1
|
Liu J, Deng L, Yao B, Zhang Y, Huang J, Huang S, Liang C, Shen Y, Wang X. Carboxylesterase 2A gene knockout or enzyme inhibition alleviates steatohepatitis in rats by regulating PPARγ and endoplasmic reticulum stress. Free Radic Biol Med 2025; 232:279-291. [PMID: 40089078 DOI: 10.1016/j.freeradbiomed.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 03/17/2025]
Abstract
Metabolic dysfunction associated steatotic liver disease (MASLD) is a widespread liver disease that progresses from simple steatosis to severe steatohepatitis stage. Despite the recognized importance of carboxylesterase 2 (CES2) in hepatic lipid metabolism, the role of CES2 in hepatic inflammation remains unclear. The rat genome encodes six Ces2 genes and Ces2a shows high expression in the liver and intestine. Lipid metabolism, inflammation, fibrosis, and endoplasmic reticulum (ER) stress were investigated in Ces2a knockout (KO) rats. KO rats showed spontaneous liver lipid accumulation due to increased lipogenesis and reduced fatty acid oxidation. Non-targeted lipidomic analysis revealed enhanced lysophosphatidylcholines (LPCs) and phosphatidylcholines (PCs) in KO rats and increased concentrations of ligands, thus activating the expression of PPARγ. Although there was simple lipid accumulation in the liver of KO rats, Ces2a deficiency showed a significant protective effect against LPS and diet-induced hepatic steatohepatitis by inhibiting ER stress regulated by PPARγ activation. In line with this, treatment with tanshinone IIA, a CES2 inhibitor, significantly alleviated the progression of steatohepatitis induced by the MCD diet. In conclusion, the increased PPARγ expression in Ces2a deficiency may counteract liver inflammation and ER stress despite the presence of simple steatosis. Therefore, CES2 inhibition represents a potential therapeutic approach for steatohepatitis.
Collapse
Affiliation(s)
- Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Luyao Deng
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Junze Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Chenmeizi Liang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yifei Shen
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
2
|
Zhang B, Sun C, Zhu Y, Qin H, Kong D, Zhang J, Shao B, Li X, Ren S, Wang H, Hao J, Wang H. Upregulation of TCPTP in Macrophages Is Involved in IL-35 Mediated Attenuation of Experimental Colitis. Mediators Inflamm 2024; 2024:3282679. [PMID: 38962170 PMCID: PMC11221972 DOI: 10.1155/2024/3282679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 04/11/2024] [Accepted: 06/01/2024] [Indexed: 07/05/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic intestinal inflammatory disease with complex etiology. Interleukin-35 (IL-35), as a cytokine with immunomodulatory function, has been shown to have therapeutic effects on UC, but its mechanism is not yet clear. Therefore, we constructed Pichia pastoris stably expressing IL-35 which enables the cytokines to reach the diseased mucosa, and explored whether upregulation of T-cell protein tyrosine phosphatase (TCPTP) in macrophages is involved in the mechanisms of IL-35-mediated attenuation of UC. After the successful construction of engineered bacteria expressing IL-35, a colitis model was successfully induced by giving BALB/c mice a solution containing 3% dextran sulfate sodium (DSS). Mice were treated with Pichia/IL-35, empty plasmid-transformed Pichia (Pichia/0), or PBS by gavage, respectively. The expression of TCPTP in macrophages (RAW264.7, BMDMs) and intestinal tissues after IL-35 treatment was detected. After administration of Pichia/IL-35, the mice showed significant improvement in weight loss, bloody stools, and shortened colon. Colon pathology also showed that the inflammatory condition of mice in the Pichia/IL-35 treatment group was alleviated. Notably, Pichia/IL-35 treatment not only increases local M2 macrophages but also decreases the expression of inflammatory cytokine IL-6 in the colon. With Pichia/IL-35 treatment, the proportion of M1 macrophages, Th17, and Th1 cells in mouse MLNs were markedly decreased, while Tregs were significantly increased. In vitro experiments, IL-35 significantly promoted the expression of TCPTP in macrophages stimulated with LPS. Similarly, the mice in the Pichia/IL-35 group also expressed more TCPTP than that of the untreated group and the Pichia/0 group.
Collapse
Affiliation(s)
- Baoren Zhang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Chenglu Sun
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Yanglin Zhu
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Hong Qin
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Dejun Kong
- School of MedicineNankai University, Tianjin, China
| | - Jingyi Zhang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Bo Shao
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Xiang Li
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Shaohua Ren
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Hongda Wang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Jingpeng Hao
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
- Department of Anorectal SurgeryTianjin Medical University Second Hospital, Tianjin, China
| | - Hao Wang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China
| |
Collapse
|
3
|
Shnayder NA, Ashkhotov AV, Trefilova VV, Nurgaliev ZA, Novitsky MA, Petrova MM, Narodova EA, Al-Zamil M, Chumakova GA, Garganeeva NP, Nasyrova RF. Molecular Basic of Pharmacotherapy of Cytokine Imbalance as a Component of Intervertebral Disc Degeneration Treatment. Int J Mol Sci 2023; 24:ijms24097692. [PMID: 37175399 PMCID: PMC10178334 DOI: 10.3390/ijms24097692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Intervertebral disc degeneration (IDD) and associated conditions are an important problem in modern medicine. The onset of IDD may be in childhood and adolescence in patients with a genetic predisposition. With age, IDD progresses, leading to spondylosis, spondylarthrosis, herniated disc, spinal canal stenosis. One of the leading mechanisms in the development of IDD and chronic back pain is an imbalance between pro-inflammatory and anti-inflammatory cytokines. However, classical therapeutic strategies for correcting cytokine imbalance in IDD do not give the expected response in more than half of the cases. The purpose of this review is to update knowledge about new and promising therapeutic strategies based on the correction of the molecular mechanisms of cytokine imbalance in patients with IDD. This review demonstrates that knowledge of the molecular mechanisms of the imbalance between pro-inflammatory and anti-inflammatory cytokines may be a new key to finding more effective drugs for the treatment of IDD in the setting of acute and chronic inflammation.
Collapse
Affiliation(s)
- Natalia A Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Azamat V Ashkhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Vera V Trefilova
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Zaitun A Nurgaliev
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Maxim A Novitsky
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Marina M Petrova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Ekaterina A Narodova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Galina A Chumakova
- Department of Therapy and General Medical Practice with a Course of Postgraduate Professional Education, Altai State Medical University, 656038 Barnaul, Russia
| | - Natalia P Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Regina F Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
4
|
Chen H, Tan H, Wan J, Zeng Y, Wang J, Wang H, Lu X. PPAR-γ signaling in nonalcoholic fatty liver disease: Pathogenesis and therapeutic targets. Pharmacol Ther 2023; 245:108391. [PMID: 36963510 DOI: 10.1016/j.pharmthera.2023.108391] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), currently the leading cause of global chronic liver disease, has emerged as a major public health problem, more efficient therapeutics of which are thus urgently needed. Peroxisome proliferator-activated receptor γ (PPAR-γ), ligand-activated transcription factors of the nuclear hormone receptor superfamily, is considered a crucial metabolic regulator of hepatic lipid metabolism and inflammation. The role of PPAR-γ in the pathogenesis of NAFLD is gradually being recognized. Here, we outline the involvement of PPAR-γ in the pathogenesis of NAFLD through adipogenesis, insulin resistance, inflammation, oxidative stress, endoplasmic reticulum stress, and fibrosis. In addition, the evidence for PPAR-γ- targeted therapy for NAFLD are summarized. Altogether, PPAR-γ is a promising therapeutic target for NAFLD, and the development of drugs that can balance the beneficial and undesirable effects of PPAR-γ will bring new light to NAFLD patients.
Collapse
Affiliation(s)
- Hao Chen
- Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Huabing Tan
- Department of Infectious Diseases, Liver Disease Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Juan Wan
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine / West China School of Nursing, Sichuan University, Chengdu, China
| | - Yong Zeng
- Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jincheng Wang
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haichuan Wang
- Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA.
| | - Xiaojie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Yousaf H, Khan MIU, Ali I, Munir MU, Lee KY. Emerging role of macrophages in non-infectious diseases: An update. Biomed Pharmacother 2023; 161:114426. [PMID: 36822022 DOI: 10.1016/j.biopha.2023.114426] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
In the past three decades, a huge body of evidence through various research studies conducted on animal models, has demonstrated that the macrophages are centralized of all the leukocytes involved in diseases and, particularly, their role in non-infectious diseases has been studied extensively for which they have also been referred to as the "double-edged swords". The most versatile of all immunocytes, macrophages play a key role in health and diseases. Various experimental models have demonstrated the conventional paradigms such as the M1/M2 dichotomy, which is not as obvious and presents a complex characterization of the macrophages in the disease immunology. In human diseases, this M1-M2 continuum shows a complex web of mechanisms, which are majorly divided into the pro-inflammatory roles (derived mainly by the cytokines: IL-1, IL-6, IL-12, IL-23, and tumor necrosis factor) and anti-inflammatory roles (CCl-17, CCl-22, CCL-2, transforming growth factor (TGF), and interleukin-10), which are involved in the wound healing and pathogen-suppression. The conventional division of these macrophages as M1 and M2 is derived from the opposing functions of these macrophages; where M1 is involved in the tissue damage and pro-inflammatory roles and M2 promotes cell proliferation and the resolution of inflammation. Both these pathways down-regulate each other in diseases through a plethora of enzymatic and cytokine mediators.
Collapse
Affiliation(s)
- Hassan Yousaf
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Lahore, Pakistan
| | - Malik Ihsan Ullah Khan
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Lahore, Pakistan.
| | - Iftikhar Ali
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka, Aljouf 72388, Saudi Arabia
| | - Ka Yiu Lee
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Ostersund, Sweden.
| |
Collapse
|
6
|
Sakat MS, Kılıç K, Sahin A, Kiziltunc Ozmen H, Yıldırım S, Egilmez E. The Protective Efficacy of Hesperidin and Thymol on Radiation-Induced Submandibular Gland Damage. Laryngoscope 2022. [PMID: 36149936 DOI: 10.1002/lary.30405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The purpose of this study was to employ biochemical, histopathological, and immunohistochemical methods to reveal the effectiveness of hesperidin and thymol in preventing radiotherapy-associated submandibular gland injury. METHODS A total of 48 female Sprague Dawley rats were randomly assigned into six groups of eight animals each. Group 1 represented the control group. Group 2 was regarded as hesperidin Group, and the rats received only hesperidin. Group 3 was regarded as thymol Group, and the rats received only thymol. Group 4 was regarded as a Radiotherapy Group, and the rats were exposed to radiotherapy at a dose of 15 Gy. Group 5 was regarded as hesperidin + Radiotherapy Group, and rats received hesperidin at a dose of 100 mg/kg daily for 1 week prior to radiotherapy exposition. Group 6 was regarded as thymol + Radiotherapy Group, and rats received thymol at a dose of 100 mg/kg daily for 1 week prior to radiotherapy exposition. Rats were sacrificed after radiotherapy and submandibular glands were dissected for biochemical and immunohistochemical evaluations. RESULTS We have shown that, thanks to their strong antioxidant and anti-inflammatory properties, hesperidin and thymol minimize the damage caused by radiation toxicity by decreasing oxidant levels and increasing antioxidant enzyme levels in the submandibular gland. We found that thymol showed more protective activity than hesperidin in terms of effectiveness on radiation toxicity. CONCLUSION Hesperidin and thymol exhibit histopathological, immunochemical, and biochemical protection against radiation-related submandibular gland injury. To our knowledge, this is the first study in the literature in this field. LEVEL OF EVIDENCE NA Laryngoscope, 2022.
Collapse
Affiliation(s)
- Muhammed Sedat Sakat
- Department of Otorhinolaryngology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Korhan Kılıç
- Department of Otorhinolaryngology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Abdulkadir Sahin
- Department of Otorhinolaryngology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Hilal Kiziltunc Ozmen
- Department of Radiation Oncology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary, Ataturk University, Erzurum, Turkey
| | - Esra Egilmez
- Department of Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
7
|
Nunes VRT, Vidigal PVT, Pereira MT, Ladeira LCD, Caliari MV, Oliveira FMS, Cesar ALA, Faraco AAG, Barbuto RC, Duval-Araujo I. Evaluation of mesalazine polymeric conjugate in the treatment of actinic proctitis in rats. Acta Cir Bras 2021; 36:e360805. [PMID: 34644773 PMCID: PMC8516428 DOI: 10.1590/acb360805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/24/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose: The present study aimed at testing a new formulation of mesalazine linked to
chondroitin sulfate and its components alone in the treatment of actinic
proctitis in rats. Methods: Forty-seven female Wistar rats were submitted to pelvic radiation and divided
into eight groups: control A, mesalazine A, chondroitin A, and conjugate A,
gavage of the according substance two weeks after irradiation and sacrifice
three weeks after oral treatment; control C, mesalazine C, chondroitin C,
and conjugate C, sacrifice six weeks after oral treatment. The rectum was
submitted to histological characterization for each of the findings:
inflammatory infiltrate, epithelial degeneration, mucosal necrosis, and
fibrosis. Results: The inflammatory infiltrate was more intense in chondroitin A, mesalazine A,
and conjugate C. The collagen deposition was less intense in chondroitin A,
and mesalazine A, and more intense in control C. Conclusions: Mesalazine and chondroitin alone were efficacious in inducing a delayed
inflammatory response, hence reducing the late fibrosis. The conjugate was
able to induce an ever more delayed inflammatory response.
Collapse
|
8
|
Mekkawy MH, Fahmy HA, Nada AS, Ali OS. Study of the Radiosensitizing and Radioprotective Efficacy of Bromelain (a Pineapple Extract): In Vitro and In Vivo. Integr Cancer Ther 2021; 19:1534735420950468. [PMID: 32783540 PMCID: PMC7425266 DOI: 10.1177/1534735420950468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study hypothesizes that, bromelain (BL) acts as radiosensitizer of tumor cells and that it protects normal cells from radiation effects. In vitro and in vivo studies have been carried out to prove that assumption. In vitro MTT cell proliferation assay has shown that the irradiated Ehrlich ascites carcinoma (EAC) cell line could be sensitized by BL pretreatment. In vivo: animals were randomly divided into 5 groups, Group 1: control (PBS i.p for 10 days), Group 2: Ehrlich solid tumor (EST) bearing mice, Group 3: EST + γ-radiation (fractionated dose, 1 Gy × 5), Group 4: EST + BL (6 mg/kg, i.p), daily for 10 days, Group 5: EST + BL for 10 days followed by γ-irradiation (1 Gy × 5). The size and weight of tumors in gamma-irradiated EST bearing mice treated with BL decreased significantly with a significant amelioration in the histopathological examination. Besides, BL mitigated the effect of γ-irradiation on the liver relative gene expression of poly ADP ribose polymerase-1 (PARP1), nuclear factor kappa activated B cells (NF-κB), and peroxisome proliferator-activated receptor α (PPAR-α), and it restored liver function via amelioration of paraoxonase1 (PON1) activity, reactive oxygen species (ROS) content, lipid peroxidation (LPO) and serum aspartate transaminase (AST), alanine transaminase (ALT), and albumin (ALB). It is concluded that BL can be considered as a radio-sensitizer and radio-protector, suggesting a possible role in reducing radiation exposure dose during radiotherapy.
Collapse
Affiliation(s)
- Mai H Mekkawy
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian, Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Hanan A Fahmy
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian, Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Ahmed S Nada
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian, Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Ola S Ali
- Biochemistry Department, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
9
|
Yuan ZH, Liu T, Wang H, Xue LX, Wang JJ. Fatty Acids Metabolism: The Bridge Between Ferroptosis and Ionizing Radiation. Front Cell Dev Biol 2021; 9:675617. [PMID: 34249928 PMCID: PMC8264768 DOI: 10.3389/fcell.2021.675617] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Exposure of tumor cells to ionizing radiation (IR) alters the microenvironment, particularly the fatty acid (FA) profile and activity. Moreover, abnormal FA metabolism, either catabolism or anabolism, is essential for synthesizing biological membranes and delivering molecular signals to induce ferroptotic cell death. The current review focuses on the bistable regulation characteristics of FA metabolism and explains how FA catabolism and anabolism pathway crosstalk harmonize different ionizing radiation-regulated ferroptosis responses, resulting in pivotal cell fate decisions. In summary, targeting key molecules involved in lipid metabolism and ferroptosis may amplify the tumor response to IR.
Collapse
Affiliation(s)
- Zhu-hui Yuan
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Tong Liu
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Hao Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Li-xiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Biobank, Peking University Third Hospital, Beijing, China
| | - Jun-jie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
10
|
Alharbi H, Alshehri AS, Ahmad M, Guo WW. Promising anti- cervical carcinoma and inflammatory agent, Resveratrol targets poly (ADP-ribose) polymerase 1 (PARP-1) induced premature ovarian failure with a potent enzymatic modulatory activity. J Reprod Immunol 2021; 144:103272. [PMID: 33465522 DOI: 10.1016/j.jri.2021.103272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 12/09/2022]
Abstract
Radioprotective effects of Resveratrol is well known in normal cells exposed to the damaging effects of ionizing radiation however, its potential radioprotective effect on ovarian follicle formation and development is still uncertain. Astonishingly, it has been reported that PARP contributed to the pathogenesis of immune-mediated ovarian injury. In this paper, Resveratrol was tested for its inflammatory, anti-cervical carcinoma activity, and checked its targets poly (ADP-ribose) polymerase 1 (PARP-1) induced premature ovarian failure with a potent enzymatic modulatory activity. Through high-throughput virtual screening method, Resveratrol was screened to find its target. That the compound strongly inhibited cervical carcinoma HT-3 cell. The cell proliferation was evaluated by an CCK-8 assay, and the cell apoptosis was assessed by a flow cytometry. Rat model of premature ovarian failure was used to introduce resveratrol preparation and rtPCR was done to measure expression of apoptosis related markers. We report resveratrol as a potential target for PARP-1 and its modulator from a high-throughput virtual screening method. Resveratrol was measured its anti-cervical carcinoma activity by using an CCK-8 assay, which suggested that the compound strongly inhibited HT-3 cell proliferation, the IC50 value is 0.65 μM. In addition, the compound induced HT-3 cell apoptosis in a dose-response manner. Resveratrol preserves the entire ovarian follicle pool manifested by increasing serum anti-Müllerian hormone (AMH) levels. Study suggest that resveratrol restored ovarian function through increasing AMH levels, and diminishing ovarian inflammation, predominantly modulation of PPAR-1 and inhibition of inflammatory cytokines. Resveratrol was identified targets for PARP-1 from a high-throughput virtual screening method, strongly inhibited PARP-1 protein and HT-3 cell proliferation. Resveratrol is a promising PARP-1 modulator with anti-cervical carcinoma activity, which deserves further investigation.
Collapse
Affiliation(s)
- Homood Alharbi
- Department of Medical Surgical Nursing, College of Nursing, King Saud University, Riyadh, Saudi Arabia.
| | | | - Mohammad Ahmad
- Department of Medical Surgical Nursing, College of Nursing, King Saud University, Riyadh, Saudi Arabia.
| | - Wang Wen Guo
- Shangluo Shangzhou Heilongkou Central Hospital, Shangluo, Shangzhou District, Shaanxi, China.
| |
Collapse
|
11
|
Hu L, Chen H, Zhang X, Feng Z, Zhang H, Meng Q. Rosiglitazone ameliorates radiation-induced intestinal inflammation in rats by inhibiting NLRP3 inflammasome and TNF-α production. JOURNAL OF RADIATION RESEARCH 2020; 61:842-850. [PMID: 32876675 PMCID: PMC7674707 DOI: 10.1093/jrr/rraa062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/08/2020] [Indexed: 02/05/2023]
Abstract
Radiation-induced acute intestinal injury is a common and serious occurrence following abdominal and pelvic irradiation. The Nod-like receptor protein 3 (NLRP3)-dependant inflammasome and inflammation activation is crucial in this process. In a pre-experimental design of radiation-induced intestinal injury, we found that rosiglitazone inhibited caspase-1 which is a key marker of inflammasome activation. The purpose of the present study was to clarify the inhibitory effect of rosiglitazone on the NLRP3 inflammasome both in vivo and in vitro. Radiation-induced intestinal injury after rosiglitazone treatment, and the expression of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), caspase-1 and NLRP3 in a radiation-induced intestinal injury model in a rat and macrophages were observed. We found that rosiglitazone ameliorated radiation-induced intestinal injury in rats by suppressing the expression of caspase-1, NLRP3, IL-1β and TNF-α. Treatment with rosiglitazone in vitro reduced the expression of NLRP3, and the NLRP3 activator monosodium urate (MSU) reversed the inhibition of IL-1β and TNF-α by rosiglitazone in macrophages. MSU reversed the protective effect of rosiglitazone on radiation-induced intestinal injury in rats by reversing the rosiglitazone-induced inhibition of IL-1β and TNF-α. Taken together, these findings indicate that the peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone, ameliorates radiation-induced intestine inflammation in rats via inhibiting the induction of the NLRP3-dependent inflammasome in macrophages.
Collapse
Affiliation(s)
- Liqiong Hu
- Department of Intensive Care Unit of Guangzhou Red Cross hospital, Medical College, Jinan University, Guangzhou 51000, China
| | - Hao Chen
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, China
| | | | - Zhencheng Feng
- Guangzhou institute of traumatic surgery, Guangzhou Red Cross hospital, Medical College, Jinan University, Guangzhou 510000, China
| | - Haifeng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 51000, China
| | - Qingqi Meng
- Guangzhou institute of traumatic surgery, Guangzhou Red Cross hospital, Medical College, Jinan University, Guangzhou 510000, China
| |
Collapse
|
12
|
Said RS, Mohamed HA, Kassem DH. Alpha-lipoic acid effectively attenuates ionizing radiation-mediated testicular dysfunction in rats: Crosstalk of NF-ĸB, TGF-β, and PPAR-ϒ pathways. Toxicology 2020; 442:152536. [PMID: 32649955 DOI: 10.1016/j.tox.2020.152536] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
Radiotherapy is one of the principal approaches employed in the treatment of pelvic cancers. Nevertheless, testicular dysfunction and infertility are among the most common adverse effects in young adult cancer survivors. Clinically, alpha-lipoic acid (LA) has been applied to improve the quality of sperm with a satisfactory effect. Therefore, the present study investigated the underlying mechanisms of the radioprotective effects of LA against testicular damage. Male Sprague-Dawley rats were exposed to 10 Gy of whole-body ϒ-radiation and LA (50 mg/kg, P.O.) was administered one week before and three days post-irradiation. LA showed remarkable capacity in preserving testicular tissue against radiation damage by improving histological and ultrastructural changes of disorganized seminiferous tubules, besides enhancing its diameter, germinal epithelial thickness, and Johnsen's score. Radiation instigated a significant decrease in sperm quality and quantity associated with depletion of serum testosterone levels, while the LA administration maintained spermatogenesis. Strikingly, LA exhibited antioxidant properties by restoring reduced glutathione levels and antioxidant enzyme activities such as catalase and glutathione-s-transferase, besides diminishing malondialdehyde levels in the testis of irradiated group. Furthermore, LA alleviated testicular inflammation through downregulation of nuclear factor-ĸB (NF-ĸB) expression with a subsequent reduction in interleukin (IL)-6 and cyclooxygenase-2 expression, accompanied by the augmented expression of the anti-inflammatory cytokine IL-10. Additionally, testicular fibrosis markers including Masson's trichrome and transforming growth factor (TGF)-β expression were noticeably declined in LA-treated irradiated rats, together with the upregulation of peroxisome proliferator-activated receptor-ϒ expression. Collectively, LA ameliorates radiation-mediated spermatogenesis-defects and testicular-damage via suppression of oxidative stress/NF-ĸB/TGF-β signaling.
Collapse
Affiliation(s)
- Riham Soliman Said
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt.
| | - Heba A Mohamed
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Dina Hamada Kassem
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
13
|
Decara J, Rivera P, López-Gambero AJ, Serrano A, Pavón FJ, Baixeras E, Rodríguez de Fonseca F, Suárez J. Peroxisome Proliferator-Activated Receptors: Experimental Targeting for the Treatment of Inflammatory Bowel Diseases. Front Pharmacol 2020; 11:730. [PMID: 32536865 PMCID: PMC7266982 DOI: 10.3389/fphar.2020.00730] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
The peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptor proteins that promote ligand-dependent transcription of target genes that regulate energy production, lipid metabolism, and inflammation. The PPAR superfamily comprises three subtypes, PPARα, PPARγ, and PPARβ/δ, with differential tissue distributions. In addition to their different roles in the regulation of energy balance and carbohydrate and lipid metabolism, an emerging function of PPARs includes normal homeostasis of intestinal tissue. PPARα activation represses NF-κB signaling, which decreases the inflammatory cytokine production by different cell types, while PPARγ ligands can inhibit activation of macrophages and the production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and Il-1β. In this regard, the anti-inflammatory responses induced by PPAR activation might restore physiopathological imbalances associated with inflammatory bowel diseases (IBD). Thus, PPARs and their ligands have important therapeutic potential. This review briefly discusses the roles of PPARs in the physiopathology and therapies of the most important IBDs, ulcerative colitis (UC), and Crohn's disease (CD), as well some new experimental compounds with PPAR activity as promising drugs for IBD treatment.
Collapse
Affiliation(s)
- Juan Decara
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Patricia Rivera
- Departamento de Endocrinología, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Antonio Jesús López-Gambero
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Francisco Javier Pavón
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) and UGC del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Elena Baixeras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, IBIMA, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
14
|
Li M, Luo T, Huang Y, Su J, Li D, Chen X, Zhang Y, Huang L, Li S, Jiao C, Li W, Xie Y, Li W. Polysaccharide from Pycnoporus sanguineus ameliorates dextran sulfate sodium-induced colitis via helper T cells repertoire modulation and autophagy suppression. Phytother Res 2020; 34:2649-2664. [PMID: 32281697 DOI: 10.1002/ptr.6695] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/12/2020] [Accepted: 03/21/2020] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic autoimmune disease associated with various risk factors. Pycnoporus sanguineus (L.) Murrill is a saprotrophic fungus used worldwide for its industrial and medical purposes. Here, polysaccharide from P. sanguineus (PPS) was explored for its antiinflammatory potential in a murine colitis model of IBD induced by dextran sulfate sodium (DSS). PPS ameliorated the colitis as manifested by the lowered disease activity index (DAI), prolonged colon, and reduced serum lipopolysaccharide (LPS). PPS recovered the histological lesion by upregulating the expressions of Zonula occludens-1 (ZO-1), E-cadherin, and proliferating cell nuclear antigen (PCNA). PPS inhibited the helper T cells (Th)-mediated immune response by decreasing the proportions of Th cells (including Th2 cells, Th17 cells, and regulatory T cells), which was accompanied with reductions on myeloperoxidase (MPO) activity and releases of several interleukins and chemokines within the colon. Moreover, PPS exhibited an evident inhibition on autophagy, in which the ratio of light chain 3 (LC3) II/I was declined, while the expression of p62 and Beclin-1 was increased. The present study highlighted important clinical implications for the treatment application of PPS against IBD, which relies on the regulation of Th cells repertoire and autophagy suppression to restore epithelium barrier.
Collapse
Affiliation(s)
- Muxia Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratoryof Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Ting Luo
- Jinan University, Guangzhou, Guangdong, People's Republic of China.,Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong, People's Republic of China
| | - Yong Huang
- Department of Gastrointestinal Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jiyan Su
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratoryof Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Dan Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratoryof Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, People's Republic of China.,Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Xiaohong Chen
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratoryof Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, People's Republic of China.,Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Yifan Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratoryof Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Longhua Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratoryof Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Shunxian Li
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Chunwei Jiao
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Wenzhi Li
- Infinitus (China) Company Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratoryof Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, People's Republic of China.,Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Wende Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
15
|
Venkataraman B, Ojha S, Belur PD, Bhongade B, Raj V, Collin PD, Adrian TE, Subramanya SB. Phytochemical drug candidates for the modulation of peroxisome proliferator-activated receptor γ in inflammatory bowel diseases. Phytother Res 2020; 34:1530-1549. [PMID: 32009281 DOI: 10.1002/ptr.6625] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Plant-based compounds or phytochemicals such as alkaloids, glycosides, flavonoids, volatile oils, tannins, resins, and polyphenols have been used extensively in traditional medicine for centuries and more recently in Western alternative medicine. Extensive evidence suggests that consumption of dietary polyphenolic compounds lowers the risk of inflammatory diseases. The anti-inflammatory properties of several phytochemicals are mediated through ligand-inducible peroxisome proliferator-activated receptors (PPARs), particularly the PPARγ transcription factor. Inflammatory bowel disease (IBD) is represented by ulcerative colitis, which occurs in the mucosa of the colon and rectum, and Crohn's disease (CD) that can involve any segment of gastrointestinal tract. Because of the lack of cost-effective pharmaceutical treatment options, many IBD patients seek and use alternative and unconventional therapies to alleviate their symptoms. PPARγ plays a role in the inhibition of inflammatory cytokine expression and activation of anti-inflammatory immune cells. The phytochemicals reported here are ligands that activate PPARγ, which in turn modulates inflammatory responses. PPARγ is highly expressed in the gut making it a potential therapeutic target for IBDs. This review summarizes the effects of the currently published phytochemicals that modulate the PPARγ pathway and reduce or eliminate colonic inflammation.
Collapse
Affiliation(s)
- Balaji Venkataraman
- Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Prasanna D Belur
- Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, India
| | - Bhoomendra Bhongade
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Vishnu Raj
- Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Thomas E Adrian
- Department of Basic Medical Sciences, Mohamed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Sandeep B Subramanya
- Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
16
|
Xi Y, Zhang Y, Zhu S, Luo Y, Xu P, Huang Z. PPAR-Mediated Toxicology and Applied Pharmacology. Cells 2020; 9:cells9020352. [PMID: 32028670 PMCID: PMC7072218 DOI: 10.3390/cells9020352] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/26/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs), members of the nuclear hormone receptor family, attract wide attention as promising therapeutic targets for the treatment of multiple diseases, and their target selective ligands were also intensively developed for pharmacological agents such as the approved drugs fibrates and thiazolidinediones (TZDs). Despite their potent pharmacological activities, PPARs are reported to be involved in agent- and pollutant-induced multiple organ toxicity or protective effects against toxicity. A better understanding of the protective and the detrimental role of PPARs will help to preserve efficacy of the PPAR modulators but diminish adverse effects. The present review summarizes and critiques current findings related to PPAR-mediated types of toxicity and protective effects against toxicity for a systematic understanding of PPARs in toxicology and applied pharmacology.
Collapse
Affiliation(s)
- Yue Xi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yunhui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sirui Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuping Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence: (P.X.); (Z.H.); Tel.: +1-412-708-4694(P.X.); +86-20-39943092 (Z.H.)
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Correspondence: (P.X.); (Z.H.); Tel.: +1-412-708-4694(P.X.); +86-20-39943092 (Z.H.)
| |
Collapse
|
17
|
Rheinic acid ameliorates radiation-induced acute enteritis in rats through PPAR-γ/NF-κB. Genes Genomics 2019; 41:909-917. [PMID: 31037524 DOI: 10.1007/s13258-019-00824-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/20/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Acute radiation enteritis (ARE), a common complication of intestinal caused by abdominal and pelvic radiation therapy. Rheinic acid is a major active ingredient derived from Rhubarb. Rhubarb could suppress inflammation, tumor, fibrosis oxidative damage. However, RA as the main active component and extract monomer of Rhubarb, the pharmacological activity and the underlying molecular mechanism on various diseases has not yet been revealed. OBJECTIVE To determine the potential role of rheinic acid (RA) in ameliorating inflammation of rats with acute radiation enteritis (ARE), and explore the underlying mechanism. METHODS ARE rat model was established by irradiated with single-dose 10 Gy X-rays at a rate of 0.62 Gy/min to the abdomen. The rats were executed after orally administered with Rheinic acid 7 days and used in the subsequent experiments. Body weight, fecal characteristics and bloody of rats were used to assess the disease activity index. Histological analysis of the jejunum and colon were evaluated using H&E staining. The pro-inflammatory cytokines levels were measured by immunohistochemistry and ELISA. The levels of nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH) were also determined. The mRNA and protein expression were examined by real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. RESULTS Rheinic acid promoted intestinal functional recovery, and ameliorated intestinal damage and bloody stool in ARE rats. Rheinic acid strongly decreased the levels of tumor necrosis factor-α, interleukin-1, interleukin-6, NO, and MDA, whereas increased levels of anti-oxidants, SOD and GSH. Moreover, the expression of apoptosis-related proteins, cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase (PARP), were decreased with RA treatment. Further study indicated that PPAR-γ was activated and thereby NF-κB and p38 MAPK signaling pathway were suppressed after rheinic acid treatment. CONCLUSION Rheinic acid could ameliorate acute radiation enteritis and the underlying molecular mechanism is, at least partially, through PPAR-γ/NF-κB and p38 MAPK/JNK pathways.
Collapse
|
18
|
S N SG, Raviraj R, Nagarajan D, Zhao W. Radiation-induced lung injury: impact on macrophage dysregulation and lipid alteration - a review. Immunopharmacol Immunotoxicol 2018; 41:370-379. [PMID: 30442050 DOI: 10.1080/08923973.2018.1533025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lung cancer continues to be the leading cause of cancer deaths and more than one million lung cancer patients will die every year worldwide. Radiotherapy (RT) plays an important role in lung cancer treatment, but the side effects of RT are pneumonitis and pulmonary fibrosis. RT-induced lung injury causes damage to alveolar-epithelial cells and vascular endothelial cells. Macrophages play an important role in the development of pulmonary fibrosis despite its role in immune response. These injury activated macrophages develop into classically activated M1 macrophage or alternative activated M2 macrophage. It secretes cytokines, interleukins, interferons, and nitric oxide. Several pro-inflammatory lipids and pro-apoptotic proteins cause lipotoxicity such as LDL, FC, DAG, and FFA. The overall findings in this review conclude the importance of macrophages in inducing toxic/inflammatory effects during RT of lung cancer, which is clinically vital to treat the radiation-induced fibrosis.
Collapse
Affiliation(s)
- Sunil Gowda S N
- a Radiation Biology Laboratory, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur , India
| | - Raghavi Raviraj
- a Radiation Biology Laboratory, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur , India
| | - Devipriya Nagarajan
- a Radiation Biology Laboratory, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur , India
| | - Weiling Zhao
- b School of Biomedical Informatics , The University of Texas Health Sciences Center , Houston , TX , USA
| |
Collapse
|
19
|
Abdel-Gawad EI, Awwad SA. The devastating effect of exposure to high irradiation dose on liver and the performance of synthesized nano-Hap in relieve the associated symptoms in rats. Biochem Cell Biol 2018; 96:507-514. [DOI: 10.1139/bcb-2017-0216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ionizing radiation is one of the environmental factors that may contribute to liver dysfunction through a mechanism involving oxidative stress. This investigation studied the possible therapeutic effects of nano-HAp on hepatotoxicity in rats induced with gamma (γ) radiation. The study was carried out using 3 groups with 10 rats in each. Group 1 comprised the non-irradiated control rats, whereas the rats in groups 2 and 3 received a single dose of 10 Gy γ-radiation. The rats in group 3 were treated with nano-HAp [100 mg·(kg body mass)−1] once a week for 2 weeks starting the day after irradiation. The results showed that the rats exposed to γ-radiation had fragmented DNA, and significantly decreased levels of liver tissue enzymes such as paraoxonase 1, gamma glutamyl, alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Pro-inflammatory factors such as interleukin (IL)-2, IL-6, tumor necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ) in tissue were significantly increased compared with the controls. Also, exposure to γ-radiation significantly decreased the activity of superoxide dismutase and glutathione oxidase and increased lipid peroxidation in liver tissue. These effects were accompanied by severe histopathological changes to the hepatocytes. Intravenous injection of nano-HAp after irradiation has significant therapeutic potential against irradiation-induced liver damage because the treatment with nano-HAp restored antioxidant activity in the liver, antagonized the significant changes in the levels of IL-2, IL-6, TNF-α, IFN-γ, and restored the tissue level of paraoxonase 1, gamma glutamyl, ALT, and AST. Administering nano-HAp seemed to relieve the pathological changes induced by γ-radiation. Based on these results, it could be concluded that nano-HAp may have a therapeutic effect against liver dysfunction induced by γ-radiation through antagonizing the generation of free radicals and enhancing the antioxidant defense mechanisms.
Collapse
Affiliation(s)
| | - Sameh A. Awwad
- Department of chemical engineering, Higher institute of Engineering and Technology, Central Zone, 4th District, New Damietta, Damietta, Egypt
| |
Collapse
|
20
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget 2017; 8:90579-90604. [PMID: 29163854 PMCID: PMC5685775 DOI: 10.18632/oncotarget.21234] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022] Open
Abstract
Radiation therapy induces DNA damage and inflammation leading to fibrosis. Fibrosis can occur 4 to 12 months after radiation therapy. This process worsens with time and years. Radiation-induced fibrosis is characterized by fibroblasts proliferation, myofibroblast differentiation, and synthesis of collagen, proteoglycans and extracellular matrix. Myofibroblasts are non-muscle cells that can contract and relax. Myofibroblasts evolve towards irreversible retraction during fibrosis process. In this review, we discussed the interplays between transforming growth factor-β1 (TGF-β1), canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPAR γ) in regulating the molecular mechanisms underlying the radiation-induced fibrosis, and the potential role of PPAR γ agonists. Overexpression of TGF-β and canonical WNT/β-catenin pathway stimulate fibroblasts accumulation and myofibroblast differentiation whereas PPAR γ expression decreases due to the opposite interplay of canonical WNT/β-catenin pathway. Both TGF-β1 and canonical WNT/β-catenin pathway stimulate each other through the Smad pathway and non-Smad pathways such as phosphatidylinositol 3-kinase/serine/threonine kinase (PI3K/Akt) signaling. WNT/β-catenin pathway and PPAR γ interact in an opposite manner. PPAR γ agonists decrease β-catenin levels through activation of inhibitors of the WNT pathway such as Smad7, glycogen synthase kinase-3 (GSK-3 β) and dickkopf-related protein 1 (DKK1). PPAR γ agonists also stimulate phosphatase and tensin homolog (PTEN) expression, which decreases both TGF-β1 and PI3K/Akt pathways. PPAR γ agonists by activating Smad7 decrease Smads pathway and then TGF-β signaling leading to decrease radiation-induced fibrosis. TGF-β1 and canonical WNT/β-catenin pathway promote radiation-induced fibrosis whereas PPAR γ agonists can prevent radiation-induced fibrosis.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.,Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France.,CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
21
|
Luo M, Yeruva S, Liu Y, Chodisetti G, Riederer B, Menon MB, Tachibana K, Doi T, Seidler UE. IL-1β-Induced Downregulation of the Multifunctional PDZ Adaptor PDZK1 Is Attenuated by ERK Inhibition, RXRα, or PPARα Stimulation in Enterocytes. Front Physiol 2017; 8:61. [PMID: 28223944 PMCID: PMC5293818 DOI: 10.3389/fphys.2017.00061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/23/2017] [Indexed: 12/21/2022] Open
Abstract
Background: The PDZ adaptor protein PDZK1 modulates the membrane expression and function of a variety of intestinal receptors and ion/nutrient transporters. Its expression is strongly decreased in inflamed intestinal mucosa of mice and IBD patients. Aim and Methods: We investigated whether the inflammation-associated PDZK1 downregulation is a direct consequence of proinflammatory cytokine release by treating intestinal Caco-2BBE cells with TNF-α, IFN-γ, and IL-1β, and analysing PDZK1 promotor activity, mRNA and protein expression. Results: IL-1β was found to significantly decrease PDZK1 promoter activity, mRNA and protein expression in Caco-2BBE cells. A distal region of the hPDZK1 promoter was identified to be important for basal expression and IL-1β-responsiveness. This region harbors the retinoid acid response element RARE as well as binding sites for transcription factors involved in IL-β downstream signaling. ERK1/2 inhibition by the specific MEK1/2 inhibitors PD98059/U0126 significantly attenuated the IL-1β mediated downregulation of PDZK1, while NF-κB, p38 MAPK, and JNK inhibition did not. Expression of the nuclear receptors RXRα and PPARα was decreased in inflamed colonic-mucosa of ulcerative colitis patients and in IL-1β-treated Caco2-BBE cells. Moreover, the RAR/RXR ligand 9-cis retinoic acid and the PPARα-agonist GW7647 stimulated PDZK1 mRNA and protein expression and attenuated IL-1β-mediated inhibition. Conclusions: The strong decrease in PDZK1 expression during intestinal inflammation may be in part a consequence of IL-1β-mediated RXRα and PPARα repression and can be attenuated by agonists for either nuclear receptor, or by ERK1/2 inhibition. The negative consequences of inflammation-induced PDZK1 downregulation on epithelial transport-function may thus be amenable to pharmacological therapy.
Collapse
Affiliation(s)
- Min Luo
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical SchoolHannover, Germany; Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Sunil Yeruva
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School Hannover, Germany
| | - Yongjian Liu
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical SchoolHannover, Germany; Department of Endocrinology, the Second Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Giriprakash Chodisetti
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School Hannover, Germany
| | - Brigitte Riederer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School Hannover, Germany
| | - Manoj B Menon
- Department of Biochemistry, Hannover Medical School Hannover, Germany
| | - Keisuke Tachibana
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University Osaka, Japan
| | - Takefumi Doi
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University Osaka, Japan
| | - Ursula E Seidler
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School Hannover, Germany
| |
Collapse
|
22
|
Moustafa EM, Thabet NM. Beta-sitosterol upregulated paraoxonase-1 via peroxisome proliferator-activated receptor-γ in irradiated rats. Can J Physiol Pharmacol 2017; 95:661-666. [PMID: 28177669 DOI: 10.1139/cjpp-2016-0397] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study was designed to evaluate the effect of beta-sitosterol (BS) on the peroxisome proliferator-activated receptor gamma (PPAR-γ) gene expression role in the activity of paraoxonase (PON-1) enzyme in oxidative stress status of irradiated rats. Animals were exposed to whole body γ-radiation single dose 6 Gy and received BS dose (40 mg·(kg body mass)-1·day -1, orally). In liver tissue, gene expression of PPAR-γ ligand was determined. Oxidative stress marker (malondialdehyde, MDA) and antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT), PON-1, and arylesterase (ARE)) were assayed in serum and liver tissue. Also, serum lipid profile (cholesterol, triglycerides (TG), low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c)) was measured. In irradiated animals that received BS, expression of PPAR-γ ligand increase significantly associated with increase in PON-1 and ARE enzyme activities. Also, the activities of SOD, CAT enzymes, and HDL-c levels display elevation. By contrast, significant decrease in MDA content, cholesterol, TG, and LDL-c levels were revealed after BS administration. Our findings in this study provide the evidence that BS has radio-protective effect via regulating the gene expression of PPAR-γ, causing an increase in PON-1 and ARE enzyme activities. This action of BS is due to its free radical scavenging properties, antioxidant effect, lowering of cholesterol, and PPAR-γ agonist properties.
Collapse
Affiliation(s)
- Enas Mahmoud Moustafa
- Radiation Biology Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt.,Radiation Biology Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Noura Magdy Thabet
- Radiation Biology Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt.,Radiation Biology Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
23
|
Demirel C, Kilciksiz SC, Gurgul S, Erdal N, Yigit S, Tamer L, Ayaz L. Inhibition of Radiation-Induced Oxidative Damage in the Lung Tissue: May Acetylsalicylic Acid Have a Positive Role? Inflammation 2016; 39:158-165. [PMID: 26276129 DOI: 10.1007/s10753-015-0234-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The lung is relatively sensitive to irradiation. It is shown that acetylsalicylic acid (ASA) might reduce oxidative injury and that it has a place in protection from cancer. The aim of this study is to evaluate the potential radioprotective effects of ASA. Whole-body irradiation (6 Gy, single dose) was applied to the rats. Glutathione (GSH), malondialdehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) levels in the lung tissue were measured. Control (C), Radiation (R), Radiation + ASA (R + ASA; received irradiation and 25 mg/kg of ASA intraperitoneally (i.p.)), and Radiation + Amifostine (R + WR-2721; received irradiation and 200 mg/kg of WR-2721 i.p.) groups were used. The MPO levels decreased statistically significantly in the group administered ASA. Histopathologically, a radioprotective effect of ASA was more evident in the R + ASA group. ASA is an agent which has not been used as a radioprotector in the clinic yet, and it is worth supporting with more advanced studies.
Collapse
Affiliation(s)
- Can Demirel
- Department of Biophysics, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey.
| | | | - Serkan Gurgul
- Department of Biophysics, Faculty of Medicine, Gaziosmanpaşa University, 60000, Tokat, Turkey
| | - Nurten Erdal
- Department of Biophysics, Faculty of Medicine, Mersin University, 33169, Mersin, Turkey
| | - Seyran Yigit
- Department of Pathology, Izmir Atatürk Training and Research Hospital, 35000, Izmir, Turkey
| | - Lulufer Tamer
- Department of Biochemistry, Faculty of Medicine, Mersin University, 33169, Mersin, Turkey
| | - Lokman Ayaz
- Department of Biochemistry, Faculty of Pharmacy, University of Trakya, 22000, Edirne, Turkey
| |
Collapse
|
24
|
Hasan HF, Abdel-Rafei MK, Galal SM. Diosmin attenuates radiation-induced hepatic fibrosis by boosting PPAR-γ expression and hampering miR-17-5p-activated canonical Wnt-β-catenin signaling. Biochem Cell Biol 2016; 95:400-414. [PMID: 28177765 DOI: 10.1139/bcb-2016-0142] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Liver fibrosis is one of the major complications from upper right quadrant radiotherapy. MicroRNA-17-5p (miR-17-5p) is hypothesized to act as a regulator of hepatic stellate cell (HSCs) activation by activation of the canonical Wnt-β-catenin pathway. Diosmin (Dios), a citrus bioflavonoid, is known to possess potent antioxidant, anti-inflammatory, and anti-apoptotic properties. PURPOSE To explore the molecular mechanisms that underlie radiation-induced liver fibrosis, and to evaluate the possible influence of Dios on the miR-17-5p-Wnt-β-catenin signaling axis during fibrogenesis provoked by irradiation (IRR) in rats. Also, the effect of Dios on hepatic peroxisome proliferator activated receptor-γ (PPAR-γ) expression as a regulator for HSC activation was considered. METHODS We administered 100 mg·(kg body mass)-1·day-1 (per oral) of Dios were administered to IRR-exposed rats (overall dose of 12 Gy on 6 fractions of 2 Gy each) for 6 successive weeks. RESULTS Data analysis revealed that Dios treatment mitigated oxidative stress, enhanced antioxidant defenses, alleviated hepatic inflammatory responses, abrogated pro-fibrogenic cytokines, and stimulated PPAR-γ expression. Dios treatment repressed the miR-17-5p activated Wnt-β-catenin signaling induced by IRR. Moreover, Dios treatment restored the normal hepatic architecture and reversed pathological alterations induced by IRR. CONCLUSION We hypothesize that the stimulation of PPAR-γ expression and interference with miR-17-5p activated Wnt-β-catenin signaling mediates the antifibrotic properties of Dios.
Collapse
Affiliation(s)
- Hesham Farouk Hasan
- a Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, PO Box 29, Nasr City, Cairo, Egypt
| | - Mohamed Khairy Abdel-Rafei
- a Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, PO Box 29, Nasr City, Cairo, Egypt
| | - Shereen Mohamed Galal
- b Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, PO Box 29, Nasr City, Cairo, Egypt
| |
Collapse
|
25
|
Abstract
Monocytes and macrophages are part of the body's first line of defence, eliminating pathogens by phagocytosis or by releasing a broad array of inflammatory mediators, such as cytokines, chemokines, and proteases. In humans, 3 subsets of monocytes are described in blood with seemingly different functions, the classical (CD14CD16) monocytes, the intermediate (CD14CD16) monocytes, and the nonclassical (CD14CD16) monocytes. In the intestine, macrophages can be divided into resident and inflammatory macrophages that are distinguished by low and high expression of CD14, respectively. However, the roles and function of the 3 monocyte subsets in health and disease are not fully understood. In this review, we describe what is known about the origin of human intestinal macrophages and their blood monocytic counterparts and many of their numerous distinct mechanisms influencing the intestinal immune system.
Collapse
|
26
|
Peymani M, Ghaedi K, Irani S, Nasr-Esfahani MH. Peroxisome Proliferator-Activated Receptor γ Activity is Required for Appropriate Cardiomyocyte Differentiation. CELL JOURNAL 2016; 18:221-8. [PMID: 27540527 PMCID: PMC4988421 DOI: 10.22074/cellj.2016.4317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 10/22/2015] [Indexed: 11/16/2022]
Abstract
Objective Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the
PPAR nuclear receptor superfamily. Although PPARγ acts as a master transcription factor
in adipocyte differentiation, it is also associated with a variety of cell functions including
carbohydrate and lipid metabolism, glucose homeostasis, cell proliferation and cell differentiation. This study aimed to assess the expression level of PPARγ in order to address its
role in cardiac cell differentiation of mouse embryonic stem cells (mESCs).
Materials and Methods In this an intervening study, mESCs were subjected to cardiac differentiation. Total RNA was extracted from the cells and quantitative real time polymerase chain
reaction (qPCR) was carried out to estimate level of gene expression. Furthermore, the requirement of PPARγ in cardiac differentiation of mESCs, during cardiac progenitor cells (CPCs)
formation, was examined by applying the respective agonist and antagonist.
Results The obtained data revealed an elevation in the expression level of PPARγ during
spontaneous formation of CPCs and cardiomyocytes. Our results indicated that during
CPC formation, PPARγ inactivation via treatment with GW9662 (GW) reduced expression
of CPC and cardiac markers.
Conclusion We conclude that PPARγ modulation has an effective role on cardiac differentiation of mESCs at the early stage of cardiomyogenesis.
Collapse
Affiliation(s)
- Maryam Peymani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kamran Ghaedi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran; Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
27
|
Li J, Xu J, Lu Y, Qiu L, Xu W, Lu B, Hu Z, Chu Z, Chai Y, Zhang J. MASM, a Matrine Derivative, Offers Radioprotection by Modulating Lethal Total-Body Irradiation-Induced Multiple Signaling Pathways in Wistar Rats. Molecules 2016; 21:molecules21050649. [PMID: 27196884 PMCID: PMC6273364 DOI: 10.3390/molecules21050649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/25/2016] [Accepted: 05/06/2016] [Indexed: 01/09/2023] Open
Abstract
Matrine is an alkaloid extracted from Sophora flavescens Ait and has many biological activities, such as anti-inflammatory, antitumor, anti-fibrosis, and immunosuppressive properties. In our previous studies, the matrine derivative MASM was synthesized and exhibited potent inhibitory activity against liver fibrosis. In this study, we mainly investigated its protection against lethal total-body irradiation (TBI) in rats. Administration of MASM reduced the radiation sickness characteristics and increased the 30-day survival of rats before or after lethal TBI. Ultrastructural observation illustrated that pretreatment of rats with MASM significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed that pretreatment with MASM had a dramatic effect on gene expression changes caused by TBI. Pretreatment with MASM prevented differential expression of 53% (765 genes) of 1445 differentially expressed genes induced by TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 21 pathways, such as metabolic pathways, pathways in cancer, and mitogen-activated protein kinase (MAPK) pathways. Our data indicated that pretreatment of rats with MASM modulated these pathways induced by TBI, suggesting that the pretreatment with MASM might provide the protective effects on lethal TBI mainly or partially through the modulation of these pathways, such as multiple MAPK pathways. Therefore, MASM has the potential to be used as an effective therapeutic or radioprotective agent to minimize irradiation damages and in combination with radiotherapy to improve the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Jianzhong Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Jing Xu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
- Department of Pharmacy, East Hospital, Dongji University, Shanghai 200085, China.
| | - Yiming Lu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Lei Qiu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Weiheng Xu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Bin Lu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Zhenlin Hu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Zhiyong Chu
- The Naval Medical Research Institute, Shanghai 200433, China.
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Junping Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
28
|
Said RS, El-Demerdash E, Nada AS, Kamal MM. Resveratrol inhibits inflammatory signaling implicated in ionizing radiation-induced premature ovarian failure through antagonistic crosstalk between silencing information regulator 1 (SIRT1) and poly(ADP-ribose) polymerase 1 (PARP-1). Biochem Pharmacol 2016; 103:140-150. [PMID: 26827941 DOI: 10.1016/j.bcp.2016.01.019] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 01/25/2016] [Indexed: 01/28/2023]
Abstract
This study hypothesized that resveratrol, a silencing information regulator 1 (SIRT1) activator, would counteract the inflammatory signaling associated with radiotherapy-induced premature ovarian failure (POF). Immature female Sprague-Dawley rats were subjected to a single dose of γ-radiation to induce POF and treated with resveratrol (25mg/kg) once daily for two weeks before and three days post irradiation. Resveratrol preserves the entire ovarian follicle pool manifested by increasing serum anti-Müllerian hormone (AMH) levels. Radiation triggered inflammatory process in the ovary through enhanced NF-κB and poly(ADP-ribose) polymerase (PARP)-1 expression which convinced the expression of inflammatory markers including IL-6, IL-8, and visfatin mRNA levels, as well as inducible nitric oxide synthase and cyclooxygenase-2 protein expression with a concomitant reduction in IL-10 mRNA levels. Resveratrol significantly counteracted the effect of radiation and upregulated the gene expression of peroxisome proliferator-activated receptor γ (PPAR-γ) and SIRT1. Resveratrol-activated SIRT1 expression was associated with inhibition of PARP-1 and NF-κB expression-mediated inflammatory cytokines. Our findings suggest that resveratrol restored ovarian function through increasing AMH levels, and diminishing ovarian inflammation, predominantly via upregulation of PPAR-γ and SIRT1 expression leading to inhibition of NF-κB provoked inflammatory cytokines.
Collapse
Affiliation(s)
- Riham Soliman Said
- National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Ahmed Shafik Nada
- National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Mohamed M Kamal
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
29
|
Li J, Xu J, Xu W, Qi Y, Lu Y, Qiu L, Hu Z, Chu Z, Chai Y, Zhang J. Protective Effects of Hong Shan Capsule against Lethal Total-Body Irradiation-Induced Damage in Wistar Rats. Int J Mol Sci 2015; 16:18938-55. [PMID: 26274957 PMCID: PMC4581280 DOI: 10.3390/ijms160818938] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 01/15/2023] Open
Abstract
Hong Shan Capsule (HSC), a crude drug of 11 medicinal herbs, was used in clinical practice for the treatment of radiation injuries in China. In this study, we investigated its protection in rats against acute lethal total-body irradiation (TBI). Pre-administration of HSC reduced the radiation sickness characteristics, while increasing the 30-day survival of the irradiated rats. Administration of HSC also reduced the radiation sickness characteristics and increased the 30-day survival of mice after exposure to lethal TBI. Ultrastructural observation illustrated that the pretreatment of rats with HSC significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed the dramatic effect of HSC on alterations of gene expression caused by lethal TBI. Pretreatment with HSC prevented differential expression of 66% (1398 genes) of 2126 genes differentially expressed in response to TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 32 pathways, such as pathways in cancer and the mitogen-activated protein kinase (MAPK) signaling pathway. Our analysis indicated that the pretreatment of rats with HSC modulated these pathways induced by lethal TBI, such as multiple MAPK pathways, suggesting that pretreatment with HSC might provide protective effects on lethal TBI mainly or partially through the modulation of these pathways. Our data suggest that HSC has the potential to be used as an effective therapeutic or radio-protective agent to minimize irradiation damage.
Collapse
Affiliation(s)
- Jianzhong Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Jing Xu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
- Department of Pharmacy, East Hospital, Dongji University, Shanghai 200085, China.
| | - Weiheng Xu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yang Qi
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yiming Lu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Lei Qiu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Zhenlin Hu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Zhiyong Chu
- Department of Preventive Medicine, Naval Medical Research Institute, Shanghai 200433, China.
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Junping Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
30
|
Gao M, Jiang Y, Xiao X, Peng Y, Xiao X, Yang M. Protective effect of pioglitazone on sepsis-induced intestinal injury in a rodent model. J Surg Res 2015; 195:550-8. [PMID: 25772146 DOI: 10.1016/j.jss.2015.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Pathogenesis and treatment of inflammatory gut barrier failure is an important problem in critical care. In this study, we examined the role of pioglitazone, an agonist of peroxisome proliferator-activated receptor gamma, in gut barrier failure during experimental peritonitis in rats. MATERIALS AND METHODS Male rats were randomly divided into three groups as follows: sham, sepsis, and sepsis + pioglitazone. Sepsis was achieved by means of the cecal ligation and puncture (CLP). Pioglitazone was administered intraperitoneally (10 mg/kg/d) for 7 d before the experiment. Animals were killed at 24 h or followed 72 h for survival. The tissue level of tumor necrosis factor-α, interleukin-6, superoxide dismutase, malondialdehyde, and myeloperoxidase was measured. Intestinal mucosa injury was assessed histologically. The plasma fluorescein isothiocyanate-dextran, D-lactic acid, and intestinal diamine oxidase were determined to evaluate the permeability and integrity of intestinal mucosal epithelium. Vena cava blood and tissue samples were used to monitor bacterial translocation. RESULTS Intestinal inflammation, oxidize stress, neutrophil infiltration, morphology injury, and impaired permeability of the small intestine in the CLP group were found more severe than those in the sham group. Application of pioglitazone not only minimized all the indicators of intestinal injury and barrier failure but also improved the survival of septic rats induced by CLP. CONCLUSIONS Our novel findings suggest that pioglitazone could protect against intestinal injury and maintain intestinal barrier integrity and might be a useful strategy to ameliorate intestinal failure in polymicrobial sepsis.
Collapse
Affiliation(s)
- Min Gao
- Department of Emergency and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Translational Medicine Center of Sepsis, Department of Pathophysiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yu Jiang
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Xuefei Xiao
- Department of Emergency and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yue Peng
- Department of Emergency and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Translational Medicine Center of Sepsis, Department of Pathophysiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xianzhong Xiao
- Translational Medicine Center of Sepsis, Department of Pathophysiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Mingshi Yang
- Department of Emergency and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Translational Medicine Center of Sepsis, Department of Pathophysiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
31
|
Five-aminosalicylic Acid: an update for the reappraisal of an old drug. Gastroenterol Res Pract 2015; 2015:456895. [PMID: 25685145 PMCID: PMC4320793 DOI: 10.1155/2015/456895] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/29/2014] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) comprises several conditions with chronic or recurring immune response and inflammation of the gastrointestinal apparatus, of which ulcerative colitis and Crohn's disease are the commonest forms. This disease has a significant prevalence and it is of an unknown aethiology. Five-aminosalicylic acid (5-ASA) and its derivatives are among the oldest drugs approved for the treatment of the IBD. In this review we reapprise aspects of 5-ASA mechanism of action, safety, and efficacy that in our opinion make it a valuable drug that can be fruitfully tailored in personalised treatments as a therapeutic option alongside other immune-modifying agents.
Collapse
|
32
|
Szumiel I. Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: The pivotal role of mitochondria. Int J Radiat Biol 2014; 91:1-12. [DOI: 10.3109/09553002.2014.934929] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Weigel C, Schmezer P, Plass C, Popanda O. Epigenetics in radiation-induced fibrosis. Oncogene 2014; 34:2145-55. [PMID: 24909163 DOI: 10.1038/onc.2014.145] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/17/2014] [Accepted: 04/23/2014] [Indexed: 02/06/2023]
Abstract
Radiotherapy is a major cancer treatment option but dose-limiting side effects such as late-onset fibrosis in the irradiated tissue severely impair quality of life in cancer survivors. Efforts to explain radiation-induced fibrosis, for example, by genetic variation remained largely inconclusive. Recently published molecular analyses on radiation response and fibrogenesis showed a prominent role of epigenetic gene regulation. This review summarizes the current knowledge on epigenetic modifications in fibrotic disease and radiation response, and it points out the important role for epigenetic mechanisms such as DNA methylation, microRNAs and histone modifications in the development of this disease. The synopsis illustrates the complexity of radiation-induced fibrosis and reveals the need for investigations to further unravel its molecular mechanisms. Importantly, epigenetic changes are long-term determinants of gene expression and can therefore support those mechanisms that induce and perpetuate fibrogenesis even in the absence of the initial damaging stimulus. Future work must comprise the interconnection of acute radiation response and long-lasting epigenetic effects in order to assess their role in late-onset radiation fibrosis. An improved understanding of the underlying biology is fundamental to better comprehend the origin of this disease and to improve both preventive and therapeutic strategies.
Collapse
Affiliation(s)
- C Weigel
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P Schmezer
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C Plass
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - O Popanda
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
34
|
Suárez J, Romero-Zerbo Y, Márquez L, Rivera P, Iglesias M, Bermúdez-Silva FJ, Andreu M, de Fonseca FR. Ulcerative colitis impairs the acylethanolamide-based anti-inflammatory system reversal by 5-aminosalicylic acid and glucocorticoids. PLoS One 2012; 7:e37729. [PMID: 22662201 PMCID: PMC3360619 DOI: 10.1371/journal.pone.0037729] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 04/23/2012] [Indexed: 11/18/2022] Open
Abstract
Studies in animal models and humans suggest anti-inflammatory roles on the N-acylethanolamide (NAE)-peroxisome proliferators activated receptor alpha (PPARα) system in inflammatory bowel diseases. However, the presence and function of NAE-PPARα signaling system in the ulcerative colitis (UC) of humans remain unknown as well as its response to active anti-inflammatory therapies such as 5-aminosalicylic acid (5-ASA) and glucocorticoids. Expression of PPARα receptor and PPARα ligands-biosynthetic (NAPE-PLD) and -degrading (FAAH and NAAA) enzymes were analyzed in untreated active and 5-ASA/glucocorticoids/immunomodulators-treated quiescent UC patients compared to healthy human colonic tissue by RT-PCR and immunohistochemical analyses. PPARα, NAAA, NAPE-PLD and FAAH showed differential distributions in the colonic epithelium, lamina propria, smooth muscle and enteric plexus. Gene expression analysis indicated a decrease of PPARα, PPARγ and NAAA, and an increase of FAAH and iNOS in the active colitis mucosa. Immunohistochemical expression in active colitis epithelium confirmed a PPARα decrease, but showed a sharp NAAA increase and a NAPE-PLD decrease, which were partially restored to control levels after treatment. We also characterized the immune cells of the UC mucosa infiltrate. We detected a decreased number of NAAA-positive and an increased number of FAAH-positive immune cells in active UC, which were partially restored to control levels after treatment. NAE-PPARα signaling system is impaired during active UC and 5-ASA/glucocorticoids treatment restored its normal expression. Since 5-ASA actions may work through PPARα and glucocorticoids through NAE-producing/degrading enzymes, the use of PPARα agonists or FAAH/NAAA blockers that increases endogenous PPARα ligands may yield similar therapeutics advantages.
Collapse
Affiliation(s)
- Juan Suárez
- Laboratorio de Medicina Regenerativa, Hospital Carlos Haya, Mediterranean Institute for the Advance of Biotechnology and Health Research Fundación, Málaga, Spain
- El Centro de Investigación Biomédica en Red de Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain
| | - Yanina Romero-Zerbo
- Laboratorio de Medicina Regenerativa, Hospital Carlos Haya, Mediterranean Institute for the Advance of Biotechnology and Health Research Fundación, Málaga, Spain
| | - Lucia Márquez
- Department of Gastroenterology, Parc de Salut Mar, Universidad Autónoma, Barcelona, Spain
| | - Patricia Rivera
- Laboratorio de Medicina Regenerativa, Hospital Carlos Haya, Mediterranean Institute for the Advance of Biotechnology and Health Research Fundación, Málaga, Spain
| | - Mar Iglesias
- Department of Pathology, Parc de Salut Mar, Universidad Autónoma, Barcelona, Spain
| | - Francisco J. Bermúdez-Silva
- Laboratorio de Medicina Regenerativa, Hospital Carlos Haya, Mediterranean Institute for the Advance of Biotechnology and Health Research Fundación, Málaga, Spain
- El Centro de Investigación Biomédica en Red de Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain
| | - Montserrat Andreu
- Department of Gastroenterology, Parc de Salut Mar, Universidad Autónoma, Barcelona, Spain
- * E-mail: (FRdF); (MA)
| | - Fernando Rodríguez de Fonseca
- Laboratorio de Medicina Regenerativa, Hospital Carlos Haya, Mediterranean Institute for the Advance of Biotechnology and Health Research Fundación, Málaga, Spain
- El Centro de Investigación Biomédica en Red de Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain
- * E-mail: (FRdF); (MA)
| |
Collapse
|
35
|
Jagetia GC, Rajanikant GK. Acceleration of wound repair by curcumin in the excision wound of mice exposed to different doses of fractionated γ radiation. Int Wound J 2011; 9:76-92. [PMID: 21883936 DOI: 10.1111/j.1742-481x.2011.00848.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fractionated irradiation (IR) before or after surgery of malignant tumours causes a high frequency of wound healing complications. Our aim was to investigate the effect of curcumin (CUM) on the healing of deep excision wound of mice exposed to fractionated IR by mimicking clinical conditions. A full-thickness dermal excision wound was created on the shaved dorsum of mice that were orally administered or not with 100 mg of CUM per kilogram body weight before partial body exposure to 10, 20 or 40 Gy given as 2 Gy/day for 5, 10 or 20 days. The wound contraction was determined periodically by capturing video images of the wound from day 1 until complete healing of wounds. Fractionated IR caused a dose-dependent delay in the wound contraction and prolonged wound healing time, whereas CUM administration before fractionated IR caused a significant elevation in the wound contraction and reduced mean wound healing time. Fractionated IR reduced the synthesis of collagen, deoxyribonucleic acid (DNA) and nitric oxide (NO) at different post-IR times and treatment of mice with CUM before IR elevated the synthesis of collagen, DNA and NO significantly. Histological examination showed a reduction in the collagen deposition, fibroblast and vascular densities after fractionated IR, whereas CUM pre-treatment inhibited this decline significantly. Our study shows that CUM pre-treatment accelerated healing of irradiated wound and could be a substantial therapeutic strategy in the management of irradiated wounds.
Collapse
|
36
|
L-arginine and glycine supplementation in the repair of the irradiated colonic wall of rats. Int J Colorectal Dis 2011; 26:561-8. [PMID: 21350937 DOI: 10.1007/s00384-011-1154-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/01/2011] [Indexed: 02/04/2023]
Abstract
PURPOSE Radiotherapy is widely used for cancer treatment but has harmful effects. This study aimed to assess the effects of L-arginine and glycine supplementation on the colon wall of rats submitted to abdominal irradiation. METHODS Forty male Wistar rats were randomly divided into four groups: I-healthy, II-irradiated with no amino acid supplementation, III-irradiated and supplemented with L-arginine, and IV-irradiated and supplemented with glycine. The animals received supplementation for 14 days, with irradiation being applied on the eighth day of the experiment. All animals underwent laparotomy on the 15th day for resection of a colonic segment for stereologic analysis. Parametric and nonparametric tests were used for statistical analysis, with the level of significance set at p ≤0.05. RESULTS Stereologic analysis showed that irradiation induced a reduction of the total volume of the colon wall of group II and III animals compared to healthy controls, but not of group IV animals supplemented with glycine. The mucosal layer of the irradiated animals of all groups was reduced compared to healthy group I animals, but supplementation with L-arginine and glycine was effective in maintaining the epithelial surface of the mucosal layer. CONCLUSION The present results suggest that glycine supplementation had a superior effect on the irradiated colon wall compared to L-arginine supplementation since it was able to maintain the thickness of the wall and the epithelial surface of the mucosa, whereas L-arginine maintained the partial volume of the epithelium and the epithelial surface, but not the total volume of the intestinal wall.
Collapse
|
37
|
PPARs in Irradiation-Induced Gastrointestinal Toxicity. PPAR Res 2009; 2010:528327. [PMID: 20037741 PMCID: PMC2796461 DOI: 10.1155/2010/528327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/06/2009] [Accepted: 11/02/2009] [Indexed: 12/21/2022] Open
Abstract
The use of radiation therapy to treat cancer inevitably involves exposure of normal tissues. Although the benefits of this treatment are well established, many patients experience distressing complications due to injury to normal tissue. These side effects are related to inflammatory processes, and they decrease therapeutic benefit by increasing the overall treatment time. Emerging evidence indicates that PPARs and their ligands are important in the modulation of immune and inflammatory reactions. This paper discusses the effects of abdominal irradiation on PPARs, their role and functions in irradiation toxicity, and the possibility of using their ligands for radioprotection.
Collapse
|
38
|
De Backer O, Elinck E, Priem E, Leybaert L, Lefebvre RA. Peroxisome proliferator-activated receptor gamma activation alleviates postoperative ileus in mice by inhibition of Egr-1 expression and its downstream target genes. J Pharmacol Exp Ther 2009; 331:496-503. [PMID: 19657050 DOI: 10.1124/jpet.109.155135] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Postoperative ileus, a major cause of morbidity after abdominal surgery, is characterized by intestinal dysmotility and a complex inflammatory cascade within the intestinal muscularis. Treatment with carbon monoxide (CO)--inhaled or intraperitonea--has been shown to ameliorate bowel dysmotility caused by surgical manipulation of the gut in experimental animals. Recent evidence indicates that CO exerts its anti-inflammatory effects through the induction of peroxisome proliferator-activated receptor (PPAR)-gamma, a nuclear receptor whose activation has been linked to several physiological pathways, including those related to the regulation of intestinal inflammation. The purpose of this study was to evaluate pharmacological activation of PPARgamma in a murine model of postoperative ileus by use of the PPARgamma agonist rosiglitazone. Postoperative bowel dysmotility was induced by surgical manipulation of the colon. The functional severity of postoperative ileus was significantly ameliorated in mice pretreated with rosiglitazone (0.3 to 10 mg/kg i.p.); this was associated with a down-regulation of pro-inflammatory cytokines/chemokines, inducible nitric oxide synthase activity, cyclooxygenase-2 activity, as well as a decrease in leukocyte recruitment into the muscularis of both colon and jejunum. These anti-inflammatory effects were preceded by a PPARgamma-dependent down-regulation of early growth response (Egr)-1, a key regulator of inflammatory gene expression. In conclusion, these results indicate that rosiglitazone significantly attenuates postoperative ileus in mice by suppression of the muscularis inflammatory cascade through a PPARgamma-dependent down-regulation of Egr-1 and encourage the further clinical evaluation of synthetic PPARgamma agonists as pharmacological tool to prevent this postoperative event.
Collapse
Affiliation(s)
- Ole De Backer
- Heymans Institute of Pharmacology, Ghent University, B-9000 Ghent, Belgium.
| | | | | | | | | |
Collapse
|
39
|
Ramanan S, Zhao W, Riddle DR, Robbins ME. Role of PPARs in Radiation-Induced Brain Injury. PPAR Res 2009; 2010:234975. [PMID: 19789638 PMCID: PMC2748193 DOI: 10.1155/2010/234975] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 07/15/2009] [Indexed: 11/17/2022] Open
Abstract
Whole-brain irradiation (WBI) represents the primary mode of treatment for brain metastases; about 200 000 patients receive WBI each year in the USA. Up to 50% of adult and 100% of pediatric brain cancer patients who survive >6 months post-WBI will suffer from a progressive, cognitive impairment. At present, there are no proven long-term treatments or preventive strategies for this significant radiation-induced late effect. Recent studies suggest that the pathogenesis of radiation-induced brain injury involves WBI-mediated increases in oxidative stress and/or inflammatory responses in the brain. Therefore, anti-inflammatory strategies can be employed to modulate radiation-induced brain injury. Peroxisomal proliferator-activated receptors (PPARs) are ligand-activated transcription factors that belong to the steroid/thyroid hormone nuclear receptor superfamily. Although traditionally known to play a role in metabolism, increasing evidence suggests a role for PPARs in regulating the response to inflammation and oxidative injury. PPAR agonists have been shown to cross the blood-brain barrier and confer neuroprotection in animal models of CNS disorders such as stroke, multiple sclerosis and Parkinson's disease. However, the role of PPARs in radiation-induced brain injury is unclear. In this manuscript, we review the current knowledge and the emerging insights about the role of PPARs in modulating radiation-induced brain injury.
Collapse
Affiliation(s)
- Sriram Ramanan
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Brain Tumor Center of Excellence, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Weiling Zhao
- Brain Tumor Center of Excellence, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Radiation Oncology, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - David R. Riddle
- Brain Tumor Center of Excellence, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Neurobiology and Anatomy, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Mike E. Robbins
- Brain Tumor Center of Excellence, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Radiation Oncology, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
40
|
Borrelli F, Izzo AA. Role of acylethanolamides in the gastrointestinal tract with special reference to food intake and energy balance. Best Pract Res Clin Endocrinol Metab 2009; 23:33-49. [PMID: 19285259 DOI: 10.1016/j.beem.2008.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acylethanolamides (AEs) are a group of lipids occurring in both plants and animals. The best-studied AEs are the endocannabinoid anandamide (AEA), the anti-inflammatory compound palmitoylethanolamide (PEA), and the potent anorexigenic molecule oleoylethanolamide (OEA). AEs are biosynthesized in the gastrointestinal tract, and their levels may change in response to noxious stimuli, food deprivation or diet-induced obesity. The biological actions of AEs within the gut are not limited to the modulation of food intake and energy balance. For example, AEs exert potential beneficial effects in the regulation of intestinal motility, secretion, inflammation and cellular proliferation. Molecular targets of AEs, which have been identified in the gastrointestinal tract, include cannabinoid CB(1) and CB(2) receptors (activated by AEA), transient receptor potential vanilloid type 1 (TRPV1, activated by AEA and OEA), the nuclear receptor peroxisome proliferators-activated receptor-alpha (PPAR-alpha, activated by OEA and, to a less extent, by PEA), and the orphan G-coupled receptors GPR119 (activated by OEA) and GPR55 (activated by PEA and, with lower potency, by AEA and OEA). Modulation of AE levels in the gut may provide new pharmacological strategies not only for the treatment of feeding disorders but also for the prevention or cure of widespread intestinal diseases such as inflammatory bowel disease and colon cancer.
Collapse
Affiliation(s)
- Francesca Borrelli
- Department of Experimental Pharmacology, University of Naples Federico II and Endocannabinoid Research Group, via D. Montesano 49, 80131 Naples, Italy
| | | |
Collapse
|
41
|
Abstract
Radiation colitis, an insidious, progressive disease of increasing frequency, develops 6 mo to 5 years after regional radiotherapy for malignancy, owing to the deleterious effects of the latter on the colon and the small intestine. When dealing with radiation colitis and its complications, the most conservative modality should be employed because the areas of intestinal injury do not tend to heal. Acute radiation colitis is mostly self-limited, and usually, only supportive management is required. Chronic radiation colitis, a poorly predictable progressive disease, is considered as a precancerous lesion; radiation-associated malignancy has a tendency to be diagnosed at an advanced stage and to bear a dismal prognosis. Therefore, management of chronic radiation colitis remains a major challenge owing to the progressive evolution of the disease, including development of fibrosis, endarteritis, edema, fragility, perforation, partial obstruction, and cancer. Patients are commonly managed conservatively. Surgical intervention is difficult to perform because of the extension of fibrosis and alterations in the gut and mesentery, and should be reserved for intestinal obstruction, perforation, fistulas, and severe bleeding. Owing to the difficulty in managing the complications of acute and chronic radiation colitis, particular attention should be focused onto the prevention strategies. Uncovering the fibrosis mechanisms and the molecular events underlying radiation bowel disease could lead to the introduction of new therapeutic and/or preventive approaches. A variety of novel, mostly experimental, agents have been used mainly as a prophylaxis, and improvements have been made in radiotherapy delivery, including techniques to reduce the amount of exposed intestine in the radiation field, as a critical strategy for prevention.
Collapse
|
42
|
Grémy O, Benderitter M, Linard C. Acute and persisting Th2-like immune response after fractionated colorectal gamma-irradiation. World J Gastroenterol 2008; 14:7075-7085. [PMID: 19084914 PMCID: PMC2776837 DOI: 10.3748/wjg.14.7075] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 11/14/2008] [Accepted: 11/21/2008] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate if an immune imbalance may account for the development and progression of chronic radiation enteritis. We analyzed the Th1/Th2 immune response profile early and 6 mo after fractionated colorectal irradiation. METHODS A rat model of fractionated colorectal gamma-irradiation (4-Gy fractions, 3 fractions per week) was designed to investigate the effects of cumulative dose on inflammatory mediators (cytokines and chemokines) and immune response (Th1/Th2 profile and immunosuppressive mediator IL-10) during acute (early) response and 6 mo after the end of fractionated irradiation (chronic response). Analyses were performed 1 d after the cumulative doses of 16 Gy and 36 Gy and 1 d, 3 d, and 26 wk after the cumulative dose of 52 Gy. RESULTS Without causing histological damage, fractionated radiation induced elevated expression of IL-1beta, TNFalpha, MCP-1, and iNOS in distal colonic mucosa during the early post-irradiation phase. At that time, a Th2 profile was confirmed by expression of both the Th2-specific transcription factor GATA-3 and the chemokine receptor CCR4 and by suppression of the Th1 cytokine IFNgamma/IP-10 throughout the irradiation protocol. After 6 mo, despite the 2-fold reduction of iNOS and MCP-1 levels, the Th2 profile persisted, as shown by a 50% reduction in the expression of the Th1 transcription factor T-bet, the chemokine receptor CCXCR3, and the IFNgamma/STAT1 pathway. At the same time-point, the immunosuppressive IL-10/STAT3 pathway, known to regulate the Th1/Th2 balance, was expressed, in irradiated rats, at approximately half its level as compared to controls. This suppression was associated with an overexpression of SOCS3, which inhibits the feedback of the Th1 polarization and regulates IL-10 production. CONCLUSION Colorectal irradiation induces Th2 polarization, defective IL-10/STAT3 pathway activation and SOCS3 overexpression. These changes, in turn, maintain a immunological imbalance that persists in the long term.
Collapse
|