1
|
Chen L, Lucas AT, Mansfield AS, Lheureux S, O'Connor C, Zamboni BA, Patel K, McKee T, Moscow J, Zamboni WC. Evaluation of Innate Immune System, Body Habitus, and Sex on the Pharmacokinetics and Pharmacodynamics of Anetumab Ravtansine in Patients With Cancer. Clin Transl Sci 2025; 18:e70178. [PMID: 40051118 PMCID: PMC11885412 DOI: 10.1111/cts.70178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/10/2025] [Indexed: 03/10/2025] Open
Abstract
Anetumab ravtansine, like other ADC drugs, has high inter-patient variability in its pharmacokinetic (PK) and pharmacodynamic (PD) outcomes, which raises concerns about whether current dosing regimens are optimal for patients. The objective of this study was to evaluate covariates, especially body habitus and the innate immune system (IIS), which may affect anetumab ravtansine PK and PD as part of two clinical trials in patients with ovarian cancer and mesothelioma. Biomarkers of Fcγ receptors(FcγR) CD64 on IIS cells, total body weight (TBW), body surface area (BSA), and other covariates, such as sex and age, were analyzed for an association with anetumab ravtansine PK. Higher FcγR CD64, TBW, and BSA were associated with higher clearance (CL) of anetumab ravtansine (p < 0.05). However, there was no relationship between TBW or BSA and FcγR CD64. Female patients had a lower anetumab ravtansine CL (0.030 ± 0.007 L/h) compared to male patients (0.042 ± 0.006 L/h) (p < 0.05). In both studies, patients with stable disease (SD) and partial response (PR) had higher anetumab ravtansine AUC0-inf compared to patients with progressive disease (PD). Individualizing the dose of anetumab ravtansine and potentially other ADCs based only on TBW is not optimal, whereas precision dosing of an ADC based on the inclusion of novel metrics of IIS biomarkers, body habitus, and sex may be more appropriate to reduce variability in PK exposure, reduce toxicity, and improve response.
Collapse
Affiliation(s)
- Li Chen
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, and UNC Advanced Translational Pharmacology and Analytical Chemistry Lab at University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Andrew T. Lucas
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, and UNC Advanced Translational Pharmacology and Analytical Chemistry Lab at University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | | | | | - Claire O'Connor
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, and UNC Advanced Translational Pharmacology and Analytical Chemistry Lab at University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Beth A. Zamboni
- Department of Computational and Chemical SciencesCarlow UniversityPittsburghPennsylvaniaUSA
| | - Kashish Patel
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, and UNC Advanced Translational Pharmacology and Analytical Chemistry Lab at University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | | | | | - William C. Zamboni
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, and UNC Advanced Translational Pharmacology and Analytical Chemistry Lab at University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
2
|
Zamboni WC, Charlab R, Burckart GJ, Stewart CF. Effect of Obesity on the Pharmacokinetics and Pharmacodynamics of Anticancer Agents. J Clin Pharmacol 2023; 63 Suppl 2:S85-S102. [PMID: 37942904 DOI: 10.1002/jcph.2326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/12/2023] [Indexed: 11/10/2023]
Abstract
An objective of the Precision Medicine Initiative, launched in 2015 by the US Food and Drug Administration and National Institutes of Health, is to optimize and individualize dosing of drugs, especially anticancer agents, with high pharmacokinetic and pharmacodynamic variability. The American Society of Clinical Oncology recently reported that 40% of obese patients receive insufficient chemotherapy doses and exposures, which may lead to reduced efficacy, and recommended pharmacokinetic studies to guide appropriate dosing in these patients. These issues will only increase in importance as the incidence of obesity in the population increases. This publication reviews the effects of obesity on (1) tumor biology, development of cancer, and antitumor response; (2) pharmacokinetics and pharmacodynamics of small-molecule anticancer drugs; and (3) pharmacokinetics and pharmacodynamics of complex anticancer drugs, such as carrier-mediated agents and biologics. These topics are not only important from a scientific research perspective but also from a drug development and regulator perspective. Thus, it is important to evaluate the effects of obesity on the pharmacokinetics and pharmacodynamics of anticancer agents in all categories of body habitus and especially in patients who are obese and morbidly obese. As the effects of obesity on the pharmacokinetics and pharmacodynamics of anticancer agents may be highly variable across drug types, the optimal dosing metric and algorithm for difference classes of drugs may be widely different. Thus, studies are needed to evaluate current and novel metrics and methods for measuring body habitus as related to optimizing the dose and reducing pharmacokinetic and pharmacodynamic variability of anticancer agents in patients who are obese and morbidly obese.
Collapse
Affiliation(s)
- William C Zamboni
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Caroline Institute of Nanomedicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rosane Charlab
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Gilbert J Burckart
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | | |
Collapse
|
3
|
Schmid R, Kaiser J, Willbold R, Walther N, Wittig R, Lindén M. Towards a simple in vitro surface chemistry pre-screening method for nanoparticles to be used for drug delivery to solid tumours. Biomater Sci 2023; 11:6287-6298. [PMID: 37551433 DOI: 10.1039/d3bm00966a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
An efficient nanoparticulate drug carrier intended for chemotherapy based on intravenous administration must exhibit a long enough blood circulation time, a good penetrability into the tumour volume, as well as an efficient uptake by cancer cells. Limiting factors for the therapeutic outcome in vivo are recognition of the nanoparticles as foreign objects, which triggers nanoparticle uptake by defence organs rich in macrophages, e.g. liver and spleen, on the time-scale of accumulation and uptake in/by the tumour. However, the development of nanomedicine towards efficient nanoparticle-based delivery to solid tumours is hampered by the lack of simple, reproducible, cheap, and predictive means for early identification of promising nanoparticle formulations. The surface chemistry of nanoparticles is known to be the most important determinant for the biological fate of nanoparticles, as it influences the extent of serum protein adsorption, and also the relative composition of the protein corona. Here we preliminarily evaluate an extremely simple screening method for nanoparticle surface chemistry pre-optimization based on nanoparticle uptake in vitro by PC-3 cancer cells and THP-1 macrophages. Only when both selectivity for the cancer cells as well as the extent of nanoparticle uptake are taken into consideration do the in vitro results mirror literature results obtained for small animal models. Furthermore, although not investigated here, the screening method does also lend itself to the study of actively targeted nanoparticles.
Collapse
Affiliation(s)
- Roman Schmid
- Inorganic Chemistry II, Albert-Einstein-Allee 11, Ulm University, 89081 Ulm, Germany.
| | - Juliane Kaiser
- Institute for Laser Technologies in Medicine & Metrology (ILM) at Ulm University, Helmholtzstrasse 12, 89081 Ulm, Germany.
| | - Ramona Willbold
- Institute for Laser Technologies in Medicine & Metrology (ILM) at Ulm University, Helmholtzstrasse 12, 89081 Ulm, Germany.
| | - Nomusa Walther
- Institute for Laser Technologies in Medicine & Metrology (ILM) at Ulm University, Helmholtzstrasse 12, 89081 Ulm, Germany.
| | - Rainer Wittig
- Institute for Laser Technologies in Medicine & Metrology (ILM) at Ulm University, Helmholtzstrasse 12, 89081 Ulm, Germany.
| | - Mika Lindén
- Inorganic Chemistry II, Albert-Einstein-Allee 11, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
4
|
Gabrielaitis D, Zitkute V, Saveikyte L, Labutyte G, Skapas M, Meskys R, Casaite V, Sasnauskiene A, Neniskyte U. Nanotubes from bacteriophage tail sheath proteins: internalisation by cancer cells and macrophages. NANOSCALE ADVANCES 2023; 5:3705-3716. [PMID: 37441259 PMCID: PMC10334369 DOI: 10.1039/d3na00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/04/2023] [Indexed: 07/15/2023]
Abstract
Bionanoparticles comprised of naturally occurring monomers are gaining interest in the development of novel drug transportation systems. Here we report on the stabilisation, cellular uptake, and macrophage clearance of nanotubes formed from the self-assembling gp053 tail sheath protein of the vB_EcoM_FV3 bacteriophage. To evaluate the potential of the bacteriophage protein-based nanotubes as therapeutic nanocarriers, we investigated their internalisation into colorectal cancer cell lines and professional macrophages that may hinder therapeutic applications by clearing nanotube carriers. We fused the bacteriophage protein with a SNAP-tag self-labelling enzyme and demonstrated that its activity is retained in assembled nanotubes, indicating that such carriers can be applied to deliver therapeutic biomolecules. Under physiological conditions, the stabilisation of the nanotubes by PEGylation was required to prevent aggregation and yield a stable solution with uniform nano-sized structures. Colorectal carcinoma cells from primary and metastatic tumours internalized SNAP-tag-carrying nanotubes with different efficiencies. The nanotubes entered HCT116 cells via dynamin-dependent and SW480 cells - via dynamin- and clathrin-dependent pathways and were accumulated in lysosomes. Meanwhile, peritoneal macrophages phagocytosed the nanotubes in a highly efficient manner through actin-dependent mechanisms. Macrophage clearance of nanotubes was enhanced by inflammatory activation but was dampened in macrophages isolated from aged animals. Altogether, our results demonstrate that gp053 nanotubes retained the cargo's enzymatic activity post-assembly and had the capacity to enter cancer cells. Furthermore, we emphasise the importance of evaluating the nanocarrier clearance by immune cells under conditions mimicking a cancerous environment.
Collapse
Affiliation(s)
- Dovydas Gabrielaitis
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Vilmante Zitkute
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Lina Saveikyte
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Greta Labutyte
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Martynas Skapas
- Institute of Biotechnology, Vilnius University Vilnius Lithuania
| | - Rolandas Meskys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Vida Casaite
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Ausra Sasnauskiene
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Urte Neniskyte
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
- VU-EMBL Partnership Institute, Vilnius University Vilnius Lithuania
| |
Collapse
|
5
|
Chettab K, Fitzsimmons C, Novikov A, Denis M, Phelip C, Mathé D, Choffour PA, Beaumel S, Fourmaux E, Norca P, Kryza D, Evesque A, Jordheim LP, Perrial E, Matera EL, Caroff M, Kerzerho J, Dumontet C. A systemically administered detoxified TLR4 agonist displays potent antitumor activity and an acceptable tolerance profile in preclinical models. Front Immunol 2023; 14:1066402. [PMID: 37223101 PMCID: PMC10200957 DOI: 10.3389/fimmu.2023.1066402] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/19/2023] [Indexed: 05/25/2023] Open
Abstract
Bacterial lipopolysaccharides (LPS) are potent innate immunostimulants targeting the Toll-like receptor 4 (TLR4), an attractive and validated target for immunostimulation in cancer therapy. Although LPS possess anti-tumor activity, toxicity issues prevent their systemic administration at effective doses in humans. We first demonstrated that LPS formulated in liposomes preserved a potent antitumor activity per se upon systemic administration in syngeneic models, and significantly enhance the antitumor activity of the anti-CD20 antibody rituximab in mice xenografted with the human RL lymphoma model. Liposomal encapsulation also allowed a 2-fold reduction in the induction of pro-inflammatory cytokines by LPS. Mice receiving an intravenous administration demonstrated a significant increase of neutrophils, monocytes and macrophages at the tumor site as well as an increase of macrophages in spleen. Further, we chemically detoxified LPS to obtain MP-LPS that was associated with a 200-fold decrease in the induction of proinflammatory cytokines. When encapsulated in a clinically approved liposomal formulation, toxicity, notably pyrogenicity (10-fold), was limited while the antitumor activity and immunoadjuvant effect were maintained. This improved tolerance profile of liposomal MP-LPS was associated with the preferential activation of the TLR4-TRIF pathway. Finally, in vitro studies demonstrated that stimulation with encapsulated MP-LPS reversed the polarization of M2 macrophages towards an M1 phenotype, and a phase 1 trial in healthy dogs validated its tolerance upon systemic administration up to very high doses (10µg/kg). Altogether, our results demonstrate the strong therapeutic potential of MPLPS formulated in liposomes as a systemically active anticancer agent, supporting its evaluation in patients with cancer.
Collapse
Affiliation(s)
- Kamel Chettab
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | - Chantel Fitzsimmons
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
| | - Alexey Novikov
- HEPHAISTOS-Pharma, Université Paris-Saclay, Orsay, France
| | - Morgane Denis
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
- Antinéo, Lyon, France
| | | | | | | | - Sabine Beaumel
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
| | - Eric Fourmaux
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
| | - Patrick Norca
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
| | | | | | - Lars Petter Jordheim
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
| | - Emeline Perrial
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
| | - Eva-Laure Matera
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
| | - Martine Caroff
- HEPHAISTOS-Pharma, Université Paris-Saclay, Orsay, France
| | | | - Charles Dumontet
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
6
|
McColl ER, Croyle MA, Zamboni WC, Honer WG, Heise M, Piquette-Miller M, Goralski KB. COVID-19 Vaccines and the Virus: Impact on Drug Metabolism and Pharmacokinetics. Drug Metab Dispos 2023; 51:130-141. [PMID: 36273826 PMCID: PMC11022893 DOI: 10.1124/dmd.122.000934] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/07/2022] [Accepted: 09/30/2022] [Indexed: 01/08/2023] Open
Abstract
This article reports on an American Society of Pharmacology and Therapeutics, Division of Drug Metabolism and Disposition symposium held at Experimental Biology on April 2, 2022, in Philadelphia. As of July 2022, over 500 million people have been infected with SARS-CoV-2 (the virus causing COVID-19) and over 12 billion vaccine doses have been administered. Clinically significant interactions between viral infections and hepatic drug metabolism were first recognized over 40 years ago during a cluster of pediatric theophylline toxicity cases attributed to reduced hepatic drug metabolism amid an influenza B outbreak. Today, a substantive body of research supports that the activated innate immune response generally decreases hepatic cytochrome P450 activity. The interactions extend to drug transporters and other organs and have the potential to impact drug absorption, distribution, metabolism, and excretion (ADME). Based on this knowledge, altered ADME is predicted with SARS-CoV-2 infection or vaccination. The report begins with a clinical case exploring the possibility of SARS-CoV-2 vaccination increasing clozapine levels. This is followed by discussions of how SARS-CoV-2 infection or vaccines alter the metabolism and disposition of complex drugs, such as nanoparticles and biologics and small molecule therapies. The review concludes with a discussion of the effects of viral infections on placental amino acid transport and their potential to impact fetal development. The session improved our understanding of the impact of emerging viral infections and vaccine technologies on drug metabolism and disposition, which will help mitigate drug toxicity and improve drug and vaccine safety and effectiveness. SIGNIFICANCE STATEMENT: Altered pharmacokinetics of small molecule and complex molecule drugs and fetal brain distribution of amino acids following SARS-CoV-2 infection or immunization are possible. The proposed mechanisms involve decreased liver cytochrome P450 metabolism of small molecules, enhanced innate immune system metabolism of complex molecules, and altered placental and fetal blood-brain barrier amino acid transport, respectively. Future research is needed to understand the effects of these interactions on adverse drug responses, drug and vaccine safety, and effectiveness and fetal neurodevelopment.
Collapse
Affiliation(s)
- Eliza R McColl
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - Maria A Croyle
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - William C Zamboni
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - William G Honer
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - Mark Heise
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - Micheline Piquette-Miller
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - Kerry B Goralski
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| |
Collapse
|
7
|
Mills JA, Humphries J, Simpson JD, Sonderegger SE, Thurecht KJ, Fletcher NL. Modulating Macrophage Clearance of Nanoparticles: Comparison of Small-Molecule and Biologic Drugs as Pharmacokinetic Modifiers of Soft Nanomaterials. Mol Pharm 2022; 19:4080-4097. [PMID: 36069540 DOI: 10.1021/acs.molpharmaceut.2c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanomedicines show benefits in overcoming the limitations of conventional drug delivery systems by reducing side effects, toxicity, and exhibiting enhanced pharmacokinetic (PK) profiles to improve the therapeutic window of small-molecule drugs. However, upon administration, many nanoparticles (NPs) prompt induction of host innate immune responses, which in combination with other clearance pathways such as renal and hepatic, eliminate up to 99% of the administered dose. Here, we explore a drug predosing strategy to transiently suppress the mononuclear phagocyte system (MPS), subsequently improving the PK profile and biological behaviors exhibited by a model NP system [hyperbranched polymers (HBPs)] in an immunocompetent mouse model. In vitro assays allowed the identification of five drug candidates that attenuated cellular association. Predosing of lead compounds chloroquine (CQ) and zoledronic acid (ZA) further showed increased HBP retention within the circulatory system of mice, as shown by both fluorescence imaging and positron emission tomography-computed tomography. Flow cytometric evaluation of spleen and liver tissue cells following intravenous administration further demonstrated that CQ and ZA significantly reduced HBP association with myeloid cells by 23 and 16%, respectively. The results of this study support the use of CQ to pharmacologically suppress the MPS to improve NP PKs.
Collapse
Affiliation(s)
- Jessica A Mills
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - James Humphries
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Joshua D Simpson
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Stefan E Sonderegger
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Nicholas L Fletcher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
8
|
Skubitz KM, Lindgren BR, Domingo-Musibay E, Cheng EY. Prospective Trial of Monocyte Count as a Biomarker of Hand-Foot Syndrome Among Patients With Soft Tissue Sarcomas Treated With Pegylated Liposomal Doxorubicin and Ifosfamide. Cureus 2022; 14:e24498. [PMID: 35651410 PMCID: PMC9135613 DOI: 10.7759/cureus.24498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/05/2022] Open
|
9
|
Mills JA, Liu F, Jarrett TR, Fletcher NL, Thurecht KJ. Nanoparticle based medicines: approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation. Biomater Sci 2022; 10:3029-3053. [PMID: 35419582 DOI: 10.1039/d2bm00181k] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For decades, nanomedicines have been reported as a potential means to overcome the limitations of conventional drug delivery systems by reducing side effects, toxicity and the non-ideal pharmacokinetic behaviour typically exhibited by small molecule drugs. However, upon administration many nanoparticles prompt induction of host inflammatory responses due to recognition and uptake by macrophages, eliminating up to 95% of the administered dose. While significant advances in nanoparticle engineering and consequent therapeutic efficacy have been made, it is becoming clear that nanoparticle recognition by the mononuclear phagocyte system (MPS) poses an impassable junction in the current framework of nanoparticle development. Hence, this has negative consequences on the clinical translation of nanotechnology with respect to therapeutic efficacy, systemic toxicity and economic benefit. In order to improve the translation of nanomedicines from bench-to-bedside, there is a requirement to either modify nanomedicines in terms of how they interact with intrinsic processes in the body, or modulate the body to be more accommodating for nanomedicine treatments. Here we provide an overview of the current standard for design elements of nanoparticles, as well as factors to consider when producing nanomedicines that have minimal MPS-nanoparticle interactions; we explore this landscape across the cellular to tissue and organ levels. Further, rather than designing materials to suit the body, a growing research niche involves modulating biological responses to administered nanomaterials. We here discuss how developing strategic methods of MPS 'pre-conditioning' with small molecule or biological drugs, as well as implementing strategic dosing regimens, such as 'decoy' nanoparticles, is essential to increasing nanoparticle therapeutic efficacy. By adopting such a perspective, we hope to highlight the increasing trends in research dedicated to improving nanomedicine translation, and subsequently making a positive clinical impact.
Collapse
Affiliation(s)
- Jessica A Mills
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
| | - Feifei Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Australia
| | - Thomas R Jarrett
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Australia
| | - Nicholas L Fletcher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Australia
| |
Collapse
|
10
|
Sudheesh MS, Pavithran K, M S. Revisiting the outstanding questions in cancer nanomedicine with a future outlook. NANOSCALE ADVANCES 2022; 4:634-653. [PMID: 36131837 PMCID: PMC9418065 DOI: 10.1039/d1na00810b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 06/01/2023]
Abstract
The field of cancer nanomedicine has been fueled by the expectation of mitigating the inefficiencies and life-threatening side effects of conventional chemotherapy. Nanomedicine proposes to utilize the unique nanoscale properties of nanoparticles to address the most pressing questions in cancer treatment and diagnosis. The approval of nano-based products in the 1990s inspired scientific explorations in this direction. However, despite significant progress in the understanding of nanoscale properties, there are only very few success stories in terms of substantial increase in clinical efficacy and overall patient survival. All existing paradigms such as the concept of enhanced permeability and retention (EPR), the stealth effect and immunocompatibility of nanomedicine have been questioned in recent times. In this review we critically examine impediments posed by biological factors to the clinical success of nanomedicine. We put forth current observations on critical outstanding questions in nanomedicine. We also provide the promising side of cancer nanomedicine as we move forward in nanomedicine research. This would provide a future direction for research in nanomedicine and inspire ongoing investigations.
Collapse
Affiliation(s)
- M S Sudheesh
- Dept. of Pharmaceutics, Amrita School of Pharmacy Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara Kochi - 682041 India +91-9669372019
| | - K Pavithran
- Department of Medical Oncology, Amrita Institute of Medial Sciences and Research Centre Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara Kochi - 682041 India
| | - Sabitha M
- Dept. of Pharmaceutics, Amrita School of Pharmacy Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara Kochi - 682041 India +91-9669372019
| |
Collapse
|
11
|
Zhao Y, Su W, Liang G, Shan X, Ma W, Tang D, Li L, Niu X, Zhao S, Zhang Q, Zhao W. High dose and hepatobiliary dysfunction are associated with hand-foot syndrome in patients with lymphoma using pegylated liposomal doxorubicin: a retrospective study. BMC Pharmacol Toxicol 2021; 22:63. [PMID: 34696815 PMCID: PMC8543895 DOI: 10.1186/s40360-021-00529-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose In clinical practice, the risk factors for pegylated liposomal doxorubicin-related hand-foot syndrome remain unclear. The purpose of this study was to determine the risk factors associated with hand-foot syndrome in patients with lymphoma using pegylated liposomal doxorubicin. Methods This retrospective descriptive analysis included patients with lymphoma who received PLD treatment (≥ 2 cycles of chemotherapy) at our cancer centre and had complete follow-up data from January 2016 to February 2020. Clinical, laboratory data, as well as the occurrence of hand-foot syndrome (incidence, location, severity, impact on follow-up chemotherapy) were obtained. The primary end point was the incidence of hand-foot syndrome, which was classified according to the “Common Terminology Criteria for Adverse Events” (Version 4.0). A multivariate logistic regression analysis was used to identify risk factors for hand-foot syndrome in patients with lymphoma using doxorubicin liposomes. Findings A total of 167 patients met the inclusion criteria. 58 developed HFS, of which 45 occurred after the second course of chemotherapy. The multivariate logistic regression analysis revealed that a dose increase of pegylated liposomal doxorubicin and hepatobiliary dysfunction were significantly associated with an increased risk for hand-foot syndrome(dose intensity, OR = 6.479; 95% CI, 1.431–29.331 [P = 0.015]; history of gallstones, OR = 14.144, 95% CI, 1.512–132.346 [P = 0.020]; alanine aminotransferase, OR = 1.194, 95% CI, 1.056–1.350 [P = 0.005]; aspartate aminotransferase, OR = 1.162, 95% CI, 1.010–1.336 [P = 0.035]; and glutamine transpeptidase, OR = 1.092, 95% CI, 1.016–1.174 [P = 0.018]). Implications These findings contribute to the risk assessment of patients with lymphoma before using pegylated liposomal doxorubicin. For patients with the above risk factors, preventive measures should be taken in advance to reduce the incidence of HFS.
Collapse
Affiliation(s)
- Yanfang Zhao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Wenjia Su
- Department of Lymphoma, The First Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, 150040, P. R. China
| | - Guohua Liang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xiaoyu Shan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Weiwei Ma
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Dabei Tang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Liru Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xingjian Niu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Shu Zhao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Wenhui Zhao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
12
|
Stiffness of targeted layer-by-layer nanoparticles impacts elimination half-life, tumor accumulation, and tumor penetration. Proc Natl Acad Sci U S A 2021; 118:2104826118. [PMID: 34649991 DOI: 10.1073/pnas.2104826118] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 01/06/2023] Open
Abstract
Nanoparticle (NP) stiffness has been shown to significantly impact circulation time and biodistribution in anticancer drug delivery. In particular, the relationship between particle stiffness and tumor accumulation and penetration in vivo is an important phenomenon to consider in optimizing NP-mediated tumor delivery. Layer-by-layer (LbL) NPs represent a promising class of multifunctional nanoscale drug delivery carriers. However, there has been no demonstration of the versatility of LbL systems in coating systems with different stiffnesses, and little is known about the potential role of LbL NP stiffness in modulating in vivo particle trafficking, although NP modulus has been recently studied for its impact on pharmacokinetics. LbL nanotechnology enables NPs to be functionalized with uniform coatings possessing molecular tumor-targeting properties, independent of the NP core stiffness. Here, we report that the stiffness of LbL NPs is directly influenced by the mechanical properties of its underlying liposomal core, enabling the modulation and optimization of LbL NP stiffness while preserving LbL NP outer layer tumor-targeting and stealth properties. We demonstrate that the stiffness of LbL NPs has a direct impact on NP pharmacokinetics, organ and tumor accumulation, and tumor penetration-with compliant LbL NPs having longer elimination half-life, higher tumor accumulation, and higher tumor penetration. Our findings underscore the importance of NP stiffness as a design parameter in enhancing the delivery of LbL NP formulations.
Collapse
|
13
|
Lucas AT, Moody A, Schorzman AN, Zamboni WC. Importance and Considerations of Antibody Engineering in Antibody-Drug Conjugates Development from a Clinical Pharmacologist's Perspective. Antibodies (Basel) 2021; 10:30. [PMID: 34449544 PMCID: PMC8395454 DOI: 10.3390/antib10030030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/04/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Antibody-drug conjugates (ADCs) appear to be in a developmental boom, with five FDA approvals in the last two years and a projected market value of over $4 billion by 2024. Major advancements in the engineering of these novel cytotoxic drug carriers have provided a few early success stories. Although the use of these immunoconjugate agents are still in their infancy, valuable lessons in the engineering of these agents have been learned from both preclinical and clinical failures. It is essential to appreciate how the various mechanisms used to engineer changes in ADCs can alter the complex pharmacology of these agents and allow the ADCs to navigate the modern-day therapeutic challenges within oncology. This review provides a global overview of ADC characteristics which can be engineered to alter the interaction with the immune system, pharmacokinetic and pharmacodynamic profiles, and therapeutic index of ADCs. In addition, this review will highlight some of the engineering approaches being explored in the creation of the next generation of ADCs.
Collapse
Affiliation(s)
- Andrew T. Lucas
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Amber Moody
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Allison N. Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
| | - William C. Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Glolytics, LLC, Chapel Hill, NC 27517, USA
| |
Collapse
|
14
|
Rapid Production and Purification of Dye-Loaded Liposomes by Electrodialysis-Driven Depletion. MEMBRANES 2021; 11:membranes11060417. [PMID: 34072746 PMCID: PMC8228697 DOI: 10.3390/membranes11060417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
Liposomes are spherical-shaped vesicles that enclose an aqueous milieu surrounded by bilayer or multilayer membranes formed by self-assembly of lipid molecules. They are intensively exploited as either model membranes for fundamental studies or as vehicles for delivery of active substances in vivo and in vitro. Irrespective of the method adopted for production of loaded liposomes, obtaining the final purified product is often achieved by employing multiple, time consuming steps. To alleviate this problem, we propose a simplified approach for concomitant production and purification of loaded liposomes by exploiting the Electrodialysis-Driven Depletion of charged molecules from solutions. Our investigations show that electrically-driven migration of charged detergent and dye molecules from solutions that include natural or synthetic lipid mixtures leads to rapid self-assembly of loaded, purified liposomes, as inferred from microscopy and fluorescence spectroscopy assessments. In addition, the same procedure was successfully applied for incorporating PEGylated lipids into the membranes for the purpose of enabling long-circulation times needed for potential in vivo applications. Dynamic Light Scattering analyses and comparison of electrically-formed liposomes with liposomes produced by sonication or extrusion suggest potential use for numerous in vitro and in vivo applications.
Collapse
|
15
|
Mazaleuskaya LL, Muzykantov VR, FitzGerald GA. Nanotherapeutic-directed approaches to analgesia. Trends Pharmacol Sci 2021; 42:527-550. [PMID: 33883067 DOI: 10.1016/j.tips.2021.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
The ongoing opioid crisis highlighted the need for non-steroidal anti-inflammatory drugs (NSAIDs), nonaddictive analgesics against pain, fever, and inflammation. However, NSAIDs may cause gastrointestinal and cardiovascular adverse effects. To avoid systemic toxicity and deliver drugs to diseased tissues, nanotechnology methods of NSAID encapsulation have been reported and some have reached clinical development. Currently, 57 micro- and nanodrugs are approved by the US FDA. Already approved nanoanalgesics have revealed superior efficacy or reduced toxicity compared with placebo or lower doses of systemically administered active comparators. In this review, the evidence for approval of the marketed nanodrugs will be discussed, with a focus on therapies for pain and inflammation. Nanomedicine remains an attractive field for the development of targeted analgesics.
Collapse
Affiliation(s)
- Liudmila L Mazaleuskaya
- Institute for Translational Medicine and Therapeutics, The Department of Systems Pharmacology and Translational Therapeutics, and Center for Targeted Therapeutics and Translational Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir R Muzykantov
- Institute for Translational Medicine and Therapeutics, The Department of Systems Pharmacology and Translational Therapeutics, and Center for Targeted Therapeutics and Translational Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, The Department of Systems Pharmacology and Translational Therapeutics, and Center for Targeted Therapeutics and Translational Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Naumenko VA, Vodopyanov SS, Vlasova KY, Potashnikova DM, Melnikov PA, Vishnevskiy DA, Garanina AS, Valikhov MP, Lipatova AV, Chekhonin VP, Majouga AG, Abakumov MA. Intravital imaging of liposome behavior upon repeated administration: A step towards the development of liposomal companion diagnostic for cancer nanotherapy. J Control Release 2021; 330:244-256. [DOI: 10.1016/j.jconrel.2020.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/29/2020] [Accepted: 12/11/2020] [Indexed: 01/04/2023]
|
17
|
Piscatelli JA, Ban J, Lucas AT, Zamboni WC. Complex Factors and Challenges that Affect the Pharmacology, Safety and Efficacy of Nanocarrier Drug Delivery Systems. Pharmaceutics 2021; 13:114. [PMID: 33477395 PMCID: PMC7830329 DOI: 10.3390/pharmaceutics13010114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/01/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Major developments in nanomedicines, such as nanoparticles (NPs), nanosomes, and conjugates, have revolutionized drug delivery capabilities over the past four decades. Although nanocarrier agents provide numerous advantages (e.g., greater solubility and duration of systemic exposure) compared to their small-molecule counterparts, there is considerable inter-patient variability seen in the systemic disposition, tumor delivery and overall pharmacological effects (i.e., anti-tumor efficacy and unwanted toxicity) of NP agents. This review aims to provide a summary of fundamental factors that affect the disposition of NPs in the treatment of cancer and why they should be evaluated during preclinical and clinical development. Furthermore, this chapter will highlight some of the translational challenges associated with elements of NPs and how these issues can only be addressed by detailed and novel pharmacology studies.
Collapse
Affiliation(s)
- Joseph A. Piscatelli
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; (J.A.P.); (J.B.); (W.C.Z.)
| | - Jisun Ban
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; (J.A.P.); (J.B.); (W.C.Z.)
| | - Andrew T. Lucas
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; (J.A.P.); (J.B.); (W.C.Z.)
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Carolina Center of Cancer Nanotechnology Excellence, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William C. Zamboni
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; (J.A.P.); (J.B.); (W.C.Z.)
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Carolina Center of Cancer Nanotechnology Excellence, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
La-Beck NM, Islam MR, Markiewski MM. Nanoparticle-Induced Complement Activation: Implications for Cancer Nanomedicine. Front Immunol 2021; 11:603039. [PMID: 33488603 PMCID: PMC7819852 DOI: 10.3389/fimmu.2020.603039] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022] Open
Abstract
Nanoparticle-based anticancer medications were first approved for cancer treatment almost 2 decades ago. Patients benefit from these approaches because of the targeted-drug delivery and reduced toxicity, however, like other therapies, adverse reactions often limit their use. These reactions are linked to the interactions of nanoparticles with the immune system, including the activation of complement. This activation can cause well-characterized acute inflammatory reactions mediated by complement effectors. However, the long-term implications of chronic complement activation on the efficacy of drugs carried by nanoparticles remain obscured. The recent discovery of protumor roles of complement raises the possibility that nanoparticle-induced complement activation may actually reduce antitumor efficacy of drugs carried by nanoparticles. We discuss here the initial evidence supporting this notion. Better understanding of the complex interactions between nanoparticles, complement, and the tumor microenvironment appears to be critical for development of nanoparticle-based anticancer therapies that are safer and more efficacious.
Collapse
Affiliation(s)
- Ninh M La-Beck
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States.,Department of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Md Rakibul Islam
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Maciej M Markiewski
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| |
Collapse
|
19
|
Ingram N, McVeigh LE, Abou-Saleh RH, Maynard J, Peyman SA, McLaughlan JR, Fairclough M, Marston G, Valleley EMA, Jimenez-Macias JL, Charalambous A, Townley W, Haddrick M, Wierzbicki A, Wright A, Volpato M, Simpson PB, Treanor DE, Thomson NH, Loadman PM, Bushby RJ, Johnson BR, Jones PF, Evans JA, Freear S, Markham AF, Evans SD, Coletta PL. Ultrasound-triggered therapeutic microbubbles enhance the efficacy of cytotoxic drugs by increasing circulation and tumor drug accumulation and limiting bioavailability and toxicity in normal tissues. Theranostics 2020; 10:10973-10992. [PMID: 33042265 PMCID: PMC7532679 DOI: 10.7150/thno.49670] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Most cancer patients receive chemotherapy at some stage of their treatment which makes improving the efficacy of cytotoxic drugs an ongoing and important goal. Despite large numbers of potent anti-cancer agents being developed, a major obstacle to clinical translation remains the inability to deliver therapeutic doses to a tumor without causing intolerable side effects. To address this problem, there has been intense interest in nanoformulations and targeted delivery to improve cancer outcomes. The aim of this work was to demonstrate how vascular endothelial growth factor receptor 2 (VEGFR2)-targeted, ultrasound-triggered delivery with therapeutic microbubbles (thMBs) could improve the therapeutic range of cytotoxic drugs. Methods: Using a microfluidic microbubble production platform, we generated thMBs comprising VEGFR2-targeted microbubbles with attached liposomal payloads for localised ultrasound-triggered delivery of irinotecan and SN38 in mouse models of colorectal cancer. Intravenous injection into tumor-bearing mice was used to examine targeting efficiency and tumor pharmacodynamics. High-frequency ultrasound and bioluminescent imaging were used to visualise microbubbles in real-time. Tandem mass spectrometry (LC-MS/MS) was used to quantitate intratumoral drug delivery and tissue biodistribution. Finally, 89Zr PET radiotracing was used to compare biodistribution and tumor accumulation of ultrasound-triggered SN38 thMBs with VEGFR2-targeted SN38 liposomes alone. Results: ThMBs specifically bound VEGFR2 in vitro and significantly improved tumor responses to low dose irinotecan and SN38 in human colorectal cancer xenografts. An ultrasound trigger was essential to achieve the selective effects of thMBs as without it, thMBs failed to extend intratumoral drug delivery or demonstrate enhanced tumor responses. Sensitive LC-MS/MS quantification of drugs and their metabolites demonstrated that thMBs extended drug exposure in tumors but limited exposure in healthy tissues, not exposed to ultrasound, by persistent encapsulation of drug prior to elimination. 89Zr PET radiotracing showed that the percentage injected dose in tumors achieved with thMBs was twice that of VEGFR2-targeted SN38 liposomes alone. Conclusions: thMBs provide a generic platform for the targeted, ultrasound-triggered delivery of cytotoxic drugs by enhancing tumor responses to low dose drug delivery via combined effects on circulation, tumor drug accumulation and exposure and altered metabolism in normal tissues.
Collapse
Affiliation(s)
- Nicola Ingram
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Laura E. McVeigh
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Radwa H. Abou-Saleh
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9JT, United Kingdom
- Department of Physics, Faculty of Science, Mansoura University, Egypt
| | - Juliana Maynard
- Medicines Discovery Catapult, Mereside, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Sally A. Peyman
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9JT, United Kingdom
| | - James R. McLaughlan
- Faculty of Electronic and Electrical Engineering, University of Leeds, LS2 9JT, United Kingdom
| | - Michael Fairclough
- Wolfson Molecular Imaging Centre, University of Manchester, Palatine Road, Manchester, M20 3LI, United Kingdom
| | - Gemma Marston
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Elizabeth M. A. Valleley
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Jorge L. Jimenez-Macias
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Antonia Charalambous
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - William Townley
- Medicines Discovery Catapult, Mereside, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Malcolm Haddrick
- Medicines Discovery Catapult, Mereside, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Antonia Wierzbicki
- Institute of Cancer Therapeutics, University of Bradford, BD7 1DP, United Kingdom
| | - Alexander Wright
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Milène Volpato
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Peter B. Simpson
- Medicines Discovery Catapult, Mereside, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Darren E. Treanor
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Neil H. Thomson
- School of Dentistry, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Paul M. Loadman
- Institute of Cancer Therapeutics, University of Bradford, BD7 1DP, United Kingdom
| | - Richard J. Bushby
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9JT, United Kingdom
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Benjamin R.G. Johnson
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9JT, United Kingdom
| | - Pamela F. Jones
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - J. Anthony Evans
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Steven Freear
- Faculty of Electronic and Electrical Engineering, University of Leeds, LS2 9JT, United Kingdom
| | - Alexander F. Markham
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Stephen D. Evans
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9JT, United Kingdom
| | - P. Louise Coletta
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| |
Collapse
|
20
|
Witika BA, Makoni PA, Matafwali SK, Chabalenge B, Mwila C, Kalungia AC, Nkanga CI, Bapolisi AM, Walker RB. Biocompatibility of Biomaterials for Nanoencapsulation: Current Approaches. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1649. [PMID: 32842562 PMCID: PMC7557593 DOI: 10.3390/nano10091649] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022]
Abstract
Nanoencapsulation is an approach to circumvent shortcomings such as reduced bioavailability, undesirable side effects, frequent dosing and unpleasant organoleptic properties of conventional drug delivery systems. The process of nanoencapsulation involves the use of biomaterials such as surfactants and/or polymers, often in combination with charge inducers and/or ligands for targeting. The biomaterials selected for nanoencapsulation processes must be as biocompatible as possible. The type(s) of biomaterials used for different nanoencapsulation approaches are highlighted and their use and applicability with regard to haemo- and, histocompatibility, cytotoxicity, genotoxicity and carcinogenesis are discussed.
Collapse
Affiliation(s)
- Bwalya A. Witika
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (B.A.W.); (P.A.M.)
| | - Pedzisai A. Makoni
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (B.A.W.); (P.A.M.)
| | - Scott K. Matafwali
- Department of Basic Sciences, School of Medicine, Copperbelt University, Ndola 10101, Zambia;
| | - Billy Chabalenge
- Department of Market Authorization, Zambia Medicines Regulatory Authority, Lusaka 10101, Zambia;
| | - Chiluba Mwila
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (A.C.K.)
| | - Aubrey C. Kalungia
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (A.C.K.)
| | - Christian I. Nkanga
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, P.O. Box 212, Kinshasa XI, Democratic Republic of the Congo;
| | - Alain M. Bapolisi
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, South Africa;
| | - Roderick B. Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (B.A.W.); (P.A.M.)
| |
Collapse
|
21
|
Hamouda RA, Yousuf WE, Mohammed ABA, Mohammed RS, Darwish DB, Abdeen EE. Comparative study between zinc oxide nanoparticles synthesis by biogenic and wet chemical methods in vivo and in vitro against Staphylococcus aureus. Microb Pathog 2020; 147:104384. [PMID: 32679246 DOI: 10.1016/j.micpath.2020.104384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/13/2020] [Accepted: 07/06/2020] [Indexed: 11/19/2022]
Abstract
ZnO nanoparticles (ZnO-NPs) can be used as nano medicine for Staphylococcus aureus infection, which causes deleterious effects on liver, kidney and lung tissue, as it causes catarrhal bronchitis, peri-bronchial oedema, lymphocytic granulomas, oedematous fluid and haemorrhage inside the bronchi, and interstitial pneumonia. In this research ZnO nanoparticle (ZnO-NPs) synthesis by biogenic method using green alga Ulva fasciata and by wet chemical method. Both of them tested in vitro and in vivo against Staphylococcus aureus. The characterization of ZnO-NPs was detected by U.V spectroscopy, Fourier-transform infrared (FTIR), Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). In vivo assessment eight groups, each group contain of five rats and the treatment as follow (1) an uninfected control group; (2) an infected group; groups (3), (4), and (5) were injected with biogenic or chemical ZnO-NPs or zinc acetate, as the bulk group, respectively; and groups (6), (7) and (8) were infected and then treated in the same manner as groups (3), (4), and (5), respectively. The blood profile, biochemical parameters, phagocytic activity and histological assessment of liver, kidney and lung tissue of each rat was investigated after 20 days. The rats treated with 5 mg/1 kg natural ZnO-NPs showed improved lung characteristics, and the number of platelets in the infected groups treated with ZnO-NPs from chemical and natural sources (G6 and G7) was close to those in the control group. However, the trend was reversed for regarding lymphocytes, which remained at higher levels in uninfected animals treated with synthetic ZnO-NPs (G4) than in infected rats treated with synthetic ZnO-NPs (G7). Moreover, a significant difference in phagocytic activity was found among all groups compared to that of controls. Compared to control group rats (G1), uninfected rats injected with only natural ZnO-NPs (G3) showed a significant (P < 0.05) improvement in the phagocytic index. We propose that ZnO-NPs produced from natural sources are preferable to those produced from chemical sources for use as nano medicine for the treatment of S. aureus infection in albino rats.
Collapse
Affiliation(s)
- Ragaa A Hamouda
- Department of Biology, Faculty of Sciences and Arts Khulais, University of Jeddah, Saudi Arabia; Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt.
| | - Wesam E Yousuf
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - A B Abeer Mohammed
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Rasha Salah Mohammed
- Department of Animal and Poultry Health, Animal and Poultry Production Division, DRC, Cairo, Egypt
| | - Doaa B Darwish
- Botany Department, Faculty of Science, Mansoura University, Egypt; Department of Biology, Faculty of Science, University of Tabuk, Saudi Arabia
| | - Eman E Abdeen
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.
| |
Collapse
|
22
|
Zhu Y, Wang F, Zhao Y, Zheng X. Pegylated liposomal doxorubicin-related palmar-plantar erythrodysesthesia: a literature review of pharmaceutical and clinical aspects. Eur J Hosp Pharm 2020; 28:ejhpharm-2020-002311. [PMID: 32591480 PMCID: PMC8077615 DOI: 10.1136/ejhpharm-2020-002311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES The rate of dermal toxicity has been shown to increase in patients receiving pegylated liposomal doxorubicin (PLD), particularly palmar-plantar erythrodysesthesia (PPE). However, it is difficult to diagnose and treat PLD-related PPE due to its delayed dermal performance, unclear pathogenetic mechanism, and the lack of specific preventive measures. The aim of this study was to provide potential management strategies for PPE associated with PLD. METHODS The current article reviews the available data regarding the pharmacological and clinical aspects of PLD, including the formulation and pharmacokinetics of PLD, dose and schedule contribution to PPE, concomitant drugs affecting skin toxicity of PLD, the pathogenesis of PPE, and preventive measures and treatment of PLD-related PPE. RESULTS The long circulation structure of polyethylene glycol liposomes may be one of the reasons for PPE. PLD has radically different pharmacokinetic characteristics, including prolonged blood circulation time, decreased body distribution volume, and slow clearance. Altering the schedules and doses of PLD or combining it with platinum compounds can optimise clinical efficacy and minimise the occurrence of PPE. Doses of 150-200 mg of pyridoxine daily have been widely used for the prevention and treatment of PPE. Regional cooling and plasma filtration have been used for PPE prophylaxis. CONCLUSIONS To date, the mechanism of PPE induced by PLD remains unclear, and no complete preventive medication has been established. Further research and prospective randomised studies are needed to understand the management options in PLD-related PPE.
Collapse
Affiliation(s)
- Yao Zhu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fenfen Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunchun Zhao
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoling Zheng
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Giannakou C, Park MVDZ, Bosselaers IEM, de Jong WH, van der Laan JW, van Loveren H, Vandebriel RJ, Geertsma RE. Nonclinical regulatory immunotoxicity testing of nanomedicinal products: Proposed strategy and possible pitfalls. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1633. [PMID: 32266791 PMCID: PMC7507198 DOI: 10.1002/wnan.1633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022]
Abstract
Various nanomedicinal products (NMPs) have been reported to induce an adverse immune response, which may be related to their tendency to accumulate in or target cells of the immune system. Therefore, before their market authorization, NMPs should be thoroughly evaluated for their immunotoxic potential. Nonclinical regulatory immunotoxicity testing of nonbiological medicinal products, including NMPs, is currently performed by following the guideline S8 “Immunotoxicity Studies for Human Pharmaceuticals” of the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH). However, this guideline does not cover all the immunotoxicity endpoints reported for NMPs in the literature, such as complement activation related pseudo allergy, hypersensitivity and immunosuppression. In addition, ICH‐S8 does not provide any nanospecific testing considerations, which is important given their tendency to interfere with many commonly used toxicity assays. We therefore propose a nonclinical regulatory immunotoxicity assessment strategy, which considers the immunotoxicity endpoints currently missing in the ICH‐S8. We also list the known pitfalls related to the testing of NMPs and how to tackle them. Next to defining the relevant physicochemical and pharmacokinetic properties of the NMP and its intended use, the proposed strategy includes an in vitro assay battery addressing various relevant immunotoxicity endpoints. A weight of evidence evaluation of this information can be used to shape the type and design of further in vivo investigations. The final outcome of the immunotoxicity assessment can be included in the overall risk assessment of the NMP and provide alerts for relevant endpoints to address during clinical investigation. This article is categorized under:Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials
Collapse
Affiliation(s)
| | | | | | | | | | - Henk van Loveren
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | | | | |
Collapse
|
24
|
Pharmacokinetics of mitomycin-c lipidic prodrug entrapped in liposomes and clinical correlations in metastatic colorectal cancer patients. Invest New Drugs 2020; 38:1411-1420. [DOI: 10.1007/s10637-020-00897-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/10/2020] [Indexed: 11/25/2022]
|
25
|
Gabizon AA, de Rosales RT, La-Beck NM. Translational considerations in nanomedicine: The oncology perspective. Adv Drug Deliv Rev 2020; 158:140-157. [PMID: 32526450 DOI: 10.1016/j.addr.2020.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022]
Abstract
Nanoparticles can provide effective control of the release rate and tissue distribution of their drug payload, leading to major pharmacokinetic and pharmacodynamic changes vis-à-vis the conventional administration of free drugs. In the last two decades, we have witnessed major progress in the synthesis and characterization of engineered nanoparticles for imaging and treatment of cancers, resulting in the approval for clinical use of several products and in new and promising approaches. Despite these advances, clinical applications of nanoparticle-based therapeutic and imaging agents remain limited due to biological, immunological, and translational barriers. There is a need to make high impact advances toward translation. In this review, we address biological, toxicological, immunological, and translational aspects of nanomedicine and discuss approaches to move the field forward productively. Overcoming these barriers may dramatically improve the development potential and role of nanomedicines in the oncology field and help meet the high expectations.
Collapse
|
26
|
Sánchez-López E, Guerra M, Dias-Ferreira J, Lopez-Machado A, Ettcheto M, Cano A, Espina M, Camins A, Garcia ML, Souto EB. Current Applications of Nanoemulsions in Cancer Therapeutics. NANOMATERIALS 2019; 9:nano9060821. [PMID: 31159219 PMCID: PMC6632105 DOI: 10.3390/nano9060821] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022]
Abstract
Nanoemulsions are pharmaceutical formulations composed of particles within a nanometer range. They possess the capacity to encapsulate drugs that are poorly water soluble due to their hydrophobic core nature. Additionally, they are also composed of safe gradient excipients, which makes them a stable and safe option to deliver drugs. Cancer therapy has been an issue for several decades. Drugs developed to treat this disease are not always successful or end up failing, mainly due to low solubility, multidrug resistance (MDR), and unspecific toxicity. Nanoemulsions might be the solution to achieve efficient and safe tumor treatment. These formulations not only solve water-solubility problems but also provide specific targeting to cancer cells and might even be designed to overcome MDR. Nanoemulsions can be modified using ligands of different natures to target components present in tumor cells surface or to escape MDR mechanisms. Multifunctional nanoemulsions are being studied by a wide variety of researchers in different research areas mainly for the treatment of different types of cancer. All of these studies demonstrate that nanoemulsions are efficiently taken by the tumoral cells, reduce tumor growth, eliminate toxicity to healthy cells, and decrease migration of cancer cells to other organs.
Collapse
Affiliation(s)
- Elena Sánchez-López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain.
| | - Mariana Guerra
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - João Dias-Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Ana Lopez-Machado
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain.
| | - Miren Ettcheto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Amanda Cano
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain.
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain.
| | - Antoni Camins
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Maria Luisa Garcia
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain.
| | - Eliana B Souto
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
27
|
Valic MS, Zheng G. Research tools for extrapolating the disposition and pharmacokinetics of nanomaterials from preclinical animals to humans. Theranostics 2019; 9:3365-3387. [PMID: 31244958 PMCID: PMC6567967 DOI: 10.7150/thno.34509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/26/2019] [Indexed: 11/30/2022] Open
Abstract
A critical step in the translational science of nanomaterials from preclinical animal studies to humans is the comprehensive investigation of their disposition (or ADME) and pharmacokinetic behaviours. Disposition and pharmacokinetic data are ideally collected in different animal species (rodent and nonrodent), at different dose levels, and following multiple administrations. These data are used to assess the systemic exposure and effect to nanomaterials, primary determinants of their potential toxicity and therapeutic efficacy. At toxic doses in animal models, pharmacokinetic (termed toxicokinetic) data are related to toxicologic findings that inform the design of nonclinical toxicity studies and contribute to the determination of the maximum recommended starting dose in clinical phase 1 trials. Nanomaterials present a unique challenge for disposition and pharmacokinetic investigations owing to their prolonged circulation times, nonlinear pharmacokinetic profiles, and their extensive distribution into tissues. Predictive relationships between nanomaterial physicochemical properties and behaviours in vivo are lacking and are confounded by anatomical, physiological, and immunological differences amongst preclinical animal models and humans. These challenges are poorly understood and frequently overlooked by investigators, leading to inaccurate assumptions of disposition, pharmacokinetic, and toxicokinetics profiles across species that can have profoundly detrimental impacts for nonclinical toxicity studies and clinical phase 1 trials. Herein are highlighted two research tools for analysing and interpreting disposition and pharmacokinetic data from multiple species and for extrapolating this data accurately in humans. Empirical methodologies and mechanistic mathematical modelling approaches are discussed with emphasis placed on important considerations and caveats for representing nanomaterials, such as the importance of integrating physiological variables associated with the mononuclear phagocyte system (MPS) into extrapolation methods for nanomaterials. The application of these tools will be examined in recent examples of investigational and clinically approved nanomaterials. Finally, strategies for applying these extrapolation tools in a complementary manner to perform dose predictions and in silico toxicity assessments in humans will be explained. A greater familiarity with the available tools and prior experiences of extrapolating nanomaterial disposition and pharmacokinetics from preclinical animal models to humans will hopefully result in a more straightforward roadmap for the clinical translation of promising nanomaterials.
Collapse
Affiliation(s)
- Michael S. Valic
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, CANADA, M5G 1L7
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, CANADA, M5G 1L7
- Department of Medical Biophysics, Institute of Biomaterials and Biomedical Engineering, and Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, CANADA, M5G 1L7
| |
Collapse
|
28
|
La-Beck NM, Liu X, Wood LM. Harnessing Liposome Interactions With the Immune System for the Next Breakthrough in Cancer Drug Delivery. Front Pharmacol 2019; 10:220. [PMID: 30914953 PMCID: PMC6422978 DOI: 10.3389/fphar.2019.00220] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/22/2019] [Indexed: 01/03/2023] Open
Abstract
Liposomal nanoparticles are a heterogeneous group of engineered drug carriers that have tremendous therapeutic potential in the treatment of cancer. They increase tumor drug delivery, significantly attenuate drug toxicity, and protect the drug from degradation. However, two decades after approval of the first nanoparticle-mediated anticancer drug, pegylated liposomal doxorubicin (Doxil), there has yet to be a major shift in cancer treatment paradigms. Only two anticancer nanoparticles are used in the first-line treatment of cancer patients, with all others relegated to the refractory or salvage setting. Herein, we discuss new insights into the mechanisms underlying in vivo interactions between liposomes and the tumor immunologic milieu, and the knowledge gaps that need to be addressed in order to realize the full clinical potential of cancer nanomedicines. We also discuss immunopharmacology insights from a parallel field, Cancer Immunotherapy, which have the potential to generate breakthroughs in Cancer Nanomedicine.
Collapse
Affiliation(s)
- Ninh M. La-Beck
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
- Department of Pharmacy Practice, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, United States
| | - Laurence M. Wood
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| |
Collapse
|
29
|
Nanotechnology in Spine Surgery: A Current Update and Critical Review of the Literature. World Neurosurg 2019; 123:142-155. [DOI: 10.1016/j.wneu.2018.11.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 01/25/2023]
|
30
|
Zhao QH, Zhang XS, Wu K, Zhang J, Xia TF, Chen J, Qin ZS, Pang LQ. Preparation of Zoledronate liposome and its impact on apoptosis of Kupffer cells in rat liver. Acta Cir Bras 2019; 33:1052-1060. [PMID: 30624510 DOI: 10.1590/s0102-865020180120000002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/16/2018] [Indexed: 01/07/2023] Open
Abstract
PURPOSE To establish a method for the preparation of zoledronate liposome and to observe its effect on inducing the apoptosis of rat liver Kupffer cells. METHODS Zoledronate was encapsulated in liposomes, and then the entrapment rate was detected on a spectrophotometer. The prepared Zoledronate liposome (0.01 mg/mL) was injected into the tail vein of SD rats. Three days later, the number of Kupffer cells (CD68 positive) in rat liver tissue was detected by immunohistochemistry. Flow cytometry was used to detect the apoptosis rate of the isolated liver Kupffer cell cultured in vitro. RESULTS The entrapment rate of Zoledronate was 43.4±7.8%. Immunohistochemistry revealed that the number of Kupffer cells was 19.3±2.1 in PBS group and 5.5±1.7 in Zoledronate liposome group, with a significant difference (P<0.05). The apoptosis rate of Kupffer cells was 4.1±0.8% in PBS group, while it was 9±2.2% and 23.3±5.9% in Zoledronate liposomes groups with different concentrations of Zoledronate liposome (P<0.05). CONCLUSIONS Zoledronate liposomes can effectively induce the apoptosis of Kupffer cells in vivo and in vitro, and the apoptosis rate is related to the concentration of Zoledronate liposome. To establish a rat liver Kupffer cell apoptosis model can provide a new means for further study on Kupffer cell function.
Collapse
Affiliation(s)
- Qiao-Hong Zhao
- Bachelor of Medical Science, Department of Nursing, Jiangsu College of Nursing, Huai'an, China. Conception of the study, acquisition and interpretation of data
| | - Xi-Shan Zhang
- Bachelor of Medical Science, Department of General Surgery, Lian'shui County People's Hospital, Lian'shui, China. Analysis and interpretation of data
| | - Kun Wu
- Fellow Master degree, Postgraduate Program in Surgical Science, Department of General Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China. Immunohistochemical and flow cytometry analysis
| | - Jie Zhang
- Fellow Master degree, Postgraduate Program in Surgical Science, Department of General Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China. Immunohistochemical and flow cytometry analysis
| | - Tian-Fang Xia
- Fellow Master degree, Postgraduate Program in Surgical Science, Department of General Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China. Immunohistochemical and flow cytometry analysis
| | - Jian Chen
- Fellow Master degree, Postgraduate Program in Surgical Science, Department of General Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China. Immunohistochemical and flow cytometry analysis
| | - Zhen-Shen Qin
- PhD, Associate Professor, Department of General Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China. Conception and design of the study, critical revision
| | - Li-Qun Pang
- PhD, Associate Professor, Department of General Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China. Conception and design of the study, critical revision
| |
Collapse
|
31
|
Lucas AT, Robinson R, Schorzman AN, Piscitelli JA, Razo JF, Zamboni WC. Pharmacologic Considerations in the Disposition of Antibodies and Antibody-Drug Conjugates in Preclinical Models and in Patients. Antibodies (Basel) 2019; 8:E3. [PMID: 31544809 PMCID: PMC6640706 DOI: 10.3390/antib8010003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022] Open
Abstract
The rapid advancement in the development of therapeutic proteins, including monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs), has created a novel mechanism to selectively deliver highly potent cytotoxic agents in the treatment of cancer. These agents provide numerous benefits compared to traditional small molecule drugs, though their clinical use still requires optimization. The pharmacology of mAbs/ADCs is complex and because ADCs are comprised of multiple components, individual agent characteristics and patient variables can affect their disposition. To further improve the clinical use and rational development of these agents, it is imperative to comprehend the complex mechanisms employed by antibody-based agents in traversing numerous biological barriers and how agent/patient factors affect tumor delivery, toxicities, efficacy, and ultimately, biodistribution. This review provides an updated summary of factors known to affect the disposition of mAbs/ADCs in development and in clinical use, as well as how these factors should be considered in the selection and design of preclinical studies of ADC agents in development.
Collapse
Affiliation(s)
- Andrew T Lucas
- University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Ryan Robinson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Allison N Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Joseph A Piscitelli
- University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
| | - Juan F Razo
- University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
| | - William C Zamboni
- University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
32
|
Zamboni WC, Szebeni J, Kozlov SV, Lucas AT, Piscitelli JA, Dobrovolskaia MA. Animal models for analysis of immunological responses to nanomaterials: Challenges and considerations. Adv Drug Deliv Rev 2018; 136-137:82-96. [PMID: 30273617 DOI: 10.1016/j.addr.2018.09.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022]
Abstract
Nanotechnology provides many solutions to improve conventional drug delivery and has a unique niche in the areas related to the specific targeting of the immune system, such as immunotherapies and vaccines. Preclinical studies in this field rely heavily on the combination of in vitro and in vivo methods to assess the safety and efficacy of nanotechnology platforms, nanoparticle-formulated drugs, and vaccines. While certain types of toxicities can be evaluated in vitro and good in vitro-in vivo correlation has been demonstrated for such tests, animal studies are still needed to address complex biological questions and, therefore, provide a unique contribution to establishing nanoparticle safety and efficacy profiles. The genetic, metabolic, mechanistic, and phenotypic diversity of currently available animal models often complicates both the animal choice and the interpretation of the results. This review summarizes current knowledge about differences in the immune system function and immunological responses of animals commonly used in preclinical studies of nanomaterials. We discuss challenges, highlight current gaps, and propose recommendations for animal model selection to streamline preclinical analysis of nanotechnology formulations.
Collapse
Affiliation(s)
- William C Zamboni
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center of Cancer Nanotechnology Excellence, the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Janos Szebeni
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University and SeroScience Ltd, Nagyvárad tér 4, 1089 Budapest, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| | - Serguei V Kozlov
- Laboratory of Animal Sciences Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Andrew T Lucas
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center of Cancer Nanotechnology Excellence, the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joseph A Piscitelli
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center of Cancer Nanotechnology Excellence, the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, United States.
| |
Collapse
|
33
|
Yuan D, He H, Wu Y, Fan J, Cao Y. Physiologically Based Pharmacokinetic Modeling of Nanoparticles. J Pharm Sci 2018; 108:58-72. [PMID: 30385282 DOI: 10.1016/j.xphs.2018.10.037] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/28/2018] [Accepted: 10/10/2018] [Indexed: 12/22/2022]
Abstract
Nanoparticles are frequently designed to improve the pharmacokinetics profiles and tissue distribution of small molecules to prolong their systemic circulation, target specific tissue, or widen the therapeutic window. The multifunctionality of nanoparticles is frequently presented as an advantage but also results in distinct and complicated in vivo disposition properties compared with a conventional formulation of the same molecules. Physiologically based pharmacokinetic (PBPK) modeling has been a useful tool in characterizing and predicting the systemic disposition, target exposure, and efficacy and toxicity of various types of drugs when coupled with pharmacodynamic modeling. Here we review the unique disposition characteristics of nanoparticles, assess how PBPK modeling takes into account the unique disposition properties of nanoparticles, and comment on the applications and challenges of PBPK modeling in characterizing and predicting the disposition and biological effects of nanoparticles.
Collapse
Affiliation(s)
- Dongfen Yuan
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Hua He
- China Pharmaceutical University, Nanjing, China
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, 332 Bonner Hall, Buffalo, New York 14260
| | - Jianghong Fan
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| |
Collapse
|
34
|
Mononuclear phagocyte system function and nanoparticle pharmacology in obese and normal weight ovarian and endometrial cancer patients. Cancer Chemother Pharmacol 2018; 83:61-70. [PMID: 30327876 DOI: 10.1007/s00280-018-3702-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/10/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Obesity may alter mononuclear phagocyte system (MPS) function and the pharmacology and efficacy of nanoparticles therapies, such as PEGylated liposomal doxorubicin (PLD). We aimed to evaluate the relationships between hormone and chemokine mediators of MPS function and the pharmacokinetic (PK) exposure of PLD in obese and normal weight patients with ovarian and endometrial cancer. METHODS Hormone and chemokine mediators in obese and normal weight ovarian and endometrial cancer patients were measured. A separate pharmacology study was performed that evaluated the relationship between serum hormone concentrations, MPS function, and PK disposition of PLD in refractory ovarian cancer patients. RESULTS Univariate analysis revealed a significant relationship between serum estradiol and body mass index (OR 8.64, 95% CI 2.67-28.0, p < 0.001). Estrone and testosterone concentrations were positively correlated with MPS function (ρ = 0.57 and 0.53, p = 0.14 and 0.18, respectively) and inversely correlated with PLD PK exposure (ρ = - 0.75 and - 0.76, respectively, p = 0.02 for both). CONCLUSIONS Higher MPS function resulting in reduced PLD exposure is a potential mechanism for reduced efficacy of PLD and other nanoparticles observed in obese patients with cancer. PK simulations suggest higher doses of PLD are required in obese patients to achieve similar exposures as standard dosing in normal weight patients.
Collapse
|
35
|
Tayeb HH, Sainsbury F. Nanoemulsions in drug delivery: formulation to medical application. Nanomedicine (Lond) 2018; 13:2507-2525. [DOI: 10.2217/nnm-2018-0088] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nanoscale oil-in-water emulsions (NEs), heterogeneous systems of two immiscible liquids stabilized by emulsifiers or surfactants, show great potential in medical applications because of their attractive characteristics for drug delivery. NEs have been explored as therapeutic carriers for hydrophobic compounds via various routes of administration. NEs provide opportunities to improve drug delivery via alternative administration routes. However, deep understanding of the NE manufacturing and functionalization fundamentals, and how they relate to the choice of administration route and pharmacological profile is still needed to ease the clinical translation of NEs. Here, we review the diversity of medical applications for NEs and how that governs their formulation, route of administration, and the emergence of increasing sophistication in NE design for specific application.
Collapse
Affiliation(s)
- Hossam H Tayeb
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Faculty of Applied Medical Sciences, King Abdul Abdul-Aziz University, Jeddah, Kingdom of Saudi Arabia
| | - Frank Sainsbury
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
36
|
Lucas AT, Price LSL, Schorzman AN, Storrie M, Piscitelli JA, Razo J, Zamboni WC. Factors Affecting the Pharmacology of Antibody-Drug Conjugates. Antibodies (Basel) 2018; 7:E10. [PMID: 31544862 PMCID: PMC6698819 DOI: 10.3390/antib7010010] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Major advances in therapeutic proteins, including antibody-drug conjugates (ADCs), have created revolutionary drug delivery systems in cancer over the past decade. While these immunoconjugate agents provide several advantages compared to their small-molecule counterparts, their clinical use is still in its infancy. The considerations in their development and clinical use are complex, and consist of multiple components and variables that can affect the pharmacologic characteristics. It is critical to understand the mechanisms employed by ADCs in navigating biological barriers and how these factors affect their biodistribution, delivery to tumors, efficacy, and toxicity. Thus, future studies are warranted to better understand the complex pharmacology and interaction between ADC carriers and biological systems, such as the mononuclear phagocyte system (MPS) and tumor microenvironment. This review provides an overview of factors that affect the pharmacologic profiles of ADC therapies that are currently in clinical use and development.
Collapse
Affiliation(s)
- Andrew T Lucas
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Lauren S L Price
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Allison N Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Mallory Storrie
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
| | | | - Juan Razo
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
| | - William C Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
37
|
Schorzman AN, Lucas AT, Kagel JR, Zamboni WC. Methods and Study Designs for Characterizing the Pharmacokinetics and Pharmacodynamics of Carrier-Mediated Agents. Methods Mol Biol 2018; 1831:201-228. [PMID: 30051434 DOI: 10.1007/978-1-4939-8661-3_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Major advances in carrier-mediated agents (CMAs), which include nanoparticles, nanosomes, and conjugates, have revolutionized drug delivery capabilities over the past decade. While providing numerous advantages, such as greater solubility, duration of exposure, and delivery to the site of action over their small molecule counterparts, there is substantial variability in systemic clearance and distribution, tumor delivery, and pharmacologic effects (efficacy and toxicity) of these agents. In this chapter, we focus on the analytical and phenotypic methods required to design a study that characterizes the pharmacokinetics (PK) and pharmacodynamics (PD) of all forms of these nanoparticle-based drug agents. These methods include separation of encapsulated and released drugs, ultrafiltration for measurement of non-protein bound active drug, microdialysis to measure intra-tumor drug concentrations, immunomagnetic separation and flow cytometry for sorting cell types, and evaluation of spatial distribution of drug forms relative to tissue architecture by mass spectrometry imaging and immunohistochemistry.
Collapse
Affiliation(s)
- Allison N Schorzman
- Translational Oncology and Nanoparticle Drug Development Initiative (TOND2I) Lab, UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew T Lucas
- Translational Oncology and Nanoparticle Drug Development Initiative (TOND2I) Lab, UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John R Kagel
- Translational Oncology and Nanoparticle Drug Development Initiative (TOND2I) Lab, UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William C Zamboni
- Translational Oncology and Nanoparticle Drug Development Initiative (TOND2I) Lab, UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
38
|
Liposome-induced immunosuppression and tumor growth is mediated by macrophages and mitigated by liposome-encapsulated alendronate. J Control Release 2017; 271:139-148. [PMID: 29277680 DOI: 10.1016/j.jconrel.2017.12.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022]
Abstract
Liposomal nanoparticles are the most commonly used drug nano-delivery platforms. However, recent reports show that certain pegylated liposomal nanoparticles (PLNs) and polymeric nanoparticles have the potential to enhance tumor growth and inhibit antitumor immunity in murine cancer models. We sought herein to identify the mechanisms and determine whether PLN-associated immunosuppression and tumor growth can be reversed using alendronate, an immune modulatory drug. By conducting in vivo and ex vivo experiments with the immunocompetent TC-1 murine tumor model, we found that macrophages were the primary cells that internalized PLN in the tumor microenvironment and that PLN-induced tumor growth was dependent on macrophages. Treatment with PLN increased immunosuppression as evidenced by increased expression of arginase-1 in CD11b+Gr1+ cells, diminished M1 functionality in macrophages, and globally suppressed T-cell cytokine production. Encapsulating alendronate in PLN reversed these effects on myeloid cells and shifted the profile of multi-cytokine producing T-cells towards an IFNγ+ perforin+ response, suggesting increased cytotoxic functionality. Importantly, we also found that PLN-encapsulated alendronate (PLN-alen), but not free alendronate, abrogated PLN-induced tumor growth and increased progression-free survival. In summary, we have identified a novel mechanism of PLN-induced tumor growth through macrophage polarization and immunosuppression that can be targeted and inactivated to improve the anticancer efficacy of PLN-delivered drugs. Importantly, we also determined that PLN-alen not only reversed protumoral effects of the PLN carrier, but also had moderate antitumor activity. Our findings strongly support the inclusion of immune-responsive tumor models and in-depth immune functional studies in the preclinical drug development paradigm for cancer nanomedicines, and the further development of chemo-immunotherapy strategies to co-deliver alendronate and chemotherapy for the treatment of cancer.
Collapse
|
39
|
Highlights in nanocarriers for the treatment against cervical cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:748-759. [PMID: 28866224 DOI: 10.1016/j.msec.2017.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 01/16/2023]
Abstract
Cervical cancer is the second most common malignant tumor in women worldwide and has a high mortality rate, especially when it is associated with human papillomavirus (HPV). In US, an estimated 12,820 cases of invasive cervical cancer and an estimated 4210 deaths from this cancer will occur in 2017. With rare and very aggressive conventional treatments, one sees in the real need of new alternatives of therapy as the delivery of chemotherapeutic agents by nanocarriers using nanotechnology. This review covers different drug delivery systems applied in the treatment of cervical cancer, such as solid lipid nanoparticles (SNLs), liposomes, nanoemulsions and polymeric nanoparticles (PNPs). The main advantages of drug delivery thus improving pharmacological activity, improving solubility, bioavailability to bioavailability reducing toxicity in the target tissue by targeting of ligands, thus facilitating new innovative therapeutic technologies in a too much needed area. Among the main disadvantage is the still high cost of production of these nanocarriers. Therefore, the aim this paper is review the nanotechnology based drug delivery systems in the treatment of cervical cancer.
Collapse
|
40
|
Lucas AT, Herity LB, Kornblum ZA, Madden AJ, Gabizon A, Kabanov AV, Ajamie RT, Bender DM, Kulanthaivel P, Sanchez-Felix MV, Havel HA, Zamboni WC. Pharmacokinetic and screening studies of the interaction between mononuclear phagocyte system and nanoparticle formulations and colloid forming drugs. Int J Pharm 2017; 526:443-454. [DOI: 10.1016/j.ijpharm.2017.04.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/27/2017] [Accepted: 04/30/2017] [Indexed: 02/08/2023]
|
41
|
La-Beck NM, Gabizon AA. Nanoparticle Interactions with the Immune System: Clinical Implications for Liposome-Based Cancer Chemotherapy. Front Immunol 2017; 8:416. [PMID: 28428790 PMCID: PMC5382151 DOI: 10.3389/fimmu.2017.00416] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/23/2017] [Indexed: 12/12/2022] Open
Abstract
The development of stable and long-circulating liposomes provides protection of the drug cargo from degradation and increases tumor drug delivery, leading to the design of liposome formulations with great potential in cancer therapy. However, despite the sound pharmacologic basis, many liposomal as well as other nanoparticle-based drug formulations have failed to meet regulatory criteria for approval. The question that arises is whether we have missed key liposome–host interactions that can account for the gap between the major pharmacologic advantages in preclinical studies and the modest impact of the clinical effects in humans. We will discuss here the nanoparticle–immune system interactions that may undermine the antitumor effect of the nanodrug formulations and contribute to this gap. To overcome this challenge and increase clinical translation, new preclinical models need to be adopted along with comprehensive immunopharmacologic studies and strategies for patient selection in the clinical phase.
Collapse
Affiliation(s)
- Ninh M La-Beck
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center School of Pharmacy, Abilene, TX, USA
| | - Alberto A Gabizon
- Oncology Institute, Shaare Zedek Medical Center, Hebrew University-School of Medicine, Jerusalem, Israel
| |
Collapse
|
42
|
Li M, Zou P, Tyner K, Lee S. Physiologically Based Pharmacokinetic (PBPK) Modeling of Pharmaceutical Nanoparticles. AAPS JOURNAL 2016; 19:26-42. [PMID: 27834047 DOI: 10.1208/s12248-016-0010-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/26/2016] [Indexed: 12/18/2022]
Abstract
With the great interests in the discovery and development of drug products containing nanoparticles, there is a great demand of quantitative tools for assessing quality, safety, and efficacy of these products. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches provide excellent tools for describing and predicting in vivo absorption, distribution, metabolism, and excretion (ADME) of nanoparticles administered through various routes. PBPK modeling of nanoparticles is an emerging field, and more than 20 PBPK models of nanoparticles used in pharmaceutical products have been published in the past decade. This review provides an overview of the ADME characteristics of nanoparticles and how these ADME processes are described in PBPK models. Recent advances in PBPK modeling of pharmaceutical nanoparticles are summarized. The major challenges in model development and validation and possible solutions are also discussed.
Collapse
Affiliation(s)
- Min Li
- Office of Pharmaceutical Quality, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Peng Zou
- Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, Maryland, USA.
| | - Katherine Tyner
- Office of Pharmaceutical Quality, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sau Lee
- Office of Pharmaceutical Quality, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
43
|
Gabizon AA, Patil Y, La-Beck NM. New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist Updat 2016; 29:90-106. [DOI: 10.1016/j.drup.2016.10.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/16/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022]
|
44
|
Song G, Suzuki OT, Santos CM, Lucas AT, Wiltshire T, Zamboni WC. Gulp1 is associated with the pharmacokinetics of PEGylated liposomal doxorubicin (PLD) in inbred mouse strains. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2007-2017. [PMID: 27288666 DOI: 10.1016/j.nano.2016.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 11/25/2022]
Abstract
Nanoparticles (NP) including liposomes are cleared by phagocytes of the mononuclear phagocyte system. High inter-patient variability in pharmacokinetics of PEGylated liposomal doxorubicin (PLD) has been reported. We hypothesized that genetic factors may be associated with the variable disposition of PLD. We evaluated plasma and tissue disposition of doxorubicin after administration of PLD at 6mg/kg IV ×1 via tail vein in 23 different male inbred mouse strains. An approximately 13-fold difference in plasma clearance of PLD was observed among inbred strains. We identified a correlation between strain-specific differences in PLD clearance and genetic variation within a genomic region encoding GULP1 (PTB domain containing engulfment adapter 1) protein using haplotype associated mapping and the efficient mixed-model association algorithms. Our results also show that Gulp1 expression in adipose tissue was associated with PLD disposition in plasma. Our findings suggest that genetic variants may be associated with inter-individual pharmacokinetic differences in NP clearance.
Collapse
Affiliation(s)
- Gina Song
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Oscar T Suzuki
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charlene M Santos
- The Animal Studies Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew T Lucas
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tim Wiltshire
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William C Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center of Cancer Nanotechnology Excellence, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
45
|
Petersen GH, Alzghari SK, Chee W, Sankari SS, La-Beck NM. Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin. J Control Release 2016; 232:255-64. [DOI: 10.1016/j.jconrel.2016.04.028] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 12/18/2022]
|
46
|
Lucas AT, Madden AJ, Zamboni WC. Challenges in preclinical to clinical translation for anticancer carrier-mediated agents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:642-53. [PMID: 26846457 DOI: 10.1002/wnan.1394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/14/2015] [Accepted: 01/05/2016] [Indexed: 02/03/2023]
Abstract
Major advances in carrier-mediated agents (CMAs), which include nanoparticles and conjugates, have revolutionized drug delivery capabilities over the past decade. While providing numerous advantages over their small-molecule counterparts, there is substantial variability in how individual CMA formulations and patient characteristics affect the pharmacology, pharmacokinetics (PK), and pharmacodynamics (PD) (efficacy and toxicity) of these agents. Development or selection of animal models is used to predict the effects within a particular human disease. A breadth of studies have begun to emphasize the importance of preclinical animal models in understanding and evaluating the interaction between CMAs and the immune system and tumor matrix, which ultimately influences CMA PK (clearance and distribution) and PD (efficacy and toxicity). It is fundamental to study representative preclinical tumor models that recapitulate patients with diseases (e.g., cancer) and evaluate the interplay between CMAs and the immune system, including the mononuclear phagocyte system (MPS), chemokines, hormones, and other immune modulators. Furthermore, standard allometric scaling using body weight does not accurately predict drug clearance in humans. Future studies are warranted to better understand the complex pharmacology and interaction of CMA carriers within individual preclinical models and their biological systems, such as the MPS and tumor microenvironment, and their application to allometric scaling across species. WIREs Nanomed Nanobiotechnol 2016, 8:642-653. doi: 10.1002/wnan.1394 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Andrew T Lucas
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew J Madden
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William C Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Institute for Pharmacogenomics and Individualized Therapy, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Lineberger Comprehensive Cancer Center, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Carolina Center of Cancer Nanotechnology Excellence, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Carolina Institute for NanoMedicine, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
47
|
Kai MP, Brighton HE, Fromen CA, Shen TW, Luft JC, Luft YE, Keeler AW, Robbins GR, Ting JPY, Zamboni WC, Bear JE, DeSimone JM. Tumor Presence Induces Global Immune Changes and Enhances Nanoparticle Clearance. ACS NANO 2016; 10:861-70. [PMID: 26592524 PMCID: PMC4761267 DOI: 10.1021/acsnano.5b05999] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Long-circulating nanoparticles are essential for increasing tumor accumulation to provide therapeutic efficacy. While it is known that tumor presence can alter the immune system, very few studies have explored this impact on nanoparticle circulation. In this report, we demonstrate how the presence of a tumor can change the local and global immune system, which dramatically increases particle clearance. We found that tumor presence significantly increased clearance of PRINT hydrogel nanoparticles from the circulation, resulting in increased accumulation in the liver and spleen, due to an increase in M2-like macrophages. Our findings highlight the need to better understand interactions between immune status and nanoparticle clearance, and suggest that further consideration of immune function is required for success in preclinical and clinical nanoparticle studies.
Collapse
Affiliation(s)
- Marc P. Kai
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hailey E. Brighton
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Catherine A. Fromen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Tammy W. Shen
- School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - J. Christopher Luft
- School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yancey E. Luft
- Department of Chemistry, Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Amanda W. Keeler
- School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gregory R. Robbins
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jenny P. Y. Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Microbiology-Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William C. Zamboni
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - James E. Bear
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joseph M. DeSimone
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
48
|
Dobrovolskaia MA. Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: Challenges, considerations and strategy. J Control Release 2015; 220:571-83. [PMID: 26348388 PMCID: PMC4688153 DOI: 10.1016/j.jconrel.2015.08.056] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023]
Abstract
Assorted challenges in physicochemical characterization, sterilization, depyrogenation, and in the assessment of pharmacology, safety, and efficacy profiles accompany pre-clinical development of nanotechnology-formulated drugs. Some of these challenges are not unique to nanotechnology and are common in the development of other pharmaceutical products. However, nanoparticle-formulated drugs are biochemically sophisticated, which causes their translation into the clinic to be particularly complex. An understanding of both the immune compatibility of nanoformulations and their effects on hematological parameters is now recognized as an important step in the (pre)clinical development of nanomedicines. An evaluation of nanoparticle immunotoxicity is usually performed as a part of a traditional toxicological assessment; however, it often requires additional in vitro and in vivo specialized immuno- and hematotoxicity tests. Herein, I review literature examples and share the experience with the NCI Nanotechnology Characterization Laboratory assay cascade used in the early (discovery-level) phase of pre-clinical development to summarize common challenges in the immunotoxicological assessment of nanomaterials, highlight considerations and discuss solutions to overcome problems that commonly slow or halt the translation of nanoparticle-formulated drugs toward clinical trials. Special attention will be paid to the grand-challenge related to detection, quantification and removal of endotoxin from nanoformulations, and practical considerations related to this challenge.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, MD 21702, United States.
| |
Collapse
|
49
|
Petschauer JS, Madden AJ, Kirschbrown WP, Song G, Zamboni WC. The effects of nanoparticle drug loading on the pharmacokinetics of anticancer agents. Nanomedicine (Lond) 2015; 10:447-63. [PMID: 25707978 DOI: 10.2217/nnm.14.179] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Major advances in carrier-mediated agents, which include nanoparticles, nanosomes and conjugates, have revolutionized drug delivery capabilities over the past decade. While providing numerous advantages, such as greater solubility, duration of exposure and delivery to the site of action over their small-molecule counterparts, there is substantial variability in systemic clearance and distribution, tumor delivery and pharmacologic effects (efficacy and toxicity) of these agents. This review provides an overview of factors that affect the pharmacokinetics and pharmacodynamics of carrier-mediated agents in preclinical models and patients.
Collapse
Affiliation(s)
- Jennifer S Petschauer
- Division of Pharmacotherapy & Experimental Therapeutics, University of North Carolina at Chapel Hill (UNC) Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
50
|
Byrne JD, Jajja MRN, O'Neill AT, Bickford LR, Keeler AW, Hyder N, Wagner K, Deal A, Little RE, Moffitt RA, Stack C, Nelson M, Brooks CR, Lee W, Luft JC, Napier ME, Darr D, Anders CK, Stack R, Tepper JE, Wang AZ, Zamboni WC, Yeh JJ, DeSimone JM. Local iontophoretic administration of cytotoxic therapies to solid tumors. Sci Transl Med 2015; 7:273ra14. [PMID: 25653220 DOI: 10.1126/scitranslmed.3009951] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Parenteral and oral routes have been the traditional methods of administering cytotoxic agents to cancer patients. Unfortunately, the maximum potential effect of these cytotoxic agents has been limited because of systemic toxicity and poor tumor perfusion. In an attempt to improve the efficacy of cytotoxic agents while mitigating their side effects, we have developed modalities for the localized iontophoretic delivery of cytotoxic agents. These iontophoretic devices were designed to be implanted proximal to the tumor with external control of power and drug flow. Three distinct orthotopic mouse models of cancer and a canine model were evaluated for device efficacy and toxicity. Orthotopic patient-derived pancreatic cancer xenografts treated biweekly with gemcitabine via the device for 7 weeks experienced a mean log2 fold change in tumor volume of -0.8 compared to a mean log2 fold change in tumor volume of 1.1 for intravenous (IV) gemcitabine, 3.0 for IV saline, and 2.6 for device saline groups. The weekly coadministration of systemic cisplatin therapy and transdermal device cisplatin therapy significantly increased tumor growth inhibition and doubled the survival in two aggressive orthotopic models of breast cancer. The addition of radiotherapy to this treatment further extended survival. Device delivery of gemcitabine in dogs resulted in more than 7-fold difference in local drug concentrations and 25-fold lower systemic drug levels than the IV treatment. Overall, these devices have potential paradigm shifting implications for the treatment of pancreatic, breast, and other solid tumors.
Collapse
Affiliation(s)
- James D Byrne
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mohammad R N Jajja
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrian T O'Neill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lissett R Bickford
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Amanda W Keeler
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nabeel Hyder
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kyle Wagner
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Allison Deal
- Lineberger Comprehensive Cancer Center Biostatistics and Clinical Data Management Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan E Little
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard A Moffitt
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Colleen Stack
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. School of Medicine, Duke University, Durham, NC 27708, USA. Synecor LLC, Chapel Hill, NC 27517, USA
| | - Meredith Nelson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher R Brooks
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William Lee
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J Chris Luft
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mary E Napier
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David Darr
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Carey K Anders
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard Stack
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Synecor LLC, Chapel Hill, NC 27517, USA. Division of Cardiology, Department of Medicine, Duke University, Durham, NC 27708, USA
| | - Joel E Tepper
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrew Z Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William C Zamboni
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Division of Surgical Oncology, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Joseph M DeSimone
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|