1
|
Cortes MA, Bartley AF, Li Q, Davis TR, Cunningham SE, Garner MA, Perez PJ, Harvey AC, Gross AK, Dobrunz LE. Modulation of temporoammonic-CA1 synapses by neuropeptide Y is through Y1 receptors in mice. Neuropeptides 2025; 110:102504. [PMID: 39951960 DOI: 10.1016/j.npep.2025.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
Reduced levels of neuropeptide Y (NPY), an abundant neuromodulator in the brain, are linked to multiple neuropsychiatric disorders, including post-traumatic stress disorder (PTSD). The CA1 region of hippocampus is important for anxiety regulation and highly expresses NPY. Injecting NPY into CA1 is anxiolytic and alleviates behavioral symptoms in a model of traumatic stress; these anxiolytic effects are blocked by a Y1 receptor antagonist. However the location of Y1Rs that mediate NPY's anxiolytic effects in CA1 remains unclear. CA1 receives inputs from entorhinal cortex through the temporammonic pathway (TA), which is important for fear learning and sensitive to stress. Our lab previously showed that NPY reduces TA-evoked synaptic responses, however, the subtype of NPY receptor mediating this reduction is unknown. Here we demonstrate that in mice both exogenous (bath-applied) and endogenously-released NPY act through Y1 receptors in the TA pathway. This is the first demonstration of Y1 receptor-mediated effect on synaptic function in CA1. Interestingly, chronic overexpression of NPY (in NPY-expressing interneurons) impairs the sensitivity of the TA-evoked synaptic response to a Y1 receptor agonist. However, the long-known NPY Y2 receptor-mediated effect on the Schaffer collateral (SC) pathway is unaffected by NPY overexpression. Therefore, NPY can have a pathway-specific impact on synaptic transmission in CA1 based on the differential expression of NPY receptors and their response to overexpression of NPY. Our results demonstrating that NPY acts at Y1 receptors in the TA pathway are consistent with the idea that the TA pathway underlies the anxiolytic effects of NPY in CA1.
Collapse
Affiliation(s)
- Mariana A Cortes
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Aundrea F Bartley
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Qin Li
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Taylor R Davis
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Stephen E Cunningham
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Mary Anne Garner
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Patric J Perez
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Adela C Harvey
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Alecia K Gross
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Lynn E Dobrunz
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States of America.
| |
Collapse
|
2
|
Tough IR, Moodaley R, Cox HM. Enteroendocrine cell-derived peptide YY signalling is stimulated by pinolenic acid or Intralipid and involves coactivation of fatty acid receptors FFA1, FFA4 and GPR119. Neuropeptides 2024; 108:102477. [PMID: 39427565 DOI: 10.1016/j.npep.2024.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Long chain fatty acids are sensed by enteroendocrine L cells that express free-fatty acid receptors, including FFA1, FFA4 and the acylethanolamine receptor GPR119. Here we investigated the acute effects of single or multiple agonism at these G protein-coupled receptors in intestinal mucosae where L cell-derived peptide YY (PYY) is anti-secretory and acts via epithelial Y1 receptors. Mouse ileal or colonic mucosae were mounted in Ussing chambers, voltage-clamped and the resultant short-circuit current (Isc) recorded continuously. The agonists used were; FFA1, TAK-875 or AM-1638; for FFA4, Merck A; or for GPR119, AR231453, PSN632408 or AR440006. Their responses were compared with those of pinolenic acid (PA, a presumed dual FFA1/FFA4 agonist) and the lipid emulsion, Intralipid. The FFA1 agonist AM-1638 (EC50 = 38.2 nM) was more potent than TAK-875 (EC50 = 203.1 nM) but exhibited similar efficacy. GPR119 agonism (AR231453) pretreatment enhanced subsequent FFA1 (AM-1638 or TAK-875) and FFA4 (Merck A) signalling. PA (EC50 = 298.2 nM) co-activated epithelial FFA1 and FFA4 and involved endogenous PYY Y1/Y2-receptor mechanisms but desensitisation was observed between PA and high GPR119 agonist concentrations. Apical Intralipid co-activated FFA1, FFA4 and GPR119 with a residual component not being attributable to PYY, or this trio of fatty acid receptors.
Collapse
Affiliation(s)
- Iain R Tough
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| | - Runisha Moodaley
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| | - Helen M Cox
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
3
|
Wanka L, Behr V, Beck-Sickinger AG. Arrestin-dependent internalization of rhodopsin-like G protein-coupled receptors. Biol Chem 2021; 403:133-149. [PMID: 34036761 DOI: 10.1515/hsz-2021-0128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/28/2021] [Indexed: 01/14/2023]
Abstract
The internalization of G protein-coupled receptors (GPCRs) is an important mechanism regulating the signal strength and limiting the opportunity of receptor activation. Based on the importance of GPCRs, the detailed knowledge about the regulation of signal transduction is crucial. Here, current knowledge about the agonist-induced, arrestin-dependent internalization process of rhodopsin-like GPCRs is reviewed. Arrestins are conserved molecules that act as key players within the internalization process of many GPCRs. Based on highly conserved structural characteristics within the rhodopsin-like GPCRs, the identification of arrestin interaction sites in model systems can be compared and used for the investigation of internalization processes of other receptors. The increasing understanding of this essential regulation mechanism of receptors can be used for drug development targeting rhodopsin-like GPCRs. Here, we focus on the neuropeptide Y receptor family, as these receptors transmit various physiological processes such as food intake, energy homeostasis, and regulation of emotional behavior, and are further involved in pathophysiological processes like cancer, obesity and mood disorders. Hence, this receptor family represents an interesting target for the development of novel therapeutics requiring the understanding of the regulatory mechanisms influencing receptor mediated signaling.
Collapse
Affiliation(s)
- Lizzy Wanka
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Victoria Behr
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| |
Collapse
|
4
|
Xu Z, Wei Y, Guo S, Lin D, Ye H. Short neuropeptide F enhances the immune response in the hepatopancreas of mud crab (Scylla paramamosain). FISH & SHELLFISH IMMUNOLOGY 2020; 101:244-251. [PMID: 32272259 DOI: 10.1016/j.fsi.2020.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Short neuropeptide F (sNPF), a highly conserved neuropeptide, displays pleiotropic functions on multiple aspects of physiological processes, such as feeding, metabolic stress, locomotion, circadian clock and reproduction. However, to date there has no any report on the possible immunoregulation of sNPF in crustaceans. In the present study, we found that the Sp-sNPF was mainly expressed in the nervous tissue in the mud crab Scylla paramamosain, while the sNPF receptor gene (Sp-sNPF-R) was expressed in a wide variety of tissues, including the hepatopancreas. In situ hybridization further showed that the Sp-sNPF-R positive signal mainly localized in the F-cells of the hepatopancreas. Moreover, the Sp-sNPF-R transcription could be significantly up-regulated after the challenge of bacteria-analog LPS or virus-analog Poly (I:C). Both in vitro and in vivo experiments showed that the synthetic sNPF peptide significantly increased the gene expressions of sNPF-R, nuclear factor-κB (NF-κB) signaling genes and antimicrobial peptides (AMPs) in the hepatopancreas. Simultaneously, the administration of sNPF peptide in vitro also increased the concentration of nitric oxide (NO) and the bacteriostasis of the culture medium of hepatopancreas. These results indicated that sNPF up-regulated hepatopancreas immune responses, which may bring new insight into the neuroendocrine-immune regulatory system in crustacean species, and could potentially provide a new strategy for disease prevention and control for mud crab aquaculture.
Collapse
Affiliation(s)
- Zhanning Xu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yujie Wei
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Songlin Guo
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Dongdong Lin
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
5
|
Michaelson SD, Miranda Tapia AP, McKinty A, Silveira Villarroel H, Mackay JP, Urban JH, Colmers WF. Contribution of NPY Y 5 Receptors to the Reversible Structural Remodeling of Basolateral Amygdala Dendrites in Male Rats Associated with NPY-Mediated Stress Resilience. J Neurosci 2020; 40:3231-3249. [PMID: 32144180 PMCID: PMC7159890 DOI: 10.1523/jneurosci.2621-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 11/21/2022] Open
Abstract
Endogenous neuropeptide Y (NPY) and corticotrophin-releasing factor (CRF) modulate the responses of the basolateral amygdala (BLA) to stress and are associated with the development of stress resilience and vulnerability, respectively. We characterized persistent effects of repeated NPY and CRF treatment on the structure and function of BLA principal neurons in a novel organotypic slice culture (OTC) model of male rat BLA, and examined the contributions of specific NPY receptor subtypes to these neural and behavioral effects. In BLA principal neurons within the OTCs, repeated NPY treatment caused persistent attenuation of excitatory input and induced dendritic hypotrophy via Y5 receptor activation; conversely, CRF increased excitatory input and induced hypertrophy of BLA principal neurons. Repeated treatment of OTCs with NPY followed by an identical treatment with CRF, or vice versa, inhibited or reversed all structural changes in OTCs. These structural responses to NPY or CRF required calcineurin or CaMKII, respectively. Finally, repeated intra-BLA injections of NPY or a Y5 receptor agonist increased social interaction, a validated behavior for anxiety, and recapitulated structural changes in BLA neurons seen in OTCs, while a Y5 receptor antagonist prevented NPY's effects both on behavior and on structure. These results implicate the Y5 receptor in the long-term, anxiolytic-like effects of NPY in the BLA, consistent with an intrinsic role in stress buffering, and highlight a remarkable mechanism by which BLA neurons may adapt to different levels of stress. Moreover, BLA OTCs offer a robust model to study mechanisms associated with resilience and vulnerability to stress in BLA.SIGNIFICANCE STATEMENT Within the basolateral amygdala (BLA), neuropeptide Y (NPY) is associated with buffering the neural stress response induced by corticotropin releasing factor, and promoting stress resilience. We used a novel organotypic slice culture model of BLA, complemented with in vivo studies, to examine the cellular mechanisms associated with the actions of NPY. In organotypic slice cultures, repeated NPY treatment reduces the complexity of the dendritic extent of anxiogenic BLA principal neurons, making them less excitable. NPY, via activation of Y5 receptors, additionally inhibits and reverses the increases in dendritic extent and excitability induced by the stress hormone, corticotropin releasing factor. This NPY-mediated neuroplasticity indicates that resilience or vulnerability to stress may thus involve neuropeptide-mediated dendritic remodeling in BLA principal neurons.
Collapse
Affiliation(s)
- Sheldon D Michaelson
- Department of Pharmacology, and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Ana Pamela Miranda Tapia
- Department of Pharmacology, and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Amanda McKinty
- Department of Pharmacology, and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Heika Silveira Villarroel
- Department of Pharmacology, and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - James P Mackay
- Department of Pharmacology, and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Janice H Urban
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - William F Colmers
- Department of Pharmacology, and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| |
Collapse
|
6
|
Ulum B, Mammadova A, Özyüncü Ö, Uçkan-Çetinkaya D, Yanık T, Aerts-Kaya F. Neuropeptide Y is involved in the regulation of quiescence of hematopoietic stem cells. Neuropeptides 2020; 80:102029. [PMID: 32127176 DOI: 10.1016/j.npep.2020.102029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/18/2022]
Abstract
Differentiation, self-renewal and quiescence of Hematopoietic stem cells (HSCs) is tightly regulated in order to protect the HSCs from the strain of constant cell division and depletion of the stem cell pool. The neurotransmitter Neuropeptide Y (NPY) is released from sympathetic nerves in the bone marrow and has been shown to indirectly affect HSC function through effects on bone marrow (BM) multipotent Mesenchymal Stromal Cells (MSCs), osteoblasts (OBs) and macrophages. Although the absence of NPY has been shown to be accompanied by severe BM impairment and delayed engraftment of HSCs, the direct effects of NPY on HSCs have never been assessed. Here, we aimed to explore the effect of NPY on the regulation of HSCs. All NPY receptors Y1, Y2, Y4 and Y5 were found to be highly expressed on most HSCs and mature hematopoietic cell subsets. In culture, in particularly expression of the Y1 receptor was shown to decrease in time. Doses of 300 nM NPY suppressed HSC proliferation in cell cultures, as confirmed by an increase of HSCs in G0 phase and an increase in the gene expression levels of FOXO3, DICER1, SMARCA2 and PDK1, which all have been shown to play an important role in the regulation of cell quiescence. These data support the idea that NPY may have a direct effect on the regulation of HSC fate by modulating cell quiescence.
Collapse
Affiliation(s)
- Baris Ulum
- Hacettepe University Center for Stem Cell Research, Ankara, Turkey; Middle East Technical University, Department of Biological Sciences, Ankara, Turkey
| | - Aynura Mammadova
- Hacettepe University Center for Stem Cell Research, Ankara, Turkey; Hacettepe University Graduate School of Health Sciences, Department of Stem Cell Sciences, Ankara, Turkey
| | - Özgür Özyüncü
- Hacettepe University Medical Faculty, Department of Obstetrics and Gynecology, Ankara, Turkey
| | - Duygu Uçkan-Çetinkaya
- Hacettepe University Center for Stem Cell Research, Ankara, Turkey; Hacettepe University Graduate School of Health Sciences, Department of Stem Cell Sciences, Ankara, Turkey
| | - Tülin Yanık
- Middle East Technical University, Department of Biological Sciences, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Hacettepe University Center for Stem Cell Research, Ankara, Turkey; Hacettepe University Graduate School of Health Sciences, Department of Stem Cell Sciences, Ankara, Turkey.
| |
Collapse
|
7
|
Wanka L, Babilon S, Kaiser A, Mörl K, Beck-Sickinger AG. Different mode of arrestin-3 binding at the human Y 1 and Y 2 receptor. Cell Signal 2018; 50:58-71. [DOI: 10.1016/j.cellsig.2018.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 01/04/2023]
|
8
|
Reiter E, Ayoub MA, Pellissier LP, Landomiel F, Musnier A, Tréfier A, Gandia J, De Pascali F, Tahir S, Yvinec R, Bruneau G, Poupon A, Crépieux P. β-arrestin signalling and bias in hormone-responsive GPCRs. Mol Cell Endocrinol 2017; 449:28-41. [PMID: 28174117 DOI: 10.1016/j.mce.2017.01.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) play crucial roles in the ability of target organs to respond to hormonal cues. GPCRs' activation mechanisms have long been considered as a two-state process connecting the agonist-bound receptor to heterotrimeric G proteins. This view is now challenged as mounting evidence point to GPCRs being connected to large arrays of transduction mechanisms involving heterotrimeric G proteins as well as other players. Amongst the G protein-independent transduction mechanisms, those elicited by β-arrestins upon their recruitment to the active receptors are by far the best characterized and apply to most GPCRs. These concepts, in conjunction with remarkable advances made in the field of GPCR structural biology and biophysics, have supported the notion of ligand-selective signalling also known as pharmacological bias. Interestingly, recent reports have opened intriguing prospects to the way β-arrestins control GPCR-mediated signalling in space and time within the cells. In the present paper, we review the existing evidence linking endocrine-related GPCRs to β-arrestin recruitement, signalling, pathophysiological implications and selective activation by biased ligands and/or receptor modifications. Emerging concepts surrounding β-arrestin-mediated transduction are discussed in the light of the peculiarities of endocrine systems.
Collapse
Affiliation(s)
- Eric Reiter
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| | - Mohammed Akli Ayoub
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France; LE STUDIUM(®) Loire Valley Institute for Advanced Studies, 45000, Orléans, France; Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Flavie Landomiel
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Astrid Musnier
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Aurélie Tréfier
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Jorge Gandia
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | | | - Shifa Tahir
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Romain Yvinec
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Gilles Bruneau
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Anne Poupon
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Pascale Crépieux
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| |
Collapse
|
9
|
Wanka L, Babilon S, Burkert K, Mörl K, Gurevich VV, Beck-Sickinger AG. C-terminal motif of human neuropeptide Y 4 receptor determines internalization and arrestin recruitment. Cell Signal 2017; 29:233-239. [PMID: 27818291 PMCID: PMC5797669 DOI: 10.1016/j.cellsig.2016.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/27/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022]
Abstract
The human neuropeptide Y4 receptor is a rhodopsin-like G protein-coupled receptor (GPCR), which contributes to anorexigenic signals. Thus, this receptor is a highly interesting target for metabolic diseases. As GPCR internalization and trafficking affect receptor signaling and vice versa, we aimed to investigate the molecular mechanism of hY4R desensitization and endocytosis. The role of distinct segments of the hY4R carboxyl terminus was investigated by fluorescence microscopy, binding assays, inositol turnover experiments and bioluminescence resonance energy transfer assays to examine the internalization behavior of hY4R and its interaction with arrestin-3. Based on results of C-terminal deletion mutants and substitution of single amino acids, the motif 7.78EESEHLPLSTVHTEVSKGS7.96 was identified, with glutamate, threonine and serine residues playing key roles, based on site-directed mutagenesis. Thus, we identified the internalization motif for the human neuropeptide Y4 receptor, which regulates arrestin-3 recruitment and receptor endocytosis.
Collapse
Affiliation(s)
- Lizzy Wanka
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Stefanie Babilon
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Kerstin Burkert
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Karin Mörl
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany.
| |
Collapse
|
10
|
Mutation in the V2 vasopressin receptor gene, AVPR2, causes nephrogenic syndrome of inappropriate diuresis. Kidney Int 2015; 88:1070-8. [PMID: 26131744 DOI: 10.1038/ki.2015.181] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 12/23/2022]
Abstract
Nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is a recently discovered rare disease caused by gain-of-function mutations of the V2 vasopressin receptor gene, AVPR2. To date, mutations of Phe229 and Arg137 have been identified as gain-of-function in the V2 vasopressin receptor (V2R). These receptor mutations lead to hyponatremia, which may lead to clinical symptoms in infants. Here we present a newly identified I130N substitution in exon 2 of the V2R gene in a family, causing NSIAD. This I130N mutation resulted in constitutive activity of the V2R with constitutive cyclic adenosine monophosphate (cAMP) generation in HEK293 cells. This basal activity could be blocked by the inverse agonist tolvaptan and arginine-vasopressin stimulation enhanced the cAMP production of I130N-V2R. The mutation causes a biased receptor conformation as the basal cAMP generation activity of I130N does not lead to interaction with β-arrestin. The constitutive activity of the mutant receptor caused constitutive dynamin-dependent and β-arrestin-independent internalization. The inhibition of basal internalization using dominant-negative dynamin resulted in an increased cell surface expression. In contrast to the constitutive internalization, agonist-induced endocytosis was β-arrestin dependent. Thus, tolvaptan could be used for treatment of hyponatremia in patients with NSIAD who carry the I130N-V2R mutation.
Collapse
|
11
|
Kilpatrick LE, Humphrys LJ, Holliday ND. A G protein-coupled receptor dimer imaging assay reveals selectively modified pharmacology of neuropeptide Y Y1/Y5 receptor heterodimers. Mol Pharmacol 2015; 87:718-32. [PMID: 25637604 DOI: 10.1124/mol.114.095356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability of G protein-coupled receptors (GPCRs) to form dimers, and particularly heterodimers, offers potential for targeted therapeutics with improved selectivity. However, studying dimer pharmacology is challenging, because of signaling cross-talk or because dimerization may often be transient in nature. Here we develop a system to isolate the pharmacology of precisely defined GPCR dimers, trapped by bimolecular fluorescence complementation (BiFC). Specific effects of agonist activation on such dimers are quantified using automated imaging and analysis of their internalization, controlled for by simultaneous assessment of endocytosis of one coexpressed protomer population. We applied this BiFC system to study example neuropeptide Y (NPY) Y1 receptor dimers. Incorporation of binding-site or phosphorylation-site mutations into just one protomer of a Y1/Y1 BiFC homodimer had no impact on efficient NPY-stimulated endocytosis, demonstrating that single-site agonist occupancy, and one phosphorylated monomer within this dimer, was sufficient. For two Y1 receptor heterodimer combinations (with the Y4 receptor or β2-adrenoceptor), agonist and antagonist pharmacology was explained by independent actions on the respective orthosteric binding sites. However, Y1/Y5 receptor BiFC dimers, compared with the constituent subtypes, were characterized by reduced potency and efficacy of Y5-selective peptide agonists, the inactivity of Y1-selective antagonists, and a change from surmountable to nonsurmountable antagonism for three unrelated Y5 antagonists. Thus, allosteric interactions between Y1 and Y5 receptors modify the pharmacology of the heterodimer, with implications for potential antiobesity agents that target centrally coexpressed Y1 and Y5 receptors to suppress appetite.
Collapse
Affiliation(s)
- Laura E Kilpatrick
- School of Life Sciences, University of Nottingham, The Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | - Laura J Humphrys
- School of Life Sciences, University of Nottingham, The Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | - Nicholas D Holliday
- School of Life Sciences, University of Nottingham, The Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
12
|
Mörl K, Beck-Sickinger AG. Intracellular Trafficking of Neuropeptide Y Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:73-96. [PMID: 26055055 DOI: 10.1016/bs.pmbts.2015.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The multireceptor multiligand system of neuropeptide Y receptors and their ligands is involved in the regulation of a multitude of physiological and pathophysiological processes. Specific expression patterns, ligand-binding modes, and signaling properties contribute to the complex network regulating distinct cellular responses. Intracellular trafficking processes are important key steps that are regulated in context with accessory proteins. These proteins exert their influence by interacting directly or indirectly with the receptors, causing modification of the receptors, or operating as scaffolds for the assembly of larger signaling complexes. On the intracellular receptor faces, sequence-specific motifs have been identified that play an important role in this process. Interestingly, it is also possible to influence the receptor internalization by modification of the peptide ligand.
Collapse
Affiliation(s)
- Karin Mörl
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Leipzig, Germany.
| | - Annette G Beck-Sickinger
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
13
|
Gyombolai P, Boros E, Hunyady L, Turu G. Differential β-arrestin2 requirements for constitutive and agonist-induced internalization of the CB1 cannabinoid receptor. Mol Cell Endocrinol 2013; 372:116-27. [PMID: 23541635 DOI: 10.1016/j.mce.2013.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/06/2013] [Accepted: 03/15/2013] [Indexed: 01/13/2023]
Abstract
CB1 cannabinoid receptor (CB1R) undergoes both constitutive and agonist-induced internalization, but the underlying mechanisms of these processes and the role of β-arrestins in the regulation of CB1R function are not completely understood. In this study, we followed CB1R internalization using confocal microscopy and bioluminescence resonance energy transfer measurements in HeLa and Neuro-2a cells. We found that upon activation CB1R binds β-arrestin2 (β-arr2), but not β-arrestin1. Furthermore, both the expression of dominant-negative β-arr2 (β-arr2-V54D) and siRNA-mediated knock-down of β-arr2 impaired the agonist-induced internalization of CB1R. In contrast, neither β-arr2-V54D nor β-arr2-specific siRNA had a significant effect on the constitutive internalization of CB1R. However, both constitutive and agonist-induced internalization of CB1R were impaired by siRNA-mediated depletion of clathrin heavy chain. We conclude that although clathrin is required for both constitutive and agonist-stimulated internalization of CB1R, β-arr2 binding is only required for agonist-induced internalization of the receptor suggesting that the molecular mechanisms underlying constitutive and agonist-induced internalization of CB1R are different.
Collapse
Affiliation(s)
- Pál Gyombolai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| | | | | | | |
Collapse
|
14
|
Zhao J, Pei G. Arrestins in metabolic regulation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:413-27. [PMID: 23764063 DOI: 10.1016/b978-0-12-394440-5.00016-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review summarizes the regulatory roles of β-arrestins in whole-body energy balance, body weight control, and carbohydrate and lipid homeostasis. Much research has pointed in the direction of the functions of β-arrestins in mediating desensitization and endocytosis of G protein-coupled receptors as well as in activating the receptor/β-arrestin/ERK signaling pathway being crucial for metabolic regulation. Furthermore, β-arrestins form diverse signal complexes for the activation of the downstream cassettes for the body's metabolic reactions. However, further studies are required to fully address the emerging roles of β-arrestins in metabolic regulation and related diseases.
Collapse
Affiliation(s)
- Jian Zhao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | | |
Collapse
|
15
|
Walther C, Ferguson SSG. Arrestins: role in the desensitization, sequestration, and vesicular trafficking of G protein-coupled receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:93-113. [PMID: 23764051 DOI: 10.1016/b978-0-12-394440-5.00004-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the years, β-arrestins have emerged as multifunctional molecular scaffolding proteins regulating almost every imaginable G protein-coupled receptor (GPCR) function. Originally discovered as GPCR-desensitizing molecules, they have been shown to also serve as important regulators of GPCR signaling, sequestration, and vesicular trafficking. This broad functional role implicates β-arrestins as key regulatory proteins for cellular function. Hence, this chapter summarizes the current understanding of the β-arrestin family's unique ability to control the kinetics as well as the extent of GPCR activity at the level of desensitization, sequestration, and subsequent intracellular trafficking.
Collapse
Affiliation(s)
- Cornelia Walther
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, Western University Canada, London, Ontario, Canada
| | | |
Collapse
|
16
|
Negroni J, Meunier N, Monnerie R, Salesse R, Baly C, Caillol M, Congar P. Neuropeptide Y enhances olfactory mucosa responses to odorant in hungry rats. PLoS One 2012; 7:e45266. [PMID: 23024812 PMCID: PMC3443224 DOI: 10.1371/journal.pone.0045266] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/17/2012] [Indexed: 01/13/2023] Open
Abstract
Neuropeptide Y (NPY) plays an important role in regulating appetite and hunger in vertebrates. In the hypothalamus, NPY stimulates food intake under the control of the nutritional status. Previous studies have shown the presence of NPY and receptors in rodent olfactory system, and suggested a neuroproliferative role. Interestingly, NPY was also shown to directly modulate olfactory responses evoked by a food-related odorant in hungry axolotls. We have recently demonstrated that another nutritional cue, insulin, modulates the odorant responses of the rat olfactory mucosa (OM). Therefore, the aim of the present study was to investigate the potential effect of NPY on rat OM responses to odorants, in relation to the animal's nutritional state. We measured the potential NPY modulation of OM responses to odorant, using electro-olfactogram (EOG) recordings, in fed and fasted adult rats. NPY application significantly and transiently increased EOG amplitudes in fasted but not in fed rats. The effects of specific NPY-receptor agonists were similarly quantified, showing that NPY operated mainly through Y1 receptors. These receptors appeared as heterogeneously expressed by olfactory neurons in the OM, and western blot analysis showed that they were overexpressed in fasted rats. These data provide the first evidence that NPY modulates the initial events of odorant detection in the rat OM. Because this modulation depends on the nutritional status of the animal, and is ascribed to NPY, the most potent orexigenic peptide in the central nervous system, it evidences a strong supplementary physiological link between olfaction and nutritional processes.
Collapse
Affiliation(s)
- Julia Negroni
- INRA, UR1197 Neurobiologie de l′Olfaction et Modélisation en Imagerie, Jouy-en-Josas, France
- IFR144, NeuroSud Paris, Gif-Sur-Yvette, France
| | - Nicolas Meunier
- INRA, UR1197 Neurobiologie de l′Olfaction et Modélisation en Imagerie, Jouy-en-Josas, France
- IFR144, NeuroSud Paris, Gif-Sur-Yvette, France
- Université de Versailles Saint-Quentin en Yvelines, Versailles, France
| | - Régine Monnerie
- INRA, UR1197 Neurobiologie de l′Olfaction et Modélisation en Imagerie, Jouy-en-Josas, France
- IFR144, NeuroSud Paris, Gif-Sur-Yvette, France
| | - Roland Salesse
- INRA, UR1197 Neurobiologie de l′Olfaction et Modélisation en Imagerie, Jouy-en-Josas, France
- IFR144, NeuroSud Paris, Gif-Sur-Yvette, France
| | - Christine Baly
- INRA, UR1197 Neurobiologie de l′Olfaction et Modélisation en Imagerie, Jouy-en-Josas, France
- IFR144, NeuroSud Paris, Gif-Sur-Yvette, France
| | - Monique Caillol
- INRA, UR1197 Neurobiologie de l′Olfaction et Modélisation en Imagerie, Jouy-en-Josas, France
- IFR144, NeuroSud Paris, Gif-Sur-Yvette, France
| | - Patrice Congar
- INRA, UR1197 Neurobiologie de l′Olfaction et Modélisation en Imagerie, Jouy-en-Josas, France
- IFR144, NeuroSud Paris, Gif-Sur-Yvette, France
- * E-mail:
| |
Collapse
|
17
|
Parker MS, Sah R, Parker SL. Surface masking shapes the traffic of the neuropeptide Y Y2 receptor. Peptides 2012; 37:40-8. [PMID: 22732667 PMCID: PMC3440242 DOI: 10.1016/j.peptides.2012.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/16/2012] [Accepted: 06/17/2012] [Indexed: 10/28/2022]
Abstract
The neuropeptide Y (NPY) Y2 receptor shows a large masked surface population in adherent CHO cells or in forebrain cell aggregates, but not in dispersed cells or in particulates from these sources. This is related to adhesion via acidic motifs in the extracellular N-terminal domain. Masking of the Y2 receptor is lifted by non-permeabilizing mechanical dispersion of cells, which also increases internalization of Y2 agonists. Mechanical dispersion and detachment by EDTA expose the same number of surface sites. As we have already shown, phenylarsine oxide (PAO), a cysteine-bridging agent, and to a lesser extent also the cysteine alkylator N-ethylmaleimide, unmask the surface Y2 sites without cell detachment or permeabilization. We now demonstrate that unmasking by permeabilizing but non-detaching treatment with cholesterol-binding detergents digitonin and edelfosine compares with and overlaps that of PAO. The caveolar/raft cholesterol-targeting macrolide filipin III however produces only partial unmasking. Depletion of the surface sites by N-terminally clipped Y2 agonists indicates larger accessibility for a short highly helical peptide. These findings indicate presence of a dynamic masked pool including majority of the cell surface Y2 receptors in adherent CHO cells. This compartmentalization is obviously involved in the low internalization of Y2 receptors in these cells.
Collapse
Affiliation(s)
- Michael S. Parker
- Department of Microbiology and Molecular Cell Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Renu Sah
- Department of Psychiatry, School of Medicine, Cincinnati, OH 45267, USA
| | - Steven L. Parker
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| |
Collapse
|
18
|
Kilpatrick LE, Briddon SJ, Holliday ND. Fluorescence correlation spectroscopy, combined with bimolecular fluorescence complementation, reveals the effects of β-arrestin complexes and endocytic targeting on the membrane mobility of neuropeptide Y receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1068-81. [PMID: 22487268 PMCID: PMC3793875 DOI: 10.1016/j.bbamcr.2012.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 01/22/2023]
Abstract
Fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analysis are powerful ways to study mobility and stoichiometry of G protein coupled receptor complexes, within microdomains of single living cells. However, relating these properties to molecular mechanisms can be challenging. We investigated the influence of β-arrestin adaptors and endocytosis mechanisms on plasma membrane diffusion and particle brightness of GFP-tagged neuropeptide Y (NPY) receptors. A novel GFP-based bimolecular fluorescence complementation (BiFC) system also identified Y1 receptor-β-arrestin complexes. Diffusion co-efficients (D) for Y1 and Y2-GFP receptors in HEK293 cell plasma membranes were 2.22 and 2.15 × 10− 9 cm2 s− 1 respectively. At a concentration which promoted only Y1 receptor endocytosis, NPY treatment reduced Y1-GFP motility (D 1.48 × 10− 9 cm2 s− 1), but did not alter diffusion characteristics of the Y2-GFP receptor. Agonist induced changes in Y1 receptor motility were inhibited by mutations (6A) which prevented β-arrestin recruitment and internalisation; conversely they became apparent in a Y2 receptor mutant with increased β-arrestin affinity. NPY treatment also increased Y1 receptor-GFP particle brightness, changes which indicated receptor clustering, and which were abolished by the 6A mutation. The importance of β-arrestin recruitment for these effects was illustrated by reduced lateral mobility (D 1.20–1.33 × 10− 9 cm2 s− 1) of Y1 receptor-β-arrestin BiFC complexes. Thus NPY-induced changes in Y receptor motility and brightness reflect early events surrounding arrestin dependent endocytosis at the plasma membrane, results supported by a novel combined BiFC/FCS approach to detect the underlying receptor-β-arrestin signalling complex.
Collapse
Affiliation(s)
- Laura E Kilpatrick
- Cell Signaling Research Group, School of Biomedical Sciences, University of Nottingham, the Medical School, Queen's Medical Centre, Nottingham, UK
| | | | | |
Collapse
|
19
|
Lundell I, Rabe Bernhardt N, Johnsson AK, Larhammar D. Internalization studies of chimeric neuropeptide Y receptors Y1 and Y2 suggest complex interactions between cytoplasmic domains. ACTA ACUST UNITED AC 2011; 168:50-8. [DOI: 10.1016/j.regpep.2011.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/18/2011] [Accepted: 03/28/2011] [Indexed: 11/25/2022]
|
20
|
Walther C, Mörl K, Beck-Sickinger AG. Neuropeptide Y receptors: ligand binding and trafficking suggest novel approaches in drug development. J Pept Sci 2011; 17:233-46. [PMID: 21351324 DOI: 10.1002/psc.1357] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 12/22/2010] [Accepted: 01/07/2011] [Indexed: 12/27/2022]
Abstract
NPY, PYY and PP constitute the so-called NPY hormone family, which exert its biological functions in humans through YRs (Y₁, Y₂, Y₄ and Y₅). Systematic modulation of YR function became important as this multireceptor/multiligand system is known to mediate various essential physiological key functions and is involved in a variety of major human diseases such as epilepsy, obesity and cancer. As several YRs have been found to be overexpressed on different types of malignant tumors they emerge as promising target in modern drug development. Here, we summarize the current understanding of YRs function and the molecular mechanisms of ligand binding and trafficking. We further address recent advances in YR-based drug design, the development of promising future drug candidates and novel approaches in YR-targeted tumor diagnostics and therapy opportunities.
Collapse
Affiliation(s)
- Cornelia Walther
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Leipzig, Germany
| | | | | |
Collapse
|
21
|
Walther C, Nagel S, Gimenez LE, Mörl K, Gurevich VV, Beck-Sickinger AG. Ligand-induced internalization and recycling of the human neuropeptide Y2 receptor is regulated by its carboxyl-terminal tail. J Biol Chem 2010; 285:41578-41590. [PMID: 20959467 PMCID: PMC3009885 DOI: 10.1074/jbc.m110.162156] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 10/07/2010] [Indexed: 11/06/2022] Open
Abstract
Agonist-induced internalization of G protein-coupled receptors plays an important role in signal regulation. The underlying mechanisms of the internalization of the human neuropeptide Y(2) receptor (hY(2)R), as well as its desensitization, endocytosis, and resensitization are mainly unknown. In the present study we have investigated the role of carboxyl-terminal (C-terminal) Ser/Thr residues and acidic amino acids in regulating receptor internalization, arrestin interaction, and recycling by fluorescence microscopy, cell surface enzyme-linked immunosorbent assay, and bioluminescence resonance energy transfer in several cell lines. Strikingly, C-terminal truncation mutants revealed two different internalization motifs. Whereas a distal motif (373)DSXTEXT(379) was found to be the primary regulatory internalization sequence acting in concert with arrestin-3, the proximal motif (347)DXXXSEXSXT(356) promoted ligand-induced internalization in an arrestin-3-independent manner. Moreover, we identified a regulatory sequence located between these internalization motifs ((357)FKAKKNLEVRKN(368)), which serves as an inhibitory element. We found that hY(2)R recycling is also governed by structural determinants within the proximal internalization motif. In conclusion, these results indicate that the hY(2)R C terminus is involved in multiple molecular events that regulate internalization, interaction with arrestin-3, and receptor resensitization. Our findings provide novel insights into complex mechanisms of controlled internalization of hY(2)R, which is likely applicable to other GPCRs.
Collapse
Affiliation(s)
- Cornelia Walther
- From the Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany and
| | - Stefanie Nagel
- From the Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany and
| | - Luis E. Gimenez
- the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Karin Mörl
- From the Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany and
| | - Vsevolod V. Gurevich
- the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Annette G. Beck-Sickinger
- From the Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany and
| |
Collapse
|
22
|
Kilpatrick LE, Briddon SJ, Hill SJ, Holliday ND. Quantitative analysis of neuropeptide Y receptor association with beta-arrestin2 measured by bimolecular fluorescence complementation. Br J Pharmacol 2010; 160:892-906. [PMID: 20438572 PMCID: PMC2901518 DOI: 10.1111/j.1476-5381.2010.00676.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE beta-Arrestins are critical scaffold proteins that shape spatiotemporal signalling from seven transmembrane domain receptors (7TMRs). Here, we study the association between neuropeptide Y (NPY) receptors and beta-arrestin2, using bimolecular fluorescence complementation (BiFC) to directly report underlying protein-protein interactions. EXPERIMENTAL APPROACH Y1 receptors were tagged with a C-terminal fragment, Yc, of yellow fluorescent protein (YFP), and beta-arrestin2 fused with the complementary N-terminal fragment, Yn. After Y receptor-beta-arrestin association, YFP fragment refolding to regenerate fluorescence (BiFC) was examined by confocal microscopy in transfected HEK293 cells. Y receptor/beta-arrestin2 BiFC responses were also quantified by automated imaging and granularity analysis. KEY RESULTS NPY stimulation promoted association between Y1-Yc and beta-arrestin2-Yn, and the specific development of BiFC in intracellular compartments, eliminated when using non-interacting receptor and arrestin mutants. Responses developed irreversibly and were slower than for downstream Y1 receptor-YFP internalization, a consequence of delayed maturation and stability of complemented YFP. However, beta-arrestin2 BiFC measurements delivered appropriate ligand pharmacology for both Y1 and Y2 receptors, and demonstrated higher affinity of Y1 compared to Y2 receptors for beta-arrestin2. Receptor mutagenesis combined with beta-arrestin2 BiFC revealed that alternative arrangements of Ser/Thr residues in the Y1 receptor C tail could support beta-arrestin2 association, and that Y2 receptor-beta-arrestin2 interaction was enhanced by the intracellular loop mutation H155P. CONCLUSIONS AND IMPLICATIONS The BiFC approach quantifies Y receptor ligand pharmacology focused on the beta-arrestin2 pathway, and provides insight into mechanisms of beta-arrestin2 recruitment by activated and phosphorylated 7TMRs, at the level of protein-protein interaction.
Collapse
Affiliation(s)
- L E Kilpatrick
- Institute of Cell Signalling, School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | | | | | |
Collapse
|
23
|
Rose RH, Briddon SJ, Holliday ND. Bimolecular fluorescence complementation: lighting up seven transmembrane domain receptor signalling networks. Br J Pharmacol 2009; 159:738-50. [PMID: 20015298 DOI: 10.1111/j.1476-5381.2009.00480.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
There is increasing complexity in the organization of seven transmembrane domain (7TM) receptor signalling pathways, and in the ability of their ligands to modulate and direct this signalling. Underlying these events is a network of protein interactions between the 7TM receptors themselves and associated effectors, such as G proteins and beta-arrestins. Bimolecular fluorescence complementation, or BiFC, is a technique capable of detecting these protein-protein events essential for 7TM receptor function. Fluorescent proteins, such as those from Aequorea victoria, are split into two non-fluorescent halves, which then tag the proteins under study. On association, these fragments refold and regenerate a mature fluorescent protein, producing a BiFC signal indicative of complex formation. Here, we review the experimental criteria for successful application of BiFC, considered in the context of 7TM receptor signalling events such as receptor dimerization, G protein and beta-arrestin signalling. The advantages and limitations of BiFC imaging are compared with alternative resonance energy transfer techniques. We show that the essential simplicity of the fluorescent BiFC measurement allows high-content and advanced imaging applications, and that it can probe more complex multi-protein interactions alone or in combination with resonance energy transfer. These capabilities suggest that BiFC techniques will become ever more useful in the analysis of ligand and 7TM receptor pharmacology at the molecular level of protein-protein interactions.
Collapse
Affiliation(s)
- Rachel H Rose
- Institute of Cell Signalling, School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | | | |
Collapse
|
24
|
Böhme I, Beck-Sickinger AG. Illuminating the life of GPCRs. Cell Commun Signal 2009; 7:16. [PMID: 19602276 PMCID: PMC2726148 DOI: 10.1186/1478-811x-7-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 07/14/2009] [Indexed: 01/19/2023] Open
Abstract
The investigation of biological systems highly depends on the possibilities that allow scientists to visualize and quantify biomolecules and their related activities in real-time and non-invasively. G-protein coupled receptors represent a family of very dynamic and highly regulated transmembrane proteins that are involved in various important physiological processes. Since their localization is not confined to the cell surface they have been a very attractive "moving target" and the understanding of their intracellular pathways as well as the identified protein-protein-interactions has had implications for therapeutic interventions. Recent and ongoing advances in both the establishment of a variety of labeling methods and the improvement of measuring and analyzing instrumentation, have made fluorescence techniques to an indispensable tool for GPCR imaging. The illumination of their complex life cycle, which includes receptor biosynthesis, membrane targeting, ligand binding, signaling, internalization, recycling and degradation, will provide new insights into the relationship between spatial receptor distribution and function. This review covers the existing technologies to track GPCRs in living cells. Fluorescent ligands, antibodies, auto-fluorescent proteins as well as the evolving technologies for chemical labeling with peptide- and protein-tags are described and their major applications concerning the GPCR life cycle are presented.
Collapse
Affiliation(s)
- Ilka Böhme
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr, 34, 04103 Leipzig, Germany.
| | | |
Collapse
|
25
|
Böhme I, Stichel J, Walther C, Mörl K, Beck-Sickinger AG. Agonist induced receptor internalization of neuropeptide Y receptor subtypes depends on third intracellular loop and C-terminus. Cell Signal 2008; 20:1740-9. [DOI: 10.1016/j.cellsig.2008.05.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 05/26/2008] [Indexed: 10/22/2022]
|
26
|
Ouedraogo M, Lecat S, Rochdi MD, Hachet-Haas M, Matthes H, Gicquiaux H, Verrier S, Gaire M, Glasser N, Mély Y, Takeda K, Bouvier M, Galzi JL, Bucher B. Distinct motifs of neuropeptide Y receptors differentially regulate trafficking and desensitization. Traffic 2007; 9:305-24. [PMID: 18088318 DOI: 10.1111/j.1600-0854.2007.00691.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Activated human neuropeptide Y Y(1) receptors rapidly desensitize and internalize through clathrin-coated pits and recycle from early and recycling endosomes, unlike Y(2) receptors that neither internalize nor desensitize. To identify motifs implicated in Y(1) receptor desensitization and trafficking, mutants with varying C-terminal truncations or a substituted Y(2) C-terminus were constructed. Point mutations of key putative residues were made in a C-terminal conserved motif [phi-H-(S/T)-(E/D)-V-(S/T)-X-T] that we have identified and in the second intracellular i2 loop. Receptors were analyzed by functional assays, spectrofluorimetric measurements on living cells, flow cytometry, confocal imaging and bioluminescence resonance energy transfer assays for beta-arrestin activation and adaptor protein (AP-2) complex recruitment. Inhibitory GTP-binding protein-dependent signaling of Y(1) receptors to adenylyl cyclase and desensitization was unaffected by C-terminal truncations or mutations, while C-terminal deletion mutants of 42 and 61 amino acids no longer internalized. Substitutions of Thr357, Asp358, Ser360 and Thr362 by Ala in the C-terminus abolished both internalization and beta-arrestin activation but not desensitization. A Pro145 substitution by His in an i2 consensus motif reported to mediate phosphorylation-independent recruitment of beta-arrestins affected neither desensitization, internalization or recycling kinetics of activated Y(1) receptors nor beta-arrestin activation. Interestingly, combining Pro145 substitution by His and C-terminal substitutions significantly attenuates Y(1) desensitization. In the Y(2) receptor, replacement of His155 with Pro at this position in the i2 loop motif promotes agonist-mediated desensitization, beta-arrestin activation, internalization and recycling. Overall, our results indicate that beta-arrestin-mediated desensitization and internalization of Y(1) and Y(2) receptors are differentially regulated by the C-terminal motif and the i2 loop consensus motif.
Collapse
Affiliation(s)
- Moussa Ouedraogo
- Institut Gilbert-Laustriat, UMR 7175, CNRS/Université Louis Pasteur, Strasbourg I, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Holliday ND, Tough IR, Cox HM. A functional comparison of recombinant and native somatostatin sst2 receptor variants in epithelia. Br J Pharmacol 2007; 152:132-40. [PMID: 17603546 PMCID: PMC1978267 DOI: 10.1038/sj.bjp.0707365] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Somatostatin (SRIF-14) exerts broad spectrum antisecretory effects by activating the somatostatin 2 (sst(2)) receptor. The rat (r) sst(2) receptor exists in 'long' (sst(2a)) and 'short' (sst(2b)) forms that differ in their C termini, while a single human (h) sst(2a) exists. This study compares the characteristics of recombinant rsst(2a), rsst(2b) and hsst(2a) activation in human epithelia, and with native sst(2) responses in rat colon. EXPERIMENTAL APPROACH Epithelial layers of each clone or rat colon were placed in Ussing chambers and short-circuit current (I (SC)) measured in response to SRIF-14 and chosen analogues. The relative potencies and ability to cause desensitization to SRIF-14 were assessed, and the affinities of the sst(2) antagonist, D-Tyr(8) CYN154806 for hsst(2a), rsst(2a) and native rat colon sst(2) receptors were established. KEY RESULTS Basolateral SRIF-14 responses were transient in hsst(2a) and rsst(2a) epithelia, but prolonged in rsst(2b)-expressing cells. Activation of rsst(2a) resulted in significant desensitization to SRIF-14 and receptor phosphorylation, whereas the rsst(2b) receptor did neither. Sst(2)-preferred agonists (BIM23190C and BIM23027) reduced I (sc) with similar potency and both caused complete desensitization to SRIF-14. CYN154806 antagonized hsst(2a) and rsst(2a) receptors with pK (B) values of 7.9 and 7.8, respectively. In rat colon mucosa, CYN154806 blocked SRIF-14 responses with a pA (2) value of 8.2, and BIM23190C responses with a pK (B) of 8.4. CONCLUSIONS AND IMPLICATIONS SRIF-14 caused rapid rsst(2a) receptor phosphorylation and desensitization of epithelial antisecretory responses, neither of which occurred with the rsst(2b) receptor. These mechanisms are most likely to be a prerequisite for sensitivity to sst(2)-analogues with radiotherapeutic potential.
Collapse
Affiliation(s)
- N D Holliday
- Wolfson Centre for Age-Related Diseases, King's College London, Hodgkin Building, Guy's Campus London, UK
| | - I R Tough
- Wolfson Centre for Age-Related Diseases, King's College London, Hodgkin Building, Guy's Campus London, UK
| | - H M Cox
- Wolfson Centre for Age-Related Diseases, King's College London, Hodgkin Building, Guy's Campus London, UK
- Author for correspondence:
| |
Collapse
|
28
|
Oakley RH, Olivares-Reyes JA, Hudson CC, Flores-Vega F, Dautzenberg FM, Hauger RL. Carboxyl-terminal and intracellular loop sites for CRF1 receptor phosphorylation and beta-arrestin-2 recruitment: a mechanism regulating stress and anxiety responses. Am J Physiol Regul Integr Comp Physiol 2007; 293:R209-22. [PMID: 17363685 PMCID: PMC3102763 DOI: 10.1152/ajpregu.00099.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The primary goal was to test the hypothesis that agonist-induced corticotropin-releasing factor type 1 (CRF(1)) receptor phosphorylation is required for beta-arrestins to translocate from cytosol to the cell membrane. We also sought to determine the relative importance to beta-arrestin recruitment of motifs in the CRF(1) receptor carboxyl terminus and third intracellular loop. beta-Arrestin-2 translocated significantly more rapidly than beta-arrestin-1 to agonist-activated membrane CRF(1) receptors in multiple cell lines. Although CRF(1) receptors internalized with agonist treatment, neither arrestin isoform trafficked with the receptor inside the cell, indicating that CRF(1) receptor-arrestin complexes dissociate at or near the cell membrane. Both arrestin and clathrin-dependent mechanisms were involved in CRF(1) receptor internalization. To investigate molecular determinants mediating the robust beta-arrestin-2-CRF(1) receptor interaction, mutagenesis was performed to remove potential G protein-coupled receptor kinase phosphorylation sites. Truncating the CRF(1) receptor carboxyl terminus at serine-386 greatly reduced agonist-dependent phosphorylation but only partially impaired beta-arrestin-2 recruitment. Removal of a serine/threonine cluster in the third intracellular loop also significantly reduced CRF(1) receptor phosphorylation but did not alter beta-arrestin-2 recruitment. Phosphorylation was abolished in a CRF(1) receptor possessing both mutations. Surprisingly, this mutant still recruited beta-arrestin-2. These mutations did not alter membrane expression or cAMP signaling of CRF(1) receptors. Our data reveal the involvement of at least the following two distinct receptor regions in beta-arrestin-2 recruitment: 1) a carboxyl-terminal motif in which serine/threonine residues must be phosphorylated and 2) an intracellular loop motif configured by agonist-induced changes in CRF(1) receptor conformation. Deficient beta-arrestin-2-CRF(1) receptor interactions could contribute to the pathophysiology of affective disorders by inducing excessive CRF(1) receptor signaling.
Collapse
Affiliation(s)
- Robert H Oakley
- Department of Psychiatry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603, USA
| | | | | | | | | | | |
Collapse
|
29
|
Böhme I, Mörl K, Bamming D, Meyer C, Beck-Sickinger AG. Tracking of human Y receptors in living cells--a fluorescence approach. Peptides 2007; 28:226-34. [PMID: 17207557 DOI: 10.1016/j.peptides.2006.08.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 08/20/2006] [Indexed: 11/25/2022]
Abstract
Non-invasive methods for studying biological processes in living cells have become very important, also in the field of GPCR biochemistry. Great advancements in the application of fluorescence techniques as well as in the development and improvement of novel fluorophores allow the visualization of dynamic processes. Using these technologies, problems concerning receptor biosynthesis, internalization, recycling and degradation can be investigated. Here we compare the application of the different fluorescent tags EYFP, Lumiotrade mark and SNAPtrade mark to track hY(1) and hY(5) receptors in living cells.
Collapse
Affiliation(s)
- Ilka Böhme
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
30
|
Gehlert DR, Shaw JL. Increased brain neuropeptide Y1 and Y2 receptor binding in NPY knock out mice does not result in increased receptor function. Peptides 2007; 28:241-9. [PMID: 17208335 DOI: 10.1016/j.peptides.2006.08.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Accepted: 08/20/2006] [Indexed: 10/23/2022]
Abstract
The brain neuropeptide Neuropeptide Y (NPY) is an important modulator of a number of centrally mediated processes including feeding, anxiety-like behaviors, blood pressure and others. NPY produces its effects through at least four functional G-protein coupled receptors termed Y1, Y2, Y4 and Y5. In the brain, the Y1 and Y2 receptor subtypes are the predominant receptor population. To better understand the roles of NPY, genetically modified mice lacking NPY were produced but lacked the expected phenotypes. These mice have previously been reported to have a marked increase in Y2 receptor binding. In the present study, we found an upregulation of both Y1 and Y2 receptor binding and extended these findings to the female. These increases were as large as 10-fold or greater in many brain regions. To assess functional coupling of the receptors, we performed agonist-induced [(35)S]GTPgammaS autoradiography. In the mouse brain, the Y1/Y4/Y5 agonist Leu(31),Pro(34)-NPY increased [(35)S]GTPgammaS binding with a regional distribution consistent with that produced when labeling adjacent sections with [(125)I]-Leu(31),Pro(34)-PYY. In a few brain regions, minor increases were noted in the agonist-induced binding when comparing knock out mice to wild type. The Y2 agonist C2-NPY stimulated [(35)S]GTPgammaS binding in numerous brain areas with a regional distribution similar to the binding observed with [(125)I]-PYY3-36. Again, no major increases were noted in the functional activation of Y2 receptors between knock out and wild type mice. Therefore, the increased Y1 and Y2 binding observed in the NPY knock out mice does not represent an increase in NPY receptor mediated signaling and is likely due to an increase in spare (uncoupled) receptors.
Collapse
Affiliation(s)
- Donald R Gehlert
- Neuroscience Research, Mail Code 0510, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | |
Collapse
|
31
|
Tough IR, Holliday ND, Cox HM. Y(4) receptors mediate the inhibitory responses of pancreatic polypeptide in human and mouse colon mucosa. J Pharmacol Exp Ther 2006; 319:20-30. [PMID: 16807358 DOI: 10.1124/jpet.106.106500] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The antisecretory effects of several Y agonists, including pancreatic polypeptide (PP), indicate the presence of Y(1), Y(2), and Y(4) receptors in mouse and human (h) colon mucosae. Here, we used preparations from human and from wild-type (WT), Y(4), and Y(1) receptor knockout ((-/-)) mice, alongside Y(4) receptor-transfected cells to define the relative functional contribution of the Y(4) receptor. First, rat (r) PP antisecretory responses were lost in murine Y(4)(-/-) preparations, but hPP and Pro(34) peptide YY (PYY) costimulated Y(4) and Y(1) receptors in WT mucosa. The Y(1) antagonist/Y(4) agonist GR231118 [(Ile,Glu,Pro,Dpr,Tyr,Arg,Leu,Arg,Try-NH(2))-2-cyclic(2,4'),(2',4)-diamide] elicited small Y(4)-mediated antisecretory responses in human tissues pretreated with the Y(1) antagonist, BIBO3304 [(R)-N-[[4-(aminocarbonylaminomethyl)-phenyl]methyl]-N(2)-(diphenylacetyl)-argininamide trifluoroacetate)], and attenuated Y(4)-mediated hPP responses in mouse and human mucosa. GR231118 and rPP were also antisecretory in hY(4)-transfected epithelial monolayers but were partial agonists compared with hPP at this receptor. In Y(4)-transfected human embryonic kidney (HEK) 293 cells, Y(4) ligands displaced [(125)I]hPP binding with orders of affinity (pK(i)) at human (hPP = rPP > GR231118 > Pro(34)PYY = PYY) and mouse (rPP = hPP > GR231118 > Pro(34)PYY > PYY) Y(4) receptors. GR231118- and rPP-stimulated guanosine 5'-3-O-(thio)triphosphate binding through hY(4) receptors with significantly lower efficacy than hPP. GR231118 marginally increased basal but abolished further PP-induced hY(4) internalization to recycling (transferrin-labeled) pathways in HEK293 cells. Taken together, these findings show that Y(4) receptors play a definitive role in attenuating colonic anion transport and may be useful targets for novel antidiarrheal agents due to their limited peripheral expression.
Collapse
Affiliation(s)
- Iain R Tough
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | | | | |
Collapse
|
32
|
Eva C, Serra M, Mele P, Panzica G, Oberto A. Physiology and gene regulation of the brain NPY Y1 receptor. Front Neuroendocrinol 2006; 27:308-39. [PMID: 16989896 DOI: 10.1016/j.yfrne.2006.07.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 07/18/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
Neuropeptide Y (NPY) is one of the most prominent and abundant neuropeptides in the mammalian brain where it interacts with a family of G-protein coupled receptors, including the Y(1) receptor subtype (Y(1)R). NPY-Y(1)R signalling plays a prominent role in the regulation of several behavioural and physiological functions including feeding behaviour and energy balance, sexual hormone secretion, stress response, emotional behaviour, neuronal excitability and ethanol drinking. Y(1)R expression is regulated by neuronal activity and peripheral hormones. The Y(1)R gene has been isolated from rodents and humans and it contains multiple regulatory elements that may participate in the regulation of its expression. Y(1)R expression in the hypothalamus is modulated by changes in energetic balance induced by a wide variety of conditions (fasting, pregnancy, hyperglycaemic challenge, hypophagia, diet induced obesity). Estrogens up-regulate responsiveness to NPY to stimulate preovulatory GnRH and gonadotropin surges by increasing Y(1)R gene expression both in the hypothalamus and the pituitary. Y(1)R expression is modulated by different kinds of brain insults, such as stress and seizure activity, and alteration in its expression may contribute to antidepressant action. Chronic modulation of GABA(A) receptor function by benzodiazepines or neuroactive steroids also affects Y(1)R expression in the amygdala, suggesting that a functional interaction between the GABA(A) receptor and Y(1)R mediated signalling may contribute to the regulation of emotional behaviour. In this paper, we review the state of the art concerning Y(1)R function and gene expression, including our personal contribution to many of the subjects mentioned above.
Collapse
Affiliation(s)
- Carola Eva
- Sezione di Farmacologia, Dipartimento di Anatomia, Farmacologia e Medicina Legale, Università di Torino, Italy; Centro Rita Levi Montalcini, Università di Torino, Italy.
| | | | | | | | | |
Collapse
|
33
|
Gurevich VV, Gurevich EV. The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol Ther 2006; 110:465-502. [PMID: 16460808 PMCID: PMC2562282 DOI: 10.1016/j.pharmthera.2005.09.008] [Citation(s) in RCA: 361] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 09/22/2005] [Indexed: 12/23/2022]
Abstract
The 4 mammalian arrestins serve as almost universal regulators of the largest known family of signaling proteins, G-protein-coupled receptors (GPCRs). Arrestins terminate receptor interactions with G proteins, redirect the signaling to a variety of alternative pathways, and orchestrate receptor internalization and subsequent intracellular trafficking. The elucidation of the structural basis and fine molecular mechanisms of the arrestin-receptor interaction paved the way to the targeted manipulation of this interaction from both sides to produce very stable or extremely transient complexes that helped to understand the regulation of many biologically important processes initiated by active GPCRs. The elucidation of the structural basis of arrestin interactions with numerous non-receptor-binding partners is long overdue. It will allow the construction of fully functional arrestins in which the ability to interact with individual partners is specifically disrupted or enhanced by targeted mutagenesis. These "custom-designed" arrestin mutants will be valuable tools in defining the role of various interactions in the intricate interplay of multiple signaling pathways in the living cell. The identification of arrestin-binding sites for various signaling molecules will also set the stage for designing molecular tools for therapeutic intervention that may prove useful in numerous disorders associated with congenital or acquired disregulation of GPCR signaling.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|
34
|
Barthet G, Gaven F, Framery B, Shinjo K, Nakamura T, Claeysen S, Bockaert J, Dumuis A. Uncoupling and endocytosis of 5-hydroxytryptamine 4 receptors. Distinct molecular events with different GRK2 requirements. J Biol Chem 2005; 280:27924-34. [PMID: 15919661 DOI: 10.1074/jbc.m502272200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The 5-hydroxytryptamine type 4 receptors (5-HT4Rs) are involved in memory, cognition, feeding, respiratory control, and gastrointestinal motility through activation of a G(s)/cAMP pathway. We have shown that 5-HT4R undergoes rapid and profound homologous uncoupling in neurons. However, no significant uncoupling was observed in COS-7 or HEK293 cells, which expressed either no or a weak concentration of GRK2, respectively. High expression of GRK2 in neurons is likely to be the reason for this difference because overexpression of GRK2 in COS-7 and HEK293 cells reproduced rapid and profound uncoupling of 5-HT4R. We have also shown, for the first time, that GRK2 requirements for uncoupling and endocytosis were very different. Indeed, beta-arrestin/dynamin-dependent endocytosis was observed in HEK293 cells without any need of GRK2 overexpression. In addition to this difference, uncoupling and beta-arrestin/dynamin-dependent endocytosis were mediated through distinct mechanisms. Neither uncoupling nor beta-arrestin/dynamin-dependent endocytosis required the serine and threonine residues localized within the specific C-terminal domains of the 5-HT4R splice variants. In contrast, a cluster of serines and threonines, common to all variants, was an absolute requirement for beta-arrestin/dynamin-dependent receptor endocytosis, but not for receptor uncoupling. Furthermore, beta-arrestin/dynamin-dependent endocytosis and uncoupling were dependent on and independent of GRK2 kinase activity, respectively. These results clearly demonstrate that the uncoupling and endocytosis of 5-HT4R require different GRK2 concentrations and involve distinct molecular events.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Arrestins/metabolism
- COS Cells
- Cell Line
- Culture Media, Serum-Free/pharmacology
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/chemistry
- Cyclic AMP-Dependent Protein Kinases/physiology
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Dynamins/metabolism
- Endocytosis
- Enzyme-Linked Immunosorbent Assay
- Genes, Dominant
- Humans
- Immunoblotting
- Mice
- Microscopy, Confocal
- Microscopy, Fluorescence
- Molecular Sequence Data
- Neurons/metabolism
- Plasmids/metabolism
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- RNA/chemistry
- RNA/metabolism
- RNA, Messenger/metabolism
- Receptors, Serotonin, 5-HT4/chemistry
- Reverse Transcriptase Polymerase Chain Reaction
- Serine/chemistry
- Threonine/chemistry
- Time Factors
- Transfection
- beta-Adrenergic Receptor Kinases
- beta-Arrestins
Collapse
|