1
|
Xian M, Maskey AR, Kopulos D, Li XM. The roles of bitter and sweet taste receptors in food allergy: Where are we now? Allergol Int 2025:S1323-8930(25)00010-3. [PMID: 40037957 DOI: 10.1016/j.alit.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/31/2024] [Accepted: 01/17/2025] [Indexed: 03/06/2025] Open
Abstract
Food allergy (FA) is a growing global concern, which contributes significantly to anaphylaxis and severe allergic reactions. Despite advancements in treatments like allergen immunotherapy and biologics, current approaches have notable limitations and there is a pressing need for new therapeutic strategies. Recent research into taste receptors has unveiled their potential role in FA, offering fresh perspectives for understanding and managing this condition. Taste receptors, particularly type 1 taste receptors (TAS1Rs/T1Rs, sweet taste receptors) and type 2 taste receptors (TAS2Rs/T2Rs, bitter taste receptors), are distributed not only in the oral cavity but also in various extra-oral tissues, and their interactions with immune responses are increasingly recognized. This review highlights the connections between taste receptors and FA, exploring how taste receptor mechanisms might contribute to FA pathogenesis and treatment. Taste receptors, especially TAS2Rs, which include multiple subtypes with varying ligand specificities, have been implicated in modulating allergic responses and could serve as targets for novel FA therapies. Additionally, compounds such as bitter agents and sweeteners that interact with taste receptors show promise in influencing FA outcomes. This review emphasizes the need for further research into the mechanisms of taste receptor involvement in FA and suggests that targeting these receptors could provide new avenues for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Mo Xian
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Anish R Maskey
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Daniel Kopulos
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA; Department of Otolaryngology, New York Medical College, Valhalla, NY, USA; Department of Dermatology, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
2
|
Zhang S, Zhang C, Guo J, Li B, Li W, Liu J, Feng L, Wang P. Higher sweet beverage consumption was associated with increased gestational weight gain and birth weight: A Chinese cohort study. Nutr Res 2024; 132:15-26. [PMID: 39423748 DOI: 10.1016/j.nutres.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
Diet during pregnancy is crucial to maternal metabolism and fetal development, so exploring the most potent food risk factor could improve maternal and child health. In this study, we investigated the diet and lifestyle of 833 healthy pregnant women in the second trimester from November 2020 to August 2021. Based on the Tianjin Antenatal Care System in China, we followed up with these women and recorded their gestational weight gain (GWG) and newborn birth weight. We conducted a dietary survey through FFQ based on the food groups recommended by the Chinese Dietary Guidelines and included common ultra-processed foods. We collected 219 semi-quantitative FFQs and 614 self-reported FFQs for analysis. According to the consumption frequency of 12 food groups, 4 dietary patterns were extracted by principal component analysis. We analyzed the associations of food energy, consumption frequency, and dietary patterns with GWG and birth weight, especially GWG in the first and second trimesters (f-GWG). The results showed that f-GWG was positively correlated with food energy. Beverage consumption was associated with f-GWG (r = 0.288, P = .026) in obese pregnant women. A dietary pattern that favors high consumption of ultra-processed foods (fried foods, baked desserts, and sweet beverages) was associated with increased GWGs. Non-obesity women with high consumption of baked desserts and sweet beverages had higher GWGs (P < .05). After adjusting for confounding factors (including total energy, physical activity, and sleep quality), only sweet beverage consumption was associated with f-GWG (β 0.498, 95%CI 0.153-0.843) and birth weight (β 0.124, 95%CI 0.009-0.240). Sweet beverage consumption is a key adjustable risk factor for prenatal care.
Collapse
Affiliation(s)
- Shuang Zhang
- Tianjin Women and Children's Health Center, Tianjin, China.
| | - Cuiping Zhang
- Tianjin Women and Children's Health Center, Tianjin, China
| | - Jia Guo
- Tianjin Women and Children's Health Center, Tianjin, China
| | - Baojuan Li
- Tianjin Women and Children's Health Center, Tianjin, China
| | - Weiqin Li
- Tianjin Women and Children's Health Center, Tianjin, China
| | - Jinnan Liu
- Tianjin Women and Children's Health Center, Tianjin, China
| | - Lingyan Feng
- Tianjin Women and Children's Health Center, Tianjin, China
| | - Peng Wang
- Tianjin Women and Children's Health Center, Tianjin, China
| |
Collapse
|
3
|
Mustika D, Nishimura Y, Ueno S, Tominaga S, Shimizu T, Tajiri N, Jung CG, Hida H. Central amygdala is related to the reduction of aggressive behavior by monosodium glutamate ingestion during the period of development in an ADHD model rat. Front Nutr 2024; 11:1356189. [PMID: 38765817 PMCID: PMC11099272 DOI: 10.3389/fnut.2024.1356189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Monosodium glutamate (MSG), an umami substance, stimulates the gut-brain axis communication via gut umami receptors and the subsequent vagus nerves. However, the brain mechanism underlying the effect of MSG ingestion during the developmental period on aggression has not yet been clarified. We first tried to establish new experimental conditions to be more appropriate for detailed analysis of the brain, and then investigated the effects of MSG ingestion on aggressive behavior during the developmental stage of an ADHD rat model. Methods Long-Evans, WKY/Izm, SHR/Izm, and SHR-SP/Ezo were individually housed from postnatal day 25 for 5 weeks. Post-weaning social isolation (PWSI) was given to escalate aggressive behavior. The resident-intruder test, that is conducted during the subjective night, was used for a detailed analysis of aggression, including the frequency, duration, and latency of anogenital sniffing, aggressive grooming, and attack behavior. Immunohistochemistry of c-Fos expression was conducted in all strains to predict potential aggression-related brain areas. Finally, the most aggressive strain, SHR/Izm, a known model of attention-deficit hyperactivity disorder (ADHD), was used to investigate the effect of MSG ingestion (60 mM solution) on aggression, followed by c-Fos immunostaining in aggression-related areas. Bilateral subdiaphragmatic vagotomy was performed to verify the importance of gut-brain interactions in the effect of MSG. Results The resident intruder test revealed that SHR/Izm rats were the most aggressive among the four strains for all aggression parameters tested. SHR/Izm rats also showed the highest number of c-Fos + cells in aggression-related brain areas, including the central amygdala (CeA). MSG ingestion significantly decreased the frequency and duration of aggressive grooming and attack behavior and increased the latency of attack behavior. Furthermore, MSG administration successfully increased c-Fos positive cell number in the intermediate nucleus of the solitary tract (iNTS), a terminal of the gastrointestinal sensory afferent fiber of the vagus nerve, and modulated c-Fos positive cells in the CeA. Interestingly, vagotomy diminished the MSG effects on aggression and c-Fos expression in the iNTS and CeA. Conclusion MSG ingestion decreased PWSI-induced aggression in SHR/Izm, which was mediated by the vagus nerve related to the stimulation of iNTS and modulation of CeA activity.
Collapse
Affiliation(s)
- Dewi Mustika
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Physiology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Yu Nishimura
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinya Ueno
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shiori Tominaga
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeshi Shimizu
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Food and Nutrition, Shokei University Junior College, Kumamoto, Japan
| | - Naoki Tajiri
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Cha-Gyun Jung
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hideki Hida
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
4
|
Lee SH, Ko HM, Jee W, Kim H, Chung WS, Jang HJ. Isosinensetin Stimulates Glucagon-like Peptide-1 Secretion via Activation of hTAS2R50 and the G βγ-Mediated Signaling Pathway. Int J Mol Sci 2023; 24:ijms24043682. [PMID: 36835092 PMCID: PMC9959872 DOI: 10.3390/ijms24043682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Bitter taste receptors (TAS2Rs) are G protein-coupled receptors localized in the taste buds of the tongue. They may also be present in non-lingual organs, including the brain, lung, kidney, and gastrointestinal (GI) tract. Recent studies on bitter taste receptor functions have suggested TAS2Rs as potential therapeutic targets. The human bitter taste receptor subtype hTAS2R50 responds to its agonist isosinensetin (ISS). Here, we demonstrated that, unlike other TAS2R agonists, isosinensetin activated hTAS2R50 as well as increased Glucagon-like peptide 1 (GLP-1) secretion through the Gβγ-mediated pathway in NCI-H716 cells. To confirm this mechanism, we showed that ISS increased intracellular Ca2+ and was suppressed by the IP3R inhibitor 2-APB as well as the PLC inhibitor U73122, suggesting that TAS2Rs alters the physiological state of enteroendocrine L cells in a PLC-dependent manner. Furthermore, we demonstrated that ISS upregulated proglucagon mRNA and stimulated GLP-1 secretion. ISS-mediated GLP-1 secretion was suppressed in response to small interfering RNA-mediated silencing of Gα-gust and hTAS2R50 as well as 2-APB and U73122. Our findings improved the understanding of how ISS modulates GLP-1 secretion and indicates the possibility of using ISS as a therapeutic agent in the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Seung-Hyeon Lee
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Min Ko
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wona Jee
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyungsuk Kim
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Won-Seok Chung
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyeung-Jin Jang
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence:
| |
Collapse
|
5
|
Orku SE, Suyen G, Bas M. The effect of regular consumption of four low- or no-calorie sweeteners on glycemic response in healthy women: A randomized controlled trial. Nutrition 2023; 106:111885. [PMID: 36470113 DOI: 10.1016/j.nut.2022.111885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/03/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to determine the effects of regular exposure to certain low- or no-calorie sweeteners (LNCS) on glucose tolerance and glucagon-like peptide 1 (GLP-1) release in healthy individuals. METHODS It was designed as a randomized, single-blinded, controlled study. Healthy and normoglycemic adults who did not have regular consumption of LNCS were recruited. Participants underwent a 75-g oral glucose tolerance test (OGTT) at baseline and were randomly assigned to consume 330 mL water sweetened with saccharine, sucralose, or aspartame + acesulfame-K (Asp+Ace-K), or plain water for the control group, daily for 4 wk. Fasting plasma glucose, insulin, GLP-1, and glycated hemoglobin A1c (HbA1c) levels and 1-h, 2-h, and 3-h plasma glucose and insulin levels during OGTT were obtained at baseline. The change in insulin sensitivity was assessed by both the Homeostatic Model Assessment Insulin Resistance (HOMA-IR) Index and the Matsuda Index. Anthropometric measurements and dietary intakes were determined at baseline. Baseline measurements were repeated at week 4. RESULTS Of the participants enrolled in the study, 42 (age, 21.24 ± 2.26 y; body mass index, 20.65 ± 2.88 kg/m2) completed the 4-wk intervention period. There were no differences for glucose, insulin, GLP-1, or HbA1c levels or HOMA-IR scores at baseline or at week 4 when compared with the control group. The area under the curve of mean glucose and insulin values during OGTT were also found to be similar between groups at baseline and week 4. There were also no effects of LNCS intake on body weight, body composition, and waist circumference. CONCLUSIONS These results suggest that regular consumption of LNCS-sweetened water similar to doses consumed in daily life over 4 wk had no significant effect on glycemic response, insulin sensitivity, GLP-1 release, and body weight in healthy individuals. This trial was registered at www. CLINICALTRIALS gov as NCT04904133.
Collapse
Affiliation(s)
- Saziye E Orku
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey; Department of Nutrition and Dietetics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
| | - Guldal Suyen
- Department of Physiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Murat Bas
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
6
|
Wooding SP, Ramirez VA. Global population genetics and diversity in the TAS2R bitter taste receptor family. Front Genet 2022; 13:952299. [PMID: 36303543 PMCID: PMC9592824 DOI: 10.3389/fgene.2022.952299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022] Open
Abstract
Bitter taste receptors (TAS2Rs) are noted for their role in perception, and mounting evidence suggests that they mediate responses to compounds entering airways, gut, and other tissues. The importance of these roles suggests that TAS2Rs have been under pressure from natural selection. To determine the extent of variation in TAS2Rs on a global scale and its implications for human evolution and behavior, we analyzed patterns of diversity in the complete 25 gene repertoire of human TAS2Rs in ∼2,500 subjects representing worldwide populations. Across the TAS2R family as a whole, we observed 721 single nucleotide polymorphisms (SNPs) including 494 nonsynonymous SNPs along with 40 indels and gained and lost start and stop codons. In addition, computational predictions identified 169 variants particularly likely to affect receptor function, making them candidate sources of phenotypic variation. Diversity levels ranged widely among loci, with the number of segregating sites ranging from 17 to 41 with a mean of 32 among genes and per nucleotide heterozygosity (π) ranging from 0.02% to 0.36% with a mean of 0.12%. FST ranged from 0.01 to 0.26 with a mean of 0.13, pointing to modest differentiation among populations. Comparisons of observed π and FST values with their genome wide distributions revealed that most fell between the 5th and 95th percentiles and were thus consistent with expectations. Further, tests for natural selection using Tajima’s D statistic revealed only two loci departing from expectations given D’s genome wide distribution. These patterns are consistent with an overall relaxation of selective pressure on TAS2Rs in the course of recent human evolution.
Collapse
Affiliation(s)
- Stephen P. Wooding
- Department of Anthropology, University of California, Merced, Merced, CA, United States
- *Correspondence: Stephen P. Wooding,
| | - Vicente A. Ramirez
- Department of Public Health, University of California, Merced, Merced, CA, United States
| |
Collapse
|
7
|
Chen Z, Chung HY. Pseudo-Taste Cells Derived from Rat Taste and Non-Taste Tissues: Implications for Cultured Taste Cell-Based Biosensors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10826-10835. [PMID: 35998688 DOI: 10.1021/acs.jafc.2c04934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although the technique for taste cell culture has been reported, cultured taste cells have remained poorly validated. This study systematically compared the cultured cells derived from both taste and non-taste tissues. Fourteen cell lines established from rat circumvallate papillae (RCVs* or RCVs), non-taste lingual epithelia (RVEs), and tail skins (RTLs) were analyzed by PCR, immunocytochemistry, proteomics, and calcium imaging. The cell lines were morphologically indistinguishable, and all expressed some taste-related molecules. Of the tested RCVs*, RCVs, RVEs, and RTLs (%), 84.7 ± 7.8, 63.9 ± 22.8, 46.8 ± 0.3, and 40.8 ± 15.1 of them were responsive to at least one tastant or ATP, respectively. However, the calcium signaling pathways in the responding cells differed from the canonical taste transduction pathways in the taste cells in vivo, suggesting that they were not genuine taste cells. In addition, the growth medium intended for taste cell culture did not prevent the proliferation of non-gustatory epithelial cells regardless of supplementation of Y-27632 and EGF. In conclusion, the current method for taste cell culture is susceptible to pseudo-taste cells that may lead to overinterpretation. Thus, biosensors that rely on calcium responses of cultured taste cells should be applied with extreme caution.
Collapse
Affiliation(s)
- Zixing Chen
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hau Yin Chung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
8
|
Wooding SP, Ramirez VA. Worldwide diversity, association potential, and natural selection in the superimposed taste genes, CD36 and GNAT3. Chem Senses 2022; 47:6491270. [PMID: 34972209 DOI: 10.1093/chemse/bjab052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CD36 and GNAT3 mediate taste responses, with CD36 acting as a lipid detector and GNAT3 acting as the α subunit of gustducin, a G protein governing sweet, savory, and bitter transduction. Strikingly, the genes encoding CD36 and GNAT3 are genomically superimposed, with CD36 completely encompassing GNAT3. To characterize genetic variation across the CD36-GNAT3 region, its implications for phenotypic diversity, and its recent evolution, we analyzed from ~2,500 worldwide subjects sequenced by the 1000 Genomes Project (1000GP). CD36-GNAT3 harbored extensive diversity including 8,688 single-nucleotide polymorphisms (SNPs), 414 indels, and other complex variants. Sliding window analyses revealed that nucleotide diversity and population differentiation across CD36-GNAT3 were consistent with genome-wide trends in the 1000GP (π = 0.10%, P = 0.64; FST = 9.0%, P = 0.57). In addition, functional predictions using SIFT and PolyPhen-2 identified 60 variants likely to alter protein function, and they were in weak linkage disequilibrium (r2 < 0.17), suggesting their effects are largely independent. However, the frequencies of predicted functional variants were low (P¯ = 0.0013), indicating their contributions to phenotypic variance on population scales are limited. Tests using Tajima's D statistic revealed that pressures from natural selection have been relaxed across most of CD36-GNAT3 during its recent history (0.39 < P < 0.67). However, CD36 exons showed signs of local adaptation consistent with prior reports (P < 0.035). Thus, CD36 and GNAT3 harbor numerous variants predicted to affect taste sensitivity, but most are rare and phenotypic variance on a population level is likely mediated by a small number of sites.
Collapse
Affiliation(s)
- Stephen P Wooding
- Department of Anthropology, University of California, Merced, Merced, CA, USA
| | - Vicente A Ramirez
- Department of Public Health, University of California, Merced, Merced, CA, USA
| |
Collapse
|
9
|
Martens K, Steelant B, Bullens DMA. Taste Receptors: The Gatekeepers of the Airway Epithelium. Cells 2021; 10:cells10112889. [PMID: 34831117 PMCID: PMC8616034 DOI: 10.3390/cells10112889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Taste receptors are well known for their role in the sensation of taste. Surprisingly, the expression and involvement of taste receptors in chemosensory processes outside the tongue have been recently identified in many organs including the airways. Currently, a clear understanding of the airway-specific function of these receptors and the endogenous activating/inhibitory ligands is lagging. The focus of this review is on recent physiological and clinical data describing the taste receptors in the airways and their activation by secreted bacterial compounds. Taste receptors in the airways are potentially involved in three different immune pathways (i.e., the production of nitric oxide and antimicrobial peptides secretion, modulation of ciliary beat frequency, and bronchial smooth muscle cell relaxation). Moreover, genetic polymorphisms in these receptors may alter the patients’ susceptibility to certain types of respiratory infections as well as to differential outcomes in patients with chronic inflammatory airway diseases such as chronic rhinosinusitis and asthma. A better understanding of the function of taste receptors in the airways may lead to the development of a novel class of therapeutic molecules that can stimulate airway mucosal immune responses and could treat patients with chronic airway diseases.
Collapse
Affiliation(s)
- Katleen Martens
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (K.M.); (B.S.)
- Department of Bioscience Engineering, University of Antwerp, 2020 Antwerp, Belgium
| | - Brecht Steelant
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (K.M.); (B.S.)
| | - Dominique M. A. Bullens
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (K.M.); (B.S.)
- Clinical Division of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
10
|
Wooding SP, Ramirez VA, Behrens M. Bitter taste receptors: Genes, evolution and health. Evol Med Public Health 2021; 9:431-447. [PMID: 35154779 PMCID: PMC8830313 DOI: 10.1093/emph/eoab031] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/05/2021] [Indexed: 02/01/2023] Open
Abstract
Bitter taste perception plays vital roles in animal behavior and fitness. By signaling the presence of toxins in foods, particularly noxious defense compounds found in plants, it enables animals to avoid exposure. In vertebrates, bitter perception is initiated by TAS2Rs, a family of G protein-coupled receptors expressed on the surface of taste buds. There, oriented toward the interior of the mouth, they monitor the contents of foods, drinks and other substances as they are ingested. When bitter compounds are encountered, TAS2Rs respond by triggering neural pathways leading to sensation. The importance of this role placed TAS2Rs under selective pressures in the course of their evolution, leaving signatures in patterns of gene gain and loss, sequence polymorphism, and population structure consistent with vertebrates' diverse feeding ecologies. The protective value of bitter taste is reduced in modern humans because contemporary food supplies are safe and abundant. However, this is not always the case. Some crops, particularly in the developing world, retain surprisingly high toxicity and bitterness remains an important measure of safety. Bitter perception also shapes health through its influence on preference driven behaviors such as diet choice, alcohol intake and tobacco use. Further, allelic variation in TAS2Rs is extensive, leading to individual differences in taste sensitivity that drive these behaviors, shaping susceptibility to disease. Thus, bitter taste perception occupies a critical intersection between ancient evolutionary processes and modern human health.
Collapse
Affiliation(s)
- Stephen P Wooding
- Department of Anthropology and Health Sciences Research Institute, University of California, Merced, CA, USA
| | - Vicente A Ramirez
- Department of Public Health, University of California, Merced, CA, USA
| | - Maik Behrens
- Maik Behrens, Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
11
|
Li J, Zhu S, Lv Z, Dai H, Wang Z, Wei Q, Hamdard E, Mustafa S, Shi F, Fu Y. Drinking Water with Saccharin Sodium Alters the Microbiota-Gut-Hypothalamus Axis in Guinea Pig. Animals (Basel) 2021; 11:1875. [PMID: 34201842 PMCID: PMC8300211 DOI: 10.3390/ani11071875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
The effects of saccharin, as a type of sweetener additive, on the metabolism and development of mammals are still controversial. Our previous research revealed that saccharin sodium (SS) promoted the feed intake and growth of guinea pigs. In this experiment, we used the guinea pig model to study the physiological effect of SS in the microbiota-gut-hypothalamus axis. Adding 1.5 mM SS to drinking water increased the serum level of glucose, followed by the improvement in the morphology and barrier function of the ileal villus, such as SS supplementation which increased the villus height and villus height/crypt depth ratio. Saccharin sodium (SS) treatment activated the sweet receptor signaling in the ileum and altered GHRP hormone secretion. In the hypothalamus of SS and control (CN) group, RNA-seq identified 1370 differently expressed genes (796 upregulated, 574 downregulated), enriching into the taste signaling transduction, and neuroactive ligand-receptor interaction. LEfSe analysis suggested that Lactobacillaceae-Lactobacillus was the microbe with significantly increased abundance of ileum microorganisms in the SS-treated group, while Brevinema-Andersonii and Erysipelotrichaceae-Ilebacterium were the microbes with significantly increased abundance of the control. Furthermore, SS treatment significantly enhanced the functions of chemoheterotrophy and fermentation of ileal microflora compared to the CN group. Accordingly, SS treatment increased levels of lactic acid and short-chain fatty acids (acetic acid, propionic acid and N-valeric acid) in the ileal digesta. In summary, drinking water with 1.5 mM SS activated sweet receptor signaling in the gut and altered GHRP hormone secretion, followed by the taste signaling transduction in the hypothalamus.
Collapse
Affiliation(s)
- Junrong Li
- College of Animal Science, Zhejiang University, Hangzhou 310058, China;
- College of Agriculture, Jinhua Polytechnic, Jinhua 321000, China;
| | - Shanli Zhu
- College of Agriculture, Jinhua Polytechnic, Jinhua 321000, China;
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Zengpeng Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Hongjian Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Zhe Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Enayatullah Hamdard
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Sheeraz Mustafa
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Yan Fu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
12
|
Ano Y, Ohya R, Yamazaki T, Takahashi C, Taniguchi Y, Kondo K, Takashima A, Uchida K, Nakayama H. Hop bitter acids containing a β-carbonyl moiety prevent inflammation-induced cognitive decline via the vagus nerve and noradrenergic system. Sci Rep 2020; 10:20028. [PMID: 33208787 PMCID: PMC7674441 DOI: 10.1038/s41598-020-77034-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
The prevention of age-related cognitive decline and dementia is becoming a high priority because of the rapid growth of aging populations. We have previously shown that hop bitter acids such as iso-α-acids (IAAs) and matured hop bitter acids (MHBAs) activate the vagus nerve and improve memory impairment. Moreover, supplements with MHBAs were shown to improve memory retrieval in older adults. However, the underlying mechanisms have not been entirely elucidated. We aimed to investigate the effects of MHBAs and the common β-tricarbonyl moiety on memory impairment induced by the activation of microglia and the loss of the noradrenergic system. MHBAs and a model compound with β-tricarbonyl moiety were administered to LPS-inoculated mice and 5 × FAD Alzheimer’s disease (AD) model mice, following the evaluation in behavioral tests and microglial activation. To evaluate the association of noradrenaline with MHBAs effects, mice treated with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), a noradrenergic neurotoxin that selectively damages noradrenergic projections from the locus coeruleus, were subjected to the behavioral evaluation. MHBAs reduced brain inflammation and improved LPS-induced memory impairment. A model compound possessing the β-tricarbonyl moiety improved the LPS-induced memory impairment and neuronal loss via the vagus nerve. Additionally, the protective effects of MHBAs on memory impairment were attenuated by noradrenaline depletion using DSP-4. MHBAs suppressed the activation of microglia and improved the memory impairment in 5 × FAD mice, which was also attenuated by noradrenaline depletion. Treatment with MHBAs increased cholecystokinin production from the intestinal cells. Generally, cholecystokinin activates the vagal nerve, which stimulate the noradrenergic neuron in the locus ceruleus. Taken together, our results reveal that food ingredients such as hop bitter acids with a β-tricarbonyl moiety suppress microglial activation and improve memory impairment induced by inflammation or AD pathology via the activation of the gut-brain axis and noradrenergic system. Supplements with hop bitter acids, including MHBAs, might be a novel approach for the prevention of cognitive decline and dementia.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan. .,Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan.
| | - Rena Ohya
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan.,Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Takahiro Yamazaki
- Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Chika Takahashi
- Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Yoshimasa Taniguchi
- Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Keiji Kondo
- Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | | | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan
| |
Collapse
|
13
|
Ayabe T, Fukuda T, Ano Y. Improving Effects of Hop-Derived Bitter Acids in Beer on Cognitive Functions: A New Strategy for Vagus Nerve Stimulation. Biomolecules 2020; 10:E131. [PMID: 31940997 PMCID: PMC7022854 DOI: 10.3390/biom10010131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/22/2022] Open
Abstract
Dementia and cognitive decline are global public health problems. Moderate consumption of alcoholic beverages reduces the risk of dementia and cognitive decline. For instance, resveratrol, a polyphenolic compound found in red wine, has been well studied and reported to prevent dementia and cognitive decline. However, the effects of specific beer constituents on cognitive function have not been investigated in as much detail. In the present review, we discuss the latest reports on the effects and underlying mechanisms of hop-derived bitter acids found in beer. Iso-α-acids (IAAs), the main bitter components of beer, enhance hippocampus-dependent memory and prefrontal cortex-associated cognitive function via dopamine neurotransmission activation. Matured hop bitter acids (MHBAs), oxidized components with β-carbonyl moieties derived from aged hops, also enhance memory functions via norepinephrine neurotransmission-mediated mechanisms. Furthermore, the effects of both IAAs and MHBAs are attenuated by vagotomy, suggesting that these bitter acids enhance cognitive function via vagus nerve stimulation. Moreover, supplementation with IAAs attenuates neuroinflammation and cognitive impairments in various rodent models of neurodegeneration including Alzheimer's disease. Daily supplementation with hop-derived bitter acids (e.g., 35 mg/day of MHBAs) may be a safe and effective strategy to stimulate the vagus nerve and thus enhance cognitive function.
Collapse
Affiliation(s)
- Tatsuhiro Ayabe
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan; (T.F.); (Y.A.)
| | | | | |
Collapse
|
14
|
Hunter SR, Reister EJ, Cheon E, Mattes RD. Low Calorie Sweeteners Differ in Their Physiological Effects in Humans. Nutrients 2019; 11:E2717. [PMID: 31717525 PMCID: PMC6893706 DOI: 10.3390/nu11112717] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Low calorie sweeteners (LCS) are prevalent in the food supply for their primary functional property of providing sweetness with little or no energy. Though tested for safety individually, there has been extremely limited work on the efficacy of each LCS. It is commonly assumed all LCS act similarly in their behavioral and physiological effects. However, each LCS has its own chemical structure that influences its metabolism, making each LCS unique in its potential effects on body weight, energy intake, and appetite. LCS may have different behavioral and physiological effects mediated at the sweet taste receptor, in brain activation, with gut hormones, at the microbiota and on appetitive responses. Further elucidation of the unique effects of the different commercially available LCS may hold important implications for recommendations about their use for different health outcomes.
Collapse
Affiliation(s)
| | | | | | - Richard D. Mattes
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA; (S.R.H.); (E.J.R.); (E.C.)
| |
Collapse
|
15
|
Nolden AA, Hwang LD, Boltong A, Reed DR. Chemosensory Changes from Cancer Treatment and Their Effects on Patients' Food Behavior: A Scoping Review. Nutrients 2019; 11:E2285. [PMID: 31554217 PMCID: PMC6836020 DOI: 10.3390/nu11102285] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 02/03/2023] Open
Abstract
Individuals undergoing treatment for cancer can experience changes in taste or smell that are often assumed to affect constructs related to food behavior, although this relationship is rarely measured directly. To ascertain the extent to which measured changes in taste and smell during and after cancer treatment affect food behavior, we conducted a scoping review and completed a comparative analysis for studies that met our criteria, which were: they directly measured cancer patients' (a) psychophysical response to taste and/or olfactory stimuli, and (b) food behavior (including food enjoyment, food preference, dietary intake) in people affected by cancer. Eleven studies met these criteria and were included in the review. All 11 studies evaluated taste and five also measured smell. A comparative analysis exploring taste and food behavior shows that a reduced sweet taste function (decreased sensitivity) was associated with a reduced intake of a variety of different macro and micro nutrients, reduced appetite, and overall lower energy intake. One out of six studies that measured smell and food measured observed changes in olfactory function following cancer treatment. There were no significant relationships reported between olfactory measures and food behavior. Taste changes that arise from cancer treatment appear to have a direct effect on food behavior, although there is a need for more research using standardized measures and larger sample sizes. A better understanding of taste alterations and their implications for dietary intake and food enjoyment will support optimal nutritional health by identifying strategies to help patients eat well during and after cancer treatment.
Collapse
Affiliation(s)
- Alissa A Nolden
- Food Science Department, College of Natural Sciences, University of Massachusetts, Amherst, MA 01003, USA.
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA.
| | - Liang-Dar Hwang
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland 4102, Australia.
| | - Anna Boltong
- Victorian Comprehensive Cancer Centre, Melbourne 3000, Australia.
- Melbourne School of Population and Global Health, The University of Melbourne, Parkville 3053, Australia.
| | - Danielle R Reed
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Carey RM, Lee RJ. Taste Receptors in Upper Airway Innate Immunity. Nutrients 2019; 11:nu11092017. [PMID: 31466230 PMCID: PMC6770031 DOI: 10.3390/nu11092017] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Taste receptors, first identified on the tongue, are best known for their role in guiding our dietary preferences. The expression of taste receptors for umami, sweet, and bitter have been demonstrated in tissues outside of the oral cavity, including in the airway, brain, gastrointestinal tract, and reproductive organs. The extra-oral taste receptor chemosensory pathways and the endogenous taste receptor ligands are generally unknown, but there is increasing data suggesting that taste receptors are involved in regulating some aspects of innate immunity, and may potentially control the composition of the nasal microbiome in healthy individuals or patients with upper respiratory diseases like chronic rhinosinusitis (CRS). For this reason, taste receptors may serve as potential therapeutic targets, providing alternatives to conventional antibiotics. This review focuses on the physiology of sweet (T1R) and bitter (T2R) taste receptors in the airway and their activation by secreted bacterial products. There is particular focus on T2R38 in sinonasal ciliated cells, as well as the sweet and bitter receptors found on specialized sinonasal solitary chemosensory cells. Additionally, this review explores the impact of genetic variations in these receptors on the differential susceptibility of patients to upper airway infections, such as CRS.
Collapse
Affiliation(s)
- Ryan M Carey
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Kure Liu C, Joseph PV, Feldman DE, Kroll DS, Burns JA, Manza P, Volkow ND, Wang GJ. Brain Imaging of Taste Perception in Obesity: a Review. Curr Nutr Rep 2019; 8:108-119. [PMID: 30945140 PMCID: PMC6486899 DOI: 10.1007/s13668-019-0269-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW We summarize neuroimaging findings related to processing of taste (fat, salt, umami, bitter, and sour) in the brain and how they influence hedonic responses and eating behaviors and their role in obesity. RECENT FINDINGS Neuroimaging studies in obese individuals have revealed alterations in reward/motivation, executive control/self-regulation, and limbic/affective circuits that are implicated in food and drug addiction. Psychophysical studies show that sensory properties of food ingredients may be associated with anthropometric and neurocognitive outcomes in obesity. However, few studies have examined the neural correlates of taste and processing of calories and nutrient content in obesity. The literature of neural correlated of bitter, sour, and salty tastes remains sparse in obesity. Most published studies have focused on sweet, followed by fat and umami taste. Studies on calorie processing and its conditioning by preceding taste sensations have started to delineate a dynamic pattern of brain activation associated with appetition. Our expanded understanding of taste processing in the brain from neuroimaging studies is poised to reveal novel prevention and treatment targets to help address overeating and obesity.
Collapse
Affiliation(s)
- Christopher Kure Liu
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| | - Paule Valery Joseph
- Sensory Science and Metabolism Unit, Biobehavioral Branch, National Institute of Nursing Research, National Institutes of Health, 31 Center Drive, Rm 5B03, Bethesda, MD 20892-2178 USA
| | - Dana E. Feldman
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| | - Danielle S. Kroll
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| | - Jamie A. Burns
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
- National Institute on Drug Abuse, National Institutes of Health, 6001 Executive Blvd., Suite 5274, Bethesda, MD 20892-9581 USA
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| |
Collapse
|
18
|
Higgins KA, Mattes RD. A randomized controlled trial contrasting the effects of 4 low-calorie sweeteners and sucrose on body weight in adults with overweight or obesity. Am J Clin Nutr 2019; 109:1288-1301. [PMID: 30997499 DOI: 10.1093/ajcn/nqy381] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/11/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Low-calorie sweeteners (LCSs) provide sweetness with little or no energy. However, each LCS's unique chemical structure has potential to elicit different sensory, physiological, and behavioral responses that affect body weight. OBJECTIVE The purpose of this trial was to compare the effects of consumption of 4 LCSs and sucrose on body weight, ingestive behaviors, and glucose tolerance over a 12-wk intervention in adults (18-60 y old) with overweight or obesity (body mass index 25-40 kg/m2). METHODS In a parallel-arm design, 154 participants were randomly assigned to consume 1.25-1.75 L of beverage sweetened with sucrose (n = 39), aspartame (n = 30), saccharin (n = 29), sucralose (n = 28), or rebaudioside A (rebA) (n = 28) daily for 12 wk. The beverages contained 400-560 kcal/d (sucrose treatments) or <5 kcal/d (LCS treatments). Anthropometric indexes, energy intake, energy expenditure, appetite, and glucose tolerance were measured at baseline. Body weight was measured every 2 wk with energy intake, expenditure, and appetite assessed every 4 wk. Twenty-four-hour urine collections were completed every 4 wk to determine study compliance via para-aminobenzoic acid excretion. RESULTS Of the participants enrolled in the trial, 123 completed the 12-wk intervention. Sucrose and saccharin consumption led to increased body weight across the 12-wk intervention (Δweight = +1.85 ± 0.36 kg and +1.18 ± 0.36 kg, respectively; P ≤ 0.02) and did not differ from each other. There was no significant change in body weight with consumption of the other LCS treatments compared with baseline, but change in body weight for sucralose was negative and significantly lower compared with all other LCSs at week 12 (weight difference ≥ 1.37 ± 0.52 kg, P ≤ 0.008). Energy intake decreased with sucralose consumption (P = 0.02) and ingestive frequency was lower for sucralose than for saccharin (P = 0.045). Glucose tolerance was not significantly affected by any of the sweetener treatments. CONCLUSIONS Sucrose and saccharin consumption significantly increase body weight compared with aspartame, rebA, and sucralose, whereas weight change was directionally negative and lower for sucralose compared with saccharin, aspartame, and rebA consumption. LCSs should be categorized as distinct entities because of their differing effects on body weight. This trial was registered at clinicaltrials.gov as NCT02928653.
Collapse
Affiliation(s)
- Kelly A Higgins
- Departments of Food Science and Nutrition Science, Purdue University, West Lafayette, IN
| | - Richard D Mattes
- Departments of Nutrition Science, Purdue University, West Lafayette, IN
| |
Collapse
|
19
|
Ano Y, Hoshi A, Ayabe T, Ohya R, Uchida S, Yamada K, Kondo K, Kitaoka S, Furuyashiki T. Iso-α-acids, the bitter components of beer, improve hippocampus-dependent memory through vagus nerve activation. FASEB J 2019; 33:4987-4995. [PMID: 30601670 PMCID: PMC6436653 DOI: 10.1096/fj.201801868rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/10/2018] [Indexed: 11/11/2022]
Abstract
Iso-α-acids (IAAs) are hop-derived bitter acids of beer. Epidemiologic studies suggest that moderate alcohol consumption is beneficial for cognitive function, but they do not show the ingredients in alcoholic beverages. Previously, we reported that long-term consumption of IAAs prevents inflammation and Alzheimer pathologies in mice, but their effects on cognitive function have not been evaluated. In the present study, we demonstrated that the consumption of IAAs improves spatial and object recognition memory functions not only in normal Crl:CD1(ICR) male mice but also in mice with pharmacologically induced amnesia. IAA consumption increased the total and extracellular levels of dopamine in the hippocampus of mice and Sprague-Dawley male rats, respectively. Dopamine D1 receptor antagonist treatment and knockdown of dopamine D1 receptor expression in the hippocampus attenuated IAA-induced spatial memory improvement. Furthermore, vagotomy attenuated the effects of IAAs in improving spatial and object recognition memory functions and increasing the total level of dopamine in the hippocampus. These results suggest that the consumption of IAAs activates dopamine D1 receptor-signaling in the hippocampus in a vagus nerve-dependent manner and, consequently, improves spatial and object recognition memory functions. Vagal activation with food components including IAAs may be an easy and safe approach to improve cognitive functions.-Ano, Y., Hoshi, A., Ayabe, T., Ohya, R., Uchida, S., Yamada, K., Kondo, K., Kitaoka, S., Furuyashiki, T. Iso-α-acids, the bitter components of beer, improve hippocampus-dependent memory through vagus nerve activation.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Limited, Yokohama-shi, Japan
| | - Ayaka Hoshi
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Limited, Yokohama-shi, Japan
| | - Tatsuhiro Ayabe
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Limited, Yokohama-shi, Japan
| | - Rena Ohya
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Limited, Yokohama-shi, Japan
| | - Shinichi Uchida
- Research and Development Division, Central Nervous System Research Laboratories, Central Nervous System (CNS) Research and Development Unit, Kyowa Hakko Kirin Company, Limited, Shizuoka, Japan
| | - Koji Yamada
- Research and Development Division, Central Nervous System Research Laboratories, Central Nervous System (CNS) Research and Development Unit, Kyowa Hakko Kirin Company, Limited, Shizuoka, Japan
| | - Keiji Kondo
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Limited, Yokohama-shi, Japan
| | - Shiho Kitaoka
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe-shi, Japan; and
- Japan Agency for Medical Research and Development–Centers of Research Excellence in Science and Technology (AMED–CREST) Tokyo, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe-shi, Japan; and
- Japan Agency for Medical Research and Development–Centers of Research Excellence in Science and Technology (AMED–CREST) Tokyo, Japan
| |
Collapse
|
20
|
Non-Nutritive Sweeteners and Their Implications on the Development of Metabolic Syndrome. Nutrients 2019; 11:nu11030644. [PMID: 30884834 PMCID: PMC6471792 DOI: 10.3390/nu11030644] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
Individuals widely use non-nutritive sweeteners (NNS) in attempts to lower their overall daily caloric intake, lose weight, and sustain a healthy diet. There are insufficient scientific data that support the safety of consuming NNS. However, recent studies have suggested that NNS consumption can induce gut microbiota dysbiosis and promote glucose intolerance in healthy individuals that may result in the development of type 2 diabetes mellitus (T2DM). This sequence of events may result in changes in the gut microbiota composition through microRNA (miRNA)-mediated changes. The mechanism(s) by which miRNAs alter gene expression of different bacterial species provides a link between the consumption of NNS and the development of metabolic changes. Another potential mechanism that connects NNS to metabolic changes is the molecular crosstalk between the insulin receptor (IR) and G protein-coupled receptors (GPCRs). Here, we aim to highlight the role of NNS in obesity and discuss IR-GPCR crosstalk and miRNA-mediated changes, in the manipulation of the gut microbiota composition and T2DM pathogenesis.
Collapse
|
21
|
Higgins KA, Considine RV, Mattes RD. Aspartame Consumption for 12 Weeks Does Not Affect Glycemia, Appetite, or Body Weight of Healthy, Lean Adults in a Randomized Controlled Trial. J Nutr 2018; 148:650-657. [PMID: 29659969 DOI: 10.1093/jn/nxy021] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/23/2018] [Indexed: 12/16/2022] Open
Abstract
Background Low-calorie sweeteners are often used to moderate energy intake and postprandial glycemia, but some evidence indicates that they may exacerbate these aims. Objective The trial's primary aim was to assess the effect of daily aspartame ingestion for 12 wk on glycemia. Effects on appetite and body weight were secondary aims. Methods One hundred lean [body mass index (kg/m2): 18-25] adults aged 18-60 y were randomly assigned to consume 0, 350, or 1050 mg aspartame/d (ASP groups) in a beverage for 12 wk in a parallel-arm design. At baseline, body weight and composition were determined, a 240-min oral-glucose-tolerance test (OGTT) was administered, and measurements were made of appetite and selected hormones. Participants also collected a 24-h urine sample. During the intervention, the 0-mg/d ASP group consumed capsules containing 680 mg dextrose and 80 mg para-amino benzoic acid. For the 350-mg/d ASP group, the beverage contained 350 mg aspartame and the 1050-mg/d ASP group consumed the same beverage plus capsules containing 680 mg dextrose and 700 mg aspartame. Body weight, blood pressure, heart rate, and waist circumference were measured weekly. At weeks 4, 8, and 12, participants collected 24-h urine samples and kept appetite logs. Baseline measurements were repeated at week 12. Results With the exception of the baseline OGTT glucose concentration at 60 min (and resulting area under the curve value), there were no group differences for glucose, insulin, resting leptin, glucagon-like peptide 1, or gastric inhibitory peptide at baseline or week 12. There also were no effects of aspartame ingestion on appetite, body weight, or body composition. Compliance with the beverage intervention was ∼95%. Conclusions Aspartame ingested at 2 doses for 12 wk had no effect on glycemia, appetite, or body weight among healthy, lean adults. These data do not support the view that aspartame is problematic for the management of glycemia, appetite, or body weight. This trial was registered at www.clinicaltrials.gov as NCT02999321.
Collapse
Affiliation(s)
- Kelly A Higgins
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| | - Robert V Considine
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Richard D Mattes
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| |
Collapse
|
22
|
Hutchings SC, Low JYQ, Keast RSJ. Sugar reduction without compromising sensory perception. An impossible dream? Crit Rev Food Sci Nutr 2018; 59:2287-2307. [DOI: 10.1080/10408398.2018.1450214] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Scott C. Hutchings
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Julia Y. Q. Low
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Russell S. J. Keast
- Centre for Advanced Sensory Science, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| |
Collapse
|
23
|
Freund JR, Lee RJ. Taste receptors in the upper airway. World J Otorhinolaryngol Head Neck Surg 2018; 4:67-76. [PMID: 30035264 PMCID: PMC6051256 DOI: 10.1016/j.wjorl.2018.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/26/2018] [Indexed: 02/08/2023] Open
Abstract
Taste receptors were named for their originally-identified expression on the tongue and role in the sensation of taste (gustation). They are now known to be involved in many chemosensory processes outside the tongue. Expression of the receptors for bitter, sweet, and umami was recently identified in many organs, including the brain, airway, gastrointestinal tract, and reproductive systems. We do not yet know the full roles of these receptors in all of these tissues, nor do we know all of the endogenous ligands that activate them. However, taste receptors are emerging as potentially important therapeutic targets. Moreover, they may mediate some off target effects of drugs, as many medications in common clinical use are known to be bitter. The focus of this review is on recent basic and clinical data describing the expression of bitter (T2R) and sweet (T1R) receptors in the airway and their activation by secreted bacterial compounds. These receptors play important roles in innate immune nitric oxide production and antimicrobial peptide secretion, and may be useful targets for stimulating immune responses in the upper respiratory tract via topical therapies. Moreover, genetic variation in these receptors may play a role in the differential susceptibility of patients to certain types of respiratory infections as well as to differential outcomes in patients with chronic rhinosinusitis (CRS). CRS is a syndrome of chronic upper respiratory infection and inflammation and has a significant detrimental impact on patient quality of life. CRS treatment accounts for approximately 20% of adult antibiotic prescriptions and is thus a large driver of the public health crisis of antibiotic resistance. Taste receptors represent a novel class of therapeutic target to potentially stimulate endogenous immune responses and treat CRS patients without conventional antibiotics.
Collapse
Affiliation(s)
- Jenna R Freund
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Berberine activates bitter taste responses of enteroendocrine STC-1 cells. Mol Cell Biochem 2018; 447:21-32. [DOI: 10.1007/s11010-018-3290-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/18/2018] [Indexed: 12/15/2022]
|
25
|
Mennella JA, Mathew PS, Lowenthal ED. Use of Adult Sensory Panel to Study Individual Differences in the Palatability of a Pediatric HIV Treatment Drug. Clin Ther 2017; 39:2038-2048. [PMID: 28923290 PMCID: PMC5654675 DOI: 10.1016/j.clinthera.2017.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/26/2017] [Accepted: 08/23/2017] [Indexed: 01/17/2023]
Abstract
PURPOSE The recommended first-line treatment for young children infected with HIV includes the liquid formulation of the co-formulated protease inhibitors lopinavir/ritonavir (Kaletra® [Abbott Laboratories, Chicago, Illinois]). Clinical reports indicate that some children readily accept the taste of Kaletra, whereas others strongly reject it, which can deter therapeutic adherence and outcomes. METHODS As a proof-of-concept approach, a sensory panel of genotyped adults was used to document the range of individual differences in the taste and palatability (hedonics) of the liquid formulation of Kaletra and other taste stimuli, including common excipients. Panelists rated taste sensations using generalized labeled magnitude scales to determine genotype-phenotype relationships. Several months later, the panelists were retested to assess response reliability. FINDINGS Not all panelists had the same sensory experience when tasting Kaletra. Palatability ratings varied widely, from moderate like to strongest imaginable dislike, and were reliable over time. The more irritating and bitter Kaletra tasted, the more disliked by the panelist. The more they disliked the taste of Kaletra, the more they disliked the taste of its excipient ethanol and the bitter stimulus denatonium. Those who experienced less bitter and sweeter taste sensations had a different genetic signature than the other panelists. Bitterness and irritation ratings of Kaletra varied by the orphaned bitter receptor gene (TAS2R60), whereas sweetness ratings of Kaletra varied according to the cold receptor gene (TRPM8), which is activated by menthol, an excipient of Kaletra. Neither genotype related to ratings for ethanol or denatonium, however. IMPLICATIONS The use of a sensory panel holds promise as a first step in determining the nature of individual differences in the palatability of existing pediatric drug formulations and sources of variation. In this era of personalized medicine, the need is great to develop psychophysical tools to determine which drugs will show variation in acceptance by children and whether patterns of individual variation in taste as assessed by adults mirror those of young patients. ClinicalTrials.gov identifier: NCT01841710.
Collapse
Affiliation(s)
| | | | - Elizabeth D Lowenthal
- University of Pennsylvania Perelman School of Medicine, Departments of Pediatrics and Epidemiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
26
|
Huang M, Quddus A, Stinson L, Shikany JM, Howard BV, Kutob RM, Lu B, Manson JE, Eaton CB. Artificially sweetened beverages, sugar-sweetened beverages, plain water, and incident diabetes mellitus in postmenopausal women: the prospective Women's Health Initiative observational study. Am J Clin Nutr 2017; 106:614-622. [PMID: 28659294 PMCID: PMC5525115 DOI: 10.3945/ajcn.116.145391] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 05/18/2017] [Indexed: 01/15/2023] Open
Abstract
Background: Sugar-sweetened beverages (SSBs) have been associated with an increased risk of diabetes mellitus (DM), whereas the association with artificially sweetened beverages (ASBs) is unclear.Objective: We aimed to evaluate the associations of ASB and SSB consumption with the risk of developing DM and the potential benefit of replacing SSBs with ASBs or water.Design: The national Women's Health Initiative recruited a large prospective cohort of postmenopausal women between 1993 and 1998. ASB, SSB, and water consumption was measured by lifestyle questionnaires, and DM was self-reported.Results: Of 64,850 women, 4675 developed diabetes over an average of 8.4 y of follow-up. ASBs and SSBs were both associated with an increased risk of DM with an HR of 1.21 (95% CI: 1.08, 1.36) comparing ASB consumption of ≥2 serving/d to never or <3 serving/mo, and an HR of 1.43 (95% CI: 1.17, 1.75) comparing SSB consumption of ≥2 serving/d to <1 serving/wk (1 serving = one 12-ounce can or 355 mL). Subgroup analysis found an increased risk of DM associated with ASBs only in the obese group. Modeling the substitution of SSBs with an equal amount of ASBs did not significantly reduce the risk of developing DM. However, statistically substituting 1 serving of ASBs with water was associated with a significant risk reduction of 5% (HR: 0.95; 95% CI: 0.91, 0.99), whereas substituting 1 serving of SSBs with water was associated with a risk reduction of 10% (HR: 0.90; 95% CI: 0.85, 0.95).Conclusions: ASBs were associated with a 21% increased risk of developing DM, approximately half the magnitude of SSBs (associated with a 43% increased risk). Replacing ASBs and SSBs with water could potentially reduce the risk. However, caution should be taken in interpreting these results as causal because both residual confounding and reverse causation could explain these results.
Collapse
Affiliation(s)
- Mengna Huang
- Department of Epidemiology, Brown University School of Public Health, Providence, RI;,Center of Primary Care and Prevention and
| | - Abdullah Quddus
- Department of Internal Medicine, Memorial Hospital of Rhode Island, Pawtucket, RI
| | - Lynda Stinson
- Quality Department, Mount Sinai Hospital, New York, NY
| | - James M Shikany
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL
| | | | - Randa M Kutob
- University of Arizona College of Medicine, Tucson, AZ
| | - Bing Lu
- Harvard Medical School, Boston, MA;,Brigham and Women’s Hospital, Boston, MA; and
| | - JoAnn E Manson
- Harvard Medical School, Boston, MA;,Brigham and Women’s Hospital, Boston, MA; and
| | - Charles B Eaton
- Department of Epidemiology, Brown University School of Public Health, Providence, RI; .,Center of Primary Care and Prevention and.,Department of Family Medicine, Brown University Warren Alpert Medical School, Providence, RI
| |
Collapse
|
27
|
Bobowski N, Reed DR, Mennella JA. Variation in the TAS2R31 bitter taste receptor gene relates to liking for the nonnutritive sweetener Acesulfame-K among children and adults. Sci Rep 2016; 6:39135. [PMID: 27966661 PMCID: PMC5155417 DOI: 10.1038/srep39135] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/17/2016] [Indexed: 01/08/2023] Open
Abstract
The nonnutritive sweetener (NNS) acesulfame potassium (Ace-K) elicits a bitter off-taste that varies among adults due to polymorphisms in a bitter taste receptor gene. Whether polymorphisms affect liking for Ace-K by children, who live in different sensory worlds, is unknown. We examined hedonic response to Ace-K among children compared to adults, and whether response was related to common variants of the TAS2R31 bitter taste receptor gene and to NNS intake. Children (N = 48) and their mothers (N = 34) rated liking of Ace-K, and mothers reported whether they or their children ever consume NNSs via questionnaire. Participants were genotyped for TAS2R31 variant sites associated with adult perception of Ace-K (R35W, L162M, A227V, and V240I). Regardless of age, more participants with 1 or no copies than with 2 copies of the TAS2R31 WMVI haplotype liked Ace-K (p = 0.01). NNS-sweetened products were consumed by 50% and 15% of mothers and children, respectively, with no association between intake and TAS2R31. The TAS2R31 WMVI haplotype was partly responsible for children’s hedonic response to Ace-K, highlighting a potential role for inborn differences in vulnerability to overconsumption of Ace-K-containing products. Currently available methods to measure NNS intake yield crude estimates at best, suggesting self-reports are not reflective of actual intake.
Collapse
Affiliation(s)
- Nuala Bobowski
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104-3308, USA
| | - Danielle R Reed
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104-3308, USA
| | - Julie A Mennella
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104-3308, USA
| |
Collapse
|
28
|
Hsiao YH, Hsu CH, Chen C. A High-Throughput Automated Microfluidic Platform for Calcium Imaging of Taste Sensing. Molecules 2016; 21:E896. [PMID: 27399663 PMCID: PMC6273845 DOI: 10.3390/molecules21070896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 12/30/2022] Open
Abstract
The human enteroendocrine L cell line NCI-H716, expressing taste receptors and taste signaling elements, constitutes a unique model for the studies of cellular responses to glucose, appetite regulation, gastrointestinal motility, and insulin secretion. Targeting these gut taste receptors may provide novel treatments for diabetes and obesity. However, NCI-H716 cells are cultured in suspension and tend to form multicellular aggregates, preventing high-throughput calcium imaging due to interferences caused by laborious immobilization and stimulus delivery procedures. Here, we have developed an automated microfluidic platform that is capable of trapping more than 500 single cells into microwells with a loading efficiency of 77% within two minutes, delivering multiple chemical stimuli and performing calcium imaging with enhanced spatial and temporal resolutions when compared to bath perfusion systems. Results revealed the presence of heterogeneity in cellular responses to the type, concentration, and order of applied sweet and bitter stimuli. Sucralose and denatonium benzoate elicited robust increases in the intracellular Ca(2+) concentration. However, glucose evoked a rapid elevation of intracellular Ca(2+) followed by reduced responses to subsequent glucose stimulation. Using Gymnema sylvestre as a blocking agent for the sweet taste receptor confirmed that different taste receptors were utilized for sweet and bitter tastes. This automated microfluidic platform is cost-effective, easy to fabricate and operate, and may be generally applicable for high-throughput and high-content single-cell analysis and drug screening.
Collapse
Affiliation(s)
- Yi-Hsing Hsiao
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan.
| | - Chia-Hsien Hsu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan.
| | - Chihchen Chen
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
29
|
Ferrer I, Garcia-Esparcia P, Carmona M, Carro E, Aronica E, Kovacs GG, Grison A, Gustincich S. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease. Front Aging Neurosci 2016; 8:163. [PMID: 27458372 PMCID: PMC4932117 DOI: 10.3389/fnagi.2016.00163] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells’ own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain.
Collapse
Affiliation(s)
- Isidro Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, Hospitalet de Llobregat, University of BarcelonaBarcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatBarcelona, Spain
| | - Paula Garcia-Esparcia
- Institute of Neuropathology, Bellvitge University Hospital, Hospitalet de Llobregat, University of BarcelonaBarcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatBarcelona, Spain
| | - Margarita Carmona
- Institute of Neuropathology, Bellvitge University Hospital, Hospitalet de Llobregat, University of BarcelonaBarcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatBarcelona, Spain
| | - Eva Carro
- Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Neuroscience Group, Research Institute HospitalMadrid, Spain
| | - Eleonora Aronica
- Department of Neuropathology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna Vienna, Austria
| | - Alice Grison
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Area of Neuroscience Trieste, Italy
| | - Stefano Gustincich
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Area of Neuroscience Trieste, Italy
| |
Collapse
|
30
|
Baur DA, Schroer AB, Luden ND, Womack CJ, Smyth SA, Saunders MJ. Glucose-fructose enhances performance versus isocaloric, but not moderate, glucose. Med Sci Sports Exerc 2015; 46:1778-86. [PMID: 25134001 DOI: 10.1249/mss.0000000000000284] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The effects of glucose-and-fructose (GF) coingestion on cycling time trial (TT) performance and physiological responses to exercise were examined under postprandial conditions. METHODS Eight trained male cyclists (age, 25 ± 6 yr; height, 180 ± 4 cm; weight, 77 ± 9 kg; V˙O2max, 62 ± 6 mL·kg·min) completed the study. Subjects ingested either an artificially sweetened placebo (PL), a moderate-glucose beverage (MG, 1.03 g·min), a high-glucose beverage (HG, 1.55 g·min), or a GF beverage (1.55 g·min, 2:1 ratio) during approximately 3 h of exercise, including 2 h of constant-load cycling (55% Wmax, 195 ± 17 W), immediately followed by a computer-simulated 30-km TT. Physiological responses (V˙E, V˙O2, RER, HR, blood glucose level, blood lactate level, and RPE) and incidences of gastrointestinal distress were assessed during early (15-20 min), middle (55-60 min), and late exercise (115-120 min) and during the TT. Magnitude-based qualitative inferences were used to evaluate differences between treatments. RESULTS In comparison with that in PL (52.9 ± 3.7 min), TT performances were faster with GF (50.4 ± 2.2 min, "very likely" benefit), MG (51.1 ± 2.4 min, "likely" benefit), and HG (52.0 ± 3.7 min, "possible" benefit). GF resulted in a "likely" improvement versus HG (3.0%) and an "unclear" effect relative to MG (1.2%). MG was "possibly" beneficial versus HG (1.8%). Few incidences of GI distress were reported in any trials. CONCLUSIONS GF ingestion seems to enhance performance, relative to PL and HG. However, it is unclear whether GF improves performance versus moderate doses of glucose.
Collapse
Affiliation(s)
- Daniel A Baur
- Human Performance Laboratory, Department of Kinesiology, James Madison University, Harrisonburg, VA
| | | | | | | | | | | |
Collapse
|
31
|
Gu F, Liu X, Liang J, Chen J, Chen F, Li F. Bitter taste receptor mTas2r105 is expressed in small intestinal villus and crypts. Biochem Biophys Res Commun 2015; 463:934-41. [PMID: 26071358 DOI: 10.1016/j.bbrc.2015.06.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/04/2015] [Indexed: 12/30/2022]
Abstract
The small intestine is the most important digestion and absorption organ in the body. Taste receptors and taste signal transduction cascades were detected in a variety of non-lingual tissues including testis, kidney, nasal cavity, lung, heart and gastrointestinal (GI) tract. Though the expression of bitter taste receptors and taste signal transduction cascades has been reported in the gut for a decade, the evidence revealing the expression of Tas2rs in the gut remain unbelievable. Here, the amplification of 35 bitter taste receptors from small intestine cDNA revealed that all transcripts are present in duodenum, jejunum and ileum, except Tas2r117. In addition, Tas2Rs and taste-related signaling transduction cascades are also observed in mouse small intestine including duodenum, jejunum and ileum by RT-PCR and Western Blot. On the other hand, three types of transgenic system were used to investigate the expression of the bitter taste receptor Tas2r105 in mouse intestine (Tas2r105-GFP/Cre, Tas2r105-GFP/Cre-DTA and Tas2r105-GFP/Cre-LacZ). With the bitter taste receptor mTas2r105 transgenic mice, the expression of mTas2r105 is showed in the villus and crypts of small intestine. mTas2r105 positive cells are also observed at the connective tissue of villus. DTA expression in mTas2r105 + cells completely ablate the expression of mTas2r105 in intestinal epithelia, but did not ablate mTas1r3 expression in intestine epithelia. LacZ staining further reveals that bitter taste receptor mTas2r105 is expressed in crypt base cells.
Collapse
Affiliation(s)
- Fu Gu
- School of Life Science, Shanghai University, Shanghai, PR China
| | - Xin Liu
- School of Life Science, Shanghai University, Shanghai, PR China
| | - Jie Liang
- School of Life Science, Shanghai University, Shanghai, PR China
| | - Jiaying Chen
- School of Life Science, Shanghai University, Shanghai, PR China
| | - Fuxue Chen
- School of Life Science, Shanghai University, Shanghai, PR China.
| | - Feng Li
- School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
32
|
Murovets VO, Bachmanov AA, Travnikov SV, Churikova AA, Zolotarev VA. The Involvement of the T1R3 Receptor Protein in the Control of Glucose Metabolism in Mice at Different Levels of Glycemia. J EVOL BIOCHEM PHYS+ 2014; 50:334-344. [PMID: 25983343 DOI: 10.1134/s0022093014040061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The heterodimeric protein T1R2/T1R3 is a chemoreceptor mediating taste perception of sugars, several amino acids, and non-caloric sweeteners in humans and many other vertebrate species. The T1R2 and T1R3 proteins are expressed not only in the oral cavity, but also in the intestine, pancreas, liver, adipose tissue, and in structures of the central nervous system, which suggests their involvement in functions other than gustatory perception. In this study, we analyzed the role of the T1R3 protein in regulation of glucose metabolism in experiments with the gene-knockout mouse strain C57BL/6J-Tas1r3tm1Rfm (Tas1r3-/-), with a deletion of the Tas1r3 gene encoding T1R3, and the control strain C57BL/6ByJ with the intact gene. Glucose tolerance was measured in euglycemic or food-deprived mice after intraperitoneal or intragastric glucose administration. We have shown that in the Tas1r3-/- strain, in addition to the disappearance of taste preference for sucrose, glucose tolerance is also substantially reduced, and insulin resistance is observed. The effect of the Tas1r3 gene knockout on glucose utilization was more pronounced in the euglycemic state than after food deprivation. The baseline glucose level after food deprivation was lower in the Tas1r3-/- strain than in the control strain, which suggests that T1R3 is involved in regulation of endogenous glucose production. These data suggest that the T1R3-mediated glucoreception interacts with the KATP-dependent mechanisms of regulation of the glucose metabolism, and that the main role is likely played by T1R3 expressed in the pancreas and possibly in the central nervous system, but not in the intestinal mucosa, as it was suggested earlier.
Collapse
Affiliation(s)
- V O Murovets
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | - S V Travnikov
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - A A Churikova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - V A Zolotarev
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
33
|
Low YQ, Lacy K, Keast R. The role of sweet taste in satiation and satiety. Nutrients 2014; 6:3431-50. [PMID: 25184369 PMCID: PMC4179169 DOI: 10.3390/nu6093431] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/04/2014] [Accepted: 08/19/2014] [Indexed: 01/21/2023] Open
Abstract
Increased energy consumption, especially increased consumption of sweet energy-dense food, is thought to be one of the main contributors to the escalating rates in overweight individuals and obesity globally. The individual’s ability to detect or sense sweetness in the oral cavity is thought to be one of many factors influencing food acceptance, and therefore, taste may play an essential role in modulating food acceptance and/or energy intake. Emerging evidence now suggests that the sweet taste signaling mechanisms identified in the oral cavity also operate in the gastrointestinal system and may influence the development of satiety. Understanding the individual differences in detecting sweetness in both the oral and gastrointestinal system towards both caloric sugar and high intensity sweetener and the functional role of the sweet taste system may be important in understanding the reasons for excess energy intake. This review will summarize evidence of possible associations between the sweet taste mechanisms within the oral cavity, gastrointestinal tract and the brain systems towards both caloric sugar and high intensity sweetener and sweet taste function, which may influence satiation, satiety and, perhaps, predisposition to being overweight and obesity.
Collapse
Affiliation(s)
- Yu Qing Low
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125, Australia.
| | - Kathleen Lacy
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125, Australia.
| | - Russell Keast
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125, Australia.
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The consumption of low-calorie beverages has increased worldwide, mainly because of their combination of sweet taste without adding significant calories to the diet. However, some epidemiological studies have linked the higher consumption of low-calorie beverages with increased body weight gain. RECENT FINDINGS Although a matter of debate, this paradoxical association between low-calorie beverages and weight gain has been attributed to their effect on the enteral-brain axis. More specifically, artificial sweeteners present in low-calorie beverages could induce appetite increase, probably due to an ambiguous psychobiological signal (uncoupling sweet taste from calorie intake) that confounds the appetite's regulatory mechanisms, promoting overeating and, ultimately, leading to weight gain. However, many studies do not support this assumption, and the mechanisms underlying the interaction between low-calorie beverages and the enteral-brain axis remain to be defined. SUMMARY The understanding of the effects of low-calorie drinks on the enteral-brain axis still remains in its infancy and needs to be unveiled. The consumption of low-calorie beverages reduces the calories from that drink, but compensatory phenomena may increase energy intake, and if so must be recognized and avoided.
Collapse
Affiliation(s)
- Adaliene V M Ferreira
- aNutrition Department, Universidade Federal de Minas Gerais bInterdisciplinary Laboratory of Medical Investigation, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | |
Collapse
|
35
|
Sensory-specific appetition: Postingestive detection of glucose rapidly promotes continued consumption of a recently encountered flavor. Physiol Behav 2013; 121:125-33. [DOI: 10.1016/j.physbeh.2013.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/15/2013] [Accepted: 03/06/2013] [Indexed: 01/02/2023]
|
36
|
|
37
|
Mosinger B, Redding KM, Parker MR, Yevshayeva V, Yee KK, Dyomina K, Li Y, Margolskee RF. Genetic loss or pharmacological blockade of testes-expressed taste genes causes male sterility. Proc Natl Acad Sci U S A 2013; 110:12319-24. [PMID: 23818598 PMCID: PMC3725061 DOI: 10.1073/pnas.1302827110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
TAS1R taste receptors and their associated heterotrimeric G protein gustducin are involved in sugar and amino acid sensing in taste cells and in the gastrointestinal tract. They are also strongly expressed in testis and sperm, but their functions in these tissues were previously unknown. Using mouse models, we show that the genetic absence of both TAS1R3, a component of sweet and amino acid taste receptors, and the gustducin α-subunit GNAT3 leads to male-specific sterility. To gain further insight into this effect, we generated a mouse model that expressed a humanized form of TAS1R3 susceptible to inhibition by the antilipid medication clofibrate. Sperm formation in animals without functional TAS1R3 and GNAT3 is compromised, with malformed and immotile sperm. Furthermore, clofibrate inhibition of humanized TAS1R3 in the genetic background of Tas1r3(-/-), Gnat3(-/-) doubly null mice led to inducible male sterility. These results indicate a crucial role for these extraoral "taste" molecules in sperm development and maturation. We previously reported that blocking of human TAS1R3, but not mouse TAS1R3, can be achieved by common medications or chemicals in the environment. We hypothesize that even low levels of these compounds can lower sperm count and negatively affect human male fertility, which common mouse toxicology assays would not reveal. Conversely, we speculate that TAS1R3 and GNAT3 activators may help infertile men, particularly those that are affected by some of the mentioned inhibitors and/or are diagnosed with idiopathic infertility involving signaling pathway of these receptors.
Collapse
|
38
|
|
39
|
Ceccarelli E, Guarino EG, Merlotti D, Patti A, Gennari L, Nuti R, Dotta F. Beyond glycemic control in diabetes mellitus: effects of incretin-based therapies on bone metabolism. Front Endocrinol (Lausanne) 2013; 4:73. [PMID: 23785355 PMCID: PMC3684850 DOI: 10.3389/fendo.2013.00073] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/03/2013] [Indexed: 12/31/2022] Open
Abstract
Diabetes mellitus (DM) and osteoporosis (OP) are common disorders with a significant health burden, and an increase in fracture risk has been described both in type 1 (T1DM) and in type 2 (T2DM) diabetes. The pathogenic mechanisms of impaired skeletal strength in diabetes remain to be clarified in details and they are only in part reflected by a variation in bone mineral density. In T2DM, the occurrence of low bone turnover together with a decreased osteoblast activity and compromised bone quality has been shown. Of note, some antidiabetic drugs (e.g., thiazolidinediones, insulin) may deeply affect bone metabolism. In addition, the recently introduced class of incretin-based drugs (i.e., GLP-1 receptor agonists and DPP-4 inhibitors) is expected to exert potentially beneficial effects on bone health, possibly due to a bone anabolic activity of GLP-1, that can be either direct or indirect through the involvement of thyroid C cells. Here we will review the established as well as the putative effects of incretin hormones and of incretin-based drugs on bone metabolism, both in preclinical models and in man, taking into account that such therapeutic strategy may be effective not only to achieve a good glycemic control, but also to improve bone health in diabetic patients.
Collapse
Affiliation(s)
- Elena Ceccarelli
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Elisa G. Guarino
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Daniela Merlotti
- Internal Medicine Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Aurora Patti
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Internal Medicine Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Luigi Gennari
- Internal Medicine Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Ranuccio Nuti
- Internal Medicine Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS, Siena, Italy
- *Correspondence: Francesco Dotta, U.O.C. Diabetologia, University of Siena, Policlinico Le Scotte, Viale Bracci 18, Siena 53100, Italy e-mail:
| |
Collapse
|
40
|
Geraedts MCP, Takahashi T, Vigues S, Markwardt ML, Nkobena A, Cockerham RE, Hajnal A, Dotson CD, Rizzo MA, Munger SD. Transformation of postingestive glucose responses after deletion of sweet taste receptor subunits or gastric bypass surgery. Am J Physiol Endocrinol Metab 2012; 303:E464-74. [PMID: 22669246 PMCID: PMC3423100 DOI: 10.1152/ajpendo.00163.2012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/05/2012] [Indexed: 01/06/2023]
Abstract
The glucose-dependent secretion of the insulinotropic hormone glucagon-like peptide-1 (GLP-1) is a critical step in the regulation of glucose homeostasis. Two molecular mechanisms have separately been suggested as the primary mediator of intestinal glucose-stimulated GLP-1 secretion (GSGS): one is a metabotropic mechanism requiring the sweet taste receptor type 2 (T1R2) + type 3 (T1R3) while the second is a metabolic mechanism requiring ATP-sensitive K(+) (K(ATP)) channels. By quantifying sugar-stimulated hormone secretion in receptor knockout mice and in rats receiving Roux-en-Y gastric bypass (RYGB), we found that both of these mechanisms contribute to GSGS; however, the mechanisms exhibit different selectivity, regulation, and localization. T1R3(-/-) mice showed impaired glucose and insulin homeostasis during an oral glucose challenge as well as slowed insulin granule exocytosis from isolated pancreatic islets. Glucose, fructose, and sucralose evoked GLP-1 secretion from T1R3(+/+), but not T1R3(-/-), ileum explants; this secretion was not mimicked by the K(ATP) channel blocker glibenclamide. T1R2(-/-) mice showed normal glycemic control and partial small intestine GSGS, suggesting that T1R3 can mediate GSGS without T1R2. Robust GSGS that was K(ATP) channel-dependent and glucose-specific emerged in the large intestine of T1R3(-/-) mice and RYGB rats in association with elevated fecal carbohydrate throughout the distal gut. Our results demonstrate that the small and large intestines utilize distinct mechanisms for GSGS and suggest novel large intestine targets that could mimic the improved glycemic control seen after RYGB.
Collapse
Affiliation(s)
- Maartje C P Geraedts
- Division of Endocrinology, Diabetes, and Nutrition, Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
CONTEXT Non-nutritive sweeteners can bind to sweet-taste receptors present not only in the oral cavity, but also on enteroendocrine and pancreatic islet cells. Thus, these sweeteners may have biological activity by eliciting or inhibiting hormone secretion. Because consumption of non-nutritive sweeteners is common in the United States, understanding the physiological effects of these substances is of interest and importance. EVIDENCE ACQUISITION A PubMed (1960-2012) search was performed to identify articles examining the effects of non-nutritive sweeteners on gastrointestinal physiology and hormone secretion. EVIDENCE SYNTHESIS The majority of in vitro studies showed that non-nutritive sweeteners can elicit secretion of gut hormones such as glucagon-like peptide 1 and glucose-dependent insulinotropic peptide in enteroendocrine or islet cells. In rodents, non-nutritive sweeteners increased the rate of intestinal glucose absorption, but did not alter gut hormone secretion in the absence of glucose. Most studies in humans have not detected effects of non-nutritive sweeteners on gut hormones or glucose absorption. Of eight human studies, one showed increased glucose-stimulated glucagon-like peptide 1 secretion after diet soda consumption, and one showed decreased glucagon secretion after stevia ingestion. CONCLUSIONS In humans, few studies have examined the hormonal effects of non-nutritive sweeteners, and inconsistent results have been reported, with the majority not recapitulating in vitro data. Further research is needed to determine whether non-nutritive sweeteners have physiologically significant biological activity in humans.
Collapse
Affiliation(s)
- Rebecca J Brown
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892-1645, USA.
| | | |
Collapse
|
42
|
Fernstrom JD, Munger SD, Sclafani A, de Araujo IE, Roberts A, Molinary S. Mechanisms for sweetness. J Nutr 2012; 142:1134S-41S. [PMID: 22573784 PMCID: PMC3738222 DOI: 10.3945/jn.111.149567] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A remarkable amount of information has emerged in the past decade regarding sweet taste physiology. This article reviews these data, with a particular focus on the elucidation of the sweet taste receptor, its location and actions in taste transduction in the mouth, its nontaste functions in the gastrointestinal tract (e.g., in enteroendocrine cells), and the brain circuitry involved in the sensory processing of sweet taste. Complications in the use of rodents to model human sweet taste perception and responses are also considered. In addition, information relating to low-calorie sweeteners (LCS) is discussed in the context of these issues. Particular consideration is given to the known effects of LCS on enteroendocrine cell function.
Collapse
Affiliation(s)
- John D. Fernstrom
- University of Pittsburgh School of Medicine, Pittsburgh, PA,To whom correspondence should be addressed. E-mail:
| | | | | | - Ivan E. de Araujo
- John B. Pierce Laboratory and Yale University School of Medicine, New Haven, CT
| | | | | |
Collapse
|
43
|
Abstract
Human desire for sweet taste spans all ages, races, and cultures. Throughout evolution, sweetness has had a role in human nutrition, helping to orient feeding behavior toward foods providing both energy and essential nutrients. Infants and young children in particular base many of their food choices on familiarity and sweet taste. The low cost and ready availability of energy-containing sweeteners in the food supply has led to concerns that the rising consumption of added sugars is the driving force behind the obesity epidemic. Low-calorie sweeteners are one option for maintaining sweet taste while reducing the energy content of children's diets. However, their use has led to further concerns that dissociating sweetness from energy may disrupt the balance between taste response, appetite, and consumption patterns, especially during development. Further studies, preferably based on longitudinal cohorts, are needed to clarify the developmental trajectory of taste responses to low-calorie sweeteners and their potential impact on the diet quality of children and youth.
Collapse
Affiliation(s)
- Adam Drewnowski
- The University of Washington, Nutritional Sciences Program, Seattle, WA, USA.
| | | | | | | |
Collapse
|
44
|
Sclafani A, Ackroff K. Role of gut nutrient sensing in stimulating appetite and conditioning food preferences. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1119-33. [PMID: 22442194 PMCID: PMC3362145 DOI: 10.1152/ajpregu.00038.2012] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/14/2012] [Indexed: 12/17/2022]
Abstract
The discovery of taste and nutrient receptors (chemosensors) in the gut has led to intensive research on their functions. Whereas oral sugar, fat, and umami taste receptors stimulate nutrient appetite, these and other chemosensors in the gut have been linked to digestive, metabolic, and satiating effects that influence nutrient utilization and inhibit appetite. Gut chemosensors may have an additional function as well: to provide positive feedback signals that condition food preferences and stimulate appetite. The postoral stimulatory actions of nutrients are documented by flavor preference conditioning and appetite stimulation produced by gastric and intestinal infusions of carbohydrate, fat, and protein. Recent findings suggest an upper intestinal site of action, although postabsorptive nutrient actions may contribute to flavor preference learning. The gut chemosensors that generate nutrient conditioning signals remain to be identified; some have been excluded, including sweet (T1R3) and fatty acid (CD36) sensors. The gut-brain signaling pathways (neural, hormonal) are incompletely understood, although vagal afferents are implicated in glutamate conditioning but not carbohydrate or fat conditioning. Brain dopamine reward systems are involved in postoral carbohydrate and fat conditioning but less is known about the reward systems mediating protein/glutamate conditioning. Continued research on the postoral stimulatory actions of nutrients may enhance our understanding of human food preference learning.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA.
| | | |
Collapse
|
45
|
Abstract
Drugs that augment the incretin system [glucagon like peptide (GLP) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors] represent a novel class of anti-hyperglycemic agents that have shown to improve the health and survival of beta-cells (improvement in postprandial hyperglycemia) and suppress glucagon (improvement in fasting hyperglycemia). The incretins represent a large family of molecules referred to as the "glucagon superfamily of peptide hormones" of which more than 90% of the physiological effects of incretins are accomplished by GLP-1(7-37) and GLP1(7-36) amide and gastric insulinotropic peptide (GIP). GLP-1 mediates its effects via the GLP-1 receptor, which has a wide tissue distribution [pancreas, lung, heart, vascular smooth muscle cells, endothelial cells, macrophages and monocytes, kidney, gastrointestinal tract (stomach and intestine), central nervous system (neoortex, cerebellum, hypothalamus, hippocampus, brainstem nucleus tractus solitarius) and peripheral nervous system]. This would imply that the incretin system has effects outside the pancreas. Over time data has accumulated to suggest that therapies that augment the incretin system has beneficial pleiotrophic effects. The incretins have shown to possess a cardiac-friendly profile, preserve neuronal cells and safeguard from neuronal degeneration, improve hepatic inflammation and hepatosteatosis, improve insulin resistance, promote weight loss and induce satiety. There is growing evidence that they may also be renoprotective promoting wound healing and bone health.
Collapse
Affiliation(s)
- Vishal Gupta
- Department of Endocrinology, Jaslok Hospital and Research Centre, Mumbai, India
| |
Collapse
|
46
|
Abstract
GLP-1 receptors are expressed in the brain, especially in the regions responsible for the regulation of food intake, and intracerebroventricular injection of GLP-1 results in inhibition of food intake. Peripheral administration of GLP-1 dose-dependently enhances satiety and reduces food intake in normal and obese subjects as well as in type 2 diabetic patients. So far, the mechanisms by which GLP-1 exerts its effects are not completely clear. Interactions with neurons in the gastrointestinal tract or possibly direct access to the brain through the blood-brain barrier as observed in rats are possible and discussed in this chapter as well as a novel hypothesis based on the finding that GLP-1 is also expressed in taste cells. Finally, the role of GLP-1 receptor agonists as a possible treatment option in obesity is discussed as well as the role of GLP-1 in the effects of bariatric surgery on adiposity and glucose homeostasis.
Collapse
|
47
|
Finlayson G, Bordes I, Griffioen-Roose S, de Graaf C, Blundell JE. Susceptibility to overeating affects the impact of savory or sweet drinks on satiation, reward, and food intake in nonobese women. J Nutr 2012; 142:125-30. [PMID: 22131553 DOI: 10.3945/jn.111.148106] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Taste is involved in food preference and choice, and it is thought that it can modulate appetite and food intake. The present study investigated the effect of savory or sweet taste on satiation, reward, and food intake and according to individual differences in eating behavior traits underlying susceptibility to overeating. In a crossover design, 30 women (BMI = 22.7 ± 2.3; age = 21.9 ± 2.6 y) consumed a fixed energy preload (360 kJ/g) with a savory, sweet, or bland taste before selecting and consuming items from a test meal ad libitum. Sensations of hunger were used to calculate the satiating efficiency of the preloads. A computerized task was used to examine effects on food reward (explicit liking and implicit wanting). The Three Factor Eating Questionnaire was used to compare individual differences in eating behavior traits. Satiation and total food intake did not differ according to preload taste, but there was an effect on explicit liking and food selection. The savory preload reduced liking and intake of high-fat savory foods compared to sweet or bland preloads. The eating behavior trait disinhibition interacted with preload taste to determine test meal intake. Higher scores were associated with increased food intake after the sweet preload compared to the savory preload. Independent of preload taste, disinhibition was associated with lower satiating efficiency of the preloads and enhanced implicit wanting for high-fat sweet food. Savory taste has a stronger modulating effect on food preference than sweet or bland taste and may help to preserve normal appetite regulation in people who are susceptible to overeating.
Collapse
Affiliation(s)
- Graham Finlayson
- BioPsychology Group, Institute of Psychological Sciences, University of Leeds, Leeds, UK.
| | | | | | | | | |
Collapse
|
48
|
Green BG. Chemesthesis and the chemical senses as components of a "chemofensor complex". Chem Senses 2011; 37:201-6. [PMID: 22210122 DOI: 10.1093/chemse/bjr119] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An important function of the chemical senses is to warn against dangerous biological and chemical agents in the environment. The discovery in recent years of "taste" receptor cells outside the oral cavity that appear to have protective functions has raised new questions about the nature and scope of the chemical senses in general and of chemesthesis in particular. The present paper briefly reviews these findings within the context of what is currently known about the body's chemically sensitive protective mechanisms, including nonsensory processes that help to expel or neutralize threatening agents once they have been encountered. It is proposed that this array of defense mechanisms constitutes a "chemofensor complex" in which chemesthesis is the most ubiquitous, functionally diverse, and interactive chemosensory component.
Collapse
Affiliation(s)
- Barry G Green
- The John B. Pierce Laboratory, New Haven, CT 06519, USA.
| |
Collapse
|
49
|
Grootaert C, Marzorati M, Van den Abbeele P, Van de Wiele T, Possemiers S. Prebiotics to manage the microbial control of energy homeostasis. Benef Microbes 2011; 2:305-18. [DOI: 10.3920/bm2011.0020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The prevalence of obesity is continuously growing and has reached epidemic proportions. It is clear that current methods to combat obesity are not effective enough to reduce the problem. Therefore, further investigation is needed to develop new strategies. Recent research pointed out a potential role of the microbial community associated to the human host in controlling and influencing the energy homeostasis. According to the concept of Gastrointestinal Resource Management, this microbiota and its metabolic potential can be steered with the aim of improving host health. This review therefore focuses on the modulation of the intestinal microbiota through prebiotics with the aim to control several aspects of metabolic homeostasis. In a first part, the importance of host-microbe cross-talk at the intestinal epithelium is discussed. Yet, energy metabolism, which includes both lipid and glucose metabolism, is also regulated by several key organs including the adipose tissue, brain, liver, muscles, pancreas and gut. Therefore, in a second part, we will discuss the microbial factors that are involved in the communication between these different tissues, and their potential management. Finally, we will give some future prospects of the use of prebiotics in an individualised treatment of metabolic disorders.
Collapse
Affiliation(s)
- C. Grootaert
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - M. Marzorati
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - P. Van den Abbeele
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - T. Van de Wiele
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - S. Possemiers
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
50
|
Geraedts MC, Troost FJ, Saris WH. Different tastants and low-caloric sweeteners induce differential effects on the release of satiety hormones. Food Chem 2011; 129:731-8. [DOI: 10.1016/j.foodchem.2011.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/24/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
|