1
|
Ben Patel R, Barnwal SK, Saleh M A AM, Francis D. Leveraging nuclear receptor mediated transcriptional signaling for drug discovery: Historical insights and current advances. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:191-269. [PMID: 39843136 DOI: 10.1016/bs.apcsb.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene expression in response to physiological signals, such as hormones and other chemical messengers. These receptors either activate or repress the transcription of target genes, which in turn promotes or suppresses physiological processes governing growth, differentiation, and homeostasis. NRs bind to specific DNA sequences and, in response to ligand binding, either promote or hinder the assembly of the transcriptional machinery, thereby influencing gene expression at the transcriptional level. These receptors are involved in a wide range of pathological conditions, including cancer, metabolic disorders, chronic inflammatory diseases, and immune system-related disorders. Modulation of NR function through targeted drugs has shown therapeutic benefits in treating such conditions. NR-targeted drugs, which either completely or selectively activate or block receptor function, represent a significant class of clinically valuable therapeutics. However, the pathways of NR-mediated gene expression and the resulting physiological effects are complex, involving crosstalk between various biomolecular components. As a result, NR-targeted drug discovery is challenging. With improved understanding of how NRs regulate physiological functions and deeper insights into their molecular structure, the process of NR-targeted drug discovery has evolved. While many traditional NR-targeting drugs are associated with side effects of varying severity, new drug candidates are being designed to minimize these adverse effects. Given that NR activity varies according to the tissue in which they are expressed and the specific isoform that is activated or repressed, achieving selectivity in targeting specific tissues and isoform classes may help reduce systemic side effects. In a recent breakthrough, the isoform-selective, hepato-targeted thyroid hormone-β agonist, Resmetirom (marketed as Rezdiffra), was approved for the treatment of non-alcoholic steatohepatitis. This chapter explores the structural and mechanistic principles guiding NR-targeted drug discovery and provides insights into recent developments in this field.
Collapse
Affiliation(s)
- Riya Ben Patel
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Surbhi Kumari Barnwal
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Arabi Mohammed Saleh M A
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| |
Collapse
|
2
|
Flamant F, Richard S. Thyroid Hormone Receptors Function in GABAergic Neurons During Development and in Adults. Endocrinology 2024; 165:bqae101. [PMID: 39148446 DOI: 10.1210/endocr/bqae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 08/17/2024]
Abstract
The nuclear receptors of thyroid hormone exert a broad influence on brain development and then on adult brain physiology. However, the cell-autonomous function of the receptors is combined with their indirect influence on cellular interactions. Mouse genetics allows one to distinguish between these 2 modes of action. It revealed that 1 of the main cell-autonomous functions of these receptors is to promote the maturation of GABAergic neurons. This review presents our current understanding of the action of thyroid hormone on this class of neurons, which are the main inhibitory neurons in most brain areas.
Collapse
Affiliation(s)
- Frédéric Flamant
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, USC1370 Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, 69364 Lyon, France
| | - Sabine Richard
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, USC1370 Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, 69364 Lyon, France
| |
Collapse
|
3
|
Nicolini G, Casini G, Posarelli C, Amato R, Lulli M, Balzan S, Forini F. Thyroid Hormone Signaling in Retinal Development and Function: Implications for Diabetic Retinopathy and Age-Related Macular Degeneration. Int J Mol Sci 2024; 25:7364. [PMID: 39000471 PMCID: PMC11242054 DOI: 10.3390/ijms25137364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Thyroid Hormones (THs) play a central role in the development, cell growth, differentiation, and metabolic homeostasis of neurosensory systems, including the retina. The coordinated activity of various components of TH signaling, such as TH receptors (THRs) and the TH processing enzymes deiodinases 2 and 3 (DIO2, DIO3), is required for proper retinal maturation and function of the adult photoreceptors, Müller glial cells, and pigmented epithelial cells. Alterations of TH homeostasis, as observed both in frank or subclinical thyroid disorders, have been associated with sight-threatening diseases leading to irreversible vision loss i.e., diabetic retinopathy (DR), and age-related macular degeneration (AMD). Although observational studies do not allow causal inference, emerging data from preclinical models suggest a possible correlation between TH signaling imbalance and the development of retina disease. In this review, we analyze the most important features of TH signaling relevant to retinal development and function and its possible implication in DR and AMD etiology. A better understanding of TH pathways in these pathological settings might help identify novel targets and therapeutic strategies for the prevention and management of retinal disease.
Collapse
Affiliation(s)
| | - Giovanni Casini
- Department of Biology, University of Pisa, 56127 Pisa, Italy
| | - Chiara Posarelli
- Ophthalmology, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy
| | - Rosario Amato
- Department of Biology, University of Pisa, 56127 Pisa, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | | | | |
Collapse
|
4
|
Zhi J, Li F, Jiang X, Bai R. Thyroid receptor β: A promising target for developing novel anti-androgenetic alopecia drugs. Drug Discov Today 2024; 29:104013. [PMID: 38705510 DOI: 10.1016/j.drudis.2024.104013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Androgenetic alopecia (AGA) significantly impacts the self-confidence and mental well-being of people. Recent research has revealed that thyroid receptor β (TRβ) agonists can activate hair follicles and effectively stimulate hair growth. This review aims to comprehensively elucidate the specific mechanism of action of TRβ in treating AGA from various perspectives, highlighting its potential as a drug target for combating AGA. Moreover, this review provides a thorough summary of the research advances in TRβ agonist candidates with anti-AGA efficacy and outlines the structure-activity relationships (SARs) of TRβ agonists. We hope that this review will provide practical information for the development of effective anti-alopecia drugs.
Collapse
Affiliation(s)
- Jia Zhi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Feifan Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
5
|
Lu Y, Chen C, Zhuang D, Qian L. Molecular Dynamic Simulation To Reveal the Mechanism Underlying MGL-3196 Resistance to Thyroxine Receptor Beta. ACS OMEGA 2024; 9:20957-20965. [PMID: 38764645 PMCID: PMC11097192 DOI: 10.1021/acsomega.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024]
Abstract
Thyroxine receptor beta (TRβ) is a ligand-dependent nuclear receptor that participates in regulating multiple biological processes, particularly playing an important role in lipid metabolism regulation. TRβ is currently a popular therapeutic target for nonalcoholic steatohepatitis (NASH), while no drugs have been approved to treat this disease. MGL-3196 (Resmetirom) is the first TRβ agonist that has succeeded in phase III clinical trials for the treatment of NASH; therefore, studying its molecular mechanism of action is of great significance. In this study, we employed molecular dynamic simulation to investigate the interaction mode between MGL-3196 and TRβ at the all-atom level. More importantly, by comparing the binding patterns of MGL-3196 in several prevalent TRβ mutants, it was identified that the mutations R243Q and H435R located, respectively, around and within the ligand-binding pocket of TRβ cause TRβ to be insensitive to MGL-3196. This indicates that patients with NASH carrying these two mutations may exhibit resistance to the medication of MGL-3196, thereby highlighting the potential impact of TRβ mutations on TRβ-targeted treatment of NASH and beyond.
Collapse
Affiliation(s)
- Yi Lu
- Fujian
Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal
Diseases, Xiamen Childreǹs Hospital
(Children’s Hospital of Fudan University at Xiamen), Xiamen 361006, China
- Department
of Pediatrics, Chidren’s Hospital
of Fudan University, Shanghai 201102, China
| | - Chun Chen
- Fujian
Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal
Diseases, Xiamen Childreǹs Hospital
(Children’s Hospital of Fudan University at Xiamen), Xiamen 361006, China
| | - Deyi Zhuang
- Fujian
Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal
Diseases, Xiamen Childreǹs Hospital
(Children’s Hospital of Fudan University at Xiamen), Xiamen 361006, China
| | - Liling Qian
- Fujian
Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal
Diseases, Xiamen Childreǹs Hospital
(Children’s Hospital of Fudan University at Xiamen), Xiamen 361006, China
- Division
of Pulmonary Medicine, Shanghai Children’s Hospital, School
of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| |
Collapse
|
6
|
Poulsen R, Zekri Y, Guyot R, Flamant F, Hansen M. Effect of in utero and lactational exposure to a thyroid hormone system disrupting chemical on mouse metabolome and brain transcriptome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122783. [PMID: 37866749 DOI: 10.1016/j.envpol.2023.122783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Mice were exposed to a low dose of the model thyroid hormone disruptor, propylthiouracil. Although this had only a modest effect on maternal thyroid hormones production, postnatal analysis of the pups' plasma by mass spectrometry and the brain striatum by RNA sequencing gave evidence of low lasting changes that could reflect an adverse effect on neurodevelopment. Overall, these methods proved to be sensitive enough to detect minor disruptions of thyroid hormone signalling in vivo.
Collapse
Affiliation(s)
- Rikke Poulsen
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| | - Yanis Zekri
- Institut de Génomique Fonctionnelle de Lyon, Université Claude Bernard Lyon I, CNRS, UMR 5242, INRAE USC 1370 Ecole Normale Supérieure de Lyon 46 allée d'Italie, 69364, Lyon, France
| | - Romain Guyot
- Institut de Génomique Fonctionnelle de Lyon, Université Claude Bernard Lyon I, CNRS, UMR 5242, INRAE USC 1370 Ecole Normale Supérieure de Lyon 46 allée d'Italie, 69364, Lyon, France
| | - Frédéric Flamant
- Institut de Génomique Fonctionnelle de Lyon, Université Claude Bernard Lyon I, CNRS, UMR 5242, INRAE USC 1370 Ecole Normale Supérieure de Lyon 46 allée d'Italie, 69364, Lyon, France
| | - Martin Hansen
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000, Roskilde, Denmark
| |
Collapse
|
7
|
Forini F, Nicolini G, Amato R, Balzan S, Saba A, Bertolini A, Andreucci E, Marracci S, Melecchi A, Terlizzi D, Zucchi R, Iervasi G, Lulli M, Casini G. Local modulation of thyroid hormone signaling in the retina affects the development of diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166892. [PMID: 37758065 DOI: 10.1016/j.bbadis.2023.166892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Thyroid hormone (TH) dyshomeostasis is associated with poor prognosis in acute and prolonged illness, but its role in diabetic retinopathy (DR) has never been investigated. Here, we characterized the TH system in the retinas of db/db mice and highlighted regulatory processes in MIO-M1 cells. In the db/db retinas, typical functional traits and molecular signatures of DR were paralleled by a tissue-restricted reduction of TH levels. A local condition of low T3 (LT3S) was also demonstrated, which was likely to be induced by deiodinase 3 (DIO3) upregulation, and by decreased expression of DIO2 and of TH receptors. Concurrently, T3-responsive genes, including mitochondrial markers and microRNAs (miR-133-3p, 338-3p and 29c-3p), were downregulated. In MIO-M1 cells, a feedback regulatory circuit was evidenced whereby miR-133-3p triggered the post-transcriptional repression of DIO3 in a T3-dependent manner, while high glucose (HG) led to DIO3 upregulation through a nuclear factor erythroid 2-related factor 2-hypoxia-inducible factor-1 pathway. Finally, an in vitro simulated condition of early LT3S and hyperglycemia correlated with reduced markers of both mitochondrial function and stress response, which was reverted by T3 replacement. Together, the data suggest that, in the early phases of DR, a DIO3-driven LT3S may be protective against retinal stress, while, in the chronic phase, it not only fails to limit HG-induced damage, but also increases cell vulnerability likely due to persistent mitochondrial dysfunction.
Collapse
Affiliation(s)
- Francesca Forini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.
| | | | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy.
| | - Silvana Balzan
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Alessandro Saba
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy; Center for Instrument Sharing (CISUP), University of Pisa, Pisa, Italy.
| | - Andrea Bertolini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy.
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | | | | | - Domiziana Terlizzi
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Riccardo Zucchi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy.
| | - Giorgio Iervasi
- Department of Biomedical Sciences, National Research Council, Rome, Italy.
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy; Center for Instrument Sharing (CISUP), University of Pisa, Pisa, Italy.
| |
Collapse
|
8
|
Onyango DO, Selman BG, Rose JL, Ellison CA, Nash JF. Comparison between endocrine activity assessed using ToxCast/Tox21 database and human plasma concentration of sunscreen active ingredients/UV filters. Toxicol Sci 2023; 196:25-37. [PMID: 37561120 PMCID: PMC10613966 DOI: 10.1093/toxsci/kfad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
Sunscreen products are composed of ultraviolet (UV) filters and formulated to reduce exposure to sunlight thereby lessening skin damage. Concerns have been raised regarding the toxicity and potential endocrine disrupting (ED) effects of UV filters. The ToxCast/Tox21 program, that is, CompTox, is a high-throughput in vitro screening database of chemicals that identify adverse outcome pathways, key events, and ED potential of chemicals. Using the ToxCast/Tox21 database, octisalate, homosalate, octocrylene, oxybenzone, octinoxate, and avobenzone, 6 commonly used organic UV filters, were found to have been evaluated. These UV filters showed low potency in these bioassays with most activity detected above the range of the cytotoxic burst. The pathways that were most affected were the cell cycle and the nuclear receptor pathways. Most activity was observed in liver and kidney-based bioassays. These organic filters and their metabolites showed relatively weak ED activity when tested in bioassays measuring estrogen receptor (ER), androgen receptor (AR), thyroid receptor, and steroidogenesis activity. Except for oxybenzone, all activity in the endocrine assays occurred at concentrations greater than the cytotoxic burst. Moreover, except for oxybenzone, plasma concentrations (Cmax) measured in humans were at least 100× lower than bioactive (AC50/ACC) concentrations that produced a response in ToxCast/Tox21 assays. These data are consistent with in vivo animal/human studies showing weak or negligible endocrine activity. In sum, when considered as part of a weight-of-evidence assessment and compared with measured plasma concentrations, the results show these organic UV filters have low intrinsic biological activity and risk of toxicity including endocrine disruption in humans.
Collapse
Affiliation(s)
- David O Onyango
- Global Product Stewardship, The Procter & Gamble Company, Mason, Ohio 45040, USA
| | - Bastian G Selman
- Global Product Stewardship, The Procter & Gamble Company, Mason, Ohio 45040, USA
| | - Jane L Rose
- Global Product Stewardship, The Procter & Gamble Company, Mason, Ohio 45040, USA
| | - Corie A Ellison
- Global Product Stewardship, The Procter & Gamble Company, Mason, Ohio 45040, USA
| | - J F Nash
- Global Product Stewardship, The Procter & Gamble Company, Mason, Ohio 45040, USA
| |
Collapse
|
9
|
Ma H, Yang F, York LR, Li S, Ding XQ. Excessive Thyroid Hormone Signaling Induces Photoreceptor Degeneration in Mice. eNeuro 2023; 10:ENEURO.0058-23.2023. [PMID: 37596046 PMCID: PMC10481642 DOI: 10.1523/eneuro.0058-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023] Open
Abstract
Rod and cone photoreceptors degenerate in inherited and age-related retinal degenerative diseases, ultimately leading to loss of vision. Thyroid hormone (TH) signaling regulates cell proliferation, differentiation, and metabolism. Recent studies have shown a link between TH signaling and retinal degeneration. This work investigates the effects of excessive TH signaling on photoreceptor function and survival in mice. C57BL/6, Thra1 -/-, Thrb2 -/-, Thrb -/-, and the cone dominant Nrl -/- mice received triiodothyronine (T3) treatment (5-20 μg/ml in drinking water) for 30 d, followed by evaluations of retinal function, photoreceptor survival/death, and retinal stress/damage. Treatment with T3 reduced light responses of rods and cones by 50-60%, compared with untreated controls. Outer nuclear layer thickness and cone density were reduced by ∼18% and 75%, respectively, after T3 treatment. Retinal sections prepared from T3-treated mice showed significantly increased numbers of TUNEL-positive, p-γH2AX-positive, and 8-OHdG-positive cells, and activation of Müller glial cells. Gene expression analysis revealed upregulation of the genes involved in oxidative stress, necroptosis, and inflammation after T3 treatment. Deletion of Thra1 prevented T3-induced degeneration of rods but not cones, whereas deletion of Thrb2 preserved both rods and cones. Treatment with an antioxidant partially preserved photoreceptors and reduced retinal stress responses. This study demonstrates that excessive TH signaling induces oxidative stress/damage and necroptosis, induces photoreceptor degeneration, and impairs retinal function. The findings provide insights into the role of TH signaling in retinal degeneration and support the view of targeting TH signaling for photoreceptor protection.
Collapse
Affiliation(s)
- Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Lilliana R York
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Shujuan Li
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
10
|
Ren J, Flamant F. Thyroid hormone as a temporal switch in mouse development. Eur Thyroid J 2023; 12:e220225. [PMID: 36715693 PMCID: PMC10083660 DOI: 10.1530/etj-22-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023] Open
Abstract
Thyroid hormones are known to trigger metamorphosis in an amphibian. This review discusses the hypothesis according to which they act in a similar manner to synchronize the post-natal development of mice, using brain, brown adipose tissue, and heart as examples.
Collapse
Affiliation(s)
- Juan Ren
- ENS de Lyon, INRAE, CNRS, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
| | - Frédéric Flamant
- ENS de Lyon, INRAE, CNRS, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
| |
Collapse
|
11
|
Radović B, Stojilković N, Ćurčić M, Miljaković EA, Đorđević AB, Javorac D, Baralić K, Đukić-Ćosić D, Bulat Z, Antonijević B. In silico assessment of mixture toxicity mechanisms involved in the pathogenesis of thyroid diseases: the combination of toxic metal(oid)s and decabrominated diphenyl ether. Toxicology 2023; 489:153496. [PMID: 36933645 DOI: 10.1016/j.tox.2023.153496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/05/2023] [Accepted: 03/15/2023] [Indexed: 03/17/2023]
Abstract
The current study aimed to assess the connection between the mixture of lead (Pb), cadmium (Cd), arsenic (As), methylmercury (MeHg) and decabrominated diphenyl ether (decaBDE) and thyroid function, by using in silico toxicogenomic data-mining approach. To obtain the linkage between investigated toxic mixture and thyroid diseases (TDs), the Comparative Toxicogenomics Database (CTD) was used, while gene ontology (GO) enrichment analysis was performed by ToppGeneSuite portal. The analysis has shown 10 genes connected to all chemicals present in the mixture and TDs (CAT, GSR, IFNG, IL1B, IL4, IL6, MAPK1, SOD2, TGFB1, TNF), most of which were in co-expression (45.68%), or belonged to the same pathway (30.47%). Top 5 biological processes and molecular functions affected by the investigated mixture emphasized the role of two common mechanisms - oxidative stress and inflammation. Cytokines and inflammatory response was listed as the main molecular pathway that may be triggered by simultaneous exposure to toxic metal(oid)s and decaBDE and connected to TDs. The direct relations between Pb/decaBDE and redox status impairment in thyroid tissue was confirmed by our chemical-phenotype interaction analysis, while the strongest linkage between Pb, As and decaBDE and thyroid disorders was found. The obtained results provide better understanding of molecular mechanisms involved in the thyrotoxicity of the investigated mixture, and can be used to direct further research.
Collapse
Affiliation(s)
- Biljana Radović
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Nikola Stojilković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Aleksandra Buha Đorđević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|
12
|
Li Q, Yao B, Zhao S, Lu Z, Zhang Y, Xiang Q, Wu X, Yu H, Zhang C, Li J, Zhuang X, Wu D, Li Y, Xu Y. Discovery of a Highly Selective and H435R-Sensitive Thyroid Hormone Receptor β Agonist. J Med Chem 2022; 65:7193-7211. [PMID: 35507418 DOI: 10.1021/acs.jmedchem.2c00144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The design and development of agonists selectively targeting thyroid hormone receptor β (TRβ) and TRβ mutants remain challenging tasks. In this study, we first adopted the strategy of breaking the "His-Phe switch" to solve two problems, simultaneously. A structure-based design approach was successfully utilized to obtain compound 16g, which is a potent TRβ agonist (EC50: 21.0 nM, 85.0% of the maximum efficacy of 1) with outstanding selectivity for TRβ over TRα and also effectively activates the TRβH435R mutant. Then, we developed a highly efficient synthetic method for 16g. Our serials of cocrystal structures revealed detailed structural mechanisms in overcoming subtype selectivity and rescuing the H435R mutation. 16g also showed excellent lipid metabolism, safety, metabolic stability, and pharmacokinetic properties. Collectively, 16g is a well-characterized selective and mutation-sensitive TRβ agonist for further investigating its function in treating dyslipidemia, nonalcoholic steatohepatitis (NASH), and resistance to thyroid hormone (RTH).
Collapse
Affiliation(s)
- Qiu Li
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Benqiang Yao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Shiting Zhao
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Zhou Lu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Yan Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qiuping Xiang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xishan Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Haonan Yu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Cheng Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Junhua Li
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaoxi Zhuang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Donghai Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China
| | - Yong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Yong Xu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China.,Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
13
|
Ma H, Yang F, Ding XQ. Deficiency of thyroid hormone receptor protects retinal pigment epithelium and photoreceptors from cell death in a mouse model of age-related macular degeneration. Cell Death Dis 2022; 13:255. [PMID: 35314673 PMCID: PMC8938501 DOI: 10.1038/s41419-022-04691-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly. Progressive dystrophy of the retinal pigment epithelium (RPE) and photoreceptors is the characteristic of dry AMD, and oxidative stress/damage plays a central role in the pathogenic lesion of the disease. Thyroid hormone (TH) regulates cell growth, differentiation, and metabolism, and regulates development/function of photoreceptors and RPE in the retina. Population-/patient-based studies suggest an association of high free-serum TH levels with increased risk of AMD. We recently showed that suppressing TH signaling by antithyroid treatment reduces cell damage/death of the RPE and photoreceptors in an oxidative-stress/sodium iodate (NaIO3)-induced mouse model of AMD. This work investigated the effects of TH receptor (THR) deficiency on cell damage/death of the RPE and photoreceptors and the contribution of the receptor subtypes. Treatment with NaIO3 induced RPE and photoreceptor cell death/necroptosis, destruction, and oxidative damage. The phenotypes were significantly diminished in Thrα1−/−, Thrb−/−, and Thrb2−/− mice, compared with that in the wild-type (C57BL/6 J) mice. The involvement of the receptor subtypes varies in the RPE and retina. Deletion of Thrα1 or Thrb protected RPE, rods, and cones, whereas deletion of Thrb2 protected RPE and cones but not rods. Gene-expression analysis showed that deletion of Thrα1 or Thrb abolished/suppressed the NaIO3-induced upregulation of the genes involved in cellular oxidative-stress responses, necroptosis/apoptosis signaling, and inflammatory responses. In addition, THR antagonist effectively protected ARPE-19 cells and hRPE cells from NaIO3-induced cell death. This work demonstrates the involvement of THR signaling in cell damage/death of the RPE and photoreceptors after oxidative-stress challenge and the receptor-subtype contribution. Findings from this work support a role of THR signaling in the pathogenesis of AMD and the strategy of suppressing THR signaling locally in the retina for protection of the RPE/retina in dry AMD.
Collapse
|
14
|
|
15
|
Salman A, Aon M, Hussein A, Salman M, Tourky M, Mahmoud A, Aljarad F, Elkaseer M, Shaaban HED, Moustafa A, El-Mikkawy A, Gaballa N, Abdallah H, Zaky Rashed ZF, Elkassar H. Impact of Hypothyroidism on Patients with Hepatocellular Carcinoma Undergoing Liver Transplantation. Int J Gen Med 2021; 14:5711-5718. [PMID: 34557025 PMCID: PMC8455075 DOI: 10.2147/ijgm.s326315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND This work endeavored to explore the effect of hypothyroidism on mortality in subjects with HCC who underwent living-donor liver transplantation (LDLT). METHODS This prospective study included 107 patients with HCC subjected to LDLT, divided into hypothyroid group (n=53) and euthyroid group (n=54). The primary objectives were overall and disease-free survival (DFS). RESULTS Euthyroid and hypothyroid groups were comparable in all baseline characteristics except the age of patients. Overall survival (OS) of the whole group at 48 months was 68.8%, while the DFS was 60.2%. On univariate analysis, OS was negatively affected by the older age of the patients (p<0.001) or the donor (p<0.001), hypothyroidism (p=0.008), HBV (p=0.029), larger tumor size (p=0.023), and defective Milan criteria (p=0.022). On multivariate analysis, the age of the patients and donors was the independent factor affecting OS. On univariate analysis, DFS was negatively affected by older age of the patients (p < 0.001) or the donor (p=0.005), hypothyroidism (p=0.005), HBV (p=0.019), larger tumor size (p=0.023), and defective Milan criteria (p=0.020). On multivariate analysis, the age of the patients, thyroid status, and Milan criteria were the independent factors affecting DFS. CONCLUSION Hypothyroidism is a risk factor for worse outcomes in HCC patients after liver transplantation.
Collapse
Affiliation(s)
- Ahmed Salman
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Aon
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amr Hussein
- Internal Medicine Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed Salman
- General Surgery Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Tourky
- Department of Surgery, Great Western Hospitals NHS Foundation Trust, Swindon, UK
| | - Ahmed Mahmoud
- Senior Clinical Fellow, Great Western Hospital NHS Foundation Trust, Swindon, UK
| | - Feras Aljarad
- Lewisham and Greenwich NHS Trust, Lewisham, London, UK
| | - Mohamed Elkaseer
- General Surgery Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hossam El-Din Shaaban
- Hepatology and Gastroenterology Department, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Ahmed Moustafa
- Department of Endemic Medicine and Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed El-Mikkawy
- Hepatology and Gastroenterology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Nahla Gaballa
- Anesthesiology and Intensive Care Department, National Liver Institute, Menoufia University, Shibin El Kom, Egypt
| | - Heba Abdallah
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shibin El Kom, Egypt
| | - Zaky Ftouh Zaky Rashed
- Anesthesiology and Intensive Care Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Department of Anesthesia, College of Applied Sciences, Almaarefa university, Ad Diriyah, Riyadh, Saudi Arabia
| | - Hesham Elkassar
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
16
|
Marty S, Beekhuijzen M, Charlton A, Hallmark N, Hannas BR, Jacobi S, Melching-Kollmuss S, Sauer UG, Sheets LP, Strauss V, Urbisch D, Botham PA, van Ravenzwaay B. Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny - part II: how can key events of relevant adverse outcome pathways be addressed in toxicological assessments? Crit Rev Toxicol 2021; 51:328-358. [PMID: 34074207 DOI: 10.1080/10408444.2021.1910625] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The current understanding of thyroid-related adverse outcome pathways (AOPs) with adverse neurodevelopmental outcomes in mammals has been reviewed. This served to establish if standard rodent toxicity test methods and in vitro assays allow identifying thyroid-related modes-of-action potentially leading to adverse neurodevelopmental outcomes, and the human relevance of effects - in line with the European Commission's Endocrine Disruptor Criteria. The underlying hypothesis is that an understanding of the key events of relevant AOPs provides insight into differences in incidence, magnitude, or species sensitivity of adverse outcomes. The rodent studies include measurements of serum thyroid hormones, thyroid gland pathology and neurodevelopmental assessments, but do not directly inform on specific modes-of-action. Opportunities to address additional non-routine parameters reflecting critical events of AOPs in toxicological assessments are presented. These parameters appear relevant to support the identification of specific thyroid-related modes-of-action, provided that prevailing technical limitations are overcome. Current understanding of quantitative key event relationships is often weak, but would be needed to determine if the triggering of a molecular initiating event will ultimately result in an adverse outcome. Also, significant species differences in all processes related to thyroid hormone signalling are evident, but the biological implications thereof (including human relevance) are often unknown. In conclusion, careful consideration of the measurement (e.g. timing, method) and interpretation of additional non-routine parameters is warranted. These findings will be used in a subsequent paper to propose a testing strategy to identify if a substance may elicit maternal thyroid hormone imbalance and potentially also neurodevelopmental effects in the progeny.
Collapse
Affiliation(s)
- Sue Marty
- The Dow Chemical Company, Midland, MI, USA
| | | | | | | | | | | | | | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The present review traces the road leading to discovery of L-thyroxine, thyroid hormone (3,5,3´-triiodo-L-thyronine, T3) and its cognate nuclear receptors. Thyroid hormone is a pleio-tropic regulator of growth, differentiation, and tissue homeostasis in higher organisms. The major site of the thyroid hormone action is predominantly a cell nucleus. T3 specific binding sites in the cell nuclei have opened a new era in the field of the thyroid hormone receptors (TRs) discovery. T3 actions are mediated by high affinity nuclear TRs, TRalpha and TRbeta, which function as T3-activated transcription factors playing an essential role as transcription-modulating proteins affecting the transcriptional responses in target genes. Discovery and characterization of nuclear retinoid X receptors (RXRs), which form with TRs a heterodimer RXR/TR, positioned RXRs at the epicenter of molecular endocrinology. Transcriptional control via nuclear RXR/TR heterodimer represents a direct action of thyroid hormone. T3 plays a crucial role in the development of brain, it exerts significant effects on the cardiovascular system, skeletal muscle contractile function, bone development and growth, both female and male reproductive systems, and skin. It plays an important role in maintaining the hepatic, kidney and intestine homeostasis and in pancreas, it stimulates the beta-cell proliferation and survival. The TRs cross-talk with other signaling pathways intensifies the T3 action at cellular level. The role of thyroid hormone in human cancers, acting via its cognate nuclear receptors, has not been fully elucidated yet. This review is aimed to describe the history of T3 receptors, starting from discovery of T3 binding sites in the cell nuclei to revelation of T3 receptors as T3-inducible transcription factors in relation to T3 action at cellular level. It also focuses on milestones of investigation, comprising RXR/TR dimerization, cross-talk between T3 receptors, and other regulatory pathways within the cell and mainly on genomic action of T3. This review also focuses on novel directions of investigation on relationships between T3 receptors and cancer. Based on the update of available literature and the author's experimental experience, it is devoted to clinicians and medical students.
Collapse
|
18
|
Mukherjee S, Dasgupta S, Adhikari U, Panja SS. Molecular modeling and molecular dynamics simulation studies on thyroid hormone receptor from Rattus norvegicus: role of conserved water molecules. J Mol Model 2021; 27:126. [PMID: 33834296 DOI: 10.1007/s00894-021-04740-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022]
Abstract
Thyroid hormone receptor (THR) belongs to the nuclear receptor (NR) superfamily that is activated by binding of appropriate ligand molecules (thyroid hormones). These receptors directly bind to specific DNA sequences for gene expression, which is essential for metabolism, homeostasis, and the development of organisms, making it an important drug target. Extensive MD-simulation studies of triiodothyronine (T3) docked modeled rnTHRβ1 structures have indicated the presence of twelve conserved water molecules at the DNA-DBD (DNA binding domain) interface. The W1-W5 water centers have been involved in the recognition between the A-chain of DBD to C-chain of DNA, W6 and W7 mediated the interaction between A-chain of DBD and D-chain of DNA, W8 and W9 recognized the B-chain of DBD and C-chain of DNA, and W9-W12 centers conjugated the residues of B-chain of DBD to D-chain of DNA through hydrogen bonds. The conformation flexibility of Phe272 and Met313 residues in the absence of T3 at the LBD (ligand-binding domain) region have been observed and reported.
Collapse
Affiliation(s)
- Soumita Mukherjee
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur, West Bengal, 713209, India
| | - Subrata Dasgupta
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur, West Bengal, 713209, India
| | - Utpal Adhikari
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur, West Bengal, 713209, India
| | - Sujit Sankar Panja
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
19
|
El-Eshmawy MM, Shahin M. Thyroid and Eye: Where They Meet in Clinical Practice. Endocr Metab Immune Disord Drug Targets 2020; 20:39-49. [PMID: 31237221 DOI: 10.2174/1871530319666190618120107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Thyroid Hormones (TH) are essential for normal growth, development and continued optimal function of most of the body organs including the eye. TH signaling plays a central role in the regulation of retinal development and maturation. Deficiency in TH during fetal and early postnatal development impairs growth of the eye and proliferation of all retinal cell types. The present article reviews the most important topics of the different derangements in thyroid function and structure and its relation with eye diseases. METHODS A literature search strategy was conducted for all English-language literature. RESULTS From a clinical practice viewpoint, it should be mentioned that both hypothyroidism and hyperthyroidism are accompanied by ocular diseases i.e. thyroid-associated ophthalmopathy, diabetic retinopathy and age-related macular degeneration. Although the orbit and globe are not common sites for metastatic thyroid cancers, orbital metastasis may be the primary clinical manifestation of thyroid carcinoma. Finally, some medications as amiodarone may be accompanied by both thyroid dysfunction and adverse ocular events. CONCLUSION Thyroid disorders and eye diseases are interrelated through several mechanisms thus, awareness of this relation has a great impact on early diagnosis and treatment.
Collapse
Affiliation(s)
- Mervat M El-Eshmawy
- Internal Medicine Department, Mansoura Specialized Medical Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maha Shahin
- Ophthalmology Department, Mansoura Ophthalmic Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
20
|
Saponaro F, Sestito S, Runfola M, Rapposelli S, Chiellini G. Selective Thyroid Hormone Receptor-Beta (TRβ) Agonists: New Perspectives for the Treatment of Metabolic and Neurodegenerative Disorders. Front Med (Lausanne) 2020; 7:331. [PMID: 32733906 PMCID: PMC7363807 DOI: 10.3389/fmed.2020.00331] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Thyroid hormones (THs) elicit significant effects on numerous physiological processes, such as growth, development, and metabolism. A lack of thyroid hormones is not compatible with normal health. Most THs effects are mediated by two different thyroid hormone receptor (TR) isoforms, namely TRα and TRβ, with the TRβ isoform known to be responsible for the main beneficial effects of TH on liver. In brain, despite the crucial role of TRα isoform in neuronal development, TRβ has been proposed to play a role in the remyelination processes. Consequently, over the past two decades, much effort has been applied in developing thyroid hormone analogs capable of uncoupling beneficial actions on liver (triglyceride and cholesterol lowering) and central nervous system (CNS) (oligodendrocyte proliferation) from deleterious effects on the heart, muscle and bone. Sobetirome (GC-1) and subsequently Eprotirome (KB2115) were the first examples of TRβ selective thyromimetics, with Sobetirome differing from the structure of thyronines because of the absence of halogens, biaryl ether oxygen, and amino-acidic side chain. Even though both thyromimetics showed encouraging actions against hypercholesterolemia, non-alcoholic steatohepatitis (NASH) and in the stimulation of hepatocytes proliferation, they were stopped after Phase 1 and Phase 2–3 clinical trials, respectively. In recent years, advances in molecular and structural biology have facilitated the design of new selective thyroid hormone mimetics that exhibit TR isoform-selective binding, and/or liver- and tissue-selective uptake, with Resmetirom (MGL-3196) and Hep-Direct prodrug VK2809 (MB07811) probably representing two of the most promising lipid lowering agents, currently under phase 2–3 clinical trials. More recently the application of a comprehensive panel of ADME-Toxicity assays enabled the selection of novel thyromimetic IS25 and its prodrug TG68, as very powerful lipid lowering agents both in vitro and in vivo. In addition to dyslipidemia and other liver pathologies, THs analogs could also be of value for the treatment of neurodegenerative diseases, such as multiple sclerosis (MS). Sob-AM2, a CNS- selective prodrug of Sobetirome has been shown to promote significant myelin repair in the brain and spinal cord of mouse demyelinating models and it is rapidly moving into clinical trials in humans. Taken together all these findings support the great potential of selective thyromimetics in targeting a large variety of human pathologies characterized by altered metabolism and/or cellular differentiation.
Collapse
Affiliation(s)
| | - Simona Sestito
- Department of Pathology, University of Pisa, Pisa, Italy
| | | | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre for Biology and Pathology of Aging, University of Pisa, Pisa, Italy
| | | |
Collapse
|
21
|
Giammanco M, Di Liegro CM, Schiera G, Di Liegro I. Genomic and Non-Genomic Mechanisms of Action of Thyroid Hormones and Their Catabolite 3,5-Diiodo-L-Thyronine in Mammals. Int J Mol Sci 2020; 21:ijms21114140. [PMID: 32532017 PMCID: PMC7312989 DOI: 10.3390/ijms21114140] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Since the realization that the cellular homologs of a gene found in the retrovirus that contributes to erythroblastosis in birds (v-erbA), i.e. the proto-oncogene c-erbA encodes the nuclear receptors for thyroid hormones (THs), most of the interest for THs focalized on their ability to control gene transcription. It was found, indeed, that, by regulating gene expression in many tissues, these hormones could mediate critical events both in development and in adult organisms. Among their effects, much attention was given to their ability to increase energy expenditure, and they were early proposed as anti-obesity drugs. However, their clinical use has been strongly challenged by the concomitant onset of toxic effects, especially on the heart. Notably, it has been clearly demonstrated that, besides their direct action on transcription (genomic effects), THs also have non-genomic effects, mediated by cell membrane and/or mitochondrial binding sites, and sometimes triggered by their endogenous catabolites. Among these latter molecules, 3,5-diiodo-L-thyronine (3,5-T2) has been attracting increasing interest because some of its metabolic effects are similar to those induced by T3, but it seems to be safer. The main target of 3,5-T2 appears to be the mitochondria, and it has been hypothesized that, by acting mainly on mitochondrial function and oxidative stress, 3,5-T2 might prevent and revert tissue damages and hepatic steatosis induced by a hyper-lipid diet, while concomitantly reducing the circulating levels of low density lipoproteins (LDL) and triglycerides. Besides a summary concerning general metabolism of THs, as well as their genomic and non-genomic effects, herein we will discuss resistance to THs and the possible mechanisms of action of 3,5-T2, also in relation to its possible clinical use as a drug.
Collapse
Affiliation(s)
- Marco Giammanco
- Department of Surgical, Oncological and Oral Sciences (Discipline Chirurgiche, Oncologiche e Stomatologiche), University of Palermo, 90127 Palermo, Italy;
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)), University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)), University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (Bi.N.D.)), University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-091-2389-7415 or +39-091-2389-7446
| |
Collapse
|
22
|
Cheng Y, Xu J, Fu Y, He N. Expression and Regulation of pde6h by Thyroid Hormone During Metamorphosis in Paralichthys olivaceus. Front Physiol 2020; 11:244. [PMID: 32300306 PMCID: PMC7144621 DOI: 10.3389/fphys.2020.00244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/02/2020] [Indexed: 11/27/2022] Open
Abstract
PDE6H is a cone cell-specific inhibitory subunit that plays a critical role in the adaptation of the photosensitive system to bright and dark phases of the light environment. Thyroid hormone (TH) is one of the most important factors that control development and metabolism in animals, composed mainly of triiodothyronine (T3), and thyroxine (T4). TH also plays a key role in the metamorphosis of the flounder (Paralichthys olivaceus), wherein exogenous TH can accelerate the behavioral changes of larvae from the pelagic to benthic type accompanying changes in the light environment from bright to dark. In this study, transcriptional analysis showed that pde6h is expressed in adult eye, that its expression peaks at the climax of metamorphosis, and that it can be significantly up-regulated to the highest level by exogenous T4 in the early stages of metamorphosis but is inhibited by thiourea (TU). The rescue experiment showed that metamorphic inhibition of larvae and expression inhibition of pde6h gene in TU groups can be rescued by removing TU. Further, dual-luciferase reporter assay indicated the putative regulatory effect of TH on pde6h expression, mediated directly on the gene promoter by the TRαA gene. Together, we speculated that TH may control physiological adaptation of the photosensitive system to light changes during metamorphosis by acting directly on pde6h. This study can help us further study the physiological function of pde6h during flounder metamorphosis in the future.
Collapse
Affiliation(s)
- Yuejuan Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Jiaqian Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Nisha He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| |
Collapse
|
23
|
Korkmaz O, Ozen S, Ozdemir TR, Goksen D, Darcan S. A novel thyroid hormone receptor alpha gene mutation, clinic characteristics, and follow-up findings in a patient with thyroid hormone resistance. Hormones (Athens) 2019; 18:223-227. [PMID: 30747412 DOI: 10.1007/s42000-019-00094-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
Abstract
Thyroid hormone receptor alpha (THRA) gene mutation is a thyroid hormone resistance syndrome characterized by near-normal thyroid function tests and tissue-specific hypothyroidism. In this case study, we report a novel de novo p.G291S heterozygous mutation in the THRA gene was detected at mutation analysis. A 4-year-old male patient was admitted due to short stature, motor-mental retardation, and constipation. At physical examination, coarse facial appearance, eyelid edema, pallor, and umbilical hernia were observed. Primary thyroid hormone resistance should be considered in patients with phenotypically hypothyroid features. Laboratory analysis found moderate elevation in free triiodothyronine (T3) levels, normochromic normocytic anemia, and elevated creatine kinase levels. In conclusion, THRA gene mutation should be considered in patients with clinical hypothyroid findings and increased/moderately elevated free T3, decreased/ normal free thyroxine, normal thyroid-stimulating hormone levels, and increased muscle enzymes.
Collapse
Affiliation(s)
- Ozlem Korkmaz
- Ege University Faculty of Medicine Department of Pediatric Endocrinology and Diabetes, Ege University, 35100 Bornova, Izmir, Turkey.
| | - Samim Ozen
- Ege University Faculty of Medicine Department of Pediatric Endocrinology and Diabetes, Ege University, 35100 Bornova, Izmir, Turkey
| | - Taha Resid Ozdemir
- Tepecik Training and Research Hospital, Department of Genetics, Health Sciences University, Izmir, Turkey
| | - Damla Goksen
- Ege University Faculty of Medicine Department of Pediatric Endocrinology and Diabetes, Ege University, 35100 Bornova, Izmir, Turkey
| | - Sukran Darcan
- Ege University Faculty of Medicine Department of Pediatric Endocrinology and Diabetes, Ege University, 35100 Bornova, Izmir, Turkey
| |
Collapse
|
24
|
Fröhlich E, Wahl R. The forgotten effects of thyrotropin-releasing hormone: Metabolic functions and medical applications. Front Neuroendocrinol 2019; 52:29-43. [PMID: 29935915 DOI: 10.1016/j.yfrne.2018.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/07/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022]
Abstract
Thyrotropin-releasing hormone (TRH) causes a variety of thyroidal and non-thyroidal effects, the best known being the feedback regulation of thyroid hormone levels. This was employed in the TRH stimulation test, which is currently little used. The role of TRH as a cancer biomarker is minor, but exaggerated responses to TSH and prolactin levels in breast cancer led to the hypothesis of a potential role for TRH in the pathogenesis of this disease. TRH is a rapidly degraded peptide with multiple targets, limiting its suitability as a biomarker and drug candidate. Although some studies reported efficacy in neural diseases (depression, spinal cord injury, amyotrophic lateral sclerosis, etc.), therapeutic use of TRH is presently restricted to spinocerebellar degenerative disease. Regulation of TRH production in the hypothalamus, patterns of expression of TRH and its receptor in the body, its role in energy metabolism and in prolactin secretion are addressed in this review.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Internal Medicine (Dept. of Endocrinology and Diabetology, Angiology, Nephrology and Clinical Chemistry), University of Tuebingen, Otfried-Muellerstrasse 10, 72076 Tuebingen, Germany; Center for Medical Research, Medical University Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Richard Wahl
- Internal Medicine (Dept. of Endocrinology and Diabetology, Angiology, Nephrology and Clinical Chemistry), University of Tuebingen, Otfried-Muellerstrasse 10, 72076 Tuebingen, Germany.
| |
Collapse
|
25
|
Stepien BK, Huttner WB. Transport, Metabolism, and Function of Thyroid Hormones in the Developing Mammalian Brain. Front Endocrinol (Lausanne) 2019; 10:209. [PMID: 31001205 PMCID: PMC6456649 DOI: 10.3389/fendo.2019.00209] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/14/2019] [Indexed: 12/22/2022] Open
Abstract
Ever since the discovery of thyroid hormone deficiency as the primary cause of cretinism in the second half of the 19th century, the crucial role of thyroid hormone (TH) signaling in embryonic brain development has been established. However, the biological understanding of TH function in brain formation is far from complete, despite advances in treating thyroid function deficiency disorders. The pleiotropic nature of TH action makes it difficult to identify and study discrete roles of TH in various aspect of embryogenesis, including neurogenesis and brain maturation. These challenges notwithstanding, enormous progress has been achieved in understanding TH production and its regulation, their conversions and routes of entry into the developing mammalian brain. The endocrine environment has to adjust when an embryo ceases to rely solely on maternal source of hormones as its own thyroid gland develops and starts to produce endogenous TH. A number of mechanisms are in place to secure the proper delivery and action of TH with placenta, blood-brain interface, and choroid plexus as barriers of entry that need to selectively transport and modify these hormones thus controlling their active levels. Additionally, target cells also possess mechanisms to import, modify and bind TH to further fine-tune their action. A complex picture of a tightly regulated network of transport proteins, modifying enzymes, and receptors has emerged from the past studies. TH have been implicated in multiple processes related to brain formation in mammals-neuronal progenitor proliferation, neuronal migration, functional maturation, and survival-with their exact roles changing over developmental time. Given the plethora of effects thyroid hormones exert on various cell types at different developmental periods, the precise spatiotemporal regulation of their action is of crucial importance. In this review we summarize the current knowledge about TH delivery, conversions, and function in the developing mammalian brain. We also discuss their potential role in vertebrate brain evolution and offer future directions for research aimed at elucidating TH signaling in nervous system development.
Collapse
|
26
|
The Antiarrhythmic Drug, Dronedarone, Demonstrates Cytotoxic Effects in Breast Cancer Independent of Thyroid Hormone Receptor Alpha 1 (THRα1) Antagonism. Sci Rep 2018; 8:16562. [PMID: 30410118 PMCID: PMC6224430 DOI: 10.1038/s41598-018-34348-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/10/2018] [Indexed: 01/22/2023] Open
Abstract
Previous research has suggested that thyroid hormone receptor alpha 1 (THRα1), a hormone responsive splice variant, may play a role in breast cancer progression. Whether THRα1 can be exploited for anti-cancer therapy is unknown. The antiproliferative and antitumor effects of dronedarone, an FDA-approved anti-arrhythmic drug which has been shown to antagonize THRα1, was evaluated in breast cancer cell lines in vitro and in vivo. The THRα1 splice variant and the entire receptor, THRα, were also independently targeted using siRNA to determine the effect of target knockdown in vitro. In our study, dronedarone demonstrates cytotoxic effects in vitro and in vivo in breast cancer cell lines at doses and concentrations that may be clinically relevant. However, knockdown of either THRα1 or THRα did not cause substantial anti-proliferative or cytotoxic effects in vitro, nor did it alter the sensitivity to dronedarone. Thus, we conclude that dronedarone’s cytotoxic effect in breast cancer cell lines are independent of THRα or THRα1 antagonism. Further, the depletion of THRα or THRα1 does not affect cell viability or proliferation. Characterizing the mechanism of dronedarone’s anti-tumor action may facilitate drug repurposing or the development of new anti-cancer agents.
Collapse
|
27
|
Williams GR, Boelen A, Refetoff S. 13th International Workshop on Resistance to Thyroid Hormone and Thyroid Hormone Action. Thyroid 2018; 28:690-691. [PMID: 29580183 DOI: 10.1089/thy.2018.0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Graham R Williams
- 1 Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London , London, United Kingdom
| | - Anita Boelen
- 2 Department of Endocrinology, Academic Medical Centre, University of Amsterdam , Amsterdam, The Netherlands
| | - Samuel Refetoff
- 3 Departments of Medicine and Pediatrics and Committee on Genetics, The University of Chicago , Chicago, Illinois
| |
Collapse
|
28
|
Yu C, Zhao J, Yao J, Wang H, Shang H, Zhang R, Cui Y, Wang L, Dong J, Liao L. Pituitary resistance to thyroid hormone caused by a novel mutation (H435A) in the thyroid hormone receptor beta: A case report. Medicine (Baltimore) 2018; 97:e10544. [PMID: 29794730 PMCID: PMC6392742 DOI: 10.1097/md.0000000000010544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
RATIONALE In patients with pituitary thyroid hormone resistance, the ability of the pituitary gland to detect (and down-regulate) the increase of triiodothyronine is selectively impaired, while the periphery remains sensitive to triiodothyronine levels, producing symptoms of peripheral thyrotoxicity. Subsequently, there is no feedback of pituitary production of thyroid-stimulating hormone (TSH), which is responsible for this hyperthyroidism. PATIENT CONCERNS We report a case of a 46-year-old Chinese woman diagnosed with a thyroid nodule, with normal thyroid function. She underwent conventional subtotal thyroidectomy, and replacement therapy (levothyroxine) was used for as convention. However, it was later proven that she had pituitary resistance to thyroid hormone, as supra-physiological doses of levothyroxine were required to normalize TSH levels, which resulted in peripheral thyrotoxicity. DIAGNOSES Based on the patient's symptoms, laboratory tests results, imaging examinations, and genetic analysis (which noted a gene mutation), a diagnosis of pituitary resistance to thyroid hormones was confirmed. INTERVENTIONS The dose of levothyroxine was adjusted periodically and β-adrenergic blocker was used as symptomatic treatment. OUTCOMES The outcome in the reported case has been satisfactory despite the persistence of non-suppressed TSH. LESSONS An inappropriate level of TSH should always be evaluated. We found a new mutation (H435A) of the thyroid hormone receptor beta gene, which allowed for the establishment of a definitive diagnosis.
Collapse
Affiliation(s)
- Changzhen Yu
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine
| | - Junyu Zhao
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University
| | - Jinming Yao
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University
| | - Huanjun Wang
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University
| | - Hongxia Shang
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University
| | - Rui Zhang
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University
| | - Yujiao Cui
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine
| | - Likang Wang
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine
| | - Jianjun Dong
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Liao
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University
| |
Collapse
|
29
|
Ferreira C, Prestin K, Hussner J, Zimmermann U, Meyer Zu Schwabedissen HE. PDZ domain containing protein 1 (PDZK1), a modulator of membrane proteins, is regulated by the nuclear receptor THRβ. Mol Cell Endocrinol 2018; 461:215-225. [PMID: 28928085 DOI: 10.1016/j.mce.2017.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/25/2017] [Accepted: 09/13/2017] [Indexed: 01/17/2023]
Abstract
Genome wide association studies revealed single nucleotide polymorphisms (SNP) located within the promoter of PDZ domain containing protein 1 (PDZK1) to be associated with serum uric acid levels. Since modulation of transporters and particularly of membrane proteins involved in uric acid handling by PDZK1 has previously been reported, the aim of this study was to analyze the impact of the polymorphisms rs1967017, rs1471633, and rs12129861 on promoter activity and thereby transcription of PDZK1. Cell-based reporter gene assays showed transactivation of the PDZK1-promoter by triiodothyronine mediated by thyroid hormone receptors (THR) α and β. In silico analysis verified localization of the polymorphism rs1967017 within the most likely THR binding site whose deletion reduced THR-mediated transactivation. Furthermore, our study shows regulation of PDZK1 by thyroid hormones, thereby providing a mechanistic basis for the previously reported associations between thyroid hormone status and uric acid homeostasis.
Collapse
Affiliation(s)
- Celio Ferreira
- Department of Pharmaceutical Sciences, Biopharmacy, University of Basel, 4056 Basel, Switzerland
| | - Katharina Prestin
- Department of Pharmaceutical Sciences, Biopharmacy, University of Basel, 4056 Basel, Switzerland
| | - Janine Hussner
- Department of Pharmaceutical Sciences, Biopharmacy, University of Basel, 4056 Basel, Switzerland
| | - Uwe Zimmermann
- Clinic for Urology, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
30
|
Reis LTC, da Silva MRD, Costa SL, Velozo EDS, Batista R, da Cunha Lima ST. Estrogen and Thyroid Hormone Receptor Activation by Medicinal Plants from Bahia, Brazil. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E8. [PMID: 29342924 PMCID: PMC5874573 DOI: 10.3390/medicines5010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Background: A number of medicinal plants are traditionally used for metabolic disorders in Bahia state, Brazil. The aim of this study was to evaluate the estrogen receptor (ER) and thyroid receptor (TR) activation of crude extracts prepared from 20 plants. Methods: Species were extracted and assayed for receptor activation through both ER and TR gene-reporter assays, using 17β-estradiol and triiodothyronine (T3), respectively, as the positive controls. Results: Cajanus cajan (Fabaceae), Abarema cochliacarpus (Fabaceae), and Borreria verticillata (Rubiaceae) were able to activate ER as much as the positive control (17β-estradiol). These three plant species were also assayed for TR activation. At the concentration of 50 µg/mL, C. cajans exerted the highest positive modulation on TR, causing an activation of 59.9%, while B. verticillata and A. cochliacarpus caused 30.8% and 23.3%, respectively. Conclusions: Our results contribute towards the validation of the traditional use of C. cajans, B. verticillata, and A. cochliacarpus in the treatment of metabolic disorders related to ER and TR functions. The gene-reporter assay was proven effective in screening crude plant extracts for ER/TR activation, endorsing this methodology as an important tool for future bioprospection studies focused on identifying novel starting molecules for the development of estrogen and thyroid agonists.
Collapse
Affiliation(s)
- Luã Tainã Costa Reis
- Laboratory of Bioprospection and Biotechnology (LaBBiotec), Institute of Biology, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, 147-Ondina, Salvador, BA 40170-115, Brazil.
| | - Magnus Régios Dias da Silva
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Federal University of São Paulo (UNIFESP), R. Sena Madureira, 1500-Vila Clementino, São Paulo, SP 04021-001, Brazil.
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biofunction, Institute of Health Sciences, Federal University of Bahia (UFBA), Reitor Miguel Calmon Avenue, 1272-Canela, Salvador, BA 40231-300, Brazil.
| | - Eudes da Silva Velozo
- Laboratory of Research in Materia Medica, Department of Medicament, Faculty of Pharmacy, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, 147-Ondina, Salvador, BA 40170-115, Brazil.
| | - Ronan Batista
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, 147-Ondina, Salvador, BA 40170-115, Brazil.
| | - Suzana Telles da Cunha Lima
- Laboratory of Bioprospection and Biotechnology (LaBBiotec), Institute of Biology, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, 147-Ondina, Salvador, BA 40170-115, Brazil.
| |
Collapse
|
31
|
Calzà L, Baldassarro VA, Fernandez M, Giuliani A, Lorenzini L, Giardino L. Thyroid Hormone and the White Matter of the Central Nervous System: From Development to Repair. VITAMINS AND HORMONES 2018; 106:253-281. [DOI: 10.1016/bs.vh.2017.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Campos JLO, Doratioto TR, Videira NB, Ribeiro Filho HV, Batista FAH, Fattori J, Indolfo NDC, Nakahira M, Bajgelman MC, Cvoro A, Laurindo FRM, Webb P, Figueira ACM. Protein Disulfide Isomerase Modulates the Activation of Thyroid Hormone Receptors. Front Endocrinol (Lausanne) 2018; 9:784. [PMID: 30671024 PMCID: PMC6331412 DOI: 10.3389/fendo.2018.00784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 12/12/2018] [Indexed: 12/30/2022] Open
Abstract
Thyroid hormone receptors (TRs) are responsible for mediating thyroid hormone (T3 and T4) actions at a cellular level. They belong to the nuclear receptor (NR) superfamily and execute their main functions inside the cell nuclei as hormone-regulated transcription factors. These receptors also exhibit so-called "non-classic" actions, for which other cellular proteins, apart from coregulators inside nuclei, regulate their activity. Aiming to find alternative pathways of TR modulation, we searched for interacting proteins and found that PDIA1 interacts with TRβ in a yeast two-hybrid screening assay. The functional implications of PDIA1-TR interactions are still unclear; however, our co-immunoprecipitation (co-IP) and fluorescence assay results showed that PDI was able to bind both TR isoforms in vitro. Moreover, T3 appears to have no important role in these interactions in cellular assays, where PDIA1 was able to regulate transcription of TRα and TRβ-mediated genes in different ways depending on the promoter region and on the TR isoform involved. Although PDIA1 appears to act as a coregulator, it binds to a TR surface that does not interfere with coactivator binding. However, the TR:PDIA1 complex affinity and activation are different depending on the TR isoform. Such differences may reflect the structural organization of the PDIA1:TR complex, as shown by models depicting an interaction interface with exposed cysteines from both proteins, suggesting that PDIA1 might modulate TR by its thiol reductase/isomerase activity.
Collapse
Affiliation(s)
- Jessica L. O. Campos
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Tabata R. Doratioto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Natalia B. Videira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Helder V. Ribeiro Filho
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Fernanda A. H. Batista
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
| | - Juliana Fattori
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
| | - Nathalia de C. Indolfo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Marcel Nakahira
- Institute of Chemistry (IQ), State University of Campinas (Unicamp), São Paulo, Brazil
| | - Marcio C. Bajgelman
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
| | - Aleksandra Cvoro
- Genomic Medicine, The Methodist Hospital Research Institute, Houston, TX, United States
| | - Francisco R. M. Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paul Webb
- California Institute for Regenerative Medicine, Oakland, CA, United States
| | - Ana Carolina M. Figueira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- *Correspondence: Ana Carolina M. Figueira
| |
Collapse
|
33
|
Thyroid Hormone Signaling in Retinal Development, Survival, and Disease. VITAMINS AND HORMONES 2018; 106:333-349. [DOI: 10.1016/bs.vh.2017.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
34
|
Ma H, Yang F, Butler MR, Belcher J, Redmond TM, Placzek AT, Scanlan TS, Ding XQ. Inhibition of thyroid hormone receptor locally in the retina is a therapeutic strategy for retinal degeneration. FASEB J 2017; 31:3425-3438. [PMID: 28428265 PMCID: PMC5503703 DOI: 10.1096/fj.201601166rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/11/2017] [Indexed: 12/22/2022]
Abstract
Thyroid hormone (TH) signaling regulates cell proliferation, differentiation, and metabolism. Recent studies have implicated TH signaling in cone photoreceptor viability. Using mouse models of retinal degeneration, we demonstrated that antithyroid drug treatment and targeting iodothyronine deiodinases (DIOs) to suppress cellular tri-iodothyronine (T3) production or increase T3 degradation preserves cones. In this work, we investigated the effectiveness of inhibition of the TH receptor (TR). Two genes, THRA and THRB, encode TRs; THRB2 has been associated with cone viability. Using TR antagonists and Thrb2 deletion, we examined the effects of TR inhibition. Systemic and ocular treatment with the TR antagonists NH-3 and 1-850 increased cone density by 30-40% in the Rpe65-/- mouse model of Leber congenital amaurosis and reduced the number of TUNEL+ cells. Cone survival was significantly improved in Rpe65-/- and Cpfl1 (a model of achromatopsia with Pde6c defect) mice with Thrb2 deletion. Ventral cone density in Cpfl1/Thrb2-/- and Rpe65-/- /Thrb2-/- mice was increased by 1- to 4-fold, compared with age-matched controls. Moreover, the expression levels of TR were significantly higher in the cone-degeneration retinas, suggesting locally elevated TR signaling. This work shows that the effects of antithyroid treatment or targeting DIOs were likely mediated by TRs and that suppressing TR protects cones. Our findings support the view that inhibition of TR locally in the retina is a therapeutic strategy for retinal degeneration management.-Ma, H., Yang, F., Butler, M. R., Belcher, J., Redmond, T. M., Placzek, A. T., Scanlan, T. S., Ding, X.-Q. Inhibition of thyroid hormone receptor locally in the retina is a therapeutic strategy for retinal degeneration.
Collapse
Affiliation(s)
- Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael R Butler
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Joshua Belcher
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew T Placzek
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, USA
| | - Thomas S Scanlan
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, USA
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA;
| |
Collapse
|
35
|
Ubiquitination of nuclear receptors. Clin Sci (Lond) 2017; 131:917-934. [PMID: 28473472 DOI: 10.1042/cs20160708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 12/17/2022]
Abstract
Nuclear receptors (NRs) are cellular proteins, which upon ligand activation, act to exert regulatory control over transcription and subsequent expression. Organized via systemic classification into seven subfamilies, NRs partake in modulating a vast expanse of physiological functions essential for maintenance of life. NRs display particular characteristics towards ubiquitination, the process of addition of specific ubiquitin tags at appropriate locations. Orchestrated through groups of enzymes harboring a diverse array of specialized structural components, the ubiquitination process emphatically alters the fate or downstream effects of NRs. Such influence is especially prominent in transcriptional processes such as promoter clearing for optimization and degradation pathways eliminating or recycling targeted proteins. Ultimately, the ubiquitination of NRs carries significant implications in terms of generating pathological clinical manifestations. Increasing evidence from studies involving patients and disease models suggests a role for ubiquitinated NRs in virtually every organ system. This supports the broad repertoire of roles that NRs play in the body, including modulatory conductors, facilitators, responders to external agents, and critical constituents for pharmacological or biological interventions. This review aims to cover relevant background and mechanisms of NRs and ubiquitination, with a focus towards elucidating subsequent pathophysiology and therapeutics in clinical disorders encompassing such ubiquitinated NRs.
Collapse
|
36
|
Vrzal R, Vrzalova A, Grycova A, Dvorak Z. Activated thyroid hormone receptor modulates dioxin-inducible aryl hydrocarbon receptor-mediated CYP1A1 induction in human hepatocytes but not in human hepatocarcinoma HepG2 cells. Toxicol Lett 2017; 275:77-82. [PMID: 28478156 DOI: 10.1016/j.toxlet.2017.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/29/2017] [Accepted: 05/02/2017] [Indexed: 01/26/2023]
Abstract
Aryl hydrocarbon receptor (AhR) is a transcription factor, the activity of which is modulated by hormones including glucocorticoids and estrogens. In this study, we examined the effects of triiodothyronine (T3), a ligand and activator of thyroid hormone receptor (TR), on transcriptional activity of AhR and the expression of its target gene CYP1A1. Study was carried out in human hepatocellular carcinoma cells HepG2 and primary cultures of human hepatocytes (HH). Gene reporter assay in stably transfected AZ-AhR cells revealed that T3 dose-dependently augmented 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible AhR-dependent luciferase activity. In contrast, T3 had no effect on TCDD-inducible expression of CYP1A1 mRNA, protein and catalytic activity. Incubation of human hepatocytes with T3 had modulatory and inter-individual (7 cell cultures from 7 different liver donors) effects on both basal and dioxin-inducible CYP1A1/2. Since there was no correlation between T3 effects on CYP1A expression and T3-dependent expression of Spot14 mRNA, the involvement of additional factors besides TR is supposed. Overall, the co-incubation of normal and cancer human hepatic cells with TCDD and T3 suggested transcriptional cross-talk between AhR and TR, which may have physiological and toxicological implications.
Collapse
Affiliation(s)
- Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic.
| | - Aneta Vrzalova
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic
| | - Aneta Grycova
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic
| |
Collapse
|
37
|
Charalampoudis P, Agrogiannis G, Kontzoglou K, Kouraklis G, Sotiropoulos GC. Thyroid hormone receptor alpha (TRa) tissue expression in ductal invasive breast cancer: A study combining quantitative immunohistochemistry with digital slide image analysis. Eur J Surg Oncol 2017; 43:1428-1432. [PMID: 28583788 DOI: 10.1016/j.ejso.2017.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/02/2017] [Accepted: 05/11/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In breast cancer, hormonal receptors hold promise for developing novel targeted therapies. The thyroid exerts its actions via the thyroid hormone receptors alpha and beta. The clinical significance of the expression of thyroid hormone receptors in breast cancer is unclear. MATERIAL AND METHODS We studied thyroid hormone receptor alpha (TRa) expression in 82 samples from 41 women with ductal invasive breast cancer and no thyroid disease. We performed quantitative immunohistochemistry with digital image analysis and correlated TRa expression with clinicopathological parameters. RESULTS TRa was expressed in both normal breast epithelium and breast cancer, but expression in breast cancer was significantly lower. TRa was expressed significantly less in larger and grade III tumors. Conversely, breast cancers with lymphovascular invasion showed increased TRa expression compared to cancers without lymphovascular invasion. TRa expression was not significantly different between node-positive and node-negative breast cancers, or among different hormonal profiles and intrinsic subtypes. DISCUSSION This is the first-in-human study to combine quantitative immunohistochemistry with image analysis to study TRa expression in women with ductal invasive breast cancer and no clinical or biochemical evidence of thyroid dysfunction. We confirm that TRa is expressed in both normal and malignant breast epithelium and suggest that TRa expression is downregulated during breast carcinogenesis. Larger and higher grade breast cancers demonstrate partial loss in TRa expression. Alterations in TRa expression take place even in the absence of clinical or biochemical thyroid disease. The underlying mechanism of these findings and their potential significance in survival and relapse mandate further research.
Collapse
Affiliation(s)
- P Charalampoudis
- Breast Unit, Second Propedeutic Department of Surgery, Laiko Hospital, Athens University School of Medicine, Athens, Greece; Breast Unit, Guy's and Saint Thomas' NHS Foundation Trust, London, United Kingdom; Division of Cancer Studies, King's College London, United Kingdom. petros.charalampoudis.@gmail.com
| | - G Agrogiannis
- First Department of Pathology, Athens University School of Medicine, Athens, Greece
| | - K Kontzoglou
- Breast Unit, Second Propedeutic Department of Surgery, Laiko Hospital, Athens University School of Medicine, Athens, Greece
| | - G Kouraklis
- Breast Unit, Second Propedeutic Department of Surgery, Laiko Hospital, Athens University School of Medicine, Athens, Greece
| | - G C Sotiropoulos
- Breast Unit, Second Propedeutic Department of Surgery, Laiko Hospital, Athens University School of Medicine, Athens, Greece
| |
Collapse
|
38
|
Jimenez R, Privalsky ML. A resistance to thyroid hormone syndrome mutant operates through the target gene repertoire of the wild-type thyroid hormone receptor. Mol Cell Endocrinol 2017; 447:87-97. [PMID: 28257829 DOI: 10.1016/j.mce.2017.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
Abstract
Thyroid hormone receptors (TRs) play crucial roles in vertebrates. Wild-type (WT) TRs function primarily as hormone-regulated transcription factors. A human endocrine disease, Resistance to Thyroid Hormone (RTH)-Syndrome, is caused by inheritance of mutant TRs impaired in the proper regulation of target gene expression. To better understand the molecular basis of RTH we compared the target genes regulated by an RTH-TRβ1 mutant (R429Q) to those regulated by WT-TRβ1. With only a few potential exceptions, the vast majority of genes we were able to identify as regulated by the WT-TRβ1, positively or negatively, were also regulated by the RTH-TRβ1 mutant. We conclude that the actions of R429Q-TRβ1 in RTH-Syndrome most likely reflect the reduced hormone affinity observed for this mutant rather than an alteration in target gene repertoire. Our results highlight the importance of target gene specificity in defining the disease phenotype and improve our understanding of how clinical treatments impact RTH-Syndrome.
Collapse
Affiliation(s)
- Robyn Jimenez
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, USA
| | - Martin L Privalsky
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, USA.
| |
Collapse
|
39
|
Furuya F, Ishii T, Tamura S, Takahashi K, Kobayashi H, Ichijo M, Takizawa S, Kaneshige M, Suzuki-Inoue K, Kitamura K. The ligand-bound thyroid hormone receptor in macrophages ameliorates kidney injury via inhibition of nuclear factor-κB activities. Sci Rep 2017; 7:43960. [PMID: 28272516 PMCID: PMC5341020 DOI: 10.1038/srep43960] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
In chronic kidney disease (CKD) patients, inflammation plays a pivotal role in the progression of renal fibrosis. Hypothyroidism is associated with an increased occurrence of atherosclerosis and inflammation, suggesting protective roles of thyroid hormones and their receptors against inflammatory processes. The contribution of thyroid hormone receptors to macrophage differentiation has not been well documented. Here, we focused on the endogenous thyroid hormone receptor α (TRα) in macrophages and examined the role of ligand-bound TRα in macrophage polarization-mediated anti-inflammatory effects. TRα-deficient irradiated chimeric mice showed exacerbated tubulointerstitial injury in a unilateral ureteral obstruction model. Compared with wild-type macrophages, macrophages isolated from the obstructed kidneys of mice lacking TRα displayed increased expression of proinflammatory cytokines that was accompanied by enhanced nuclear translocation of p65. Comparison of TRα-deficient bone marrow-derived macrophages with wild-type macrophages confirmed the propensity of the former cells to produce excessive IL-1β levels. Co-culture of these macrophages with renal epithelial cells induced more severe damage to the epithelial cells via the IL-1 receptor. Our findings indicate that ligand-bound TRα on macrophages plays a protective role in kidney inflammation through the inhibition of NF-κB pathways, possibly by affecting the pro- and anti-inflammatory balance that controls the development of CKD.
Collapse
Affiliation(s)
- Fumihiko Furuya
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Toshihisa Ishii
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Shogo Tamura
- Department of Laboratory and Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Kazuya Takahashi
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Hidetoshi Kobayashi
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Masashi Ichijo
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Soichi Takizawa
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Masahiro Kaneshige
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Katsue Suzuki-Inoue
- Department of Laboratory and Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Kenichiro Kitamura
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| |
Collapse
|
40
|
Statistical methods and molecular docking for the prediction of thyroid hormone receptor subtype binding affinity and selectivity. Struct Chem 2016. [DOI: 10.1007/s11224-016-0876-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Zhang J, Li Y, Gupta AA, Nam K, Andersson PL. Identification and Molecular Interaction Studies of Thyroid Hormone Receptor Disruptors among Household Dust Contaminants. Chem Res Toxicol 2016; 29:1345-54. [DOI: 10.1021/acs.chemrestox.6b00171] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jin Zhang
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Yaozong Li
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Arun A. Gupta
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Kwangho Nam
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | | |
Collapse
|
42
|
|
43
|
Shu M, Zai X, Zhang B, Wang R, Lin Z. Hypothyroidism Side Effect in Patients Treated with Sunitinib or Sorafenib: Clinical and Structural Analyses. PLoS One 2016; 11:e0147048. [PMID: 26784451 PMCID: PMC4718448 DOI: 10.1371/journal.pone.0147048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/28/2015] [Indexed: 12/30/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) provide more effective targeted treatments for cancer, but are subject to a variety of adverse effects, such as hypothyroidism. TKI-induced hypothyroidism is a highly complicated issue, because of not only the unrealized toxicological mechanisms, but also different incidences of individual TKI drugs. While sunitinib is suspected for causing thyroid dysfunction more often than other TKIs, sorafenib is believed to be less risky. Here we integrated clinical data and in silico drug-protein interactions to examine the pharmacological distinction between sunitinib and sorafenib. Statistical analysis on the FDA Adverse Event Reporting System (FAERS) confirmed that sunitinib is more concurrent with hypothyroidism than sorafenib, which was observed in both female and male patients. Then, we used docking method and identified 3 proteins specifically binding to sunitinib but not sorafenib, i.e., retinoid X receptor alpha, retinoic acid receptors beta and gamma. As potential off-targets of sunitinib, these proteins are well known to assemble with thyroid hormone receptors, which can explain the profound impact of sunitinib on thyroid function. Taken together, we established a strategy of integrated analysis on clinical records and drug off-targets, which can be applied to explore the molecular basis of various adverse drug reactions.
Collapse
Affiliation(s)
- Mao Shu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiaoli Zai
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Beina Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Rui Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zhihua Lin
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
44
|
Ma H, Ding XQ. Thyroid Hormone Signaling and Cone Photoreceptor Viability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:613-8. [PMID: 26427466 DOI: 10.1007/978-3-319-17121-0_81] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Thyroid hormone (TH) signaling regulates cell proliferation, differentiation, and apoptosis. In the retina, TH signaling plays a central role in cone opsin expression. TH signaling inhibits S opsin expression, stimulates M opsin expression, and promotes dorsal-ventral opsin patterning. TH signaling has also been associated with cone photoreceptor viability. Treatment with thyroid hormone triiodothyronine (T3) or induction of high T3 by deleting the hormone-inactivating enzyme type 3 iodothyronine deiodinase (DIO3) causes cone death in mice. This effect is reversed by deletion of the TH receptor (TR) gene. Consistent with the T3 treatment effect, suppressing TH signaling preserves cones in mouse models of retinal degeneration. The regulation of cone survival by TH signaling appears to be independent of its regulatory role in cone opsin expression. The mechanism by which TH signaling regulates cone viability remains to be identified. The current understanding of TH signaling regulation in photoreceptor viability suggests that suppressing TH signaling locally in the retina may represent a novel strategy for retinal degeneration management.
Collapse
Affiliation(s)
- Hongwei Ma
- The Department of Cell Biology, University of Oklahoma Health Sciences Center, 73104, Oklahoma City, OK, USA.
| | - Xi-Qin Ding
- The Department of Cell Biology, University of Oklahoma Health Sciences Center, 73104, Oklahoma City, OK, USA.
| |
Collapse
|
45
|
Bjørnstad S, Samara A, Erichsen A, Paulsen RE, Glover JC, Roald B. Hampered Lung Maturation in Methimazole-Induced Hypothyroidism in Fetal Chicken: Morphological and Molecular Correlates to Human Fetal Development. Neonatology 2016; 110:83-92. [PMID: 27070722 DOI: 10.1159/000444656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/11/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Molecular understanding of lung development is crucial for developing therapies and diagnostic tools. Animal models with altered thyroid hormone signaling provide mechanistic insight into thyroid-dependent neonatal lung disease. Repression of Klf2 (Krüppel-like factor 2), a suggested T3 target gene, is associated with disrupted lung development in mice. Klf2 is proposed to be specifically involved in type I pneumocyte differentiation. OBJECTIVES To explore mechanisms of thyroid-dependent lung disease, we studied developing chicken fetuses with experimentally induced hypothyroidism. METHODS Morphology and the expression of a panel of molecules linked to Klf2 were assessed using histology, immunohistochemistry, Western blot and qPCR. RESULTS Methimazole injections at E14 hampered lung maturation. The effects of methimazole were evident in several tissue compartments, and impacted on both pneumocyte and vascular differentiation, suggesting cellular and molecular pleiotropy. CONCLUSIONS Concomitant expression changes in a panel of selected microRNAs regulated by Klf2 suggest importance in lung development. These microRNAs may thus represent potential clinical targets and diagnostic and prognostic tools in thyroid-dependent lung disease.
Collapse
Affiliation(s)
- Sigrid Bjørnstad
- Department of Pathology, Oslo University Hospital HF, Ullevx00E5;l, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
46
|
Marino L, Jornayvaz FR. Endocrine causes of nonalcoholic fatty liver disease. World J Gastroenterol 2015; 21:11053-76. [PMID: 26494962 PMCID: PMC4607905 DOI: 10.3748/wjg.v21.i39.11053] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/11/2015] [Accepted: 08/28/2015] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the industrialized world. The prevalence of NAFLD is increasing, becoming a substantial public health burden. NAFLD includes a broad spectrum of disorders, from simple conditions such as steatosis to severe manifestations such as fibrosis and cirrhosis. The relationship of NAFLD with metabolic alterations such as type 2 diabetes is well described and related to insulin resistance, with NAFLD being recognized as the hepatic manifestation of metabolic syndrome. However, NAFLD may also coincide with endocrine diseases such as polycystic ovary syndrome, hypothyroidism, growth hormone deficiency or hypercortisolism. It is therefore essential to remember, when discovering altered liver enzymes or hepatic steatosis on radiological exams, that endocrine diseases can cause NAFLD. Indeed, the overall prognosis of NAFLD may be modified by treatment of the underlying endocrine pathology. In this review, we will discuss endocrine diseases that can cause NALFD. Underlying pathophysiological mechanisms will be presented and specific treatments will be reviewed.
Collapse
|
47
|
Regulation of skeletal muscle mitochondrial function by nuclear receptors: implications for health and disease. Clin Sci (Lond) 2015; 129:589-99. [PMID: 26186742 DOI: 10.1042/cs20150246] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Skeletal muscle metabolism is highly dependent on mitochondrial function, with impaired mitochondrial biogenesis associated with the development of metabolic diseases such as insulin resistance and type 2 diabetes. Mitochondria display substantial plasticity in skeletal muscle, and are highly sensitive to levels of physical activity. It is thought that physical activity promotes mitochondrial biogenesis in skeletal muscle through increased expression of genes encoded in both the nuclear and the mitochondrial genome; however, how this process is co-ordinated at the cellular level is poorly understood. Nuclear receptors (NRs) are key signalling proteins capable of integrating environmental factors and mitochondrial function, thereby providing a potential link between exercise and mitochondrial biogenesis. The aim of this review is to highlight the function of NRs in skeletal muscle mitochondrial biogenesis and discuss the therapeutic potential of NRs for the management and treatment of chronic metabolic disease.
Collapse
|
48
|
The expression of thyroid hormone receptors (THR) is regulated by the progesterone receptor system in first trimester placental tissue and in BeWo cells in vitro. Eur J Obstet Gynecol Reprod Biol 2015; 195:31-39. [PMID: 26476797 DOI: 10.1016/j.ejogrb.2015.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/06/2015] [Accepted: 09/03/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Thyroid hormones are essential for the maintenance of pregnancy and a deficiency in maternal thyroid hormones has been associated with early pregnancy losses. The aim of this study was a systematic investigation of the influence of mifepristone (RU 486) on the expression of the thyroid hormone receptor (THR) isoforms THRα1, THRα2, THRβ1 and THRβ2 on protein and mRNA-level. METHODS Samples of placental tissue were obtained from patients with mifepristone induced termination of pregnancy (n=13) or mechanical induced termination of normal pregnancy (n=20), each from the 4th to 13th week of pregnancy. Expression of THRα1, THRα2, THRβ1 and THRβ2 was analysed on protein level by immunohistochemistry and on mRNA level by real time RT-PCR (TaqMan). The influence of progesterone on THR gene expression was analysed in the trophoblast tumour cell line BeWo by real time RT-PCR (TaqMan). RESULTS Nuclear expression of THRα1, THRα2 and THRβ1 is downregulated on protein level in mifepristone (RU 486) treated villous trophoblast tissue. In decidual tissue, we found a significant downregulation only for THRα1 in mifepristone treated tissue. On mRNA level, we also found a significantly reduced expression of THRA but no significant downregulation for THRB in placental tissue. The gene THRA encodes the isoform THRα and the gene THRB encodes the isoform THRβ. The majority of cells expressing the thyroid hormone receptors in the decidua are decidual stromal cells. In addition, in vitro experiments with trophoblast tumour cells showed that progesterone significantly induced THRA but not THRB expression. CONCLUSIONS Termination of pregnancy with mifepristone (RU 486) leads to a downregulation of THRα1, THRα2 and THRβ1 in villous trophoblasts and in addition to a decreased expression of THRA in placental tissue. Decreased expression of THRα1 induced by RU486 could also be found in the decidua. Therefore inhibition of the progesterone receptor may be responsible for this downregulation. This assumption is supported by the finding, that stimulation of the progesterone receptor by progesterone itself up-regulated THRA in trophoblast cells in vitro.
Collapse
|
49
|
Abstract
The cellular influx and efflux of thyroid hormones are facilitated by transmembrane protein transporters. Of these transporters, monocarboxylate transporter 8 (MCT8) is the only one specific for the transport of thyroid hormones and some of their derivatives. Mutations in SLC16A2, the gene that encodes MCT8, lead to an X-linked syndrome with severe neurological impairment and altered concentrations of thyroid hormones. Histopathological analysis of brain tissue from patients who have impaired MCT8 function indicates that brain lesions start prenatally, and are most probably the result of cerebral hypothyroidism. A Slc16a2 knockout mouse model has revealed that Mct8 is an important mediator of thyroid hormone transport, especially T3, through the blood-brain barrier. However, unlike humans with an MCT8 deficiency, these mice do not have neurological impairment. One explanation for this discrepancy could be differences in expression of the T4 transporter OATP1C1 in the blood-brain barrier; OATP1C1 is more abundant in rodents than in primates and permits the passage of T4 in the absence of T3 transport, thus preventing full cerebral hypothyroidism. In this Review, we discuss the relevance of thyroid hormone transporters in health and disease, with a particular focus on the pathophysiology of MCT8 mutations.
Collapse
Affiliation(s)
- Juan Bernal
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Ana Guadaño-Ferraz
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Beatriz Morte
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Arturo Duperier 4, 28029 Madrid, Spain
| |
Collapse
|
50
|
Chadha N, Bahia MS, Kaur M, Silakari O. Thiazolidine-2,4-dione derivatives: Programmed chemical weapons for key protein targets of various pathological conditions. Bioorg Med Chem 2015; 23:2953-74. [DOI: 10.1016/j.bmc.2015.03.071] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/26/2015] [Accepted: 03/28/2015] [Indexed: 10/23/2022]
|