1
|
Zaccolo M, Kovanich D. Nanodomain cAMP signaling in cardiac pathophysiology: potential for developing targeted therapeutic interventions. Physiol Rev 2025; 105:541-591. [PMID: 39115424 PMCID: PMC7617275 DOI: 10.1152/physrev.00013.2024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/22/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024] Open
Abstract
The 3',5'-cyclic adenosine monophosphate (cAMP) mediates the effects of sympathetic stimulation on the rate and strength of cardiac contraction. Beyond this pivotal role, in cardiac myocytes cAMP also orchestrates a diverse array of reactions to various stimuli. To ensure specificity of response, the cAMP signaling pathway is intricately organized into multiple, spatially confined, subcellular domains, each governing a distinct cellular function. In this review, we describe the molecular components of the cAMP signaling pathway with a specific focus on adenylyl cyclases, A-kinase anchoring proteins, and phosphodiesterases. We discuss how they are organized inside the intracellular space and how they achieve exquisite regulation of signaling within nanometer-size domains. We delineate the key experimental findings that lead to the current model of compartmentalized cAMP signaling, and we offer an overview of our present understanding of how cAMP nanodomains are structured and regulated within cardiac myocytes. Furthermore, we discuss how compartmentalized cAMP signaling is affected in cardiac disease and consider the potential therapeutic opportunities arising from understanding such organization. By exploiting the nuances of compartmentalized cAMP signaling, novel and more effective therapeutic strategies for managing cardiac conditions may emerge. Finally, we highlight the unresolved questions and hurdles that must be addressed to translate these insights into interventions that may benefit patients.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Duangnapa Kovanich
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Pham L, Arroum T, Wan J, Pavelich L, Bell J, Morse PT, Lee I, Grossman LI, Sanderson TH, Malek MH, Hüttemann M. Regulation of mitochondrial oxidative phosphorylation through tight control of cytochrome c oxidase in health and disease - Implications for ischemia/reperfusion injury, inflammatory diseases, diabetes, and cancer. Redox Biol 2024; 78:103426. [PMID: 39566165 PMCID: PMC11617887 DOI: 10.1016/j.redox.2024.103426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
Mitochondria are essential to cellular function as they generate the majority of cellular ATP, mediated through oxidative phosphorylation, which couples proton pumping of the electron transport chain (ETC) to ATP production. The ETC generates an electrochemical gradient, known as the proton motive force, consisting of the mitochondrial membrane potential (ΔΨm, the major component in mammals) and ΔpH across the inner mitochondrial membrane. Both ATP production and reactive oxygen species (ROS) are linked to ΔΨm, and it has been shown that an imbalance in ΔΨm beyond the physiological optimal intermediate range results in excessive ROS production. The reaction of cytochrome c oxidase (COX) of the ETC with its small electron donor cytochrome c (Cytc) is the proposed rate-limiting step in mammals under physiological conditions. The rate at which this redox reaction occurs controls ΔΨm and thus ATP and ROS production. Multiple mechanisms are in place that regulate this reaction to meet the cell's energy demand and respond to acute stress. COX and Cytc have been shown to be regulated by all three main mechanisms, which we discuss in detail: allosteric regulation, tissue-specific isoforms, and post-translational modifications for which we provide a comprehensive catalog and discussion of their functional role with 55 and 50 identified phosphorylation and acetylation sites on COX, respectively. Disruption of these regulatory mechanisms has been found in several common human diseases, including stroke and myocardial infarction, inflammation including sepsis, and diabetes, where changes in COX or Cytc phosphorylation lead to mitochondrial dysfunction contributing to disease pathophysiology. Identification and subsequent targeting of the underlying signaling pathways holds clear promise for future interventions to improve human health. An example intervention is the recently discovered noninvasive COX-inhibitory infrared light therapy that holds promise to transform the current standard of clinical care in disease conditions where COX regulation has gone awry.
Collapse
Affiliation(s)
- Lucynda Pham
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Lauren Pavelich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| | - Jamie Bell
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA; Division of Pediatric Critical Care, Children's Hospital of Michigan, Central Michigan University, Detroit, MI, 48201, USA.
| | - Paul T Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, 31116, Republic of Korea.
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Thomas H Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Moh H Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
3
|
Rao VG, Shendge AA, D'Gama PP, Martis EAF, Mehta S, Coutinho EC, D'Souza JS. A-kinase anchoring proteins are enriched in the central pair microtubules of motile cilia in Chlamydomonas reinhardtii. FEBS Lett 2024; 598:457-476. [PMID: 38140814 DOI: 10.1002/1873-3468.14791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 12/24/2023]
Abstract
Cilia are microtubule-based sensory organelles present in a number of eukaryotic cells. Mutations in the genes encoding ciliary proteins cause ciliopathies in humans. A-kinase anchoring proteins (AKAPs) tether ciliary signaling proteins such as protein kinase A (PKA). The dimerization and docking domain (D/D) on the RIIα subunit of PKA interacts with AKAPs. Here, we show that AKAP240 from the central-pair microtubules of Chlamydomonas reinhardtii cilia uses two C-terminal amphipathic helices to bind to its partner FAP174, an RIIα-like protein with a D/D domain at the N-terminus. Co-immunoprecipitation using anti-FAP174 antibody with an enriched central-pair microtubule fraction isolated seven interactors whose mass spectrometry analysis revealed proteins from the C2a (FAP65, FAP70, and FAP147) and C1b (CPC1, HSP70A, and FAP42) microtubule projections and FAP75, a protein whose sub-ciliary localization is unknown. Using RII D/D and FAP174 as baits, we identified two additional AKAPs (CPC1 and FAP297) in the central-pair microtubules.
Collapse
Affiliation(s)
- Venkatramanan G Rao
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Santacruz (E), Mumbai, India
| | - Amruta A Shendge
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Santacruz (E), Mumbai, India
| | - Percival P D'Gama
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Santacruz (E), Mumbai, India
| | - Elvis A F Martis
- Molecular Simulations Group, Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Santacruz (E), Mumbai, India
| | - Shraddha Mehta
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Santacruz (E), Mumbai, India
| | - Evans C Coutinho
- Molecular Simulations Group, Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Santacruz (E), Mumbai, India
- St John Institute of Pharmacy and Research, Palghar (E), Maharashtra, India
| | - Jacinta S D'Souza
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Santacruz (E), Mumbai, India
| |
Collapse
|
4
|
Neila-Montero M, Alvarez M, Riesco MF, Montes-Garrido R, Palacin-Martinez C, Silva-Rodríguez A, Martín-Cano FE, Peña FJ, de Paz P, Anel L, Anel-Lopez L. Ovine fertility by artificial insemination in the breeding season could be affected by intraseasonal variations in ram sperm proteomic profile. Theriogenology 2023; 208:28-42. [PMID: 37290145 DOI: 10.1016/j.theriogenology.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
It is important to note that seasonality could affect ram reproductive parameters, and therefore, fertility results after artificial insemination. In this work, 1) we assessed fertility rates after cervical artificial insemination of 11,805 ewes at the beginning (June 21st to July 20th) and at the end (November 20th to December 21st) of the reproductive season in the Assaf breed for the last four years, and 2) we aimed to identify male factors influencing the different reproductive success obtained depending on the time at the mating season in which ovine artificial insemination was performed. For this purpose, we evaluated certain ram reproductive and ultrasonographical parameters as well as we performed a multiparametric and proteomic sperm analysis of 6-19 rams at two very distant points in the mating season (July as Early Breeding Season -EBS- and November as Late Breeding Season -LBS-). Rutinary assessments carried out in the ovine reproduction centers (testicular volume, libido, sperm production and mass motility) showed non-significant differences (P ≥ 0.05) between both studied times, as well as the ram ultrasonographic evaluation (Resistive and Pulsatility Index as Doppler parameters; and pixels mean gray level, and hypoechoic areas percentage and density as echotexture parameters). However, at level of sperm functionality, although sperm quality appeared non-significantly lower (P ≥ 0.05) in the EBS, we identified a significantly different (P < 0.05) sperm proteomic profile between the seasonality points. The following proteins were identified with the lowest abundance in the EBS with a fold change > 4, a P = 2.40e-07, and a q = 2.23e-06: Fibrous Sheath-Interacting Protein 2, Disintegrin and Metalloproteinase Domain-Containing Protein 20-like, Phosphoinositide-Specific Phospholipase C, Tektin 5, Armadillo Repeat-Containing Protein 12 Isoform X3, Solute Carrier Family 9B1, Radial Spoke Head Protein 3 Homolog, Pro-Interleukin-16, NADH Dehydrogenase [Ubiquinone] 1 Alpha Subcomplex Subunit 8, Testis, Prostate and Placenta-Expressed Protein, and Acyl Carrier Protein Mitochondrial. In conclusion, while our basic analyses on male and sperm quality showed similar results between the beginning and the end of the breeding season, on a proteomic level we detected a lower expression of sperm proteins linked to the energy metabolism, sperm-oocyte interactions, and flagellum structure in the EBS. Probably, this different protein expression could be related to the lower fertility rate of Assaf ewes after cervical artificial insemination at this time. More importantly, sperm proteins can be used as highly effective molecular markers in predicting sperm fertilization ability related to intraseasonal variations.
Collapse
Affiliation(s)
- Marta Neila-Montero
- Itra-ULE, INDEGSAL, University of León, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Mercedes Alvarez
- Itra-ULE, INDEGSAL, University of León, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Marta F Riesco
- Itra-ULE, INDEGSAL, University of León, León, Spain; Cellular Biology, Department of Molecular Biology, University of León, León, Spain.
| | - Rafael Montes-Garrido
- Itra-ULE, INDEGSAL, University of León, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Cristina Palacin-Martinez
- Itra-ULE, INDEGSAL, University of León, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Antonio Silva-Rodríguez
- Facility of Innovation and Analysis in Animal Source Foodstuffs, University of Extremadura, Cáceres, Spain
| | - Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Paulino de Paz
- Itra-ULE, INDEGSAL, University of León, León, Spain; Cellular Biology, Department of Molecular Biology, University of León, León, Spain
| | - Luis Anel
- Itra-ULE, INDEGSAL, University of León, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Luis Anel-Lopez
- Itra-ULE, INDEGSAL, University of León, León, Spain; Anatomy, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| |
Collapse
|
5
|
Song X, Bai Y, Yuan R, Zhu H, Lan X, Qu L. InDel and CNV within the AKAP13 Gene Revealing Strong Associations with Growth Traits in Goat. Animals (Basel) 2023; 13:2746. [PMID: 37685010 PMCID: PMC10487263 DOI: 10.3390/ani13172746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
A-kinase-anchoring protein 13 (AKAP13) is a member of the AKAP protein family that has been found to be associated with bone formation. Thus, we investigated the AKAP13 gene as a potential candidate gene for molecular-marker-assisted selection (MAS) in breeding. Our aim was to explore genetic variations (InDel and CNV) within the AKAP13 gene of Shaanbei white cashmere (SBWC) goats and analyze their relationship with growth traits. Ultimately, we identified three InDel loci (16-bp deletion, 15-bp insertion, and 25-bp deletion) and three CNVs, and the 16-bp and 15-bp loci were significantly associated with goat body length (p < 0.05). Both the 16-bp deletion variant and the 15-bp insertion variant facilitated an increase in body length in goats. In addition to this, there was a certain superposition effect between 16-bp and 15-bp loci, although there was no linkage. Additionally, the CNV1 locus was significantly correlated with body height and body length of goats (p < 0.05), and CNV2 was significantly correlated with chest depth, chest circumference, and cannon circumference of goats (p < 0.05). Individuals with gain type showed excellent growth performance. In conclusion, the InDel and CNV loci that we have identified could possibly serve as effective molecular markers in goat breeding, which is very essential for improving efficiency and success of breeding. Moreover, our findings provide a new avenue for further research into the function of the AKAP13 gene.
Collapse
Affiliation(s)
- Xiaoyue Song
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (X.S.); (Y.B.); (R.Y.); (H.Z.)
- College of Life Sciences, Yulin University, Yulin 719000, China
| | - Yangyang Bai
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (X.S.); (Y.B.); (R.Y.); (H.Z.)
- College of Life Sciences, Yulin University, Yulin 719000, China
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Rongrong Yuan
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (X.S.); (Y.B.); (R.Y.); (H.Z.)
- College of Life Sciences, Yulin University, Yulin 719000, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (X.S.); (Y.B.); (R.Y.); (H.Z.)
- College of Life Sciences, Yulin University, Yulin 719000, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (X.S.); (Y.B.); (R.Y.); (H.Z.)
- College of Life Sciences, Yulin University, Yulin 719000, China
| |
Collapse
|
6
|
Cayton Vaught KC, Hazimeh D, Carter AS, Devine K, Maher JY, Maguire M, McGee EA, Driggers PH, Segars JH. AKAP13 Enhances CREB1 Activation by FSH in Granulosa Cells. Reprod Sci 2023; 30:1528-1539. [PMID: 36401072 PMCID: PMC10164136 DOI: 10.1007/s43032-022-01097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022]
Abstract
Granulosa cells (GCs) must respond appropriately to follicle-stimulating hormone (FSH) for proper follicle maturation. FSH activates protein kinase A (PKA) leading to phosphorylation of the cyclic AMP response element binding protein-1 (CREB1). We identified a unique A-kinase anchoring protein (AKAP13) containing a Rho guanine nucleotide exchange factor (RhoGEF) region that was induced in GCs during folliculogenesis. AKAPs are known to coordinate signaling cascades, and we sought to evaluate the role of AKAP13 in GCs in response to FSH. Aromatase reporter activity was increased in COV434 human GCs overexpressing AKAP13. Addition of FSH, or the PKA activator forskolin, significantly enhanced this activity by 1.5- to 2.5-fold, respectively (p < 0.001). Treatment with the PKA inhibitor H89 significantly reduced AKAP13-dependent activation of an aromatase reporter (p = 0.0067). AKAP13 physically interacted with CREB1 in co-immunoprecipitation experiments and increased the phosphorylation of CREB1. CREB1 phosphorylation increased after FSH treatment in a time-specific manner, and this effect was reduced by siRNA directed against AKAP13 (p = 0.05). CREB1 activation increased by 18.5-fold with co-expression of AKAP13 in the presence of FSH (p < 0.001). Aromatase reporter activity was reduced by inhibitors of the RhoGEF region, C3 transferase and A13, and greatly enhanced by the RhoGEF activator, A02. In primary murine and COV43 GCs, siRNA knockdown of Akap13/AKAP13 decreased aromatase and luteinizing hormone receptor transcripts in cells treated with FSH, compared with controls. Collectively, these findings suggest that AKAP13 may function as a scaffolding protein in FSH signal transduction via an interaction with CREB, resulting in phosphorylation of CREB.
Collapse
Affiliation(s)
- Kamaria C Cayton Vaught
- Division of Reproductive Sciences & Women's Health Research, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Dana Hazimeh
- American University of Beirut Medical Centre, Beirut, Lebanon
| | - Ashlie Sewdass Carter
- Division of Reproductive Sciences & Women's Health Research, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kate Devine
- Section On Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Shady Grove Fertility, Washington, DC, 20006, USA
| | - Jacqueline Y Maher
- Division of Reproductive Sciences & Women's Health Research, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Section On Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marcy Maguire
- Section On Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Reproductive Medicine Associates of New Jersey, West Orange, NJ, 07052, USA
| | - Elizabeth A McGee
- Division of Reproductive Endocrinology, Department of Obstetrics, Gynecology, and Reproductive Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Paul H Driggers
- Division of Reproductive Sciences & Women's Health Research, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - James H Segars
- Division of Reproductive Sciences & Women's Health Research, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
7
|
Novel Compound Heterozygous Mutation in FSIP2 Causes Multiple Morphological Abnormalities of the Sperm Flagella (MMAF) and Male Infertility. Reprod Sci 2022; 29:2697-2702. [DOI: 10.1007/s43032-022-00965-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 05/01/2022] [Indexed: 12/20/2022]
|
8
|
Maher JY, Islam MS, Yin O, Brennan J, Gough E, Driggers P, Segars J. The role of Hippo pathway signaling and A-kinase anchoring protein 13 in primordial follicle activation and inhibition. F&S SCIENCE 2022; 3:118-129. [PMID: 35560009 PMCID: PMC11096729 DOI: 10.1016/j.xfss.2022.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To determine whether the mechanotransduction and pharmacomanipulation of A-kinase anchoring protein 13 (AKAP13) altered Hippo signaling pathway transcription and growth factors in granulosa cells. Primary ovarian insufficiency is the depletion or dysfunction of primordial ovarian follicles. In vitro activation of ovarian tissue in patients with primary ovarian insufficiency alters the Hippo and phosphatase and tensin homolog/phosphatidylinositol 3-kinase/protein kinase B/forkhead box O3 pathways. A-kinase anchoring protein 13 is found in granulosa cells and may regulate the Hippo pathway via F-actin polymerization resulting in altered nuclear yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif coactivators and Tea domain family (TEAD) transcription factors. DESIGN Laboratory studies. SETTING Translational science laboratory. PATIENT(S) None. INTERVENTION(S) COV434 cells, derived from a primary human granulosa tumor cell line, were studied under different cell density and well stiffness conditions. Cells were transfected with a TEAD-luciferase (TEAD-luc) reporter as well as expression constructs for AKAP13 or AKAP13 mutants and then treated with AKAP13 activators, inhibitors, and follicle-stimulating hormone. MAIN OUTCOME MEASURE(S) TEAD gene activation or inhibition was measured by TEAD-luciferase assays. The messenger ribonucleic acid levels of Hippo pathway signaling molecules, including connective tissue growth factor (CTGF), baculoviral inhibitors of apoptosis repeat-containing 5, Ankyrin repeat domain-containing protein 1, YAP1, and TEAD1, were measured by quantitative real-time polymerase chain reaction. Protein expressions for AKAP13, CTGF, YAP1, and TEAD1 were measured using Western blot. RESULT(S) Increased TEAD-luciferase activity and expression of markers for cellular growth were associated with decreased cell density, increased well stiffness, and AKAP13 activator (A02) treatment. Additionally, decreased TEAD-luc activity and expression of markers for cellular growth were associated with AKAP13 inhibitor (A13) treatment, including a reduced expression of the BIRC5 and ANKRD1 (YAP-responsive genes) transcript levels and CTGF protein levels. There were no changes in TEAD-luc with follicle-stimulating hormone treatment, supporting Hippo pathway involvement in the gonadotropin-independent portion of folliculogenesis. CONCLUSION(S) These findings suggest that AKAP13 mediates Hippo-regulated changes in granulosa cell growth via mechanotransduction and pharmacomanipulation. The AKAP13 regulation of the Hippo pathway may represent a potential target for regulation of follicle activation.
Collapse
Affiliation(s)
- Jacqueline Yano Maher
- Johns Hopkins School of Medicine, Baltimore, Maryland; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Children's National Medical Center, Washington, D.C..
| | | | - Ophelia Yin
- David Geffen School of Medicine, University of California, Los Angeles, California
| | | | - Ethan Gough
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Paul Driggers
- Johns Hopkins School of Medicine, Baltimore, Maryland
| | - James Segars
- Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
Zhao X, Xu H, Li X, Li Y, Lv S, Liu Y, Guo C, Sun Z, Li Y. Myocardial toxicity induced by silica nanoparticles in a transcriptome profile. NANOSCALE 2022; 14:6094-6108. [PMID: 35388865 DOI: 10.1039/d2nr00582d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The deleterious effects of silica nanoparticles (SiNPs) on human health and the ecological system have gradually gained attention owing to their heavy annual output and extensive global flux. The updated epidemiological or experimental investigations have demonstrated the potential myocardial toxicity triggered by SiNPs, but the underlying mechanisms and long-lasting cardiac effects are still poorly understood. Here, a rat model of sub-chronic respiratory exposure to SiNPs was conducted, and the histopathological analysis and ultrastructural investigation of heart tissues were carried out. More importantly, a comprehensive analysis of whole-genome transcription was utilized in rat heart to uncover key biological and cellular mechanisms triggered by SiNPs. The widening of myocardial space and partial fiber rupture were clearly manifested in rat heart after prolonged SiNPs exposure, particularly accompanied by mitochondrial swelling and cristae rupture. With the aid of Affymetrix GeneChips, 3153 differentially expressed genes (DEGs) were identified after SiNPs exposure, including 1916 down- and 1237 up-regulated genes. GO and KEGG analysis illustrated many important biological processes and pathways perturbed by SiNPs, mainly specializing in cellular stress, energy metabolism, actin filament dynamics and immune response. Signal-net analysis revealed that Prkaca (PKA) plays a core role in the cardiac toxification process of prolonged exposure of SiNPs to rats. Furthermore, qRT-PCR verified that PKA-mediated calcium signaling is probably responsible for SiNPs-induced cardiac injury. Conclusively, our study revealed that SiNPs caused myocardial injury, and particularly, provided transcriptomic insight into the role of PKA-calcium signaling triggered by SiNPs, which would facilitate SiNPs-based nanosafety assessment and biomedicine development.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Hailin Xu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Xueyan Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yan Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Songqing Lv
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Yufan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
10
|
Byrne DP, Omar MH, Kennedy EJ, Eyers PA, Scott JD. Biochemical Analysis of AKAP-Anchored PKA Signaling Complexes. Methods Mol Biol 2022; 2483:297-317. [PMID: 35286684 PMCID: PMC9518671 DOI: 10.1007/978-1-0716-2245-2_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Generation of the prototypic second messenger cAMP instigates numerous signaling events. A major intracellular target of cAMP is Protein kinase A (PKA), a Ser/Thr protein kinase. Where and when this enzyme is activated inside the cell has profound implications on the functional impact of PKA. It is now well established that PKA signaling is focused locally into subcellular signaling "islands" or "signalosomes." The A-Kinase Anchoring Proteins (AKAPs) play a critical role in this process by dictating spatial and temporal aspects of PKA action. Genetically encoded biosensors, small molecule and peptide-based disruptors of PKA signaling are valuable tools for rigorous investigation of local PKA action at the biochemical level. This chapter focuses on approaches to evaluate PKA signaling islands, including a simple assay for monitoring the interaction of an AKAP with a tunable PKA holoenzyme. The latter approach evaluates the composition of PKA holoenzymes, in which regulatory subunits and catalytic subunits can be visualized in the presence of test compounds and small-molecule inhibitors.
Collapse
Affiliation(s)
- Dominic P Byrne
- Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Liverpool, UK
| | - Mitchell H Omar
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Patrick A Eyers
- Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Liverpool, UK.
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Ramms DJ, Raimondi F, Arang N, Herberg FW, Taylor SS, Gutkind JS. G αs-Protein Kinase A (PKA) Pathway Signalopathies: The Emerging Genetic Landscape and Therapeutic Potential of Human Diseases Driven by Aberrant G αs-PKA Signaling. Pharmacol Rev 2021; 73:155-197. [PMID: 34663687 PMCID: PMC11060502 DOI: 10.1124/pharmrev.120.000269] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many of the fundamental concepts of signal transduction and kinase activity are attributed to the discovery and crystallization of cAMP-dependent protein kinase, or protein kinase A. PKA is one of the best-studied kinases in human biology, with emphasis in biochemistry and biophysics, all the way to metabolism, hormone action, and gene expression regulation. It is surprising, however, that our understanding of PKA's role in disease is largely underappreciated. Although genetic mutations in the PKA holoenzyme are known to cause diseases such as Carney complex, Cushing syndrome, and acrodysostosis, the story largely stops there. With the recent explosion of genomic medicine, we can finally appreciate the broader role of the Gαs-PKA pathway in disease, with contributions from aberrant functioning G proteins and G protein-coupled receptors, as well as multiple alterations in other pathway components and negative regulators. Together, these represent a broad family of diseases we term the Gαs-PKA pathway signalopathies. The Gαs-PKA pathway signalopathies encompass diseases caused by germline, postzygotic, and somatic mutations in the Gαs-PKA pathway, with largely endocrine and neoplastic phenotypes. Here, we present a signaling-centric review of Gαs-PKA-driven pathophysiology and integrate computational and structural analysis to identify mutational themes commonly exploited by the Gαs-PKA pathway signalopathies. Major mutational themes include hotspot activating mutations in Gαs, encoded by GNAS, and mutations that destabilize the PKA holoenzyme. With this review, we hope to incite further study and ultimately the development of new therapeutic strategies in the treatment of a wide range of human diseases. SIGNIFICANCE STATEMENT: Little recognition is given to the causative role of Gαs-PKA pathway dysregulation in disease, with effects ranging from infectious disease, endocrine syndromes, and many cancers, yet these disparate diseases can all be understood by common genetic themes and biochemical signaling connections. By highlighting these common pathogenic mechanisms and bridging multiple disciplines, important progress can be made toward therapeutic advances in treating Gαs-PKA pathway-driven disease.
Collapse
Affiliation(s)
- Dana J Ramms
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Francesco Raimondi
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Nadia Arang
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Friedrich W Herberg
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Susan S Taylor
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - J Silvio Gutkind
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| |
Collapse
|
12
|
Wang WL, Tu CF, Tan YQ. Insight on multiple morphological abnormalities of sperm flagella in male infertility: what is new? Asian J Androl 2021; 22:236-245. [PMID: 31210147 PMCID: PMC7275805 DOI: 10.4103/aja.aja_53_19] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The syndrome of multiple morphological abnormalities of the sperm flagella (MMAF) is a specific kind of asthenoteratozoospermia with a mosaic of flagellar morphological abnormalities (absent, short, bent, coiled, and irregular flagella). MMAF was proposed in 2014 and has attracted increasing attention; however, it has not been clearly understood. In this review, we elucidate the definition of MMAF from a systematical view, the difference between MMAF and other conditions with asthenoteratozoospermia or asthenozoospermia (such as primary mitochondrial sheath defects and primary ciliary dyskinesia), the knowledge regarding its etiological mechanism and related genetic findings, and the clinical significance of MMAF for intracytoplasmic sperm injection and genetic counseling. This review provides the basic knowledge for MMAF and puts forward some suggestions for further investigations.
Collapse
Affiliation(s)
- Wei-Li Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Chao-Feng Tu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China.,National Engineering and Research Center of Human Stem Cell, Changsha 410078, China
| |
Collapse
|
13
|
Potential therapeutic applications of AKAP disrupting peptides. Clin Sci (Lond) 2021; 134:3259-3282. [PMID: 33346357 DOI: 10.1042/cs20201244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
The 3'-5'-cyclic adenosine monophosphate (cAMP)/PKA pathway represents a major target for pharmacological intervention in multiple disease conditions. Although the last decade saw the concept of highly compartmentalized cAMP/PKA signaling consolidating, current means for the manipulation of this pathway still do not allow to specifically intervene on discrete cAMP/PKA microdomains. Since compartmentalization is crucial for action specificity, identifying new tools that allow local modulation of cAMP/PKA responses is an urgent need. Among key players of cAMP/PKA signaling compartmentalization, a major role is played by A-kinase anchoring proteins (AKAPs) that, by definition, anchor PKA, its substrates and its regulators within multiprotein complexes in well-confined subcellular compartments. Different tools have been conceived to interfere with AKAP-based protein-protein interactions (PPIs), and these primarily include peptides and peptidomimetics that disrupt AKAP-directed multiprotein complexes. While these molecules have been extensively used to understand the molecular mechanisms behind AKAP function in pathophysiological processes, less attention has been devoted to their potential application for therapy. In this review, we will discuss how AKAP-based PPIs can be pharmacologically targeted by synthetic peptides and peptidomimetics.
Collapse
|
14
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Abstract
Asthenozoospermia (AZS), defined by reduced motility or absent sperm motility, is one of the main causes of male infertility. This condition may be divided into isolated AZS in the absence of other symptoms and syndromic AZS, which is characterized by several concurrent clinical symptoms. Sperm motility depends on fully functional flagellum, energy availability, and the crosstalk of several signaling pathways; therefore, mutations in genes involved in flagellar assembly and motile regulation can cause AZS. Thus, it is crucial to understand the genetic causes and mechanisms contributing to AZS. In this review, we summarize the current knowledge about the particular genes and mechanisms involved in intact flagellum, energy availability, and signaling transduction that could cause human AZS and discuss the respective gene defects known to be responsible for these abnormalities. Additionally, we discuss intracytoplasmic sperm injection outcomes and offspring health where available in these cases.
Collapse
Affiliation(s)
- Chaofeng Tu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China; College of Life Science, Hunan Normal University, Changsha, China
| | - Weili Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Tongyao Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Yue-Qiu Tan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China; College of Life Science, Hunan Normal University, Changsha, China.
| |
Collapse
|
16
|
Crilly SE, Puthenveedu MA. Compartmentalized GPCR Signaling from Intracellular Membranes. J Membr Biol 2020; 254:259-271. [PMID: 33231722 DOI: 10.1007/s00232-020-00158-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) are integral membrane proteins that transduce a wide array of inputs including light, ions, hormones, and neurotransmitters into intracellular signaling responses which underlie complex processes ranging from vision to learning and memory. Although traditionally thought to signal primarily from the cell surface, GPCRs are increasingly being recognized as capable of signaling from intracellular membrane compartments, including endosomes, the Golgi apparatus, and nuclear membranes. Remarkably, GPCR signaling from these membranes produces functional effects that are distinct from signaling from the plasma membrane, even though often the same G protein effectors and second messengers are activated. In this review, we will discuss the emerging idea of a "spatial bias" in signaling. We will present the evidence for GPCR signaling through G protein effectors from intracellular membranes, and the ways in which this signaling differs from canonical plasma membrane signaling with important implications for physiology and pharmacology. We also highlight the potential mechanisms underlying spatial bias of GPCR signaling, including how intracellular membranes and their associated lipids and proteins affect GPCR activity and signaling.
Collapse
Affiliation(s)
- Stephanie E Crilly
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Manojkumar A Puthenveedu
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
17
|
van der Horst J, Greenwood IA, Jepps TA. Cyclic AMP-Dependent Regulation of Kv7 Voltage-Gated Potassium Channels. Front Physiol 2020; 11:727. [PMID: 32695022 PMCID: PMC7338754 DOI: 10.3389/fphys.2020.00727] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/04/2020] [Indexed: 01/08/2023] Open
Abstract
Voltage-gated Kv7 potassium channels, encoded by KCNQ genes, have major physiological impacts cardiac myocytes, neurons, epithelial cells, and smooth muscle cells. Cyclic adenosine monophosphate (cAMP), a well-known intracellular secondary messenger, can activate numerous downstream effector proteins, generating downstream signaling pathways that regulate many functions in cells. A role for cAMP in ion channel regulation has been established, and recent findings show that cAMP signaling plays a role in Kv7 channel regulation. Although cAMP signaling is recognized to regulate Kv7 channels, the precise molecular mechanism behind the cAMP-dependent regulation of Kv7 channels is complex. This review will summarize recent research findings that support the mechanisms of cAMP-dependent regulation of Kv7 channels.
Collapse
Affiliation(s)
- Jennifer van der Horst
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iain A Greenwood
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| | - Thomas A Jepps
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Moreno-Corona NC, Lopez-Ortega O, Flores Hermenegildo JM, Berron-Ruiz L, Rodriguez-Alba JC, Santos-Argumedo L, Lopez-Herrera G. Lipopolysaccharide-responsive beige-like anchor acts as a cAMP-dependent protein kinase anchoring protein in B cells. Scand J Immunol 2020; 92:e12922. [PMID: 32592188 DOI: 10.1111/sji.12922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/15/2020] [Accepted: 06/21/2020] [Indexed: 01/04/2023]
Abstract
Lipopolysaccharide (LPS)-responsive beige-like anchor (LRBA) protein was initially described as a monogenetic cause for common variable immune deficiency, a syndrome characterized by low levels of B cells, defects in memory B cell differentiation and hypogammaglobulinaemia. LRBA was identified as an LPS up-regulated gene in B cells, macrophages and T cells. LRBA weighs 320 kDa and has 2863 amino acids. Its sequence contains multiple domains, suggesting that LRBA can act as a scaffolding protein. It contains two putative binding sites for cAMP-dependent kinase (PKA) regulatory subunits, suggesting this protein can act as A-kinase anchor protein (AKAP); however, physical interactions involving LRBA and PKA have not been demonstrated to date, and functional roles for such interactions are unexplored. In this work, we investigated physical interactions involving LRBA with regulatory subunits of PKA in human B cell lines and primary human B cells. PKA is a holoenzyme composed of two regulatory subunits, which can be RIα, RIβ, RIIα or RIIβ, and two catalytic subunits, Cα or Cβ. We co-immunoprecipitated LRBA using Ramos B cell lymphoma cells and observed that LRBA interacts with RIIβ. Interestingly, St-Ht31, an inhibitory peptide that disrupts AKAP interactions with regulatory subunits, reduced the amount of interacting protein. Furthermore, in primary human B cells, LRBA was induced after CD40L and IL-4 stimulation, and under such activation, we found that LRBA interacts with RIIα and RIIβ, suggesting that LRBA acts as an AKAP and binds RII subunits. Interestingly, we also identified that LRBA interacts with activation-induced cytidine deaminase in primary B cells, suggesting that it is involved in B cell function.
Collapse
Affiliation(s)
- Nidia Carolina Moreno-Corona
- Biomedicina Molecular, Centro de Investigacion y de Estudios Avanzados, Mexico City, Mexico.,Unidad de Investigacion en Inmunodeficiencias, Instituto Nacional de Pediatria, Mexico City, Mexico
| | - Orestes Lopez-Ortega
- Biomedicina Molecular, Centro de Investigacion y de Estudios Avanzados, Mexico City, Mexico
| | - Jose Mizael Flores Hermenegildo
- Biomedicina Molecular, Centro de Investigacion y de Estudios Avanzados, Mexico City, Mexico.,Unidad de Investigacion en Inmunodeficiencias, Instituto Nacional de Pediatria, Mexico City, Mexico
| | - Laura Berron-Ruiz
- Unidad de Investigacion en Inmunodeficiencias, Instituto Nacional de Pediatria, Mexico City, Mexico
| | - Juan Carlos Rodriguez-Alba
- Unidad de Citometria de Flujo, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | - Gabriela Lopez-Herrera
- Unidad de Investigacion en Inmunodeficiencias, Instituto Nacional de Pediatria, Mexico City, Mexico
| |
Collapse
|
19
|
Ding CL, Qian CL, Qi ZT, Wang W. Identification of retinoid acid induced 16 as a novel androgen receptor target in prostate cancer cells. Mol Cell Endocrinol 2020; 506:110745. [PMID: 32014455 DOI: 10.1016/j.mce.2020.110745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Retinoid acid induced 16 (RAI16) was reported to enhance tumorigenesis in hepatocellular carcinoma (HCC). The androgen receptor (AR) is a nuclear hormone receptor that functions as a critical oncogene in several cancer progressions. However, whether RAI16 is a candidate AR target gene that may involve in prostate cancer progression was unclear. MATERIALS & METHODS RAI16 expression was detected in prostate cancer cells with or without the AR agonist R1881 treatment by quantitative RT-PCR and Western blot. Direct AR binding to the RAI16 promoter was tested using AR chromatin immunoprecipitation (ChIP) and luciferase assay. Cell viability and colony formation assays in response to R1881 were analyzed in cells with RAI16 knockdown by specific siRNA. RESULTS The expression of RAI16 was high in LNCaP(AI), LNCaP(AD), C4-2 expressing AR, but low in Du145 and Pc-3 cells without AR expressing. In addition, the expression of RAI16 could be induced by 10 nM R1881 treatment LNCaP(AD) and C4-2 cells, but inhibited by AR specific siRNA treatment. Furthermore, AR binds directly to ARE3 (-2003~-1982bp) of RAI16 promoter region by ChIP and luciferase assay. RAI16 knockdown inhibited the enhancement of cell viability and colony formation of AR stimulation. CONCLUSIONS We demonstrate for the first time that RAI16 is a direct target gene of AR. RAI16 may involved in cell growth of prostate cancer cells in response to AR signaling.
Collapse
Affiliation(s)
- Cui-Ling Ding
- Department of Microbiology, Second Military Medical University, Shanghai, 200433, China.
| | - Chun-Lin Qian
- Department of Microbiology, Second Military Medical University, Shanghai, 200433, China.
| | - Zhong-Tian Qi
- Department of Microbiology, Second Military Medical University, Shanghai, 200433, China.
| | - Wen Wang
- Department of Microbiology, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
20
|
Zhu Y, Jiang X, Ye P, Wang Z, Zheng Y, Liu Z, Chen S, Zhang D. Knockout of AKAP150 improves impaired BK channel-mediated vascular dysfunction through the Akt/GSK3β signalling pathway in diabetes mellitus. J Cell Mol Med 2020; 24:4716-4725. [PMID: 32163656 PMCID: PMC7176888 DOI: 10.1111/jcmm.15143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/05/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Vascular dysfunction resulting from diabetes is an important factor in arteriosclerosis. Previous studies have shown that during hyperglycaemia and diabetes, AKAP150 promotes vascular tone enhancement by intensifying the remodelling of the BK channel. However, the interaction between AKAP150 and the BK channel remains open to discussion. In this study, we investigated the regulation of impaired BK channel-mediated vascular dysfunction in diabetes mellitus. Using AKAP150 null mice (AKAP150-/- ) and wild-type (WT) control mice (C57BL/6J), diabetes was induced by intraperitoneal injection of streptozotocin. We found that knockout of AKAP150 reversed vascular remodelling and fibrosis in mice with diabetes and in AKAP150-/- diabetic mice. Impaired Akt/GSK3β signalling contributed to decreased BK-β1 expression in aortas from diabetic mice, and the silencing of AKAP150 increased Akt phosphorylation and BK-β1 expression in MOVAS cells treated with HG medium. The inhibition of Akt activity caused a decrease in BK-β1 expression, and treatment with AKAP150 siRNA suppressed GSK3β expression in the nuclei of MOVAS cells treated with HG. Knockout of AKAP150 reverses impaired BK channel-mediated vascular dysfunction through the Akt/GSK3β signalling pathway in diabetes mellitus.
Collapse
Affiliation(s)
- Yan‐Rong Zhu
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Xiao‐Xin Jiang
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Peng Ye
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Zhi‐Mei Wang
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Yaguo Zheng
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Zhizhong Liu
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Shao‐Liang Chen
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Dai‐Min Zhang
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
21
|
Russell MA. Synemin Redefined: Multiple Binding Partners Results in Multifunctionality. Front Cell Dev Biol 2020; 8:159. [PMID: 32258037 PMCID: PMC7090255 DOI: 10.3389/fcell.2020.00159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Historically synemin has been studied as an intermediate filament protein. However, synemin also binds the type II regulatory (R) subunit α of protein kinase A (PKA) and protein phosphatase type 2A, thus participating in the PKA and phosphoinositide 3-kinase (PI3K)-Akt and signaling pathways. In addition, recent studies using transgenic mice indicate that a significant function of synemin is its role in signaling pathways in various tissues, including the heart. Recent clinical reports have shown that synemin mutations led to multiple cases of dilated cardiomyopathy. Additionally, a single case of the rare condition ulnar-mammary-like syndrome with left ventricular tachycardia due to a mutation in the synemin gene (SYNM) has been reported. Therefore, this review uses these recent studies to provide a new framework for detailed discussions on synemin tissue distribution, binding partners and synemin in disease. Differences between α- and β-synemin are highlighted. The studies presented here indicate that while synemin does function as an intermediate filament protein, it is unique among this large family of proteins as it is also a regulator of signaling pathways and a crosslinker. Also evident is that the dominant function(s) are isoform-, developmental-, and tissue-specific.
Collapse
Affiliation(s)
- Mary A Russell
- Department of Biological Sciences, Kent State University at Trumbull, Warren, OH, United States
| |
Collapse
|
22
|
Shepard RD, Langlois LD, Authement ME, Nugent FS. Histone deacetylase inhibition reduces ventral tegmental area dopamine neuronal hyperexcitability involving AKAP150 signaling following maternal deprivation in juvenile male rats. J Neurosci Res 2020; 98:1457-1467. [PMID: 32162391 DOI: 10.1002/jnr.24613] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 12/27/2022]
Abstract
Traumatic early life stress (ELS) is linked to dopamine (DA) dysregulation which increases the probability of developing psychiatric disorders in adolescence and adulthood. Our prior studies demonstrated that a severe early life stressor, a 24-hr maternal deprivation (MD) in juvenile male rats, could lead to altered DA signaling from the ventral tegmental area (VTA) due to impairment of GABAergic synaptic plasticity (promoting GABAergic long-term depression, LTD) with concomitant changes in the abundance of synaptic regulators including A-kinase anchoring protein (AKAP150). Importantly, these MD-induced synaptic changes in the VTA were accompanied by upregulation of histone deacetylase 2, histone hypoacetylation, and were reversible by HDAC inhibition. Using cell-attached and whole-cell patch clamp recordings, we found that MD stress also increased spontaneous VTA DA neuronal activity and excitability in juvenile male rats without affecting intrinsic excitability. Postsynaptic chemical disruption of AKAP150 and protein kinase A interaction increased VTA DA neuronal excitability in control non-MD rats mimicking the effects of MD on DA cell excitability with similar changes in membrane properties. Interestingly, this disruption decreased MD-induced VTA DA hyperexcitability. This MD-induced DA neuronal hyperexcitability could also be normalized at 24 hr after injection of the class 1 HDAC inhibitor, CI-994. Altogether, our data suggest that AKAP150 plays a critical role in the regulation of VTA DA neuronal excitability and that HDAC-mediated targeting of AKAP150 signaling could normalize VTA DA dysfunction following ELS thereby providing novel therapeutic targets for prevention of later life psychopathology.
Collapse
Affiliation(s)
- Ryan D Shepard
- Edward Hebert School of Medicine, Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Ludovic D Langlois
- Edward Hebert School of Medicine, Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Michael E Authement
- Edward Hebert School of Medicine, Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Fereshteh S Nugent
- Edward Hebert School of Medicine, Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
23
|
Touré A, Martinez G, Kherraf ZE, Cazin C, Beurois J, Arnoult C, Ray PF, Coutton C. The genetic architecture of morphological abnormalities of the sperm tail. Hum Genet 2020; 140:21-42. [PMID: 31950240 DOI: 10.1007/s00439-020-02113-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/06/2020] [Indexed: 12/29/2022]
Abstract
Spermatozoa contain highly specialized structural features reflecting unique functions required for fertilization. Among them, the flagellum is a sperm-specific organelle required to generate the motility, which is essential to reach the egg. The flagellum integrity is, therefore, critical for normal sperm function and flagellum defects consistently lead to male infertility due to reduced or absent sperm motility defined as asthenozoospermia. Multiple morphological abnormalities of the flagella (MMAF), also called short tails, is among the most severe forms of sperm flagellum defects responsible for male infertility and is characterized by the presence in the ejaculate of spermatozoa being short, coiled, absent and of irregular caliber. Recent studies have demonstrated that MMAF is genetically heterogeneous which is consistent with the large number of proteins (over one thousand) localized in the human sperm flagella. In the past 5 years, genomic investigation of the MMAF phenotype allowed the identification of 18 genes whose mutations induce MMAF and infertility. Here we will review information about those genes including their expression pattern, the features of the encoded proteins together with their localization within the different flagellar protein complexes (axonemal or peri-axonemal) and their potential functions. We will categorize the identified MMAF genes following the protein complexes, functions or biological processes they may be associated with, based on the current knowledge in the field.
Collapse
Affiliation(s)
- Aminata Touré
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France.,INSERM U1016, Institut Cochin, 75014, Paris, France.,Centre National de La Recherche Scientifique UMR8104, 75014, Paris, France
| | - Guillaume Martinez
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France
| | - Zine-Eddine Kherraf
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France
| | - Caroline Cazin
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Julie Beurois
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Christophe Arnoult
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Pierre F Ray
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France
| | - Charles Coutton
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France. .,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France.
| |
Collapse
|
24
|
Tschaikner P, Enzler F, Torres-Quesada O, Aanstad P, Stefan E. Hedgehog and Gpr161: Regulating cAMP Signaling in the Primary Cilium. Cells 2020; 9:E118. [PMID: 31947770 PMCID: PMC7017137 DOI: 10.3390/cells9010118] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
Compartmentalization of diverse types of signaling molecules contributes to the precise coordination of signal propagation. The primary cilium fulfills this function by acting as a spatiotemporally confined sensory signaling platform. For the integrity of ciliary signaling, it is mandatory that the ciliary signaling pathways are constantly attuned by alterations in both oscillating small molecules and the presence or absence of their sensor/effector proteins. In this context, ciliary G protein-coupled receptor (GPCR) pathways participate in coordinating the mobilization of the diffusible second messenger molecule 3',5'-cyclic adenosine monophosphate (cAMP). cAMP fluxes in the cilium are primarily sensed by protein kinase A (PKA) complexes, which are essential for the basal repression of Hedgehog (Hh) signaling. Here, we describe the dynamic properties of underlying signaling circuits, as well as strategies for second messenger compartmentalization. As an example, we summarize how receptor-guided cAMP-effector pathways control the off state of Hh signaling. We discuss the evidence that a macromolecular, ciliary-localized signaling complex, composed of the orphan GPCR Gpr161 and type I PKA holoenzymes, is involved in antagonizing Hh functions. Finally, we outline how ciliary cAMP-linked receptor pathways and cAMP-sensing signalosomes may become targets for more efficient combinatory therapy approaches to counteract dysregulation of Hh signaling.
Collapse
Affiliation(s)
- Philipp Tschaikner
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (P.T.); (F.E.); (O.T.-Q.)
- Institute of Molecular Biology, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Florian Enzler
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (P.T.); (F.E.); (O.T.-Q.)
| | - Omar Torres-Quesada
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (P.T.); (F.E.); (O.T.-Q.)
| | - Pia Aanstad
- Institute of Molecular Biology, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (P.T.); (F.E.); (O.T.-Q.)
| |
Collapse
|
25
|
Zhu Y, Jiang X, Zheng Y, Xiong J, Wei D, Zhang D. Cardiac function modulation depends on the A-kinase anchoring protein complex. J Cell Mol Med 2019; 23:7170-7179. [PMID: 31512389 PMCID: PMC6815827 DOI: 10.1111/jcmm.14659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/27/2019] [Accepted: 08/06/2019] [Indexed: 12/26/2022] Open
Abstract
The A-kinase anchoring proteins (AKAPs) are a group of structurally diverse proteins identified in various species and tissues. These proteins are able to anchor protein kinase and other signalling proteins to regulate cardiac function. Acting as a scaffold protein, AKAPs ensure specificity in signal transduction by enzymes close to their appropriate effectors and substrates. Over the decades, more than 70 different AKAPs have been discovered. Accumulative evidence indicates that AKAPs play crucial roles in the functional regulation of cardiac diseases, including cardiac hypertrophy, myofibre contractility dysfunction and arrhythmias. By anchoring different partner proteins (PKA, PKC, PKD and LTCCs), AKAPs take part in different regulatory pathways to function as regulators in the heart, and a damaged structure can influence the activities of these complexes. In this review, we highlight recent advances in AKAP-associated protein complexes, focusing on local signalling events that are perturbed in cardiac diseases and their roles in interacting with ion channels and their regulatory molecules. These new findings suggest that AKAPs might have potential therapeutic value in patients with cardiac diseases, particularly malignant rhythm.
Collapse
Affiliation(s)
- Yan‐Rong Zhu
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Xiao‐Xin Jiang
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Yaguo Zheng
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Jing Xiong
- Department of PharmacologyNanjing Medical UniversityNanjingChina
| | - Dongping Wei
- Department of OncologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Dai‐Min Zhang
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
26
|
Salek AB, Edler MC, McBride JP, Baucum AJ. Spinophilin regulates phosphorylation and interactions of the GluN2B subunit of the N-methyl-d-aspartate receptor. J Neurochem 2019; 151:185-203. [PMID: 31325175 DOI: 10.1111/jnc.14831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/21/2019] [Accepted: 07/13/2019] [Indexed: 12/20/2022]
Abstract
N-methyl-d-Aspartate receptors (NMDARs) are abundant postsynaptic proteins that are critical for normal synaptic communication. NMDAR channel function is regulated by multiple properties, including phosphorylation. Inhibition of protein phosphatase 1 (PP1) in hippocampal neurons increases NMDAR activity, an effect abrogated by loss of spinophilin, the major PP1-targeting protein in the postsynaptic density. However, how spinophilin regulates PP1-dependent NMDAR function is unclear. We hypothesize that spinophilin regulates PP1 binding to the NMDAR to alter NMDAR phosphorylation. Our data demonstrate that spinophilin interacts with the GluN2B subunit of the NMDAR. In human embryonic kidney 293 FT cells, activation and/or overexpression of protein kinase A increased the association between spinophilin and the GluN2B subunit of the NMDAR. Functionally, we found that spinophilin overexpression decreased PP1 binding to the GluN2B subunit of the NMDAR and attenuated the PP1-dependent dephosphorylation of GluN2B at Ser-1284. Moreover, in P28 hippocampal lysates isolated from spinophilin KO compared to WT mice, there was increased binding of GluN2B to PP1, decreased phosphorylation of GluN2B at Ser-1284, and altered GluN2B protein interactions with postsynaptic density-enriched proteins. Together, our data demonstrate that spinophilin decreases PP1 binding to GluN2B and concomitantly enhances the phosphorylation of GluN2B at Ser-1284. The putative consequences of these spinophilin-dependent alterations in GluN2B phosphorylation and interactions on synaptic GluN2B localization and function are discussed. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Asma B Salek
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - Michael C Edler
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jonathon P McBride
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - Anthony J Baucum
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
27
|
Martinez G, Kherraf ZE, Zouari R, Fourati Ben Mustapha S, Saut A, Pernet-Gallay K, Bertrand A, Bidart M, Hograindleur JP, Amiri-Yekta A, Kharouf M, Karaouzène T, Thierry-Mieg N, Dacheux-Deschamps D, Satre V, Bonhivers M, Touré A, Arnoult C, Ray PF, Coutton C. Whole-exome sequencing identifies mutations in FSIP2 as a recurrent cause of multiple morphological abnormalities of the sperm flagella. Hum Reprod 2019; 33:1973-1984. [PMID: 30137358 DOI: 10.1093/humrep/dey264] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 07/13/2018] [Indexed: 12/30/2022] Open
Abstract
STUDY QUESTION Can whole-exome sequencing (WES) of infertile patients identify new genes responsible for multiple morphological abnormalities of the sperm flagella (MMAF)? SUMMARY ANSWER WES analysis of 78 infertile men with a MMAF phenotype permitted the identification of four homozygous mutations in the fibrous sheath (FS) interacting protein 2 (FSIP2) gene in four unrelated individuals. WHAT IS KNOWN ALREADY The use of high-throughput sequencing techniques revealed that mutations in the dynein axonemal heavy chain 1 (DNAH1) gene, and in the cilia and flagella associated protein 43 (CFAP43) and 44 (CFAP44) genes account for approximately one-third of MMAF cases thus indicating that other relevant genes await identification. STUDY DESIGN, SIZE, DURATION This was a retrospective genetics study of 78 patients presenting a MMAF phenotype who were recruited in three fertility clinics between 2008 and 2015. Control sperm samples were obtained from normospermic donors. Allelic frequency for control subjects was derived from large public databases. PARTICIPANTS/MATERIALS, SETTING, METHODS WES was performed for all 78 subjects. All identified variants were confirmed by Sanger sequencing. Relative mRNA expression levels for the selected candidate gene (FSIP2) was assessed by quantitative RT-PCR in a panel of normal human and mouse tissues. To characterize the structural and ultrastructural anomalies present in patients' sperm, immunofluorescence (IF) was performed on sperm samples from two subjects with a mutation and one control and transmission electron microscopy (TEM) analyses was performed on sperm samples from one subject with a mutation and one control. MAIN RESULTS AND THE ROLE OF CHANCE We identified four unrelated patients (4/78, 5.1%) with homozygous loss of function mutations in the FSIP2 gene, which encodes a protein of the sperm FS and is specifically expressed in human and mouse testis. None of these mutations were reported in control sequence databases. TEM analyses showed a complete disorganization of the FS associated with axonemal defects. IF analyses confirmed that the central-pair microtubules and the inner and outer dynein arms of the axoneme were abnormal in all four patients carrying FSIP2 mutations. Importantly, and in contrast to what was observed in patients with MMAF and mutations in other MMAF-related genes (DNAH1, CFAP43 and CFAP44), mutations in FSIP2 led to the absence of A-kinase anchoring protein 4 (AKAP4). LIMITATIONS, REASONS FOR CAUTION The low number of biological samples and the absence of a reliable anti-FSIP2 antibody prevented the formal demonstration that the FSIP2 protein was absent in sperm from subjects with a FSIP2 mutation. WIDER IMPLICATIONS OF THE FINDINGS Our findings indicate that FSIP2 is one of the main genes involved in MMAF syndrome. In humans, genes previously associated with a MMAF phenotype encoded axonemal-associated proteins (DNAH1, CFAP43 and CFAP44). We show here that FSIP2, a protein of the sperm FS, is also logically associated with MMAF syndrome as we showed that it is necessary for FS assembly and for the overall axonemal and flagellar biogenesis. As was suggested before in mouse and man, our results also suggest that defects in AKAP4, one of the main proteins interacting with FSIP2, would induce a MMAF phenotype. Finally, this work reinforces the demonstration that WES sequencing is a good strategy to reach a genetic diagnosis for patients with severe male infertility phenotypes. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the following grants: the 'MAS-Flagella' project financed by the French ANR and the DGOS for the program PRTS 2014 (14-CE15) and the 'Whole genome sequencing of patients with Flagellar Growth Defects (FGD)' project financed by the Fondation Maladies Rares for the program Séquençage à haut débit 2012. The authors have no conflict of interest.
Collapse
Affiliation(s)
- Guillaume Martinez
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Zine-Eddine Kherraf
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France.,CHU de Grenoble, UM GI-DPI, Grenoble, France
| | - Raoudha Zouari
- Clinique des Jasmins, 23, Av. Louis BRAILLE 1002 Belvedere, Tunis, Tunisia
| | | | - Antoine Saut
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | | | - Anne Bertrand
- Grenoble Neuroscience Institute, INSERM 1216, Grenoble, France
| | - Marie Bidart
- CHU Grenoble Alpes, UM de Biochimie Génétique et Moléculaire, Grenoble, France
| | - Jean Pascal Hograindleur
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France
| | - Amir Amiri-Yekta
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France.,CHU Grenoble Alpes, UM de Biochimie Génétique et Moléculaire, Grenoble, France.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mahmoud Kharouf
- Clinique des Jasmins, 23, Av. Louis BRAILLE 1002 Belvedere, Tunis, Tunisia
| | - Thomas Karaouzène
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France.,University Grenoble Alpes/CNRS, TIMC-IMAG, Grenoble, France
| | | | - Denis Dacheux-Deschamps
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR, Bordeaux, France.,Institut Polytechnique de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR-CNRS 5234, Bordeaux, France
| | - Véronique Satre
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Mélanie Bonhivers
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR, Bordeaux, France.,Institut Polytechnique de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR-CNRS 5234, Bordeaux, France
| | - Aminata Touré
- INSERM U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christophe Arnoult
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France
| | - Pierre F Ray
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France.,CHU de Grenoble, UM GI-DPI, Grenoble, France
| | - Charles Coutton
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| |
Collapse
|
28
|
Nsota Mbango JF, Coutton C, Arnoult C, Ray PF, Touré A. Genetic causes of male infertility: snapshot on morphological abnormalities of the sperm flagellum. Basic Clin Androl 2019; 29:2. [PMID: 30867909 PMCID: PMC6398242 DOI: 10.1186/s12610-019-0083-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/09/2019] [Indexed: 11/10/2022] Open
Abstract
Male infertility due to Multiple Morphological Abnormalities of the sperm Flagella (MMAF), is characterized by nearly total asthenozoospermia due to the presence of a mosaic of sperm flagellar anomalies, which corresponds to short, angulated, absent flagella and flagella of irregular calibre. In the last four years, 7 novel genes whose mutations account for 45% of a cohort of 78 MMAF individuals were identified: DNAH1, CFAP43, CFAP44, CFAP69, FSIP2, WDR66 (CFAP251), AK7. This successful outcome results from the efficient combination of high-throughput sequencing technologies together with robust and complementary approaches for functional validation, in vitro, and in vivo using the mouse and unicellular model organisms such as the flagellated parasite T. brucei. Importantly, these genes are distinct from genes responsible for Primary Ciliary Dyskinesia (PCD), an autosomal recessive disease associated with both respiratory cilia and sperm flagellum defects, and their mutations therefore exclusively lead to male infertility. In the future, these genetic findings will definitely improve the diagnosis efficiency of male infertility and might provide genotype-phenotype correlations, which could be helpful for the prognosis of intracytoplasmic sperm injection (ICSI) performed with sperm from MMAF patients. In addition, functional study of these novel genes should improve our knowledge about the protein networks and molecular mechanisms involved in mammalian sperm flagellum structure and beating.
Collapse
Affiliation(s)
- Jean-Fabrice Nsota Mbango
- 1INSERMU1016, CNRS UMR8104, Université Paris Descartes, 75014 Paris, France.,2Centre National de la Recherche Scientifique UMR8104, 75014 Paris, France.,3Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Charles Coutton
- Institut for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000 Grenoble, France.,5CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Christophe Arnoult
- Institut for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Pierre F Ray
- Institut for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000 Grenoble, France.,CHU de Grenoble, UM GI-DPI, F-38000 Grenoble, France
| | - Aminata Touré
- 1INSERMU1016, CNRS UMR8104, Université Paris Descartes, 75014 Paris, France.,2Centre National de la Recherche Scientifique UMR8104, 75014 Paris, France.,3Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| |
Collapse
|
29
|
Ng SSM, Jorge S, Malik M, Britten J, Su SC, Armstrong CR, Brennan JT, Chang S, Baig KM, Driggers PH, Segars JH. A-Kinase Anchoring Protein 13 (AKAP13) Augments Progesterone Signaling in Uterine Fibroid Cells. J Clin Endocrinol Metab 2019; 104:970-980. [PMID: 30239831 PMCID: PMC6365770 DOI: 10.1210/jc.2018-01216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/10/2018] [Indexed: 01/11/2023]
Abstract
CONTEXT Uterine leiomyomata (fibroids) are prevalent sex hormone‒dependent tumors with an altered response to mechanical stress. Ulipristal acetate, a selective progesterone receptor (PR) modulator, significantly reduces fibroid size in patients. However, PR signaling in fibroids and its relationship to mechanical signaling are incompletely understood. OBJECTIVE Our prior studies revealed that A-kinase anchoring protein 13 (AKAP13) was overexpressed in fibroids and contributed to altered mechanotransduction in fibroids. Because AKAP13 augmented nuclear receptor signaling in other tissues, we sought to determine whether AKAP13 might influence PR signaling in fibroids. METHODS AND RESULTS Fibroid samples from patients treated with ulipristal acetate or placebo were examined for AKAP13 expression by using immunohistochemistry. In immortalized uterine fibroid cell lines and COS-7 cells, we observed that AKAP13 increased ligand-dependent PR activation of luciferase reporters and endogenous progesterone-responsive genes for PR-B but not PR-A. Inhibition of ERK reduced activation of PR-dependent signaling by AKAP13, but inhibition of p38 MAPK had no effect. In addition, glutathione S-transferase‒binding assays revealed that AKAP13 was bound to PR-B through its carboxyl terminus. CONCLUSION These data suggest an intersection of mechanical signaling and PR signaling involving AKAP13 through ERK. Further elucidation of the integration of mechanical and hormonal signaling pathways in fibroids may provide insight into fibroid development and suggest new therapeutic strategies for treatment.
Collapse
Affiliation(s)
- Sinnie Sin Man Ng
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Soledad Jorge
- Section on Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington
| | - Minnie Malik
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joy Britten
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Szu-Chi Su
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Charles R Armstrong
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Joshua T Brennan
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Sydney Chang
- Section on Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- Department of OBGYN and Reproductive Science, Mount Sinai School of Medicine, New York, New York
| | - Kimberlyn Maravet Baig
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
- Section on Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Paul H Driggers
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - James H Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
- Correspondence and Reprint Requests: James H. Segars, MD, Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Ross Building 624, 720 Rutland Avenue, Baltimore, Maryland 21205. E-mail address:
| |
Collapse
|
30
|
Lorès P, Coutton C, El Khouri E, Stouvenel L, Givelet M, Thomas L, Rode B, Schmitt A, Louis B, Sakheli Z, Chaudhry M, Fernandez-Gonzales A, Mitsialis A, Dacheux D, Wolf JP, Papon JF, Gacon G, Escudier E, Arnoult C, Bonhivers M, Savinov SN, Amselem S, Ray PF, Dulioust E, Touré A. Homozygous missense mutation L673P in adenylate kinase 7 (AK7) leads to primary male infertility and multiple morphological anomalies of the flagella but not to primary ciliary dyskinesia. Hum Mol Genet 2019; 27:1196-1211. [PMID: 29365104 DOI: 10.1093/hmg/ddy034] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/16/2018] [Indexed: 02/03/2023] Open
Abstract
Motile cilia and sperm flagella share an extremely conserved microtubule-based cytoskeleton, called the axoneme, which sustains beating and motility of both organelles. Ultra-structural and/or functional defects of this axoneme are well-known to cause primary ciliary dyskinesia (PCD), a disorder characterized by recurrent respiratory tract infections, chronic otitis media, situs inversus, male infertility and in most severe cases, hydrocephalus. Only recently, mutations in genes encoding axonemal proteins with preferential expression in the testis were identified in isolated male infertility; in those cases, individuals displayed severe asthenozoospermia due to Multiple Morphological Abnormalities of the sperm Flagella (MMAF) but not PCD features. In this study, we performed genetic investigation of two siblings presenting MMAF without any respiratory PCD features, and we report the identification of the c.2018T > G (p.Leu673Pro) transversion in AK7, encoding an adenylate kinase, expressed in ciliated tissues and testis. By performing transcript and protein analyses of biological samples from individual carrying the transversion, we demonstrate that this mutation leads to the loss of AK7 protein in sperm cells but not in respiratory ciliated cells, although both cell types carry the mutated transcript and no tissue-specific isoforms were detected. This work therefore, supports the notion that proteins shared by both cilia and sperm flagella may have specific properties and/or function in each organelle, in line with the differences in their mode of assembly and organization. Overall, this work identifies a novel genetic cause of asthenozoospermia due to MMAF and suggests that in humans, more deleterious mutations of AK7 might induce PCD.
Collapse
Affiliation(s)
- Patrick Lorès
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Charles Coutton
- Institut for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Elma El Khouri
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Laurence Stouvenel
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Maëlle Givelet
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Lucie Thomas
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Paris 75012, France
| | - Baptiste Rode
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Alain Schmitt
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Bruno Louis
- Equipe 13, INSERM UMR S955, Faculté de Médecine, Université Paris Est, CNRS ERL7240, Créteil 94000, France
| | - Zeinab Sakheli
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Marhaba Chaudhry
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | | | - Alex Mitsialis
- Division of Newborn Medicine, Children's Hospital Boston, Boston, MA 02115, USA
| | - Denis Dacheux
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France.,Microbiologie Fondamentale et Pathogénicité, Institut Polytechnique de Bordeaux, UMR-CNRS 5234, F-33000 Bordeaux, France
| | - Jean-Philippe Wolf
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.,Laboratoire d'Histologie Embryologie-Biologie de la Reproduction, GH Cochin Broca Hôtel Dieu, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Jean-François Papon
- Equipe 13, INSERM UMR S955, Faculté de Médecine, Université Paris Est, CNRS ERL7240, Créteil 94000, France.,Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Maxillo-Faciale, Hôpital Bicêtre, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre 94275, France.,Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre F-94275, France
| | - Gérard Gacon
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Estelle Escudier
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Paris 75012, France.,Service de Génétique et d'Embryologie Médicales, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris 75012, France
| | - Christophe Arnoult
- Institut for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Mélanie Bonhivers
- Microbiologie Fondamentale et Pathogénicité, Institut Polytechnique de Bordeaux, UMR-CNRS 5234, F-33000 Bordeaux, France.,Laboratoire d'Histologie Embryologie-Biologie de la Reproduction, GH Cochin Broca Hôtel Dieu, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Sergey N Savinov
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Serge Amselem
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Paris 75012, France.,Service de Génétique et d'Embryologie Médicales, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris 75012, France
| | - Pierre F Ray
- Institut for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France.,CHU de Grenoble, UM GI-DPI, Grenoble F-38000, France
| | - Emmanuel Dulioust
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.,Laboratoire d'Histologie Embryologie-Biologie de la Reproduction, GH Cochin Broca Hôtel Dieu, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Aminata Touré
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| |
Collapse
|
31
|
Lopp A, Reintamm T, Kuusksalu A, Olspert A, Kelve M. Identification of a novel member of 2H phosphoesterases, 2',5'-oligoadenylate degrading ribonuclease from the oyster Crassostrea gigas. Biochimie 2018; 156:181-195. [PMID: 30195052 DOI: 10.1016/j.biochi.2018.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/03/2018] [Indexed: 11/16/2022]
Abstract
Several genes of IFN-mediated pathways in vertebrates, among them the genes that participate in the 2',5'-oligoadenylate synthetase (OAS)/RNase L pathway, have been identified in C. gigas. In the present study, we identified genes, which encode proteins having 2',5'-oligoadenylate degrading activity in C. gigas. These proteins belong to the 2H phosphoesterase superfamily and have sequence similarity to the mammalian A kinase anchoring protein 7 (AKAP7) central domain, which is responsible for the 2',5'-phosphodiesterase (2',5'-PDE) activity. Comparison of the genomic structures of C. gigas proteins with that of AKAP7 suggests that these enzymes originate from a direct common ancestor. However, the identified nucleases are not typical 2',5'-PDEs. The found enzymes catalyse the degradation of 2',5'-linked oligoadenylates in a metal-ion-independent way, yielding products with 2',3' -cyclic phosphate and 5'-OH termini similarly to the 3'-5' bond cleavage in RNA, catalyzed by metal-independent ribonucleases. 3',5'-linked oligoadenylates are not substrates for them. The preferred substrates for the C. gigas enzymes are 5'-triphosphorylated 2',5'-oligoadenylates, whose major cleavage reaction results in the removal of the 5'-triphosphorylated 2',3'-cyclic phosphate derivative, leaving behind the respective unphosphorylated 2',5'-oligoadenylate. Such a cleavage reaction results in the direct inactivation of the biologically active 2-5A molecule. The 2',5'-ribonucleases (2',5'-RNases) from C. gigas could be members of the ancient group of ribonucleases, specific to 2'-5' phosphodiester bond, together with the enzyme that was characterized previously from the marine sponge Tethya aurantium. The novel 2',5'-RNases may play a role in the control of cellular 2-5A levels, thereby limiting damage to host cells after viral infection.
Collapse
Affiliation(s)
- Annika Lopp
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, Tallinn, 12618, Estonia.
| | - Tõnu Reintamm
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, Tallinn, 12618, Estonia
| | - Anne Kuusksalu
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, Tallinn, 12618, Estonia
| | - Allan Olspert
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, Tallinn, 12618, Estonia
| | - Merike Kelve
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, Tallinn, 12618, Estonia
| |
Collapse
|
32
|
Liu Z, Khalil RA. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharmacol 2018; 153:91-122. [PMID: 29452094 PMCID: PMC5959760 DOI: 10.1016/j.bcp.2018.02.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle (VSM) plays an important role in the regulation of vascular function. Identifying the mechanisms of VSM contraction has been a major research goal in order to determine the causes of vascular dysfunction and exaggerated vasoconstriction in vascular disease. Major discoveries over several decades have helped to better understand the mechanisms of VSM contraction. Ca2+ has been established as a major regulator of VSM contraction, and its sources, cytosolic levels, homeostatic mechanisms and subcellular distribution have been defined. Biochemical studies have also suggested that stimulation of Gq protein-coupled membrane receptors activates phospholipase C and promotes the hydrolysis of membrane phospholipids into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 stimulates initial Ca2+ release from the sarcoplasmic reticulum, and is buttressed by Ca2+ influx through voltage-dependent, receptor-operated, transient receptor potential and store-operated channels. In order to prevent large increases in cytosolic Ca2+ concentration ([Ca2+]c), Ca2+ removal mechanisms promote Ca2+ extrusion via the plasmalemmal Ca2+ pump and Na+/Ca2+ exchanger, and Ca2+ uptake by the sarcoplasmic reticulum and mitochondria, and the coordinated activities of these Ca2+ handling mechanisms help to create subplasmalemmal Ca2+ domains. Threshold increases in [Ca2+]c form a Ca2+-calmodulin complex, which activates myosin light chain (MLC) kinase, and causes MLC phosphorylation, actin-myosin interaction, and VSM contraction. Dissociations in the relationships between [Ca2+]c, MLC phosphorylation, and force have suggested additional Ca2+ sensitization mechanisms. DAG activates protein kinase C (PKC) isoforms, which directly or indirectly via mitogen-activated protein kinase phosphorylate the actin-binding proteins calponin and caldesmon and thereby enhance the myofilaments force sensitivity to Ca2+. PKC-mediated phosphorylation of PKC-potentiated phosphatase inhibitor protein-17 (CPI-17), and RhoA-mediated activation of Rho-kinase (ROCK) inhibit MLC phosphatase and in turn increase MLC phosphorylation and VSM contraction. Abnormalities in the Ca2+ handling mechanisms and PKC and ROCK activity have been associated with vascular dysfunction in multiple vascular disorders. Modulators of [Ca2+]c, PKC and ROCK activity could be useful in mitigating the increased vasoconstriction associated with vascular disease.
Collapse
Affiliation(s)
- Zhongwei Liu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Abstract
As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected “hub” proteins to “hack” the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function.
Collapse
|
34
|
Mitochondrial cAMP-PKA signaling: What do we really know? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:868-877. [PMID: 29694829 DOI: 10.1016/j.bbabio.2018.04.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/06/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022]
Abstract
Mitochondria are key organelles for cellular homeostasis. They generate the most part of ATP that is used by cells through oxidative phosphorylation. They also produce reactive oxygen species, neurotransmitters and other signaling molecules. They are important for calcium homeostasis and apoptosis. Considering the role of this organelle, it is not surprising that most mitochondrial dysfunctions are linked to the development of pathologies. Various mechanisms adjust mitochondrial activity according to physiological needs. The cAMP-PKA signaling emerged in recent years as a direct and powerful mean to regulate mitochondrial functions. Multiple evidence demonstrates that such pathway can be triggered from cytosol or directly within mitochondria. Notably, specific anchor proteins target PKA to mitochondria whereas enzymes necessary for generation and degradation of cAMP are found directly in these organelles. Mitochondrial PKA targets proteins localized in different compartments of mitochondria, and related to various functions. Alterations of mitochondrial cAMP-PKA signaling affect the development of several physiopathological conditions, including neurodegenerative diseases. It is however difficult to discriminate between the effects of cAMP-PKA signaling triggered from cytosol or directly in mitochondria. The specific roles of PKA localized in different mitochondrial compartments are also not completely understood. The aim of this work is to review the role of cAMP-PKA signaling in mitochondrial (patho)physiology.
Collapse
|
35
|
Suryavanshi SV, Jadhav SM, Anderson KL, Katsonis P, Lichtarge O, McConnell BK. Human muscle-specific A-kinase anchoring protein polymorphisms modulate the susceptibility to cardiovascular diseases by altering cAMP/PKA signaling. Am J Physiol Heart Circ Physiol 2018; 315:H109-H121. [PMID: 29600899 DOI: 10.1152/ajpheart.00034.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
One of the crucial cardiac signaling pathways is cAMP-mediated PKA signal transduction, which is regulated by a family of scaffolding proteins, i.e., A-kinase anchoring proteins (AKAPs). Muscle-specific AKAP (mAKAP) partly regulates cardiac cAMP/PKA signaling by binding to PKA and phosphodiesterase 4D3 (PDE4D3), among other proteins, and plays a central role in modulating cardiac remodeling. Moreover, genetics plays an incomparable role in modifying the risk of cardiovascular diseases (CVDs). Single-nucleotide polymorphisms (SNPs) in various proteins have especially been shown to predispose individuals to CVDs. Hence, we hypothesized that human mAKAP polymorphisms found in humans with CVDs alter the cAMP/PKA pathway, influencing the susceptibility of individuals to CVDs. Our computational analyses revealed two mAKAP SNPs found in cardiac disease-related patients with the highest predicted deleterious effects, Ser 1653 Arg (S1653R) and Glu 2124 Gly (E2124G). Coimmunoprecipitation data in human embryonic kidney-293T cells showed that the S1653R SNP, present in the PDE4D3-binding domain of mAKAP, changed the binding of PDE4D3 to mAKAP and that the E2124G SNP, flanking the 3'-PKA binding domain, changed the binding of PKA before and after stimulation with isoproterenol. These SNPs significantly altered intracellular cAMP levels, global PKA activity, and cytosolic PDE activity compared with the wild type before and after isoproterenol stimulation. PKA-mediated phosphorylation of pathological markers was found to be upregulated after cell stimulation in both mutants. In conclusion, human mAKAP polymorphisms may influence the propensity of developing CVDs by affecting cAMP/PKA signaling, supporting the clinical significance of PKA-mAKAP-PDE4D3 interactions. NEW & NOTEWORTHY We found that single-nucleotide polymorphisms in muscle-specific A-kinase anchoring protein found in human patients with cardiovascular diseases significantly affect the cAMP/PKA signaling pathway. Our results showed, for the first time, that human muscle-specific A-kinase anchoring protein polymorphisms might alter the susceptibility of individuals to develop cardiovascular diseases with known underlying molecular mechanisms.
Collapse
Affiliation(s)
- Santosh V Suryavanshi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, College of Pharmacy, Texas Medical Center , Houston, Texas
| | - Shweta M Jadhav
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, College of Pharmacy, Texas Medical Center , Houston, Texas
| | - Kody L Anderson
- Department of Chemical Engineering, University of Houston, Cullen College of Engineering , Houston, Texas
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, Texas
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, Texas
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, College of Pharmacy, Texas Medical Center , Houston, Texas
| |
Collapse
|
36
|
Abstract
3′,5′-cyclic adenosine monophosphate (cAMP) signalling plays a major role in the cardiac myocyte response to extracellular stimulation by hormones and neurotransmitters. In recent years, evidence has accumulated demonstrating that the cAMP response to different extracellular agonists is not uniform: depending on the stimulus, cAMP signals of different amplitudes and kinetics are generated in different subcellular compartments, eliciting defined physiological effects. In this review, we focus on how real-time imaging using fluorescence resonance energy transfer (FRET)-based reporters has provided mechanistic insight into the compartmentalisation of the cAMP signalling pathway and allowed for the precise definition of the regulation and function of subcellular cAMP nanodomains.
Collapse
|
37
|
Ercu M, Klussmann E. Roles of A-Kinase Anchoring Proteins and Phosphodiesterases in the Cardiovascular System. J Cardiovasc Dev Dis 2018; 5:jcdd5010014. [PMID: 29461511 PMCID: PMC5872362 DOI: 10.3390/jcdd5010014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 12/13/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) and cyclic nucleotide phosphodiesterases (PDEs) are essential enzymes in the cyclic adenosine 3′-5′ monophosphate (cAMP) signaling cascade. They establish local cAMP pools by controlling the intensity, duration and compartmentalization of cyclic nucleotide-dependent signaling. Various members of the AKAP and PDE families are expressed in the cardiovascular system and direct important processes maintaining homeostatic functioning of the heart and vasculature, e.g., the endothelial barrier function and excitation-contraction coupling. Dysregulation of AKAP and PDE function is associated with pathophysiological conditions in the cardiovascular system including heart failure, hypertension and atherosclerosis. A number of diseases, including autosomal dominant hypertension with brachydactyly (HTNB) and type I long-QT syndrome (LQT1), result from mutations in genes encoding for distinct members of the two classes of enzymes. This review provides an overview over the AKAPs and PDEs relevant for cAMP compartmentalization in the heart and vasculature and discusses their pathophysiological role as well as highlights the potential benefits of targeting these proteins and their protein-protein interactions for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Maria Ercu
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin 13347, Germany.
| |
Collapse
|
38
|
Investigating PKA-RII specificity using analogs of the PKA:AKAP peptide inhibitor STAD-2. Bioorg Med Chem 2018; 26:1174-1178. [PMID: 29449124 DOI: 10.1016/j.bmc.2018.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 11/20/2022]
Abstract
Generation of the second messenger molecule cAMP mediates a variety of cellular responses which are essential for critical cellular processes. In response to elevated cAMP levels, cAMP dependent protein kinase (PKA) phosphorylates serine and threonine residues on a wide variety of target substrates. In order to enhance the precision and directionality of these signaling events, PKA is localized to discrete locations within the cell by A-kinase anchoring proteins (AKAPs). The interaction between PKA and AKAPs is mediated via an amphipathic α-helix derived from AKAPs which binds to a stable hydrophobic groove formed in the dimerization/docking (D/D) domain of PKA-R in an isoform-specific fashion. Although numerous AKAP disruptors have previously been identified that can inhibit either RI- or RII-selective AKAPs, no AKAP disruptors have been identified that have isoform specificity for RIα versus RIβ or RIIα versus RIIβ. As a strategy to identify isoform-specific AKAP inhibitors, a library of chemically stapled protein-protein interaction (PPI) disruptors was developed based on the RII-selective AKAP disruptor, STAD-2. An alanine was substituted at each position in the sequence, and from this library it was possible to delineate the importance of longer aliphatic residues in the formation of a region which complements the hydrophobic cleft formed by the D/D domain. Interestingly, lysine residues that were added to both terminal ends of the peptide sequence to facilitate water solubility appear to contribute to isoform specificity for RIIα over RIIβ while having only weak interaction with RI. This work supports current hypotheses on the mechanisms of AKAP binding and highlights the significance of particular residue positions that aid in distinguishing between the RII isoforms and may provide insight into future design of isoform-selective AKAP disruptors.
Collapse
|
39
|
Søberg K, Skålhegg BS. The Molecular Basis for Specificity at the Level of the Protein Kinase a Catalytic Subunit. Front Endocrinol (Lausanne) 2018; 9:538. [PMID: 30258407 PMCID: PMC6143667 DOI: 10.3389/fendo.2018.00538] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022] Open
Abstract
Assembly of multi enzyme complexes at subcellular localizations by anchoring- and scaffolding proteins represents a pivotal mechanism for achieving spatiotemporal regulation of cellular signaling after hormone receptor targeting [for review, see (1)]. In the 3' 5'-cyclic adenosine monophosphate (cAMP) dependent protein kinase (PKA) signaling pathway it is generally accepted that specificity is secured at several levels. This includes at the first level stimulation of receptors coupled to heterotrimeric G proteins which through stimulation of adenylyl cyclase (AC) forms the second messenger cAMP. Cyclic AMP has several receptors including PKA. PKA is a tetrameric holoenzyme consisting of a regulatory (R) subunit dimer and two catalytic (C) subunits. The R subunit is the receptor for cAMP and compartmentalizes cAMP signals through binding to cell and tissue-specifically expressed A kinase anchoring proteins (AKAPs). The current dogma tells that in the presence of cAMP, PKA dissociates into an R subunit dimer and two C subunits which are free to phosphorylate relevant substrates in the cytosol and nucleus. The release of the C subunit has raised the question how specificity of the cAMP and PKA signaling pathway is maintained when the C subunit no longer is attached to the R subunit-AKAP complex. An increasing body of evidence points toward a regulatory role of the cAMP and PKA signaling pathway by targeting the C subunits to various C subunit binding proteins in the cytosol and nucleus. Moreover, recent identification of isoform specific amino acid sequences, motifs and three dimensional structures have together provided new insight into how PKA at the level of the C subunit may act in a highly isoform-specific fashion. Here we discuss recent understanding of specificity of the cAMP and PKA signaling pathway based on C subunit subcellular targeting as well as evolution of the C subunit structure that may contribute to the dynamic regulation of C subunit activity.
Collapse
Affiliation(s)
- Kristoffer Søberg
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Bjørn Steen Skålhegg
- Section for Molecular Nutrition, University of Oslo, Oslo, Norway
- *Correspondence: Bjørn Steen Skålhegg
| |
Collapse
|
40
|
Pergolizzi B, Bozzaro S, Bracco E. G-Protein Dependent Signal Transduction and Ubiquitination in Dictyostelium. Int J Mol Sci 2017; 18:ijms18102180. [PMID: 29048338 PMCID: PMC5666861 DOI: 10.3390/ijms18102180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 12/20/2022] Open
Abstract
Signal transduction through G-protein-coupled receptors (GPCRs) is central for the regulation of virtually all cellular functions, and it has been widely implicated in human diseases. These receptors activate a common molecular switch that is represented by the heterotrimeric G-protein generating a number of second messengers (cAMP, cGMP, DAG, IP3, Ca2+ etc.), leading to a plethora of diverse cellular responses. Spatiotemporal regulation of signals generated by a given GPCR is crucial for proper signalling and is accomplished by a series of biochemical modifications. Over the past few years, it has become evident that many signalling proteins also undergo ubiquitination, a posttranslational modification that typically leads to protein degradation, but also mediates processes such as protein-protein interaction and protein subcellular localization. The social amoeba Dictyostelium discoideum has proven to be an excellent model to investigate signal transduction triggered by GPCR activation, as cAMP signalling via GPCR is a major regulator of chemotaxis, cell differentiation, and multicellular morphogenesis. Ubiquitin ligases have been recently involved in these processes. In the present review, we will summarize the most significant pathways activated upon GPCRs stimulation and discuss the role played by ubiquitination in Dictyostelium cells.
Collapse
Affiliation(s)
- Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Turin, AOUS. Luigi, 10043 Orbassano TO, Italy.
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, AOUS. Luigi, 10043 Orbassano TO, Italy.
| | - Enrico Bracco
- Department of Oncology, University of Turin, AOU S. Luigi, 10043 Orbassano TO, Italy.
| |
Collapse
|
41
|
Mondal A, Dawson AR, Potts GK, Freiberger EC, Baker SF, Moser LA, Bernard KA, Coon JJ, Mehle A. Influenza virus recruits host protein kinase C to control assembly and activity of its replication machinery. eLife 2017; 6:26910. [PMID: 28758638 PMCID: PMC5791932 DOI: 10.7554/elife.26910] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/29/2017] [Indexed: 12/24/2022] Open
Abstract
Influenza virus expresses transcripts early in infection and transitions towards genome replication at later time points. This process requires de novo assembly of the viral replication machinery, large ribonucleoprotein complexes (RNPs) composed of the viral polymerase, genomic RNA and oligomeric nucleoprotein (NP). Despite the central role of RNPs during infection, the factors dictating where and when they assemble are poorly understood. Here we demonstrate that human protein kinase C (PKC) family members regulate RNP assembly. Activated PKCδ interacts with the polymerase subunit PB2 and phospho-regulates NP oligomerization and RNP assembly during infection. Consistent with its role in regulating RNP assembly, knockout of PKCδ impairs virus infection by selectively disrupting genome replication. However, primary transcription from pre-formed RNPs deposited by infecting particles is unaffected. Thus, influenza virus exploits host PKCs to regulate RNP assembly, a step required for the transition from primary transcription to genome replication during the infectious cycle.
Collapse
Affiliation(s)
- Arindam Mondal
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, United States
| | - Anthony R Dawson
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, United States.,Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, United States
| | - Gregory K Potts
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
| | - Elyse C Freiberger
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, United States
| | - Steven F Baker
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, United States
| | - Lindsey A Moser
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, United States
| | - Kristen A Bernard
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States.,Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, United States
| | - Andrew Mehle
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
42
|
Torres-Quesada O, Mayrhofer JE, Stefan E. The many faces of compartmentalized PKA signalosomes. Cell Signal 2017; 37:1-11. [PMID: 28528970 DOI: 10.1016/j.cellsig.2017.05.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/03/2023]
Abstract
Cellular signal transmission requires the dynamic formation of spatiotemporally controlled molecular interactions. At the cell surface information is received by receptor complexes and relayed through intracellular signaling platforms which organize the actions of functionally interacting signaling enzymes and substrates. The list of hormone or neurotransmitter pathways that utilize the ubiquitous cAMP-sensing protein kinase A (PKA) system is expansive. This requires that the specificity, duration, and intensity of PKA responses are spatially and temporally restricted. Hereby, scaffolding proteins take the center stage for ensuring proper signal transmission. They unite second messenger sensors, activators, effectors, and kinase substrates within cellular micro-domains to precisely control and route signal propagation. A-kinase anchoring proteins (AKAPs) organize such subcellular signalosomes by tethering the PKA holoenzyme to distinct cell compartments. AKAPs differ in their modular organization showing pathway specific arrangements of interaction motifs or domains. This enables the cell- and compartment- guided assembly of signalosomes with unique enzyme composition and function. The AKAP-mediated clustering of cAMP and other second messenger sensing and interacting signaling components along with functional successive enzymes facilitates the rapid and precise dissemination of incoming signals. This review article delineates examples for different means of PKA regulation and for snapshots of compartmentalized PKA signalosomes.
Collapse
Affiliation(s)
- Omar Torres-Quesada
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Johanna E Mayrhofer
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
43
|
Le Stunff C, Tilotta F, Sadoine J, Le Denmat D, Briet C, Motte E, Clauser E, Bougnères P, Chaussain C, Silve C. Knock-In of the Recurrent R368X Mutation of PRKAR1A that Represses cAMP-Dependent Protein Kinase A Activation: A Model of Type 1 Acrodysostosis. J Bone Miner Res 2017; 32:333-346. [PMID: 27589370 DOI: 10.1002/jbmr.2987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/19/2016] [Accepted: 09/01/2016] [Indexed: 12/13/2022]
Abstract
In humans, activating mutations in the PRKAR1A gene cause acrodysostosis 1 (ACRDYS1). These mutations result in a reduction in PKA activation caused by an impaired ability of cAMP to dissociate mutant PRKAR1A from catalytic PKA subunits. Two striking features of this rare developmental disease are renal resistance to PTH and chondrodysplasia resulting from the constitutive inhibition of PTHR1/Gsa/AC/cAMP/PKA signaling. We developed a knock-in of the recurrent ACRDYS1 R368X PRKAR1A mutation in the mouse. No litters were obtained from [R368X]/[+] females (thus no homozygous [R368X]/[R368X] mice). In [R368X]/[+] mice, Western blot analysis confirmed mutant allele heterozygous expression. Growth retardation, peripheral acrodysostosis (including brachydactyly affecting all digits), and facial dysostosis were shown in [R368X]/[+] mice by weight curves and skeletal measurements (μCT scan) as a function of time. [R368X]/[+] male and female mice were similarly affected. Unexpected, however, whole-mount skeletal preparations revealed a striking delay in mineralization in newborn mutant mice, accompanied by a decrease in the height of terminal hypertrophic chondrocyte layer, an increase in the height of columnar proliferative prehypertrophic chondrocyte layer, and changes in the number and spatial arrangement of proliferating cell nuclear antigen (PCNA)-positive chondrocytes. Plasma PTH and basal urinary cAMP were significantly higher in [R368X]/[+] compared to WT mice. PTH injection increased urinary cAMP similarly in [R368X]/[+] and WT mice. PRKACA expression was regulated in a tissue (kidney not bone and liver) manner. This model, the first describing the germline expression of a PRKAR1A mutation causing dominant repression of cAMP-dependent PKA, reproduced the main features of ACRDYS1 in humans. It should help decipher the specificity of the cAMP/PKA signaling pathway, crucial for numerous stimuli. In addition, our results indicate that PRKAR1A, by tempering intracellular cAMP levels, is a molecular switch at the crossroads of signaling pathways regulating chondrocyte proliferation and differentiation. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Catherine Le Stunff
- INSERM U1169, University Paris Sud, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Francoise Tilotta
- EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France
| | - Jérémy Sadoine
- EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France
| | - Dominique Le Denmat
- EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France
| | - Claire Briet
- INSERM U1169, University Paris Sud, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Emmanuelle Motte
- INSERM U1169, University Paris Sud, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Eric Clauser
- INSERM U970, University Paris Descartes, Paris Centre de Recherche Cardiovasculaire (PARCC), Paris, France
| | - Pierre Bougnères
- INSERM U1169, University Paris Sud, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Catherine Chaussain
- EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France.,Assistance Publique-Hôpitaux de Paris (AP-HP) Odontology Department Bretonneau, Louis Mourier, Hôpitaux Universitaires Paris Nord Val de Seine, Paris, France.,Centre de Référence des Maladies Rares du Métabolisme du Phosphore et du Calcium and Filière de Santé Maladies Rares OSCAR, AP-HP, Paris, France
| | - Caroline Silve
- INSERM U1169, University Paris Sud, Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Centre de Référence des Maladies Rares du Métabolisme du Phosphore et du Calcium and Filière de Santé Maladies Rares OSCAR, AP-HP, Paris, France.,Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, AP-HP, Paris, France
| |
Collapse
|
44
|
Rahamim Ben-Navi L, Almog T, Yao Z, Seger R, Naor Z. A-Kinase Anchoring Protein 4 (AKAP4) is an ERK1/2 substrate and a switch molecule between cAMP/PKA and PKC/ERK1/2 in human spermatozoa. Sci Rep 2016; 6:37922. [PMID: 27901058 PMCID: PMC5128789 DOI: 10.1038/srep37922] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 11/02/2016] [Indexed: 11/09/2022] Open
Abstract
Mammalian spermatozoa undergo capacitation and acrosome reaction in order to fertilize the egg. The PKC-ERK1/2 pathway plays an important role in human spermatozoa motility, capacitation and the acrosome reaction. Here we demonstrate that ERK1/2 phosphorylates proAKAP4 on Thr265 in human spermatozoa in vitro and in vivo. Cyclic AMP (cAMP) had no effect on ERK1/2 activity in human spermatozoa, but stimulated the MAPK in mouse pituitary LβT2 gonadotrope cells. cAMP via PKA attenuates PKC-dependent ERK1/2 activation only in the presence of proAKAP4. St-HT31, which disrupts PKA-regulatory subunit II (PKA-RII) binding to AKAP abrogates the inhibitory effect of cAMP in human spermatozoa and in HEK293T cells expressing proAKAP4. In transfected HEK293T cells, PMA relocated proAKAP4, but not proAKAP4-T265A to the Golgi in an ERK1/2-dependnet manner. Similarly, AKAP4 is localized to the spermatozoa principal piece and is relocated to the mid-piece and the postacrosomal region by PMA. Furthermore, using capacitated sperm we found that cAMP reduced PMA-induced ERK1/2 activation and acrosome reaction. Thus, the physiological role of the negative crosstalk between the cAMP/PKA/AKAP4 and the PKC/ERK1/2 pathways is to regulate capacitation and acrosome reaction.
Collapse
Affiliation(s)
- Liat Rahamim Ben-Navi
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Tal Almog
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Zhong Yao
- Department of Biological Regulation, the Weizmann Institute of Science Rehovot 76100, Israel
| | - Rony Seger
- Department of Biological Regulation, the Weizmann Institute of Science Rehovot 76100, Israel
| | - Zvi Naor
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
45
|
Ringvold HC, Khalil RA. Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:203-301. [PMID: 28212798 PMCID: PMC5319769 DOI: 10.1016/bs.apha.2016.06.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca2+-dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca2+-dependent α, β, and γ, novel Ca2+-independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease.
Collapse
Affiliation(s)
- H C Ringvold
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - R A Khalil
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
46
|
Malty RH, Hudmon A, Fehrenbacher JC, Vasko MR. Long-term exposure to PGE2 causes homologous desensitization of receptor-mediated activation of protein kinase A. J Neuroinflammation 2016; 13:181. [PMID: 27400965 PMCID: PMC4940832 DOI: 10.1186/s12974-016-0645-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023] Open
Abstract
Background Acute exposure to prostaglandin E2 (PGE2) activates EP receptors in sensory neurons which triggers the cAMP-dependent protein kinase A (PKA) signaling cascade resulting in enhanced excitability of the neurons. With long-term exposure to PGE2, however, the activation of PKA does not appear to mediate persistent PGE2-induced sensitization. Consequently, we examined whether homologous desensitization of PGE2-mediated PKA activation occurs after long-term exposure of isolated sensory neurons to the eicosanoid. Methods Sensory neuronal cultures were harvested from the dorsal root ganglia of adult male Sprague-Dawley rats. The cultures were pretreated with vehicle or PGE2 and used to examine signaling mechanisms mediating acute versus persistent sensitization by exposure to the eicosanoid using enhanced capsaicin-evoked release of immunoreactive calcitonin gene-related peptide (iCGRP) as an endpoint. Neuronal cultures chronically exposed to vehicle or PGE2 also were used to study the ability of the eicosanoid and other agonists to activate PKA and whether long-term exposure to the prostanoid alters expression of EP receptor subtypes. Results Acute exposure to 1 μM PGE2 augments the capsaicin-evoked release of iCGRP, and this effect is blocked by the PKA inhibitor H-89. After 5 days of exposure to 1 μM PGE2, administration of the eicosanoid still augments evoked release of iCGRP, but the effect is not attenuated by inhibition of PKA or by inhibition of PI3 kinases. The sensitizing actions of PGE2 after acute and long-term exposure were attenuated by EP2, EP3, and EP4 receptor antagonists, but not by an EP1 antagonist. Exposing neuronal cultures to 1 μM PGE2 for 12 h to 5 days blocks the ability of PGE2 to activate PKA. The offset of the desensitization occurs within 24 h of removal of PGE2 from the cultures. Long-term exposure to PGE2 also results in desensitization of the ability of a selective EP4 receptor agonist, L902688 to activate PKA, but does not alter the ability of cholera toxin, forskolin, or a stable analog of prostacyclin to activate PKA. Conclusions Long-term exposure to PGE2 results in homologous desensitization of EP4 receptor activation of PKA, but not to neuronal sensitization suggesting that activation of PKA does not mediate PGE2-induced sensitization after chronic exposure to the eicosanoid.
Collapse
Affiliation(s)
- Ramy Habashy Malty
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK, Canada.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andy Hudmon
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jill C Fehrenbacher
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael R Vasko
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Dr., A449, Indianapolis, IN, 46202, USA.
| |
Collapse
|
47
|
Enhanced cAMP-stimulated protein kinase A activity in human fibrolamellar hepatocellular carcinoma. Pediatr Res 2016; 80:110-8. [PMID: 27027723 PMCID: PMC5105330 DOI: 10.1038/pr.2016.36] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 12/18/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Fibrolamellar hepatocellular carcinoma (FL-HCC) affects children without underlying liver disease. A consistent mutation in FL-HCCs leads to fusion of the genes encoding a heat shock protein (DNAJB1) and the catalytic subunit of protein kinase A (PRKACA). We sought to characterize the resultant chimeric protein and its effects in FL-HCC. METHODS The expression pattern and subcellular localization of protein kinase A (PKA) subunits in FL-HCCs were compared to paired normal livers by quantitative polymerase chain reaction (qPCR), immunoblotting, and immunofluorescence. PKA activity was measured by radioactive kinase assay, and we determined whether the FL-HCC mutation is present in other primary liver tumors. RESULTS The fusion transcript and chimeric protein were detected exclusively in FL-HCCs. DNAJB1-PRKACA was expressed 10-fold higher than the wild-type PRKACA transcript, resulting in overexpression of the mutant protein in tumors. Consequently, FL-HCCs possess elevated cAMP-stimulated PKA activity compared to normal livers, despite similar Kms between the mutant and wild-type kinases. CONCLUSION FL-HCCs in children and young adults uniquely overexpress DNAJB1-PRKACA, which results in elevated cAMP-dependent PKA activity. These data suggest that aberrant PKA signaling contributes to liver tumorigenesis.
Collapse
|
48
|
Lukyanenko YO, Younes A, Lyashkov AE, Tarasov KV, Riordon DR, Lee J, Sirenko SG, Kobrinsky E, Ziman B, Tarasova YS, Juhaszova M, Sollott SJ, Graham DR, Lakatta EG. Ca(2+)/calmodulin-activated phosphodiesterase 1A is highly expressed in rabbit cardiac sinoatrial nodal cells and regulates pacemaker function. J Mol Cell Cardiol 2016; 98:73-82. [PMID: 27363295 DOI: 10.1016/j.yjmcc.2016.06.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/23/2016] [Accepted: 06/23/2016] [Indexed: 11/29/2022]
Abstract
Constitutive Ca(2+)/calmodulin (CaM)-activation of adenylyl cyclases (ACs) types 1 and 8 in sinoatrial nodal cells (SANC) generates cAMP within lipid-raft-rich microdomains to initiate cAMP-protein kinase A (PKA) signaling, that regulates basal state rhythmic action potential firing of these cells. Mounting evidence in other cell types points to a balance between Ca(2+)-activated counteracting enzymes, ACs and phosphodiesterases (PDEs) within these cells. We hypothesized that the expression and activity of Ca(2+)/CaM-activated PDE Type 1A is higher in SANC than in other cardiac cell types. We found that PDE1A protein expression was 5-fold higher in sinoatrial nodal tissue than in left ventricle, and its mRNA expression was 12-fold greater in the corresponding isolated cells. PDE1 activity (nimodipine-sensitive) accounted for 39% of the total PDE activity in SANC lysates, compared to only 4% in left ventricular cardiomyocytes (LVC). Additionally, total PDE activity in SANC lysates was lowest (10%) in lipid-raft-rich and highest (76%) in lipid-raft-poor fractions (equilibrium sedimentation on a sucrose density gradient). In intact cells PDE1A immunolabeling was not localized to the cell surface membrane (structured illumination microscopy imaging), but located approximately within about 150nm inside of immunolabeling of hyperpolarization-activated cyclic nucleotide-gated potassium channels (HCN4), which reside within lipid-raft-rich microenvironments. In permeabilized SANC, in which surface membrane ion channels are not functional, nimodipine increased spontaneous SR Ca(2+) cycling. PDE1A mRNA silencing in HL-1 cells increased the spontaneous beating rate, reduced the cAMP, and increased cGMP levels in response to IBMX, a broad spectrum PDE inhibitor (detected via fluorescence resonance energy transfer microscopy). We conclude that signaling via cAMP generated by Ca(2+)/CaM-activated AC in SANC lipid raft domains is limited by cAMP degradation by Ca(2+)/CaM-activated PDE1A in non-lipid raft domains. This suggests that local gradients of [Ca(2+)]-CaM or different AC and PDE1A affinity regulate both cAMP production and its degradation, and this balance determines the intensity of Ca(2+)-AC-cAMP-PKA signaling that drives SANC pacemaker function.
Collapse
Affiliation(s)
- Yevgeniya O Lukyanenko
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Antoine Younes
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Alexey E Lyashkov
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, 733 N. Broadway, MRB 835, Baltimore, MD 21205, USA.
| | - Kirill V Tarasov
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Daniel R Riordon
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Joonho Lee
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Syevda G Sirenko
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Evgeny Kobrinsky
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Bruce Ziman
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Yelena S Tarasova
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Magdalena Juhaszova
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Steven J Sollott
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - David R Graham
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, 733 N. Broadway, MRB 835, Baltimore, MD 21205, USA.
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| |
Collapse
|
49
|
Protein Kinase A: A Master Kinase of Granulosa Cell Differentiation. Sci Rep 2016; 6:28132. [PMID: 27324437 PMCID: PMC4914995 DOI: 10.1038/srep28132] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 06/01/2016] [Indexed: 12/16/2022] Open
Abstract
Activation of protein kinase A (PKA) by follicle stimulating hormone (FSH) transduces the signal that drives differentiation of ovarian granulosa cells (GCs). An unresolved question is whether PKA is sufficient to initiate the complex program of GC responses to FSH. We compared signaling pathways and gene expression profiles of GCs stimulated with FSH or expressing PKA-CQR, a constitutively active mutant of PKA. Both FSH and PKA-CQR stimulated the phosphorylation of proteins known to be involved in GC differentiation including CREB, ß-catenin, AKT, p42/44 MAPK, GAB2, GSK-3ß, FOXO1, and YAP. In contrast, FSH stimulated the phosphorylation of p38 MAP kinase but PKA-CQR did not. Microarray analysis revealed that 85% of transcripts that were up-regulated by FSH were increased to a comparable extent by PKA-CQR and of the transcripts that were down-regulated by FSH, 76% were also down-regulated by PKA-CQR. Transcripts regulated similarly by FSH and PKA-CQR are involved in steroidogenesis and differentiation, while transcripts more robustly up-regulated by PKA-CQR are involved in ovulation. Thus, PKA, under the conditions of our experimental approach appears to function as a master upstream kinase that is sufficient to initiate the complex pattern of intracellular signaling pathway and gene expression profiles that accompany GC differentiation.
Collapse
|
50
|
Wehbi VL, Taskén K. Molecular Mechanisms for cAMP-Mediated Immunoregulation in T cells - Role of Anchored Protein Kinase A Signaling Units. Front Immunol 2016; 7:222. [PMID: 27375620 PMCID: PMC4896925 DOI: 10.3389/fimmu.2016.00222] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
The cyclic AMP/protein kinase A (cAMP/PKA) pathway is one of the most common and versatile signal pathways in eukaryotic cells. A-kinase anchoring proteins (AKAPs) target PKA to specific substrates and distinct subcellular compartments providing spatial and temporal specificity for mediation of biological effects channeled through the cAMP/PKA pathway. In the immune system, cAMP is a potent negative regulator of T cell receptor-mediated activation of effector T cells (Teff) acting through a proximal PKA/Csk/Lck pathway anchored via a scaffold consisting of the AKAP Ezrin holding PKA, the linker protein EBP50, and the anchoring protein phosphoprotein associated with glycosphingolipid-enriched microdomains holding Csk. As PKA activates Csk and Csk inhibits Lck, this pathway in response to cAMP shuts down proximal T cell activation. This immunomodulating pathway in Teff mediates clinically important responses to regulatory T cell (Treg) suppression and inflammatory mediators, such as prostaglandins (PGs), adrenergic stimuli, adenosine, and a number of other ligands. A major inducer of T cell cAMP levels is PG E2 (PGE2) acting through EP2 and EP4 prostanoid receptors. PGE2 plays a crucial role in the normal physiological control of immune homeostasis as well as in inflammation and cancer immune evasion. Peripherally induced Tregs express cyclooxygenase-2, secrete PGE2, and elicit the immunosuppressive cAMP pathway in Teff as one tumor immune evasion mechanism. Moreover, a cAMP increase can also be induced by indirect mechanisms, such as intercellular transfer between T cells. Indeed, Treg, known to have elevated levels of intracellular cAMP, may mediate their suppressive function by transferring cAMP to Teff through gap junctions, which we speculate could also be regulated by PKA/AKAP complexes. In this review, we present an updated overview on the influence of cAMP-mediated immunoregulatory mechanisms acting through localized cAMP signaling and the therapeutical increasing prospects of AKAPs disruptors in T-cell immune function.
Collapse
Affiliation(s)
- Vanessa L. Wehbi
- Nordic EMBL Partnership, Centre for Molecular Medicine Norway, Oslo University Hospital, University of Oslo, Oslo, Norway
- Jebsen Inflammation Research Centre, Oslo University Hospital, Oslo, Norway
- Biotechnology Centre, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Kjetil Taskén
- Nordic EMBL Partnership, Centre for Molecular Medicine Norway, Oslo University Hospital, University of Oslo, Oslo, Norway
- Jebsen Inflammation Research Centre, Oslo University Hospital, Oslo, Norway
- Biotechnology Centre, Oslo University Hospital, University of Oslo, Oslo, Norway
- Jebsen Centre for Cancer Immunotherapy, Oslo University Hospital, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| |
Collapse
|