ISR triggered by 2 independent SPHK inhibitors, SKI-II and ABC294640, the latter in clinical trials, are also observed in cells lacking SPHK1 and SPHK2. In summary, our study provides a useful resource on the effects of medically used drugs on translation, identified compounds capable of reducing translation independently of mTOR and has revealed that the cytotoxic properties of SPHK inhibitors being developed as anticancer agents are independent of SPHKs.
Collapse
|
19
|
Oladipo GO, Oladipo MC, Ibukun EO, Salawu SO. Quail (Coturnix japonica) egg attenuated 2-butoxyethanol-induced enzymatic dysregulation, disseminated thrombosis and hemolytic impairment in female wistar rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113508. [PMID: 33169693 DOI: 10.1016/j.jep.2020.113508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Influence of quail egg on pathologies has increased research interests and series of investigations are currently being done on its influence against these pathologies. The influence of quail egg against 2-butoxyethanol induced hemolysis and disseminated thrombosis was investigated to determine the enzymatic regulations that ensue in the amelioration of deleterious hemolytic and disseminated thrombosis displayed in female Wistar rats. Quail egg was separated into three (3) components (extracts)-quail egg yolk water soluble (QYWS) and fat soluble (QYFS), and albumen extract (QA) and the inorganic and organic compositions were characterized. Depranocytotic assaults was achieved by 250 mg/kg of 2-Butoxyethanol administered for 4 days, the clinical observation revealed a dark purple-red discoloration on the distal tails of the rats and therapeutic applications followed with 1000 mg/kg BWT of QYWS, QYFS and QA, and 15 mg/kg BWT of hydroxyurea. Morphological evaluation, haematological estimations and biochemical evaluations of the influence on the activities of sphingosine kinase-1, RNase, red cell carbonic anhydrase, lactate dehydrogenase, glutathione peroxidase and caspase-3, vis a vis the concentrations of sphingosine-1 phosphate, selenium and zinc (plasma and urine). In vitro anti-inflammatory influence of quail egg components were investigated against hemolysis and key enzymes of inflammation-cycloxygenase, lipoxygenase and β-glucuronidase. The in vitro anti-inflammatory effects of QYWS, QYFS and QA were concentration dependent from 200 to 800 μg/ml against hemolysis and the key enzymes of inflammation. The characterization of inorganic and organic bioactive composition of the yolk and albumen revealed the presence of folic acid, cobalamin, pyridine, riboflavin, ascorbic acid as well as vitamins D and E, selenium, zinc, iron and calcium. These had reflected in the attenuation of the induced hemolytic and disseminated thrombosis by regulations of enzymes linked to the infarction, apoptosis and oxidative stress characterized in sickle cell index.
Collapse
Affiliation(s)
- G O Oladipo
- Applied Clinical Biochemistry Research Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.
| | - M C Oladipo
- Applied Clinical Biochemistry Research Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - E O Ibukun
- Applied Clinical Biochemistry Research Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - S O Salawu
- Food Biochemistry and Toxicology Research Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
20
|
Skácel J, Slusher BS, Tsukamoto T. Small Molecule Inhibitors Targeting Biosynthesis of Ceramide, the Central Hub of the Sphingolipid Network. J Med Chem 2021; 64:279-297. [PMID: 33395289 PMCID: PMC8023021 DOI: 10.1021/acs.jmedchem.0c01664] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ceramides are composed of a sphingosine and a single fatty acid connected by an amide linkage. As one of the major classes of biologically active lipids, ceramides and their upstream and downstream metabolites have been implicated in several pathological conditions including cancer, neurodegeneration, diabetes, microbial pathogenesis, obesity, and inflammation. Consequently, tremendous efforts have been devoted to deciphering the dynamics of metabolic pathways involved in ceramide biosynthesis. Given that several distinct enzymes can produce ceramide, different enzyme targets have been pursued depending on the underlying disease mechanism. The main objective of this review is to provide a comprehensive overview of small molecule inhibitors reported to date for each of these ceramide-producing enzymes from a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Jan Skácel
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
21
|
McGowan EM, Haddadi N, Nassif NT, Lin Y. Targeting the SphK-S1P-SIPR Pathway as a Potential Therapeutic Approach for COVID-19. Int J Mol Sci 2020; 21:ijms21197189. [PMID: 33003377 PMCID: PMC7583882 DOI: 10.3390/ijms21197189] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
The world is currently experiencing the worst health pandemic since the Spanish flu in 1918-the COVID-19 pandemic-caused by the coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pandemic is the world's third wake-up call this century. In 2003 and 2012, the world experienced two major coronavirus outbreaks, SARS-CoV-1 and Middle East Respiratory syndrome coronavirus (MERS-CoV), causing major respiratory tract infections. At present, there is neither a vaccine nor a cure for COVID-19. The severe COVID-19 symptoms of hyperinflammation, catastrophic damage to the vascular endothelium, thrombotic complications, septic shock, brain damage, acute disseminated encephalomyelitis (ADEM), and acute neurological and psychiatric complications are unprecedented. Many COVID-19 deaths result from the aftermath of hyperinflammatory complications, also referred to as the "cytokine storm syndrome", endotheliitus and blood clotting, all with the potential to cause multiorgan dysfunction. The sphingolipid rheostat plays integral roles in viral replication, activation/modulation of the immune response, and importantly in maintaining vasculature integrity, with sphingosine 1 phosphate (S1P) and its cognate receptors (SIPRs: G-protein-coupled receptors) being key factors in vascular protection against endotheliitus. Hence, modulation of sphingosine kinase (SphK), S1P, and the S1P receptor pathway may provide significant beneficial effects towards counteracting the life-threatening, acute, and chronic complications associated with SARS-CoV-2 infection. This review provides a comprehensive overview of SARS-CoV-2 infection and disease, prospective vaccines, and current treatments. We then discuss the evidence supporting the targeting of SphK/S1P and S1P receptors in the repertoire of COVID-19 therapies to control viral replication and alleviate the known and emerging acute and chronic symptoms of COVID-19. Three clinical trials using FDA-approved sphingolipid-based drugs being repurposed and evaluated to help in alleviating COVID-19 symptoms are discussed.
Collapse
Affiliation(s)
- Eileen M McGowan
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, Guangdong Pharmaceutical University, Guangzhou 510080, China;
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia; (N.H.); (N.T.N.)
- Correspondence: ; Tel.: +61-405814048
| | - Nahal Haddadi
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia; (N.H.); (N.T.N.)
| | - Najah T. Nassif
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia; (N.H.); (N.T.N.)
| | - Yiguang Lin
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, Guangdong Pharmaceutical University, Guangzhou 510080, China;
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia; (N.H.); (N.T.N.)
| |
Collapse
|
22
|
Jakobi K, Beyer S, Koch A, Thomas D, Schwalm S, Zeuzem S, Pfeilschifter J, Grammatikos G. Sorafenib Treatment and Modulation of the Sphingolipid Pathway Affect Proliferation and Viability of Hepatocellular Carcinoma In Vitro. Int J Mol Sci 2020; 21:ijms21072409. [PMID: 32244391 PMCID: PMC7177910 DOI: 10.3390/ijms21072409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) shows a remarkable heterogeneity and is recognized as a chemoresistant tumor with dismal prognosis. In previous studies, we observed significant alterations in the serum sphingolipids of patients with HCC. This study aimed to investigate the in vitro effects of sorafenib, which is the most widely used systemic HCC medication, on the sphingolipid pathway as well as the effects of inhibiting the sphingolipid pathway in HCC. Huh7.5 and HepG2 cells were stimulated with sorafenib, and inhibitors of the sphingolipid pathway and cell proliferation, viability, and concentrations of bioactive metabolites were assessed. We observed a significant downregulation of cell proliferation and viability and a simultaneous upregulation of dihydroceramides upon sorafenib stimulation. Interestingly, fumonisin B1 (FB1) and the general sphingosine kinase inhibitor SKI II were able to inhibit cell proliferation more prominently in HepG2 and Huh7.5 cells, whereas there were no consistent effects on the formation of dihydroceramides, thus implying an involvement of distinct metabolic pathways. In conclusion, our study demonstrates a significant downregulation of HCC proliferation upon sorafenib, FB1, and SKI II treatment, whereas it seems they exert antiproliferative effects independently from sphingolipids. Certainly, further data would be required to elucidate the potential of FB1 and SKI II as putative novel therapeutic targets in HCC.
Collapse
Affiliation(s)
- Katja Jakobi
- Medizinische Klinik 1, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (K.J.); (S.Z.)
- Institut für Allgemeine Pharmakologie und Toxikologie, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (S.B.); (A.K.); (S.S.); (J.P.)
| | - Sandra Beyer
- Institut für Allgemeine Pharmakologie und Toxikologie, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (S.B.); (A.K.); (S.S.); (J.P.)
| | - Alexander Koch
- Institut für Allgemeine Pharmakologie und Toxikologie, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (S.B.); (A.K.); (S.S.); (J.P.)
| | - Dominique Thomas
- Institut für Klinische Pharmakologie und Toxikologie, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany;
| | - Stephanie Schwalm
- Institut für Allgemeine Pharmakologie und Toxikologie, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (S.B.); (A.K.); (S.S.); (J.P.)
| | - Stefan Zeuzem
- Medizinische Klinik 1, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (K.J.); (S.Z.)
| | - Josef Pfeilschifter
- Institut für Allgemeine Pharmakologie und Toxikologie, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (S.B.); (A.K.); (S.S.); (J.P.)
| | - Georgios Grammatikos
- Medizinische Klinik 1, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (K.J.); (S.Z.)
- Institut für Allgemeine Pharmakologie und Toxikologie, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (S.B.); (A.K.); (S.S.); (J.P.)
- St Luke’s Hospital, 55236 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-2316-014-910
| |
Collapse
|
23
|
Alshaker H, Thrower H, Pchejetski D. Sphingosine Kinase 1 in Breast Cancer-A New Molecular Marker and a Therapy Target. Front Oncol 2020; 10:289. [PMID: 32266132 PMCID: PMC7098968 DOI: 10.3389/fonc.2020.00289] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
It is now well-established that sphingosine kinase 1 (SK1) plays a significant role in breast cancer development, progression, and spread, whereas SK1 knockdown can reverse these processes. In breast cancer cells and tumors, SK1 was shown to interact with various pathways involved in cell survival and chemoresistance, such as nuclear factor-kappa B (NFκB), Notch, Ras/MAPK, PKC, and PI3K. SK1 is upregulated by estrogen signaling, which, in turn, confers cancer cells with resistance to tamoxifen. Sphingosine-1-phosphate (S1P) produced by SK1 has been linked to tumor invasion and metastasis. Both SK1 and S1P are closely linked to inflammation and adipokine signaling in breast cancer. In human tumors, high SK1 expression has been linked with poorer survival and prognosis. SK1 is upregulated in triple negative tumors and basal-like subtypes. It is often associated with high phosphorylation levels of ERK1/2, SFK, LYN, AKT, and NFκB. Higher tumor SK1 mRNA levels were correlated with poor response to chemotherapy. This review summarizes the up-to-date evidence and discusses the therapeutic potential for the SK1 inhibition in breast cancer, with emphasis on the mechanisms of chemoresistance and combination with other therapies such as gefitinib or docetaxel. We have outlined four key areas for future development, including tumor microenvironment, combination therapies, and nanomedicine. We conclude that SK1 may have a potential as a target for precision medicine, its high expression being a negative prognostic marker in ER-negative breast cancer, as well as a target for chemosensitization therapy.
Collapse
Affiliation(s)
- Heba Alshaker
- School of Medicine, University of East Anglia, Norwich, United Kingdom
| | - Hannah Thrower
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dmitri Pchejetski
- School of Medicine, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
24
|
Magli E, Corvino A, Fiorino F, Frecentese F, Perissutti E, Saccone I, Santagada V, Caliendo G, Severino B. Design of Sphingosine Kinases Inhibitors: Challenges and Recent Developments. Curr Pharm Des 2020; 25:956-968. [PMID: 30947653 DOI: 10.2174/1381612825666190404115424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/27/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Sphingosine kinases (SphKs) catalyze the phosphorylation of sphingosine to form the bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P). S1P is an important lipid mediator with a wide range of biological functions; it is also involved in a variety of diseases such as inflammatory diseases, Alzheimer's disease and cancer. METHODS This review reports the recent advancement in the research of SphKs inhibitors. Our purpose is also to provide a complete overview useful for underlining the features needed to select a specific pharmacological profile. DISCUSSION Two distinct mammalian SphK isoforms have been identified, SphK1 and SphK2. These isoforms are encoded by different genes and exhibit distinct subcellular localizations, biochemical properties and functions. SphK1 and SphK2 inhibition can be useful in different pathological conditions. CONCLUSION SphK1 and SphK2 have many common features but different and even opposite biological functions. For this reason, several research groups are interested in understanding the therapeutic usefulness of a selective or non-selective inhibitor of SphKs. Moreover, a compensatory mechanism for the two isoforms has been demonstrated, thus leading to the development of dual inhibitors.
Collapse
Affiliation(s)
- Elisa Magli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Angela Corvino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Ferdinando Fiorino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Elisa Perissutti
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Irene Saccone
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Vincenzo Santagada
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giuseppe Caliendo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Beatrice Severino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
25
|
Schneider G. S1P Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:129-153. [PMID: 32030688 DOI: 10.1007/978-3-030-35582-1_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sphingosine-1-phosphate (S1P), together with other phosphosphingolipids, has been found to regulate complex cellular function in the tumor microenvironment (TME) where it acts as a signaling molecule that participates in cell-cell communication. S1P, through intracellular and extracellular signaling, was found to promote tumor growth, angiogenesis, chemoresistance, and metastasis; it also regulates anticancer immune response, modulates inflammation, and promotes angiogenesis. Interestingly, cancer cells are capable of releasing S1P and thus modifying the behavior of the TME components in a way that contributes to tumor growth and progression. Therefore, S1P is considered an important therapeutic target, and several anticancer therapies targeting S1P signaling are being developed and tested in clinics.
Collapse
Affiliation(s)
- Gabriela Schneider
- James Graham Brown Cancer Center, Division of Medical Oncology & Hematology, Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
26
|
Druggable Sphingolipid Pathways: Experimental Models and Clinical Opportunities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:101-135. [PMID: 32894509 DOI: 10.1007/978-3-030-50621-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intensive research in the field of sphingolipids has revealed diverse roles in cell biological responses and human health and disease. This immense molecular family is primarily represented by the bioactive molecules ceramide, sphingosine, and sphingosine 1-phosphate (S1P). The flux of sphingolipid metabolism at both the subcellular and extracellular levels provides multiple opportunities for pharmacological intervention. The caveat is that perturbation of any single node of this highly regulated flux may have effects that propagate throughout the metabolic network in a dramatic and sometimes unexpected manner. Beginning with S1P, the receptors for which have thus far been the most clinically tractable pharmacological targets, this review will describe recent advances in therapeutic modulators targeting sphingolipids, their chaperones, transporters, and metabolic enzymes.
Collapse
|
27
|
Wang P, Yuan Y, Lin W, Zhong H, Xu K, Qi X. Roles of sphingosine-1-phosphate signaling in cancer. Cancer Cell Int 2019; 19:295. [PMID: 31807117 PMCID: PMC6857321 DOI: 10.1186/s12935-019-1014-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022] Open
Abstract
The potent pleiotropic lipid mediator sphingosine-1-phosphate (S1P) participates in numerous cellular processes, including angiogenesis and cell survival, proliferation, and migration. It is formed by one of two sphingosine kinases (SphKs), SphK1 and SphK2. These enzymes largely exert their various biological and pathophysiological actions through one of five G protein-coupled receptors (S1PR1–5), with receptor activation setting in motion various signaling cascades. Considerable evidence has been accumulated on S1P signaling and its pathogenic roles in diseases, as well as on novel modulators of S1P signaling, such as SphK inhibitors and S1P agonists and antagonists. S1P and ceramide, composed of sphingosine and a fatty acid, are reciprocal cell fate regulators, and S1P signaling plays essential roles in several diseases, including inflammation, cancer, and autoimmune disorders. Thus, targeting of S1P signaling may be one way to block the pathogenesis and may be a therapeutic target in these conditions. Increasingly strong evidence indicates a role for the S1P signaling pathway in the progression of cancer and its effects. In the present review, we discuss recent progress in our understanding of S1P and its related proteins in cancer progression. Also described is the therapeutic potential of S1P receptors and their downstream signaling cascades as targets for cancer treatment.
Collapse
Affiliation(s)
- Peng Wang
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Yonghui Yuan
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China.,2Research and Academic Department, Cancer Hospital of China Medical University Liaoning Cancer Hospital & Institute, Shenyang, 110042 Liaoning China
| | - Wenda Lin
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Hongshan Zhong
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Ke Xu
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Xun Qi
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| |
Collapse
|
28
|
Vettorazzi M, Insuasty D, Lima S, Gutiérrez L, Nogueras M, Marchal A, Abonia R, Andújar S, Spiegel S, Cobo J, Enriz RD. Design of new quinolin-2-one-pyrimidine hybrids as sphingosine kinases inhibitors. Bioorg Chem 2019; 94:103414. [PMID: 31757412 DOI: 10.1016/j.bioorg.2019.103414] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/27/2022]
Abstract
Sphingosine-1-phosphate is now emerging as an important player in cancer, inflammation, autoimmune, neurological and cardiovascular disorders. Abundance evidence in animal and humans cancer models has shown that SphK1 is linked to cancer. Thus, there is a great interest in the development new SphK1 inhibitors as a potential new treatment for cancer. In a search for new SphK1 inhibitors we selected the well-known SKI-II inhibitor as the starting structure and we synthesized a new inhibitor structurally related to SKI-II with a significant but moderate inhibitory effect. In a second approach, based on our molecular modeling results, we designed new structures based on the structure of PF-543, the most potent known SphK1 inhibitor. Using this approach, we report the design, synthesis and biological evaluation of a new series of compounds with inhibitory activity against both SphK1 and SphK2. These new inhibitors were obtained incorporating new connecting chains between their polar heads and hydrophobic tails. On the other hand, the combined techniques of molecular dynamics simulations and QTAIM calculations provided complete and detailed information about the molecular interactions that stabilize the different complexes of these new inhibitors with the active sites of the SphK1. This information will be useful in the design of new SphK inhibitors.
Collapse
Affiliation(s)
- Marcela Vettorazzi
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). Ejercito de los Andes 950, 5700 San Luis, Argentina
| | - Daniel Insuasty
- Departamento de Química y Biología, Universidad del Norte, Km 5 vía Puerto Colombia, Barranquilla 081007, Colombia; Inorganic and Organic Department, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Santiago Lima
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Lucas Gutiérrez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). Ejercito de los Andes 950, 5700 San Luis, Argentina
| | - Manuel Nogueras
- Inorganic and Organic Department, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Antonio Marchal
- Inorganic and Organic Department, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Rodrigo Abonia
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, A. A. 25360 Cali, Colombia
| | - Sebastián Andújar
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). Ejercito de los Andes 950, 5700 San Luis, Argentina
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Justo Cobo
- Inorganic and Organic Department, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain.
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). Ejercito de los Andes 950, 5700 San Luis, Argentina.
| |
Collapse
|
29
|
Grassi S, Mauri L, Prioni S, Cabitta L, Sonnino S, Prinetti A, Giussani P. Sphingosine 1-Phosphate Receptors and Metabolic Enzymes as Druggable Targets for Brain Diseases. Front Pharmacol 2019; 10:807. [PMID: 31427962 PMCID: PMC6689979 DOI: 10.3389/fphar.2019.00807] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
The central nervous system is characterized by a high content of sphingolipids and by a high diversity in terms of different structures. Stage- and cell-specific sphingolipid metabolism and expression are crucial for brain development and maintenance toward adult age. On the other hand, deep dysregulation of sphingolipid metabolism, leading to altered sphingolipid pattern, is associated with the majority of neurological and neurodegenerative diseases, even those totally lacking a common etiological background. Thus, sphingolipid metabolism has always been regarded as a promising pharmacological target for the treatment of brain disorders. However, any therapeutic hypothesis applied to complex amphipathic sphingolipids, components of cellular membranes, has so far failed probably because of the high regional complexity and specificity of the different biological roles of these structures. Simpler sphingosine-based lipids, including ceramide and sphingosine 1-phosphate, are important regulators of brain homeostasis, and, thanks to the relative simplicity of their metabolic network, they seem a feasible druggable target for the treatment of brain diseases. The enzymes involved in the control of the levels of bioactive sphingoids, as well as the receptors engaged by these molecules, have increasingly allured pharmacologists and clinicians, and eventually fingolimod, a functional antagonist of sphingosine 1-phosphate receptors with immunomodulatory properties, was approved for the therapy of relapsing-remitting multiple sclerosis. Considering the importance of neuroinflammation in many other brain diseases, we would expect an extension of the use of such analogs for the treatment of other ailments in the future. Nevertheless, many aspects other than neuroinflammation are regulated by bioactive sphingoids in healthy brain and dysregulated in brain disease. In this review, we are addressing the multifaceted possibility to address the metabolism and biology of bioactive sphingosine 1-phosphate as novel targets for the development of therapeutic paradigms and the discovery of new drugs.
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Livia Cabitta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
30
|
Alsayari A, Muhsinah AB, Hassan MZ, Ahsan MJ, Alshehri JA, Begum N. Aurone: A biologically attractive scaffold as anticancer agent. Eur J Med Chem 2019; 166:417-431. [PMID: 30739824 DOI: 10.1016/j.ejmech.2019.01.078] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
Abstract
Aurones are very simple, promising anticancer lead molecules containing three rings (A, B and C). A very slight structural variation in the aurones elicits diverse affinity and specificity towards different molecular targets. The present review discusses the design, discovery and development of natural and synthetic aurones as small molecule anticancer agents. Detailed structure-activity relationship and intermolecular interactions at different targets are also discussed. Due to their rare occurrence in nature and minimal mention in literature, the anticancer potential of aurones is rather recent but in constant progress.
Collapse
Affiliation(s)
| | | | | | | | | | - Naseem Begum
- College of Applied Medical Sciences, King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
31
|
Zheng X, Li W, Ren L, Liu J, Pang X, Chen X, Kang D, Wang J, Du G. The sphingosine kinase-1/sphingosine-1-phosphate axis in cancer: Potential target for anticancer therapy. Pharmacol Ther 2018; 195:85-99. [PMID: 30347210 DOI: 10.1016/j.pharmthera.2018.10.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sphingolipid metabolites, such as ceramide, sphingosine and sphingosine-1-phosphate (S1P), play many important roles in cellular activities. Ceramide and sphingosine inhibit cell proliferation and induce cell apoptosis while S1P has the opposite effect. Maintaining a metabolic balance of sphingolipids is essential for growth and development of cells. Sphingosine kinase (SPHK) is an important regulator for keeping this balance. It controls the level of S1P and plays important roles in proliferation, migration, and invasion of cancer cells and tumor angiogenesis. There are two isoenzymes of sphingosine kinase, SPHK1 and SPHK2. SPHK1 is ubiquitously expressed in most cancers where it promotes survival and proliferation, while SPHK2 is restricted to only certain tissues and its functions are not well characterized. SPHK1 is currently considered as a novel target for the treatment of cancers. Targeting SPHK1 would provide new strategies for cancer treatment and improve the prognosis of cancer patients. Here we review and summarize the current research findings on the SPHK1-S1P axis in cancer from many aspects including structure, expression, regulation, mechanism, and potential inhibitors.
Collapse
Affiliation(s)
- Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinyi Liu
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiaocong Pang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - De Kang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
32
|
Harrison PJ, Dunn T, Campopiano DJ. Sphingolipid biosynthesis in man and microbes. Nat Prod Rep 2018; 35:921-954. [PMID: 29863195 PMCID: PMC6148460 DOI: 10.1039/c8np00019k] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 12/20/2022]
Abstract
A new review covering up to 2018 Sphingolipids are essential molecules that, despite their long history, are still stimulating interest today. The reasons for this are that, as well as playing structural roles within cell membranes, they have also been shown to perform a myriad of cell signalling functions vital to the correct function of eukaryotic and prokaryotic organisms. Indeed, sphingolipid disregulation that alters the tightly-controlled balance of these key lipids has been closely linked to a number of diseases such as diabetes, asthma and various neuropathologies. Sphingolipid biogenesis, metabolism and regulation is mediated by a large number of enzymes, proteins and second messengers. There appears to be a core pathway common to all sphingolipid-producing organisms but recent studies have begun to dissect out important, species-specific differences. Many of these have only recently been discovered and in most cases the molecular and biochemical details are only beginning to emerge. Where there is a direct link from classic biochemistry to clinical symptoms, a number a drug companies have undertaken a medicinal chemistry campaign to try to deliver a therapeutic intervention to alleviate a number of diseases. Where appropriate, we highlight targets where natural products have been exploited as useful tools. Taking all these aspects into account this review covers the structural, mechanistic and regulatory features of sphingolipid biosynthetic and metabolic enzymes.
Collapse
Affiliation(s)
- Peter J. Harrison
- School of Chemistry
, University of Edinburgh
,
David Brewster Road
, Edinburgh
, EH9 3FJ
, UK
.
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology
, Uniformed Services University
,
Bethesda
, Maryland
20814
, USA
| | - Dominic J. Campopiano
- School of Chemistry
, University of Edinburgh
,
David Brewster Road
, Edinburgh
, EH9 3FJ
, UK
.
| |
Collapse
|
33
|
Barra G, Lepore A, Gagliardi M, Somma D, Matarazzo MR, Costabile F, Pasquale G, Mazzoni A, Gallo C, Nuzzo G, Annunziato F, Fontana A, Leonardi A, De Palma R. Sphingosine Kinases promote IL-17 expression in human T lymphocytes. Sci Rep 2018; 8:13233. [PMID: 30185808 PMCID: PMC6125344 DOI: 10.1038/s41598-018-31666-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 08/22/2018] [Indexed: 12/31/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) has a role in many cellular processes. S1P is involved in cell growth and apoptosis, regulation of cell trafficking, production of cytokines and chemokines. The kinases SphK1 and SphK2 (SphKs) phosphorilate Sphingosine (Sph) to S1P and several phosphatases revert S1P to sphingosine, thus assuring a balanced pool that can be depleted by a Sphingosine lyase in hexadecenal compounds and aldehydes. There are evidences that SphK1 and 2 may per se control cellular processes. Here, we report that Sph kinases regulate IL-17 expression in human T cells. SphKs inhibition impairs the production of IL-17, while their overexpression up-regulates expression of the cytokine through acetylation of IL-17 promoter. SphKs were up-regulated also in PBMCs of patients affected by IL-17 related diseases. Thus, S1P/S1P kinases axis is a mechanism likely to promote IL-17 expression in human T cells, representing a possible therapeutic target in human inflammatory diseases.
Collapse
Affiliation(s)
- Giusi Barra
- Department of Precision Medicine, Università della Campania "L. Vanvitelli", Napoli, Italy
| | - Alessio Lepore
- Univeristy of Naples "Federico II", Department of Molecular Medicine and Medical Biotechnology, Napoli, Italy
| | - Miriam Gagliardi
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Napoli, 80131, Italy
| | - Domenico Somma
- Univeristy of Naples "Federico II", Department of Molecular Medicine and Medical Biotechnology, Napoli, Italy
| | | | - Francesca Costabile
- Department of Precision Medicine, Università della Campania "L. Vanvitelli", Napoli, Italy
| | - Giuseppe Pasquale
- Department of Precision Medicine, Università della Campania "L. Vanvitelli", Napoli, Italy
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Carmela Gallo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Genoveffa Nuzzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Antonio Leonardi
- Univeristy of Naples "Federico II", Department of Molecular Medicine and Medical Biotechnology, Napoli, Italy
| | - Raffaele De Palma
- Department of Precision Medicine, Università della Campania "L. Vanvitelli", Napoli, Italy. .,Institute of Protein Biochemistry-CNR, via P. Castellino, 111, 80131, Napoli, Italy.
| |
Collapse
|
34
|
Alshaker H, Srivats S, Monteil D, Wang Q, Low CMR, Pchejetski D. Field template-based design and biological evaluation of new sphingosine kinase 1 inhibitors. Breast Cancer Res Treat 2018; 172:33-43. [PMID: 30043096 PMCID: PMC6208908 DOI: 10.1007/s10549-018-4900-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/19/2018] [Indexed: 11/29/2022]
Abstract
Purpose Sphingosine kinase 1 (SK1) is a protooncogenic enzyme expressed in many human tumours and is associated with chemoresistance and poor prognosis. It is a potent therapy target and its inhibition chemosensitises solid tumours. Despite recent advances in SK1 inhibitors synthesis and validation, their clinical safety and chemosensitising options are not well described. In this study, we have designed, synthesised and tested a new specific SK1 inhibitor with a low toxicity profile. Methods Field template molecular modelling was used for compound design. Lead compounds were tested in cell and mouse cancer models. Results Field template analysis of three known SK1 inhibitors, SKI-178, 12aa and SK1-I, was performed and compound screening identified six potential new SK1 inhibitors. SK1 activity assays in both cell-free and in vitro settings showed that two compounds were effective SK1 inhibitors. Compound SK-F has potently decreased cancer cell viability in vitro and sensitised mouse breast tumours to docetaxel (DTX) in vivo, without significant whole-body toxicity. Conclusion Through field template screening, we have identified a new SK1 inhibitor, SK-F, which demonstrated antitumour activity in vitro and in vivo without overt toxicity when combined with DTX. Electronic supplementary material The online version of this article (10.1007/s10549-018-4900-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heba Alshaker
- School of Medicine, University of East Anglia, 2.53 BCRE, Norwich Research Park, Norwich, NR47UQ, UK. .,Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
| | - Shyam Srivats
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Danielle Monteil
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Qi Wang
- School of Medicine, University of East Anglia, 2.53 BCRE, Norwich Research Park, Norwich, NR47UQ, UK
| | | | - Dmitri Pchejetski
- School of Medicine, University of East Anglia, 2.53 BCRE, Norwich Research Park, Norwich, NR47UQ, UK.
| |
Collapse
|
35
|
Trayssac M, Hannun YA, Obeid LM. Role of sphingolipids in senescence: implication in aging and age-related diseases. J Clin Invest 2018; 128:2702-2712. [PMID: 30108193 PMCID: PMC6025964 DOI: 10.1172/jci97949] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aging is defined as the progressive deterioration of physiological function with age. Incidence of many pathologies increases with age, including neurological and cardiovascular diseases and cancer. Aging tissues become less adaptable and renewable, and cells undergo senescence, a process by which they "irreversibly" stop dividing. Senescence has been shown to serve as a tumor suppression mechanism with clear desirable effects. However, senescence also has deleterious consequences, especially for cardiovascular, metabolic, and immune systems. Sphingolipids are a major class of lipids that regulate cell biology, owing to their structural and bioactive properties and diversity. Their involvement in the regulation of aging and senescence has been demonstrated and studied in multiple organisms and cell types, especially that of ceramide and sphingosine-1-phosphate; ceramide induces cellular senescence and sphingosine-1-phosphate delays it. These discoveries could be very useful in the future to understand aging mechanisms and improve therapeutic interventions.
Collapse
Affiliation(s)
- Magali Trayssac
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Yusuf A. Hannun
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Lina M. Obeid
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Northport Veterans Affairs Medical Center, Northport, New York, USA
| |
Collapse
|
36
|
Voelkel-Johnson C, Norris JS, White-Gilbertson S. Interdiction of Sphingolipid Metabolism Revisited: Focus on Prostate Cancer. Adv Cancer Res 2018; 140:265-293. [PMID: 30060812 PMCID: PMC6460930 DOI: 10.1016/bs.acr.2018.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingolipid metabolism is known to play a role in cell death, survival, and therapy resistance in cancer. Sphingolipids, particularly dihydroceramide and ceramide, are associated with antiproliferative or cell death responses, respectively, and are central to effective cancer therapy. Within the last decade, strides have been made in elucidating many intricacies of sphingolipid metabolism. New information has emerged on the mechanisms by which sphingolipid metabolism is dysregulated during malignancy and how cancer cells survive and/or escape therapeutic interventions. This chapter focuses on three main themes: (1) sphingolipid enzymes that are dysregulated in cancer, particularly in prostate cancer; (2) inhibitors of sphingolipid metabolism that antagonize prosurvival responses; and (3) sphingolipid-driven escape mechanisms that allow cancer cells to evade therapies. We explore clinical and preclinical approaches to interdict sphingolipid metabolism and provide a rationale for combining strategies to drive the generation of antiproliferative ceramides with prevention of ceramide clearance.
Collapse
Affiliation(s)
- Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - James S. Norris
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Shai White-Gilbertson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
37
|
Abstract
Sphingosine kinases (SK1 and SK2) are key, druggable targets within the sphingolipid metabolism pathway that promote tumor growth and pathologic inflammation. A variety of isozyme-selective and dual inhibitors of SK1 and SK2 have been described in the literature, and at least one compound has reached clinical testing in cancer patients. In this chapter, we will review the rationale for targeting SKs and summarize the preclinical and emerging clinical data for ABC294640 as the first-in-class selective inhibitor of SK2.
Collapse
|
38
|
Neubauer HA, Pham DH, Zebol JR, Moretti PAB, Peterson AL, Leclercq TM, Chan H, Powell JA, Pitman MR, Samuel MS, Bonder CS, Creek DJ, Gliddon BL, Pitson SM. An oncogenic role for sphingosine kinase 2. Oncotarget 2018; 7:64886-64899. [PMID: 27588496 PMCID: PMC5323123 DOI: 10.18632/oncotarget.11714] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/25/2016] [Indexed: 01/02/2023] Open
Abstract
While both human sphingosine kinases (SK1 and SK2) catalyze the generation of the pleiotropic signaling lipid sphingosine 1-phosphate, these enzymes appear to be functionally distinct. SK1 has well described roles in promoting cell survival, proliferation and neoplastic transformation. The roles of SK2, and its contribution to cancer, however, are much less clear. Some studies have suggested an anti-proliferative/pro-apoptotic function for SK2, while others indicate it has a pro-survival role and its inhibition can have anti-cancer effects. Our analysis of gene expression data revealed that SK2 is upregulated in many human cancers, but only to a small extent (up to 2.5-fold over normal tissue). Based on these findings, we examined the effect of different levels of cellular SK2 and showed that high-level overexpression reduced cell proliferation and survival, and increased cellular ceramide levels. In contrast, however, low-level SK2 overexpression promoted cell survival and proliferation, and induced neoplastic transformation in vivo. These findings coincided with decreased nuclear localization and increased plasma membrane localization of SK2, as well as increases in extracellular S1P formation. Hence, we have shown for the first time that SK2 can have a direct role in promoting oncogenesis, supporting the use of SK2-specific inhibitors as anti-cancer agents.
Collapse
Affiliation(s)
- Heidi A Neubauer
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Duyen H Pham
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Julia R Zebol
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Paul A B Moretti
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Amanda L Peterson
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria, Australia
| | - Tamara M Leclercq
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Huasheng Chan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jason A Powell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Melissa R Pitman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Darren J Creek
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria, Australia
| | - Briony L Gliddon
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
39
|
Cao M, Ji C, Zhou Y, Huang W, Ni W, Tong X, Wei JF. Sphingosine kinase inhibitors: A patent review. Int J Mol Med 2018; 41:2450-2460. [PMID: 29484372 DOI: 10.3892/ijmm.2018.3505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/30/2018] [Indexed: 11/05/2022] Open
Abstract
Sphingosine kinases (SphKs) catalyze the conversion of the sphingosine to the promitogenic/migratory product, sphingosine-1-phosphate (S1P). SphK/S1P pathway has been linked to the progression of cancer and various other diseases including allergic inflammatory disease, cardiovascular diseases, rejection after transplantation, the central nervous system, and virus infections. Therefore, SphKs represent potential new targets for developing novel therapeutics for these diseases. The history and development of SphK inhibitors are discussed, summarizing SphK inhibitors by their structures, and describing some applications of SphK inhibitors. We concluded: i) initial SphK inhibitors based on sphingosine have low specificity with several important off-targets. Identification the off-targets that would work synergistically with SphKs, and developing compounds that target the unique C4 domain of SphKs should be the focus of future studies. ii) The modifications of SphK inhibitors, which are devoted to increasing the selectivity to one of the two isoforms, now focus on the alkyl length, the spacer between the head and linker rings, and the insertion and the position of lipidic group in tail region. iii) SphK/S1P signaling pathway holds therapeutic values for many diseases. To find the exact function of each isoform of SphKs increasing the number of SphK inhibitor clinical trials is necessary.
Collapse
Affiliation(s)
- Mengda Cao
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Dongcheng, Beijing 100730, P.R. China
| | - Chunmei Ji
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yanjun Zhou
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Huang
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weiwei Ni
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xunliang Tong
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Dongcheng, Beijing 100730, P.R. China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
40
|
White C, Alshaker H, Cooper C, Winkler M, Pchejetski D. The emerging role of FTY720 (Fingolimod) in cancer treatment. Oncotarget 2018; 7:23106-27. [PMID: 27036015 PMCID: PMC5029614 DOI: 10.18632/oncotarget.7145] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
FTY720 (Fingolimod) is a clinically approved immunomodulating therapy for multiple sclerosis that sequesters T-cells to lymph nodes through functional antagonism of sphingosine-1-phosphate 1 receptor. FTY720 also demonstrates a proven efficacy in multiple in vitro and in vivo cancer models, suggesting a potential therapeutic role in cancer patients. A potential anticancer mechanism of FTY720 is through the inhibition of sphingosine kinase 1, a proto-oncogene with in vitro and clinical cancer association. In addition, FTY720's anticancer properties may be attributable to actions on several other molecular targets. This study focuses on reviewing the emerging evidence regarding the anticancer properties and molecular targets of FTY720. While the clinical transition of FTY720 is currently limited by its immune suppression effects, studies aiming at FTY720 delivery and release together with identifying its key synergetic combinations and relevant patient subsets may lead to its rapid introduction into the clinic.
Collapse
Affiliation(s)
| | - Heba Alshaker
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.,School of Medicine, University of East Anglia, Norwich, UK
| | - Colin Cooper
- School of Medicine, University of East Anglia, Norwich, UK
| | - Matthias Winkler
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | |
Collapse
|
41
|
Sysol JR, Chen J, Singla S, Zhao S, Comhair S, Natarajan V, Machado RF. Micro-RNA-1 is decreased by hypoxia and contributes to the development of pulmonary vascular remodeling via regulation of sphingosine kinase 1. Am J Physiol Lung Cell Mol Physiol 2017; 314:L461-L472. [PMID: 29167124 DOI: 10.1152/ajplung.00057.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Sphingosine kinase 1 (SphK1) upregulation is associated with pathologic pulmonary vascular remodeling in pulmonary arterial hypertension (PAH), but the mechanisms controlling its expression are undefined. In this study, we sought to characterize the regulation of SphK1 expression by micro-RNAs (miRs). In silico analysis of the SphK1 3'-untranslated region identified several putative miR binding sites, with miR-1-3p (miR-1) being the most highly predicted target. Therefore we further investigated the role of miR-1 in modulating SphK1 expression and characterized its effects on the phenotype of pulmonary artery smooth muscle cells (PASMCs) and the development of experimental pulmonary hypertension in vivo. Our results demonstrate that miR-1 is downregulated by hypoxia in PASMCs and can directly inhibit SphK1 expression. Overexpression of miR-1 in human PASMCs inhibits basal and hypoxia-induced proliferation and migration. Human PASMCs isolated from PAH patients exhibit reduced miR-1 expression. We also demonstrate that miR-1 is downregulated in mouse lung tissues during experimental hypoxia-mediated pulmonary hypertension (HPH), consistent with upregulation of SphK1. Furthermore, administration of miR-1 mimics in vivo prevented the development of HPH in mice and attenuated induction of SphK1 in PASMCs. These data reveal the importance of miR-1 in regulating SphK1 expression during hypoxia in PASMCs. A pivotal role is played by miR-1 in pulmonary vascular remodeling, including PASMC proliferation and migration, and its overexpression protects from the development of HPH in vivo. These studies improve our understanding of the molecular mechanisms underlying the pathogenesis of pulmonary hypertension.
Collapse
Affiliation(s)
- Justin R Sysol
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois.,Department of Pharmacology, University of Illinois at Chicago , Chicago, Illinois.,Medical Scientist Training Program, University of Illinois at Chicago , Chicago, Illinois
| | - Jiwang Chen
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Sunit Singla
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Shuangping Zhao
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | | | - Viswanathan Natarajan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois.,Department of Pharmacology, University of Illinois at Chicago , Chicago, Illinois
| | - Roberto F Machado
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University , Indianapolis, Indiana
| |
Collapse
|
42
|
Bao Y, Guo Y, Zhang C, Fan F, Yang W. Sphingosine Kinase 1 and Sphingosine-1-Phosphate Signaling in Colorectal Cancer. Int J Mol Sci 2017; 18:ijms18102109. [PMID: 28991193 PMCID: PMC5666791 DOI: 10.3390/ijms18102109] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/23/2017] [Accepted: 09/30/2017] [Indexed: 12/15/2022] Open
Abstract
Sphingosine kinase 1 (Sphk1) is a highly conserved lipid kinase that phosphorylates sphingosine to form sphingosine-1-phosphate (S1P). Growing studies have demonstrated that Sphk1 is overexpressed in various types of solid cancers and can be induced by growth factors, cytokines, and carcinogens, leading to the increase of S1P production. Subsequently, the increased Sphk1/S1P facilitates cancer cell proliferation, mobility, angiogenesis, invasion, and metastasis. Therefore, Sphk1/S1P signaling plays oncogenic roles. This review summarizes the features of Sphk1/S1P signaling and their functions in colorectal cancer cell growth, tumorigenesis, and metastasis, as well as the possible underlying mechanisms.
Collapse
Affiliation(s)
- Yonghua Bao
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China.
| | - Yongchen Guo
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China.
| | - Chenglan Zhang
- Department of Nursing, Health Professional College of Heilongjiang Province, Beian 164000, China.
| | - Fenghua Fan
- Department of Nursing, Health Professional College of Heilongjiang Province, Beian 164000, China.
| | - Wancai Yang
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China.
- Department of Pathology, University of Illinois at Chicago, Chicago 60612, IL, USA.
| |
Collapse
|
43
|
Dai L, Bai A, Smith CD, Rodriguez PC, Yu F, Qin Z. ABC294640, A Novel Sphingosine Kinase 2 Inhibitor, Induces Oncogenic Virus-Infected Cell Autophagic Death and Represses Tumor Growth. Mol Cancer Ther 2017; 16:2724-2734. [PMID: 28939554 DOI: 10.1158/1535-7163.mct-17-0485] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/13/2017] [Accepted: 09/11/2017] [Indexed: 01/07/2023]
Abstract
Kaposi sarcoma-associated herpes virus (KSHV) is the etiologic agent of several malignancies, including Kaposi sarcoma and primary effusion lymphoma (PEL), which preferentially arise in HIV+ patients and lack effective treatment. Sphingosine kinase 2 (SphK2) is a key factor within sphingolipid metabolism, responsible for the conversion of proapoptotic ceramides to antiapoptotic sphingosine-1-phosphate (S1P). We have previously demonstrated that targeting SphK2 using a novel selective inhibitor, ABC294640, leads to the accumulation of intracellular ceramides and induces apoptosis in KSHV-infected primary endothelial cells and PEL tumor cells but not in uninfected cells. In this study, we found that ABC294640 induces autophagic death instead of apoptosis in a KSHV long-term-infected immortalized endothelial cell-line, TIVE-LTC, but not in uninfected TIVE cells, through the upregulation of LC3B protein. Transcriptomic analysis indicates that many genes related to cellular stress responses, cell cycle/proliferation, and cellular metabolic process are altered in TIVE-LTC exposed to ABC294640. One of the candidates, Egr-1, was found to directly regulate LC3B expression and was required for the ABC294640-induced autophagic death. By using a Kaposi sarcoma-like nude mice model with TIVE-LTC, we found that ABC294640 treatment significantly suppressed KSHV-induced tumor growth in vivo, which indicates that targeting sphingolipid metabolism, especially SphK2, may represent a promising therapeutic strategy against KSHV-related malignancies. Mol Cancer Ther; 16(12); 2724-34. ©2017 AACR.
Collapse
Affiliation(s)
- Lu Dai
- Department of Pediatrics, Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Genetics, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, Louisiana
| | - Aiping Bai
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Charles D Smith
- Apogee Biotechnology Corporation, Hershey Center for Applied Research, Hummelstown, Pennsylvania
| | | | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Zhiqiang Qin
- Department of Pediatrics, Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai, China. .,Department of Genetics, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, Louisiana
| |
Collapse
|
44
|
Grbčić P, Tomljanović I, Klobučar M, Kraljević Pavelić S, Lučin K, Sedić M. Dual sphingosine kinase inhibitor SKI-II enhances sensitivity to 5-fluorouracil in hepatocellular carcinoma cells via suppression of osteopontin and FAK/IGF-1R signalling. Biochem Biophys Res Commun 2017; 487:782-788. [DOI: 10.1016/j.bbrc.2017.04.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 12/23/2022]
|
45
|
Targeting sphingosine-1-phosphate signaling for cancer therapy. SCIENCE CHINA-LIFE SCIENCES 2017. [DOI: 10.1007/s11427-017-9046-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
46
|
Britten CD, Garrett-Mayer E, Chin SH, Shirai K, Ogretmen B, Bentz TA, Brisendine A, Anderton K, Cusack SL, Maines LW, Zhuang Y, Smith CD, Thomas MB. A Phase I Study of ABC294640, a First-in-Class Sphingosine Kinase-2 Inhibitor, in Patients with Advanced Solid Tumors. Clin Cancer Res 2017; 23:4642-4650. [PMID: 28420720 DOI: 10.1158/1078-0432.ccr-16-2363] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/11/2016] [Accepted: 04/11/2017] [Indexed: 01/17/2023]
Abstract
Purpose: Sphingosine kinases (SK1 and SK2) regulate tumor growth by generating the mitogenic and proinflammatory lipid sphingosine 1-phosphate (S1P). This phase I study investigated the safety, pharmacokinetics, pharmacodynamics, and antitumor activity of ABC294640, a first-in-class orally available inhibitor of SK2.Experimental Design: Escalating doses of ABC294640 were administered orally to patients with advanced solid tumors in sequential cohorts at the following dose levels: 250 mg qd, 250 mg bid, 500 mg bid, and 750 mg bid, continuously in cycles of 28 days. Serial blood samples were obtained to measure ABC294640 concentrations and sphingolipid profiles.Results: Twenty-two patients were enrolled, and 21 received ABC294640. The most common drug-related toxicities were nausea, vomiting, and fatigue. Among the 4 patients at 750 mg bid, one had dose-limiting grade 3 nausea and vomiting, and 2 were unable to complete cycle 1 due to diverse drug-related toxicities. The 500 mg bid dose level was established as the recommended phase II dose. ABC294640 administration resulted in decreases in S1P levels over the first 12 hours, with return to baseline at 24 hours. The best response was a partial response in a patient with cholangiocarcinoma at 250 mg qd, and stable disease was observed in 6 patients with various solid tumors across dose levels.Conclusions: At 500 mg bid, ABC294640 is well tolerated and achieves biologically relevant plasma concentrations. Changes in plasma sphingolipid levels may provide a useful pharmacodynamic biomarker for ABC294640. Clin Cancer Res; 23(16); 4642-50. ©2017 AACR.
Collapse
Affiliation(s)
- Carolyn D Britten
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Elizabeth Garrett-Mayer
- Department of Population Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Steven H Chin
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Keisuke Shirai
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Tricia A Bentz
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Alan Brisendine
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Kate Anderton
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Susan L Cusack
- Apogee Biotechnology Corporation, Hummelstown, Pennsylvania
| | - Lynn W Maines
- Apogee Biotechnology Corporation, Hummelstown, Pennsylvania
| | - Yan Zhuang
- Apogee Biotechnology Corporation, Hummelstown, Pennsylvania
| | - Charles D Smith
- Apogee Biotechnology Corporation, Hummelstown, Pennsylvania.
| | - Melanie B Thomas
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
47
|
Hosseini Y, Soltanian-Zadeh S, Srinivasaraghavan V, Agah M. A Silicon-Based Porous Thin Membrane as a Cancer Cell Transmigration Assay. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS 2017; 26:308-316. [DOI: 10.1109/jmems.2016.2618774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
48
|
Almejún MB, Borge M, Colado A, Elías EE, Podaza E, Risnik D, De Brasi CD, Stanganelli C, Slavutsky I, Cabrejo M, Fernández-Grecco H, Bezares RF, Cranco S, Burgos RÁ, Sánchez-Ávalos JC, Oppezzo P, Giordano M, Gamberale R. Sphingosine kinase 1 participates in the activation, proliferation and survival of chronic lymphocytic leukemia cells. Haematologica 2017; 102:e257-e260. [PMID: 28360148 DOI: 10.3324/haematol.2017.167353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- María Belén Almejún
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Mercedes Borge
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Ana Colado
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| | - Esteban Enrique Elías
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| | - Enrique Podaza
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| | - Denise Risnik
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| | - Carlos Daniel De Brasi
- Laboratorio de Genética Molecular de la Hemofilia, IMEX-CONICET-ANM, Buenos Aires, Argentina
| | - Carmen Stanganelli
- División Patología Molecular, Instituto de Investigaciones Hematológicas "Mariano R. Castex", Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Irma Slavutsky
- Laboratorio de Genética de Neoplasias Linfoides, IMEX-CONICET-ANM, Buenos Aires, Argentina
| | - María Cabrejo
- Sanatorio Municipal Dr. Julio Méndez, Buenos Aires, Argentina
| | | | | | | | | | | | - Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Mirta Giordano
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Romina Gamberale
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Buenos Aires, Argentina .,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| |
Collapse
|
49
|
Chew WS, Wang W, Herr DR. To fingolimod and beyond: The rich pipeline of drug candidates that target S1P signaling. Pharmacol Res 2016; 113:521-532. [DOI: 10.1016/j.phrs.2016.09.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 01/28/2023]
|
50
|
Yaghobian D, Don AS, Yaghobian S, Chen X, Pollock CA, Saad S. Increased sphingosine 1-phosphate mediates inflammation and fibrosis in tubular injury in diabetic nephropathy. Clin Exp Pharmacol Physiol 2016; 43:56-66. [PMID: 26414003 DOI: 10.1111/1440-1681.12494] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/31/2015] [Accepted: 09/20/2015] [Indexed: 01/03/2023]
Abstract
Hyperglycemia induces all isoforms of transforming growth factor β (TGFβ), which in turn play key roles in inflammation and fibrosis that characterize diabetic nephropathy. Sphingosine 1-phosphate (S1P) is a signaling sphingolipid, derived from sphingosine by the action of sphingosine kinase (SK). S1P mediates many biological processes, which mimic TGFβ signaling. To determine the role of SK1 and S1P in inducing fibrosis and inflammation, and the interaction with TGFβ-1, 2 and 3 signalling in diabetic nephropathy, human proximal tubular cells (HK2 cells) were exposed to normal (5 mmol/L) or high (30 mmol/L) glucose or TGFβ-1, -2, -3 ± an SK inhibitor (SKI-II) or SK1 siRNA. Control and diabetic wild type (WT) and SK1(-/-) mice were studied. Fibrotic and inflammatory markers, and relevant downstream signalling pathways were assessed. SK1 mRNA and protein expression was increased in HK2 cells exposed to high glucose or TGFβ1,-2,-3. All TGFβ isoforms induced fibronectin, collagen IV and macrophage chemoattractant protein 1 (MCP1), which were reversed by both SKI-II and SK1 siRNA. Exposure to S1P increased phospho-p44/42 expression, AP-1 binding and NFkB phosphorylation. WT diabetic mice exhibited increased renal cortical S1P, fibronectin, collagen IV and MCP1 mRNA and protein expression compared to SK1(-/-) diabetic mice. In summary, this study demonstrates that inhibiting the formation of S1P reduces tubulointerstitial renal inflammation and fibrosis in diabetic nephropathy.
Collapse
Affiliation(s)
- Dania Yaghobian
- Department of Medicine, Kolling Institute of Medical Research, University of Sydney, St. Leonards, New South Wales, Australia
| | - Anthony S Don
- Department of Medicine, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Sarina Yaghobian
- Department of Medicine, Kolling Institute of Medical Research, University of Sydney, St. Leonards, New South Wales, Australia
| | - Xinming Chen
- Department of Medicine, Kolling Institute of Medical Research, University of Sydney, St. Leonards, New South Wales, Australia
| | - Carol A Pollock
- Department of Medicine, Kolling Institute of Medical Research, University of Sydney, St. Leonards, New South Wales, Australia
| | - Sonia Saad
- Department of Medicine, Kolling Institute of Medical Research, University of Sydney, St. Leonards, New South Wales, Australia
| |
Collapse
|