1
|
Blanco E, Camps C, Bahal S, Kerai MD, Ferla MP, Rochussen AM, Handel AE, Golwala ZM, Spiridou Goncalves H, Kricke S, Klein F, Zhang F, Zinghirino F, Evans G, Keane TM, Lizot S, Kusters MA, Iro MA, Patel SV, Morris EC, Burns SO, Radcliffe R, Vasudevan P, Price A, Gillham O, Valdebenito GE, Stewart GS, Worth A, Adams SP, Duchen M, André I, Adams DJ, Santili G, Gilmour KC, Holländer GA, Davies EG, Taylor JC, Griffiths GM, Thrasher AJ, Dhalla F, Kreins AY. Dominant negative variants in ITPR3 impair T cell Ca2+ dynamics causing combined immunodeficiency. J Exp Med 2025; 222:e20220979. [PMID: 39560673 PMCID: PMC11577440 DOI: 10.1084/jem.20220979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/09/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024] Open
Abstract
The importance of calcium (Ca2+) as a second messenger in T cell signaling is exemplified by genetic deficiencies of STIM1 and ORAI1, which abolish store-operated Ca2+ entry (SOCE) resulting in combined immunodeficiency (CID). We report five unrelated patients with de novo missense variants in ITPR3, encoding a subunit of the inositol 1,4,5-trisphosphate receptor (IP3R), which forms a Ca2+ channel in the endoplasmic reticulum (ER) membrane responsible for the release of ER Ca2+ required to trigger SOCE, and for Ca2+ transfer to other organelles. The patients presented with CID, abnormal T cell Ca2+ homeostasis, incompletely penetrant ectodermal dysplasia, and multisystem disease. Their predominant T cell immunodeficiency is characterized by significant T cell lymphopenia, defects in late stages of thymic T cell development, and impaired function of peripheral T cells, including inadequate NF-κB- and NFAT-mediated, proliferative, and metabolic responses to activation. Pathogenicity is not due to haploinsufficiency, rather ITPR3 protein variants interfere with IP3R channel function leading to depletion of ER Ca2+ stores and blunted SOCE in T cells.
Collapse
Affiliation(s)
- Elena Blanco
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Carme Camps
- National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sameer Bahal
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mohit D. Kerai
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
- Immunology Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Matteo P. Ferla
- National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Adam M. Rochussen
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Adam E. Handel
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
| | - Zainab M. Golwala
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Helena Spiridou Goncalves
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Susanne Kricke
- SIHMDS-Haematology Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Fabian Klein
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
| | - Fang Zhang
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Federica Zinghirino
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Grace Evans
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Thomas M. Keane
- Wellcome Sanger Institute, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sabrina Lizot
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Maaike A.A. Kusters
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Mildred A. Iro
- Department of Paediatric Infectious Diseases and Immunology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine and Institute of Life Sciences, University of Southampton, Southampton, UK
| | - Sanjay V. Patel
- Department of Paediatric Infectious Diseases and Immunology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Emma C. Morris
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK
- Institute for Immunity and Transplantation, University College London, London, UK
| | - Siobhan O. Burns
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK
- Institute for Immunity and Transplantation, University College London, London, UK
| | - Ruth Radcliffe
- Department of Immunology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Pradeep Vasudevan
- Department of Clinical Genetics, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Arthur Price
- Department of Immunology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Olivia Gillham
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, University College London, London, UK
| | - Gabriel E. Valdebenito
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, University College London, London, UK
| | - Grant S. Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Austen Worth
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Stuart P. Adams
- SIHMDS-Haematology Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Michael Duchen
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, University College London, London, UK
| | - Isabelle André
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | | | - Giorgia Santili
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Kimberly C. Gilmour
- Immunology Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Georg A. Holländer
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - E. Graham Davies
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jenny C. Taylor
- National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gillian M. Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Adrian J. Thrasher
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Fatima Dhalla
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Clinical Immunology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alexandra Y. Kreins
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK
| |
Collapse
|
2
|
Wei D, Birla H, Dou Y, Mei Y, Huo X, Whitehead V, Osei-Owusu P, Feske S, Patafio G, Tao Y, Hu H. PGE2 Potentiates Orai1-Mediated Calcium Entry Contributing to Peripheral Sensitization. J Neurosci 2024; 44:e0329232023. [PMID: 37952941 PMCID: PMC10851687 DOI: 10.1523/jneurosci.0329-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 11/14/2023] Open
Abstract
Peripheral sensitization is one of the primary mechanisms underlying the pathogenesis of chronic pain. However, candidate molecules involved in peripheral sensitization remain incompletely understood. We have shown that store-operated calcium channels (SOCs) are expressed in the dorsal root ganglion (DRG) neurons. Whether SOCs contribute to peripheral sensitization associated with chronic inflammatory pain is elusive. Here we report that global or conditional deletion of Orai1 attenuates Complete Freund's adjuvant (CFA)-induced pain hypersensitivity in both male and female mice. To further establish the role of Orai1 in inflammatory pain, we performed calcium imaging and patch-clamp recordings in wild-type (WT) and Orai1 knockout (KO) DRG neurons. We found that SOC function was significantly enhanced in WT but not in Orai1 KO DRG neurons from CFA- and carrageenan-injected mice. Interestingly, the Orai1 protein level in L3/4 DRGs was not altered under inflammatory conditions. To understand how Orai1 is modulated under inflammatory pain conditions, prostaglandin E2 (PGE2) was used to sensitize DRG neurons. PGE2-induced increase in neuronal excitability and pain hypersensitivity was significantly reduced in Orai1 KO mice. PGE2-induced potentiation of SOC entry (SOCE) was observed in WT, but not in Orai1 KO DRG neurons. This effect was attenuated by a PGE2 receptor 1 (EP1) antagonist and mimicked by an EP1 agonist. Inhibition of Gq/11, PKC, or ERK abolished PGE2-induced SOCE increase, indicating PGE2-induced SOCE enhancement is mediated by EP1-mediated downstream cascade. These findings demonstrate that Orai1 plays an important role in peripheral sensitization. Our study also provides new insight into molecular mechanisms underlying PGE2-induced modulation of inflammatory pain.Significance Statement Store-operated calcium channel (SOC) Orai1 is expressed and functional in dorsal root ganglion (DRG) neurons. Whether Orai1 contributes to peripheral sensitization is unclear. The present study demonstrates that Orai1-mediated SOC function is enhanced in DRG neurons under inflammatory conditions. Global and conditional deletion of Orai1 attenuates complete Freund's adjuvant (CFA)-induced pain hypersensitivity. We also demonstrate that prostaglandin E2 (PGE2) potentiates SOC function in DRG neurons through EP1-mediated signaling pathway. Importantly, we have found that Orai1 deficiency diminishes PGE2-induced SOC function increase and reduces PGE2-induced increase in neuronal excitability and pain hypersensitivity. These findings suggest that Orai1 plays an important role in peripheral sensitization associated with inflammatory pain. Our study reveals a novel mechanism underlying PGE2/EP1-induced peripheral sensitization. Orai1 may serve as a potential target for pathological pain.
Collapse
Affiliation(s)
- Dongyu Wei
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Hareram Birla
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Yannong Dou
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Yixiao Mei
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Xiaodong Huo
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Victoria Whitehead
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Patrick Osei-Owusu
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Stefan Feske
- Department of Pathology, NYU Grossman School of Medicine, New York, New York 10016
| | - Giovanna Patafio
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Yuanxiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Huijuan Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| |
Collapse
|
3
|
Kong X, Wang F, Chen Y, Liang X, Yin Y, Liu H, Luo G, Li Y, Liang S, Wang Y, Liu Z, Tang C. Molecular action mechanisms of two novel and selective calcium release-activated calcium channel antagonists. Int J Biol Macromol 2023; 253:126937. [PMID: 37722647 DOI: 10.1016/j.ijbiomac.2023.126937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
The prototypical calcium release-activated calcium (CRAC) channel, composed of STIM1 and Orai1, is a sought-after drug target for treating autoimmune disorders. Herein, we identified two novel and selective CRAC channel inhibitors, the indole-like compound C63368 and pyrazole core-containing compound C79413, potently and reversibly inhibiting the CRAC channel with low micromolar IC50s and sparing various off-target ion channels. These two compounds did not inhibit STIM1 activation or its coupling with Orai1, nor did they affect the channel's calcium-dependent fast inactivation. Instead, they directly acted on the Orai1 protein, with the channel's pore geometry profoundly affecting their potencies. In vitro, C63368 and C79413 effectively inhibited Jurkat cell proliferation and cytokines production in human T lymphocytes. Intragastric administration of C63368 and C79413 to mice yielded great therapeutic benefits in psoriasis and colitis animal models of autoimmune disorders, reducing serum cytokines production and significantly relieving pathological symptoms. It's worth noting, that this study provided the first insight into the characterization and mechanistic investigation of an indole-like CRAC channel antagonist. Altogether, the identification of these two highly selective CRAC channel antagonists, coupled with the elucidation of their action mechanisms, not only provides valuable template molecules but also offers profound insights for drug development targeting the CRAC channel.
Collapse
Affiliation(s)
- Xiangjin Kong
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Changsha 40081, China
| | - Feifan Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yan Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xinyao Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yuan Yin
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Hao Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Guoqing Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yinping Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Changsha 40081, China.
| | - Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Changsha 40081, China.
| |
Collapse
|
4
|
Kushnireva L, Korkotian E, Segal M. Exposure of Cultured Hippocampal Neurons to the Mitochondrial Uncoupler Carbonyl Cyanide Chlorophenylhydrazone Induces a Rapid Growth of Dendritic Processes. Int J Mol Sci 2023; 24:12940. [PMID: 37629119 PMCID: PMC10455170 DOI: 10.3390/ijms241612940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
A major route for the influx of calcium ions into neurons uses the STIM-Orai1 voltage-independent channel. Once cytosolic calcium ([Ca2+]i) elevates, it activates mitochondrial and endoplasmic calcium stores to affect downstream molecular pathways. In the present study, we employed a novel drug, carbonyl cyanide chlorophenylhydrazone (CCCP), a mitochondrial uncoupler, to explore the role of mitochondria in cultured neuronal morphology. CCCP caused a sustained elevation of [Ca2+]i and, quite surprisingly, a massive increase in the density of dendritic filopodia and spines in the affected neurons. This morphological change can be prevented in cultures exposed to a calcium-free medium, Orai1 antagonist 2APB, or cells transfected with a mutant Orai1 plasmid. It is suggested that CCCP activates mitochondria through the influx of calcium to cause rapid growth of dendritic processes.
Collapse
Affiliation(s)
- Liliia Kushnireva
- Faculty of Biology, Perm State University, 614068 Perm, Russia;
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Eduard Korkotian
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Menahem Segal
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel;
| |
Collapse
|
5
|
Bolaños P, Calderón JC. Excitation-contraction coupling in mammalian skeletal muscle: Blending old and last-decade research. Front Physiol 2022; 13:989796. [PMID: 36117698 PMCID: PMC9478590 DOI: 10.3389/fphys.2022.989796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The excitation–contraction coupling (ECC) in skeletal muscle refers to the Ca2+-mediated link between the membrane excitation and the mechanical contraction. The initiation and propagation of an action potential through the membranous system of the sarcolemma and the tubular network lead to the activation of the Ca2+-release units (CRU): tightly coupled dihydropyridine and ryanodine (RyR) receptors. The RyR gating allows a rapid, massive, and highly regulated release of Ca2+ from the sarcoplasmic reticulum (SR). The release from triadic places generates a sarcomeric gradient of Ca2+ concentrations ([Ca2+]) depending on the distance of a subcellular region from the CRU. Upon release, the diffusing Ca2+ has multiple fates: binds to troponin C thus activating the contractile machinery, binds to classical sarcoplasmic Ca2+ buffers such as parvalbumin, adenosine triphosphate and, experimentally, fluorescent dyes, enters the mitochondria and the SR, or is recycled through the Na+/Ca2+ exchanger and store-operated Ca2+ entry (SOCE) mechanisms. To commemorate the 7th decade after being coined, we comprehensively and critically reviewed “old”, historical landmarks and well-established concepts, and blended them with recent advances to have a complete, quantitative-focused landscape of the ECC. We discuss the: 1) elucidation of the CRU structures at near-atomic resolution and its implications for functional coupling; 2) reliable quantification of peak sarcoplasmic [Ca2+] using fast, low affinity Ca2+ dyes and the relative contributions of the Ca2+-binding mechanisms to the whole concert of Ca2+ fluxes inside the fibre; 3) articulation of this novel quantitative information with the unveiled structural details of the molecular machinery involved in mitochondrial Ca2+ handing to understand how and how much Ca2+ enters the mitochondria; 4) presence of the SOCE machinery and its different modes of activation, which awaits understanding of its magnitude and relevance in situ; 5) pharmacology of the ECC, and 6) emerging topics such as the use and potential applications of super-resolution and induced pluripotent stem cells (iPSC) in ECC. Blending the old with the new works better!
Collapse
Affiliation(s)
- Pura Bolaños
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Juan C. Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín, Colombia
- *Correspondence: Juan C. Calderón,
| |
Collapse
|
6
|
Joshi P, Patel R, Kang SY, Serbinowski E, Lee MY. Establishment of ion channel and ABC transporter assays in 3D-cultured ReNcell VM on a 384-pillar plate for neurotoxicity potential. Toxicol In Vitro 2022; 82:105375. [PMID: 35550413 DOI: 10.1016/j.tiv.2022.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
Neurotoxicity potential of compounds by inhibition of ion channels and efflux transporters has been studied traditionally using two-dimensionally (2D) cultured cell lines such as CHO and HEK-293 overexpressing the protein of interest. However, these approaches are time consuming and do not recapitulate the activity of ion channels and efflux transporters indigenously expressed in neural stem cells (NSCs) in vivo. To overcome these issues, we established ion channel and transporter assays on a 384-pillar plate with three-dimensionally (3D) cultured ReNcell VM and demonstrated high-throughput measurement of ion channel and transporter activity. RNA sequencing analysis identified major ion channels and efflux transporters expressed in ReNcell VM, followed by validating 3D ReNcell-based ion channel and transporter assays with model compounds. Major ion channel activities were measured by specifically inhibiting potassium channels Kv 7.2 with XE-991 and Kv 4.3 with fluoxetine, and a calcium channel with 2-APB. Activities of major efflux transporters, MDR1, MRP1, and BCRP, were assessed using their respective blockers, verapamil, probenecid, and novobiocin. From this study, we demonstrated that 3D-cultured ReNcell VM on the 384-pillar plate could be a good alternative to rapidly identify environmental chemicals and therapeutic compounds for their role in modulating the activity of ion channels and efflux transporters, potentially leading to neurotoxicity.
Collapse
Affiliation(s)
- Pranav Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Bioprinting Laboratories Inc, Denton, TX, USA
| | - Rushabh Patel
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Soo-Yeon Kang
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Emily Serbinowski
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Moo-Yeal Lee
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Department of Biomedical Engineering, University of North Texas, Denton, TX, USA.
| |
Collapse
|
7
|
Castillo-Galán S, Parrau D, Hernández I, Quezada S, Díaz M, Ebensperger G, Herrera EA, Moraga FA, Iturriaga R, Llanos AJ, Reyes RV. The Action of 2-Aminoethyldiphenyl Borinate on the Pulmonary Arterial Hypertension and Remodeling of High-Altitude Hypoxemic Lambs. Front Physiol 2022; 12:765281. [PMID: 35082688 PMCID: PMC8784838 DOI: 10.3389/fphys.2021.765281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/07/2021] [Indexed: 01/17/2023] Open
Abstract
Calcium signaling is key for the contraction, differentiation, and proliferation of pulmonary arterial smooth muscle cells. Furthermore, calcium influx through store-operated channels (SOCs) is particularly important in the vasoconstrictor response to hypoxia. Previously, we found a decrease in pulmonary hypertension and remodeling in normoxic newborn lambs partially gestated under chronic hypoxia, when treated with 2-aminoethyldiphenyl borinate (2-APB), a non-specific SOC blocker. However, the effects of 2-APB are unknown in neonates completely gestated, born, and raised under environmental hypoxia. Accordingly, we studied the effects of 2-APB-treatment on the cardiopulmonary variables in lambs under chronic hypobaric hypoxia. Experiments were done in nine newborn lambs gestated, born, and raised in high altitude (3,600 m): five animals were treated with 2-APB [intravenous (i.v.) 10 mg kg–1] for 10 days, while other four animals received vehicle. During the treatment, cardiopulmonary variables were measured daily, and these were also evaluated during an acute episode of superimposed hypoxia, 1 day after the end of the treatment. Furthermore, pulmonary vascular remodeling was assessed by histological analysis 2 days after the end of the treatment. Basal cardiac output and mean systemic arterial pressure (SAP) and resistance from 2-APB- and vehicle-treated lambs did not differ along with the treatment. Mean pulmonary arterial pressure (mPAP) decreased after the first day of 2-APB treatment and remained lower than the vehicle-treated group until the third day, and during the fifth, sixth, and ninth day of treatment. The net mPAP increase in response to acute hypoxia did not change, but the pressure area under the curve (AUC) during hypoxia was slightly lower in 2-APB-treated lambs than in vehicle-treated lambs. Moreover, the 2-APB treatment decreased the pulmonary arterial wall thickness and the α-actin immunoreactivity and increased the luminal area with no changes in the vascular density. Our findings show that 2-APB treatment partially reduced the contractile hypoxic response and reverted the pulmonary vascular remodeling, but this is not enough to normalize the pulmonary hemodynamics in chronically hypoxic newborn lambs.
Collapse
Affiliation(s)
- Sebastián Castillo-Galán
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Parrau
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Ismael Hernández
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Sebastián Quezada
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Marcela Díaz
- Departamento de Promoción de la Salud de la Mujer y el Recién Nacido, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Germán Ebensperger
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Emilio A Herrera
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Fernando A Moraga
- Laboratorio de Fisiología, Hipoxia y Función Vascular, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Aníbal J Llanos
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Roberto V Reyes
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Tan CS, Tew WY, Jingying C, Yam MF. Vasorelaxant effect of 5,7,4'- Trihydroxyflavanone (Naringenin) via endothelium dependent, potassium and calcium channels in Sprague Dawley rats: Aortic ring model. Chem Biol Interact 2021; 348:109620. [PMID: 34411564 DOI: 10.1016/j.cbi.2021.109620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/24/2020] [Accepted: 08/04/2021] [Indexed: 11/19/2022]
Abstract
Naringenin is a naturally occurring flavanone (flavonoid) known to have bioactive effects on human health. It has been reported to show cardiovascular effects. This study aimed to investigate the possible vasorelaxant effect of naringenin and the mechanism behind it by using a Sprague Dawley rat aortic ring assay model. Naringenin caused significant vasorelaxation of endothelium-intact aortic rings precontracted with phenylephrine (pD2 = 4.27 ± 0.05; Rmax = 121.70 ± 4.04%) or potassium chloride (pD2 = 4.00 ± 0.04; Rmax = 103.40 ± 3.82%). The vasorelaxant effect decreased in the absence of an endothelium (pD2 = 3.34 ± 0.10; Rmax = 62.29 ± 2.73%). The mechanisms of the vasorelaxant effect of naringenin in the presence of antagonists were also investigated. Indomethacin, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, atropine, 4-aminopyridine, Nω-nitro-l-arginine methyl ester, glibenclamide and propranolol significantly reduced the relaxation stimulated by naringenin in the presence of endothelium. Besides that, the effect of naringenin on the voltage-operated calcium channel (VOCC) in the endothelium-intact aortic ring was studied, as was intracellular Ca2+ release from the sarcoplasmic reticulum (SR) in the endothelium-denuded aortic ring. The results showed that naringenin also significantly blocked the entry of Ca2+ via the VOCC, SERCA/SOCC and suppressed the release of Ca2+ from the SR. Thus, the vasorelaxant effect shown by naringenin mostly involve the COX pathway, the endothelium-dependent pathway via NO/sGC/prostaglandin, calcium and potassium channels.
Collapse
Affiliation(s)
- Chu Shan Tan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China; School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Wan Yin Tew
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China; School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Chen Jingying
- Research Center for Medicinal Plant, Institute of Agricultural Bio-resource, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, Fujian, China.
| | - Mun Fei Yam
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China; School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
9
|
Lilliu E, Koenig S, Koenig X, Frieden M. Store-Operated Calcium Entry in Skeletal Muscle: What Makes It Different? Cells 2021; 10:2356. [PMID: 34572005 PMCID: PMC8468011 DOI: 10.3390/cells10092356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 01/26/2023] Open
Abstract
Current knowledge on store-operated Ca2+ entry (SOCE) regarding its localization, kinetics, and regulation is mostly derived from studies performed in non-excitable cells. After a long time of relative disinterest in skeletal muscle SOCE, this mechanism is now recognized as an essential contributor to muscle physiology, as highlighted by the muscle pathologies that are associated with mutations in the SOCE molecules STIM1 and Orai1. This review mainly focuses on the peculiar aspects of skeletal muscle SOCE that differentiate it from its counterpart found in non-excitable cells. This includes questions about SOCE localization and the movement of respective proteins in the highly organized skeletal muscle fibers, as well as the diversity of expressed STIM isoforms and their differential expression between muscle fiber types. The emerging evidence of a phasic SOCE, which is activated during EC coupling, and its physiological implication is described as well. The specific issues related to the use of SOCE modulators in skeletal muscles are discussed. This review highlights the complexity of SOCE activation and its regulation in skeletal muscle, with an emphasis on the most recent findings and the aim to reach a current picture of this mesmerizing phenomenon.
Collapse
Affiliation(s)
- Elena Lilliu
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Stéphane Koenig
- Department of Cell Physiology and Metabolism, University of Geneva, 1201 Geneva, Switzerland;
| | - Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Maud Frieden
- Department of Cell Physiology and Metabolism, University of Geneva, 1201 Geneva, Switzerland;
| |
Collapse
|
10
|
Tiffner A, Derler I. Isoform-Specific Properties of Orai Homologues in Activation, Downstream Signaling, Physiology and Pathophysiology. Int J Mol Sci 2021; 22:8020. [PMID: 34360783 PMCID: PMC8347056 DOI: 10.3390/ijms22158020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022] Open
Abstract
Ca2+ ion channels are critical in a variety of physiological events, including cell growth, differentiation, gene transcription and apoptosis. One such essential entry pathway for calcium into the cell is the Ca2+ release-activated Ca2+ (CRAC) channel. It consists of the Ca2+ sensing protein, stromal interaction molecule 1 (STIM1) located in the endoplasmic reticulum (ER) and a Ca2+ ion channel Orai in the plasma membrane. The Orai channel family includes three homologues Orai1, Orai2 and Orai3. While Orai1 is the "classical" Ca2+ ion channel within the CRAC channel complex and plays a universal role in the human body, there is increasing evidence that Orai2 and Orai3 are important in specific physiological and pathophysiological processes. This makes them an attractive target in drug discovery, but requires a detailed understanding of the three Orai channels and, in particular, their differences. Orai channel activation is initiated via Ca2+ store depletion, which is sensed by STIM1 proteins, and induces their conformational change and oligomerization. Upon STIM1 coupling, Orai channels activate to allow Ca2+ permeation into the cell. While this activation mechanism is comparable among the isoforms, they differ by a number of functional and structural properties due to non-conserved regions in their sequences. In this review, we summarize the knowledge as well as open questions in our current understanding of the three isoforms in terms of their structure/function relationship, downstream signaling and physiology as well as pathophysiology.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
11
|
Pham C, Hérault K, Oheim M, Maldera S, Vialou V, Cauli B, Li D. Astrocytes respond to a neurotoxic Aβ fragment with state-dependent Ca 2+ alteration and multiphasic transmitter release. Acta Neuropathol Commun 2021; 9:44. [PMID: 33726852 PMCID: PMC7968286 DOI: 10.1186/s40478-021-01146-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Excessive amounts of amyloid β (Aβ) peptide have been suggested to dysregulate synaptic transmission in Alzheimer's disease (AD). As a major type of glial cell in the mammalian brain, astrocytes regulate neuronal function and undergo activity alterations upon Aβ exposure. Yet the mechanistic steps underlying astrocytic responses to Aβ peptide remain to be elucidated. Here by fluorescence imaging of signaling pathways, we dissected astrocytic responses to Aβ25-35 peptide, a neurotoxic Aβ fragment present in AD patients. In native health astrocytes, Aβ25-35 evoked Ca2+ elevations via purinergic receptors, being also dependent on the opening of connexin (CX) hemichannels. Aβ25-35, however, induced a Ca2+ diminution in Aβ-preconditioned astrocytes as a result of the potentiation of the plasma membrane Ca2+ ATPase (PMCA). The PMCA and CX protein expression was observed with immunostaining in the brain tissue of hAPPJ20 AD mouse model. We also observed both Ca2+-independent and Ca2+-dependent glutamate release upon astrocytic Aβ exposure, with the former mediated by CX hemichannel and the latter by both anion channels and lysosome exocytosis. Our results suggest that Aβ peptide causes state-dependent responses in astrocytes, in association with a multiphasic release of signaling molecules. This study therefore helps to understand astrocyte engagement in AD-related amyloidopathy.
Collapse
|
12
|
Tiffner A, Maltan L, Fahrner M, Sallinger M, Weiß S, Grabmayr H, Höglinger C, Derler I. Transmembrane Domain 3 (TM3) Governs Orai1 and Orai3 Pore Opening in an Isoform-Specific Manner. Front Cell Dev Biol 2021; 9:635705. [PMID: 33644073 PMCID: PMC7905104 DOI: 10.3389/fcell.2021.635705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
STIM1-mediated activation of calcium selective Orai channels is fundamental for life. The three Orai channel isoforms, Orai1-3, together with their multiple ways of interplay, ensure their highly versatile role in a variety of cellular functions and tissues in both, health and disease. While all three isoforms are activated in a store-operated manner by STIM1, they differ in diverse biophysical and structural properties. In the present study, we provide profound evidence that non-conserved residues in TM3 control together with the cytosolic loop2 region the maintenance of the closed state and the configuration of an opening-permissive channel conformation of Orai1 and Orai3 in an isoform-specific manner. Indeed, analogous amino acid substitutions of these non-conserved residues led to distinct extents of gain- (GoF) or loss-of-function (LoF). Moreover, we showed that enhanced overall hydrophobicity along TM3 correlates with an increase in GoF mutant currents. Conclusively, while the overall activation mechanisms of Orai channels appear comparable, there are considerable variations in gating checkpoints crucial for pore opening. The elucidation of regions responsible for isoform-specific functional differences provides valuable targets for drug development selective for one of the three Orai homologs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Isabella Derler
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
13
|
Gaspers LD, Thomas AP, Hoek JB, Bartlett PJ. Ethanol Disrupts Hormone-Induced Calcium Signaling in Liver. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab002. [PMID: 33604575 PMCID: PMC7875097 DOI: 10.1093/function/zqab002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 01/06/2023]
Abstract
Receptor-coupled phospholipase C (PLC) is an important target for the actions of ethanol. In the ex vivo perfused rat liver, concentrations of ethanol >100 mM were required to induce a rise in cytosolic calcium (Ca2+) suggesting that these responses may only occur after binge ethanol consumption. Conversely, pharmacologically achievable concentrations of ethanol (≤30 mM) decreased the frequency and magnitude of hormone-stimulated cytosolic and nuclear Ca2+ oscillations and the parallel translocation of protein kinase C-β to the membrane. Ethanol also inhibited gap junction communication resulting in the loss of coordinated and spatially organized intercellular Ca2+ waves in hepatic lobules. Increasing the hormone concentration overcame the effects of ethanol on the frequency of Ca2+ oscillations and amplitude of the individual Ca2+ transients; however, the Ca2+ responses in the intact liver remained disorganized at the intercellular level, suggesting that gap junctions were still inhibited. Pretreating hepatocytes with an alcohol dehydrogenase inhibitor suppressed the effects of ethanol on hormone-induced Ca2+ increases, whereas inhibiting aldehyde dehydrogenase potentiated the inhibitory actions of ethanol, suggesting that acetaldehyde is the underlying mediator. Acute ethanol intoxication inhibited the rate of rise and the magnitude of hormone-stimulated production of inositol 1,4,5-trisphosphate (IP3), but had no effect on the size of Ca2+ spikes induced by photolysis of caged IP3. These findings suggest that ethanol inhibits PLC activity, but does not affect IP3 receptor function. We propose that by suppressing hormone-stimulated PLC activity, ethanol interferes with the dynamic modulation of [IP3] that is required to generate large, amplitude Ca2+ oscillations.
Collapse
Affiliation(s)
- Lawrence D Gaspers
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA,Address correspondence to L.D.G. (e-mail: )
| | - Andrew P Thomas
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Jan B Hoek
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paula J Bartlett
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
14
|
Tiffner A, Maltan L, Weiß S, Derler I. The Orai Pore Opening Mechanism. Int J Mol Sci 2021; 22:E533. [PMID: 33430308 PMCID: PMC7825772 DOI: 10.3390/ijms22020533] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023] Open
Abstract
Cell survival and normal cell function require a highly coordinated and precise regulation of basal cytosolic Ca2+ concentrations. The primary source of Ca2+ entry into the cell is mediated by the Ca2+ release-activated Ca2+ (CRAC) channel. Its action is stimulated in response to internal Ca2+ store depletion. The fundamental constituents of CRAC channels are the Ca2+ sensor, stromal interaction molecule 1 (STIM1) anchored in the endoplasmic reticulum, and a highly Ca2+-selective pore-forming subunit Orai1 in the plasma membrane. The precise nature of the Orai1 pore opening is currently a topic of intensive research. This review describes how Orai1 gating checkpoints in the middle and cytosolic extended transmembrane regions act together in a concerted manner to ensure an opening-permissive Orai1 channel conformation. In this context, we highlight the effects of the currently known multitude of Orai1 mutations, which led to the identification of a series of gating checkpoints and the determination of their role in diverse steps of the Orai1 activation cascade. The synergistic action of these gating checkpoints maintains an intact pore geometry, settles STIM1 coupling, and governs pore opening. We describe the current knowledge on Orai1 channel gating mechanisms and summarize still open questions of the STIM1-Orai1 machinery.
Collapse
Affiliation(s)
- Adéla Tiffner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria; (L.M.); (S.W.)
| | | | | | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria; (L.M.); (S.W.)
| |
Collapse
|
15
|
Kalsi M, Walter A, Lee B, DeLaat A, Trigueros RR, Happel K, Sepesy R, Nguyen B, Manwill PK, Rakotondraibe LH, Piermarini PM. Stop the crop: Insights into the insecticidal mode of action of cinnamodial against mosquitoes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104743. [PMID: 33357565 PMCID: PMC7770332 DOI: 10.1016/j.pestbp.2020.104743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Cinnamodial (CDIAL) is a drimane sesquiterpene dialdehyde found in the bark of Malagasy medicinal plants (Cinnamosma species; family Canellaceae). We previously demonstrated that CDIAL was insecticidal, antifeedant, and repellent against Aedes aegypti mosquitoes. The goal of the present study was to generate insights into the insecticidal mode of action for CDIAL, which is presently unknown. We evaluated the effects of CDIAL on the contractility of the ventral diverticulum (crop) isolated from adult female Ae. aegypti. The crop is a food storage organ surrounded by visceral muscle that spontaneously contracts in vitro. We found that CDIAL completely inhibited spontaneous contractions of the crop as well as those stimulated by the agonist 5-hydroxytryptamine. Several derivatives of CDIAL with known insecticidal activity also inhibited crop contractions. Morphometric analyses of crops suggested that CDIAL induced a tetanic paralysis that was dependent on extracellular Ca2+ and inhibited by Gd3+, a non-specific blocker of plasma membrane Ca2+ channels. Screening of numerous pharmacological agents revealed that a Ca2+ ionophore (A23187) was the only compound other than CDIAL to completely inhibit crop contractions via a tetanic paralysis. Taken together, our results suggest that CDIAL induces a tetanic paralysis of the crop by elevating intracellular Ca2+ through the activation of plasma membrane Ca2+ channels, which may explain the insecticidal effects of CDIAL against mosquitoes. Our pharmacological screening experiments also revealed the presence of two regulatory pathways in mosquito crop contractility not previously described: an inhibitory glutamatergic pathway and a stimulatory octopaminergic pathway. The latter pathway was also completely inhibited by CDIAL.
Collapse
Affiliation(s)
- Megha Kalsi
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Anton Walter
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Beenhwa Lee
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Andrew DeLaat
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Renata Rusconi Trigueros
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Katharina Happel
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Rose Sepesy
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Bao Nguyen
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Preston K Manwill
- Departments of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, OH 43210, USA; Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Liva Harinantenaina Rakotondraibe
- Departments of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, OH 43210, USA; Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA.
| | - Peter M Piermarini
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA; Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
Le Guilcher C, Luyten T, Parys JB, Pucheault M, Dellis O. Synthesis and Characterization of Store-Operated Calcium Entry Inhibitors Active in the Submicromolar Range. Int J Mol Sci 2020; 21:ijms21249777. [PMID: 33371518 PMCID: PMC7767506 DOI: 10.3390/ijms21249777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
The store-operated calcium entry, better known as SOCE, forms the main Ca2+ influx pathway in non-excitable cells, especially in leukocytes, where it is required for cell activation and the immune response. During the past decades, several inhibitors were developed, but they lack specificity or efficacy. From the non-specific SOCE inhibitor 2-aminoethyl diphenylborinate (2-APB), we synthetized 16 new analogues by replacing/modifying the phenyl groups. Among them, our compound P11 showed the best inhibitory capacity with a Ki ≈ 75 nM. Furthermore, below 1 µM, P11 was devoid of any inhibitory activity on the two other main cellular targets of 2-APB, the IP3 receptors, and the SERCA pumps. Interestingly, Jurkat T cells secrete interleukin-2 under phytohemagglutinin stimulation but undergo cell death and stop IL-2 synthesis when stimulated in the presence of increasing P11 concentrations. Thus, P11 could represent the first member of a new and potent family of immunosuppressors.
Collapse
Affiliation(s)
- Camille Le Guilcher
- Physiopathogénèse et Traitements des Maladies du Foie, Université Paris-Saclay, Rue des Adeles, 91405 Orsay, France;
- INSERM U1193, Rue des Adeles, 91405 Orsay, France
| | - Tomas Luyten
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, B-3000 Leuven, Belgium; (T.L.); (J.B.P.)
| | - Jan B. Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, B-3000 Leuven, Belgium; (T.L.); (J.B.P.)
| | - Mathieu Pucheault
- Institute of Molecular Science, CNRS, Université de Bordeaux, 33400 Talence, France;
| | - Olivier Dellis
- Physiopathogénèse et Traitements des Maladies du Foie, Université Paris-Saclay, Rue des Adeles, 91405 Orsay, France;
- INSERM U1193, Rue des Adeles, 91405 Orsay, France
- Correspondence: ; Tel.: +33-169-154-959
| |
Collapse
|
17
|
Singh AK, Roy NK, Bordoloi D, Padmavathi G, Banik K, Khwairakpam AD, Kunnumakkara AB, Sukumar P. Orai-1 and Orai-2 regulate oral cancer cell migration and colonisation by suppressing Akt/mTOR/NF-κB signalling. Life Sci 2020; 261:118372. [PMID: 32882268 DOI: 10.1016/j.lfs.2020.118372] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/17/2020] [Accepted: 08/28/2020] [Indexed: 12/24/2022]
Abstract
Despite remarkable progress in understanding and treating oral cancer (OC), it still remains one of the life-threatening diseases and predominant cancers in the world. Therefore, deciphering the molecular mechanisms of this disease would help us to develop highly efficacious therapies. Multiple lines of evidence suggest that calcium and its dysregulation play significant role in the development of various cancers. As an adaptation of survival mechanism, upon depletion of ER calcium stores, store-operated calcium entry (SOCE) has been induced via SOCE channels (SOCC) in various mammalian cells. SOCC are regulated by Orai-1, Orai-2 and Orai-3 located on plasma membrane and two calcium-sensing ER membrane proteins known as stromal interaction molecules (STIM-1 and STIM-2). Hence, the present study was aimed at analysing the role of Orai-1 and Orai-2 in oral cancer and the underlying mechanism. Our results suggest that both Orai-1 and Orai-2 proteins were overexpressed in oral cancer tissues and cell lines (SAS) compared to normal epithelial tissues and cell lines respectively. In addition, silencing of Orai-1 and Orai-2 via chemical SOCE inhibitors and siRNAs inhibited calcium uptake and suppressed oral cancer cell proliferation, colony formation and migration. Furthermore, silencing of Orai-1 and Orai-2 inhibited Akt/mTOR/NF-κB pathway in oral cancer cells. Interestingly, tobacco carcinogen NNN and synthetic carcinogen 4-NQO, enhanced the expression of Orai-1 and Orai-2 in SAS cells. Therefore, we conclude that Orai-1 and Orai-2 have significant role in oral cancer and can be further explored to develop novel therapies for the treatment of this disease.
Collapse
Affiliation(s)
- Anuj Kumar Singh
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Nand Kishor Roy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Amrita Devi Khwairakpam
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Piruthivi Sukumar
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
18
|
The orphan solute carrier SLC10A7 is a novel negative regulator of intracellular calcium signaling. Sci Rep 2020; 10:7248. [PMID: 32350310 PMCID: PMC7190670 DOI: 10.1038/s41598-020-64006-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
SLC10A7 represents an orphan member of the Solute Carrier Family SLC10. Recently, mutations in the human SLC10A7 gene were associated with skeletal dysplasia, amelogenesis imperfecta, and decreased bone mineral density. However, the exact molecular function of SLC10A7 and the mechanisms underlying these pathologies are still unknown. For this reason, the role of SLC10A7 on intracellular calcium signaling was investigated. SLC10A7 protein expression was negatively correlated with store-operated calcium entry (SOCE) via the plasma membrane. Whereas SLC10A7 knockout HAP1 cells showed significantly increased calcium influx after thapsigargin, ionomycin and ATP/carbachol treatment, SLC10A7 overexpression reduced this calcium influx. Intracellular Ca2+ levels were higher in the SLC10A7 knockout cells and lower in the SLC10A7-overexpressing cells. The SLC10A7 protein co-localized with STIM1, Orai1, and SERCA2. Most of the previously described human SLC10A7 mutations had no effect on the calcium influx and thus were confirmed to be functionally inactive. In the present study, SLC10A7 was established as a novel negative regulator of intracellular calcium signaling that most likely acts via STIM1, Orai1 and/or SERCA2 inhibition. Based on this, SLC10A7 is suggested to be named as negative regulator of intracellular calcium signaling (in short: RCAS).
Collapse
|
19
|
Taylor J, Azimi I, Monteith G, Bebawy M. Ca 2+ mediates extracellular vesicle biogenesis through alternate pathways in malignancy. J Extracell Vesicles 2020; 9:1734326. [PMID: 32194926 PMCID: PMC7067202 DOI: 10.1080/20013078.2020.1734326] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (EVs) are small membrane vesicles that serve as important intercellular signalling intermediaries in both malignant and non-malignant cells. For EVs formed by the plasma membrane, their biogenesis is characterized by an increase in intracellular calcium followed by successive membrane and cytoskeletal changes. EV-production is significantly higher in malignant cells relative to non-malignant cells and previous work suggests this is dependent on increased calcium mobilization and activity of calpain. However, calcium-signalling pathways involved in malignant and non-malignant EV biogenesis remain unexplored. Here we demonstrate; malignant cells have high basal production of plasma membrane EVs compared to non-malignant cells and this is driven by a calcium–calpain dependent pathway. Resting vesiculation in malignant cells occurs via mobilization of calcium from endoplasmic reticulum (ER) stores rather than from the activity of plasma membrane calcium channels. In the event of ER store depletion however, the store-operated calcium entry (SOCE) pathway is activated to restore ER calcium stores. Depleting both ER calcium stores and blocking SOCE, inhibits EV biogenesis. In contrast, calcium signalling pathways are not activated in resting non-malignant cells. Consequently, these cells are relatively low vesiculators in the resting state. Following cellular activation however, an increase in cytosolic calcium and activation of calpain increase in EV biogenesis. These findings contribute to furthering our understanding of extracellular vesicle biogenesis. As EVs are key mediators in the intercellular transfer of deleterious cancer traits such as cancer multidrug resistance (MDR), understanding the molecular mechanisms governing their biogenesis in cancer is the crucial first step in finding novel therapeutic targets that circumvent EV-mediated MDR.
Collapse
Affiliation(s)
- Jack Taylor
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Australia
| | - Iman Azimi
- Division of Pharmacy, College of Health and Medicine, University of Tasmania, Australia
| | - Gregory Monteith
- School of Pharmacy, The University of Queensland, Brisbane, Australia.,Mater Research, Translational Research Institute, the University of Queensland, Brisbane, Australia.,Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Australia
| |
Collapse
|
20
|
Vasorelaxant effect of 3,5,4'-trihydroxy-trans-stilbene (resveratrol) and its underlying mechanism. Inflammopharmacology 2020; 28:869-875. [PMID: 31925617 DOI: 10.1007/s10787-019-00682-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022]
Abstract
Resveratrol is found in numerous plant-based foods and beverages and is known to have an impact on the cardiovascular system. The aim of this study was to investigate the vasorelaxant effect of resveratrol and its underlying mechanisms by employing an aortic ring assay model. Resveratrol caused relaxation of aortic rings that had been precontracted with phenylephrine in the presence of endothelium or with potassium chloride in endothelium-intact aortic rings. The vasorelaxant effect was decreased in the absence of an endothelium. The mechanisms underlying the vasorelaxant effect of resveratrol were determined through the addition of antagonists. In the presence of the endothelium, indomethacin (a nonselective cyclooxygenase inhibitor), methylene blue (cyclic guanosine monophosphate lowering agent), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, selective soluble guanylate cyclase inhibitor), Nω-nitro-L-arginine methyl ester (L-NAME, nitric oxide synthase inhibitor), tetraethylammonium (TEA, nonselective calcium activator potassium channel blocker), 4-aminopyridine (4-AP, voltage-dependent K+ channel blocker), barium chloride (BaCl2, inwardly rectifying K+ channel blocker), glibenclamide (non-specific ATP-sensitive K+ channel blocker) and propranolol (β-adrenergic receptor blocker) led to a significant reduction in the vasorelaxation effect induced by resveratrol. Resveratrol was also found to reduce Ca2+ release from the sarcoplasmic reticulum and block calcium channels. In conclusion, resveratrol targets multiple signalling pathways for exerting its vasorelaxant effects in the rat aortic ring model in both the presence and absence of endothelium.
Collapse
|
21
|
Butorac C, Krizova A, Derler I. Review: Structure and Activation Mechanisms of CRAC Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:547-604. [PMID: 31646526 DOI: 10.1007/978-3-030-12457-1_23] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ca2+ release activated Ca2+ (CRAC) channels represent a primary pathway for Ca2+ to enter non-excitable cells. The two key players in this process are the stromal interaction molecule (STIM), a Ca2+ sensor embedded in the membrane of the endoplasmic reticulum, and Orai, a highly Ca2+ selective ion channel located in the plasma membrane. Upon depletion of the internal Ca2+ stores, STIM is activated, oligomerizes, couples to and activates Orai. This review provides an overview of novel findings about the CRAC channel activation mechanisms, structure and gating. In addition, it highlights, among diverse STIM and Orai mutants, also the disease-related mutants and their implications.
Collapse
Affiliation(s)
- Carmen Butorac
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria
| | - Adéla Krizova
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria.
| |
Collapse
|
22
|
Okubo Y, Iino M, Hirose K. Store-operated Ca 2+ entry-dependent Ca 2+ refilling in the endoplasmic reticulum in astrocytes. Biochem Biophys Res Commun 2019; 522:1003-1008. [PMID: 31812243 DOI: 10.1016/j.bbrc.2019.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 12/11/2022]
Abstract
Astrocytes regulate various brain functions, for which Ca2+ release from the endoplasmic reticulum (ER) often play crucial roles. Because astrocytic ER Ca2+ release is robust and frequent, the ER Ca2+ refilling mechanism should be critical for ongoing Ca2+ signaling in astrocytes. In this study, we focused on the putative functional significance of store-operated Ca2+ entry (SOCE) in ER Ca2+ refilling. We expressed the ER luminal Ca2+ indicator G-CEPIA1er in astrocytes in acute cortical slices to directly monitor the decrease and recovery of ER Ca2+ concentration upon spontaneous or norepinephrine-induced Ca2+ release. Inhibition of SOCE significantly slowed the recovery of ER Ca2+ concentration after Ca2+ release in astrocytes. This delayed recovery resulted in a prolonged decrease in the ER Ca2+ content in astrocytes with periodic spontaneous Ca2+ release, followed by the attenuation of cytosolic Ca2+ responses upon Ca2+ release. Therefore, our results provide direct evidence for the physiological significance of SOCE in ER Ca2+ refilling after ER Ca2+ release.
Collapse
Affiliation(s)
- Yohei Okubo
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan.
| | - Masamitsu Iino
- Division of Cellular and Molecular Pharmacology, Nihon University School of Medicine, 30-1 Oyaguchi Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan
| |
Collapse
|
23
|
Silveira ES, Bezerra SB, Ávila KS, Rocha TM, Pinheiro RG, de Queiroz MGR, Magalhães PJC, Santos FA, Leal LKAM. Gastrointestinal effects of standardized Brazilian phytomedicine (Arthur de Carvalho Drops®) containing Matricaria recutita, Gentiana lutea and Foeniculum vulgare. PATHOPHYSIOLOGY 2019; 26:349-359. [PMID: 31668916 DOI: 10.1016/j.pathophys.2019.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/22/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022] Open
Abstract
Arthur de Carvalho Drops® (ACD) is a traditional Brazilian herbal medicine used to treat functional gastrointestinal disorders (FGIDs). ACD is a formulation of herbal extracts from Matricaria recutita (chamomile), Foeniculum vulgare (fennel) and Gentiana lutea L. (gentian). Considering the popular use for FGIDs, the aim of this work was to investigate the ACD effect on gastric and intestinal parameters with emphasis in a mechanistic approach using isolated duodenal preparations of rodents. Analytical method was developed and validated for quantify three actives principles/markers (Apigenin-7-glucoside, gentiopicroside and anethole) in ACD. The treatment with ACD significantly reduced the emetogenic stimuli induced by cisplatin in rats, showed a laxative effect, reduced the bethanechol-enhanced gastrointestinal transit and completely reversed the contraction induced by carbachol in rat duodenum. However, ACD did not alter the secretory gastric volume or total gastric acidity. The ACD affect the contractions of duodenal smooth muscle mediated by Ca2+ channels and it is also able to inhibit the contractile response mediated by the release from its intracellular store. Furthermore, the relaxant effects of ACD appear independent of the nitric oxide pathway in rat duodenum. These results suggest that ACD could be beneficial for the treatment of disorders of the gastrointestinal tract.
Collapse
Affiliation(s)
- Elizama S Silveira
- Centro de Estudos Farmacêuticos e Cosméticos (CEFAC), Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| | - Suzana B Bezerra
- Centro de Estudos Farmacêuticos e Cosméticos (CEFAC), Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| | - Kalyane S Ávila
- Centro de Estudos Farmacêuticos e Cosméticos (CEFAC), Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| | - Talita M Rocha
- Centro de Estudos Farmacêuticos e Cosméticos (CEFAC), Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil; Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| | - Romelia G Pinheiro
- Centro de Estudos Farmacêuticos e Cosméticos (CEFAC), Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| | - Maria Goretti R de Queiroz
- Centro de Estudos Farmacêuticos e Cosméticos (CEFAC), Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| | - Pedro Jorge Caldas Magalhães
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| | - Flávia Almeida Santos
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| | - Luzia Kalyne A M Leal
- Centro de Estudos Farmacêuticos e Cosméticos (CEFAC), Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
24
|
Wani SA, Khan LA, Basir SF. Role of calcium channels and endothelial factors in nickel induced aortic hypercontraction in Wistar rats. J Smooth Muscle Res 2019; 54:71-82. [PMID: 30210089 PMCID: PMC6135920 DOI: 10.1540/jsmr.54.71] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: To investigate the mechanism of nickel augmented phenylephrine
(PE)-induced contraction in isolated segments of Wistar rat aorta. Materials and
Methods: Effect of varying concentrations of nickel on PE-induced contraction
were investigated in isolated segments of Wistar rat aorta using an organ bath system.
Aortic rings were pre-incubated with verapamil (1 µM and 20 µM), gadolinium, apocynin,
indomethacin or N-G-nitro-L-arginine methyl ester (L-NAME) separately before incubation
with nickel. Results: Endothelium intact aortic rings incubated with 100
nM, 1 µM or 100 µM of nickel exhibited 80%, 43% and 28% increase in PE-induced
contraction, respectively, while no such enhancing responses were observed in endothelium
denuded aorta. Incubation of aortic rings with 1 µM and 20 µM verapamil suggested an
involvement of influx of calcium through T-type calcium channels in smooth muscle cells,
while aortic rings pre-incubated with gadolinium showed no role of store operated calcium
channels in the nickel effect on PE-induced contractions. The enhancing effect of nickel
on PE-induced contractions was inhibited by apocynin, indomethacin or L-NAME.
Conclusion: Nickel has caused augmentation of PE-induced contractions
as a result of the endothelial generation of reactive oxygen species (ROS) and
cyclooxygenase 2 (COX2) dependent endothelium contracting factors (EDCFs), which increases
the influx of extracellular calcium through T-type Ca2+ channels in smooth
muscle cells.
Collapse
Affiliation(s)
| | - Luqman Ahmad Khan
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
25
|
Doignon I, Fayol O, Dellis O. Improvement of the rituximab-induced cell death by potentiation of the store-operated calcium entry in mantle cell lymphoma cell lines. Oncotarget 2019; 10:4466-4478. [PMID: 31320998 PMCID: PMC6633894 DOI: 10.18632/oncotarget.27063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 06/19/2019] [Indexed: 11/25/2022] Open
Abstract
Mantle Cell Lymphoma (MCL) is one of the worst lymphomas with a median overall survival of 3 to 4 years. Even if the use of rituximab was a great step in therapy, patients commonly develop resistance and relapse. New therapies or complement of existing therapies should be developed. Using spectrofluorimetry, we found that the resting cytosolic Ca2+ ion concentration [Ca2+]cyt of MCL patients cells and MCL cell lines was increased. This increase is correlated with a larger store-operated calcium entry (SOCE) amplitude which is responsible for the Ca2+ ions influx. Furthermore, using a SOCE potentiating agent, we demonstrated that in the MCL Rec-1 cell line, the SOCE is already activated in resting conditions. Interestingly, this potentiating agent alone, by disturbing the SOCE, induced the apoptosis of Rec-1 cells with the same efficacy than rituximab. The use of the potentiating agent in addition to rituximab strengthens the rituximab-induced apoptosis of rituximab-sensitive Granta-519 and Rec-1 cells. However, this potentiating agent cannot convert the Jeko-1 rituximab-resistant to a rituximab-sensitive cell line. Our results confirm that the use of compound acting on the Ca2+ homeostasis could be a new target of interest in complement to existing therapies.
Collapse
Affiliation(s)
- Isabelle Doignon
- Interactions Cellulaires et Physiopathologie Hépatique, INSERM UMR-S 1174, Paris, France.,Université Paris-Sud, Université Paris Saclay, Paris, France
| | - Olivier Fayol
- Interactions Cellulaires et Physiopathologie Hépatique, INSERM UMR-S 1174, Paris, France.,Université Paris-Sud, Université Paris Saclay, Paris, France
| | - Olivier Dellis
- Interactions Cellulaires et Physiopathologie Hépatique, INSERM UMR-S 1174, Paris, France.,Université Paris-Sud, Université Paris Saclay, Paris, France
| |
Collapse
|
26
|
An element for development: Calcium signaling in mammalian reproduction and development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1230-1238. [DOI: 10.1016/j.bbamcr.2019.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 11/21/2022]
|
27
|
Krizova A, Maltan L, Derler I. Critical parameters maintaining authentic CRAC channel hallmarks. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2019; 48:425-445. [PMID: 30903264 PMCID: PMC6647248 DOI: 10.1007/s00249-019-01355-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/20/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
Ca2+ ions represent versatile second messengers that regulate a huge diversity of processes throughout the cell's life. One prominent Ca2+ entry pathway into the cell is the Ca2+ release-activated Ca2+ (CRAC) ion channel. It is fully reconstituted by the two molecular key players: the stromal interaction molecule (STIM1) and Orai. STIM1 is a Ca2+ sensor located in the membrane of the endoplasmic reticulum, and Orai, a highly Ca2+ selective ion channel embedded in the plasma membrane. Ca2+ store-depletion leads initially to the activation of STIM1 which subsequently activates Orai channels via direct binding. Authentic CRAC channel hallmarks and biophysical characteristics include high Ca2+ selectivity with a reversal potential in the range of + 50 mV, small unitary conductance, fast Ca2+-dependent inactivation and enhancements in currents upon the switch from a Na+-containing divalent-free to a Ca2+-containing solution. This review provides an overview on the critical determinants and structures within the STIM1 and Orai proteins that establish these prominent CRAC channel characteristics.
Collapse
Affiliation(s)
- Adéla Krizova
- Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Lena Maltan
- Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020, Linz, Austria.
| |
Collapse
|
28
|
Ontiveros M, Rinaldi D, Marder M, Espelt MV, Mangialavori I, Vigil M, Rossi JP, Ferreira-Gomes M. Natural flavonoids inhibit the plasma membrane Ca 2+-ATPase. Biochem Pharmacol 2019; 166:1-11. [PMID: 31071329 DOI: 10.1016/j.bcp.2019.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/03/2019] [Indexed: 11/25/2022]
Abstract
Research on flavonoids from plant sources has recently sparked increasing interest because of their beneficial health properties. Different studies have shown that flavonoids change the intracellular Ca2+ homeostasis linked to alterations in the function of mitochondria, Ca2+ channels and Ca2+ pumps. These findings hint at plasma membrane Ca2+-ATPase (PMCA) involvement, as it transports Ca2+ actively to the extracellular medium coupled to ATP hydrolysis, thus maintaining ion cellular homeostasis. The present study aims to investigate the effect of several natural flavonoids on PMCA both in isolated protein systems and in living cells, and to establish the relationship between flavonoid structure and inhibitory activity on PMCA. Our results show that natural flavonoids inhibited purified and membranous PMCA with different effectiveness: quercetin and gossypin were the most potent and their inhibition mechanisms seem to be different, as quercetin does not prevent ATP binding whereas gossypin does. Moreover, PMCA activity was inhibited in human embryonic kidney cells which transiently overexpress PMCA, suggesting that the effects observed on isolated systems could occur in a complex structure like a living cell. In conclusion, this work reveals a novel molecular mechanism through which flavonoids inhibit PMCA, which leads to Ca2+ homeostasis and signaling alterations in the cell.
Collapse
Affiliation(s)
- M Ontiveros
- IQUIFIB - Instituto de Química y Fisicoquímica Biológicas, Conicet/UBA, Junín 956 (1113) Buenos Aires, Argentina
| | - D Rinaldi
- IQUIFIB - Instituto de Química y Fisicoquímica Biológicas, Conicet/UBA, Junín 956 (1113) Buenos Aires, Argentina
| | - M Marder
- IQUIFIB - Instituto de Química y Fisicoquímica Biológicas, Conicet/UBA, Junín 956 (1113) Buenos Aires, Argentina
| | - M V Espelt
- IQUIFIB - Instituto de Química y Fisicoquímica Biológicas, Conicet/UBA, Junín 956 (1113) Buenos Aires, Argentina
| | - I Mangialavori
- IQUIFIB - Instituto de Química y Fisicoquímica Biológicas, Conicet/UBA, Junín 956 (1113) Buenos Aires, Argentina
| | - M Vigil
- IQUIFIB - Instituto de Química y Fisicoquímica Biológicas, Conicet/UBA, Junín 956 (1113) Buenos Aires, Argentina
| | - J P Rossi
- IQUIFIB - Instituto de Química y Fisicoquímica Biológicas, Conicet/UBA, Junín 956 (1113) Buenos Aires, Argentina.
| | - M Ferreira-Gomes
- IQUIFIB - Instituto de Química y Fisicoquímica Biológicas, Conicet/UBA, Junín 956 (1113) Buenos Aires, Argentina.
| |
Collapse
|
29
|
Indirect Measurement of CRAC Channel Activity Using NFAT Nuclear Translocation by Flow Cytometry in Jurkat Cells. Methods Mol Biol 2019; 1843:83-94. [PMID: 30203279 DOI: 10.1007/978-1-4939-8704-7_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Flow cytometry is a powerful technology to assess the presence of NFAT in the nuclei after CRAC channel activation. Here we described a simplified procedure for the analysis of CRAC channel activity using NFAT nuclear translocation by flow cytometry, based on the isolation of Jurkat E6-1 cell nuclei.
Collapse
|
30
|
Ali ES, Petrovsky N. Calcium Signaling As a Therapeutic Target for Liver Steatosis. Trends Endocrinol Metab 2019; 30:270-281. [PMID: 30850262 DOI: 10.1016/j.tem.2019.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022]
Abstract
Hepatic steatosis, the first step in nonalcoholic fatty liver disease (NAFLD), can arise from various pathophysiological conditions. While lipid metabolism in the liver is normally balanced such that there is no excessive lipid accumulation, when this homeostasis is disrupted lipid droplets (LDs) accumulate in hepatocytes resulting in cellular toxicity. The mechanisms underlying this accumulation and the subsequent hepatocellular damage are multifactorial and poorly understood, with the result that there are no currently approved treatments for NAFLD. Impaired calcium signaling has recently been identified as a cause of increased endoplasmic reticulum (ER) stress contributing to hepatic lipid accumulation. This review highlights new findings on the role of impaired Ca2+ signaling in the development of steatosis and discusses potential new approaches to NAFLD treatment based on these new insights.
Collapse
Affiliation(s)
- Eunüs S Ali
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Nikolai Petrovsky
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Adelaide, SA, Australia.
| |
Collapse
|
31
|
Tan CS, Loh YC, Ch'ng YS, Ng CH, Yeap ZQ, Ahmad M, Asmawi MZ, Yam MF. Vasorelaxant and chemical fingerprint studies of Citrus reticulatae pericarpium extracts. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:135-144. [PMID: 30543913 DOI: 10.1016/j.jep.2018.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/16/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Citrus reticulatae Pericarpium (Chen pi) was widely used as an important ingredient in the prescription of TCM to treat phlegm fluid retention type hypertension. Since Chen pi is involved in treatment as antihypertensive TCM formula, we have reasonable expectation in believing that it might possess vasorelaxant activity. AIM OF THE STUDY This study is designed to investigate the vasorelaxant effect of Chen pi and to study its pharmacology effects. MATERIALS AND METHODS The vasorelaxant effect of water extract of Chen pi (CRW) were evaluated on thoracic aortic rings isolated from Sprague Dawley rats. The fingerprint of Chen pi and the extracts were developed with quantification of hesperidin content by HPTLC. RESULTS CRW exhibited the strongest vasorelaxant activity. CRW caused the relaxation of the phenylephrine pre-contracted aortic rings in the presence and absence of endothelium as well as in potassium chloride pre-contracted endothelium-intact aortic ring. The incubation of propranolol (β-adrenergic receptor blocker), atropine (muscarinic receptor blocker), Nω-nitro-L-arginine methyl ester (NO synthase inhibitor), ODQ (sGC inhibitor), indomethacin (COX inhibitor), 4-aminopyridine (KV blocker), barium chloride (Kir blocker), and glibenclamide (KATP blocker) significantly reduced the vasorelaxant effects of CRW. CRW was also found to be active in reducing Ca2+ releases from the sarcoplasmic reticulum and suppressing the voltage-operated calcium channels. CONCLUSION The vasorelaxant effect of CRW on rat aorta involves NO/sGC, calcium and potassium channels, muscarinic and β-adrenergic receptors.
Collapse
Affiliation(s)
- Chu Shan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Yean Chun Loh
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Yung Sing Ch'ng
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Chiew Hoong Ng
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Zhao Qin Yeap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Mariam Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Mohd Zaini Asmawi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Mun Fei Yam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia; College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
32
|
Discovery of new phthalazinones as vasodilator agents and novel pharmacological tools to study calcium channels. Future Med Chem 2019; 11:179-191. [PMID: 30801201 DOI: 10.4155/fmc-2018-0250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Hydralazine has led to the synthesis of phthalazinone derivatives which induce vasorelaxation. METHODS A new series of 2-(aminoalkyl)-4-benzyl-2H-phthalazin-1-one derivatives has been synthesized to study their vasorelaxant activity. RESULTS At the highest-studied concentration, most of the new compounds relaxed the denuded aortic rings precontracted with phenylephrine by 72.9-85.7%. Compound 25 (C25) suppressed almost totally the contractile effects of phenylephrine, high KCl concentration, ionomycin and caffeine related to the activation of Ca2+ channels, whereas its inhibitory effect was reversed with high CaCl2 concentrations. CONCLUSION Vasodilator effects of C25 appear to be due exclusively to the reversible blockage of different calcium channels. As broad range calcium channel blocker, C25 seems to be suitable as a pharmacological tool for calcium channel research.
Collapse
|
33
|
Turovsky EA, Zinchenko VP, Kaimachnikov NP. Attenuation of calmodulin regulation evokes Ca 2+ oscillations: evidence for the involvement of intracellular arachidonate-activated channels and connexons. Mol Cell Biochem 2019; 456:191-204. [PMID: 30756222 DOI: 10.1007/s11010-019-03504-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/01/2019] [Indexed: 01/02/2023]
Abstract
Intracellular Са2+ controls its own level by regulation of Ca2+ transport across the plasma and organellar membranes, often acting via calmodulin (CaM). Drugs antagonizing CaM action induce an increase in cytosolic Ca2+ concentration in different cells. We have found persistent Са2+ oscillations in cultured white adipocytes in response to calmidazolium (CMZ). They appeared at [CMZ] > 1 μM as repetitive sharp spikes mainly superimposed on a transient or elevated baseline. Similar oscillations were observed when we used trifluoperazine. Oscillations evoked by 5 μM CMZ resulted from the release of stored Ca2+ and were supported by Са2+ entry. Inhibition of store-operated channels by YM-58483 or 2-APB did not change the responses. Phospholipase A2 inhibited by AACOCF3 was responsible for initial Ca2+ mobilization, but not for subsequent oscillations, whereas inhibition of iPLA2 by BEL had no effect. Phospholipase C was partially involved in both stages as revealed with U73122. Intracellular Са2+ stores engaged by CMZ were entirely dependent on thapsigargin. The oscillations existed in the presence of inhibitors of ryanodine or inositol 1,4,5-trisphosphate receptors, or antagonists of Ca2+ transport by lysosome-like acidic stores. Carbenoxolone or octanol, blockers of hemichannels (connexons), when applied for two hours, prevented oscillations but did not affect the initial Са2+ release. Incubation with La3+ for 2 or 24 h inhibited all responses to CMZ, retaining the thapsigargin-induced Ca2+ rise. These results suggest that Ca2+-CaM regulation suppresses La3+-sensitive channels in non-acidic organelles, of which arachidonate-activated channels initiate Ca2+ oscillations, and connexons are intimately implicated in their generation mechanism.
Collapse
Affiliation(s)
- Egor A Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - Valery P Zinchenko
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - Nikolai P Kaimachnikov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290.
| |
Collapse
|
34
|
Azimi I, Bong AH, Poo GXH, Armitage K, Lok D, Roberts-Thomson SJ, Monteith GR. Pharmacological inhibition of store-operated calcium entry in MDA-MB-468 basal A breast cancer cells: consequences on calcium signalling, cell migration and proliferation. Cell Mol Life Sci 2018; 75:4525-4537. [PMID: 30105615 PMCID: PMC11105359 DOI: 10.1007/s00018-018-2904-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022]
Abstract
Store-operated Ca2+ entry is a pathway that is remodelled in a variety of cancers, and altered expression of the components of store-operated Ca2+ entry is a feature of breast cancer cells of the basal molecular subtype. Studies of store-operated Ca2+ entry in breast cancer cells have used non-specific pharmacological inhibitors, complete depletion of intracellular Ca2+ stores and have mostly focused on MDA-MB-231 cells (a basal B breast cancer cell line). These studies compared the effects of the selective store-operated Ca2+ entry inhibitors Synta66 and YM58483 (also known as BTP2) on global cytosolic free Ca2+ ([Ca2+]CYT) changes induced by physiological stimuli in a different breast cancer basal cell line model, MDA-MB-468. The effects of these agents on proliferation as well as serum and epidermal growth factor (EGF) induced migration were also assessed. Activation with the purinergic receptor activator adenosine triphosphate, produced a sustained increase in [Ca2+]CYT that was entirely dependent on store-operated Ca2+ entry. The protease activated receptor 2 activator, trypsin, and EGF also produced Ca2+ influx that was sensitive to both Synta66 and YM58483. Serum-activated migration of MDA-MB-468 breast cancer cells was sensitive to both store-operated Ca2+ inhibitors. However, proliferation and EGF-activated migration was differentially affected by Synta66 and YM58483. These studies highlight the need to define the exact mechanisms of action of different store-operated calcium entry inhibitors and the impact of such differences in the control of tumour progression pathways.
Collapse
Affiliation(s)
- Iman Azimi
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Division of Pharmacy, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Alice H Bong
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Greta X H Poo
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Kaela Armitage
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Dawn Lok
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | | | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia.
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
35
|
Borsani O, Piga D, Costa S, Govoni A, Magri F, Artoni A, Cinnante CM, Fagiolari G, Ciscato P, Moggio M, Bresolin N, Comi GP, Corti S. Stormorken Syndrome Caused by a p.R304W STIM1 Mutation: The First Italian Patient and a Review of the Literature. Front Neurol 2018; 9:859. [PMID: 30374325 PMCID: PMC6196270 DOI: 10.3389/fneur.2018.00859] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/24/2018] [Indexed: 11/30/2022] Open
Abstract
Stormorken syndrome is a rare autosomal dominant disease that is characterized by a complex phenotype that includes tubular aggregate myopathy (TAM), bleeding diathesis, hyposplenism, mild hypocalcemia and additional features, such as miosis and a mild intellectual disability (dyslexia). Stormorken syndrome is caused by autosomal dominant mutations in the STIM1 gene, which encodes an endoplasmic reticulum Ca2+ sensor. Here, we describe the clinical and molecular aspects of a 21-year-old Italian female with Stormorken syndrome. The STIM1 gene sequence identified a c.910C > T transition in a STIM1 allele (p.R304W). The p.R304W mutation is a common mutation that is responsible for Stormorken syndrome and is hypothesized to cause a gain of function action associated with a rise in Ca2+ levels. A review of published STIM1 mutations (n = 50) and reported Stormorken patients (n = 11) indicated a genotype-phenotype correlation with mutations in a coiled coil cytoplasmic domain associated with complete Stormorken syndrome, and other pathological variants outside this region were more often linked to an incomplete phenotype. Our study describes the first Italian patient with Stormorken syndrome, contributes to the genotype/phenotype correlation and highlights the possibility of directly investigating the p.R304W mutation in the presence of a typical phenotype. Highlights- Stormorken syndrome is a rare autosomal dominant disease. - Stormoken syndrome is caused by autosomal dominant mutations in the STIM1 gene. - We present the features of a 21-year-old Italian female with Stormorken syndrome. - Our review of published STIM1 mutations suggests a genotype-phenotype correlation. - The p.R304W mutation should be investigated in the presence of a typical phenotype.
Collapse
Affiliation(s)
- Oscar Borsani
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Piga
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Costa
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Govoni
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Magri
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Artoni
- A. Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudia M Cinnante
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gigliola Fagiolari
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Patrizia Ciscato
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Nereo Bresolin
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Giacomo P Comi
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Stefania Corti
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, University of Milan, Milan, Italy
| |
Collapse
|
36
|
Fluorescence-Based Measurements of the CRAC Channel Activity in Cell Populations. Methods Mol Biol 2018. [PMID: 30203278 DOI: 10.1007/978-1-4939-8704-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cytosolic Ca2+ plays an important role in cellular biology, and since its identification as a second messenger, a number of techniques and methods to analyze the changes in cytosolic Ca2+ concentration ([Ca2+]c) induced by physiological agonists have been developed. Changes in [Ca2+]c might be determined in single cells or in cell populations. Measurement in single cells allows to determine changes in [Ca2+]c at a subcellular level but often results in heterogeneous responses among cells. Determination of intracellular Ca2+ mobilization at the cell population level reduces this heterogeneity and allows [Ca2+]c measurements in small cells that load little amounts of indicator. Here, we describe the measurement of agonist-evoked changes in [Ca2+]c associated with Ca2+ influx in cell populations.
Collapse
|
37
|
Nurbaeva MK, Eckstein M, Devotta A, Saint-Jeannet JP, Yule DI, Hubbard MJ, Lacruz RS. Evidence That Calcium Entry Into Calcium-Transporting Dental Enamel Cells Is Regulated by Cholecystokinin, Acetylcholine and ATP. Front Physiol 2018; 9:801. [PMID: 30013487 PMCID: PMC6036146 DOI: 10.3389/fphys.2018.00801] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/07/2018] [Indexed: 01/06/2023] Open
Abstract
Dental enamel is formed by specialized epithelial cells which handle large quantities of Ca2+ while producing the most highly mineralized tissue. However, the mechanisms used by enamel cells to handle bulk Ca2+ safely remain unclear. Our previous work contradicted the dogma that Ca2+ is ferried through the cytosol of Ca2+-transporting cells and instead suggested an organelle-based route across enamel cells. This new paradigm involves endoplasmic reticulum (ER)-associated Ca2+ stores and their concomitant refilling by store-operated Ca2+ entry (SOCE) mediated by Ca2+ release activated Ca2+ (CRAC) channels. Given that Ca2+ handling is maximal during the enamel-mineralization stage (maturation), we anticipated that SOCE would also be elevated then. Confirmation was obtained here using single-cell recordings of cytosolic Ca2+ concentration ([Ca2+]cyt) in rat ameloblasts. A candidate SOCE agonist, cholecystokinin (CCK), was found to be upregulated during maturation, with Cck transcript abundance reaching 30% of that in brain. CCK-receptor transcripts were also detected and Ca2+ imaging showed that CCK stimulation increased [Ca2+]cyt in a dose-responsive manner that was sensitive to CRAC-channel inhibitors. Similar effects were observed with two other SOCE activators, acetylcholine and ATP, whose receptors were also found in enamel cells. These results provide the first evidence of a potential regulatory system for SOCE in enamel cells and so strengthen the Ca2+ transcytosis paradigm for ER-based transport of bulk Ca2+. Our findings also implicate enamel cells as a new physiological target of CCK and raise the possibility of an auto/paracrine system for regulating Ca2+ transport.
Collapse
Affiliation(s)
- Meerim K Nurbaeva
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Miriam Eckstein
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Arun Devotta
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Jean-Pierre Saint-Jeannet
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| | - Michael J Hubbard
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| |
Collapse
|
38
|
Huang TY, Lin YH, Chang HA, Yeh TY, Chang YH, Chen YF, Chen YC, Li CC, Chiu WT. STIM1 Knockout Enhances PDGF-Mediated Ca 2+ Signaling through Upregulation of the PDGFR⁻PLCγ⁻STIM2 Cascade. Int J Mol Sci 2018; 19:ijms19061799. [PMID: 29912163 PMCID: PMC6032054 DOI: 10.3390/ijms19061799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/24/2023] Open
Abstract
Platelet-derived growth factor (PDGF) has mitogenic and chemotactic effects on fibroblasts. An increase in intracellular Ca2+ is one of the first events that occurs following the stimulation of PDGF receptors (PDGFRs). PDGF activates Ca2+ elevation by activating the phospholipase C gamma (PLCγ)-signaling pathway, resulting in ER Ca2+ release. Store-operated Ca2+ entry (SOCE) is the major form of extracellular Ca2+ influx following depletion of ER Ca2+ stores and stromal interaction molecule 1 (STIM1) is a key molecule in the regulation of SOCE. In this study, wild-type and STIM1 knockout mouse embryonic fibroblasts (MEF) cells were used to investigate the role of STIM1 in PDGF-induced Ca2+ oscillation and its functions in MEF cells. The unexpected findings suggest that STIM1 knockout enhances PDGFR–PLCγ–STIM2 signaling, which in turn increases PDGF-BB-induced Ca2+ elevation. Enhanced expressions of PDGFRs and PLCγ in STIM1 knockout cells induce Ca2+ release from the ER store through PLCγ–IP3 signaling. Moreover, STIM2 replaces STIM1 to act as the major ER Ca2+ sensor in activating SOCE. However, activation of PDGFRs also activate Akt, ERK, and JNK to regulate cellular functions, such as cell migration. These results suggest that alternative switchable pathways can be observed in cells, which act downstream of the growth factors that regulate Ca2+ signaling.
Collapse
Affiliation(s)
- Tzu-Yu Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Yi-Hsin Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Heng-Ai Chang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan.
| | - Tzu-Ying Yeh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Ya-Han Chang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Yi-Fan Chen
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan.
| | - Ying-Chi Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Chun-Chun Li
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan.
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
39
|
Stevenson RJ, Azimi I, Flanagan JU, Inserra M, Vetter I, Monteith GR, Denny WA. An SAR study of hydroxy-trifluoromethylpyrazolines as inhibitors of Orai1-mediated store operated Ca 2+ entry in MDA-MB-231 breast cancer cells using a convenient Fluorescence Imaging Plate Reader assay. Bioorg Med Chem 2018; 26:3406-3413. [PMID: 29776832 DOI: 10.1016/j.bmc.2018.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022]
Abstract
The proteins Orai1 and STIM1 control store-operated Ca2+ entry (SOCE) into cells. SOCE is important for migration, invasion and metastasis of MDA-MB-231 human triple negative breast cancer (TNBC) cells and has been proposed as a target for cancer drug discovery. Two hit compounds from a medium throughput screen, displayed encouraging inhibition of SOCE in MDA-MB-231 cells, as measured by a Fluorescence Imaging Plate Reader (FLIPR) Ca2+ assay. Following NMR spectroscopic analysis of these hits and reassignment of their structures as 5-hydroxy-5-trifluoromethylpyrazolines, a series of analogues was prepared via thermal condensation reactions between substituted acylhydrazones and trifluoromethyl 1,3-dicarbonyl arenes. Structure-activity relationship (SAR) studies showed that small lipophilic substituents at the 2- and 3-positions of the RHS and 2-, 3- and 4-postions of the LHS terminal benzene rings improved activity, resulting in a novel class of potent and selective inhibitors of SOCE.
Collapse
Affiliation(s)
- Ralph J Stevenson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Iman Azimi
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia; Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia; Division of Pharmacy, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Jack U Flanagan
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Marco Inserra
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Gregory R Monteith
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia; Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
40
|
Reyes RV, Castillo-Galán S, Hernandez I, Herrera EA, Ebensperger G, Llanos AJ. Revisiting the Role of TRP, Orai, and ASIC Channels in the Pulmonary Arterial Response to Hypoxia. Front Physiol 2018; 9:486. [PMID: 29867539 PMCID: PMC5949889 DOI: 10.3389/fphys.2018.00486] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
The pulmonary arteries are exquisitely responsive to oxygen changes. They rapidly and proportionally contract as arterial PO2 decrease, and they relax as arterial PO2 is re-established. The hypoxic pulmonary vasoconstriction (HPV) is intrinsic since it does not require neural or endocrine factors, as evidenced in isolated vessels. On the other hand, pulmonary arteries also respond to sustained hypoxia with structural and functional remodeling, involving growth of smooth muscle medial layer and later recruitment of adventitial fibroblasts, secreted mitogens from endothelium and changes in the response to vasoconstrictor and vasodilator stimuli. Hypoxic pulmonary arterial vasoconstriction and remodeling are relevant biological responses both under physiological and pathological conditions, to explain matching between ventilation and perfusion, fetal to neonatal transition of pulmonary circulation and pulmonary artery over-constriction and thickening in pulmonary hypertension. Store operated channels (SOC) and receptor operated channels (ROC) are plasma membrane cationic channels that mediate calcium influx in response to depletion of internal calcium stores or receptor activation, respectively. They are involved in both HPV and pathological remodeling since their pharmacological blockade or genetic suppression of several of the Stim, Orai, TRP, or ASIC proteins in SOC or ROC complexes attenuate the calcium increase, the tension development, the pulmonary artery smooth muscle proliferation, and pulmonary arterial hypertension. In this Mini Review, we discussed the evidence obtained in in vivo animal models, at the level of isolated organ or cells of pulmonary arteries, and we identified and discussed the questions for future research needed to validate these signaling complexes as targets against pulmonary hypertension.
Collapse
Affiliation(s)
- Roberto V Reyes
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Sebastián Castillo-Galán
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ismael Hernandez
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Emilio A Herrera
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Germán Ebensperger
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Aníbal J Llanos
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| |
Collapse
|
41
|
Kimura M, Nishi K, Higashikawa A, Ohyama S, Sakurai K, Tazaki M, Shibukawa Y. High pH-Sensitive Store-Operated Ca 2+ Entry Mediated by Ca 2+ Release-Activated Ca 2+ Channels in Rat Odontoblasts. Front Physiol 2018; 9:443. [PMID: 29765331 PMCID: PMC5938338 DOI: 10.3389/fphys.2018.00443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/10/2018] [Indexed: 11/13/2022] Open
Abstract
Odontoblasts play a crucial role in dentin formation and sensory transduction following the application of stimuli to the dentin surface. Various exogenous and endogenous stimuli elicit an increase in the intracellular free calcium concentration ([Ca2+]i) in odontoblasts, which is mediated by Ca2+ release from intracellular Ca2+ stores and/or Ca2+ influx from the extracellular medium. In a previous study, we demonstrated that the depletion of Ca2+ stores in odontoblasts activated store-operated Ca2+ entry (SOCE), a Ca2+ influx pathway. However, the precise biophysical and pharmacological properties of SOCE in odontoblasts have remained unclear. In the present study, we examined the functional expression and pharmacological properties of Ca2+ release-activated Ca2+ (CRAC) channels that mediate SOCE and evaluated the alkali sensitivity of SOCE in rat odontoblasts. In the absence of extracellular Ca2+, treatment with thapsigargin (TG), a sarco/endoplasmic reticulum Ca2+-ATPase inhibitor, induced an increase in [Ca2+]i. After [Ca2+]i returned to near-resting levels, the subsequent application of 2.5 mM extracellular Ca2+ resulted in an increase in [Ca2+]i which is a typical of SOCE activation. Additionally, application of 2-methylthioadenosine diphosphate trisodium salt (2-MeSADP), a P2Y1,12,13 receptor agonist, or carbachol (CCh), a muscarinic cholinergic receptor agonist, in the absence of extracellular Ca2+, induced a transient increase in [Ca2+]i. The subsequent addition of extracellular Ca2+ resulted in significantly higher [Ca2+]i in 2-MeSADP- or CCh-treated odontoblasts than in untreated cells. SOCE, that is activated by addition of extracellular Ca2+ in the TG pretreated odontoblasts was then suppressed by Synta66, BTP2, or lanthanum, which are CRAC channel inhibitors. Treatment with an alkaline solution enhanced SOCE, while treatment with HC030031, a TRPA1 channel antagonist, inhibited it. The amplitude of SOCE at pH 9 in the presence of HC030031 was higher than that at pH 7.4 in the absence of HC030031. These findings indicate that CRAC channel-mediated alkali-sensitive SOCE occurs in odontoblasts. SOCE is mediated by P2Y and muscarinic-cholinergic receptors, which are activated by endogenous ligands in odontoblasts.
Collapse
Affiliation(s)
- Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Koichi Nishi
- Department of Removable Prosthodontics and Gerodontology, Tokyo Dental College, Tokyo, Japan
| | | | - Sadao Ohyama
- Department of Physiology, Tokyo Dental College, Tokyo, Japan.,Department of Oral Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Kaoru Sakurai
- Department of Removable Prosthodontics and Gerodontology, Tokyo Dental College, Tokyo, Japan
| | - Masakazu Tazaki
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | | |
Collapse
|
42
|
Sabourin J, Boet A, Rucker-Martin C, Lambert M, Gomez AM, Benitah JP, Perros F, Humbert M, Antigny F. Ca 2+ handling remodeling and STIM1L/Orai1/TRPC1/TRPC4 upregulation in monocrotaline-induced right ventricular hypertrophy. J Mol Cell Cardiol 2018; 118:208-224. [PMID: 29634917 DOI: 10.1016/j.yjmcc.2018.04.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Right ventricular (RV) function is the most important prognostic factor for pulmonary arterial hypertension (PAH) patients. The progressive increase of pulmonary vascular resistance induces RV hypertrophy (RVH) and at term RV failure (RVF). However, the molecular mechanisms of RVH and RVF remain understudied. In this study, we gained insights into cytosolic Ca2+ signaling remodeling in ventricular cardiomyocytes during the pathogenesis of severe pulmonary hypertension (PH) induced in rats by monocrotaline (MCT) exposure, and we further identified molecular candidates responsible for this Ca2+ remodeling. METHODS AND RESULTS After PH induction, hypertrophied RV myocytes presented longer action potential duration, higher and faster [Ca2+]i transients and increased sarcoplasmic reticulum (SR) Ca2+ content, whereas no changes in these parameters were detected in left ventricular (LV) myocytes. These modifications were associated with increased P-Ser16-phospholamban pentamer expression without altering SERCA2a (Sarco/Endoplasmic Reticulum Ca2+-ATPase) pump abundance. Moreover, after PH induction, Ca2+ sparks frequency were higher in hypertrophied RV cells, while total RyR2 (Ryanodine Receptor) expression and phosphorylation were unaffected. Together with cellular hypertrophy, the T-tubules network was disorganized. Hypertrophied RV cardiomyocytes from MCT-exposed rats showed decreased expression of classical STIM1 (Stromal Interaction molecule) associated with increased expression of muscle-specific STIM1 Long isoform, glycosylated-Orai1 channel form, and TRPC1 and TRPC4 channels, which was correlated with an enhanced Ca2+-release-activated Ca2+ (CRAC)-like current. Pharmacological inhibition of TRPCs/Orai1 channels in hypertrophied RV cardiomyocytes normalized [Ca2+]i transients amplitude, the SR Ca2+ content and cell contractility to control levels. Finally, we showed that most of these changes did not appear in LV cardiomyocytes. CONCLUSIONS These new findings demonstrate RV-specific cellular Ca2+ cycling remodeling in PH rats with maladaptive RVH and that the STIM1L/Orai1/TRPC1/C4-dependent Ca2+ current participates in this Ca2+ remodeling in RVH secondary to PH.
Collapse
Affiliation(s)
- Jessica Sabourin
- Signalisation et Physiopathologie Cardiovasculaire, UMR-S 1180, Univ. Paris-Sud, INSERM, Université Paris-Saclay, Châtenay-Malabry 92296, France
| | - Angèle Boet
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France; Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France; Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Catherine Rucker-Martin
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France; Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France; Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Mélanie Lambert
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France; Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France; Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Ana-Maria Gomez
- Signalisation et Physiopathologie Cardiovasculaire, UMR-S 1180, Univ. Paris-Sud, INSERM, Université Paris-Saclay, Châtenay-Malabry 92296, France
| | - Jean-Pierre Benitah
- Signalisation et Physiopathologie Cardiovasculaire, UMR-S 1180, Univ. Paris-Sud, INSERM, Université Paris-Saclay, Châtenay-Malabry 92296, France
| | - Frédéric Perros
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France; Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France; Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Marc Humbert
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France; Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France; Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Fabrice Antigny
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France; Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France; Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France.
| |
Collapse
|
43
|
Extracellular ATP activates store-operated Ca 2+ entry in white adipocytes: functional evidence for STIM1 and ORAI1. Biochem J 2018; 475:691-704. [PMID: 29335300 PMCID: PMC5813502 DOI: 10.1042/bcj20170484] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 01/05/2018] [Accepted: 01/13/2018] [Indexed: 12/26/2022]
Abstract
In the present study, we have applied ratiometric measurements of intracellular Ca2+ concentrations ([Ca2+]i) to show that extracellularly applied ATP (adenosine triphosphate) (100 µM) stimulates store-operated Ca2+ entry (SOCE) in 3T3-L1 adipocytes. ATP produced a rapid increase in [Ca2+]i consisting of an initial transient elevation followed by a sustained elevated phase that could be observed only in the presence of extracellular Ca2+. Gene expression data and [Ca2+]i recordings with uridine-5′-triphosphate or with the phospholipase C (PLC) inhibitor U73122 demonstrated the involvement of purinergic P2Y2 receptors and the PLC/inositol trisphosphate pathway. The [Ca2+]i elevation produced by reintroduction of a Ca2+-containing intracellular solution to adipocytes exposed to ATP in the absence of Ca2+ was diminished by known SOCE antagonists. The chief molecular components of SOCE, the stromal interaction molecule 1 (STIM1) and the calcium release-activated calcium channel protein 1 (ORAI1), were detected at the mRNA and protein level. Moreover, SOCE was largely diminished in cells where STIM1 and/or ORAI1 had been silenced by small interfering (si)RNA. We conclude that extracellular ATP activates SOCE in white adipocytes, an effect predominantly mediated by STIM1 and ORAI1.
Collapse
|
44
|
Casciano JC, Bouchard MJ. Hepatitis B virus X protein modulates cytosolic Ca 2+ signaling in primary human hepatocytes. Virus Res 2018; 246:23-27. [PMID: 29307794 DOI: 10.1016/j.virusres.2018.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/22/2022]
Abstract
Worldwide, approximately 240 million people are chronically infected with the hepatitis B virus (HBV); chronic HBV infection is associated with the development of life-threatening liver diseases. The HBV HBx protein alters hepatocyte physiology to promote HBV replication. We previously reported that HBx modulates calcium signaling to stimulate HBV replication in human hepatoblastoma HepG2 cells and primary rat hepatocytes. Whether HBx modulates calcium signaling in a primary human hepatocyte, the natural site of an HBV infection, has not been determined. Here, we report the effect of HBx on calcium signaling in primary human hepatocytes and show that HBx modulates calcium signaling via enhanced calcium entry through store-operated calcium channels and elevated mitochondrial calcium, similar to HBx effects in HepG2 cells and primary rat hepatocytes. In addition to demonstrating that HBV and HBx affect calcium signaling in human hepatocytes, these studies also show that HBV and HBx regulation of calcium signaling is identical in primary human and rat hepatocytes, further validating the use of cultured primary rat hepatocytes for HBV studies.
Collapse
Affiliation(s)
- Jessica C Casciano
- Program in Molecular and Cellular Biology and Genetics, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michael J Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Hamilton CL, Kadeba PI, Vasauskas AA, Solodushko V, McClinton AK, Alexeyev M, Scammell JG, Cioffi DL. Protective role of FKBP51 in calcium entry-induced endothelial barrier disruption. Pulm Circ 2017; 8:2045893217749987. [PMID: 29261039 PMCID: PMC5798693 DOI: 10.1177/2045893217749987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pulmonary artery endothelial cells (PAECs) express a cation current, ISOC (store-operated calcium entry current), which when activated permits calcium entry leading to inter-endothelial cell gap formation. The large molecular weight immunophilin FKBP51 inhibits ISOC but not other calcium entry pathways in PAECs. However, it is unknown whether FKBP51-mediated inhibition of ISOC is sufficient to protect the endothelial barrier from calcium entry-induced disruption. The major objective of this study was to determine whether FKBP51-mediated inhibition of ISOC leads to decreased calcium entry-induced inter-endothelial gap formation and thus preservation of the endothelial barrier. Here, we measured the effects of thapsigargin-induced ISOC on the endothelial barrier in control and FKBP51 overexpressing PAECs. FKBP51 overexpression decreased actin stress fiber and inter-endothelial cell gap formation in addition to attenuating the decrease in resistance observed with control cells using electric cell-substrate impedance sensing. Finally, the thapsigargin-induced increase in dextran flux was abolished in FKBP51 overexpressing PAECs. We then measured endothelial permeability in perfused lungs of FKBP51 knockout (FKBP51–/–) mice and observed increased calcium entry-induced permeability compared to wild-type mice. To begin to dissect the mechanism underlying the FKBP51-mediated inhibition of ISOC, a second goal of this study was to determine the role of the microtubule network. We observed that FKBP51 overexpressing PAECs exhibited increased microtubule polymerization that is critical for inhibition of ISOC by FKBP51. Overall, we have identified FKBP51 as a novel regulator of endothelial barrier integrity, and these findings are significant as they reveal a protective mechanism for endothelium against calcium entry-induced disruption.
Collapse
Affiliation(s)
- Caleb L Hamilton
- 1 5557 Department of Biochemistry and Molecular Biology , University of South Alabama, Mobile, AL, USA.,2 Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Pierre I Kadeba
- 1 5557 Department of Biochemistry and Molecular Biology , University of South Alabama, Mobile, AL, USA.,2 Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Audrey A Vasauskas
- 3 376598 Department of Anatomical Sciences and Molecular Medicine , Alabama College of Osteopathic Medicine, Dothan, AL, USA
| | - Viktoriya Solodushko
- 1 5557 Department of Biochemistry and Molecular Biology , University of South Alabama, Mobile, AL, USA
| | - Anna K McClinton
- 2 Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,4 Department of Pharmacology, University of South Alabama, Mobile, AL, USA
| | - Mikhail Alexeyev
- 2 Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,5 Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA
| | - Jonathan G Scammell
- 6 Department of Comparative Medicine, 5557 University of South Alabama , Mobile, AL, USA
| | - Donna L Cioffi
- 1 5557 Department of Biochemistry and Molecular Biology , University of South Alabama, Mobile, AL, USA.,2 Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
46
|
Wei D, Mei Y, Xia J, Hu H. Orai1 and Orai3 Mediate Store-Operated Calcium Entry Contributing to Neuronal Excitability in Dorsal Root Ganglion Neurons. Front Cell Neurosci 2017; 11:400. [PMID: 29311831 PMCID: PMC5742109 DOI: 10.3389/fncel.2017.00400] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/30/2017] [Indexed: 02/05/2023] Open
Abstract
Store-operated calcium channels (SOCs) are highly calcium-selective channels that mediate calcium entry in various cell types. We have previously reported that intraplantar injection of YM-58483 (a SOC inhibitor) attenuates chronic pain. A previous study has reported that the function of SOCs in dorsal root ganglia (DRG) is enhanced after nerve injury, suggesting that SOCs may play a peripheral role in chronic pain. However, the expression, functional distribution and significance of the SOC family in DRG neurons remain elusive and the key components that mediate SOC entry (SOCE) are still controversial. Here, we demonstrated that the SOC family (STIM1, STIM2, Orai1, Orai2, and Orai3) was expressed in DRGs and STIM1 was mainly present in small- and medium-sized DRG neurons. Using confocal live cell imaging, Ca2+ imaging and electrophysiology techniques, we demonstrated that depletion of the endoplasmic reticulum Ca2+ stores induced STIM1 and STIM2 translocation, and that inhibition of STIM1 or blockage of Orai channels with pharmacological tools attenuated SOCE and SOC currents. Using the small inhibitory RNA knockdown approach, we identified STIM1, STIM2, Orai1, and Orai3 as the key components of SOCs mediating SOCE in DRG neurons. Importantly, activation of SOCs by thapsigargin induced plasma membrane depolarization and increased neuronal excitability, which were completely abolished by inhibition of SOCs or double knockdown of Orai1 and Orai3. Our findings suggest that SOCs exert an excitatory action in DRG neurons and provide a potential peripheral mechanism for modulation of pain hypersensitivity by SOC inhibition.
Collapse
Affiliation(s)
| | | | | | - Huijuan Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
47
|
Gazda K, Kuznicki J, Wegierski T. Knockdown of amyloid precursor protein increases calcium levels in the endoplasmic reticulum. Sci Rep 2017; 7:14512. [PMID: 29109429 PMCID: PMC5673940 DOI: 10.1038/s41598-017-15166-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022] Open
Abstract
Familial Alzheimer's disease (AD) is caused by mutations in the genes that encode amyloid precursor protein (APP) and presenilins. Disturbances in calcium homeostasis have been observed in various cellular and animal models of AD and are proposed to underlie the pathogenesis of the disease. Furthermore, wildtype presenilins were shown to regulate endoplasmic reticulum (ER) calcium homeostasis, although their precise mechanism of action remains controversial. To investigate whether APP also affects ER calcium levels, we used RNA interference to target the APP gene in cultured T84 cells in combination with two types of ER calcium sensors. Using a genetically encoded calcium indicator, GEM-CEPIA1er, we found that APP-deficient cells exhibited elevated resting calcium levels in the ER and prolonged emptying of ER calcium stores upon the cyclopiazonic acid-induced inhibition of sarco-endoplasmic reticulum calcium-ATPase. These effects could be ascribed to lower ER calcium leakage rates. Consistent with these results, translocation of the endogenous ER calcium sensor STIM1 to its target channel Orai1 was delayed following ER calcium store depletion. Our data suggest a physiological function of APP in the regulation of ER calcium levels.
Collapse
Affiliation(s)
- Kinga Gazda
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Jacek Kuznicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Tomasz Wegierski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland.
| |
Collapse
|
48
|
Lodola F, Laforenza U, Cattaneo F, Ruffinatti FA, Poletto V, Massa M, Tancredi R, Zuccolo E, Khdar DA, Riccardi A, Biggiogera M, Rosti V, Guerra G, Moccia F. VEGF-induced intracellular Ca 2+ oscillations are down-regulated and do not stimulate angiogenesis in breast cancer-derived endothelial colony forming cells. Oncotarget 2017; 8:95223-95246. [PMID: 29221123 PMCID: PMC5707017 DOI: 10.18632/oncotarget.20255] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023] Open
Abstract
Endothelial colony forming cells (ECFCs) represent a population of truly endothelial precursors that promote the angiogenic switch in solid tumors, such as breast cancer (BC). The intracellular Ca2+ toolkit, which drives the pro-angiogenic response to VEGF, is remodelled in tumor-associated ECFCs such that they are seemingly insensitive to this growth factor. This feature could underlie the relative failure of anti-VEGF therapies in cancer patients. Herein, we investigated whether and how VEGF uses Ca2+ signalling to control angiogenesis in BC-derived ECFCs (BC-ECFCs). Although VEGFR-2 was normally expressed, VEGF failed to induce proliferation and in vitro tubulogenesis in BC-ECFCs. Likewise, VEGF did not trigger robust Ca2+ oscillations in these cells. Similar to normal cells, VEGF-induced intracellular Ca2+ oscillations were triggered by inositol-1,4,5-trisphosphate-dependent Ca2+ release from the endoplasmic reticulum (ER) and maintained by store-operated Ca2+ entry (SOCE). However, InsP3-dependent Ca2+ release was significantly lower in BC-ECFCs due to the down-regulation of ER Ca2+ levels, while there was no remarkable difference in the amplitude, pharmacological profile and molecular composition of SOCE. Thus, the attenuation of the pro-angiogenic Ca2+ response to VEGF was seemingly due to the reduction in ER Ca2+ concentration, which prevents VEGF from triggering robust intracellular Ca2+ oscillations. However, the pharmacological inhibition of SOCE prevented BC-ECFC proliferation and in vitro tubulogenesis. These findings demonstrate for the first time that BC-ECFCs are insensitive to VEGF, which might explain at cellular and molecular levels the failure of anti-VEGF therapies in BC patients, and hint at SOCE as a novel molecular target for this disease.
Collapse
Affiliation(s)
- Francesco Lodola
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy.,Current address: Italian Institute of Technology, Center for Nano Science and Technology, Milano 20133, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | | | - Valentina Poletto
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Foundation IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Margherita Massa
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Richard Tancredi
- Medical Oncology Unit, Foundation IRCCS Salvatore Maugeri, Pavia 27100, Italy
| | - Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Dlzar Alì Khdar
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Alberto Riccardi
- Medical Oncology Unit, Foundation IRCCS Salvatore Maugeri, Pavia 27100, Italy.,Department of Internal Medicine, University of Pavia, Pavia 27100, Italy
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Vittorio Rosti
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Foundation IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso 86100, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| |
Collapse
|
49
|
Krutetskaya ZI, Milenina LS, Naumova AA, Butov SN, Antonov VG, Nozdrachev AD. The effect of chlorpromazine on intracellular Ca 2+ concentration in macrophages. DOKL BIOCHEM BIOPHYS 2017; 474:162-164. [PMID: 28726103 DOI: 10.1134/s1607672917030036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Indexed: 11/22/2022]
Abstract
Using Fura-2AM microfluorimetry, it was shown for the first time that neuroleptic chlorpromazine causes intracellular Ca2+ concentration increase in macrophages due to Ca2+ mobilization from intracellular Ca2+ stores and subsequent Ca2+ entry from the external medium. Chlorpromazine-induced Ca2+ entry is inhibited by La3+ and 2-aminoethoxydiphenyl borate and is associated with Ca2+ store depletion.
Collapse
Affiliation(s)
- Z I Krutetskaya
- St. Petersburg State University, St. Petersburg, 199034, Russia.
| | - L S Milenina
- St. Petersburg State University, St. Petersburg, 199034, Russia
| | - A A Naumova
- St. Petersburg State University, St. Petersburg, 199034, Russia
| | - S N Butov
- St. Petersburg State University, St. Petersburg, 199034, Russia
| | - V G Antonov
- St. Petersburg State University, St. Petersburg, 199034, Russia
| | - A D Nozdrachev
- St. Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
50
|
Transient receptor potential canonical type 3 channels: Interactions, role and relevance - A vascular focus. Pharmacol Ther 2017; 174:79-96. [DOI: 10.1016/j.pharmthera.2017.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|