1
|
Takahashi S, Maehara M, Nishihara C, Iwata H, Shibutani S. A genome-wide CRISPR-Cas9 knockout screen using dynamin knockout cells identifies Nf2 and Traf3 as genes involved in dynamin-independent endocytosis. Exp Cell Res 2025; 446:114470. [PMID: 39978713 DOI: 10.1016/j.yexcr.2025.114470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 01/24/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Endocytosis is a fundamental process by which cells take up extracellular materials, including nutrients, growth factors, and pathogens. Although several endocytic pathways, such as clathrin-mediated and caveolin-mediated endocytosis, are well-characterized, other endocytic pathways remain poorly understood. Therefore, in this study, we performed a genome-wide CRISPR-Cas9 screen to elucidate new endocytic pathways using dynamin conditional knockout cells. We identified genes that significantly reduced the cell numbers when knocked out simultaneously with dynamin. Among these, neurofibromin 2 (Nf2) and tumor necrosis factor receptor-associated factor 3 (Traf3), whose relationship with endocytosis was not well understood, were investigated for their roles in endocytosis activity. Nf2 and Traf3 knockout cells exhibited reduced non-specific fluid endocytosis in a dynamin-independent manner. However, Nf2 or Traf3 knockout did not affect the transferrin receptor-mediated endocytosis that depends on clathrin and dynamin. Moreover, Nf2 knockout cells showed reduced cholera toxin uptake in a dynamin-independent manner. Overall, this study highlights the roles of Nf2 and Traf3 in endocytosis.
Collapse
Affiliation(s)
- Sho Takahashi
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8515, Japan
| | - Mizuho Maehara
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8515, Japan
| | - Chihiro Nishihara
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8515, Japan
| | - Hiroyuki Iwata
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8515, Japan
| | - Shusaku Shibutani
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
2
|
Bussoletti M, Gallo M, Bottacchiari M, Abbondanza D, Casciola CM. Mesoscopic elasticity controls dynamin-driven fission of lipid tubules. Sci Rep 2024; 14:14003. [PMID: 38890460 PMCID: PMC11189461 DOI: 10.1038/s41598-024-64685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Mesoscale physics bridges the gap between the microscopic degrees of freedom of a system and its large-scale continuous behavior and highlights the role of a few key quantities in complex and multiscale phenomena, like dynamin-driven fission of lipid membranes. The dynamin protein wraps the neck formed during clathrin-mediated endocytosis, for instance, and constricts it until severing occurs. Although ubiquitous and fundamental for life, the cooperation between the GTP-consuming conformational changes within the protein and the full-scale response of the underlying lipid substrate is yet to be unraveled. In this work, we build an effective mesoscopic model from constriction to fission of lipid tubules based on continuum membrane elasticity and implicitly accounting for ratchet-like power strokes of dynamins. Localization of the fission event, the overall geometry, and the energy expenditure we predict comply with the major experimental findings. This bolsters the idea that a continuous picture emerges soon enough to relate dynamin polymerization length and membrane rigidity and tension with the optimal pathway to fission. We therefore suggest that dynamins found in in vivo processes may optimize their structure accordingly. Ultimately, we shed light on real-time conductance measurements available in literature and predict the fission time dependency on elastic parameters.
Collapse
Affiliation(s)
- Marco Bussoletti
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Mirko Gallo
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Matteo Bottacchiari
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Dario Abbondanza
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Carlo Massimo Casciola
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Miyakawa Y, Otsuka M, Shibata C, Seimiya T, Yamamoto K, Ishibashi R, Kishikawa T, Tanaka E, Isagawa T, Takeda N, Kamio N, Imai K, Fujishiro M. Gut Bacteria-derived Membrane Vesicles Induce Colonic Dysplasia by Inducing DNA Damage in Colon Epithelial Cells. Cell Mol Gastroenterol Hepatol 2024; 17:745-767. [PMID: 38309455 PMCID: PMC10966291 DOI: 10.1016/j.jcmgh.2024.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND & AIMS Colorectal cancer (CRC) is the third most common cancer in the world. Gut microbiota has recently been implicated in the development of CRC. Actinomyces odontolyticus is one of the most abundant bacteria in the gut of patients with very early stages of CRC. A odontolyticus is an anaerobic bacterium existing principally in the oral cavity, similar to Fusobacterium nucleatum, which is known as a colon carcinogenic bacterium. Here we newly determined the biological functions of A odontolyticus on colonic oncogenesis. METHODS We examined the induction of intracellular signaling by A odontolyticus in human colonic epithelial cells (CECs). DNA damage levels in CECs were confirmed using the human induced pluripotent stem cell-derived gut organoid model and mouse colon tissues in vivo. RESULTS A odontolyticus secretes membrane vesicles (MVs), which induce nuclear factor kappa B signaling and also produce excessive reactive oxygen species (ROS) in colon epithelial cells. We found that A odontolyticus secretes lipoteichoic acid-rich MVs, promoting inflammatory signaling via TLR2. Simultaneously, those MVs are internalized into the colon epithelial cells, co-localize with the mitochondria, and cause mitochondrial dysfunction, resulting in excessive ROS production and DNA damage. Induction of excessive DNA damage in colonic cells by A odontolyticus-derived MVs was confirmed in the gut organoid model and also in mouse colon tissues. CONCLUSIONS A odontolyticus secretes MVs, which cause chronic inflammation and ROS production in colonic epithelial cells, leading to the initiation of CRC.
Collapse
Affiliation(s)
- Yu Miyakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Gastroenterology and Hepatology, Academic Field of Medicine, Density and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | - Chikako Shibata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Seimiya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keisuke Yamamoto
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rei Ishibashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eri Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takayuki Isagawa
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noriaki Kamio
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, Japan
| | - Kenichi Imai
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Arriagada-Diaz J, Flores-Muñoz C, Gómez-Soto B, Labraña-Allende M, Mattar-Araos M, Prado-Vega L, Hinostroza F, Gajardo I, Guerra-Fernández MJ, Bevilacqua JA, Cárdenas AM, Bitoun M, Ardiles AO, Gonzalez-Jamett AM. A centronuclear myopathy-causing mutation in dynamin-2 disrupts neuronal morphology and excitatory synaptic transmission in a murine model of the disease. Neuropathol Appl Neurobiol 2023; 49:e12918. [PMID: 37317811 DOI: 10.1111/nan.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 04/30/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
AIMS Dynamin-2 is a large GTPase, a member of the dynamin superfamily that regulates membrane remodelling and cytoskeleton dynamics. Mutations in the dynamin-2 gene (DNM2) cause autosomal dominant centronuclear myopathy (CNM), a congenital neuromuscular disorder characterised by progressive weakness and atrophy of the skeletal muscles. Cognitive defects have been reported in some DNM2-linked CNM patients suggesting that these mutations can also affect the central nervous system (CNS). Here we studied how a dynamin-2 CNM-causing mutation influences the CNS function. METHODS Heterozygous mice harbouring the p.R465W mutation in the dynamin-2 gene (HTZ), the most common causing autosomal dominant CNM, were used as disease model. We evaluated dendritic arborisation and spine density in hippocampal cultured neurons, analysed excitatory synaptic transmission by electrophysiological field recordings in hippocampal slices, and evaluated cognitive function by performing behavioural tests. RESULTS HTZ hippocampal neurons exhibited reduced dendritic arborisation and lower spine density than WT neurons, which was reversed by transfecting an interference RNA against the dynamin-2 mutant allele. Additionally, HTZ mice showed defective hippocampal excitatory synaptic transmission and reduced recognition memory compared to the WT condition. CONCLUSION Our findings suggest that the dynamin-2 p.R465W mutation perturbs the synaptic and cognitive function in a CNM mouse model and support the idea that this GTPase plays a key role in regulating neuronal morphology and excitatory synaptic transmission in the hippocampus.
Collapse
Affiliation(s)
- Jorge Arriagada-Diaz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Magister en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Bárbara Gómez-Soto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Magister en Ciencias Médicas, Mención Biología Celular y Molecular, Universidad de Valparaíso, Valparaíso, Chile
| | - Marjorie Labraña-Allende
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Magister en Ciencias Médicas, Mención Biología Celular y Molecular, Universidad de Valparaíso, Valparaíso, Chile
| | - Michelle Mattar-Araos
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Prado-Vega
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Magister en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Fernando Hinostroza
- Centro de Investigación de Estudios Avanzados del Maule, CIEAM, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
- Escuela de Química y Farmacia, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Ivana Gajardo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Jorge A Bevilacqua
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Marc Bitoun
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, F-75013, France
| | - Alvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Estudios en Salud, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
| | - Arlek M Gonzalez-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
5
|
Alkafaas SS, Loutfy SA, Diab T, Hessien M. Vasopressin induces apoptosis but does not enhance the antiproliferative effect of dynamin 2 or PI3K/Akt inhibition in luminal A breast cancer cells. Med Oncol 2023; 40:35. [PMID: 36460880 PMCID: PMC9718716 DOI: 10.1007/s12032-022-01889-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
Breast cancer cells abnormally express vasopressin (AVP) and its receptors. The effect of AVP is largely orchestrated through its downstream signaling and by receptor-mediated endocytosis (RME), in which Dynamin 2 (Dyn2) plays an integral role in vesicle closure. In this work, luminal A breast cancer cells were treated with AVP, and then Dynasore (DYN) was employed to inhibit Dyn2 to explore the combined effect of AVP and Dyn2 inhibition on the survival of breast cancer cells. The results revealed that DYN alone demonstrated a concentration-dependent cytotoxic effect in AVP untreated cells. Apoptosis developed in 29.7 and 30.3% of cells treated with AVP or AVP+DYN, respectively, compared to 32.5% in cells treated with Wortmannin (Wort, a selective PI3K pathway inhibitor). More apoptosis was observed when cells were treated with DYN+Wort in presence or absence of exogenous AVP. Besides, 2 or 4- fold increases in the expression of Bax and Caspase-3, were observed in cells exposed to AVP in absence or presence of DYN, respectively. This was associated with higher levels of the autophagy marker (LC3II protein). Meanwhile, the activation of Akt protein, sequentially decreased in the same pattern. Cell's invasion decreased when they were exposed to AVP alone or combined with DYN or/and Wort. Conclusively, although many reports suggested the proliferative effect of AVP, the results predict the antiproliferative and antimetastatic effects of 100 nM AVP in luminal A breast cancer cells. However, the hormone did not enhance the cytotoxic effect of Dyn 2 or PI3K pathway inhibition. Summary of the Dynamin 2 independent AVP antiproliferative effects. Breast cancer cells expresses AVP as a Prohormone (A). At high dose of AVP, the hormone is liganded with AVP receptor (B) to initiate RME, where the endosomed complex (C) is degraded through the endosome-lysosome system, as a part of signal management. These events consume soluble Dyn2 in neck closure and vesicle fission (D). This makes the cells more substitutable to the direct apoptotic effect of DYN (E). Alternatively, at lower AVP doses the liganded AVP may initiate cAMP-mediated downstream signaling (F) and cellular proliferation. In parallel, Wort inhibits PIP2-PIP3 conversion (G) and the subsequent inhibition of PI3K/Akt/mTOR pathway leading to cell death.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- grid.412258.80000 0000 9477 7793Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31511 Egypt
| | - Samah A. Loutfy
- grid.7776.10000 0004 0639 9286Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt ,grid.440862.c0000 0004 0377 5514Nanotechnology Research Center, British University, Cairo, Egypt
| | - Thoria Diab
- grid.412258.80000 0000 9477 7793Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31511 Egypt
| | - Mohamed Hessien
- grid.412258.80000 0000 9477 7793Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31511 Egypt
| |
Collapse
|
6
|
AlTassan R, AlQudairy H, Alromayan R, Alfalah A, AlHarbi OA, González-Álvarez AC, Arold ST, Kaya N. Clinical, Radiological, and Genetic Characterization of a Patient with a Novel Homoallelic Loss-of-Function Variant in DNM1. Genes (Basel) 2022; 13:genes13122252. [PMID: 36553519 PMCID: PMC9777962 DOI: 10.3390/genes13122252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Heterozygous pathogenic variants in DNM1 are linked to an autosomal dominant form of epileptic encephalopathy. Recently, homozygous loss-of-function variants in DNM1 were reported to cause an autosomal recessive form of developmental and epileptic encephalopathy in unrelated patients. Here, we investigated a singleton from a first-degree cousin marriage who presented with facial dysmorphism, global developmental delay, seizure disorder, and nystagmus. To identify the involvement of any likely genetic cause, diagnostic clinical exome sequencing was performed. Comprehensive filtering revealed a single plausible candidate variant in DNM1. Sanger sequencing of the trio, the patient, and her parents, confirmed the full segregation of the variant. The variant is a deletion leading to a premature stop codon and is predicted to cause a protein truncation. Structural modeling implicated a complete loss of function of the Dynamin 1 (DNM1). Such mutation is predicted to impair the nucleotide binding, dimer formation, and GTPase activity of DNM1. Our study expands the phenotypic spectrum of pathogenic homozygous loss-of-function variants in DNM1.
Collapse
Affiliation(s)
- Ruqaiah AlTassan
- Department of Medical Genomics, Centre for Genomic Medicine, MBC: 75, P.O. Box 3354, King Faisal Specialist Hospital, and Research Centre, Riyadh 11211, Saudi Arabia
- College of Medicine, P.O. Box 50927, AlFaisal University, Riyadh 11533, Saudi Arabia
| | - Hanan AlQudairy
- Translational Genomic Department, Centre for Genomic Medicine, MBC: 03, P.O. Box 3354, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Rakan Alromayan
- Translational Genomic Department, Centre for Genomic Medicine, MBC: 03, P.O. Box 3354, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alfalah
- Department of Medical Genomics, Centre for Genomic Medicine, MBC: 75, P.O. Box 3354, King Faisal Specialist Hospital, and Research Centre, Riyadh 11211, Saudi Arabia
| | - Omar A. AlHarbi
- Department of Radiology, MBC: 28, P.O. Box 3354, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ana C. González-Álvarez
- Bioengineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Stefan T. Arold
- Bioengineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université de Montpellier, F-34090 Montpellier, France
| | - Namik Kaya
- Translational Genomic Department, Centre for Genomic Medicine, MBC: 03, P.O. Box 3354, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- Correspondence: ; Tel.: +966-112162919 (ext. 39612)
| |
Collapse
|
7
|
Gómez-Oca R, Edelweiss E, Djeddi S, Gerbier M, Massana-Muñoz X, Oulad-Abdelghani M, Crucifix C, Spiegelhalter C, Messaddeq N, Poussin-Courmontagne P, Koebel P, Cowling BS, Laporte J. Differential impact of ubiquitous and muscle dynamin 2 isoforms in muscle physiology and centronuclear myopathy. Nat Commun 2022; 13:6849. [PMID: 36369230 PMCID: PMC9652393 DOI: 10.1038/s41467-022-34490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Dynamin 2 mechanoenzyme is a key regulator of membrane remodeling and gain-of-function mutations in its gene cause centronuclear myopathies. Here, we investigate the functions of dynamin 2 isoforms and their associated phenotypes and, specifically, the ubiquitous and muscle-specific dynamin 2 isoforms expressed in skeletal muscle. In cell-based assays, we show that a centronuclear myopathy-related mutation in the ubiquitous but not the muscle-specific dynamin 2 isoform causes increased membrane fission. In vivo, overexpressing the ubiquitous dynamin 2 isoform correlates with severe forms of centronuclear myopathy, while overexpressing the muscle-specific isoform leads to hallmarks seen in milder cases of the disease. Previous mouse studies suggested that reduction of the total dynamin 2 pool could be therapeutic for centronuclear myopathies. Here, dynamin 2 splice switching from muscle-specific to ubiquitous dynamin 2 aggravated the phenotype of a severe X-linked form of centronuclear myopathy caused by loss-of-function of the MTM1 phosphatase, supporting the importance of targeting the ubiquitous isoform for efficient therapy in muscle. Our results highlight that the ubiquitous and not the muscle-specific dynamin 2 isoform is the main modifier contributing to centronuclear myopathy pathology.
Collapse
Affiliation(s)
- Raquel Gómez-Oca
- grid.420255.40000 0004 0638 2716Dpt Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France ,Dynacure, Illkirch, France
| | - Evelina Edelweiss
- grid.420255.40000 0004 0638 2716Dpt Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | - Sarah Djeddi
- grid.420255.40000 0004 0638 2716Dpt Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | | | - Xènia Massana-Muñoz
- grid.420255.40000 0004 0638 2716Dpt Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | - Mustapha Oulad-Abdelghani
- grid.420255.40000 0004 0638 2716Core platforms, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | - Corinne Crucifix
- grid.420255.40000 0004 0638 2716Integrated Structural Biology platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | - Coralie Spiegelhalter
- grid.420255.40000 0004 0638 2716Core platforms, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | - Nadia Messaddeq
- grid.420255.40000 0004 0638 2716Core platforms, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | - Pierre Poussin-Courmontagne
- grid.420255.40000 0004 0638 2716Integrated Structural Biology platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | - Pascale Koebel
- grid.420255.40000 0004 0638 2716Core platforms, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | | | - Jocelyn Laporte
- grid.420255.40000 0004 0638 2716Dpt Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| |
Collapse
|
8
|
Molecular Docking and Intracellular Translocation of Extracellular Vesicles for Efficient Drug Delivery. Int J Mol Sci 2022; 23:ijms232112971. [PMID: 36361760 PMCID: PMC9659046 DOI: 10.3390/ijms232112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, mediate intercellular communication by delivering their contents, such as nucleic acids, proteins, and lipids, to distant target cells. EVs play a role in the progression of several diseases. In particular, programmed death-ligand 1 (PD-L1) levels in exosomes are associated with cancer progression. Furthermore, exosomes are being used for new drug-delivery systems by modifying their membrane peptides to promote their intracellular transduction via micropinocytosis. In this review, we aim to show that an efficient drug-delivery system and a useful therapeutic strategy can be established by controlling the molecular docking and intracellular translocation of exosomes. We summarise the mechanisms of molecular docking of exosomes, the biological effects of exosomes transmitted into target cells, and the current state of exosomes as drug delivery systems.
Collapse
|
9
|
Griffiths G, Gruenberg J, Marsh M, Wohlmann J, Jones AT, Parton RG. Nanoparticle entry into cells; the cell biology weak link. Adv Drug Deliv Rev 2022; 188:114403. [PMID: 35777667 DOI: 10.1016/j.addr.2022.114403] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
Nanoparticles (NP) are attractive options for the therapeutic delivery of active pharmaceutical drugs, proteins and nucleic acids into cells, tissues and organs. Research into the development and application of NP most often starts with a diverse group of scientists, including chemists, bioengineers and material and pharmaceutical scientists, who design, fabricate and characterize NP in vitro (Stage 1). The next step (Stage 2) generally investigates cell toxicity as well as the processes by which NP bind, are internalized and deliver their cargo to appropriate model tissue culture cells. Subsequently, in Stage 3, selected NP are tested in animal systems, mostly mouse. Whereas the chemistry-based development and analysis in Stage 1 is increasingly sophisticated, the investigations in Stage 2 are not what could be regarded as 'state-of-the-art' for the cell biology field and the quality of research into NP interactions with cells is often sub-standard. In this review we describe our current understanding of the mechanisms by which particles gain entry into mammalian cells via endocytosis. We summarize the most important areas for concern, highlight some of the most common mis-conceptions, and identify areas where NP scientists could engage with trained cell biologists. Our survey of the different mechanisms of uptake into cells makes us suspect that claims for roles for caveolae, as well as macropinocytosis, in NP uptake into cells have been exaggerated, whereas phagocytosis has been under-appreciated.
Collapse
Affiliation(s)
- Gareth Griffiths
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway.
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, 30 quai E. Ansermet, 1211-Geneva-4, Switzerland
| | - Mark Marsh
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jens Wohlmann
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway
| | - Arwyn T Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff, Wales CF103NB, UK
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, Qld 4072, Australia
| |
Collapse
|
10
|
Gundu C, Arruri VK, Yadav P, Navik U, Kumar A, Amalkar VS, Vikram A, Gaddam RR. Dynamin-Independent Mechanisms of Endocytosis and Receptor Trafficking. Cells 2022; 11:cells11162557. [PMID: 36010634 PMCID: PMC9406725 DOI: 10.3390/cells11162557] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Endocytosis is a fundamental mechanism by which cells perform housekeeping functions. It occurs via a variety of mechanisms and involves many regulatory proteins. The GTPase dynamin acts as a “molecular scissor” to form endocytic vesicles and is a critical regulator among the proteins involved in endocytosis. Some GTPases (e.g., Cdc42, arf6, RhoA), membrane proteins (e.g., flotillins, tetraspanins), and secondary messengers (e.g., calcium) mediate dynamin-independent endocytosis. These pathways may be convergent, as multiple pathways exist in a single cell. However, what determines the specific path of endocytosis is complex and challenging to comprehend. This review summarizes the mechanisms of dynamin-independent endocytosis, the involvement of microRNAs, and factors that contribute to the cellular decision about the specific route of endocytosis.
Collapse
Affiliation(s)
- Chayanika Gundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Vijay Kumar Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI 53792, USA
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata 700054, West Bengal, India
| | - Veda Sudhir Amalkar
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Ajit Vikram
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Ravinder Reddy Gaddam
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
11
|
Bjørge IM, de Sousa BM, Patrício SG, Silva AS, Nogueira LP, Santos LF, Vieira SI, Haugen HJ, Correia CR, Mano JF. Bioengineered Hierarchical Bonelike Compartmentalized Microconstructs Using Nanogrooved Microdiscs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19116-19128. [PMID: 35446549 DOI: 10.1021/acsami.2c01161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fabrication of vascularized large-scale constructs for regenerative medicine remains elusive since most strategies rely solely on cell self-organization or overly control cell positioning, failing to address nutrient diffusion limitations. We propose a modular and hierarchical tissue-engineering strategy to produce bonelike tissues carrying signals to promote prevascularization. In these 3D systems, disc-shaped microcarriers featuring nanogrooved topographical cues guide cell behavior by harnessing mechanotransduction mechanisms. A sequential seeding strategy of adipose-derived stromal cells and endothelial cells is implemented within compartmentalized, liquefied-core macrocapsules in a self-organizing and dynamic system. Importantly, our system autonomously promotes osteogenesis and construct's mineralization while promoting a favorable environment for prevascular-like endothelial organization. Given its modular and self-organizing nature, our strategy may be applied for the fabrication of larger constructs with a highly controlled starting point to be used for local regeneration upon implantation or as drug-screening platforms.
Collapse
Affiliation(s)
- Isabel M Bjørge
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Bárbara M de Sousa
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Sónia G Patrício
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Ana Sofia Silva
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Liebert P Nogueira
- Oral Research Laboratory, Institute of Clinical Dentistry, University of Oslo, Oslo 0455, Norway
| | - Lúcia F Santos
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Sandra I Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Håvard J Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo 0455, Norway
| | - Clara R Correia
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - João F Mano
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| |
Collapse
|
12
|
Prichard KL, O'Brien NS, Murcia SR, Baker JR, McCluskey A. Role of Clathrin and Dynamin in Clathrin Mediated Endocytosis/Synaptic Vesicle Recycling and Implications in Neurological Diseases. Front Cell Neurosci 2022; 15:754110. [PMID: 35115907 PMCID: PMC8805674 DOI: 10.3389/fncel.2021.754110] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
Endocytosis is a process essential to the health and well-being of cell. It is required for the internalisation and sorting of “cargo”—the macromolecules, proteins, receptors and lipids of cell signalling. Clathrin mediated endocytosis (CME) is one of the key processes required for cellular well-being and signalling pathway activation. CME is key role to the recycling of synaptic vesicles [synaptic vesicle recycling (SVR)] in the brain, it is pivotal to signalling across synapses enabling intracellular communication in the sensory and nervous systems. In this review we provide an overview of the general process of CME with a particular focus on two key proteins: clathrin and dynamin that have a central role to play in ensuing successful completion of CME. We examine these two proteins as they are the two endocytotic proteins for which small molecule inhibitors, often of known mechanism of action, have been identified. Inhibition of CME offers the potential to develop therapeutic interventions into conditions involving defects in CME. This review will discuss the roles and the current scope of inhibitors of clathrin and dynamin, providing an insight into how further developments could affect neurological disease treatments.
Collapse
|
13
|
Dietary Nano-ZnO Is Absorbed via Endocytosis and ZIP Pathways, Upregulates Lipogenesis, and Induces Lipotoxicity in the Intestine of Yellow Catfish. Int J Mol Sci 2021; 22:ijms222112047. [PMID: 34769475 PMCID: PMC8584588 DOI: 10.3390/ijms222112047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Nano-sized zinc oxide (nano-ZnO) affects lipid deposition, but its absorption patterns and mechanisms affecting lipid metabolism are still unclear. This study was undertaken to investigate the molecular mechanism of nano-ZnO absorption and its effects on lipid metabolism in the intestinal tissues of a widely distributed freshwater teleost yellow catfish Pelteobagrus fulvidraco. We found that 100 mg/kg dietary nano-ZnO (H-Zn group) significantly increased intestinal Zn contents. The zip6 and zip10 mRNA expression levels were higher in the H-Zn group than those in the control (0 mg/kg nano-ZnO), and zip4 mRNA abundances were higher in the control than those in the L-Zn (50 mg/kg nano-ZnO) and H-Zn groups. Eps15, dynamin1, dynamin2, caveolin1, and caveolin2 mRNA expression levels tended to reduce with dietary nano-ZnO addition. Dietary nano-ZnO increased triglyceride (TG) content and the activities of the lipogenic enzymes glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), and isocitrate dehydrogenase (ICDH), upregulated the mRNA abundances of lipogenic genes 6pgd, fatty acid synthase (fas), and sterol regulatory element binding protein 1 (srebp1), and reduced the mRNA expression of farnesoid X receptor (fxr) and small heterodimer partner (shp). The SHP protein level in the H-Zn group was lower than that in the control and the L-Zn group markedly. Our in vitro study indicated that the intestinal epithelial cells (IECs) absorbed nano-ZnO via endocytosis, and nano-Zn-induced TG deposition and lipogenesis were partially attributable to the endocytosis of nano-ZnO in IECs. Mechanistically, nano-ZnO-induced TG deposition was closely related to the metal responsive transcription factor 1 (MTF-1)-SHP pathway. Thus, for the first time, we found that the lipogenesis effects of nano-ZnO probably depended on the key gene shp, which is potentially regulated by MTF1 and/or FXR. This novel signaling pathway of MTF-1 through SHP may be relevant to explain the toxic effects and lipotoxicity ascribed to dietary nano-ZnO addition.
Collapse
|
14
|
Liu J, Alvarez FJD, Clare DK, Noel JK, Zhang P. CryoEM structure of the super-constricted two-start dynamin 1 filament. Nat Commun 2021; 12:5393. [PMID: 34518553 PMCID: PMC8437954 DOI: 10.1038/s41467-021-25741-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 08/26/2021] [Indexed: 11/23/2022] Open
Abstract
Dynamin belongs to the large GTPase superfamily, and mediates the fission of vesicles during endocytosis. Dynamin molecules are recruited to the neck of budding vesicles to assemble into a helical collar and to constrict the underlying membrane. Two helical forms were observed: the one-start helix in the constricted state and the two-start helix in the super-constricted state. Here we report the cryoEM structure of a super-constricted two-start dynamin 1 filament at 3.74 Å resolution. The two strands are joined by the conserved GTPase dimeric interface. In comparison with the one-start structure, a rotation around Hinge 1 is observed, essential for communicating the chemical power of the GTPase domain and the mechanical force of the Stalk and PH domain onto the underlying membrane. The Stalk interfaces are well conserved and serve as fulcrums for adapting to changing curvatures. Relative to one-start, small rotations per interface accumulate to bring a drastic change in the helical pitch. Elasticity theory rationalizes the diversity of dynamin helical symmetries and suggests corresponding functional significance.
Collapse
Affiliation(s)
- Jiwei Liu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Frances Joan D Alvarez
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Daniel K Clare
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | | | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA.
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| |
Collapse
|
15
|
Lin PY, Ma ZZ, Mahgoub M, Kavalali ET, Monteggia LM. A synaptic locus for TrkB signaling underlying ketamine rapid antidepressant action. Cell Rep 2021; 36:109513. [PMID: 34407417 PMCID: PMC8404212 DOI: 10.1016/j.celrep.2021.109513] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 05/14/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Ketamine produces rapid antidepressant action in patients with major depression or treatment-resistant depression. Studies have identified brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB), as necessary for the antidepressant effects and underlying ketamine-induced synaptic potentiation in the hippocampus. Here, we delete BDNF or TrkB in presynaptic CA3 or postsynaptic CA1 regions of the Schaffer collateral pathway to investigate the rapid antidepressant action of ketamine. The deletion of Bdnf in CA3 or CA1 blocks the ketamine-induced synaptic potentiation. In contrast, ablation of TrkB only in postsynaptic CA1 eliminates the ketamine-induced synaptic potentiation. We confirm BDNF-TrkB signaling in CA1 is required for ketamine's rapid behavioral action. Moreover, ketamine application elicits dynamin1-dependent TrkB activation and downstream signaling to trigger rapid synaptic effects. Taken together, these data demonstrate a requirement for BDNF-TrkB signaling in CA1 neurons in ketamine-induced synaptic potentiation and identify a specific synaptic locus in eliciting ketamine's rapid antidepressant effects.
Collapse
Affiliation(s)
- Pei-Yi Lin
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Z Zack Ma
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA
| | - Melissa Mahgoub
- Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA
| | - Lisa M Monteggia
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA.
| |
Collapse
|
16
|
Pang R, Xing K, Yuan L, Liang Z, Chen M, Yue X, Dong Y, Ling Y, He X, Li X, Zhang W. Peroxiredoxin alleviates the fitness costs of imidacloprid resistance in an insect pest of rice. PLoS Biol 2021; 19:e3001190. [PMID: 33844686 PMCID: PMC8062100 DOI: 10.1371/journal.pbio.3001190] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 04/22/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Chemical insecticides have been heavily employed as the most effective measure for control of agricultural and medical pests, but evolution of resistance by pests threatens the sustainability of this approach. Resistance-conferring mutations sometimes impose fitness costs, which may drive subsequent evolution of compensatory modifier mutations alleviating the costs of resistance. However, how modifier mutations evolve and function to overcome the fitness cost of resistance still remains unknown. Here we show that overexpression of P450s not only confers imidacloprid resistance in the brown planthopper, Nilaparvata lugens, the most voracious pest of rice, but also leads to elevated production of reactive oxygen species (ROS) through metabolism of imidacloprid and host plant compounds. The inevitable production of ROS incurs a fitness cost to the pest, which drives the increase or fixation of the compensatory modifier allele T65549 within the promoter region of N. lugens peroxiredoxin (NlPrx) in the pest populations. T65549 allele in turn upregulates the expression of NlPrx and thus increases resistant individuals' ability to clear the cost-incurring ROS of any source. The frequent involvement of P450s in insecticide resistance and their capacity to produce ROS while metabolizing their substrates suggest that peroxiredoxin or other ROS-scavenging genes may be among the common modifier genes for alleviating the fitness cost of insecticide resistance.
Collapse
Affiliation(s)
- Rui Pang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Science, Guangzhou, Guangdong, China
| | - Ke Xing
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Longyu Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhikun Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiangzhao Yue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Dong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Ling
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Xionglei He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- * E-mail: (XL); (WZ)
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (XL); (WZ)
| |
Collapse
|
17
|
Hilterbrand AT, Daly RE, Heldwein EE. Contributions of the Four Essential Entry Glycoproteins to HSV-1 Tropism and the Selection of Entry Routes. mBio 2021; 12:e00143-21. [PMID: 33653890 PMCID: PMC8092210 DOI: 10.1128/mbio.00143-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 01/02/2023] Open
Abstract
Herpes simplex viruses (HSV-1 and HSV-2) encode up to 16 envelope proteins, four of which are essential for entry. However, whether these four proteins alone are sufficient to dictate the broad cellular tropism of HSV-1 and the selection of different cell type-dependent entry routes is unknown. To begin addressing this, we previously pseudotyped vesicular stomatitis virus (VSV), lacking its native glycoprotein G, with only the four essential entry glycoproteins of HSV-1: gB, gH, gL, and gD. This novel VSVΔG-BHLD pseudotype recapitulated several important features of HSV-1 entry: the requirement for gB, gH, gL, gD, and a cellular receptor and sensitivity to anti-gB and anti-gH/gL neutralizing antibodies. However, due to the use of a single cell type in that study, the tropism of the VSVΔG-BHLD pseudotype was not investigated. Here, we show that the cellular tropism of the pseudotype is severely limited compared to that of wild-type HSV-1 and that its entry pathways differ from the native HSV-1 entry pathways. To test the hypothesis that other HSV-1 envelope proteins may contribute to HSV-1 tropism, we generated a derivative pseudotype containing the HSV-1 glycoprotein C (VSVΔG-BHLD-gC) and observed a gC-dependent increase in entry efficiency in two cell types. We propose that the pseudotyping platform developed here has the potential to uncover functional contributions of HSV-1 envelope proteins to entry in a gain-of-function manner.IMPORTANCE Herpes simplex viruses (HSV-1 and HSV-2) contain up to 16 different proteins in their envelopes. Four of these, glycoproteins gB, gD, gH, and gL, are termed essential with regard to entry, whereas the rest are typically referred to as nonessential based on the entry phenotypes of the respective single genetic deletions. However, the single-gene deletion approach, which relies on robust loss-of-function phenotypes, may be confounded by functional redundancies among the many HSV-1 envelope proteins. We have developed a pseudotyping platform in which the essential four entry glycoproteins are isolated from the rest, which can be added back individually for systematic gain-of-function entry experiments. Here, we show the utility of this platform for dissecting the contributions of HSV envelope proteins, both the essential four and the remaining dozen (using gC as an example), to HSV entry.
Collapse
Affiliation(s)
- Adam T Hilterbrand
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Raecliffe E Daly
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Cellular, Molecular, and Developmental Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Cellular, Molecular, and Developmental Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Ripa I, Andreu S, López-Guerrero JA, Bello-Morales R. Membrane Rafts: Portals for Viral Entry. Front Microbiol 2021; 12:631274. [PMID: 33613502 PMCID: PMC7890030 DOI: 10.3389/fmicb.2021.631274] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/14/2021] [Indexed: 02/02/2023] Open
Abstract
Membrane rafts are dynamic, small (10-200 nm) domains enriched with cholesterol and sphingolipids that compartmentalize cellular processes. Rafts participate in roles essential to the lifecycle of different viral families including virus entry, assembly and/or budding events. Rafts seem to participate in virus attachment and recruitment to the cell surface, as well as the endocytic and non-endocytic mechanisms some viruses use to enter host cells. In this review, we will introduce the specific role of rafts in viral entry and define cellular factors implied in the choice of one entry pathway over the others. Finally, we will summarize the most relevant information about raft participation in the entry process of enveloped and non-enveloped viruses.
Collapse
Affiliation(s)
- Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
19
|
Alyenbaawi H, Kanyo R, Locskai LF, Kamali-Jamil R, DuVal MG, Bai Q, Wille H, Burton EA, Allison WT. Seizures are a druggable mechanistic link between TBI and subsequent tauopathy. eLife 2021; 10:e58744. [PMID: 33527898 PMCID: PMC7853719 DOI: 10.7554/elife.58744] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a prominent risk factor for dementias including tauopathies like chronic traumatic encephalopathy (CTE). The mechanisms that promote prion-like spreading of Tau aggregates after TBI are not fully understood, in part due to lack of tractable animal models. Here, we test the putative role of seizures in promoting the spread of tauopathy. We introduce 'tauopathy reporter' zebrafish expressing a genetically encoded fluorescent Tau biosensor that reliably reports accumulation of human Tau species when seeded via intraventricular brain injections. Subjecting zebrafish larvae to a novel TBI paradigm produced various TBI features including cell death, post-traumatic seizures, and Tau inclusions. Bath application of dynamin inhibitors or anticonvulsant drugs rescued TBI-induced tauopathy and cell death. These data suggest a role for seizure activity in the prion-like seeding and spreading of tauopathy following TBI. Further work is warranted regarding anti-convulsants that dampen post-traumatic seizures as a route to moderating subsequent tauopathy.
Collapse
Affiliation(s)
- Hadeel Alyenbaawi
- Centre for Prions & Protein Folding Disease, University of AlbertaEdmontonCanada
- Department of Medical Genetics, University of AlbertaEdmontonCanada
- Majmaah UniversityMajmaahSaudi Arabia
| | - Richard Kanyo
- Centre for Prions & Protein Folding Disease, University of AlbertaEdmontonCanada
- Department of Biological Sciences, University of AlbertaEdmontonCanada
| | - Laszlo F Locskai
- Centre for Prions & Protein Folding Disease, University of AlbertaEdmontonCanada
- Department of Biological Sciences, University of AlbertaEdmontonCanada
| | - Razieh Kamali-Jamil
- Centre for Prions & Protein Folding Disease, University of AlbertaEdmontonCanada
- Department of Biochemistry, University of AlbertaEdmontonCanada
| | - Michèle G DuVal
- Department of Biological Sciences, University of AlbertaEdmontonCanada
| | - Qing Bai
- Department of Neurology, University of PittsburghPittsburghUnited States
| | - Holger Wille
- Centre for Prions & Protein Folding Disease, University of AlbertaEdmontonCanada
- Department of Biochemistry, University of AlbertaEdmontonCanada
| | - Edward A Burton
- Department of Neurology, University of PittsburghPittsburghUnited States
- Geriatric Research, Education and Clinical Center, Pittsburgh VA Healthcare SystemPittsburghUnited States
| | - W Ted Allison
- Centre for Prions & Protein Folding Disease, University of AlbertaEdmontonCanada
- Department of Medical Genetics, University of AlbertaEdmontonCanada
- Department of Biological Sciences, University of AlbertaEdmontonCanada
| |
Collapse
|
20
|
Oladimeji O, Akinyelu J, Singh M. Nanomedicines for Subcellular Targeting: The Mitochondrial Perspective. Curr Med Chem 2020; 27:5480-5509. [PMID: 31763965 DOI: 10.2174/0929867326666191125092111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Over the past decade, there has been a surge in the number of mitochondrialactive therapeutics for conditions ranging from cancer to aging. Subcellular targeting interventions can modulate adverse intracellular processes unique to the compartments within the cell. However, there is a dearth of reviews focusing on mitochondrial nano-delivery, and this review seeks to fill this gap with regards to nanotherapeutics of the mitochondria. METHODS Besides its potential for a higher therapeutic index than targeting at the tissue and cell levels, subcellular targeting takes into account the limitations of systemic drug administration and significantly improves pharmacokinetics. Hence, an extensive literature review was undertaken and salient information was compiled in this review. RESULTS From literature, it was evident that nanoparticles with their tunable physicochemical properties have shown potential for efficient therapeutic delivery, with several nanomedicines already approved by the FDA and others in clinical trials. However, strategies for the development of nanomedicines for subcellular targeting are still emerging, with an increased understanding of dysfunctional molecular processes advancing the development of treatment modules. For optimal delivery, the design of an ideal carrier for subcellular delivery must consider the features of the diseased microenvironment. The functional and structural features of the mitochondria in the diseased state are highlighted and potential nano-delivery interventions for treatment and diagnosis are discussed. CONCLUSION This review provides an insight into recent advances in subcellular targeting, with a focus on en route barriers to subcellular targeting. The impact of mitochondrial dysfunction in the aetiology of certain diseases is highlighted, and potential therapeutic sites are identified.
Collapse
Affiliation(s)
- Olakunle Oladimeji
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, University of Kwa-Zulu Natal, Private Bag X54001, Durban, South Africa
| | - Jude Akinyelu
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, University of Kwa-Zulu Natal, Private Bag X54001, Durban, South Africa
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, University of Kwa-Zulu Natal, Private Bag X54001, Durban, South Africa
| |
Collapse
|
21
|
Rajwar A, Morya V, Kharbanda S, Bhatia D. DNA Nanodevices to Probe and Program Membrane Organization, Dynamics, and Applications. J Membr Biol 2020; 253:577-587. [DOI: 10.1007/s00232-020-00154-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/07/2020] [Indexed: 12/18/2022]
|
22
|
Clathrin- and dynamin-dependent endocytosis limits canonical NF-κB signaling triggered by lymphotoxin β receptor. Cell Commun Signal 2020; 18:176. [PMID: 33148272 PMCID: PMC7640449 DOI: 10.1186/s12964-020-00664-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023] Open
Abstract
Background Lymphotoxin β receptor (LTβR) is a member of tumor necrosis factor receptor (TNFR) superfamily which regulates the immune response. At the cellular level, upon ligand binding, the receptor activates the pro-inflammatory NF-κB and AP-1 pathways. Yet, the intracellular distribution of LTβR, the routes of its endocytosis and their connection to the signaling activation are not characterized. Here, we investigated the contribution of LTβR internalization to its signaling potential. Methods Intracellular localization of LTβR in unstimulated and stimulated cells was analyzed by confocal microscopy. Endocytosis impairment was achieved through siRNA- or CRISPR/Cas9-mediated depletion, or chemical inhibition of proteins regulating endocytic routes. The activation of LTβR-induced signaling was examined. The levels of effector proteins of the canonical and non-canonical branches of the NF-κB pathway, and the phosphorylation of JNK, Akt, ERK1/2, STAT1 and STAT3 involved in diverse signaling cascades, were measured by Western blotting. A transcriptional response to LTβR stimulation was assessed by qRT-PCR analysis. Results We demonstrated that LTβR was predominantly present on endocytic vesicles and the Golgi apparatus. The ligand-bound pool of the receptor localized to endosomes and was trafficked towards lysosomes for degradation. Depletion of regulators of different endocytic routes (clathrin-mediated, dynamin-dependent or clathrin-independent) resulted in the impairment of LTβR internalization, indicating that this receptor uses multiple entry pathways. Cells deprived of clathrin and dynamins exhibited enhanced activation of canonical NF-κB signaling represented by increased degradation of IκBα inhibitor and elevated expression of LTβR target genes. We also demonstrated that clathrin and dynamin deficiency reduced to some extent LTβR-triggered activation of the non-canonical branch of the NF-κB pathway. Conclusions Our work shows that the impairment of clathrin- and dynamin-dependent internalization amplifies a cellular response to LTβR stimulation. We postulate that receptor internalization restricts responsiveness of the cell to subthreshold stimuli. Video Abstract
Graphical abstract ![]()
Supplementary information Supplementary information accompanies this paper at 10.1186/s12964-020-00664-0.
Collapse
|
23
|
Sajed R, Saeednejad Zanjani L, Rahimi M, Mansoori M, Zarnani AH, Madjd Z, Ghods R. Overexpression and translocation of dynamin 2 promotes tumor aggressiveness in breast carcinomas. EXCLI JOURNAL 2020; 19:1423-1435. [PMID: 33250680 PMCID: PMC7689243 DOI: 10.17179/excli2020-2762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
Dynamin 2 is a GTPase protein that has been implicated in cancer progression through its various roles such as endocytosis, morphogenesis, epithelial-mesenchymal transition (EMT), cellular contractions, and focal adhesion maturation. The increased expression levels of this molecule have been demonstrated with the development of several cancers such as prostate, pancreas, and bladder. However, its clinical significance in breast cancer is unclear yet. In the present study, the membranous, cytoplasmic, and nuclear expression levels of dynamin 2 molecule were evaluated for the first time, using immunohistochemistry (IHC) on tissue microarray (TMA) slides in 113 invasive breast cancer tissues. Moreover, afterward, the association between the dynamin 2 expression and clinicopathological features was determined. Our finding showed that, a higher nuclear expression of dynamin 2 is significantly associated with an increase in tumor stage (P = 0.05), histological grade (P = 0.001), and age of the patients (P = 0.03). In addition, analysis of the cytoplasmic expression levels of this molecule revealed that, there was a statistically significant difference between the expression levels of dynamin 2 among the different breast cancer subtypes (P = 0.003). Moreover, a significant association was found between the increased expression of dynamin 2 membranous and vascular invasion (VI) (P = 0.02). We showed that dynamin 2 protein expression has an association with more aggressive tumor behavior and more advanced disease in the patients with breast cancer; therefore, dynamin 2 molecule could be considered as an indicator of disease progression and aggressiveness.
Collapse
Affiliation(s)
- Roya Sajed
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medicine Sciences (IUMS), Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Mandana Rahimi
- Hasheminejad Kidney Center, Pathology Department, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Maryam Mansoori
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medicine Sciences (IUMS), Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Reproductive Immunology Research Center, Avicenna Research Institute (ACECR), Tehran, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medicine Sciences (IUMS), Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medicine Sciences (IUMS), Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
24
|
Alyenbaawi H, Allison WT, Mok SA. Prion-Like Propagation Mechanisms in Tauopathies and Traumatic Brain Injury: Challenges and Prospects. Biomolecules 2020; 10:E1487. [PMID: 33121065 PMCID: PMC7692808 DOI: 10.3390/biom10111487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
The accumulation of tau protein in the form of filamentous aggregates is a hallmark of many neurodegenerative diseases such as Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). These dementias share traumatic brain injury (TBI) as a prominent risk factor. Tau aggregates can transfer between cells and tissues in a "prion-like" manner, where they initiate the templated misfolding of normal tau molecules. This enables the spread of tau pathology to distinct parts of the brain. The evidence that tauopathies spread via prion-like mechanisms is considerable, but work detailing the mechanisms of spread has mostly used in vitro platforms that cannot fully reveal the tissue-level vectors or etiology of progression. We review these issues and then briefly use TBI and CTE as a case study to illustrate aspects of tauopathy that warrant further attention in vivo. These include seizures and sleep/wake disturbances, emphasizing the urgent need for improved animal models. Dissecting these mechanisms of tauopathy progression continues to provide fresh inspiration for the design of diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Hadeel Alyenbaawi
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Medical Laboratories, Majmaah University, Majmaah 11952, Saudi Arabia
| | - W. Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Sue-Ann Mok
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
25
|
Ferreira T, Kulkarni A, Bretscher C, Richter K, Ehrlich M, Marchini A. Oncolytic H-1 Parvovirus Enters Cancer Cells through Clathrin-Mediated Endocytosis. Viruses 2020; 12:v12101199. [PMID: 33096814 PMCID: PMC7594094 DOI: 10.3390/v12101199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
H-1 protoparvovirus (H-1PV) is a self-propagating virus that is non-pathogenic in humans and has oncolytic and oncosuppressive activities. H-1PV is the first member of the Parvoviridae family to undergo clinical testing as an anticancer agent. Results from clinical trials in patients with glioblastoma or pancreatic carcinoma show that virus treatment is safe, well-tolerated and associated with first signs of efficacy. Characterisation of the H-1PV life cycle may help to improve its efficacy and clinical outcome. In this study, we investigated the entry route of H-1PV in cervical carcinoma HeLa and glioma NCH125 cell lines. Using electron and confocal microscopy, we detected H-1PV particles within clathrin-coated pits and vesicles, providing evidence that the virus uses clathrin-mediated endocytosis for cell entry. In agreement with these results, we found that blocking clathrin-mediated endocytosis using specific inhibitors or small interfering RNA-mediated knockdown of its key regulator, AP2M1, markedly reduced H-1PV entry. By contrast, we found no evidence of viral entry through caveolae-mediated endocytosis. We also show that H-1PV entry is dependent on dynamin, while viral trafficking occurs from early to late endosomes, with acidic pH necessary for a productive infection. This is the first study that characterises the cell entry pathways of oncolytic H-1PV.
Collapse
Affiliation(s)
- Tiago Ferreira
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.)
| | - Amit Kulkarni
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, 84 Val Fleuri, L-1526 Luxembourg, Luxembourg;
| | - Clemens Bretscher
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.)
| | - Karsten Richter
- Core Facility Electron Microscopy, German Cancer Research Centre, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Marcelo Ehrlich
- Laboratory of Signal Transduction and Membrane Biology, The Shumins School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel;
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.)
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, 84 Val Fleuri, L-1526 Luxembourg, Luxembourg;
- Correspondence: or ; Tel.: +49-6221-424969 or +352-26-970-856
| |
Collapse
|
26
|
Kesidou D, da Costa Martins PA, de Windt LJ, Brittan M, Beqqali A, Baker AH. Extracellular Vesicle miRNAs in the Promotion of Cardiac Neovascularisation. Front Physiol 2020; 11:579892. [PMID: 33101061 PMCID: PMC7546892 DOI: 10.3389/fphys.2020.579892] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide claiming almost 17. 9 million deaths annually. A primary cause is atherosclerosis within the coronary arteries, which restricts blood flow to the heart muscle resulting in myocardial infarction (MI) and cardiac cell death. Despite substantial progress in the management of coronary heart disease (CHD), there is still a significant number of patients developing chronic heart failure post-MI. Recent research has been focused on promoting neovascularisation post-MI with the ultimate goal being to reduce the extent of injury and improve function in the failing myocardium. Cardiac cell transplantation studies in pre-clinical models have shown improvement in cardiac function; nonetheless, poor retention of the cells has indicated a paracrine mechanism for the observed improvement. Cell communication in a paracrine manner is controlled by various mechanisms, including extracellular vesicles (EVs). EVs have emerged as novel regulators of intercellular communication, by transferring molecules able to influence molecular pathways in the recipient cell. Several studies have demonstrated the ability of EVs to stimulate angiogenesis by transferring microRNA (miRNA, miR) molecules to endothelial cells (ECs). In this review, we describe the process of neovascularisation and current developments in modulating neovascularisation in the heart using miRNAs and EV-bound miRNAs. Furthermore, we critically evaluate methods used in cell culture, EV isolation and administration.
Collapse
Affiliation(s)
- Despoina Kesidou
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Paula A. da Costa Martins
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
- Faculty of Health, Medicine and Life Sciences, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Leon J. de Windt
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Abdelaziz Beqqali
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew Howard Baker
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
27
|
Systems biology reveals reprogramming of the S-nitroso-proteome in the cortical and striatal regions of mice during aging process. Sci Rep 2020; 10:13913. [PMID: 32807865 PMCID: PMC7431412 DOI: 10.1038/s41598-020-70383-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/28/2020] [Indexed: 12/26/2022] Open
Abstract
Cell aging depends on the rate of cumulative oxidative and nitrosative damage to DNA and proteins. Accumulated data indicate the involvement of protein S-nitrosylation (SNO), the nitric oxide (NO)-mediated posttranslational modification (PTM) of cysteine thiols, in different brain disorders. However, the changes and involvement of SNO in aging including the development of the organism from juvenile to adult state is still unknown. In this study, using the state-of-the-art mass spectrometry technology to identify S-nitrosylated proteins combined with large-scale computational biology, we tested the S-nitroso-proteome in juvenile and adult mice in both cortical and striatal regions. We found reprogramming of the S-nitroso-proteome in adult mice of both cortex and striatum regions. Significant biological processes and protein–protein clusters associated with synaptic and neuronal terms were enriched in adult mice. Extensive quantitative analysis revealed a large set of potentially pathological proteins that were significantly upregulated in adult mice. Our approach, combined with large scale computational biology allowed us to perform a system-level characterization and identification of the key proteins and biological processes that can serve as drug targets for aging and brain disorders in future studies.
Collapse
|
28
|
Herrscher C, Roingeard P, Blanchard E. Hepatitis B Virus Entry into Cells. Cells 2020; 9:cells9061486. [PMID: 32570893 PMCID: PMC7349259 DOI: 10.3390/cells9061486] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV), an enveloped partially double-stranded DNA virus, is a widespread human pathogen responsible for more than 250 million chronic infections worldwide. Current therapeutic strategies cannot eradicate HBV due to the persistence of the viral genome in a special DNA structure (covalently closed circular DNA, cccDNA). The identification of sodium taurocholate co-transporting polypeptide (NTCP) as an entry receptor for both HBV and its satellite virus hepatitis delta virus (HDV) has led to great advances in our understanding of the life cycle of HBV, including the early steps of infection in particular. However, the mechanisms of HBV internalization and the host factors involved in this uptake remain unclear. Improvements in our understanding of HBV entry would facilitate the design of new therapeutic approaches targeting this stage and preventing the de novo infection of naïve hepatocytes. In this review, we provide an overview of current knowledge about the process of HBV internalization into cells.
Collapse
Affiliation(s)
- Charline Herrscher
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France;
| | - Philippe Roingeard
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France;
- Plate-Forme IBiSA des Microscopies, PPF ASB, Université de Tours and CHRU de Tours, 37032 Tours, France
- Correspondence: (P.R.); (E.B.); Tel.: +33-2-3437-9646 (E.B.)
| | - Emmanuelle Blanchard
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France;
- Plate-Forme IBiSA des Microscopies, PPF ASB, Université de Tours and CHRU de Tours, 37032 Tours, France
- Correspondence: (P.R.); (E.B.); Tel.: +33-2-3437-9646 (E.B.)
| |
Collapse
|
29
|
Multifaceted Functions of Host Cell Caveolae/Caveolin-1 in Virus Infections. Viruses 2020; 12:v12050487. [PMID: 32357558 PMCID: PMC7291293 DOI: 10.3390/v12050487] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
Virus infection has drawn extensive attention since it causes serious or even deadly diseases, consequently inducing a series of social and public health problems. Caveolin-1 is the most important structural protein of caveolae, a membrane invagination widely known for its role in endocytosis and subsequent cytoplasmic transportation. Caveolae/caveolin-1 is tightly associated with a wide range of biological processes, including cholesterol homeostasis, cell mechano-sensing, tumorigenesis, and signal transduction. Intriguingly, the versatile roles of caveolae/caveolin-1 in virus infections have increasingly been appreciated. Over the past few decades, more and more viruses have been identified to invade host cells via caveolae-mediated endocytosis, although other known pathways have been explored. The subsequent post-entry events, including trafficking, replication, assembly, and egress of a large number of viruses, are caveolae/caveolin-1-dependent. Deprivation of caveolae/caveolin-1 by drug application or gene editing leads to abnormalities in viral uptake, viral protein expression, or virion release, whereas the underlying mechanisms remain elusive and must be explored holistically to provide potential novel antiviral targets and strategies. This review recapitulates our current knowledge on how caveolae/caveolin-1 functions in every step of the viral infection cycle and various relevant signaling pathways, hoping to provide a new perspective for future viral cell biology research.
Collapse
|
30
|
Pahwa H, Khan MT, Sharan K. Hyperglycemia impairs osteoblast cell migration and chemotaxis due to a decrease in mitochondrial biogenesis. Mol Cell Biochem 2020; 469:109-118. [PMID: 32304005 DOI: 10.1007/s11010-020-03732-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
Abstract
Diabetes is associated with an increase in skeletal fragility and risk of fracture. However, the underlying mechanism for the same is not well understood. Specifically, the results from osteoblast cell culture studies are ambiguous due to contradicting reports. The use of supraphysiological concentrations in these studies, unachievable in vivo, might be the reason for the same. Therefore, here, we studied the effect of physiologically relevant levels of high glucose during diabetes (11.1 mM) on MC3T3-E1 osteoblast cell functions. The results showed that high glucose exposure to osteoblast cells increases their differentiation and mineralization without any effect on the proliferation. However, high glucose decreases their migratory potential and chemotaxis with a decrease in the associated cell signaling. Notably, this decrease in cell migration in high glucose conditions was accompanied by aberrant localization of Dynamin 2 in osteoblast cells. Besides, high glucose also caused a shift in mitochondrial dynamics towards the appearance of more fused and lesser fragmented mitochondria, with a concomitant decrease in the expression of DRP1, suggesting decreased mitochondrial biogenesis. In conclusion, here we are reporting for the first time that hyperglycemia causes a reduction in osteoblast cell migration and chemotaxis. This decrease might lead to an inefficient movement of osteoblasts to the erosion site resulting in uneven mineralization and skeletal fragility found in type 2 diabetes patients, in spite of having normal bone mineral density (BMD).
Collapse
Affiliation(s)
- Heena Pahwa
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - Md Touseef Khan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
31
|
Chen J, Vitetta L. Mitochondria could be a potential key mediator linking the intestinal microbiota to depression. J Cell Biochem 2019; 121:17-24. [PMID: 31385365 DOI: 10.1002/jcb.29311] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
The intestinal microbiota has been reported to affect depression, a common mental condition with severe health-related consequences. However, what mediates the effect of the intestinal microbiota on depression has not been well elucidated. We summarize the roles of the mitochondria in eliciting beneficial effects on the gut microbiota to ameliorate symptoms of depression. It is well known that mitochondria play a key role in depression. An important pathogenic factor, namely inflammatory response, may adversely impact mitochondrial functionality to maintain cellular homeostasis. Dysfunction of mitochondria not only affects neuronal function but also reduces neuron cell numbers. We posit that the intestinal microbiota could affect neuronal mitochondrial function through short-chain fatty acids such as butyrate. Brain inflammatory processes could also be affected through the modulation of gut permeability and blood lipopolysaccharide levels. Aberrant mitochondria functionality coupled to adverse cellular homeostasis could be a key mediator for the effect of the intestinal microbiota on the progression of depression.
Collapse
Affiliation(s)
| | - Luis Vitetta
- Medlab Clinical Ltd, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
32
|
Exosomes released from pancreatic cancer cells enhance angiogenic activities via dynamin-dependent endocytosis in endothelial cells in vitro. Sci Rep 2018; 8:11972. [PMID: 30097593 PMCID: PMC6086824 DOI: 10.1038/s41598-018-30446-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer has the lowest 5 year survival rate among all cancers. Several extracellular factors are involved in the development and metastasis of pancreatic cancer to distant organs. Exosomes are lipid-bilayer, membrane-enclosed nanoparticles that are recognised as important mediators of cell-to-cell communications. However, the role of exosomes released from pancreatic cancer cells in tumour micro-environment remains unknown. Here, we show that exosomes released from pancreatic cancer PK-45H cells activate various gene expressions in human umbilical vein endothelial cells (HUVECs) by in vitro analyses. In addition, these exosomes released from PK-45H cells promote phosphorylation of Akt and ERK1/2 signalling pathway molecules and tube formation via dynamin-dependent endocytosis in HUVECs. Our findings suggested that exosomes released from pancreatic cancer cells may act as a novel angiogenesis promoter.
Collapse
|
33
|
Chiba M, Kubota S, Sakai A, Monzen S. Cell‑to‑cell communication via extracellular vesicles among human pancreatic cancer cells derived from the same patient. Mol Med Rep 2018; 18:3989-3996. [PMID: 30106154 DOI: 10.3892/mmr.2018.9376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/07/2018] [Indexed: 11/06/2022] Open
Abstract
Despite existing multimodal therapies, pancreatic cancer exhibits high metastatic capability and poor prognosis. Extracellular vesicles (EVs) are nanoparticles comprising lipid bilayers and various other components, such as protein and nucleic acids, derived from secreted cells. Recent research has demonstrated the involvement of EVs released from cancer cells in the metastasis of cancer cells to distant organs. However, the effects of EVs released from pancreatic cancer cells on other pancreatic cancer cells in a tumor microenvironment remain unclear. The present study aimed to elucidate that EVs released from PK‑45H pancreatic cancer cells are taken up by PK‑45P pancreatic cancer cells derived from the same patient through dynamin‑related endocytosis. Additionally, EVs released from PK‑45H cells augment the phosphorylation of classical mitogen‑activated protein kinase (MAPK) pathways in PK‑45P cells. The uptake of EVs released from PK‑45H cells by PK‑45P cells stimulates cell migration through the classical MAPK‑dependent pathway, suggesting that EVs released from one pancreatic cancer cell are taken up by other surrounding pancreatic cancer cells and could be critical inducers of cancer metastasis in the tumor microenvironment.
Collapse
Affiliation(s)
- Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036‑8564, Japan
| | - Shiori Kubota
- Department of Medical Technology, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036‑8564, Japan
| | - Ayaka Sakai
- Department of Medical Technology, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036‑8564, Japan
| | - Satoru Monzen
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036‑8564, Japan
| |
Collapse
|
34
|
Meng J. Distinct functions of dynamin isoforms in tumorigenesis and their potential as therapeutic targets in cancer. Oncotarget 2018; 8:41701-41716. [PMID: 28402939 PMCID: PMC5522257 DOI: 10.18632/oncotarget.16678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/09/2017] [Indexed: 12/22/2022] Open
Abstract
Dynamins and their related proteins participate in the regulation of neurotransmission, antigen presentation, receptor internalization, growth factor signalling, nutrient uptake, and pathogen infection. Recently, emerging findings have shown dynamin proteins can also contribute to the genesis of cancer. This up-to-date review herein focuses on the functionality of dynamin in cancer development. Dynamin 1 and 2 both enhance cancer cell proliferation, tumor invasion and metastasis, whereas dynamin 3 has tumor suppression role. Antisense RNAs encoded on the DNA strand opposite a dynamin gene regulate the function of dynamin, and manipulate oncogenes and tumor suppressor genes. Certain dynamin-related proteins are also upregulated in distinct cancer conditions, resulting in apoptotic resistance, cell migration and poor prognosis. Altogether, dynamins are potential biomarkers as well as representing promising novel therapeutic targets for cancer treatment. This study also summarizes the current available dynamin-targeted therapeutics and suggests the potential strategy based on signalling pathways involved, providing important information to aid the future development of novel cancer therapeutics by targeting these dynamin family members.
Collapse
Affiliation(s)
- Jianghui Meng
- Charles Institute of Dermatology, School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin, Ireland.,International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin, Ireland
| |
Collapse
|