1
|
Franco R, Garrigós C, Capó T, Serrano-Marín J, Rivas-Santisteban R, Lillo J. Olfactory receptors in neural regeneration in the central nervous system. Neural Regen Res 2025; 20:2480-2494. [PMID: 39503417 PMCID: PMC11801295 DOI: 10.4103/nrr.nrr-d-24-00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 08/05/2024] [Indexed: 02/08/2025] Open
Abstract
Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell, influencing behaviors from food choices to emotional memories. These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring. The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration, a phenomenon largely absent in the central nervous system. Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system, where damage often results in permanent deficits. Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal cord injuries and neurodegenerative diseases like Alzheimer's disease. Olfactory receptors are found in almost any cell of every organ/tissue of the mammalian body. This ectopic expression provides insights into the chemical structures that can activate olfactory receptors. In addition to odors, olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota. The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms. This review explores the ectopic expression of olfactory receptors and the role they may play in neural regeneration within the central nervous system, with particular attention to compounds that can activate these receptors to initiate regenerative processes. Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- CiberNed Network Center for Biomedical Research in Neurodegenerative Diseases, Spanish National Health Institute Carlos III, Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Claudia Garrigós
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Toni Capó
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Joan Serrano-Marín
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Rivas-Santisteban
- CiberNed Network Center for Biomedical Research in Neurodegenerative Diseases, Spanish National Health Institute Carlos III, Madrid, Spain
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Campus Bellaterra, Barcelona, Spain
| | - Jaume Lillo
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- CiberNed Network Center for Biomedical Research in Neurodegenerative Diseases, Spanish National Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Wang X, Li Y, Yin J, Wang J, Zhou P, Su R. Mice mortality induced by dexmedetomidine is non-alpha2-adrenergic receptor-dependent. Toxicology 2025; 514:154122. [PMID: 40118199 DOI: 10.1016/j.tox.2025.154122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Dexmedetomidine (DMED) is widely used in sedative anesthetics in clinical settings. Currently, there are no therapeutic interventions available for the lethal toxicity induced by DMED. Administered at doses ranging from 25 to 100 mg/kg intraperitoneally (i.p.), DMED exhibited a dose-dependent fatality in mice. The 50 % lethal dose (LD50) was determined to be 48.5 mg/kg within 24 h and 44.8 mg/kg within 7 days. Alpha2-adrenergic receptor antagonists, namely yohimbine and atipamezole, demonstrated no mitigating effect on the lethal toxicity induced by DMED at the dose of 44.8 mg/kg. Conversely, the administration of atipamezole and yohimbine increased the mortality associated with DMED. By contrast, the imidazoline receptor antagonist idazoxan and the opioid receptor antagonist naloxone significantly attenuated the mortality induced by DMED, thereby prolonging the median survival time following administration of DMED at 44.8 mg/kg (i.p.). Furthermore, the immune modulator imiquimod, calcium sensitizer levosimendan, and TAAR1 antagonist RO5212773 decreased acute mortality without impacting chronic mortality induced by DMED. Histopathological analysis revealed characteristic lung alterations, including capillary hemorrhage, widened alveolar septa, fusion of pulmonary alveoli, and inflammatory cell infiltrate upon DMED exposure. Pretreatment with idazoxan or naloxone inhibited these pathological changes induced by DMED, while atipamezole or yohimbine pretreatment exacerbated lung damage. Elevated levels of serum creatine kinase and myoglobin were noted following DMED administration. However, pretreatment with idazoxan or naloxone decreased the rise of serum creatine kinase and myoglobin. Collectively, these results highlighted the involvement of imidazoline receptors and opioid receptor in DMED mortality.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Yulei Li
- Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Jiye Yin
- Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Jiaqi Wang
- Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China; Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210000, China
| | - Peilan Zhou
- Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| | - Ruibin Su
- Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| |
Collapse
|
3
|
Abdelmissih S, Ahmed Rashed L, Sharif Ismail Negm M, Mohamed Sayed W, Mahmoud HM, Elmorsy S. Dabigatran Combined With Benztropine Ameliorates Cobalt Chloride-Induced Parkinsonism in Rats, Restores Protease-Activated Receptor 1 (PAR1), and Mitigates Oxidative Stress. Cureus 2025; 17:e80486. [PMID: 40225545 PMCID: PMC11991752 DOI: 10.7759/cureus.80486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND The presumed implication of thromboembolic and oxidative stress pathways in parkinsonism guided the current research toward the exploration of the anticoagulant dabigatran etexilate (DE) as a thrombin inhibitor in the cobalt chloride (CoCl2)-induced parkinsonism (CIP) model, a model of significance to industrial toxins-related health issues. METHODS Oral CoCl2 (12.5 mg/kg) was administered daily for 60 days, with the introduction of benztropine mesylate (BM) (10 mg/kg) and/or DE (3 mg/kg) on day 31. Rearing, postural instability, and pasta handling were evaluated, followed by histopathologic examination of the substantia nigra (SN) and striatum (STR). The expressions of brain dopamine receptor 2 (D2 ), adenosine receptor 1 (A1) and 2A (A2A), and protease-activated receptor 1 (PAR1), as well as the brain levels of dopamine (DA), endothelin 1 (ET1), malondialdehyde (MDA), and glutathione (GSH), were assessed. RESULTS BM+DE restored the number of rears to the control level, compared to being reduced in the CIP model. BM+DE restored the first, second, third, and average displacement distances to the control level, compared to being reduced in the CIP model. BM+DE was superior to either BM or DE in restoring the time to finish eating pasta and the number of adjustments of forepaws while eating to control levels after being affected in the CIP model. BM+DE restored DA to the control level and was superior to DE in restoring D2 to the control level. BM+DE was superior to BM in restoring A1 and A2A , increasing A1/A2A beyond the control level. BM+DE was superior to BM in restoring PAR1 and ET1 to control levels. BM+DE was superior to BM in restoring MDA to the control level and was superior to both BM and DE in increasing GSH beyond the control level. BM+DE exhibited the highest percentage of preserved neurons in SN, which was negatively correlated with MDA. CONCLUSION BM+DE offers a therapeutic potential for parkinsonism triggered by chronic exposure to CoCl2. The implication of thrombin-related factors and oxidative stress in the modulation of the dopaminergic-adenosinergic crosstalk is plausible.
Collapse
Affiliation(s)
- Sherine Abdelmissih
- Department of Medical Pharmacology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, EGY
| | - Laila Ahmed Rashed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, EGY
| | | | - Walaa Mohamed Sayed
- Department of Anatomy and Embryology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, EGY
| | - Hesham M Mahmoud
- Department of Medical Pharmacology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, EGY
| | - Soha Elmorsy
- Department of Medical Pharmacology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, EGY
| |
Collapse
|
4
|
Choi J, Koo J. Protein-Protein Interactions of Odorant and G Protein-Coupled Receptors: A BRET Analysis Approach. Methods Mol Biol 2025; 2915:161-168. [PMID: 40249490 DOI: 10.1007/978-1-0716-4466-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Odorant receptors (ORs), the largest subfamily of G protein-coupled receptors, are pivotal not only for olfactory detection in the nose but also for various biological functions in extra-nasal tissues. The functional characterization of ORs presents significant challenges, especially due to the difficulty of achieving their surface expression in in vitro systems. Research indicates that interactions between ORs and other receptors, as well as OR multimerization, are crucial for their membrane localization and the modulation of signaling pathways. Utilizing the bioluminescence resonance energy transfer (BRET) assay, a technique for investigating protein-protein interactions, our study quantifies the interactions between ORs and various receptors. This approach provides novel insights into OR molecular dynamics, emphasizing the role of OR multimerization. By exploring into these complexities, our work aims to enhance the understanding of cellular signaling mechanisms and promote the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- JiWoo Choi
- Department of New Biology, DGIST, Daegu, Republic of Korea
- New Biology Research Center (NBRC), DGIST, Daegu, Republic of Korea
| | - JaeHyung Koo
- Department of New Biology, DGIST, Daegu, Republic of Korea.
- New Biology Research Center (NBRC), DGIST, Daegu, Republic of Korea.
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.
| |
Collapse
|
5
|
Hong JM, Lee JW, Seen DS, Jeong JY, Huh WK. LPA1-mediated inhibition of CXCR4 attenuates CXCL12-induced signaling and cell migration. Cell Commun Signal 2023; 21:257. [PMID: 37749552 PMCID: PMC10518940 DOI: 10.1186/s12964-023-01261-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/09/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND G protein-coupled receptor heteromerization is believed to exert dynamic regulatory impact on signal transduction. CXC chemokine receptor 4 (CXCR4) and its ligand CXCL12, both of which are overexpressed in many cancers, play a pivotal role in metastasis. Likewise, lysophosphatidic acid receptor 1 (LPA1) is implicated in cancer cell proliferation and migration. In our preliminary study, we identified LPA1 as a prospective CXCR4 interactor. In the present study, we investigated in detail the formation of the CXCR4-LPA1 heteromer and characterized the unique molecular features and function of this heteromer. METHODS We employed bimolecular fluorescence complementation, bioluminescence resonance energy transfer, and proximity ligation assays to demonstrate heteromerization between CXCR4 and LPA1. To elucidate the distinctive molecular characteristics and functional implications of the CXCR4-LPA1 heteromer, we performed various assays, including cAMP, BRET for G protein activation, β-arrestin recruitment, ligand binding, and transwell migration assays. RESULTS We observed that CXCR4 forms heteromers with LPA1 in recombinant HEK293A cells and the human breast cancer cell line MDA-MB-231. Coexpression of LPA1 with CXCR4 reduced CXCL12-mediated cAMP inhibition, ERK activation, Gαi/o activation, and β-arrestin recruitment, while CXCL12 binding to CXCR4 remained unaffected. In contrast, CXCR4 had no impact on LPA1-mediated signaling. The addition of lysophosphatidic acid (LPA) further hindered CXCL12-induced Gαi/o recruitment to CXCR4. LPA or alkyl-OMPT inhibited CXCL12-induced migration in various cancer cells that endogenously express both CXCR4 and LPA1. Conversely, CXCL12-induced calcium signaling and migration were increased in LPAR1 knockout cells, and LPA1-selective antagonists enhanced CXCL12-induced Gαi/o signaling and cell migration in the parental MDA-MB-231 cells but not in LPA1-deficient cells. Ultimately, complete inhibition of cell migration toward CXCL12 and alkyl-OMPT was only achieved in the presence of both CXCR4 and LPA1 antagonists. CONCLUSIONS The presence and impact of CXCR4-LPA1 heteromers on CXCL12-induced signaling and cell migration have been evidenced across various cell lines. This discovery provides crucial insights into a valuable regulatory mechanism of CXCR4 through heteromerization. Moreover, our findings propose a therapeutic potential in combined CXCR4 and LPA1 inhibitors for cancer and inflammatory diseases associated with these receptors, simultaneously raising concerns about the use of LPA1 antagonists alone for such conditions. Video Abstract.
Collapse
Affiliation(s)
- Jong Min Hong
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Woo Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Seung Seen
- GPCR Therapeutics Inc, Gwanak-Gu, Seoul, 08790, Republic of Korea
| | - Jae-Yeon Jeong
- GPCR Therapeutics Inc, Gwanak-Gu, Seoul, 08790, Republic of Korea.
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
6
|
Chen G, Obal D. Detecting and measuring of GPCR signaling - comparison of human induced pluripotent stem cells and immortal cell lines. Front Endocrinol (Lausanne) 2023; 14:1179600. [PMID: 37293485 PMCID: PMC10244570 DOI: 10.3389/fendo.2023.1179600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/12/2023] [Indexed: 06/10/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of transmembrane proteins that play a major role in many physiological processes, and thus GPCR-targeted drug development has been widely promoted. Although research findings generated in immortal cell lines have contributed to the advancement of the GPCR field, the homogenous genetic backgrounds, and the overexpression of GPCRs in these cell lines make it difficult to correlate the results with clinical patients. Human induced pluripotent stem cells (hiPSCs) have the potential to overcome these limitations, because they contain patient specific genetic information and can differentiate into numerous cell types. To detect GPCRs in hiPSCs, highly selective labeling and sensitive imaging techniques are required. This review summarizes existing resonance energy transfer and protein complementation assay technologies, as well as existing and new labeling methods. The difficulties of extending existing detection methods to hiPSCs are discussed, as well as the potential of hiPSCs to expand GPCR research towards personalized medicine.
Collapse
Affiliation(s)
- Gaoxian Chen
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Detlef Obal
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
7
|
Lillo J, García-Pérez I, Lillo A, Serrano-Marín J, Martínez-Pinilla E, Navarro G, Franco R. The olfactory Olfr-78/51E2 receptor interacts with the adenosine A 2A receptor. Effect of menthol and 1,8-cineole on A 2A receptor-mediated signaling. Front Pharmacol 2023; 14:1108617. [PMID: 37266149 PMCID: PMC10229766 DOI: 10.3389/fphar.2023.1108617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Heteromer formation is unknown for the olfactory family of G protein-coupled receptors (GPCRs). We here identified, in a heterologous system, heteromers formed by the adenosine A2A receptor (A2AR), which is a target for neuroprotection, and an olfactory receptor. A2AR interacts with the receptor family 51, subfamily E, member 2 (OR51E2), the human ortholog of the mouse Olfr-78, whose mRNA is differentially expressed in activated microglia treated with adenosine receptor ligands. Bioluminescence resonance energy transfer (BRET) assays were performed in HEK-293T cells expressing the human version of the receptors, OR51E2 and A2AR, fused, respectively, to Renilla luciferase (RLuc) and the yellow fluorescent protein (YFP). BRET data was consistent with a receptor-receptor interaction whose consequences at the functional level were measured by cAMP level determination in CHO cells. Results showed an olfactory receptor-mediated partial blockade of Gs coupling to the A2AR, i.e., the effect of the A2AR selective agonist on intracellular levels of cAMP was significantly reduced. Two odorants, menthol and 1,8-cineole, which failed to show Golf-mediated OR51E2 activation because they did not increase cytosolic cAMP levels, reduced the BRET readings in cells expressing A2AR-YFP and OR51E2-Rluc, most likely suggesting a conformational change of at least one receptor. These odorants led to an almost complete block of A2AR coupling to Gs.
Collapse
Affiliation(s)
- Jaume Lillo
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Irene García-Pérez
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Joan Serrano-Marín
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Eva Martínez-Pinilla
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Franco
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Lala T, Doan JK, Takatsu H, Hartzell HC, Shin HW, Hall RA. Phosphatidylserine exposure modulates adhesion GPCR BAI1 (ADGRB1) signaling activity. J Biol Chem 2022; 298:102685. [PMID: 36370845 PMCID: PMC9723945 DOI: 10.1016/j.jbc.2022.102685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
Abstract
Brain-specific angiogenesis inhibitor 1 (BAI1; also called ADGRB1 or B1) is an adhesion G protein-coupled receptor known from studies on macrophages to bind to phosphatidylserine (PS) on apoptotic cells via its N-terminal thrombospondin repeats. A separate body of work has shown that B1 regulates postsynaptic function and dendritic spine morphology via signaling pathways involving Rac and Rho. However, it is unknown if PS binding by B1 has any effect on the receptor's signaling activity. To shed light on this subject, we studied G protein-dependent signaling by B1 in the absence and presence of coexpression with the PS flippase ATP11A in human embryonic kidney 293T cells. ATP11A expression reduced the amount of PS exposed extracellularly and also strikingly reduced the signaling activity of coexpressed full-length B1 but not a truncated version of the receptor lacking the thrombospondin repeats. Further experiments with an inactive mutant of ATP11A showed that the PS flippase function of ATP11A was required for modulation of B1 signaling. In coimmunoprecipitation experiments, we made the surprising finding that ATP11A not only modulates B1 signaling but also forms complexes with B1. Parallel studies in which PS in the outer leaflet was reduced by an independent method, deletion of the gene encoding the endogenous lipid scramblase anoctamin 6 (ANO6), revealed that this manipulation also markedly reduced B1 signaling. These findings demonstrate that B1 signaling is modulated by PS exposure and suggest a model in which B1 serves as a PS sensor at synapses and in other cellular contexts.
Collapse
Affiliation(s)
- Trisha Lala
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Juleva K Doan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hiroyuki Takatsu
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - H Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Randy A Hall
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
9
|
Sarkar J, Luo Y, Zhou Q, Ivakhnitskaia E, Lara D, Katz E, Sun MG, Guaiquil V, Rosenblatt M. VEGF receptor heterodimers and homodimers are differentially expressed in neuronal and endothelial cell types. PLoS One 2022; 17:e0269818. [PMID: 35862373 PMCID: PMC9302817 DOI: 10.1371/journal.pone.0269818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/29/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE We have previously reported that VEGF-B is more potent than VEGF-A in mediating corneal nerve growth in vitro and in vivo, and this stimulation of nerve growth appears to be different from stimulation of angiogenesis by these same ligands, at least in part due to differences in VEGF receptor activation. VEGF signaling may be modulated by a number of factors including receptor number or the formation of receptor hetero- vs. homodimers. In endothelial cells, VEGF receptor heterodimer (VEGR1/R2) activation after ligand binding and subsequent phosphorylation alters the activation of downstream signaling cascades. However, our understanding of these processes in neuronal cell types remains unclear. The purpose of this study was to identify the presence and distribution of VEGF Receptor-Ligand interactions in neuronal cells as compared to endothelial cells. METHODS PC12 (rat neuronal cell line), MAEC (mouse aortic endothelial cell line), MVEC (mouse venous endothelial cell line) and HUVEC (human umbilical venous endothelial cell line; control group) were used. Cells were acutely stimulated either with VEGF-A (50 ng/μL) or VEGF-B (50 ng/μL) or "vehicle" (PBS; control group). We also isolated mouse trigeminal ganglion cells from thy1-YFP neurofluorescent mice. After treatment, cells were used as follows: (i) One group was fixed in 4% paraformaldehyde and processed for VEGFR1 and VEGFR2 immunostaining and visualized using confocal fluorescence microscopy and Total Internal Reflection (TIRF) microscopy; (ii) the second group was harvested in cell lysis buffer (containing anti-protease / anti-phosphatase cocktail), lysed and processed for immunoprecipitation (IP; Thermo Fisher IP kit) and immunoblotting (IB; LI-COR® Systems). Immunoprecipitated proteins were probed either with anti-VEGFR1 or anti-VEGFR2 IgG antibodies to evaluate VEGFR1-R2-heterodimerization; (iii) a third group of cells was also processed for Duolink Proximity Ligation Assay (PLA; Sigma) to assess the presence and distribution of VEGF-receptor homo- and heterodimers in neuronal and endothelial cells. RESULTS TIRF and fluorescence confocal microscopy revealed the presence of VEGFR1 co-localized with VEGFR2 in endothelial and PC12 neuronal cells. Cell lysates immunoprecipitated with anti-VEGFR1 further validated the existence of VEGFR1-R2 heterodimers in PC12 neuronal cells. Neuronal cells showed higher levels of VEGFR1-R2 heterodimers as compared to endothelial cells whereas endothelial cells showed higher VEGFR2-R2 homodimers compared to neuronal cells as demonstrated by Duolink PLA. Levels of VEGFR1-R1 homodimers were very low in neuronal and endothelial cells. CONCLUSIONS Differences in VEGF Receptor homo- and heterodimer distribution may explain the differential role of VEGF ligands in neuronal versus endothelial cell types. This may in turn influence VEGF activity and regulation of neuronal cell homeostasis.
Collapse
Affiliation(s)
- Joy Sarkar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Yuncin Luo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Qiang Zhou
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Evguenia Ivakhnitskaia
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Daniel Lara
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Eitan Katz
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Michael G. Sun
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Victor Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Mark Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
10
|
Kumar S, Maurya YK, Lis T, Stępień M. Synthesis of a donor-acceptor heterodimer via trifunctional completive self-sorting. Nat Commun 2022; 13:3204. [PMID: 35680883 PMCID: PMC9184498 DOI: 10.1038/s41467-022-30859-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/10/2022] [Indexed: 11/15/2022] Open
Abstract
Selective self-assembly of heterodimers consisting of two non-identical subunits plays important roles in Nature but is rarely encountered in synthetic supramolecular systems. Here we show that photocleavage of a donor–acceptor porphyrin complex produces an heterodimeric structure with surprising selectivity. The system forms via a multi-step sequence that starts with an oxidative ring opening, which produces an equimolar mixture of two isomeric degradation products (zinc(II) bilatrien-abc-ones, BTOs). These two isomers are susceptible to water addition, yielding the corresponding zinc(II) 15-hydroxybiladien-ab-ones (HBDOs). However, in the photocleavage experiment only one HBDO isomer is formed, and it quantitatively combines with the remaining BTO isomer. The resulting heterodimer is stabilized by a Zn–O coordination bond and extended dispersion interactions between the overlapping π-surfaces of the monomers. The observed selectivity can be seen as a case of completive self-sorting, simultaneously controlled by three types of complementary interactions. The preparation of heterodimeric structures via self-assembly processes is challenging. Here, the authors report the photooxidation of a donor–acceptor metalloporphyrin, which enables a self-sorting process that yields an heterodimer quantitatively.
Collapse
Affiliation(s)
- Sunit Kumar
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Yogesh Kumar Maurya
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Tadeusz Lis
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland.
| |
Collapse
|
11
|
Dysfunctional Heteroreceptor Complexes as Novel Targets for the Treatment of Major Depressive and Anxiety Disorders. Cells 2022; 11:cells11111826. [PMID: 35681521 PMCID: PMC9180493 DOI: 10.3390/cells11111826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Among mental diseases, major depressive disorder (MDD) and anxiety deserve a special place due to their high prevalence and their negative impact both on society and patients suffering from these disorders. Consequently, the development of novel strategies designed to treat them quickly and efficiently, without or at least having limited side effects, is considered a highly important goal. Growing evidence indicates that emerging properties are developed on recognition, trafficking, and signaling of G-protein coupled receptors (GPCRs) upon their heteromerization with other types of GPCRs, receptor tyrosine kinases, and ionotropic receptors such as N-methyl-D-aspartate (NMDA) receptors. Therefore, to develop new treatments for MDD and anxiety, it will be important to identify the most vulnerable heteroreceptor complexes involved in MDD and anxiety. This review focuses on how GPCRs, especially serotonin, dopamine, galanin, and opioid heteroreceptor complexes, modulate synaptic and volume transmission in the limbic networks of the brain. We attempt to provide information showing how these emerging concepts can contribute to finding new ways to treat both MDD and anxiety disorders.
Collapse
|
12
|
Li SH, Colson TLL, Abd-Elrahman KS, Ferguson SSG. Metabotropic Glutamate Receptor 5 Antagonism Reduces Pathology and Differentially Improves Symptoms in Male and Female Heterozygous zQ175 Huntington’s Mice. Front Mol Neurosci 2022; 15:801757. [PMID: 35185467 PMCID: PMC8847794 DOI: 10.3389/fnmol.2022.801757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease (HD) is an inherited autosomal dominant neurodegenerative disorder that leads to progressive motor and cognitive impairment. There are currently no available disease modifying treatments for HD patients. We have previously shown that pharmacological blockade of metabotropic glutamate receptor 5 (mGluR5) signaling rescues motor deficits, improves cognitive impairments and mitigates HD neuropathology in male zQ175 HD mice. Mounting evidence indicates that sex may influence HD progression and we have recently reported a sex-specific pathological mGluR5 signaling in Alzheimer’s disease (AD) mice. Here, we compared the outcomes of treatment with the mGluR5 negative allosteric modulator CTEP (2-chloro-4-[2-[2,5-dimethyl-1-[4-(trifluoromethoxy)phenyl]imidazol-4-yl]ethynyl]pyridine) in both male and female symptomatic zQ175 mice. We found that female zQ175 mice required a longer treatment duration with CTEP than male mice to show improvement in their rotarod performance. Unlike males, chronic CTEP treatment did not improve the grip strength nor reverse the cognitive decline of female zQ175 mice. However, CTEP reduced the number of huntingtin aggregates, improved neuronal survival and decreased microglia activation in the striatum of both male and female zQ175 mice. Together, our results indicate that mGluR5 antagonism can reduce HD neuropathology in both male and female zQ175 HD mice, but sex has a clear impact on the efficacy of the treatment and must be taken into consideration for future HD drug development.
Collapse
Affiliation(s)
- Si Han Li
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Tash-Lynn L. Colson
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Khaled S. Abd-Elrahman
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Stephen S. G. Ferguson
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Stephen S. G. Ferguson,
| |
Collapse
|
13
|
An itch for things remote: The journey of Wnts. Curr Top Dev Biol 2022; 150:91-128. [DOI: 10.1016/bs.ctdb.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Identification of small molecule allosteric modulators that act as enhancers/disrupters of rhodopsin oligomerization. J Biol Chem 2021; 297:101401. [PMID: 34774799 PMCID: PMC8665362 DOI: 10.1016/j.jbc.2021.101401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/27/2022] Open
Abstract
The elongated cilia of the outer segment of rod and cone photoreceptor cells can contain concentrations of visual pigments of up to 5 mM. The rod visual pigments, G protein–coupled receptors called rhodopsins, have a propensity to self-aggregate, a property conserved among many G protein–coupled receptors. However, the effect of rhodopsin oligomerization on G protein signaling in native cells is less clear. Here, we address this gap in knowledge by studying rod phototransduction. As the rod outer segment is known to adjust its size proportionally to overexpression or reduction of rhodopsin expression, genetic perturbation of rhodopsin cannot be used to resolve this question. Therefore, we turned to high-throughput screening of a diverse library of 50,000 small molecules and used a novel assay for the detection of rhodopsin dimerization. This screen identified nine small molecules that either disrupted or enhanced rhodopsin dimer contacts in vitro. In a subsequent cell-free binding study, we found that all nine compounds decreased intrinsic fluorescence without affecting the overall UV-visible spectrum of rhodopsin, supporting their actions as allosteric modulators. Furthermore, ex vivo electrophysiological recordings revealed that a disruptive, hit compound #7 significantly slowed down the light response kinetics of intact rods, whereas compound #1, an enhancing hit candidate, did not substantially affect the photoresponse kinetics but did cause a significant reduction in light sensitivity. This study provides a monitoring tool for future investigation of the rhodopsin signaling cascade and reports the discovery of new allosteric modulators of rhodopsin dimerization that can also alter rod photoreceptor physiology.
Collapse
|
15
|
Yang Y. Functional Selectivity of Dopamine D 1 Receptor Signaling: Retrospect and Prospect. Int J Mol Sci 2021; 22:ijms222111914. [PMID: 34769344 PMCID: PMC8584964 DOI: 10.3390/ijms222111914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Research progress on dopamine D1 receptors indicates that signaling no longer is limited to G protein-dependent cyclic adenosine monophosphate phosphorylation but also includes G protein-independent β-arrestin-related mitogen-activated protein kinase activation, regulation of ion channels, phospholipase C activation, and possibly more. This review summarizes recent studies revealing the complexity of D1 signaling and its clinical implications, and suggests functional selectivity as a promising strategy for drug discovery to magnify the merit of D1 signaling. Functional selectivity/biased receptor signaling has become a major research front because of its potential to improve therapeutics through precise targeting. Retrospective pharmacological review indicated that many D1 ligands have some degree of mild functional selectivity, and novel compounds with extreme bias at D1 signaling were reported recently. Behavioral and neurophysiological studies inspired new methods to investigate functional selectivity and gave insight into the biased signaling of several drugs. Results from recent clinical trials also supported D1 functional selectivity signaling as a promising strategy for discovery and development of better therapeutics.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
16
|
McCullock TW, Kammermeier PJ. The evidence for and consequences of metabotropic glutamate receptor heterodimerization. Neuropharmacology 2021; 199:108801. [PMID: 34547332 DOI: 10.1016/j.neuropharm.2021.108801] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) are an essential component of the mammalian central nervous system. These receptors modulate neuronal excitability in response to extracellular glutamate through the activation of intracellular heterotrimeric G proteins. Like most other class C G protein-coupled receptors, mGluRs function as obligate dimer proteins, meaning they need to form dimer complexes before becoming functional receptors. All mGluRs possess the ability to homodimerize, but studies over the past ten years have demonstrated these receptors are also capable of forming heterodimers in specific patterns. These mGluR heterodimers appear to have their own unique biophysical behavior and pharmacology with both native and synthetic compounds with few rules having been identified that allow for prediction of the consequences of any particular mGluR pair forming heterodimers. Here, we review the relevant literature demonstrating the existence and consequences of mGluR heterodimerization. By collecting biophysical and pharmacological data of several mGluR heterodimers we demonstrate the lack of generalizable behavior of these complexes indicating that each individual dimeric pair needs to be investigated independently. Additionally, by combining sequence alignment and structural analysis, we propose that interactions between the β4-A Helix Loop and the D Helix in the extracellular domain of these receptors are the structural components that dictate heterodimerization compatibility. Finally, we discuss the potential implications of mGluR heterodimerization from the viewpoints of further developing our understanding of neuronal physiology and leveraging mGluRs as a therapeutic target for the treatment of pathophysiology.
Collapse
Affiliation(s)
- Tyler W McCullock
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA.
| | - Paul J Kammermeier
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA.
| |
Collapse
|
17
|
Tse LH, Wong YH. Modeling the Heterodimer Interfaces of Melatonin Receptors. Front Cell Neurosci 2021; 15:725296. [PMID: 34690701 PMCID: PMC8529217 DOI: 10.3389/fncel.2021.725296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Melatonin receptors are Class A G protein-coupled receptors (GPCRs) that regulate a plethora of physiological activities in response to the rhythmic secretion of melatonin from the pineal gland. Melatonin is a key regulator in the control of circadian rhythm and has multiple functional roles in retinal physiology, memory, immunomodulation and tumorigenesis. The two subtypes of human melatonin receptors, termed MT1 and MT2, utilize overlapping signaling pathways although biased signaling properties have been reported in some cellular systems. With the emerging concept of GPCR dimerization, melatonin receptor heterodimers have been proposed to participate in system-biased signaling. Here, we used computational approaches to map the dimerization interfaces of known heterodimers of melatonin receptors, including MT1/MT2, MT1/GPR50, MT2/GPR50, and MT2/5-HT2C. By homology modeling and membrane protein docking analyses, we have identified putative preferred interface interactions within the different pairs of melatonin receptor dimers and provided plausible structural explanations for some of the unique pharmacological features of specific heterodimers previously reported. A thorough understanding of the molecular basis of melatonin receptor heterodimers may enable the development of new therapeutic approaches against aliments involving these heterodimeric receptors.
Collapse
Affiliation(s)
- Lap Hang Tse
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, SAR China
| | - Yung Hou Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, SAR China.,State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Hong Kong, SAR China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, SAR China
| |
Collapse
|
18
|
The macrophage odorant receptor Olfr78 mediates the lactate-induced M2 phenotype of tumor-associated macrophages. Proc Natl Acad Sci U S A 2021; 118:2102434118. [PMID: 34504016 DOI: 10.1073/pnas.2102434118] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Expression and function of odorant receptors (ORs), which account for more than 50% of G protein-coupled receptors, are being increasingly reported in nonolfactory sites. However, ORs that can be targeted by drugs to treat diseases remain poorly identified. Tumor-derived lactate plays a crucial role in multiple signaling pathways leading to generation of tumor-associated macrophages (TAMs). In this study, we hypothesized that the macrophage OR Olfr78 functions as a lactate sensor and shapes the macrophage-tumor axis. Using Olfr78 +/+ and Olfr78 -/- bone marrow-derived macrophages with or without exogenous Olfr78 expression, we demonstrated that Olfr78 sensed tumor-derived lactate, which was the main factor in tumor-conditioned media responsible for generation of protumoral M2-TAMs. Olfr78 functioned together with Gpr132 to mediate lactate-induced generation of protumoral M2-TAMs. In addition, syngeneic Olfr78-deficient mice exhibited reduced tumor progression and metastasis together with an increased anti- versus protumoral immune cell population. We propose that the Olfr78-lactate interaction is a therapeutic target to reduce and prevent tumor progression and metastasis.
Collapse
|
19
|
Al Zamel I, Palakkott A, Ayoub MA. Synergistic activation of thrombin and angiotensin II receptors revealed by bioluminescence resonance energy transfer. FEBS Lett 2021; 595:2628-2637. [PMID: 34455594 DOI: 10.1002/1873-3468.14187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022]
Abstract
We recently reported a physical interaction between the angiotensin II (AngII) receptor (AT1R) and thrombin receptor (PAR1) in HEK293 cells using bioluminescence resonance energy transfer (BRET) technology. This was characterized by thrombin trans-activating AT1R and the synergistic responses of the AT1R-PAR1 complex. Here, we investigated the other face of the coin by examining the effect of AT1R on PAR1 activity using BRET. AngII/AT1R did not promote PAR1 activation in the absence of thrombin. However, the combination of thrombin and AngII resulted in their synergistic/allosteric action. Moreover, AngII/AT1R potentiated the maximal thrombin responses, suggesting specific conformational changes within the AT1R-PAR1 complex. Overall, our data confirm the functional AT1R-PAR1 interplay and further support the implication of both AT1R and PAR1 protomers in their synergistic interaction as previously reported.
Collapse
Affiliation(s)
- Isra Al Zamel
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, UAE
| | - Abdulrasheed Palakkott
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, UAE
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, UAE.,Zayed Center for Health Sciences, The United Arab Emirates University, Al Ain, UAE
| |
Collapse
|
20
|
Wang D, Wang Y, Shan M, Chen J, Wang H, Sun B, Jin C, Li X, Yin Y, Song C, Xiao C, Li J, Wang T, Cai X. Apelin receptor homodimer inhibits apoptosis in vascular dementia. Exp Cell Res 2021; 407:112739. [PMID: 34343559 DOI: 10.1016/j.yexcr.2021.112739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Apelin receptor (APJ), a member of family A of the G protein-coupled receptors (GPCRs), is a potential pharmaceutical target for diseases of the nervous system. Our previous work revealed that human APJ can form a homodimer that has different functional characteristics than the monomer. To investigate the effects of APJ homodimers on neuroprotection in vascular dementia (VD), we established VD model in rats and treated the animals by injecting apelin-13 into the lateral ventricle. In addition, we established an oxygen-glucose deprivation/reoxygenation (OGD/R) model in SH-SY5Y cells treated with apelin-13. After apelin-13 stimulation in the VD rat, the level of APJ and APJ homodimer were elevated. Furthermore, APJ homodimer decreased the level of cleaved caspase-3 and cleaved caspase-9 via the Gαi3 and Gαq signaling pathway, thereby increasing the number of neurons and inhibiting apoptosis. Consequently, APJ homodimers may serve as a unique mechanism for neuroprotection against VD and provide new pharmaceutical targets for VD.
Collapse
Affiliation(s)
- Dexiu Wang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Yuliang Wang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Meiyan Shan
- Department of Psychiatry, Shouguang Mental Health Center, Weifang, 261053, China
| | - Jing Chen
- Institute of Neurobiology, Jining Medical University, Rizhao, 276800, China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Huannan Wang
- Institute of Neurobiology, Jining Medical University, Rizhao, 276800, China
| | - Baoqi Sun
- Ophthalmology Department, Affiliated Hospital of Weifang Medical University, Weifang, 261053, China
| | - Chengwen Jin
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Xin Li
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Yue Yin
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Chao Song
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Changhao Xiao
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Jianshe Li
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Taiqian Wang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Xin Cai
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
21
|
Guo X, Li Q, Pi S, Xia Y, Mao L. G protein-coupled purinergic P2Y receptor oligomerization: Pharmacological changes and dynamic regulation. Biochem Pharmacol 2021; 192:114689. [PMID: 34274353 DOI: 10.1016/j.bcp.2021.114689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
P2Y receptors (P2YRs) are a δ group of rhodopsin-like G protein-coupled receptors (GPCRs) with many essential functions in physiology and pathology, such as platelet aggregation, immune responses, neuroprotective effects, inflammation, and cellular proliferation. Thus, they are among the most researched therapeutic targets used for the clinical treatment of diseases (e.g., the antithrombotic drug clopidogrel and the dry eye treatment drug diquafosol). GPCRs transmit signals as dimers to increase the diversity of signalling pathways and pharmacological activities. Many studies have frequently confirmed dimerization between P2YRs and other GPCRs due to their functions in cardiovascular and cerebrovascular processes in vivo and in vitro. Recently, some P2YR dimers that dynamically balance physiological functions in the body were shown to be involved in effective signal transduction and exert pathological responses. In this review, we summarize the types, pharmacological changes, and active regulators of P2YR-related dimerization, and delineate new functions and pharmacological activities of P2YR-related dimers, which may be a novel direction to improve the effectiveness of medications.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shulan Pi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
22
|
Zhou Y, Meng J, Xu C, Liu J. Multiple GPCR Functional Assays Based on Resonance Energy Transfer Sensors. Front Cell Dev Biol 2021; 9:611443. [PMID: 34041234 PMCID: PMC8141573 DOI: 10.3389/fcell.2021.611443] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent one of the largest membrane protein families that participate in various physiological and pathological activities. Accumulating structural evidences have revealed how GPCR activation induces conformational changes to accommodate the downstream G protein or β-arrestin. Multiple GPCR functional assays have been developed based on Förster resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) sensors to monitor the conformational changes in GPCRs, GPCR/G proteins, or GPCR/β-arrestin, especially over the past two decades. Here, we will summarize how these sensors have been optimized to increase the sensitivity and compatibility for application in different GPCR classes using various labeling strategies, meanwhile provide multiple solutions in functional assays for high-throughput drug screening.
Collapse
Affiliation(s)
- Yiwei Zhou
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jiyong Meng
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chanjuan Xu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
23
|
Kim JH, Hanlon CD, Vohra S, Devreotes PN, Andrew DJ. Hedgehog signaling and Tre1 regulate actin dynamics through PI(4,5)P 2 to direct migration of Drosophila embryonic germ cells. Cell Rep 2021; 34:108799. [PMID: 33657369 PMCID: PMC8023404 DOI: 10.1016/j.celrep.2021.108799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 01/09/2023] Open
Abstract
The Tre1 G-protein coupled receptor (GPCR) was discovered to be required for Drosophila germ cell (GC) coalescence almost two decades ago, yet the molecular events both upstream and downstream of Tre1 activation remain poorly understood. To gain insight into these events, we describe a bona fide null allele and both untagged and tagged versions of Tre1. We find that the primary defect with complete Tre1 loss is the failure of GCs to properly navigate, with GC mis-migration occurring from early stages. We find that Tre1 localizes with F-actin at the migration front, along with PI(4,5)P2; dPIP5K, an enzyme that generates PI(4,5)P2; and dWIP, a protein that binds activated Wiskott-Aldrich syndrome protein (WASP), which stimulates F-actin polymerization. We show that Tre1 is required for polarized accumulation of F-actin, PI(4,5)P2, and dPIP5K. Smoothened also localizes with F-actin at the migration front, and Hh, through Smo, increases levels of Tre1 at the plasma membrane and Tre1’s association with dPIP5K. Kim et al. uncover molecular and cellular events upstream and downstream of the Tre1 G-protein coupled receptor (GPCR), which is required for germ cell navigation in Drosophila. Hedgehog signaling through Smoothened localizes Tre1 to activate F-actin assembly through dPIP5K, PI(4,5)P2, and WASP.
Collapse
Affiliation(s)
- Ji Hoon Kim
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Caitlin D Hanlon
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sunaina Vohra
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deborah J Andrew
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
24
|
Zamel IA, Palakkott A, Ashraf A, Iratni R, Ayoub MA. Interplay Between Angiotensin II Type 1 Receptor and Thrombin Receptor Revealed by Bioluminescence Resonance Energy Transfer Assay. Front Pharmacol 2020; 11:1283. [PMID: 32973514 PMCID: PMC7468457 DOI: 10.3389/fphar.2020.01283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
The key hormone of the renin-angiotensin system (RAS), angiotensin II (AngII), and thrombin are known to play major roles in the vascular system and its related disorders. Previous studies reported connections between AngII and thrombin in both physiological and pathophysiological models. However, the molecular mechanisms controlling such interplay at the level of their receptors belonging to the family of G protein-coupled receptors (GPCRs) are not fully understood. In this study, we investigated the functional interaction between the AngII type 1 receptor (AT1R) and the thrombin receptor [or protease-activated receptor 1 (PAR1)] in human embryonic kidney 293 (HEK293) cells. For this, we used various bioluminescence resonance energy transfer (BRET) proximity-based assays to profile the coupling to the heterotrimeric Gαq protein, β-arrestin recruitment, and receptor internalization and trafficking in intact cells. The overall dose-response and real-time kinetic BRET data demonstrated the specific molecular proximity between AT1R and PAR1 resulting in their functional interaction. This was characterized by thrombin inducing BRET increase within AT1R/Gαq and AT1R/β-arrestin pairs and synergistic effects observed upon the concomitant activation of both receptors suggesting a positive allosteric interaction. The BRET data corroborated with the data on the downstream Gαq/inositol phosphate pathway. Moreover, the selective pharmacological blockade of the receptors revealed the implication of both AT1R and PAR1 protomers in such a synergistic interaction and the possible transactivation of AT1R by PAR1. Interestingly, the positive action of PAR1 on AT1R activation was contrasted with its apparent inhibition of AT1R internalization and its endosomal trafficking. Finally, BRET saturation and co-immunoprecipitation assays supported the physical AT1-PAR1 interaction in HEK293 cells. Our study reveals for the first time the functional interaction between AT1R and PAR1 in vitro characterized by a transactivation and positive allosteric modulation of AT1R and inhibition of its desensitization and internalization. This finding may constitute the molecular basis of the well-known interplay between RAS and thrombin. Thus, our data should lead to revising some findings on the implication of RAS and thrombin in vascular physiology and pathophysiology revealing the importance to consider the functional and pharmacological interaction between AT1R and thrombin receptors.
Collapse
Affiliation(s)
- Isra Al Zamel
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Abdulrasheed Palakkott
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Arshida Ashraf
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| |
Collapse
|
25
|
Ibrahimi Disha S, Furlani B, Drevensek G, Plut A, Yanagisawa M, Hudoklin S, Prodan Žitnik I, Marc J, Drevensek M. The role of endothelin B receptor in bone modelling during orthodontic tooth movement: a study on ET B knockout rats. Sci Rep 2020; 10:14226. [PMID: 32848199 PMCID: PMC7450079 DOI: 10.1038/s41598-020-71159-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
The endothelin system has an important role in bone modelling during orthodontic tooth movement (OTM); however, little is known about the involvement of endothelin B receptors (ETB) in this process. The aim of this study was to evaluate the role of ETB in bone modelling during OTM using ETB knockout rats (ETB-KO). Thirty-two male rats were divided into 4 groups (n = 8 per group): the ETB-KO appliance group, ETB-KO control group, wild type (ETB-WT) appliance group, and ETB-WT control group. The appliance consisted of a super-elastic closed-coil spring placed between the first and second left maxillary molar and the incisors. Tooth movement was measured on days 0 and 35, and maxillary alveolar bone volume, osteoblast, and osteoclast volume were determined histomorphometrically on day 35 of OTM. Next, we determined the serum endothelin 1 (ET-1) level and gene expression levels of the osteoclast activity marker cathepsin K and osteoblast activity markers osteocalcin and dentin matrix acidic phosphoprotein 1 (DMP1) on day 35. The ETB-KO appliance group showed significantly lower osteoblast activity, diminished alveolar bone volume and less OTM than the ETB-WT appliance group. Our results showed that ETB is involved in bone modelling in the late stage of OTM.
Collapse
Affiliation(s)
- S Ibrahimi Disha
- Department of Orthodontics, Faculty of Medicine, University of Ljubljana, Hrvatski trg 6, 1000, Ljubljana, Slovenia
| | - B Furlani
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - G Drevensek
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - A Plut
- Department of Orthodontics, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - M Yanagisawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - S Hudoklin
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - I Prodan Žitnik
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - J Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - M Drevensek
- Department of Orthodontics, Faculty of Medicine, University of Ljubljana, Hrvatski trg 6, 1000, Ljubljana, Slovenia. .,Department of Orthodontics, University Medical Center Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
26
|
Llorente García I, Marsh M. A biophysical perspective on receptor-mediated virus entry with a focus on HIV. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183158. [PMID: 31863725 PMCID: PMC7156917 DOI: 10.1016/j.bbamem.2019.183158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022]
Abstract
As part of their entry and infection strategy, viruses interact with specific receptor molecules expressed on the surface of target cells. The efficiency and kinetics of the virus-receptor interactions required for a virus to productively infect a cell is determined by the biophysical properties of the receptors, which are in turn influenced by the receptors' plasma membrane (PM) environments. Currently, little is known about the biophysical properties of these receptor molecules or their engagement during virus binding and entry. Here we review virus-receptor interactions focusing on the human immunodeficiency virus type 1 (HIV), the etiological agent of acquired immunodeficiency syndrome (AIDS), as a model system. HIV is one of the best characterised enveloped viruses, with the identity, roles and structure of the key molecules required for infection well established. We review current knowledge of receptor-mediated HIV entry, addressing the properties of the HIV cell-surface receptors, the techniques used to measure these properties, and the macromolecular interactions and events required for virus entry. We discuss some of the key biophysical principles underlying receptor-mediated virus entry and attempt to interpret the available data in the context of biophysical mechanisms. We also highlight crucial outstanding questions and consider how new tools might be applied to advance understanding of the biophysical properties of viral receptors and the dynamic events leading to virus entry.
Collapse
Affiliation(s)
| | - Mark Marsh
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
27
|
Exceptional diversity of opsin expression patterns in Neogonodactylus oerstedii (Stomatopoda) retinas. Proc Natl Acad Sci U S A 2020; 117:8948-8957. [PMID: 32241889 DOI: 10.1073/pnas.1917303117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Stomatopod crustaceans possess some of the most complex animal visual systems, including at least 16 spectrally distinct types of photoreceptive units (e.g., assemblages of photoreceptor cells). Here we fully characterize the set of opsin genes expressed in retinal tissues and determine expression patterns of each in the stomatopod Neogonodactylus oerstedii Using a combination of transcriptome and RACE sequencing, we identified 33 opsin transcripts expressed in each N. oerstedii eye, which are predicted to form 20 long-wavelength-sensitive, 10 middle-wavelength-sensitive, and three UV-sensitive visual pigments. Observed expression patterns of these 33 transcripts were highly unusual in five respects: 1) All long-wavelength and short/middle-wavelength photoreceptive units expressed multiple opsins, while UV photoreceptor cells expressed single opsins; 2) most of the long-wavelength photoreceptive units expressed at least one middle-wavelength-sensitive opsin transcript; 3) the photoreceptors involved in spatial, motion, and polarization vision expressed more transcripts than those involved in color vision; 4) there is a unique opsin transcript that is expressed in all eight of the photoreceptive units devoted to color vision; and 5) expression patterns in the peripheral hemispheres of the eyes suggest visual specializations not previously recognized in stomatopods. Elucidating the expression patterns of all opsin transcripts expressed in the N. oerstedii retina reveals the potential for previously undocumented functional diversity in the already complex stomatopod eye and is a first step toward understanding the functional significance of the unusual abundance of opsins found in many arthropod species' visual systems.
Collapse
|
28
|
Hedegaard MA, Holst B. The Complex Signaling Pathways of the Ghrelin Receptor. Endocrinology 2020; 161:5734640. [PMID: 32049280 DOI: 10.1210/endocr/bqaa020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
The ghrelin receptor (GhrR) is known for its strong orexigenic effects in pharmacological doses and has long been considered as a promising target for the treatment of obesity. Several antagonists have been developed to decrease the orexigenic signaling, but none of these have been approved for the treatment of obesity because of adverse effects and lack of efficacy. Heterodimerization and biased signaling are important concepts for G-protein coupled receptor (GPCR) signaling, and the influence of these aspects on the GhrR may be important for feeding behavior and obesity. GhrR has been described to heterodimerize with other GPCRs, such as the dopamine receptors 1 and 2, leading to a modulation of the signaling properties of both dimerization partners. Another complicating factor of GhrR-mediated signaling is its ability to activate several different signaling pathways on ligand stimulation. Importantly, some ligands have shown to be "biased" or "functionally selective," implying that the ligand favors a particular signaling pathway. These unique signaling properties could have a sizeable impact on the physiological functions of the GhrR system. Importantly, heterodimerization may explain why the GhrR is expressed in areas of the brain that are difficult for peptide ligands to access. One possibility is that the purpose of GhrR expression is to modulate the function of other receptors in addition to merely being independently activated. We suggest that a deeper understanding of the signaling properties of the GhrR will facilitate future drug discovery in the areas of obesity and weight management.
Collapse
Affiliation(s)
- Morten Adler Hedegaard
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Adenosine Receptor A1-A2a Heteromers Regulate EAAT2 Expression and Glutamate Uptake via YY1-Induced Repression of PPAR γ Transcription. PPAR Res 2020; 2020:2410264. [PMID: 32206061 PMCID: PMC7079221 DOI: 10.1155/2020/2410264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/23/2020] [Indexed: 12/29/2022] Open
Abstract
Adenosine receptors A1 (A1AR) and A2a (A2aAR) play an important role in regulating glutamate uptake to avoid glutamate accumulation that causes excitotoxicity in the brain; however, the precise mechanism of the effects of A1AR and A2aAR is unclear. Herein, we report that expression of the A1AR protein in the astrocyte membrane and the level of intracellular glutamate were decreased, while expression of the A2aR protein was elevated in cells exposed to oxygen-glucose deprivation (OGD) conditions. Coimmunoprecipitation (Co-IP) experiments showed that A1AR interacts with A2aAR under OGD conditions. The activation of A1AR and inactivation of A2aAR by 2-chloro-N6-cyclopentyladenosine (CCPA) and SCH58251, respectively, partly reversed OGD-mediated glutamate uptake dysfunction, elevated EAAT2, and PPARγ protein levels, and suppressed the expression of Ying Yang 1 (YY1). Both the silencing of YY1 and the activation of PPARγ upregulated EAAT2 expression. Moreover, YY1 silencing elevated the PPARγ level under both normal and OGD conditions. Histone deacetylase (HDAC)1 was found to interact with YY1, and HDAC1 silencing improved PPARγ promoter activity. Taken together, our findings suggest that A1AR-A2aAR heteromers regulate EAAT2 expression and glutamate uptake through the YY1-mediated recruitment of HDAC1 to the PPARγ promoter region.
Collapse
|
30
|
Dănilă MD, Piollet M, Aburel OM, Angoulvant D, Lefort C, Chadet S, Roger S, Muntean MD, Ivanes F. Modulation of P2Y11-related purinergic signaling in inflammation and cardio-metabolic diseases. Eur J Pharmacol 2020; 876:173060. [PMID: 32142768 DOI: 10.1016/j.ejphar.2020.173060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Chronic inflammation is the hallmark of cardiovascular pathologies with a major role in both disease progression and occurrence of long-term complications. The massive release of ATP during the inflammatory process activates various purinergic receptors, including P2Y11. This receptor is less studied but ubiquitously expressed in all cells relevant for cardiovascular pathology: cardiomyocytes, fibroblasts, endothelial and immune cells. While several studies suggested a potential pro-inflammatory role for P2Y11 receptors, recent literature data are supportive of an anti-inflammatory profile characterized by the immunosuppression of dendritic cells, inhibition of fibroblast proliferation and of cytokines and ATP secretion. Moreover, modulation of its activity appears to mediate the positive inotropic effect of ATP and mitigate endothelial dysfunction, thus rendering this receptor a promising therapeutic target in the cardiovascular disease armamentarium. The aim of the present review is to summarize the current available knowledge on P2Y11-related purinergic signaling in the setting of inflammation and cardio-metabolic diseases.
Collapse
Affiliation(s)
- Maria-Daniela Dănilă
- Department of Functional Sciences - Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania
| | - Marie Piollet
- EA4245 Transplantation Immunity Inflammation, Faculty of Medicine - Tours University& Loire Valley Cardiovascular Collaboration, Tours, F37000, France
| | - Oana-Maria Aburel
- Department of Functional Sciences - Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania; Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania
| | - Denis Angoulvant
- EA4245 Transplantation Immunity Inflammation, Faculty of Medicine - Tours University& Loire Valley Cardiovascular Collaboration, Tours, F37000, France; Cardiology Department, Trousseau Hospital, CHRU de Tours, F37000, Tours, France
| | - Claudie Lefort
- EA4245 Transplantation Immunity Inflammation, Faculty of Medicine - Tours University& Loire Valley Cardiovascular Collaboration, Tours, F37000, France
| | - Stéphanie Chadet
- EA4245 Transplantation Immunity Inflammation, Faculty of Medicine - Tours University& Loire Valley Cardiovascular Collaboration, Tours, F37000, France
| | - Sebastien Roger
- EA4245 Transplantation Immunity Inflammation, Faculty of Medicine - Tours University& Loire Valley Cardiovascular Collaboration, Tours, F37000, France
| | - Mirela-Danina Muntean
- Department of Functional Sciences - Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania; Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania.
| | - Fabrice Ivanes
- EA4245 Transplantation Immunity Inflammation, Faculty of Medicine - Tours University& Loire Valley Cardiovascular Collaboration, Tours, F37000, France; Cardiology Department, Trousseau Hospital, CHRU de Tours, F37000, Tours, France
| |
Collapse
|
31
|
Exploring functional consequences of GPCR oligomerization requires a different lens. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:181-211. [DOI: 10.1016/bs.pmbts.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Alkozi HA, Navarro G, Franco R, Pintor J. Melatonin and the control of intraocular pressure. Prog Retin Eye Res 2019; 75:100798. [PMID: 31560946 DOI: 10.1016/j.preteyeres.2019.100798] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Melatonin is not only synthesized by the pineal gland but by several ocular structures. This natural indoleamine is of great importance for regulating several eye processes, among which pressure homeostasis is included. Glaucoma, the most prevalent eye disease, also known as the silent thief of vision, is a multifactorial pathology that is associated to age and, often, to intraocular hypertension (IOP). Indeed IOP is the only modifiable risk factor and as such medications are available to control it; however, novel medications are sought to minimize undesirable side effects. Melatonin and analogues decrease IOP in both normotensive and hypertensive eyes. Melatonin activates its cognate membrane receptors, MT1 and MT2, which are present in numerous ocular tissues, including the aqueous-humor-producing ciliary processes. Melatonin receptors belong to the superfamily of G-protein-coupled receptors and their activation would lead to different signalling pathways depending on the tissue. This review describes the molecular mechanisms underlying differential functionalities that are attributed to melatonin receptors. Accordingly, the current work highlights the important role of melatonin and its analogues in the healthy and in the glaucomatous eyes, with special attention to the control of intraocular pressure.
Collapse
Affiliation(s)
- Hanan Awad Alkozi
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, University Complutense of Madrid, Madrid, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegeneratives (CiberNed), Instituto de Salud Carlos III, Sinesio Delgado 6, 28029, Madrid, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Juan XXIII, 27, 08027, Barcelona, Spain
| | - Rafael Franco
- Centro de Investigación en Red, Enfermedades Neurodegeneratives (CiberNed), Instituto de Salud Carlos III, Sinesio Delgado 6, 28029, Madrid, Spain; Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Diagonal 643, 08028, Barcelona, Barcelona, Spain.
| | - Jesus Pintor
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, University Complutense of Madrid, Madrid, Spain; Real Academia Nacional de Farmacia, Calle Farmacia 11, 28004, Madrid, Spain.
| |
Collapse
|
33
|
Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK. Extracellular Nucleotides and P2 Receptors in Renal Function. Physiol Rev 2019; 100:211-269. [PMID: 31437091 DOI: 10.1152/physrev.00038.2018] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Robert Unwin
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Edward W Inscho
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Jens Leipziger
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Bellamkonda K Kishore
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|
34
|
Heterodimerization of Mu Opioid Receptor Protomer with Dopamine D 2 Receptor Modulates Agonist-Induced Internalization of Mu Opioid Receptor. Biomolecules 2019; 9:biom9080368. [PMID: 31416253 PMCID: PMC6722706 DOI: 10.3390/biom9080368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
The interplay between the dopamine (DA) and opioid systems in the brain is known to modulate the additive effects of substances of abuse. On one hand, opioids serve mankind by their analgesic properties, which are mediated via the mu opioid receptor (MOR), a Class A G protein-coupled receptor (GPCR), but on the other hand, they pose a potential threat by causing undesired side effects such as tolerance and dependence, for which the exact molecular mechanism is still unknown. Using human embryonic kidney 293T (HEK 293T) and HeLa cells transfected with MOR and the dopamine D2 receptor (D2R), we demonstrate that these receptors heterodimerize, using an array of biochemical and biophysical techniques such as coimmunoprecipitation (co-IP), bioluminescence resonance energy transfer (BRET1), Fӧrster resonance energy transfer (FRET), and functional complementation of a split luciferase. Furthermore, live cell imaging revealed that D2LR, when coexpressed with MOR, slowed down internalization of MOR, following activation with the MOR agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO).
Collapse
|
35
|
Ratcliff M, Rees D, McGrady S, Buntwal L, Hornsby AKE, Bayliss J, Kent BA, Bussey T, Saksida L, Beynon AL, Howell OW, Morgan AH, Sun Y, Andrews ZB, Wells T, Davies JS. Calorie restriction activates new adult born olfactory-bulb neurones in a ghrelin-dependent manner but acyl-ghrelin does not enhance subventricular zone neurogenesis. J Neuroendocrinol 2019; 31:e12755. [PMID: 31179562 DOI: 10.1111/jne.12755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 12/25/2022]
Abstract
The ageing and degenerating brain show deficits in neural stem/progenitor cell (NSPC) plasticity that are accompanied by impairments in olfactory discrimination. Emerging evidence suggests that the gut hormone ghrelin plays an important role in protecting neurones, promoting synaptic plasticity and increasing hippocampal neurogenesis in the adult brain. In the present study, we investigated the role of ghrelin with respect to modulating adult subventricular zone (SVZ) NSPCs that give rise to new olfactory bulb (OB) neurones. We characterised the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHSR), using an immunohistochemical approach in GHSR-eGFP reporter mice to show that GHSR is expressed in several regions, including the OB but not in the SVZ of the lateral ventricle. These data suggest that acyl-ghrelin does not mediate a direct effect on NSPC in the SVZ. Consistent with these findings, treatment with acyl-ghrelin or genetic silencing of GHSR did not alter NSPC proliferation within the SVZ. Similarly, using a bromodeoxyuridine pulse-chase approach, we show that peripheral treatment of adult rats with acyl-ghrelin did not increase the number of new adult-born neurones in the granule cell layer of the OB. These data demonstrate that acyl-ghrelin does not increase adult OB neurogenesis. Finally, we investigated whether elevating ghrelin indirectly, via calorie restriction (CR), regulated the activity of new adult-born cells in the OB. Overnight CR induced c-Fos expression in new adult-born OB cells but not in developmentally born cells, whereas neuronal activity was absent following re-feeding. These effects were not present in ghrelin-/- mice, suggesting that adult-born cells are uniquely sensitive to changes in ghrelin mediated by fasting and re-feeding. In summary, ghrelin does not promote neurogenesis in the SVZ and OB; however, new adult-born OB cells are activated by CR in a ghrelin-dependent manner.
Collapse
Affiliation(s)
- Michael Ratcliff
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Daniel Rees
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Scott McGrady
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Luke Buntwal
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Amanda K E Hornsby
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Jaqueline Bayliss
- Biomedical Discovery Unit, Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Brianne A Kent
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Amy L Beynon
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Owain W Howell
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Alwena H Morgan
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Yuxiang Sun
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA
| | - Zane B Andrews
- Biomedical Discovery Unit, Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Timothy Wells
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Jeffrey S Davies
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| |
Collapse
|
36
|
Advantages and shortcomings of cell-based electrical impedance measurements as a GPCR drug discovery tool. Biosens Bioelectron 2019; 137:33-44. [PMID: 31077988 DOI: 10.1016/j.bios.2019.04.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/05/2019] [Accepted: 04/20/2019] [Indexed: 12/13/2022]
Abstract
G Protein-Coupled Receptors (GPCRs) transduce extracellular signals and activate intracellular pathways, usually through activating associated G proteins. Due to their involvement in many human diseases, they are recognized worldwide as valuable drug targets. Many experimental approaches help identify small molecules that target GPCRs, including in vitro cell-based reporter assays and binding studies. Most cell-based assays use one signaling pathway or reporter as an assay readout. Moreover, they often require cell labeling or the integration of reporter systems. Over the last decades, cell-based electrical impedance biosensors have been explored for drug discovery. This label-free method holds many advantages over other cellular assays in GPCR research. The technology requires no cell manipulation and offers real-time kinetic measurements of receptor-mediated cellular changes. Instead of measuring the activity of a single reporter, the impedance readout includes information on multiple signaling events. This is beneficial when screening for ligands targeting orphan GPCRs since the signaling cascade(s) of the majority of these receptors are unknown. Due to its sensitivity, the method also applies to cellular models more relevant to disease, including patient-derived cell cultures. Despite its advantages, remaining issues regarding data comparability and interpretability has limited implementation of cell-based electrical impedance (CEI) in drug discovery. Future optimization must include both full exploitation of CEI response data using various ways of analysis as well as further exploration of its potential to detect biased activities early on in drug discovery. Here, we review the contribution of CEI technology to GPCR research, discuss its comparative benefits, and provide recommendations.
Collapse
|
37
|
Raabe CA, Gröper J, Rescher U. Biased perspectives on formyl peptide receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:305-316. [DOI: 10.1016/j.bbamcr.2018.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023]
|
38
|
Sleno R, Hébert TE. Shaky ground - The nature of metastable GPCR signalling complexes. Neuropharmacology 2019; 152:4-14. [PMID: 30659839 DOI: 10.1016/j.neuropharm.2019.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 01/19/2023]
Abstract
How G protein-coupled receptors (GPCR) interact with one another remains an area of active investigation. Obligate dimers of class C GPCRs such as metabotropic GABA and glutamate receptors are well accepted, although whether this is a general feature of other GPCRs is still strongly debated. In this review, we focus on the idea that GPCR dimers and oligomers are better imagined as parts of larger metastable signalling complexes. We discuss the nature of functional oligomeric entities, their stabilities and kinetic features and how structural and functional asymmetries of such metastable entities might have implications for drug discovery. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- Rory Sleno
- Marketed Pharmaceuticals and Medical Devices Bureau, Marketed Health Products Directorate, Health Products and Food Branch, Health Canada, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Canada.
| |
Collapse
|
39
|
Felce JH, MacRae A, Davis SJ. Constraints on GPCR Heterodimerization Revealed by the Type-4 Induced-Association BRET Assay. Biophys J 2019; 116:31-41. [PMID: 30558888 PMCID: PMC6341220 DOI: 10.1016/j.bpj.2018.09.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/14/2018] [Accepted: 09/21/2018] [Indexed: 01/24/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) comprise the largest and most pharmacologically important family of cell-surface receptors encoded by the human genome. In many instances, the distinct signaling behavior of certain GPCRs has been explained in terms of the formation of heteromers with, for example, distinct signaling properties and allosteric cross-regulation. Confirmation of this has, however, been limited by the paucity of reliable methods for probing heteromeric GPCR interactions in situ. The most widely used assays for GPCR stoichiometry, based on resonance energy transfer, are unsuited to reporting heteromeric interactions. Here, we describe a targeted bioluminescence resonance energy transfer (BRET) assay, called type-4 BRET, which detects both homo- and heteromeric interactions using induced multimerization of protomers within such complexes, at constant expression. Using type-4 BRET assays, we investigate heterodimerization among known GPCR homodimers: the CXC chemokine receptor 4 and sphingosine-1-phosphate receptors. We observe that CXC chemokine receptor 4 and sphingosine-1-phosphate receptors can form heterodimers with GPCRs from their immediate subfamilies but not with more distantly related receptors. We also show that heterodimerization appears to disrupt homodimeric interactions, suggesting the sharing of interfaces. Broadly, these observations indicate that heterodimerization results from the divergence of homodimeric receptors and will therefore likely be restricted to closely related homodimeric GPCRs.
Collapse
Affiliation(s)
- James H Felce
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom; Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, United Kingdom.
| | - Alasdair MacRae
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom; Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Simon J Davis
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom; Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
40
|
Abstract
Hybrid compounds (also known as chimeras, designed multiple ligands, bivalent compounds) are chemical units where two active components, usually possessing affinity and selectivity for distinct molecular targets, are combined as a single chemical entity. The rationale for using a chimeric approach is well documented as such novel drugs are characterized by their enhanced enzymatic stability and biological activity. This allows their use at lower concentrations, increasing their safety profile, particularly when considering undesirable side effects. In the group of synthetic bivalent compounds, drugs combining pharmacophores having affinities toward opioid and neurokinin-1 receptors have been extensively studied as potential analgesic drugs. Indeed, substance P is known as a major endogenous modulator of nociception both in the peripheral and central nervous systems. Hence, synthetic peptide fragments showing either agonism or antagonism at neurokinin 1 receptor were both assigned with analgesic properties. However, even though preclinical studies designated neurokinin-1 receptor antagonists as promising analgesics, early clinical studies revealed a lack of efficacy in human. Nevertheless, their molecular combination with enkephalin/endomorphin fragments has been considered as a valuable approach to design putatively promising ligands for the treatment of pain. This paper is aimed at summarizing a 20-year journey to the development of potent analgesic hybrid compounds involving an opioid pharmacophore and devoid of unwanted side effects. Additionally, the legitimacy of considering neurokinin-1 receptor ligands in the design of chimeric drugs is discussed.
Collapse
|
41
|
Krishna BA, Miller WE, O'Connor CM. US28: HCMV's Swiss Army Knife. Viruses 2018; 10:E445. [PMID: 30127279 PMCID: PMC6116241 DOI: 10.3390/v10080445] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
US28 is one of four G protein coupled receptors (GPCRs) encoded by human cytomegalovirus (HCMV). The US28 protein (pUS28) is a potent signaling molecule that alters a variety of cellular pathways that ultimately alter the host cell environment. This viral GPCR is expressed not only in the context of lytic replication but also during viral latency, highlighting its multifunctional properties. pUS28 is a functional GPCR, and its manipulation of multiple signaling pathways likely impacts HCMV pathogenesis. Herein, we will discuss the impact of pUS28 on both lytic and latent infection, pUS28-mediated signaling and its downstream consequences, and the influence this viral GPCR may have on disease states, including cardiovascular disease and cancer. We will also discuss the potential for and progress towards exploiting pUS28 as a novel therapeutic to combat HCMV.
Collapse
Affiliation(s)
- Benjamin A Krishna
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - William E Miller
- Department of Molecular Genetics, Biochemistry, & Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA.
| | - Christine M O'Connor
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
42
|
Sleno R, Hébert TE. The Dynamics of GPCR Oligomerization and Their Functional Consequences. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 338:141-171. [PMID: 29699691 DOI: 10.1016/bs.ircmb.2018.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The functional importance of G protein-coupled receptor (GPCR) oligomerization remains controversial. Although obligate dimers of class C GPCRs are well accepted, the generalizability of this phenomenon is still strongly debated with respect to other classes of GPCRs. In this review, we focus on understanding the organization and dynamics between receptor equivalents and their signaling partners in oligomeric receptor complexes, with a view toward integrating disparate viewpoints into a unified understanding. We discuss the nature of functional oligomeric entities, and how asymmetries in receptor structure and function created by oligomers might have implications for receptor function as allosteric machines and for future drug discovery.
Collapse
|
43
|
Wang W, Qiao Y, Li Z. New Insights into Modes of GPCR Activation. Trends Pharmacol Sci 2018; 39:367-386. [DOI: 10.1016/j.tips.2018.01.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
|
44
|
Hutchings SC, Low JYQ, Keast RSJ. Sugar reduction without compromising sensory perception. An impossible dream? Crit Rev Food Sci Nutr 2018; 59:2287-2307. [DOI: 10.1080/10408398.2018.1450214] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Scott C. Hutchings
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Julia Y. Q. Low
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Russell S. J. Keast
- Centre for Advanced Sensory Science, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| |
Collapse
|
45
|
Scarlett KA, White ESZ, Coke CJ, Carter JR, Bryant LK, Hinton CV. Agonist-induced CXCR4 and CB2 Heterodimerization Inhibits Gα13/RhoA-mediated Migration. Mol Cancer Res 2018; 16:728-739. [PMID: 29330286 DOI: 10.1158/1541-7786.mcr-16-0481] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/12/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
G-protein-coupled receptor (GPCR) heterodimerization has emerged as a means by which alternative signaling entities can be created; yet, how receptor heterodimers affect receptor pharmacology remains unknown. Previous observations suggested a biochemical antagonism between GPCRs, CXCR4 and CB2 (CNR2), where agonist-bound CXCR4 and agonist-bound CB2 formed a physiologically nonfunctional heterodimer on the membrane of cancer cells, inhibiting their metastatic potential in vitro However, the reduced signaling entities responsible for the observed functional outputs remain elusive. This study now delineates the signaling mechanism whereby heterodimeric association between CXCR4 and CB2, induced by simultaneous agonist treatment, results in decreased CXCR4-mediated cell migration, invasion, and adhesion through inhibition of the Gα13/RhoA signaling axis. Activation of CXCR4 by its cognate ligand, CXCL12, stimulates Gα13 (GNA13), and subsequently, the small GTPase RhoA, which is required for directional cell migration and the metastatic potential of cancer cells. These studies in prostate cancer cells demonstrate decreased protein expression levels of Gα13 and RhoA upon simultaneous CXCR4/CB2 agonist stimulation. Furthermore, the agonist-induced heterodimer abrogated RhoA-mediated cytoskeletal rearrangement resulting in the attenuation of cell migration and invasion of an endothelial cell barrier. Finally, a reduction was observed in the expression of integrin α5 (ITGA5) upon heterodimerization, supported by decreased cell adhesion to extracellular matrices in vitro Taken together, the data identify a novel pharmacologic mechanism for the modulation of tumor cell migration and invasion in the context of metastatic disease.Implications: This study investigates a signaling mechanism by which GPCR heterodimerization inhibits cancer cell migration. Mol Cancer Res; 16(4); 728-39. ©2018 AACR.
Collapse
Affiliation(s)
- Kisha A Scarlett
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia
| | - El-Shaddai Z White
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia.,Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia
| | - Christopher J Coke
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia.,Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia
| | - Jada R Carter
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia.,Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia
| | - Latoya K Bryant
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia
| | - Cimona V Hinton
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia. .,Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia
| |
Collapse
|
46
|
Özkan M, Johnson NW, Sehirli US, Woodhall GL, Stanford IM. Dopamine acting at D1-like, D2-like and α1-adrenergic receptors differentially modulates theta and gamma oscillatory activity in primary motor cortex. PLoS One 2017; 12:e0181633. [PMID: 28732063 PMCID: PMC5521821 DOI: 10.1371/journal.pone.0181633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/04/2017] [Indexed: 11/30/2022] Open
Abstract
The loss of dopamine (DA) in Parkinson’s is accompanied by the emergence of exaggerated theta and beta frequency neuronal oscillatory activity in the primary motor cortex (M1) and basal ganglia. DA replacement therapy or deep brain stimulation reduces the power of these oscillations and this is coincident with an improvement in motor performance implying a causal relationship. Here we provide in vitro evidence for the differential modulation of theta and gamma activity in M1 by DA acting at receptors exhibiting conventional and non-conventional DA pharmacology. Recording local field potentials in deep layer V of rat M1, co-application of carbachol (CCh, 5 μM) and kainic acid (KA, 150 nM) elicited simultaneous oscillations at a frequency of 6.49 ± 0.18 Hz (theta, n = 84) and 34.97 ± 0.39 Hz (gamma, n = 84). Bath application of DA resulted in a decrease in gamma power with no change in theta power. However, application of either the D1-like receptor agonist SKF38393 or the D2-like agonist quinpirole increased the power of both theta and gamma suggesting that the DA-mediated inhibition of oscillatory power is by action at other sites other than classical DA receptors. Application of amphetamine, which promotes endogenous amine neurotransmitter release, or the adrenergic α1-selective agonist phenylephrine mimicked the action of DA and reduced gamma power, a result unaffected by prior co-application of D1 and D2 receptor antagonists SCH23390 and sulpiride. Finally, application of the α1-adrenergic receptor antagonist prazosin blocked the action of DA on gamma power suggestive of interaction between α1 and DA receptors. These results show that DA mediates complex actions acting at dopamine D1-like and D2-like receptors, α1 adrenergic receptors and possibly DA/α1 heteromultimeric receptors to differentially modulate theta and gamma activity in M1.
Collapse
Affiliation(s)
- Mazhar Özkan
- Aston Brain Centre, Aston University, School of Life and Health Sciences, Birmingham, United Kingdom
- Department of Anatomy, School of Medicine, Marmara University, Istanbul, Turkey
| | - Nicholas W. Johnson
- Aston Brain Centre, Aston University, School of Life and Health Sciences, Birmingham, United Kingdom
| | - Umit S. Sehirli
- Department of Anatomy, School of Medicine, Marmara University, Istanbul, Turkey
| | - Gavin L. Woodhall
- Aston Brain Centre, Aston University, School of Life and Health Sciences, Birmingham, United Kingdom
| | - Ian M. Stanford
- Aston Brain Centre, Aston University, School of Life and Health Sciences, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Remesic M, Hruby VJ, Porreca F, Lee YS. Recent Advances in the Realm of Allosteric Modulators for Opioid Receptors for Future Therapeutics. ACS Chem Neurosci 2017; 8:1147-1158. [PMID: 28368571 DOI: 10.1021/acschemneuro.7b00090] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Opioids, and more specifically μ-opioid receptor (MOR) agonists such as morphine, have long been clinically used as therapeutics for severe pain states but often come with serious side effects such as addiction and tolerance. Many studies have focused on bringing about analgesia from the MOR with attenuated side effects, but its underlying mechanism is not fully understood. Recently, focus has been geared toward the design and elucidation of the orthosteric site with ligands of various biological profiles and mixed subtype opioid activities and selectivities, but targeting the allosteric site is an area of increasing interest. It has been shown that allosteric modulators play key roles in influencing receptor function such as its tolerance to a ligand and affect downstream pathways. There has been a high variance of chemical structures that provide allosteric modulation at a given receptor, but recent studies and reviews tend to focus on the altered cellular mechanisms instead of providing a more rigorous description of the allosteric ligand's structure-function relationship. In this review, we aim to explore recent developments in the structural motifs that potentiate orthosteric binding and their influences on cellular pathways in an effort to present novel approaches to opioid therapeutic design.
Collapse
Affiliation(s)
- Michael Remesic
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Victor J. Hruby
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Frank Porreca
- Department
of Pharmacology, University of Arizona, Tucson, Arizona 85719, United States
| | - Yeon Sun Lee
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
48
|
Regulation of G Protein-Coupled Receptors by Ubiquitination. Int J Mol Sci 2017; 18:ijms18050923. [PMID: 28448471 PMCID: PMC5454836 DOI: 10.3390/ijms18050923] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) comprise the largest family of membrane receptors that control many cellular processes and consequently often serve as drug targets. These receptors undergo a strict regulation by mechanisms such as internalization and desensitization, which are strongly influenced by posttranslational modifications. Ubiquitination is a posttranslational modification with a broad range of functions that is currently gaining increased appreciation as a regulator of GPCR activity. The role of ubiquitination in directing GPCRs for lysosomal degradation has already been well-established. Furthermore, this modification can also play a role in targeting membrane and endoplasmic reticulum-associated receptors to the proteasome. Most recently, ubiquitination was also shown to be involved in GPCR signaling. In this review, we present current knowledge on the molecular basis of GPCR regulation by ubiquitination, and highlight the importance of E3 ubiquitin ligases, deubiquitinating enzymes and β-arrestins. Finally, we discuss classical and newly-discovered functions of ubiquitination in controlling GPCR activity.
Collapse
|
49
|
Clarifying the Ghrelin System's Ability to Regulate Feeding Behaviours Despite Enigmatic Spatial Separation of the GHSR and Its Endogenous Ligand. Int J Mol Sci 2017; 18:ijms18040859. [PMID: 28422060 PMCID: PMC5412441 DOI: 10.3390/ijms18040859] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 12/23/2022] Open
Abstract
Ghrelin is a hormone predominantly produced in and secreted from the stomach. Ghrelin is involved in many physiological processes including feeding, the stress response, and in modulating learning, memory and motivational processes. Ghrelin does this by binding to its receptor, the growth hormone secretagogue receptor (GHSR), a receptor found in relatively high concentrations in hypothalamic and mesolimbic brain regions. While the feeding and metabolic effects of ghrelin can be explained by the effects of this hormone on regions of the brain that have a more permeable blood brain barrier (BBB), ghrelin produced within the periphery demonstrates a limited ability to reach extrahypothalamic regions where GHSRs are expressed. Therefore, one of the most pressing unanswered questions plaguing ghrelin research is how GHSRs, distributed in brain regions protected by the BBB, are activated despite ghrelin’s predominant peripheral production and poor ability to transverse the BBB. This manuscript will describe how peripheral ghrelin activates central GHSRs to encourage feeding, and how central ghrelin synthesis and ghrelin independent activation of GHSRs may also contribute to the modulation of feeding behaviours.
Collapse
|
50
|
Sokolina K, Kittanakom S, Snider J, Kotlyar M, Maurice P, Gandía J, Benleulmi-Chaachoua A, Tadagaki K, Oishi A, Wong V, Malty RH, Deineko V, Aoki H, Amin S, Yao Z, Morató X, Otasek D, Kobayashi H, Menendez J, Auerbach D, Angers S, Pržulj N, Bouvier M, Babu M, Ciruela F, Jockers R, Jurisica I, Stagljar I. Systematic protein-protein interaction mapping for clinically relevant human GPCRs. Mol Syst Biol 2017; 13:918. [PMID: 28298427 PMCID: PMC5371730 DOI: 10.15252/msb.20167430] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
G‐protein‐coupled receptors (GPCRs) are the largest family of integral membrane receptors with key roles in regulating signaling pathways targeted by therapeutics, but are difficult to study using existing proteomics technologies due to their complex biochemical features. To obtain a global view of GPCR‐mediated signaling and to identify novel components of their pathways, we used a modified membrane yeast two‐hybrid (MYTH) approach and identified interacting partners for 48 selected full‐length human ligand‐unoccupied GPCRs in their native membrane environment. The resulting GPCR interactome connects 686 proteins by 987 unique interactions, including 299 membrane proteins involved in a diverse range of cellular functions. To demonstrate the biological relevance of the GPCR interactome, we validated novel interactions of the GPR37, serotonin 5‐HT4d, and adenosine ADORA2A receptors. Our data represent the first large‐scale interactome mapping for human GPCRs and provide a valuable resource for the analysis of signaling pathways involving this druggable family of integral membrane proteins.
Collapse
Affiliation(s)
- Kate Sokolina
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | - Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Max Kotlyar
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Pascal Maurice
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Sorbonne Paris Cité, University of Paris Descartes, Paris, France.,UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Jorge Gandía
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Abla Benleulmi-Chaachoua
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Sorbonne Paris Cité, University of Paris Descartes, Paris, France
| | - Kenjiro Tadagaki
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Sorbonne Paris Cité, University of Paris Descartes, Paris, France
| | - Atsuro Oishi
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Sorbonne Paris Cité, University of Paris Descartes, Paris, France
| | - Victoria Wong
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Ramy H Malty
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK, Canada
| | - Viktor Deineko
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK, Canada
| | - Shahreen Amin
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK, Canada
| | - Zhong Yao
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Xavier Morató
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - David Otasek
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Hiroyuki Kobayashi
- Department of Biochemistry, Institute for Research in Immunology & Cancer, Université de Montréal, Montréal, QC, Canada
| | | | | | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy and Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Natasa Pržulj
- Department of Computing, University College London, London, UK
| | - Michel Bouvier
- Department of Biochemistry, Institute for Research in Immunology & Cancer, Université de Montréal, Montréal, QC, Canada
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK, Canada
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Sorbonne Paris Cité, University of Paris Descartes, Paris, France
| | - Igor Jurisica
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada.,Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, ON, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|