1
|
Rossetti GMK, Dunster JL, Sohail A, Williams B, Cox KM, Rawlings S, Jewett E, Benford E, Lovegrove JA, Gibbins JM, Christakou A. Evidence for control of cerebral neurovascular function by circulating platelets in healthy older adults. J Physiol 2025; 603:3379-3404. [PMID: 40434152 DOI: 10.1113/jp288405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/10/2025] [Indexed: 05/29/2025] Open
Abstract
Platelets play a vital role in preventing haemorrhage through haemostasis, but complications arise when platelets become overly reactive, leading to pathophysiology such as atherothrombosis. Elevated haemostatic markers are linked to dementia and predict its onset in long-term studies. Despite epidemiological evidence, the mechanism linking haemostasis with early brain pathophysiology remains unclear. Here, we aimed to determine whether a mechanistic association exists between platelet function and cerebral neurovascular function in 52 healthy mid- to older-age adults. To do this, we combined, for the first time, magnetic resonance imaging of cerebral neurovascular function, peripheral vascular physiology and in vitro platelet assaying. We show an association between platelet reactivity and cerebral neurovascular function that is both independent of vascular reactivity and mechanistically specific: Distinct platelet signalling mechanisms (ADP, collagen-related peptide, thrombin receptor activator peptide 6) were associated with different physiological components of the haemodynamic response to neuronal (visual) stimulation (full-width half-maximum, time to peak, area under the curve), an association that was not mediated by peripheral vascular effects. This finding challenges the previous belief that systemic vascular health determines the vascular component of cerebral neurovascular function, highlighting a specific link between circulating platelets and the neurovascular unit. Because altered cerebral neurovascular function marks the initial stages of neurodegenerative pathophysiology, understanding this novel association is now imperative, with the potential to lead to a significant advancement in our comprehension of early dementia pathophysiology. KEY POINTS: Haemostasis (platelet function) has been linked to the early stages of dementia, but the precise mechanisms are not well understood. This study considers whether a causal mechanism exists through atherothrombotic effects on the vasculature which can in turn affect brain health, or through platelet-specific interactions with brain physiology. Here, we show that elevated platelet reactivity is associated with blunted (delayed, shorter and smaller) cerebral blood flow responses to neuronal activation in healthy middle-aged and older adults. However, the association between platelet reactivity and cerebral neurovascular function was not mediated by systemic vascular reactivity. This finding challenges the previous belief that systemic vascular health determines the vascular component of cerebral neurovascular function, highlighting a specific link between circulating platelets and the neurovascular unit in early dementia pathophysiology.
Collapse
Affiliation(s)
- Gabriella M K Rossetti
- Centre for Integrative Neuroscience and Neurodynamics (CINN), School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
- Institute of Sport, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| | - Joanne L Dunster
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, UK
| | - Aamir Sohail
- Centre for Integrative Neuroscience and Neurodynamics (CINN), School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
- Centre for Human Brain Health (CHBH), School of Psychology, University of Birmingham, Birmingham, UK
| | - Brendan Williams
- Centre for Integrative Neuroscience and Neurodynamics (CINN), School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Kiera M Cox
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, UK
| | - Suzannah Rawlings
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, UK
| | - Elysia Jewett
- Centre for Integrative Neuroscience and Neurodynamics (CINN), School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, UK
| | - Eleanor Benford
- Centre for Integrative Neuroscience and Neurodynamics (CINN), School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, UK
| | - Julie A Lovegrove
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, UK
- Institute of Food and Nutritional Health (IFNH), Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, UK
| | - Anastasia Christakou
- Centre for Integrative Neuroscience and Neurodynamics (CINN), School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| |
Collapse
|
2
|
Li B, Elsten-Brown J, Li M, Zhu E, Li Z, Chen Y, Kang E, Ma F, Chiang J, Li YR, Zhu Y, Huang J, Fung A, Scarborough Q, Cadd R, Zhou JJ, Chin AI, Pellegrini M, Yang L. Serotonin transporter inhibits antitumor immunity through regulating the intratumoral serotonin axis. Cell 2025:S0092-8674(25)00502-1. [PMID: 40403728 DOI: 10.1016/j.cell.2025.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 01/10/2025] [Accepted: 04/25/2025] [Indexed: 05/24/2025]
Abstract
Identifying additional immune checkpoints hindering antitumor T cell responses is key to the development of next-generation cancer immunotherapies. Here, we report the induction of serotonin transporter (SERT), a regulator of serotonin levels and physiological functions in the brain and peripheral tissues, in tumor-infiltrating CD8 T cells. Inhibition of SERT using selective serotonin reuptake inhibitors (SSRIs), the most widely prescribed antidepressants, significantly suppressed tumor growth and enhanced T cell antitumor immunity in various mouse syngeneic and human xenograft tumor models. Importantly, SSRI treatment exhibited significant therapeutic synergy with programmed cell death protein 1 (PD-1) blockade, and clinical data correlation studies negatively associated intratumoral SERT expression with patient survival in a range of cancers. Mechanistically, SERT functions as a negative-feedback regulator inhibiting CD8 T cell reactivities by depleting intratumoral T cell-autocrine serotonin. These findings highlight the significance of the intratumoral serotonin axis and identify SERT as an immune checkpoint, positioning SSRIs as promising candidates for cancer immunotherapy.
Collapse
Affiliation(s)
- Bo Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - James Elsten-Brown
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Miao Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Enbo Zhu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhe Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elliot Kang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer Chiang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jie Huang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Audrey Fung
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Quentin Scarborough
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Robin Cadd
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jin J Zhou
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arnold I Chin
- Department of Urology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences-The Collaboratory, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Goodman-Luskin Microbiome Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
Javelle F, Dao G, Ringleb M, Pulverer W, Bloch W. Exploring the association between serotonin transporter promoter region methylation levels and depressive symptoms: a systematic review and multi-level meta-analysis. Transl Psychiatry 2025; 15:161. [PMID: 40319044 PMCID: PMC12049537 DOI: 10.1038/s41398-025-03356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 05/07/2025] Open
Abstract
Depressive disorders result from complex interactions among genetic, epigenetic, and environmental factors. DNA methylation, a key epigenetic mechanism, is crucial in understanding depressive symptoms development. The serotonin transporter gene (5-HTT) and its polymorphisms, like 5-HTTLPR, have been extensively studied in relation to depression, yet conflicting findings regarding the association between 5-HTT promoter methylation and depressive symptoms persist, largely due to methodological differences. Thus, this systematic review and meta-analysis aims to assess (1) 5-HTT promoter methylation levels between depressed and non-depressed conditions and (2) the association between 5-HTT methylation and depressive symptoms severity. We searched PubMed, Google Scholar, and Web of Science from inception to January 15th, 2025 (PROSPERO: CRD42023355414) and performed two independent multi-level meta-analyses to answer our aims. Twenty-four trials were included in the systematic review. All reported effects carried potential for bias. The meta-analysis for depression occurrence (12 studies - 2028 subjects - 127 effects) indicated no significant effect (Hedges'g = 0.06) with moderate within- and low between-study heterogeneity. The depression severity analysis (14 studies - 2296 subjects - 116 effects) revealed a null effect size (Fisher's Z = 0.05), with no within- and moderate between-study heterogeneity. Asymmetry was detected for both meta-analyses. Moderator analyses demonstrated no significant effects of depression severity, methylation techniques, single-CpG sites, cell types assessed, age, and female percentage. This comprehensive review provides insights into the intricate interplay between 5-HTT promoter methylation and depressive symptoms. Furthermore, it offers well-considered recommendations for future research endeavors and delineates guidelines for reporting methylation research.
Collapse
Affiliation(s)
- F Javelle
- NeuroPsychoImmunology research unit, Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany.
| | - G Dao
- NeuroPsychoImmunology research unit, Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
- University of Cologne, Cologne, Germany
| | - M Ringleb
- NeuroPsychoImmunology research unit, Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
- Department of Movement Science, University of Münster, Münster, Germany
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
| | - W Pulverer
- Austrian Institute of Technology, Vienna, Austria
| | - W Bloch
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
4
|
Manti F, Di Carlo E, Santagata S, Giovanniello T, Angeloni A, Pisani F, Pascucci T, Nardecchia F, Carducci C, Leuzzi V. The clinical value of peripheral biogenic amine metabolites in early-treated phenylketonuria. Mol Genet Metab 2025; 145:109088. [PMID: 40121795 DOI: 10.1016/j.ymgme.2025.109088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/14/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Brain monoamine depletion is a well-established biochemical consequence of phenylketonuria (PKU). Similar alterations are expected in the peripheral biogenic amines (PBA), which share the same metabolic pathway with the brain. The present cross-sectional study explored the potential prognostic value of PBA by examining their relationship with blood Phe and clinical outcomes in early-treated adult PKU patients (ETPKU). METHOD 53 ETPKU (age 27.14 ± 8.22 years; 35 female) and 60 age-matched control subjects (age 43 ± 13 years; 43 female) were enrolled in the study. A UPLC-ESI-MS/MS-based method was developed to assess 5-hydroxytryptophan (5-HTP), serotonin (5-HT), 5-hydroxyhyndolacetic acid (5-HIAA), and 3-O-methyldopa (3-OMD) in different blood-derived matrices. Life-long Index of Dietary Control (IDC), concurrent Phe, and Tyr were other parameters included in the analysis. Clinical outcome measures included IQ, executive functions (BRIEF), and psychiatric morbidity (CBCL/ASR and DSM-5-TR). RESULTS 5-HTP, 5-HIAA, and 3-OMD were significantly lower in PKU patients than in controls. 5-HIAA and 3-OMD were negatively correlated with concurrent Phe levels. Concerning outcome measures, IDC influenced IQ and BRIEF-Shift subscale, 5-HIAA BRIEF-Emotional Control, 3-OMD BRIEF-Initiate subscale, and Tyr BRIEF-Control subscale. In contrast, concurrent plasma Phe did not affect any outcome measures. CONCLUSION While confirming the negative influence of Phe on PBA in adult ETPKU, mimicking what happens in the brain, we also found an effect of PBA depletion on clinical outcome measures independent of Phe level. This suggests that PBA could serve as new candidate biomarkers for treatment monitoring in adult ETPKU patients.
Collapse
Affiliation(s)
- Filippo Manti
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, via dei Sabelli 108, 00185 Rome, Italy
| | - Emanuele Di Carlo
- Department of Experimental Medicine, Sapienza University of Rome, via del Policlinico 155, 00161 Rome, Italy
| | - Silvia Santagata
- Clinical Pathology Unit, AOU Policlinico Umberto I, via del Policlinico 155, 00161 Rome, Italy
| | - Teresa Giovanniello
- Clinical Pathology Unit, AOU Policlinico Umberto I, via del Policlinico 155, 00161 Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, via del Policlinico 155, 00161 Rome, Italy; Clinical Pathology Unit, AOU Policlinico Umberto I, via del Policlinico 155, 00161 Rome, Italy
| | - Francesco Pisani
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, via dei Sabelli 108, 00185 Rome, Italy
| | - Tiziana Pascucci
- Department of Psychology, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy
| | - Francesca Nardecchia
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, via dei Sabelli 108, 00185 Rome, Italy
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza University of Rome, via del Policlinico 155, 00161 Rome, Italy; Clinical Pathology Unit, AOU Policlinico Umberto I, via del Policlinico 155, 00161 Rome, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, via dei Sabelli 108, 00185 Rome, Italy
| |
Collapse
|
5
|
Aloisi AM, Casini I. Fibromyalgia: Chronic Pain Due to a Blood Dysfunction? Int J Mol Sci 2025; 26:4153. [PMID: 40362392 PMCID: PMC12071621 DOI: 10.3390/ijms26094153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Fibromyalgia (FM) is a common chronic disorder with chronic pain. FM generally affects all ages and occurs more commonly in women. The cause of FM remains undefined, but a number of factors suggest the cardiovascular system and the blood in particular as contributors to its occurrence and maintenance. Hemograms and other blood indexes often show high percentages of values at the 'normal', low, or high limits and several values outside of the 'normal' ranges. On the other hand, vessels regulate blood arrival to tissues depending on many internal and external factors. Both aspects can interfere with tissue oxygenation and then with the numerous consequences induced by hypoxia. In this narrative review, efforts were made to highlight factors that are potentially able to affect oxygen arrival in cells, as well as other factors related to blood elements that can play a role in the chronic pain experienced by FM patients. Data strongly indicate that most of the symptoms commonly present in FM patients can find their physio-pathological basis in the blood, suggesting blood-related interventions in these patients.
Collapse
Affiliation(s)
- Anna Maria Aloisi
- Stress and Pain Neurophysiology Laboratory, Department of Medicine, Surgery and Neuroscience University of Siena, 53100 Siena, Italy;
| | | |
Collapse
|
6
|
Bode A, Kowal M, Cannas Aghedu F, Kavanagh PS. SSRI use is not associated with the intensity of romantic love, obsessive thinking about a loved one, commitment, or sexual frequency in a sample of young adults experiencing romantic love. J Affect Disord 2025; 375:472-477. [PMID: 39848471 DOI: 10.1016/j.jad.2025.01.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/28/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
For >15 years, researchers have speculated that selective serotonin reuptake inhibitor (SSRI) use is associated with negative romantic love outcomes. No one has empirically investigated this, however. Drawing on 810 participants from the Romantic Love Survey 2022, we used binary logistic regression to identify differences between young adults experiencing romantic love who were and were not taking SSRIs. Predictor variables were biological sex, mental health problems, intensity of romantic love, obsessive thinking about a loved one, commitment, and frequency of sex. Only biological sex and mental health problems were associated with SSRI use. None of our romantic love variables were associated with SSRI use. This is the first evidence to demonstrate that SSRI use is not associated with some features of romantic love in a sample of young adults experiencing romantic love. The findings have implications for clinical practice and can be used to allay some concerns among individuals considering commencing SSRIs for common mental health problems.
Collapse
Affiliation(s)
- Adam Bode
- School of Archaeology and Anthropology, The Australian National University, Canberra, ACT, Australia.
| | - Marta Kowal
- IDN Being Human Lab - Institute of Psychology, University of Wrocław, Wrocław, Poland
| | - Fabio Cannas Aghedu
- Emotions, Neurocognition and Therapeutic Behavioral Approaches (ENACT) Team, University of Nîmes, France
| | - Phillip S Kavanagh
- Discipline of Psychology, Faculty of Health, University of Canberra, Bruce, ACT, Australia; Justice and Society, University of South Australia, Magill, SA, Australia
| |
Collapse
|
7
|
Low ZXB, Yong SJ, Alrasheed HA, Al-Subaie MF, Al Kaabi NA, Alfaresi M, Albayat H, Alotaibi J, Al Bshabshe A, Alwashmi ASS, Sabour AA, Alshiekheid MA, Almansour ZH, Alharthi H, Al Ali HA, Almoumen AA, Alqasimi NA, AlSaihati H, Rodriguez-Morales AJ, Rabaan AA. Serotonergic psychedelics as potential therapeutics for post-COVID-19 syndrome (or Long COVID): A comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111279. [PMID: 39909170 DOI: 10.1016/j.pnpbp.2025.111279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
RATIONALE In our ongoing battle against the coronavirus 2019 (COVID-19) pandemic, a major challenge is the enduring symptoms that continue after acute infection. Also known as Long COVID, post-COVID-19 syndrome (PCS) often comes with debilitating symptoms like fatigue, disordered sleep, olfactory dysfunction, and cognitive issues ("brain fog"). Currently, there are no approved treatments for PCS. Recent research has uncovered that the severity of PCS is inversely linked to circulating serotonin levels, highlighting the potential of serotonin-modulating therapeutics for PCS. Therefore, we propose that serotonergic psychedelics, acting mainly via the 5-HT2A serotonin receptor, hold promise for treating PCS. OBJECTIVES Our review aims to elucidate potential mechanisms by which serotonergic psychedelics may alleviate the symptoms of PCS. RESULTS Potential mechanisms through which serotonergic psychedelics may alleviate PCS symptoms are discussed, with emphasis on their effects on inflammation, neuroplasticity, and gastrointestinal function. Additionally, this review explores the potential of serotonergic psychedelics in mitigating endothelial dysfunction, a pivotal aspect of PCS pathophysiology implicated in organ dysfunction. This review also examines the potential role of serotonergic psychedelics in alleviating specific PCS symptoms, which include olfactory dysfunction, cognitive impairment, sleep disturbances, and mental health challenges. CONCLUSIONS Emerging evidence suggests that serotonergic psychedelics may alleviate PCS symptoms. However, further high-quality research is needed to thoroughly assess their safety and efficacy in treating patients with PCS.
Collapse
Affiliation(s)
- Zhen Xuen Brandon Low
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Shin Jie Yong
- School of Medical and Life Sciences, Sunway University, Selangor, Malaysia.
| | - Hayam A Alrasheed
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Maha F Al-Subaie
- Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Nawal A Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates; Sheikh Khalifa Medical City, Abu Dhabi Health Services Company, Abu Dhabi, United Arab Emirates
| | - Mubarak Alfaresi
- Department of Microbiology, National Reference Laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh, Saudi Arabia
| | - Jawaher Alotaibi
- Infectious Diseases Unit, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ali Al Bshabshe
- Adult Critical Care Department of Medicine, Division of Adult Critical Care, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amal A Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha A Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zainab H Almansour
- Biological Science Department, College of Science, King Faisal University, Hofuf, Saudi Arabia
| | - Huda Alharthi
- Clinical Pharmacist, Pharmaceutical Care Department, King Faisal Medical Complex, Taif Health Cluster, Ministry of Health, Taif, Saudi Arabia
| | - Hani A Al Ali
- Pediatrics Department, Maternity & Children Hospital, Dammam, Saudi Arabia
| | - Adel A Almoumen
- Pediatrics Department, Maternity & Children Hospital, Dammam, Saudi Arabia
| | - Nabil A Alqasimi
- Pediatrics Department, Maternity & Children Hospital, Dammam, Saudi Arabia
| | - Hajir AlSaihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Alfonso J Rodriguez-Morales
- Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, Peru; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Ali A Rabaan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan.
| |
Collapse
|
8
|
Brown CR, Foster JD. Modulation of autism-associated serotonin transporters by palmitoylation: Insights into the molecular pathogenesis and targeted therapies for autism spectrum disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642908. [PMID: 40161745 PMCID: PMC11952500 DOI: 10.1101/2025.03.12.642908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Autism spectrum disorder (ASD) is a developmental disorder of the nervous system characterized by a deficiency in interpersonal communication skills, a pathologic tendency for repetitive behaviors, and highly restrictive interests. The spectrum is a gradient-based construct used to categorize the widely varying degrees of ASD phenotypes, and has been linked to a genetic etiology in 25% of cases. Prior studies have revealed that 30% of ASD patients exhibit hyperserotonemia, or elevated whole blood serotonin, implicating the serotonergic system in the pathogenesis of ASD. Likewise, escitalopram, a selective-serotonin reuptake inhibitor (SSRI), has been demonstrated to improve aberrant behavior and irritability in ASD patients, potentially by modulating abnormal brain activation. Prior studies have uncovered proband patients with rare mutations in the human serotonin transporter (hSERT) that manifest enhanced surface expression and transport capacity, suggesting that abnormal enhancement of hSERT function may be involved in the pathogenesis of ASD. Methods HEK-293 cells stably expressing WT, C109A, I425L, F465L, L550V, or K605N hSERT were subject to analysis for palmitoylation via Acyl-Biotin Exchange followed with hSERT immunoblotting. F465L functional enhancement was confirmed by surface analysis via biotinylation and saturation analysis via 5HT transport. F465L palmitoylation, surface expression and transport capacity were then assessed following treatment with 2-bromopalmitate or escitalopram. Results Here, we reveal that palmitoylation is enhanced in the ASD hSERT F465L and L550V coding variants, and confirm prior reports of enhanced kinetic activity and surface expression of F465L. Subsequently, treatment of F465L with the irreversible palmitoyl acyl-transferase inhibitor, 2-bromopalmitate (2BP), or escitalopram, rectified enhanced F465L palmitoylation, surface expression, and transport capacity to basal WT levels. Limitations Tests assessing L550V for surface expression, transport capacity, and reactivity to inhibition of palmitoylation was not assessed. In addition, further characterization is necessary for internalization rates, degradative mechanisms, the impact of cysteine-mediated substitutions, and other SSRIs on these processes. Conclusions Overall, our results implicate disordered hSERT palmitoylation in the pathogenesis of serotonergic ASD subtypes, with basal recovery of these processes following escitalopram providing insight into its molecular utility as an ASD therapeutic.
Collapse
Affiliation(s)
- Christopher R. Brown
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037
| | - James D. Foster
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037
| |
Collapse
|
9
|
Chavan SG, Rathod PR, Koyappayil A, Hwang S, Lee MH. Recent advances of electrochemical and optical point-of-care biosensors for detecting neurotransmitter serotonin biomarkers. Biosens Bioelectron 2025; 267:116743. [PMID: 39270361 DOI: 10.1016/j.bios.2024.116743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Since its discovery in 1984, the monoamine serotonin (5-HT) has been recognized for its critical role as a neuromodulator in both the central and peripheral nervous systems. Recent research reveals that serotonin also significantly influences various neuronal activities. Historically, it was believed that peripheral serotonin, produced by tryptophan hydroxylase in intestinal cells, functioned primarily as a hormone. However, new insights have expanded its known roles, necessitating advanced detection methods. Biosensors have emerged as indispensable tools in biomedical diagnostics, enabling the rapid and minimally invasive detection of target analytes with high spatial and temporal resolution. This review summarizes the progress made in the past decade in developing optical and electrochemical biosensors for serotonin detection. We evaluate various sensing strategies that optimize performance in terms of detection limits, sensitivity, and specificity. The study also explores recent innovations in biosensing technologies utilizing surface-modified electrodes with nanomaterials, including gold, graphite, carbon nanotubes, and metal oxide particles. Applications range from in vivo studies to chemical imaging and diagnostics, highlighting future prospects in the field.
Collapse
Affiliation(s)
- Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Pooja Ramrao Rathod
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Seowoo Hwang
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea.
| |
Collapse
|
10
|
Huang YY, Ye N, Peng DW, Li GY, Zhang XS. Peripheral platelet count is a diagnostic marker for predicting the risk of rapid ejaculation: findings from a pilot study in rats. Asian J Androl 2025; 27:129-134. [PMID: 39091143 PMCID: PMC11784955 DOI: 10.4103/aja202447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/19/2024] [Indexed: 08/04/2024] Open
Abstract
ABSTRACT Parameters of peripheral blood cell have been shown as the potential predictors of erectile dysfunction (ED). To investigate the clinical significance of hematological parameters for predicting the risk of rapid ejaculation, we established a rat copulatory model on the basis of ejaculation distribution theory. Blood samples from different ejaculatory groups were collected for peripheral blood cell counts and serum serotonin (5-HT) tests. Meanwhile, the relationship between hematological parameters and ejaculatory behaviors was assessed. Final analysis included 11 rapid ejaculators, 10 normal ejaculators, and 10 sluggish ejaculators whose complete data were available. The platelet (PLT) count in rapid ejaculators was significantly lower than that in normal and sluggish ejaculators, whereas the platelet distribution width (PDW) and mean platelet volume (MPV) were significantly greater in rapid ejaculators. Multivariate logistic regression analysis and receiver operating characteristic (ROC) curve analysis showed that the PLT was an independent protective factor for rapid ejaculation. Meanwhile, rapid ejaculators were found to have the lowest serum 5-HT compared to normal and sluggish ejaculators ( P < 0.001). Furthermore, there was a positive correlation between the PLT and serum 5-HT ( r = 0.662, P < 0.001), indicating that the PLT could indirectly reflect the serum 5-HT concentration. In addition, we assessed the association between the PLT and ejaculatory parameters. There was a negative correlation between ejaculation frequency (EF) and the PLT ( r = -0.595, P < 0.001), whereas there was a positive correlation between ejaculation latency (EL) and the PLT ( r = 0.740, P < 0.001). This study indicated that the PLT might be a useful and convenient diagnostic marker for predicting the risk of rapid ejaculation.
Collapse
Affiliation(s)
- Yuan-Yuan Huang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230011, China
- Department of Urology, Anhui Public Health Clinical Center, Hefei 230011, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230031, China
| | - Nan Ye
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230011, China
- Department of Urology, Anhui Public Health Clinical Center, Hefei 230011, China
| | - Dang-Wei Peng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230011, China
| | - Guang-Yuan Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230011, China
- Department of Urology, Anhui Public Health Clinical Center, Hefei 230011, China
| | - Xian-Sheng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230011, China
| |
Collapse
|
11
|
Bouhaddou N, Mabrouk M, Atifi F, Bouyahya A, Zaid Y. The link between BDNF and platelets in neurological disorders. Heliyon 2024; 10:e39278. [PMID: 39568824 PMCID: PMC11577193 DOI: 10.1016/j.heliyon.2024.e39278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Platelets are considered one of the most important reservoirs not only of growth factors, but also of neurotrophic factors that could contribute to the repair of vascular lesions and the prevention of neurological deterioration. Among these factors, Brain-Derived Neurotrophic Factor (BDNF) - a protein belonging to the neurotrophin family - is widely expressed both in the hippocampus and in platelets. Platelets constitute an important reservoir of BDNF; however, little is known about the factors modulating its release into the circulation and whether anti-platelet drugs affect this secretion. In this review, we have discussed the link between BDNF and platelets and their role in neurological disorders.
Collapse
Affiliation(s)
- Nezha Bouhaddou
- Physiology and Physiopathology Team, Genomics of Human Pathologies Research Center, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Meryem Mabrouk
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Farah Atifi
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Younes Zaid
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- Immunology and Biodiversity Laboratory, Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| |
Collapse
|
12
|
Kilic F. The Coordinated Changes in Platelet Glycan Patterns with Blood Serotonin and Exosomes. Int J Mol Sci 2024; 25:11940. [PMID: 39596010 PMCID: PMC11593536 DOI: 10.3390/ijms252211940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The structures of glycans, specifically their terminal positions, play an important role as ligands for receptors in regulating the adhesion ability of platelets. Recent advances in our understanding of free/unbound serotonin (5-HT) in blood plasma at supraphysiological levels implicate it as one of the most profound influencers in remodeling the platelet's surface N-glycans. Proteomic analysis of the membrane vesicles identified enzymes, specifically glycosyltransferases, only on the surface of the platelets isolated from the supraphysiological level of 5-HT-containing blood plasma. However, these enzymes can only be effective on the cell surface under certain biological conditions, such as the level of their substrates, temperature, and pH of the environment. We hypothesize that exosomes released from various cells coordinate the required criteria for the enzymatic reaction on the platelet surface. The elevated plasma 5-HT level also accelerates the release of exosomes from various cells, as reported. This review summarizes the findings from a wide range of literature and proposes mechanisms to coordinate the exosomes and plasma 5-HT in remodeling the structures of N-glycans to make platelets more prone to aggregation.
Collapse
Affiliation(s)
- Fusun Kilic
- Retired Professor of Biochemistry and Molecular Cellular Biology
| |
Collapse
|
13
|
Madsen CA, Navarro ML, Elfving B, Kessing LV, Castrén E, Mikkelsen JD, Knudsen GM. The effect of antidepressant treatment on blood BDNF levels in depressed patients: A review and methodological recommendations for assessment of BDNF in blood. Eur Neuropsychopharmacol 2024; 87:35-55. [PMID: 39079257 DOI: 10.1016/j.euroneuro.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 09/11/2024]
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder and a leading cause of disability worldwide. Brain-derived neurotrophic factor (BDNF), a signaling protein responsible for promoting neuroplasticity, is highly expressed in the central nervous system but can also be found in the blood. Since impaired brain plasticity is considered a cornerstone in the pathophysiology of MDD, measurement of BDNF in blood has been proposed as a potential biomarker in MDD. The aim of our study is to systematically review the literature for the effects of antidepressant treatments on blood BDNF levels in MDD and the suitability of blood BDNF as a biomarker for depression severity and antidepressant response. We searched Pubmed® and Cochrane library up to March 2024 in a systematic manner using Medical Subject Headings (MeSH). The search resulted in a total of 42 papers, of which 30 were included in this systematic review. Generally, we found that patients with untreated MDD have a lower blood BDNF level than healthy controls. Antidepressant treatments increase blood BDNF levels, and more evidently after pharmacological than non-pharmacological treatment. Neither baseline nor change in the blood BDNF level correlates with depression severity or treatment outcome, which undermines its use as a biomarker in MDD. Our review also highlights the importance of considering factors influencing the accuracy and reproducibility of BDNF measurements. We summarize considerations to help obtain more robust blood BDNF values and compile a list of recommendations to help streamline assessment of blood BDNF levels in future studies.
Collapse
Affiliation(s)
- Clara A Madsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Miriam L Navarro
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Lars V Kessing
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Psychiatric Centre Copenhagen, Mental Health Services Capital Region, Copenhagen, Denmark
| | - Eero Castrén
- Neuroscience Center / HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jens D Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Moussallem N, Haddad GC, Sbeih S, Karam K, Fiani E. Selective Serotonin Reuptake Inhibitors and Solitary Rectal Ulcer Syndrome: A Bloody Relationship. Eur J Case Rep Intern Med 2024; 11:004826. [PMID: 39372155 PMCID: PMC11451848 DOI: 10.12890/2024_004826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction Solitary rectal ulcer syndrome (SURS) is a poorly understood and uncommon benign disorder of the lower gastrointestinal tract. It presents with various symptoms, often misinterpreted as inflammatory bowel disease. To date, there is no association between the use of selective serotonin reuptake inhibitors (SSRIs) and SURS. Case description A 29-year-old male on paroxetine for six months and with a non-contributory surgical history presented to the clinic due to three months of haematochezia, abdominal pain and mucoid discharge. Physical examination and a review of systems were unremarkable; a colonoscopy demonstrated a suspicious ulcerated lesion in the rectum, which was identified as SURS on biopsy. The patient was advised lifestyle and dietary modifications. In addition, paroxetine was discontinued, and patient was switched to venlafaxine, a serotonin-norepinephrine reuptake inhibitor. Subsequently, the patient's symptoms resolved gradually, and he did not report any signs of recurrence on follow-up. Conclusion Literature confirms that SSRIs can increase the occurrence of GI ulceration yet focuses specifically on upper gastrointestinal bleeding rather than rectal bleeding. This finding raises the need for further research. LEARNING POINTS SURS is often underdiagnosed or misdiagnosed as inflammatory bowel disease.The pathophysiology and aetiology behind SURS remain obscure.This case points to a potential correlation between SSRIs use and SURS development.
Collapse
Affiliation(s)
- Nicolas Moussallem
- Faculty of Medicine and Medical Sciences, University of Balamand, Beirut, Lebanon
| | | | - Sergio Sbeih
- Faculty of Medicine and Medical Sciences, University of Balamand, Beirut, Lebanon
| | - Karam Karam
- Department of Gastroenterology, University of Balamand, Beirut, Lebanon
| | - Elias Fiani
- Department of Gastroenterology, University of Balamand, Beirut, Lebanon
| |
Collapse
|
15
|
Zou Z, Fan W, Liu H, Liu Q, He H, Huang F. The roles of 5-HT in orofacial pain. Oral Dis 2024; 30:3838-3849. [PMID: 38622872 DOI: 10.1111/odi.14960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/10/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVES Acute and chronic orofacial pain are very common and remain a vexing health problem that has a negative effect on the quality of life. Serotonin (5-HydroxyTryptamine, 5-HT) is a kind of monoamine neurotransmitter that is involved in many physiological and pathological processes. However, its role in orofacial pain remains inconclusive. Therefore, this review aims to summarize the recent advances in understanding the effect exerted by 5-HT on the modulation of orofacial pain. SUBJECTS AND METHODS An extensive search was conducted on PubMed and Web of Science for pertinent studies focusing on the effects of 5-HT on the modulation of orofacial pain. RESULTS In this review, we concisely review how 5-HT mediates orofacial pain, how 5-HT is regulated and how we can translate these findings into clinical applications for the prevention and/or treatment of orofacial pain. CONCLUSIONS 5-HT plays a key role in the modulation of orofacial pain, implying that 5-HT modulators may serve as effective treatment for orofacial pain. However, further research on the precise mechanisms underlying the modulation of orofacial pain is still warranted.
Collapse
Affiliation(s)
- Zhishan Zou
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Haotian Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qing Liu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Hongwen He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Jiang L, Han D, Hao Y, Song Z, Sun Z, Dai Z. Linking serotonin homeostasis to gut function: Nutrition, gut microbiota and beyond. Crit Rev Food Sci Nutr 2024; 64:7291-7310. [PMID: 36861222 DOI: 10.1080/10408398.2023.2183935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Serotonin (5-HT) produced by enterochromaffin (EC) cells in the digestive tract is crucial for maintaining gut function and homeostasis. Nutritional and non-nutritional stimuli in the gut lumen can modulate the ability of EC cells to produce 5-HT in a temporal- and spatial-specific manner that toning gut physiology and immune response. Of particular interest, the interactions between dietary factors and the gut microbiota exert distinct impacts on gut 5-HT homeostasis and signaling in metabolism and the gut immune response. However, the underlying mechanisms need to be unraveled. This review aims to summarize and discuss the importance of gut 5-HT homeostasis and its regulation in maintaining gut metabolism and immune function in health and disease with special emphasis on different types of nutrients, dietary supplements, processing, and gut microbiota. Cutting-edge discoveries in this area will provide the basis for the development of new nutritional and pharmaceutical strategies for the prevention and treatment of serotonin homeostasis-related gut and systematic disorders and diseases.
Collapse
Affiliation(s)
- Lili Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Youling Hao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhuan Song
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhiyuan Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
17
|
Chen L, Huang S, Wu X, He W, Song M. Serotonin signalling in cancer: Emerging mechanisms and therapeutic opportunities. Clin Transl Med 2024; 14:e1750. [PMID: 38943041 PMCID: PMC11213692 DOI: 10.1002/ctm2.1750] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine) is a multifunctional bioamine serving as a neurotransmitter, peripheral hormone and mitogen in the vertebrate system. It has pleiotropic activities in central nervous system and gastrointestinal function via an orchestrated action of serotonergic elements, particularly serotonin receptor-mediated signalling cascades. The mitogenic properties of serotonin have garnered recognition for years and have been exploited for repurposing serotonergic-targeted drugs in cancer therapy. However, emerging conflicting findings necessitate a more comprehensive elucidation of serotonin's role in cancer pathogenesis. MAIN BODY AND CONCLUSION Here, we provide an overview of the biosynthesis, metabolism and action modes of serotonin. We summarise our current knowledge regarding the effects of the peripheral serotonergic system on tumourigenesis, with a specific emphasis on its immunomodulatory activities in human cancers. We also discuss the dual roles of serotonin in tumour pathogenesis and elucidate the potential of serotonergic drugs, some of which display favourable safety profiles and impressive efficacy in clinical trials, as a promising avenue in cancer treatment. KEY POINTS Primary synthesis and metabolic routes of peripheral 5-hydroxytryptamine in the gastrointestinal tract. Advanced research has established a strong association between the serotonergic components and carcinogenic mechanisms. The interplay between serotonergic signalling and the immune system within the tumour microenvironment orchestrates antitumour immune responses. Serotonergic-targeted drugs offer valuable clinical options for cancer therapy.
Collapse
Affiliation(s)
- Lulu Chen
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| | - Shuting Huang
- School of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| | - Xiaoxue Wu
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| | - Weiling He
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
- Department of Gastrointestinal SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenChina
| | - Mei Song
- Institute of Precision MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
18
|
Esposito D, Cruciani G, Zaccaro L, Di Carlo E, Spitoni GF, Manti F, Carducci C, Fiori E, Leuzzi V, Pascucci T. A Systematic Review on Autism and Hyperserotonemia: State-of-the-Art, Limitations, and Future Directions. Brain Sci 2024; 14:481. [PMID: 38790459 PMCID: PMC11119126 DOI: 10.3390/brainsci14050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Hyperserotonemia is one of the most studied endophenotypes in autism spectrum disorder (ASD), but there are still no unequivocal results about its causes or biological and behavioral outcomes. This systematic review summarizes the studies investigating the relationship between blood serotonin (5-HT) levels and ASD, comparing diagnostic tools, analytical methods, and clinical outcomes. A literature search on peripheral 5-HT levels and ASD was conducted. In total, 1104 publications were screened, of which 113 entered the present systematic review. Of these, 59 articles reported hyperserotonemia in subjects with ASD, and 26 presented correlations between 5-HT levels and ASD-core clinical outcomes. The 5-HT levels are increased in about half, and correlations between hyperserotonemia and clinical outcomes are detected in a quarter of the studies. The present research highlights a large amount of heterogeneity in this field, ranging from the characterization of ASD and control groups to diagnostic and clinical assessments, from blood sampling procedures to analytical methods, allowing us to delineate critical topics for future studies.
Collapse
Affiliation(s)
- Dario Esposito
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Gianluca Cruciani
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, 00185 Rome, Italy; (G.C.); (G.F.S.)
| | - Laura Zaccaro
- Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Rome, Italy; (L.Z.); (T.P.)
| | - Emanuele Di Carlo
- Department of Experimental Medicine, Sapienza University, Viale del Policlinico 155, 00161 Rome, Italy; (E.D.C.); (C.C.)
| | - Grazia Fernanda Spitoni
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, 00185 Rome, Italy; (G.C.); (G.F.S.)
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Filippo Manti
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza University, Viale del Policlinico 155, 00161 Rome, Italy; (E.D.C.); (C.C.)
| | - Elena Fiori
- Rome Technopole Foundation, P.le Aldo Moro, 5, 00185 Rome, Italy;
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Tiziana Pascucci
- Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Rome, Italy; (L.Z.); (T.P.)
- Centro “Daniel Bovet”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
19
|
Pszczolkowski VL, Connelly MK, Hoppman A, Benn AD, Laporta J, Hernandez LL, Arriola Apelo SI. Intravenous infusion of 5-hydroxytryptophan to mid-lactation Holstein cows transiently affects milk production and circulating amino acid concentrations. J Dairy Sci 2024; 107:3306-3318. [PMID: 38101740 DOI: 10.3168/jds.2023-23934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023]
Abstract
In dairy cows, the lactating mammary glands synthesize serotonin, which acts in an autocrine-paracrine manner in the glands and is secreted into the periphery. Serotonin signaling during lactation modulates nutrient metabolism in peripheral tissues such as adipose and liver. We hypothesized that the elevation of circulating serotonin during lactation would increase nutrient partitioning to the mammary glands, thereby promoting milk production. Our objective was to elevate circulating serotonin via intravenous infusion of the serotonin precursor 5-hydroxytryptophan (5-HTP) to determine its effects on mammary supply and extraction efficiency of AA, and milk components production. Twenty-two multiparous mid-lactation Holstein cows were intravenously infused with 5-HTP (1 mg/kg body weight) or saline, in a crossover design with two 21-d periods. Treatments were infused via jugular catheters for 1 h/d, on d 1 to 3, 8 to 10, and 15 to 17 of each period, to maintain consistent elevation of peripheral serotonin throughout the period. Milk and blood samples were collected in the last 96 h of each period. Whole-blood serotonin concentration was elevated above saline control for 96 h after the last 5-HTP infusion. Dry matter intake was decreased for cows receiving 5-HTP, and on average they lost body weight over the 21-d period, in contrast to saline cows who gained body weight. Milk production and milk protein yield were lower in cows receiving 5-HTP during the 3 infusion days, but both recovered to saline cow yields in the days after. Although milk fat yield exhibited a day-by-treatment interaction, no significant difference occurred on any given day. Milk urea nitrogen concentration was lower in 5-HTP cows on the days following the end of infusions, but not different from saline cows on infusion days. Meanwhile, plasma urea nitrogen was not affected by 5-HTP infusion. Circulating concentrations of AA were overall transiently decreased by 5-HTP, with concentrations mostly returning to baseline within 7 h after the end of 5-HTP infusion. Mammary extraction efficiency of AA was unaffected by 5-HTP infusion. Overall, both lactation performance and circulating AA were transiently reduced in cows infused with 5-HTP, despite sustained elevation of circulating serotonin concentration.
Collapse
Affiliation(s)
- Virginia L Pszczolkowski
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Meghan K Connelly
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - August Hoppman
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Amara D Benn
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Sebastian I Arriola Apelo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
20
|
Nakamura M, Yoshimi A, Tokura T, Kimura H, Kishi S, Miyauchi T, Iwamoto K, Ito M, Sato-Boku A, Mouri A, Nabeshima T, Ozaki N, Noda Y. Duloxetine improves chronic orofacial pain and comorbid depressive symptoms in association with reduction of serotonin transporter protein through upregulation of ubiquitinated serotonin transporter protein. Pain 2024; 165:1177-1186. [PMID: 38227563 DOI: 10.1097/j.pain.0000000000003124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/26/2023] [Indexed: 01/18/2024]
Abstract
ABSTRACT Chronic orofacial pain (COP) is relieved by duloxetine (DLX) and frequently causes depressive symptoms. The aim of this study was to confirm effects of DLX on pain and depressive symptoms, and to associate with their effectiveness in platelet serotonin transporter (SERT) expression, which is a target molecule of DLX and plasma serotonin concentration in COP patients with depressive symptoms. We assessed for the severity of pain and depressive symptoms using the Visual Analog Scale (VAS) and 17-item Hamilton Depression Rating Scale (HDRS), respectively. Chronic orofacial pain patients were classified into 2 groups based on their HDRS before DLX-treatment: COP patients with (COP-D) and without (COP-ND) depressive symptoms. We found that the VAS and HDRS scores of both groups were significantly decreased after DLX treatment compared with those before DLX treatment. Upregulation of total SERT and downregulation of ubiquitinated SERT were observed before DLX treatment in both groups compared with healthy controls. After DLX treatment, there were no differences in total SERT of both groups and in ubiquitinated SERT of COP-D patients compared with healthy controls; whereas, ubiquitinated SERT of COP-ND patients remained downregulated. There were positive correlations between changes of serotonin concentrations and of VAS or HDRS scores in only COP-D patients. Our findings indicate that DLX improves not only pain but also comorbid depressive symptoms of COP-D patients. Duloxetine also reduces platelet SERT through upregulation of ubiquitinated SERT. As the result, decrease of plasma serotonin concentrations may be related to the efficacy of DLX in relieving pain and depression in COP patients.
Collapse
Grants
- 21H04815 Ministry of Education, Culture, Sports, Science and Technology
- 17K10325 Ministry of Education, Culture, Sports, Science and Technology
- 21K06719 Ministry of Education, Culture, Sports, Science and Technology
- 19K17108 Ministry of Education, Culture, Sports, Science and Technology
- JP21dk0307103, Japan Agency for Medical Research and Development
- JP21dk0307087 Japan Agency for Medical Research and Development
- P21wm0425007 Japan Agency for Medical Research and Development
- JP21dm0207075 Japan Agency for Medical Research and Development
- JP21ek0109498 Japan Agency for Medical Research and Development
- AS251Z03018 Adaptable and Seamless Technology Transfer Program through Target-Driven R and D
Collapse
Affiliation(s)
- Mariko Nakamura
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan
- Clinical OMICs and Translation Research Center, Meijo University, Nagoya, Japan
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tatsuya Tokura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Kishi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoya Miyauchi
- Department of Psychiatry, KACHI Memorial Hospital, Toyohashi, Japan
| | - Kunihiro Iwamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikiko Ito
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Aiji Sato-Boku
- Department of Anesthesiology, School of Dentistry, Aichi Gakuin University, Nagoya Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals and Devices, Graduate School of Health Science, Fujita Health University, Aichi, Japan
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Toshitaka Nabeshima
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
- Laboratory of Health and Medical Science Innovation, Graduate School of Health Sciences, Fujita Health University, Aichi, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan
- Clinical OMICs and Translation Research Center, Meijo University, Nagoya, Japan
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Laboratory of Health and Medical Science Innovation, Graduate School of Health Sciences, Fujita Health University, Aichi, Japan
| |
Collapse
|
21
|
Calzadilla N, Jayawardena D, Qazi A, Sharma A, Mongan K, Comiskey S, Eathara A, Saksena S, Dudeja PK, Alrefai WA, Gill RK. Serotonin Transporter Deficiency Induces Metabolic Alterations in the Ileal Mucosa. Int J Mol Sci 2024; 25:4459. [PMID: 38674044 PMCID: PMC11049861 DOI: 10.3390/ijms25084459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Serotonin transporter (SERT) deficiency has been implicated in metabolic syndrome, intestinal inflammation, and microbial dysbiosis. Interestingly, changes in microbiome metabolic capacity and several alterations in host gene expression, including lipid metabolism, were previously observed in SERT-/- mice ileal mucosa. However, the precise host or microbial metabolites altered by SERT deficiency that may contribute to the pleiotropic phenotype of SERT KO mice are not yet understood. This study investigated the hypothesis that SERT deficiency impacts lipid and microbial metabolite abundances in the ileal mucosa, where SERT is highly expressed. Ileal mucosal metabolomics was performed by Metabolon on wild-type (WT) and homozygous SERT knockout (KO) mice. Fluorescent-activated cell sorting (FACS) was utilized to measure immune cell populations in ileal lamina propria to assess immunomodulatory effects caused by SERT deficiency. SERT KO mice exhibited a unique ileal mucosal metabolomic signature, with the most differentially altered metabolites being lipids. Such changes included increased diacylglycerols and decreased monoacylglycerols in the ileal mucosa of SERT KO mice compared to WT mice. Further, the ileal mucosa of SERT KO mice exhibited several changes in microbial-related metabolites known to play roles in intestinal inflammation and insulin resistance. SERT KO mice also had a significant reduction in the abundance of ileal group 3 innate lymphoid cells (ILC3). In conclusion, SERT deficiency induces complex alterations in the ileal mucosal environment, indicating potential links between serotonergic signaling, gut microbiota, mucosal immunity, intestinal inflammation, and metabolic syndrome.
Collapse
Affiliation(s)
- Nathan Calzadilla
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| | - Dulari Jayawardena
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
| | - Aisha Qazi
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
| | - Anchal Sharma
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
| | - Kai Mongan
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
| | - Shane Comiskey
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
| | - Abhijith Eathara
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
| | - Seema Saksena
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
22
|
Karagöl T, Karagöl A, Zhang S. Structural bioinformatics studies of serotonin, dopamine and norepinephrine transporters and their AlphaFold2 predicted water-soluble QTY variants and uncovering the natural mutations of L->Q, I->T, F->Y and Q->L, T->I and Y->F. PLoS One 2024; 19:e0300340. [PMID: 38517879 PMCID: PMC10959339 DOI: 10.1371/journal.pone.0300340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/26/2024] [Indexed: 03/24/2024] Open
Abstract
Monoamine transporters including transporters for serotonin, dopamine, and norepinephrine play key roles in monoaminergic synaptic signaling, involving in the molecular etiology of a wide range of neurological and physiological disorders. Despite being crucial drug targets, the study of transmembrane proteins remains challenging due to their localization within the cell membrane. To address this, we present the structural bioinformatics studies of 7 monoamine transporters and their water-soluble variants designed using the QTY code, by systematically replacing the hydrophobic amino acids leucine (L), valine (V), isoleucine (I) and phenylalanine (F) with hydrophilic amino acids (glutamine (Q), threonine (T) and tyrosine (Y). The resulting QTY variants, despite significant protein transmembrane sequence differences (44.27%-51.85%), showed similar isoelectric points (pI) and molecular weights. While their hydrophobic surfaces significantly reduced, this change resulted in a minimal structural alteration. Quantitatively, Alphafold2 predicted QTY variant structures displayed remarkable similarity with RMSD 0.492Å-1.619Å. Accompanied by the structural similarities of substituted amino acids in the context of 1.5Å electron density maps, our study revealed multiple QTY and reverse QTY variations in genomic databases. We further analyzed their phenotypical and topological characteristics. By extending evolutionary game theory to the molecular foundations of biology, we provided insights into the evolutionary dynamics of chemically distinct alpha-helices, their usage in different chemotherapeutic applications, and open possibilities of diagnostic medicine. Our study rationalizes that QTY variants of monoamine transporters may not only become distinct tools for medical, structural, and evolutionary research, but these transporters may also emerge as contemporary therapeutic targets, providing a new approach to treatment for several conditions.
Collapse
Affiliation(s)
- Taner Karagöl
- Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Alper Karagöl
- Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
23
|
Boukhatem I, Fleury S, Jourdi G, Lordkipanidzé M. The intriguing role of platelets as custodians of brain-derived neurotrophic factor. Res Pract Thromb Haemost 2024; 8:102398. [PMID: 38706782 PMCID: PMC11066552 DOI: 10.1016/j.rpth.2024.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 05/07/2024] Open
Abstract
A State of the Art lecture titled "Platelets and neurotrophins" was presented at the International Society on Thrombosis and Haemostasis Congress in 2023. Neurotrophins, a family of neuronal growth factors known to support cognitive function, are increasingly recognized as important players in vascular health. Indeed, along with their canonical receptors, neurotrophins are expressed in peripheral tissues, particularly in the vasculature. The better-characterized neurotrophin in vascular biology is the brain-derived neurotrophic factor (BDNF). Its largest extracerebral pool resides within platelets, partly inherited from megakaryocytes and also likely internalized from circulation. Activation of platelets releases vast amounts of BDNF into their milieu and interestingly leads to platelet aggregation through binding of its receptor, the tropomyosin-related kinase B, on the platelet surface. As BDNF is readily available in plasma, a mechanism to preclude excessive platelet activation and aggregation appears critical. As such, binding of BDNF to α2-macroglobulin hinders its ability to bind its receptor and limits its platelet-activating effects to the site of vascular injury. Altogether, addition of BDNF to a forming clot facilitates not only paracrine platelet activation but also binding to fibrinogen, rendering the resulting clot more porous and plasma-permeable. Importantly, release of BDNF into circulation also appears to be protective against adverse cardiovascular and cerebrovascular outcomes, which has been reported in both animal models and epidemiologic studies. This opens an avenue for platelet-based strategies to deliver BDNF to vascular lesions and facilitate wound healing through its regenerative properties. Finally, we summarize relevant new data on this topic presented during the 2023 International Society on Thrombosis and Haemostasis Congress.
Collapse
Affiliation(s)
- Imane Boukhatem
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Samuel Fleury
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Georges Jourdi
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
- Université Paris Cité, Institut National de la Santé Et de la Recherche Médicale, Innovative Therapies in Haemostasis, Paris, France
- Service d’Hématologie Biologique, Assistance Publique : Hôpitaux de Paris, Hôpital Lariboisière, Paris, France
| | - Marie Lordkipanidzé
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Urakov AL, Nikitina IL, Klen EE, Wang Y, Samorodov AV. Prospects for the pharmacological validation of the use of platelets as a “peripheral model” of neurons. REVIEWS ON CLINICAL PHARMACOLOGY AND DRUG THERAPY 2024; 21:307-317. [DOI: 10.17816/rcf568907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Depressive disorders often occur in patients with cardiovascular pathologies and are a predictor of the development of thrombotic events, such as myocardial infarction, acute ischemic cerebrovascular accident, and pulmonary embolism. These are believed to be caused by the structural and biochemical relationship between platelets and brain neurons, which allows us to consider platelets as a marker of central nervous system (CNS) pathologies. This review aimed to assess the relationship between the hemostasis system and the development of depressive disorders using platelets as a “peripheral model” of neurons and evaluate the effectiveness of drugs for the treatment of depression. The study was conducted in accordance with the recommendations of Preferred Reporting Items for Systematic Reviews and Meta-Analyses. A systematic literature search was conducted using PubMed, Cochrane, and CINAHL databases from 2018 to 2023, according to the following keywords: “hemostasis,” “acute cerebrovascular accident,” “depression,” “depressive disorders,” “platelets,” “cardiovascular diseases.” The data obtained indicate both a clinical link between depressive disorders and vascular events and the commonality of platelets and CNS cells because of the commonality of the following proteins: transporters and receptors of serotonin or 5-hydroxytryptamine, amyloid precursor protein, and brain neurotrophic factor, which were previously considered specific neural proteins. In addition, a relationship exists between hemostasis dynamics and drug therapy for depression. In this review, changes in hemostasis in terms of platelet activation in patients with depression and vascular disease were critically analyzed. The literature presents diverse mechanisms of platelet induction, which require further study. A rational study of the pathways of platelet activation in patients with depressive disorders will provide a comprehensive understanding of the molecular mechanisms underlying the relationship between hemostasis and depression in various vascular pathologies. Platelet activation in patients with depression and the dynamics of changes in hemostasis parameters during the treatment of depressive disorders allow us to consider hemostasis as a peripheral marker of the CNS and pharmacotherapy.
Collapse
|
25
|
Grondin JA, Khan WI. Emerging Roles of Gut Serotonin in Regulation of Immune Response, Microbiota Composition and Intestinal Inflammation. J Can Assoc Gastroenterol 2024; 7:88-96. [PMID: 38314177 PMCID: PMC10836984 DOI: 10.1093/jcag/gwad020] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Although the exact etiology of inflammatory bowel diseases (IBD) is unknown, studies have shown that dysregulated immune responses, genetic factors, gut microbiota, and environmental factors contribute to their pathogenesis. Intriguingly, serotonin (5-hydroxytryptamine or 5-HT) seems to be a molecule with increasingly strong implications in the pathogenesis of intestinal inflammation, affecting host physiology, including autophagy and immune responses, as well as microbial composition and function. 5-HT may also play a role in mediating how environmental effects impact outcomes in IBD. In this review, we aim to explore the production and important functions of 5-HT, including its impact on the gut. In addition, we highlight the bidirectional impacts of 5-HT on the immune system, the gut microbiota, and the process of autophagy and how these effects contribute to the manifestation of intestinal inflammation. We also explore recent findings connecting 5-HT signalling and the influence of environmental factors, particularly diet, in the pathogenesis of IBD. Ultimately, we explore the pleiotropic effects of this ancient molecule on biology and health in the context of intestinal inflammation.
Collapse
Affiliation(s)
- Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
26
|
Adibi JJ, Zhao Y, Koistinen H, Mitchell RT, Barrett ES, Miller R, O'Connor TG, Xun X, Liang HW, Birru R, Smith M, Moog NK. Molecular pathways in placental-fetal development and disruption. Mol Cell Endocrinol 2024; 581:112075. [PMID: 37852527 PMCID: PMC10958409 DOI: 10.1016/j.mce.2023.112075] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023]
Abstract
The first trimester of pregnancy ranks high in priority when minimizing harmful exposures, given the wide-ranging types of organogenesis occurring between 4- and 12-weeks' gestation. One way to quantify potential harm to the fetus in the first trimester is to measure a corollary effect on the placenta. Placental biomarkers are widely present in maternal circulation, cord blood, and placental tissue biopsied at birth or at the time of pregnancy termination. Here we evaluate ten diverse pathways involving molecules expressed in the first trimester human placenta based on their relevance to normal fetal development and to the hypothesis of placental-fetal endocrine disruption (perturbation in development that results in abnormal endocrine function in the offspring), namely: human chorionic gonadotropin (hCG), thyroid hormone regulation, peroxisome proliferator activated receptor protein gamma (PPARγ), leptin, transforming growth factor beta, epiregulin, growth differentiation factor 15, small nucleolar RNAs, serotonin, and vitamin D. Some of these are well-established as biomarkers of placental-fetal endocrine disruption, while others are not well studied and were selected based on discovery analyses of the placental transcriptome. A literature search on these biomarkers summarizes evidence of placenta-specific production and regulation of each biomarker, and their role in fetal reproductive tract, brain, and other specific domains of fetal development. In this review, we extend the theory of fetal programming to placental-fetal programming.
Collapse
Affiliation(s)
- Jennifer J Adibi
- Department of Epidemiology, University of Pittsburgh School of Public Health, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Yaqi Zhao
- St. Jude's Research Hospital, Memphis, TN, USA
| | - Hannu Koistinen
- Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
| | - Rod T Mitchell
- Department of Paediatric Endocrinology, Royal Hospital for Children and Young People, Edinburgh BioQuarter, Edinburgh, UK
| | - Emily S Barrett
- Environmental and Population Health Bio-Sciences, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Richard Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas G O'Connor
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Xiaoshuang Xun
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Hai-Wei Liang
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Rahel Birru
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Megan Smith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nora K Moog
- Department of Medical Psychology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
27
|
Alvarez-Herrera S, Rosel Vales M, Pérez-Sánchez G, Becerril-Villanueva E, Flores-Medina Y, Maldonado-García JL, Saracco-Alvarez R, Escamilla R, Pavón L. Risperidone Decreases Expression of Serotonin Receptor-2A (5-HT2A) and Serotonin Transporter (SERT) but Not Dopamine Receptors and Dopamine Transporter (DAT) in PBMCs from Patients with Schizophrenia. Pharmaceuticals (Basel) 2024; 17:167. [PMID: 38399382 PMCID: PMC10892557 DOI: 10.3390/ph17020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 02/25/2024] Open
Abstract
Dopamine and serotonin receptors and transporters play an essential role in the pathophysiology of schizophrenia; changes in their expression have been reported in neurons and leukocytes. Each antipsychotic induces a unique pattern in leukocyte function and phenotype. However, the use of polytherapy to treat schizophrenia makes it challenging to determine the specific effects of risperidone on peripheral blood mononuclear cells (PBMCs). The aim of this study was to evaluate the changes in the expression of D3, D5, DAT, 5-HT2A, and SERT in PBMCs from healthy volunteers (HV), drug-naive patients with schizophrenia (PWS), drug-free PWS, and PWS treated with risperidone for up to 40 weeks using quantitative PCR. Our study revealed elevated mRNA levels of D3, DAT, 5-HT2A, and SERT in unmedicated PWS. Treatment with risperidone led to a reduction only in the expression of 5-HT2A and SERT. Furthermore, we observed a moderate correlation between 5-HT2A expression and the positive and negative syndrome scale (PANSS), as well as SERT expression and PANSS scale. We also found a moderate correlation between 5-HT2A and SERT expression and the positive subscale. The duration of risperidone consumption had a significant negative correlation with the expression of 5-HT2A and SERT. Our study introduces the measurement of 5-HT2A and SERT expression in PBMCs as a useful parameter for assessing the response to risperidone in PWS.
Collapse
Affiliation(s)
- Samantha Alvarez-Herrera
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (S.A.-H.); (G.P.-S.); (E.B.-V.)
| | - Mauricio Rosel Vales
- Clínica de Esquizofrenia, Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico;
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (S.A.-H.); (G.P.-S.); (E.B.-V.)
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (S.A.-H.); (G.P.-S.); (E.B.-V.)
| | - Yvonne Flores-Medina
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (Y.F.-M.); (R.S.-A.)
| | - José Luis Maldonado-García
- Departamemto de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
- Departamemto de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Ricardo Saracco-Alvarez
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (Y.F.-M.); (R.S.-A.)
| | - Raúl Escamilla
- Subdirección de Consulta Externa, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico;
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (S.A.-H.); (G.P.-S.); (E.B.-V.)
| |
Collapse
|
28
|
Sadykova D, Nigmatullina R, Salakhova K, Slastnikova E, Galimova L, Khaliullina C, Valeeva I. Membrane Transporter of Serotonin and Hypercholesterolemia in Children. Int J Mol Sci 2024; 25:767. [PMID: 38255840 PMCID: PMC10815017 DOI: 10.3390/ijms25020767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The serotonin membrane transporter is one of the main mechanisms of plasma serotonin concentration regulation. Serotonin plays an important role in the pathogenesis of various cardiovascular diseases, stimulating the proliferation of smooth muscle cells, key cells in the process of hypertrophic vascular remodeling. Vascular remodeling is one of the leading prognostically unfavorable factors of atherosclerosis, the main manifestation of familial hypercholesterolemia. Familial hypercholesterolemia is one of the most common genetically determined lipid metabolism disorders and occurs in 1 in 313 people. The aim of our study was to investigate the levels of plasma and platelet serotonin, 5-hydroxyindoleacetic acid, and membrane transporter in a cross-sectional study of two pediatric groups, including patients with familial hypercholesterolemia and the control group, which consisted of apparently healthy children without cardiovascular diseases. The study involved 116 children aged 5 to 17 years old. The proportion of boys was 50% (58/116) and the average age of the children was 10.5 years (CI 2.8-18.1). The concentrations of serotonin in blood plasma and platelets and 5-hydroxyindoleacetic acid were higher in children with familial hypercholesterolemia than in the controls. The concentration of the serotonin transporter in platelets in healthy children, compared with the main group, was 1.3 times higher. A positive correlation was revealed between the level of serotonin (5-HT and PWV: ρ = 0.6, p < 0.001), its transporter (SERT and PWV: ρ = 0.5, p < 0.001), and the main indicators of arterial vascular stiffness. Our study revealed the relationship between high serotonin and SERT concentrations and markers of arterial stiffness. The results we obtained suggest the involvement of serotonin and SERT in the process of vascular remodeling in familial hypercholesterolemia in children.
Collapse
Affiliation(s)
- Dinara Sadykova
- Department of Hospital Pediatrics, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (E.S.); (L.G.); (C.K.)
| | - Razina Nigmatullina
- Department of Normal Physiology, Kazan State Medical University, 420012 Kazan, Russia;
| | - Karina Salakhova
- Department of Hospital Pediatrics, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (E.S.); (L.G.); (C.K.)
| | - Evgeniia Slastnikova
- Department of Hospital Pediatrics, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (E.S.); (L.G.); (C.K.)
- Children’s Republican Clinical Hospital, 420138 Kazan, Russia
| | - Liliya Galimova
- Department of Hospital Pediatrics, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (E.S.); (L.G.); (C.K.)
- Children’s Republican Clinical Hospital, 420138 Kazan, Russia
| | - Chulpan Khaliullina
- Department of Hospital Pediatrics, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (E.S.); (L.G.); (C.K.)
| | - Ildaria Valeeva
- Central Research Laboratory, Kazan State Medical University, 420012 Kazan, Russia;
| |
Collapse
|
29
|
Valente EEL, Klotz JL, Markmann RC, Edwards JL, Harmon DL. 5-hydroxytryphophan mitigates ergot alkaloid-induced suppression of serotonin and feed intake in cattle. J Anim Sci 2024; 102:skae083. [PMID: 38520304 PMCID: PMC11017510 DOI: 10.1093/jas/skae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024] Open
Abstract
The impact of ergot toxicosis on livestock industries is detrimental and treatments are needed in many countries. The objective of this study was to evaluate the effects of acute exposure to ergot alkaloids and 5-hydroxytryptophan (5-HTP) supplementation on feed intake, serotonin metabolism, and blood metabolites in cattle. Eight Holstein steers (538 ± 18 kg) fitted with ruminal cannulas were used in a replicated 4 × 4 Latin Square design experiment with a 2 × 2 factorial treatment structure. The treatments were the combination of 0 (E-) or 15 µg ergovaline/kg BW (E+) and 0 (5HTP-) or 0.5 mg of 5-hydroxy-l-tryptophan/kg BW (5HTP+) administered daily for 6 d. Toxic endophyte-infected tall fescue seed was used to supply the daily dose of ergovaline. Endophyte-free seed was used to equalize seed intake between treatments. Ground seed was placed into the rumen immediately before feeding. The 5-HTP was dissolved in water and infused into the abomasum via the reticulo-omasal orifice. Blood was collected from a jugular vein catheter at 0, 1, 2, 4, 8, and 24 h after treatment administration. Ergovaline without 5-HTP (E+/5HTP-) decreased dry matter intake (DMI) in comparison to steers without ergovaline and 5-HTP (E-/5HTP-). However, 5-HTP infusion in association with ergovaline (E+/5HTP+) normalized the DMI. Although E + did not affect (P > 0.05) the area under the curve (AUC) of serum 5-HTP, 5-hydroxyindoleacetic acid, tryptophan, and kynurenine, serum and plasma serotonin concentrations were decreased (P < 0.05). The infusion of 5-HTP increased (P < 0.05) the AUC of serum 5-HTP, serum and plasma serotonin, and serum 5-hydroxyindoleacetic acid. In conclusion, acute exposure to ergot alkaloids reduced DMI and circulating serotonin in cattle but 5-HTP administration showed potential to normalize both circulating serotonin and feed intake.
Collapse
Affiliation(s)
- Eriton E L Valente
- Animal Science Department, State University of Western Parana, Marechal Cândido Rondon, PR, Brazil
| | - James L Klotz
- Forage-Animal Production Research Unit, USDA-ARS, Lexington, KY, USA
| | - Ryana C Markmann
- Animal Science Department, State University of Western Parana, Marechal Cândido Rondon, PR, Brazil
| | - J Lannett Edwards
- Department of Animal Science, University of Tennessee, Knoxville, TN, USA
| | - David L Harmon
- Department of Animal and Food Science, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
30
|
Domingues RR, Teixeira NN, Frizzarini WS, Beard AD, Connelly MK, Vang A, Wiltbank MC, Hernandez LL. The antidepressant fluoxetine (Prozac®) modulates serotonin signaling to alter maternal peripartum calcium homeostasis. Sci Rep 2023; 13:21832. [PMID: 38071334 PMCID: PMC10710465 DOI: 10.1038/s41598-023-49253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Antidepressant use is two-fold greater in women compared to men; however, most studies have been performed in male subjects. We aimed to understand the impact of selective serotonin reuptake inhibitors (SSRI, most used antidepressants) on calcium homeostasis and steroid metabolism during the peripartum period. Pregnant sheep (n = 10/group) were treated with vehicle or fluoxetine (most common SSRI) during the last month of gestation. Fluoxetine treatment decreased circulating calcium prior to parturition (8.7 ± 0.1 mg/dL vs 8.2 ± 0.1 mg/dL; P = 0.07). In the control group, total calcium decreased after parturition corresponding to the onset of lactogenesis followed by increase in calcium by day 2 postpartum. Interestingly, this normal transient decrease in circulating calcium was absent in fluoxetine-treated ewes. The steroids cortisol and progesterone were not altered by fluoxetine treatment whereas estradiol was decreased after the onset of treatment (12.4 ± 1.3 vs 9.1 ± 1.2 pg/mL, P = 0.05) and prior to parturition (38.1 ± 8.1 vs 22.3 ± 4.2 pg/mL, P = 0.03). Our hypothesis was supported that fluoxetine treatment alters circulating concentrations of calcium in the peripartum period; however, we surprisingly observed a decrease in estradiol concentrations contrary to reports in in vitro studies.
Collapse
Affiliation(s)
- Rafael R Domingues
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1865 Observatory Dr, Madison, WI, 53706, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Natalia N Teixeira
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1865 Observatory Dr, Madison, WI, 53706, USA
| | - Waneska S Frizzarini
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1865 Observatory Dr, Madison, WI, 53706, USA
| | - Adam D Beard
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1865 Observatory Dr, Madison, WI, 53706, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Meghan K Connelly
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1865 Observatory Dr, Madison, WI, 53706, USA
| | - Alysia Vang
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1865 Observatory Dr, Madison, WI, 53706, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Milo C Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1865 Observatory Dr, Madison, WI, 53706, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1865 Observatory Dr, Madison, WI, 53706, USA.
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
31
|
Kilic F. Serotonin Signaling and the Hyperpermeable Endothelial Barrier in Sepsis: Clues to a Molecular Mechanism. JOURNAL OF COMMUNITY MEDICINE & PUBLIC HEALTH 2023; 7:389. [PMID: 38371611 PMCID: PMC10871023 DOI: 10.29011/2577-2228.100389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Sepsis is characterized by a severe systemic inflammatory response caused by hyperpermeability of the endothelial barrier resulting microvascular leakage, which is a leading factor to multiorgan failure. In sepsis, the hyperpermeable endothelial cells contribute to the activation of platelets, which release numerous mediators that affect coagulation, inflammatory response and are believed to directly or indirectly affect the integrity of the endothelial barrier. One such mediator is serotonin (5-hydroxytryptamine, 5-HT), a signaling molecule which mediates a number of cellular functions including regulation of cytoskeletal dynamics associated with barrier function of endothelial cells. The actions of 5-HT are mediated by different types of receptors and terminated via an uptake mechanism of a 5-HT transporter (SERT) on the platelet and endothelial cell. Earlier studies revealed unexpected discoveries concerning the impact of 5-HT signaling on the permeability of the endothelial barrier. These findings have been supported by the clinical reports on the anti-inflammatory property of 5-HT reuptake inhibitor, SSRIs in treating sepsis-related morbidity and mortality. This review focuses on a wide-range of literature to pinpoint cellular and molecular mechanisms that mediate 5-HT-induced microvascular injury in sepsis pathogenesis.
Collapse
Affiliation(s)
- Fusun Kilic
- Biology Department, Merced College, Merced, California, USA
| |
Collapse
|
32
|
Fricke HP, Krajco CJ, Perry MJ, Reisner MA, Brettingen LJ, Wake LA, Charles JF, Hernandez LL. In utero, lactational, or peripartal fluoxetine administration has differential implications on the murine maternal skeleton. Physiol Rep 2023; 11:e15837. [PMID: 37813559 PMCID: PMC10562136 DOI: 10.14814/phy2.15837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
The peripartal period is marked by alterations in calcium metabolism to accommodate for embryonic skeletal mineralization and support bone development of offspring in early life, and serotonin plays a critical role in modulating peripartal bone remodeling. Selective serotonin reuptake inhibitors (SSRIs) are commonly used as first-line treatment for psychiatric illness during pregnancy and the postpartum period and considered safe for maternal use during this time frame. In order to evaluate the effect of peripartal alterations of the serotonergic system on maternal skeletal physiology, we treated dams with the SSRI fluoxetine during gestation only, lactation only, or during the entire peripartal period. Overall, we found a low dose of fluoxetine during gestation only had minimal impacts on maternal bone at weaning, but there were implications on maternal skeleton at weaning when dams were exposed during lactation only or during the entire peripartal period. We found that these effects were differential between female mice dosed lactationally or peripartally, and there were also impacts on maternal mammary gland at weaning in both of these groups. Though SSRIs are largely considered safe maternally during the peripartal period, this study raises the question whether safety of SSRIs, specifically fluoxetine, during the peripartal period should be reevaluated.
Collapse
Affiliation(s)
- Hannah P. Fricke
- Endocrinology and Reproductive Physiology ProgramUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Chandler J. Krajco
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Molly J. Perry
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Maggie A. Reisner
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Lella A. Wake
- Departments of Orthopedics and MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | - Julia F. Charles
- Departments of Orthopedics and MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | - Laura L. Hernandez
- Endocrinology and Reproductive Physiology ProgramUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
33
|
Ruiz-Pablos M, Paiva B, Zabaleta A. Epstein-Barr virus-acquired immunodeficiency in myalgic encephalomyelitis-Is it present in long COVID? J Transl Med 2023; 21:633. [PMID: 37718435 PMCID: PMC10506247 DOI: 10.1186/s12967-023-04515-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023] Open
Abstract
Both myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) and long COVID (LC) are characterized by similar immunological alterations, persistence of chronic viral infection, autoimmunity, chronic inflammatory state, viral reactivation, hypocortisolism, and microclot formation. They also present with similar symptoms such as asthenia, exercise intolerance, sleep disorders, cognitive dysfunction, and neurological and gastrointestinal complaints. In addition, both pathologies present Epstein-Barr virus (EBV) reactivation, indicating the possibility of this virus being the link between both pathologies. Therefore, we propose that latency and recurrent EBV reactivation could generate an acquired immunodeficiency syndrome in three steps: first, an acquired EBV immunodeficiency develops in individuals with "weak" EBV HLA-II haplotypes, which prevents the control of latency I cells. Second, ectopic lymphoid structures with EBV latency form in different tissues (including the CNS), promoting inflammatory responses and further impairment of cell-mediated immunity. Finally, immune exhaustion occurs due to chronic exposure to viral antigens, with consolidation of the disease. In the case of LC, prior to the first step, there is the possibility of previous SARS-CoV-2 infection in individuals with "weak" HLA-II haplotypes against this virus and/or EBV.
Collapse
Affiliation(s)
| | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain
| | - Aintzane Zabaleta
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain.
| |
Collapse
|
34
|
Conde K, Fang S, Xu Y. Unraveling the serotonin saga: from discovery to weight regulation and beyond - a comprehensive scientific review. Cell Biosci 2023; 13:143. [PMID: 37550777 PMCID: PMC10408233 DOI: 10.1186/s13578-023-01091-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023] Open
Abstract
The prevalence of obesity is rapidly increasing worldwide, while the development of effective obesity therapies lags behind. Although new therapeutic targets to alleviate obesity are identified every day, and drug efficacy is improving, adverse side effects and increased health risks remain serious issues facing the weight-loss industry. Serotonin, also known as 5-HT, has been extensively studied in relation to appetite reduction and weight loss. As a result, dozens of upstream and downstream neural targets of 5-HT have been identified, revealing a multitude of neural circuits involved in mediating the anorexigenic effect of 5-HT. Despite the rise and fall of several 5-HT therapeutics in recent decades, the future of 5-HT as a therapeutic target for weight-loss therapy looks promising. This review focuses on the history of serotonin, the state of current central serotonin research, previous serotonergic therapies, and the future of serotonin for treating individuals with obesity.
Collapse
Affiliation(s)
- Kristine Conde
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, USA.
| | - Shuzheng Fang
- College of Art and Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, USA.
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
35
|
Meyer RK, Duca FA. RISING STARS: Endocrine regulation of metabolic homeostasis via the intestine and gut microbiome. J Endocrinol 2023; 258:e230019. [PMID: 37171833 PMCID: PMC10524498 DOI: 10.1530/joe-23-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
The gastrointestinal system is now considered the largest endocrine organ, highlighting the importance of gut-derived peptides and metabolites in metabolic homeostasis. Gut peptides are secreted from intestinal enteroendocrine cells in response to nutrients, microbial metabolites, and neural and hormonal factors, and they regulate systemic metabolism via multiple mechanisms. While extensive research is focused on the neuroendocrine effects of gut peptides, evidence suggests that several of these hormones act as endocrine signaling molecules with direct effects on the target organ, especially in a therapeutic setting. Additionally, the gut microbiota metabolizes ingested nutrients and fiber to produce compounds that impact host metabolism indirectly, through gut peptide secretion, and directly, acting as endocrine factors. This review will provide an overview of the role of endogenous gut peptides in metabolic homeostasis and disease, as well as the potential endocrine impact of microbial metabolites on host metabolic tissue function.
Collapse
Affiliation(s)
- Rachel K Meyer
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona, USA
| | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
36
|
Suchacki KJ, Ramage LE, Kwok TC, Kelman A, McNeill BT, Rodney S, Keegan M, Gray C, MacNaught G, Patel D, Fletcher AM, Simpson JP, Carter RN, Semple RK, Homer NZM, Morton NM, van Beek EJR, Wakelin SJ, Stimson RH. The serotonin transporter sustains human brown adipose tissue thermogenesis. Nat Metab 2023; 5:1319-1336. [PMID: 37537371 PMCID: PMC10447248 DOI: 10.1038/s42255-023-00839-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/12/2023] [Indexed: 08/05/2023]
Abstract
Activation of brown adipose tissue (BAT) in humans is a strategy to treat obesity and metabolic disease. Here we show that the serotonin transporter (SERT), encoded by SLC6A4, prevents serotonin-mediated suppression of human BAT function. RNA sequencing of human primary brown and white adipocytes shows that SLC6A4 is highly expressed in human, but not murine, brown adipocytes and BAT. Serotonin decreases uncoupled respiration and reduces uncoupling protein 1 via the 5-HT2B receptor. SERT inhibition by the selective serotonin reuptake inhibitor (SSRI) sertraline prevents uptake of extracellular serotonin, thereby potentiating serotonin's suppressive effect on brown adipocytes. Furthermore, we see that sertraline reduces BAT activation in healthy volunteers, and SSRI-treated patients demonstrate no 18F-fluorodeoxyglucose uptake by BAT at room temperature, unlike matched controls. Inhibition of BAT thermogenesis may contribute to SSRI-induced weight gain and metabolic dysfunction, and reducing peripheral serotonin action may be an approach to treat obesity and metabolic disease.
Collapse
Affiliation(s)
- Karla J Suchacki
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Lynne E Ramage
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - T'ng Choong Kwok
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Alexandra Kelman
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Ben T McNeill
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Stewart Rodney
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Matthew Keegan
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Calum Gray
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
| | - Gillian MacNaught
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
- Department of Medical Physics, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Dilip Patel
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
- Department of Medical Physics, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Alison M Fletcher
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
- Department of Medical Physics, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Joanna P Simpson
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Roderick N Carter
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Robert K Semple
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Natalie Z M Homer
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Nicholas M Morton
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Edwin J R van Beek
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
- Department of Medical Physics, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Sonia J Wakelin
- Department of Surgery, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Roland H Stimson
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.
| |
Collapse
|
37
|
Bauer MB, Currie KPM. Serotonin and the serotonin transporter in the adrenal gland. VITAMINS AND HORMONES 2023; 124:39-78. [PMID: 38408804 PMCID: PMC11217909 DOI: 10.1016/bs.vh.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The adrenal glands are key components of the mammalian endocrine system, helping maintain physiological homeostasis and the coordinated response to stress. Each adrenal gland has two morphologically and functionally distinct regions, the outer cortex and inner medulla. The cortex is organized into three concentric zones which secrete steroid hormones, including aldosterone and cortisol. Neural crest-derived chromaffin cells in the medulla are innervated by preganglionic sympathetic neurons and secrete catecholamines (epinephrine, norepinephrine) and neuropeptides into the bloodstream, thereby functioning as the neuroendocrine arm of the sympathetic nervous system. In this article we review serotonin (5-HT) and the serotonin transporter (SERT; SLC6A4) in the adrenal gland. In the adrenal cortex, 5-HT, primarily sourced from resident mast cells, acts as a paracrine signal to stimulate aldosterone and cortisol secretion through 5-HT4/5-HT7 receptors. Medullary chromaffin cells contain a small amount of 5-HT due to SERT-mediated uptake and express 5-HT1A receptors which inhibit secretion. The atypical mechanism of the 5-HT1A receptors and interaction with SERT fine tune this autocrine pathway to control stress-evoked catecholamine secretion. Receptor-independent signaling by SERT/intracellular 5-HT modulates the amount and kinetics of transmitter release from single vesicle fusion events. SERT might also influence stress-evoked upregulation of tyrosine hydroxylase transcription. Transient signaling via 5-HT3 receptors during embryonic development can limit the number of chromaffin cells found in the mature adrenal gland. Together, this emerging evidence suggests that the adrenal medulla is a peripheral hub for serotonergic control of the sympathoadrenal stress response.
Collapse
Affiliation(s)
- Mary Beth Bauer
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, South Broadway, Camden, NJ, United States
| | - Kevin P M Currie
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, South Broadway, Camden, NJ, United States.
| |
Collapse
|
38
|
Domingues RR, Wiltbank MC, Hernandez LL. Maternal serotonin: implications for the use of selective serotonin reuptake inhibitors during gestation†. Biol Reprod 2023; 109:17-28. [PMID: 37098165 PMCID: PMC10344603 DOI: 10.1093/biolre/ioad046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 04/27/2023] Open
Abstract
Maternal use of antidepressants has increased throughout the last decades; selective serotonin reuptake inhibitors (SSRI) are the most prescribed antidepressants. Despite the widespread use of SSRI by women during reproductive age and pregnant women, an increasing amount of research warns of possible detrimental effects of maternal use of SSRI during pregnancy including low birthweight/small for gestational age and preterm birth. In this review, we revisited the impact of maternal use of SSRI during pregnancy, its impact on serotonin homeostasis in the maternal and fetal circulation and the placenta, and its impact on pregnancy outcomes-particularly intrauterine growth restriction and preterm birth. Maternal use of SSRI increases maternal and fetal serotonin. The increase in maternal circulating serotonin and serotonin signaling likely promotes vasoconstriction of the uterine and placental vascular beds decreasing blood perfusion to the uterus and consequently to the placenta and fetus with potential impact on placental function and fetal development. Several adverse pregnancy outcomes are similar between women, sheep, and rodents (decreased placental size, decreased birthweight, shorter gestation length/preterm birth, neonatal morbidity, and mortality) highlighting the importance of animal studies to assess the impacts of SSRI. Herein, we address the complex interactions between maternal SSRI use during gestation, circulating serotonin, and the regulation of blood perfusion to the uterus and fetoplacental unit, fetal growth, and pregnancy complications.
Collapse
Affiliation(s)
- Rafael R Domingues
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Milo C Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
39
|
Konjevod M, Sreter KB, Popovic-Grle S, Lampalo M, Tudor L, Jukic I, Nedic Erjavec G, Bingulac-Popovic J, Safic Stanic H, Nikolac Perkovic M, Markeljevic J, Samarzija M, Pivac N, Svob Strac D. Platelet Serotonin (5-HT) Concentration, Platelet Monoamine Oxidase B (MAO-B) Activity and HTR2A, HTR2C, and MAOB Gene Polymorphisms in Asthma. Biomolecules 2023; 13:biom13050800. [PMID: 37238670 DOI: 10.3390/biom13050800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The complex role of the serotonin system in respiratory function and inflammatory diseases such as asthma is unclear. Our study investigated platelet serotonin (5-HT) levels and platelet monoamine oxidase B (MAO-B) activity, as well as associations with HTR2A (rs6314; rs6313), HTR2C (rs3813929; rs518147), and MAOB (rs1799836; rs6651806) gene polymorphisms in 120 healthy individuals and 120 asthma patients of different severity and phenotypes. Platelet 5-HT concentration was significantly lower, while platelet MAO-B activity was considerably higher in asthma patients; however, they did not differ between patients with different asthma severity or phenotypes. Only the healthy subjects, but not the asthma patients, carrying the MAOB rs1799836 TT genotype had significantly lower platelet MAO-B activity than the C allele carriers. No significant differences in the frequency of the genotypes, alleles, or haplotypes for any of the investigated HTR2A, HTR2C and MAOB gene polymorphisms have been observed between asthma patients and healthy subjects or between patients with various asthma phenotypes. However, the carriers of the HTR2C rs518147 CC genotype or C allele were significantly less frequent in severe asthma patients than in the G allele carriers. Further studies are necessary to elucidate the involvement of the serotonergic system in asthma pathophysiology.
Collapse
Affiliation(s)
- Marcela Konjevod
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
| | - Katherina B Sreter
- Department of Clinical Immunology, Pulmonology and Rheumatology, University Hospital Centre "Sestre Milosrdnice", 10000 Zagreb, Croatia
| | - Sanja Popovic-Grle
- Clinic for Lung Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marina Lampalo
- Clinic for Lung Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Lucija Tudor
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
| | - Irena Jukic
- Croatian Institute of Transfusion Medicine, 10000 Zagreb, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Gordana Nedic Erjavec
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
| | | | | | - Matea Nikolac Perkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
| | - Jasenka Markeljevic
- Department of Clinical Immunology, Pulmonology and Rheumatology, University Hospital Centre "Sestre Milosrdnice", 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Miroslav Samarzija
- Clinic for Lung Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
- University of Applied Sciences "Hrvatsko Zagorje Krapina", 49000 Krapina, Croatia
| | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
40
|
Fricke HP, Hernandez LL. The Serotonergic System and Bone Metabolism During Pregnancy and Lactation and the Implications of SSRI Use on the Maternal-Offspring Dyad. J Mammary Gland Biol Neoplasia 2023; 28:7. [PMID: 37086330 PMCID: PMC10122632 DOI: 10.1007/s10911-023-09535-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/06/2023] [Indexed: 04/23/2023] Open
Abstract
Lactation is a physiological adaptation of the class Mammalia and is a product of over 200 million years of evolution. During lactation, the mammary gland orchestrates bone metabolism via serotonin signaling in order to provide sufficient calcium for the offspring in milk. The role of serotonin in bone remodeling was first discovered over two decades ago, and the interplay between serotonin, lactation, and bone metabolism has been explored in the years following. It is estimated that postpartum depression affects 10-15% of the population, and selective serotonin reuptake inhibitors (SSRI) are often used as the first-line treatment. Studies conducted in humans, nonhuman primates, sheep, and rodents have provided evidence that there are consequences on both parent and offspring when serotonin signaling is disrupted during the peripartal period; however, the long-term consequences of disruption of serotonin signaling via SSRIs during the peripartal period on the maternal and offspring skeleton are not fully known. This review will focus on the relationship between the mammary gland, serotonin, and bone remodeling during the peripartal period and the skeletal consequences of the dysregulation of the serotonergic system in both human and animal studies.
Collapse
Affiliation(s)
- Hannah P Fricke
- Animal and Dairy Sciences Department, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura L Hernandez
- Animal and Dairy Sciences Department, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
41
|
Wang XN, Zhang JC, Zhang HY, Wang XF, You CX. Ectopic expression of MmSERT, a mouse serotonin transporter gene, regulates salt tolerance and ABA sensitivity in apple and Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107627. [PMID: 36940523 DOI: 10.1016/j.plaphy.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
5-hydroxytryptamine (5-HT) is ubiquitously present in animals and plants, playing a vital regulatory role. SERT, a conserved serotonin reuptake transporter in animals, regulates intracellular and extracellular concentrations of 5-HT. Few studies have reported 5-HT transporters in plants. Hence, we cloned MmSERT, a serotonin reuptake transporter, from Mus musculus. Ectopic expression of MmSERT into apple calli, apple roots and Arabidopsis. Because 5-HT plays a momentous role in plant stress tolerance, we used MmSERT transgenic materials for stress treatment. We found that MmSERT transgenic materials, including apple calli, apple roots and Arabidopsis, exhibited a stronger salt tolerance phenotype. The reactive oxygen species (ROS) produced were significantly lower in MmSERT transgenic materials compared with controls under salt stress. Meanwhile, MmSERT induced the expression of SOS1, SOS3, NHX1, LEA5 and LTP1 in response to salt stress. 5-HT is the precursor of melatonin, which regulates plant growth under adversity and effectively scavenges ROS. Detection of MmSERT transgenic apple calli and Arabidopsis revealed higher melatonin levels than controls. Besides, MmSERT decreased the sensitivity of apple calli and Arabidopsis to abscisic acid (ABA). In summary, these results demonstrated that MmSERT plays a vital role in plant stress resistances, which perhaps serves as a reference for the application of transgenic technology to improve crops in the future.
Collapse
Affiliation(s)
- Xiao-Na Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Jiu-Cheng Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hai-Yuan Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
42
|
Hashimoto K. Overview of the potential use of fluvoxamine for COVID-19 and long COVID. DISCOVER MENTAL HEALTH 2023; 3:9. [PMID: 36968793 PMCID: PMC10029802 DOI: 10.1007/s44192-023-00036-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/02/2023] [Indexed: 03/24/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has presented a serious worldwide threat to public health since its emergence in late 2019. From a safety point of view, drug repurposing has received particular attention. Several clinical studies have demonstrated that the use of fluvoxamine, a selective serotonin reuptake inhibitor with potent sigma-1 receptor agonism, in the early-stage of infection might be associated with the prevention of clinical deterioration in individuals with SARS-CoV-2 infection, although several reports have shown that a low dose of fluvoxamine may be ineffective. There is increasing evidence that SARS-CoV-2 can cross the blood-brain barrier, resulting in a number of psychiatric and neurologic symptoms in COVID-19 survivors. Importantly, about half of COVID-19 survivors experience a variety of long-term sequelae, including psychiatric and neurologic symptoms, known as long COVID. In this priority review, the author presents an overview of the potential use of fluvoxamine in the treatment of COVID-19 and long COVID.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670 Japan
| |
Collapse
|
43
|
The Predictive Value of Monocyte/High-Density Lipoprotein Ratio (MHR) and Positive Symptom Scores for Aggression in Patients with Schizophrenia. Medicina (B Aires) 2023; 59:medicina59030503. [PMID: 36984504 PMCID: PMC10055014 DOI: 10.3390/medicina59030503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Background and Objectives: Schizophrenia with aggression often has an inflammatory abnormality. The monocyte/high-density lipoprotein ratio (MHR), neutrophil/high-density lipoprotein ratio (NHR), platelet/high-density lipoprotein ratio (PHR) and lymphocyte/high-density lipoprotein ratio (LHR) have lately been examined as novel markers for the inflammatory response. The objective of this study was to assess the relationship between these new inflammatory biomarkers and aggression in schizophrenia patients. Materials and Methods: We enrolled 214 schizophrenia inpatients in our cross-sectional analysis. They were divided into the aggressive group (n = 94) and the non-aggressive group (n = 120) according to the Modified Overt Aggression Scale (MOAS). The severity of schizophrenia was assessed using the Positive and Negative Syndrome Scale (PANSS). The numbers of platelets (PLT), neutrophils (NEU), lymphocytes (LYM), monocytes (MON) and the high-density lipoprotein (HDL) content from subjects were recorded. The NHR, PHR, MHR and LHR were calculated. We analyzed the differences between those indexes in these two groups, and further searched for the correlation between inflammatory markers and aggression. Results: Patients with aggression had higher positive symptom scores (p = 0.002). The values of PLT, MON, MHR and PHR in the aggressive group were considerably higher (p < 0.05). The NHR (r = 0.289, p < 0.01), LHR (r = 0.213, p < 0.05) and MHR (r = 0.238, p < 0.05) values of aggressive schizophrenia patients were positively correlated with the total weighted scores of the MOAS. A higher MHR (β = 1.529, OR = 4.616, p = 0.026) and positive symptom scores (β = 0.071, OR = 1.047, p = 0.007) were significant predictors of aggression in schizophrenia patients. Conclusions: The MHR and the positive symptom scores may be predictors of aggressive behavior in schizophrenia patients. The MHR, a cheap and simple test, may be useful as a clinical tool for risk stratification, and it may direct doctors’ prevention and treatment plans in the course of ordinary clinical care.
Collapse
|
44
|
Kilic F. The nature of the binding between insulin receptor and serotonin transporter in placenta (review). Placenta 2023; 133:40-44. [PMID: 36796293 DOI: 10.1016/j.placenta.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
The interplay between the insulin receptor (IR) and serotonin transporter (SERT) allows reciprocal regulation of each other's physiological roles to ensure appropriate responses to specific environmental and developmental signals. The studies reported herein provided substantial evidence of how insulin signaling influences the modification and trafficking of SERT to the plasma membrane via enabling its association with specific endoplasmic reticulum (ER) proteins. While insulin signaling is important for the modifications of SERT proteins, the fact that phosphorylation of IR was significantly down-regulated in the placenta of SERT knock out (KO) mice suggests that SERT also regulates IR. Further suggestive of SERT functional regulation of IR, SERT-KO mice developed obesity and glucose intolerance with symptoms similar to those of type 2 diabetes. The picture emerging from those studies proposes that the interplay between IR and SERT maintains conditions supportive of IR phosphorylation and regulates insulin signaling in placenta which ultimately enables the trafficking of SERT to the plasma membrane. IR-SERT association thus appears to play a protective metabolic role in placenta and is impaired under diabetic conditions. This review focuses on recent findings describing the functional and physical associations between IR and SERT in placental cells, and the dysregulation of this process in diabetes.
Collapse
Affiliation(s)
- Fusun Kilic
- Biology Department, Merced College, Merced, CA, USA.
| |
Collapse
|
45
|
Field SL, Davidson BD, Hoerl AF, Dado-Senn B, Hernandez LL, Laporta J. Amplifying local serotonin signaling prior to dry-off hastens mammary gland involution and redevelopment in dairy cows. J Dairy Sci 2023; 106:3719-3733. [PMID: 37002143 DOI: 10.3168/jds.2022-22424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/06/2022] [Indexed: 03/31/2023]
Abstract
The monoamine serotonin (5-hydroxytryptamine, 5-HT) has been reported to inhibit milk protein gene expression and increase mammary epithelial cell (MEC) tight junction permeability after milk stasis. We hypothesized that increasing serotonin synthesis and signaling within the mammary epithelium before milk stasis would increase systemic and local involution markers, and downregulate the expression of milk protein and tight junction during involution, leading to more efficient tissue growth during the redevelopment phase. Herein, we examined the outcomes of increasing local mammary 5-HT synthesis before milk stasis on involution biomarkers, mammary gland microstructure, and gene and protein expression during the dry period. Multiparous Holstein cows were administered intramammary infusions (via the teat canal) of sterile water (CON, 4 mL/teat, n = 7) or 5-hydroxy-l-tryptophan (5-HTP, serotonin precursor, 20 mg/teat, n = 7) once daily for 5 d before dry-off (d 0). Blood, milk, and mammary secretions were collected and analyzed for components and metabolites. Mammary secretions were collected 12 h after the last milking and on d 1 to 4 during the dry period at 1200 h. Mammary gland biopsies were performed on d 4 (i.e., involution phase) and d 36 (i.e., redevelopment phase) of the dry period for histological and molecular evaluation. Milk protein and tight junction gene expression was quantified via real-time PCR. Hematoxylin and eosin staining, immunohistochemistry (Ki67), and immunofluorescence (serotonin, cleaved caspase 3) were performed to visualize tissue microstructure and to quantify serotonin intensity and cell turnover. Data were analyzed in SAS (SAS Institute Inc.) using 2-way ANOVA. After d 0, mammary secretions of 5-HTP cows had increased concentrations of 5-HT, lactoferrin, and bovine serum albumin. On d 1, 5-HTP cows had greater α-lactalbumin concentrations in plasma relative to CON. Serotonin intensity was increased in the mammary tissue of 5-HTP cows on d 4, relative to CON. On d 4, milk protein and tight junction gene expression was downregulated, MEC number was reduced, and cleaved caspase 3 protein was greater in mammary tissue of 5-HTP cows, relative to CON. On d 36, milk protein genes were upregulated, and the lumen:outer alveolar area and Ki67-positive cells were increased in the mammary tissue of 5-HTP cows, relative to CON. Amplifying serotonin signaling in the mammary epithelium before milk stasis at dry-off achieves greater apoptosis, leading to a reduction in MEC, allowing for greater cell proliferation, which results in more MEC during the redevelopment phase preceding the onset of lactation.
Collapse
Affiliation(s)
- S L Field
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison 53706
| | - B D Davidson
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison 53706
| | - A F Hoerl
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison 53706
| | - B Dado-Senn
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison 53706
| | - L L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison 53706
| | - J Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison 53706.
| |
Collapse
|
46
|
Wunnava AUR, Kurati SP, Eswar Kumar K, Muthyala MKK. Design, synthesis and evaluation of 1-(1,5-bis(4-substituted phenyl)-2-methyl-1 H-pyrrol-3-yl)- N-methylmethanamines as SERT inhibitors with potential antidepressant action. RSC Med Chem 2023; 14:393-402. [PMID: 36846366 PMCID: PMC9945855 DOI: 10.1039/d2md00243d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/09/2022] [Indexed: 01/27/2023] Open
Abstract
BM212 is a potent anti-TB agent with pharmacophoric features similar to the antidepressant drug sertraline. The shape-based virtual screening of the DrugBank database on BM212 resulted in the identification of several CNS drugs with appreciable Tanimoto scores. The docking simulations also ascertained the selectivity of BM212 towards the serotonin reuptake transporter protein (SERT) with a docking score of -6.51 kcal mol-1. Based on the SAR data available for sertraline and other antidepressant drugs, we designed, synthesized and screened twelve 1-(1,5-bis(4-substituted phenyl)-2-methyl-1H-pyrrol-3-yl)-N-methylmethanamines (SA-1 to SA-12) for in vitro SERT inhibition and in vivo antidepressant activity. The compounds were screened for in vitro 5HT reuptake inhibition using the platelet model. Among the screened compounds, (1-(1,5-bis(4-chlorophenyl)-2-methyl-1H-pyrrol-3-yl)-N-methylmethanamine) showed the same serotonin uptake inhibition (absorbance 0.22) as that of the standard drug sertraline (absorbance 0.22). BM212 had an effect on 5-HT uptake, albeit a weaker one compared to the standard (absorbance 0.671). Further, SA-5 was screened for in vivo antidepressant activity using the unpredictable chronic mild stress (UCMS) protocol to induce depression in mice. The effect of BM212 and SA-5 on the behaviour of the animals was assessed and compared against the standard drug sertraline. SA-5 at 20 mg per kg body weight was found to have a statistically significant impact on the behaviour of depressed animals.
Collapse
Affiliation(s)
- Anjani Uma Rani Wunnava
- Pharmaceutical Chemistry Research Lab, Andhra University College of Pharmaceutical Science, Andhra University Visakhapatnam India
| | - Sony Priya Kurati
- Pharmaceutical Chemistry Research Lab, Andhra University College of Pharmaceutical Science, Andhra University Visakhapatnam India
| | - Kilari Eswar Kumar
- Pharmacology Department, Andhra University College of Pharmaceutical Science, Andhra University Visakhapatnam India
| | - Murali Krishna Kumar Muthyala
- Pharmaceutical Chemistry Research Lab, Andhra University College of Pharmaceutical Science, Andhra University Visakhapatnam India
| |
Collapse
|
47
|
Lengvenyte A, Strumila R, Belzeaux R, Aouizerate B, Dubertret C, Haffen E, Llorca PM, Roux P, Polosan M, Schwan R, Walter M, D'Amato T, Januel D, Leboyer M, Bellivier F, Etain B, Navickas A, Olié E, Courtet P. Associations of white blood cell and platelet counts with specific depressive symptom dimensions in patients with bipolar disorder: Analysis of data from the FACE-BD cohort. Brain Behav Immun 2023; 108:176-187. [PMID: 36494046 DOI: 10.1016/j.bbi.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/21/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Evidences suggest that inflammation is increased in a subgroup of patients with depression. Moreover, increased peripheral inflammatory markers (cells and proteins) are associated with some, but not all depressive symptoms. On the other hand, similar studies on bipolar disorders mainly focused on blood cytokines. Here, we analysed data from a large (N = 3440), well-characterized cohort of individuals with bipolar disorder using Kendall partial rank correlation, multivariate linear regression, and network analyses to determine whether peripheral blood cell counts are associated with depression severity, its symptoms, and dimensions. Based on the self-reported 16-Item Quick Inventory of Depressive Symptomatology questionnaire scores, we preselected symptom dimensions based on literature and data-driven principal component analysis. We found that the counts of all blood cell types were only marginally associated with depression severity. Conversely, white blood cell count was significantly associated with the sickness dimension and its four components (anhedonia, slowing down, fatigue, and appetite loss). Platelet count was associated with the insomnia/restlessness dimension and its components (initial, middle, late insomnia and restlessness). Principal component analyses corroborated these results. Platelet count was also associated with suicidal ideation. In analyses stratified by sex, the white blood cell count-sickness dimension association remained significant only in men, and the platelet count-insomnia/restlessness dimension association only in women. Without implying causation, these results suggest that peripheral blood cell counts might be associated with different depressive symptoms in individuals with bipolar disorder, and that white blood cells might be implicated in sickness symptoms and platelets in insomnia/agitation and suicidal ideation.
Collapse
Affiliation(s)
- Aiste Lengvenyte
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital CHU Montpellier, Montpellier, France; IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France; Faculty of Medicine, Institute of Clinical Medicine, Psychiatric Clinic, Vilnius University, Vilnius, Lithuania; Fondation FondaMental, France.
| | - Robertas Strumila
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital CHU Montpellier, Montpellier, France; IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France; Faculty of Medicine, Institute of Clinical Medicine, Psychiatric Clinic, Vilnius University, Vilnius, Lithuania
| | - Raoul Belzeaux
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France; Fondation FondaMental, France; Pôle de Psychiatrie, Assistance Publique Hôpitaux de Marseille, Marseille, France; INT-UMR7289, CNRS Aix-Marseille Université, Marseille, France
| | - Bruno Aouizerate
- Fondation FondaMental, France; Centre Hospitalier Charles Perrens, Bordeaux, France; Laboratoire NutriNeuro (UMR INRA 1286), Université de Bordeaux, Bordeaux, France
| | - Caroline Dubertret
- Fondation FondaMental, France; Université Paris Cité, Paris, France; AP-HP, Groupe Hospitalo-Universitaire AP-HP Nord, DMU ESPRIT, Service de Psychiatrie et Addictologie, Hôpital Louis Mourier, Colombes, France; Université de Paris, Inserm UMR1266, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Emmanuel Haffen
- Fondation FondaMental, France; Service de Psychiatrie de l'Adulte, CIC-1431 INSERM, CHU de Besançon, Laboratoire de Neurosciences, UFC, UBFC, Besançon, France
| | - Pierre-Michel Llorca
- Fondation FondaMental, France; Centre Hospitalier et Universitaire, Département de Psychiatrie, Clermont-Ferrand, France; Université d'Auvergne, EA 7280 Clermont-Ferrand, France
| | - Paul Roux
- Fondation FondaMental, France; Université Paris-Saclay, UVSQ, CESP UMR1018, DevPsy-DisAP, Centre Hospitalier de Versailles, Pôle de Psychiatrie et Santé Mentale, 78157 Le Chesnay, France
| | - Mircea Polosan
- Fondation FondaMental, France; Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Raymund Schwan
- Fondation FondaMental, France; Université de Lorraine, Centre Psychothérapique de Nancy, Inserm U1254, Nancy, France
| | - Michel Walter
- Fondation FondaMental, France; Service Hospitalo-Universitaire de Psychiatrie Générale et de Réhabilitation Psycho Sociale 29G01 et 29G02, CHRU de Brest, Hôpital de Bohars, Brest, France
| | - Thierry D'Amato
- Fondation FondaMental, France; University Lyon 1, Villeurbanne, France; INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: From Resistance to Response Team, Lyon, France
| | - Dominique Januel
- Fondation FondaMental, France; Unité de Recherche Clinique, EPS Ville-Evrard, 93332 Neuilly-sur-Marne, France
| | - Marion Leboyer
- Fondation FondaMental, France; Univ Paris Est Créteil, INSERM U955, IMRB, Translational NeuroPsychiatry Laboratory, Créteil, France; AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Créteil, France
| | - Frank Bellivier
- Fondation FondaMental, France; Université Paris Cité, Paris, France; AP-HP, Groupe Hospitalo-Universitaire AP-HP Nord, DMU Neurosciences, Hôpital Fernand Widal, Département de Psychiatrie et de Médecine Addictologique, Paris, France; Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France
| | - Bruno Etain
- Fondation FondaMental, France; Université Paris Cité, Paris, France; AP-HP, Groupe Hospitalo-Universitaire AP-HP Nord, DMU Neurosciences, Hôpital Fernand Widal, Département de Psychiatrie et de Médecine Addictologique, Paris, France; Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France
| | - Alvydas Navickas
- Faculty of Medicine, Institute of Clinical Medicine, Psychiatric Clinic, Vilnius University, Vilnius, Lithuania
| | - Emilie Olié
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital CHU Montpellier, Montpellier, France; IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France; Fondation FondaMental, France
| | - Philippe Courtet
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital CHU Montpellier, Montpellier, France; IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France; Fondation FondaMental, France
| |
Collapse
|
48
|
González Brito R, Montenegro P, Méndez A, Carabelli V, Tomagra G, Shabgahi RE, Pasquarelli A, Borges R. Multielectrode Arrays as a Means to Study Exocytosis in Human Platelets. BIOSENSORS 2023; 13:86. [PMID: 36671921 PMCID: PMC9855894 DOI: 10.3390/bios13010086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Platelets are probably the most accessible human cells to study exocytosis by amperometry. These cell fragments accumulate biological amines, serotonin in particular, using similar if not the same mechanisms as those employed by sympathetic, serotoninergic, and histaminergic neurons. Thus, platelets have been widely recognized as a model system to study certain neurological and psychiatric diseases. Platelets release serotonin by exocytosis, a process that entails the fusion of a secretory vesicle to the plasma membrane and that can be monitored directly by classic single cell amperometry using carbon fiber electrodes. However, this is a tedious technique because any given platelet releases only 4-8 secretory δ-granules. Here, we introduce and validate a diamond-based multielectrode array (MEA) device for the high-throughput study of exocytosis by human platelets. This is probably the first reported study of human tissue using an MEA, demonstrating that they are very interesting laboratory tools to assess alterations to exocytosis in neuropsychiatric diseases. Moreover, these devices constitute a valuable platform for the rapid testing of novel drugs that act on secretory pathways in human tissues.
Collapse
Affiliation(s)
| | - Pablo Montenegro
- Pharmacology Unit, Medical School, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Alicia Méndez
- Pharmacology Unit, Medical School, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Valentina Carabelli
- Drug Science Department and NIS Centre, University of Torino, 10125 Torino, Italy
| | - Giulia Tomagra
- Drug Science Department and NIS Centre, University of Torino, 10125 Torino, Italy
| | - Ramtin E. Shabgahi
- Institute of Electron Devices and Circuits, Ulm University, 89069 Ulm, Germany
| | - Alberto Pasquarelli
- Institute of Electron Devices and Circuits, Ulm University, 89069 Ulm, Germany
| | - Ricardo Borges
- Pharmacology Unit, Medical School, Universidad de La Laguna, 38200 La Laguna, Spain
| |
Collapse
|
49
|
Tramadol regulates the activation of human platelets via Rac but not Rho/Rho-kinase. PLoS One 2023; 18:e0279011. [PMID: 36638092 PMCID: PMC9838859 DOI: 10.1371/journal.pone.0279011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 11/29/2022] [Indexed: 01/14/2023] Open
Abstract
Tramadol is a useful analgesic which acts as a serotonin and noradrenaline reuptake inhibitor in addition to μ-opioid receptor agonist. Cytoplasmic serotonin modulates the small GTPase activity through serotonylation, which is closely related to the human platelet activation. We recently reported that the combination of subthreshold collagen and CXCL12 synergistically activates human platelets. We herein investigated the effect and the mechanism of tramadol on the synergistic effect. Tramadol attenuated the synergistically stimulated platelet aggregation (300 μM of tramadol, 64.3% decrease, p<0.05). Not morphine or reboxetine, but duloxetine, fluvoxamine and sertraline attenuated the synergistic effect of the combination on the platelet aggregation (30 μM of fluvoxamine, 67.3% decrease, p<0.05; 30 μM of sertraline, 67.8% decrease, p<0.05). The geranylgeranyltransferase inhibitor GGTI-286 attenuated the aggregation of synergistically stimulated platelet (50 μM of GGTI-286, 80.8% decrease, p<0.05), in which GTP-binding Rac was increased. The Rac1-GEF interaction inhibitor NSC23766 suppressed the platelet activation and the phosphorylation of p38 MAPK and HSP27 induced by the combination of collagen and CXCL12. Tramadol and fluvoxamine almost completely attenuated the levels of GTP-binding Rac and the phosphorylation of both p38 MAPK and HSP27 stimulated by the combination. Suppression of the platelet aggregation after the duloxetine administration was observed in 2 of 5 patients in pain clinic. These results suggest that tramadol negatively regulates the combination of subthreshold collagen and CXCL12-induced platelet activation via Rac upstream of p38 MAPK.
Collapse
|
50
|
Goyvaerts L, Schraenen A, Lemaire K, Veld PI, Smolders I, Maroteaux L, Schuit F. Normal Pregnancy-Induced Islet Beta Cell Proliferation in Mouse Models That Are Deficient in Serotonin-Signaling. Int J Mol Sci 2022; 23:ijms232415816. [PMID: 36555462 PMCID: PMC9779327 DOI: 10.3390/ijms232415816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
During mouse pregnancy placental lactogens stimulate prolactin receptors on pancreatic islet beta cells to induce expression of the tryptophan hydroxylase Tph1, resulting in the synthesis and secretion of serotonin. Presently, the functional relevance of this phenomenon is unclear. One hypothesis is that serotonin-induced activation of 5-HT2B receptors on beta cells stimulates beta cell proliferation during pregnancy. We tested this hypothesis via three different mouse models: (i) total Tph1KO mice, (ii) 129P2/OlaHsd mice, which are incompetent to upregulate islet Tph1 during pregnancy, whereas Tph1 is normally expressed in the intestine, mammary glands, and placenta, and (iii) Htr2b-deficient mice. We observed normal pregnancy-induced levels of beta cell proliferation in total Tph1KO mice, 129P2/OlaHsd mice, and in Htr2b-/- mice. The three studied mouse models indicate that islet serotonin production and its signaling via 5-HT2B receptors are not required for the wave of beta cell proliferation that occurs during normal mouse pregnancy.
Collapse
Affiliation(s)
- Lotte Goyvaerts
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Anica Schraenen
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Katleen Lemaire
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Peter in’t Veld
- Department of Pathology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Luc Maroteaux
- INSERM UMR-U1270, Institut du Fer à Moulin, Sorbonne Université Paris, 75006 Paris, France
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|