1
|
Hu Z, Herrmann JE, Schwarz EL, Gerosa FM, Emuna N, Humphrey JD, Feinberg AW, Hsia TY, Skylar-Scott MA, Marsden AL. Multiphysics Simulations of a Bioprinted Pulsatile Fontan Conduit. J Biomech Eng 2025; 147:071001. [PMID: 40172060 DOI: 10.1115/1.4068319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/13/2025] [Indexed: 04/04/2025]
Abstract
For single ventricle congenital heart patients, Fontan surgery is the final stage in a series of palliative procedures, bypassing the heart to enable passive flow of de-oxygenated blood from the inferior vena cava (IVC) to the pulmonary arteries. This circulation leads to severely elevated central venous pressure, diminished cardiac output, and thus numerous sequelae and premature mortality. To address these issues, we propose a bioprinted pulsatile conduit to provide a secondary power source for the Fontan circulation. A multiphysics computational framework was developed to predict conduit performance and to guide design prior to printing. Physics components included electrophysiology, cardiomyocyte contractility, and fluid-structure interaction coupled to a closed-loop lumped parameter network representing Fontan physiology. A range of myocardial contractility was considered and simulated. The initial conduit design with adult ventricular cardiomyocyte contractility values coupled to a Purkinje network demonstrated potential to reduce liver (IVC) pressure from 16.4 to 9.3 mmHg and increase cardiac output by 29%. After systematically assessing the impacts of contraction duration, fiber direction, and valve placement on conduit performance, we identified a favorable design that successfully reduces liver pressure to 7.3 mmHg and increases cardiac output by 38%, almost normalizing adverse hemodynamics in the lower venous circulation. Valves at the input and output of the conduit are essential to achieve these satisfactory results; without valves, performance is compromised. However, a potential drawback of the design is the elevation of superior vena cava (SVC) pressure, which varies linearly with liver pressure reduction.
Collapse
Affiliation(s)
- Zinan Hu
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
| | - Jessica E Herrmann
- School of Medicine, Stanford University, Stanford, CA 94305
- Stanford Medicine
| | - Erica L Schwarz
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
- Yale University
| | - Fannie M Gerosa
- Department of Pediatrics, Stanford University, Stanford, CA 94305
- Stanford University
| | - Nir Emuna
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
- Yale University
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Tain-Yen Hsia
- Arnold Palmer Hospital for Children, Orlando, FL 32806
- Arnold Palmer Hospital for Children
| | - Mark A Skylar-Scott
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Stanford University
| | - Alison L Marsden
- Department of Pediatrics, Stanford University, Stanford, CA 94305; Department of Bioengineering, Stanford University, Stanford, CA 94305
| |
Collapse
|
2
|
Truong H, Abaci A, Gharacheh H, Guvendiren M. Embedded bioprinting of dense cellular constructs in bone allograft-enhanced hydrogel matrices for bone tissue engineering. Biomater Sci 2025; 13:3213-3222. [PMID: 40018866 DOI: 10.1039/d4bm01616e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Bone tissue engineering aims to address critical-sized defects by developing biomimetic scaffolds that promote repair and regeneration. This study introduces a material extrusion-based embedded bioprinting approach to fabricate dense cellular constructs within methacrylated hyaluronic acid (MeHA) hydrogels enhanced with bioactive microparticles. Composite matrices containing human bone allograft or tricalcium phosphate (TCP) particles were evaluated for their rheological, mechanical, and osteoinductive properties. High cell viability (>95%) and uniform strand dimensions were achieved across all bioprinting conditions, demonstrating the method's ability to preserve cellular integrity and structural fidelity. The inclusion of bone or TCP particles did not significantly alter the viscosity, crosslinking kinetics, or compressive modulus of the MeHA hydrogels, ensuring robust mechanical stability and shape retention. However, bone allograft particles significantly enhanced osteogenic differentiation of human mesenchymal stem cells (hMSCs), as evidenced by increased alkaline phosphatase (ALP) activity and calcium deposition. Notably, osteogenesis was observed even in basal media, with a dose-dependent response to bone particle concentration, highlighting the intrinsic bioactivity of allograft particles. This study demonstrates the potential of combining embedded bioprinting with bioactive matrices to create dense, osteoinductive cellular constructs. The ability to induce osteogenesis without external growth factors positions this platform as a scalable and clinically relevant solution for bone repair and regeneration.
Collapse
Affiliation(s)
- Hang Truong
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Alperen Abaci
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Hadis Gharacheh
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Murat Guvendiren
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
3
|
Gong X, Wen Z, Liang Z, Xiao H, Lee S, Rossello-Martinez A, Xing Q, Wright T, Nguyen RY, Mak M. Instant assembly of collagen for tissue engineering and bioprinting. NATURE MATERIALS 2025:10.1038/s41563-025-02241-7. [PMID: 40481243 DOI: 10.1038/s41563-025-02241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/10/2025] [Indexed: 06/11/2025]
Abstract
Engineering functional cellular tissue components holds great promise in regenerative medicine. Collagen I, a key scaffolding material in bodily tissues, presents challenges in controlling its assembly kinetics in a biocompatible manner in vitro, restricting its use as a primary scaffold or adhesive in cellular biofabrication. Here we report a collagen fabrication method termed as tunable rapid assembly of collagenous elements that leverages macromolecular crowding to achieve the instant assembly of unmodified collagen. By applying an inert crowder to accelerate the liquid-gel transition of collagen, our method enables the high-throughput creation of physiological collagen constructs across length scales-from micro to macro-and facilitates cell self-assembly and morphogenesis through the generation of tunable multiscale architectural cues. With high biocompatibility and rapid gelation kinetics, the tunable rapid assembly of collagenous elements method also offers a versatile bioprinting approach for collagen over a wide concentration range, enabling the direct printing of cellular tissues using pH-neutral, bioactive collagen bioinks and achieving both structural complexity and biofunctionality. This work broadens the scope of controllable multiscale biofabrication for tissues across various organ systems using unmodified collagen.
Collapse
Affiliation(s)
- Xiangyu Gong
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Zhang Wen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Zixie Liang
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Hugh Xiao
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sein Lee
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - Qinzhe Xing
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Thomas Wright
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ryan Y Nguyen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Michael Mak
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Giraldo-Londoño O, Bettale C, Martinez K, Thaqi M, Wheeler A. Low-Cost, High-Fidelity Skin and Intestine Surrogates for Surgical Training. J Surg Res 2025; 311:8-22. [PMID: 40378658 DOI: 10.1016/j.jss.2025.03.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 03/14/2025] [Accepted: 03/25/2025] [Indexed: 05/19/2025]
Abstract
INTRODUCTION Organ surrogates play a pivotal role in training surgical residents, offering a safe and cost-effective alternative to live human patients or animals. However, existing surrogates often fall short, either due to their high cost or inability to accurately replicate the mechanical behavior and anatomical complexity of human tissue. This study aims to address these limitations by developing affordable, realistic, and biomechanically accurate organ surrogates tailored for surgical training. MATERIALS AND METHODS Our methods involve 3D printing customized molds for pour casting, injection molding, and rotational molding, employing off-the-shelf platinum-cure silicone rubbers and specially formulated silicone-based blends as base materials. This approach ensures cost-effectiveness and allows utilizing commercially available materials and accessible laboratory equipment, enabling low-cost in-house fabrication of multi-layered skin and intestine surrogates for surgical training. RESULTS Feedback received from surgical residents and surgeons at the University of Missouri School of Medicine indicates that our surrogates consistently outperform industry-standard models in terms of biomechanical accuracy. Moreover, our cost analysis revealed that our fabrication methods yield surrogates that are over 90% less expensive than commercial alternatives. CONCLUSIONS The skin and intestine surrogates developed in this study demonstrate the feasibility of creating affordable, high-fidelity surgical training models using accessible materials and established fabrication techniques. By addressing the limitations of existing surrogates, this work lays the foundation for developing a broader range of anatomical models. These advances have the potential to improve the effectiveness and accessibility of surgical training.
Collapse
Affiliation(s)
- Oliver Giraldo-Londoño
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri.
| | - Chadwick Bettale
- Department of Industrial and Systems Engineering, University of Missouri, Columbia, Missouri
| | - Kyle Martinez
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri
| | - Milot Thaqi
- Department of General Surgery, University of Missouri, Columbia, Missouri
| | - Andrew Wheeler
- Department of General Surgery, University of Missouri, Columbia, Missouri
| |
Collapse
|
5
|
Jordan SN, Li X, Rossello-Martinez A, Liang Z, Gong X, Xiao H, Mak M. Macromolecular crowding-based biofabrication utilizing unmodified extracellular matrix bioinks. Acta Biomater 2025; 198:37-48. [PMID: 40268621 DOI: 10.1016/j.actbio.2025.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 04/25/2025]
Abstract
The extracellular matrix (ECM) is the body's natural cell-scaffolding material, and its structure and content are often imitated for applications in tissue engineering and regenerative medicine to promote biocompatibility. One approach toward biomimicking natural ECMs is to utilize decellularized extracellular matrices (dECMs), which involve removing cellular components from native tissues to preserve natural components. Solubilizing dECMs to produce bioinks therefore holds high potential for 3D biofabrication and bioprinting of bioactive scaffolds and tissues. However, solubilized ECMs have low printability owing to their slow gelation times, which necessitates additional artificial modifications (e.g. crosslinking) to facilitate biofabrication applications. In this study, we demonstrate a method utilizing macromolecular crowding (MMC) to confer printability, via rapid gelation, to solubilized unmodified dECMs from a variety of tissue types - heart, muscle, liver, small intestine, and large intestine. We show cell spreading and contractility in cell-laden dECM gels fabricated through MMC, highlighting biocompatibility with our method. Finally, we demonstrate successful extrusion bioprinting of complex 3D structures using unmodified dECM solutions as bioinks, revealing the potential of our MMC-based fabrication method for layer-by-layer building of user-designed bioinks made from wide-ranging fully physiological tissues. STATEMENT OF SIGNIFICANCE: Decellularized extracellular matrix (dECM) bioinks are among the most promising materials for simulating native organ-specific extracellular matrices. However, standard methods for gelling solubilized dECMs are slow and result in poor mechanical and structural characteristics, reducing printability. dECM solutions are typically supplemented with additional crosslinkers for the formation of robust hydrogels. The crosslinkers may be toxic to cells, and they often need UV light for activation. Here, we present a method that allows wide-ranging dECMs to be easily patternable and 3D printable in their unmodified forms. We demonstrate cell spreading and contractility in cell-laden unmodified dECM gels created demonstrating cell viability and bioactivity. We also demonstrated successful extrusion bioprinting of complex 3D structures utilizing low concentration unmodified dECM bioinks and normal healthy lung fibroblasts.
Collapse
Affiliation(s)
- Seyma Nayir Jordan
- Yale University, Department of Biomedical Engineering, New Haven, CT, USA
| | - Xianmu Li
- Yale University, Department of Biomedical Engineering, New Haven, CT, USA
| | | | - Zixie Liang
- Yale University, Department of Biomedical Engineering, New Haven, CT, USA
| | - Xiangyu Gong
- Yale University, Department of Biomedical Engineering, New Haven, CT, USA; Stony Brook University, Department of Pharmacological Sciences, Stony Brook, USA
| | - Hugh Xiao
- Yale University, Department of Biomedical Engineering, New Haven, CT, USA; Stony Brook University, Department of Pharmacological Sciences, Stony Brook, USA
| | - Michael Mak
- Yale University, Department of Biomedical Engineering, New Haven, CT, USA; Stony Brook University, Department of Pharmacological Sciences, Stony Brook, USA.
| |
Collapse
|
6
|
Hudson A, Shiwarski DJ, Kramer AJ, Feinberg AW. Enhancing Viability in Static and Perfused 3D Tissue Constructs Using Sacrificial Gelatin Microparticles. ACS Biomater Sci Eng 2025; 11:2888-2897. [PMID: 40194916 PMCID: PMC12076283 DOI: 10.1021/acsbiomaterials.4c02169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/09/2025]
Abstract
Current limitations in engineered tissues arise from the inability to provide sufficient nutrients to cells deep within constructs, restricting their viability. This study focuses on enhancing diffusion by creating a microporous microenvironment using gelatin microparticles within collagen scaffolds. By leveraging the FRESH (Freeform Reversible Embedding of Suspended Hydrogels) 3D bioprinting technique, gelatin microparticles are utilized both as a support material and as a thermoresponsive porogen to establish interconnected pores. The results indicate that scaffolds with 75% porosity significantly increase diffusion rates and cell viability, extending beyond the conventional ∼200 μm limit. Additionally, integrating vascular-like channels with porous scaffolds and applying perfusion improved nutrient transport, leading to enhanced cell survival in larger constructs. This combination of microporosity and perfusion represents a promising approach to create thicker tissues without necrotic regions, potentially paving the way for scalable tissue engineering applications. The findings suggest that optimizing pore sizes and scaffold perfusion can bridge the gap between rapid tissue formation and slower vascularization processes, enabling the future development of functional tissue constructs at clinically relevant scales.
Collapse
Affiliation(s)
- Andrew
R. Hudson
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Daniel J. Shiwarski
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Alec J. Kramer
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Adam W. Feinberg
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
7
|
Mueller MC, Blomberg R, Tanneberger AE, Davis-Hall D, Neeves KB, Magin CM. Female Fibroblast Activation Is Estrogen-Mediated in Sex-Specific 3D-Bioprinted Pulmonary Artery Adventitia Models. ACS Biomater Sci Eng 2025; 11:2935-2945. [PMID: 40285704 DOI: 10.1021/acsbiomaterials.5c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Pulmonary arterial hypertension (PAH) is a form of pulmonary vascular disease characterized by scarring of the small blood vessels that results in reduced blood flow and increased blood pressure in the lungs. Over time, this increase in blood pressure causes damage to the heart. Idiopathic (IPAH) impacts male and female patients differently, with female patients showing a higher disease susceptibility (4:1 female-to-male ratio) but experiencing longer survival rates postdiagnosis compared to male patients. This complex sex dimorphism is known as the estrogen paradox. Prior studies suggest that estrogen signaling may be pathologic in the pulmonary vasculature and protective in the heart, yet the mechanisms underlying these sex differences in IPAH remain unclear. Many previous studies of PAH relied on male cells or cells of undisclosed origin for in vitro modeling. Here, we present a dynamic, three-dimensional (3D)-bioprinted model incorporating cells and circulating sex hormones from female patients to specifically study how female patients respond to changes in microenvironmental stiffness and sex hormone signaling on the cellular level. Poly(ethylene glycol)-α methacrylate (PEGαMA)-based hydrogels containing female human pulmonary artery adventitia fibroblasts (hPAAFs) from IPAH or control donors were 3D bioprinted to mimic pulmonary artery adventitia. These biomaterials were initially soft, like healthy blood vessels, and then stiffened using light to mimic vessel scarring in PAH. These 3D-bioprinted models showed that stiffening the microenvironment around female IPAH hPAAFs led to hPAAF activation. On both the protein and gene-expression levels, cellular activation markers significantly increased in stiffened samples and were highest in IPAH patient-derived cells. Treatment with a selective estrogen receptor modulator, which is currently in clinical trials for IPAH treatment, reduced the expression of hPAAF activation markers, demonstrating that hPAAF activation is one pathologic response mediated by estrogen signaling in the vasculature. These results showed the utility of sex-specific, 3D-bioprinted pulmonary artery adventitia models for preclinical drug discovery and validation.
Collapse
Affiliation(s)
- Mikala C Mueller
- Department of Bioengineering, University of Colorado, Denver|Anschutz Medical Campus, Aurora 80045, Colorado, United States
| | - Rachel Blomberg
- Department of Bioengineering, University of Colorado, Denver|Anschutz Medical Campus, Aurora 80045, Colorado, United States
| | - Alicia E Tanneberger
- Department of Bioengineering, University of Colorado, Denver|Anschutz Medical Campus, Aurora 80045, Colorado, United States
| | - Duncan Davis-Hall
- Department of Bioengineering, University of Colorado, Denver|Anschutz Medical Campus, Aurora 80045, Colorado, United States
| | - Keith B Neeves
- Department of Bioengineering, University of Colorado, Denver|Anschutz Medical Campus, Aurora 80045, Colorado, United States
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora 80045, Colorado, United States
- Hemophilia and Thrombosis Center, University of Colorado, Anschutz Medical Campus, Aurora 80045, Colorado, United States
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado, Denver|Anschutz Medical Campus, Aurora 80045, Colorado, United States
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora 80045, Colorado, United States
- Division of Pulmonary Sciences & Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora 80045, Colorado, United States
| |
Collapse
|
8
|
Branco F, Cunha J, Mendes M, Sousa JJ, Vitorino C. 3D Bioprinting Models for Glioblastoma: From Scaffold Design to Therapeutic Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501994. [PMID: 40116532 DOI: 10.1002/adma.202501994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Indexed: 03/23/2025]
Abstract
Conventional in vitro models fail to accurately mimic the tumor in vivo characteristics, being appointed as one of the causes of clinical attrition rate. Recent advances in 3D culture techniques, replicating essential physical and biochemical cues such as cell-cell and cell-extracellular matrix interactions, have led to the development of more realistic tumor models. Bioprinting has emerged to advance the creation of 3D in vitro models, providing enhanced flexibility, scalability, and reproducibility. This is crucial for the development of more effective drug treatments, and glioblastoma (GBM) is no exception. GBM, the most common and deadly brain cancer, remains a major challenge, with a median survival of only 15 months post-diagnosis. This review highlights the key components needed for 3D bioprinted GBM models. It encompasses an analysis of natural and synthetic biomaterials, along with crosslinking methods to improve structural integrity. Also, it critically evaluates current 3D bioprinted GBM models and their integration into GBM-on-a-chip platforms, which hold noteworthy potential for drug screening and personalized therapies. A versatile development framework grounded on Quality-by-Design principles is proposed to guide the design of bioprinting models. Future perspectives, including 4D bioprinting and machine learning approaches, are discussed, along with the current gaps to advance the field further.
Collapse
Affiliation(s)
- Francisco Branco
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
| | - Joana Cunha
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
| | - Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3004-535, Portugal
| | - João J Sousa
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3004-535, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3004-535, Portugal
| |
Collapse
|
9
|
Shin YJ, Safina D, Zheng Y, Levenberg S. Microvascularization in 3D Human Engineered Tissue and Organoids. Annu Rev Biomed Eng 2025; 27:473-498. [PMID: 40310885 DOI: 10.1146/annurev-bioeng-103023-115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The microvasculature, a complex network of small blood vessels, connects systemic circulation with local tissues, facilitating the nutrient and oxygen exchange that is critical for homeostasis and organ function. Engineering these structures is paramount for advancing tissue regeneration, disease modeling, and drug testing. However, replicating the intricate architecture of native vascular systems-characterized by diverse vessel diameters, cellular constituents, and dynamic perfusion capabilities-presents significant challenges. This complexity is compounded by the need to precisely integrate biomechanical, biochemical, and cellular cues. Recent breakthroughs in microfabrication, organoids, bioprinting, organ-on-a-chip platforms, and in vivo vascularization techniques have propelled the field toward faithfully replicating vascular complexity. These innovations not only enhance our understanding of vascular biology but also enable the generation of functional, perfusable tissue constructs. Here, we explore state-of-the-art technologies and strategies in microvascular engineering, emphasizing key advancements and addressing the remaining challenges to developing fully functional vascularized tissues.
Collapse
Affiliation(s)
- Yu Jung Shin
- Department of Bioengineering, University of Washington, Seattle, Washington, USA;
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Dina Safina
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel;
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, Washington, USA;
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel;
| |
Collapse
|
10
|
Haack AJ, Brown LG, Goldstein AJ, Mulimani P, Berthier J, Viswanathan AR, Kopyeva I, Whitten JM, Lin A, Nguyen SH, Leahy TP, Bouker EE, Padgett RM, Mazzawi NA, Tokihiro JC, Bretherton RC, Wu A, Tapscott SJ, DeForest CA, Popowics TE, Berthier E, Sniadecki NJ, Theberge AB. Suspended Tissue Open Microfluidic Patterning (STOMP). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501148. [PMID: 40298902 DOI: 10.1002/advs.202501148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/27/2025] [Indexed: 04/30/2025]
Abstract
Free-standing tissue structures tethered between pillars are powerful mechanobiology tools for studying cell contraction. To model interfaces ubiquitous in natural tissues and upgrade existing single-region suspended constructs, we developed Suspended Tissue Open Microfluidic Patterning (STOMP), a method to create multi-regional suspended tissues. STOMP uses open microfluidics and capillary pinning to pattern subregions within free-standing tissues, facilitating the study of complex tissue interfaces, such as diseased-healthy boundaries (e.g., fibrotic-healthy) and tissue-type interfaces (e.g., bone-ligament). We observed altered contractile dynamics in fibrotic-healthy engineered heart tissues compared to single-region tissues and differing contractility in bone-ligament enthesis constructs compared to single-tissue periodontal ligament models. STOMP is a versatile platform - surface tension-driven patterning removes material requirements common with other patterning methods (e.g., shear-thinning, photopolymerizable) allowing tissue generation in multiple geometries with native extracellular matrices and advanced four-dimensional (4D)- materials. STOMP combines the contractile functionality of suspended tissues with precise patterning, enabling dynamic and spatially controlled studies.
Collapse
Affiliation(s)
- Amanda J Haack
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Lauren G Brown
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Alex J Goldstein
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Priti Mulimani
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195, USA
| | - Jean Berthier
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Asha R Viswanathan
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jamison M Whitten
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ariel Lin
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98109, USA
| | - Serena H Nguyen
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Thomas P Leahy
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Ella E Bouker
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ruby M Padgett
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Natalie A Mazzawi
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195, USA
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Jodie C Tokihiro
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ross C Bretherton
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Aaliyah Wu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | - Cole A DeForest
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98109, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Tracy E Popowics
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195, USA
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Nathan J Sniadecki
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Ashleigh B Theberge
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- Department of Urology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| |
Collapse
|
11
|
Shiwarski DJ, Hudson AR, Tashman JW, Bakirci E, Moss S, Coffin BD, Feinberg AW. 3D bioprinting of collagen-based high-resolution internally perfusable scaffolds for engineering fully biologic tissue systems. SCIENCE ADVANCES 2025; 11:eadu5905. [PMID: 40267204 PMCID: PMC12017336 DOI: 10.1126/sciadv.adu5905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/21/2025] [Indexed: 04/25/2025]
Abstract
Organ-on-a-chip and microfluidic systems have improved the translational relevance of in vitro systems; however, current manufacturing approaches impart limitations on materials selection, non-native mechanical properties, geometric complexity, and cell-driven remodeling into functional tissues. Here, we three-dimensionally (3D) bioprint extracellular matrix (ECM) and cells into collagen-based high-resolution internally perfusable scaffolds (CHIPS) that integrate with a vascular and perfusion organ-on-a-chip reactor (VAPOR) to form a complete tissue engineering platform. We improve the fidelity of freeform reversible embedding of suspended hydrogels (FRESH) bioprinting to produce a range of CHIPS designs fabricated in a one-step process. CHIPS exhibit size-dependent permeability of perfused molecules into the surrounding scaffold to support cell viability and migration. Lastly, we implemented multi-material bioprinting to control 3D spatial patterning, ECM composition, cellularization, and material properties to create a glucose-responsive, insulin-secreting pancreatic-like CHIPS with vascular endothelial cadherin+ vascular-like networks. Together, CHIPS and VAPOR form a platform technology toward engineering full organ-scale function for disease modeling and cell replacement therapy.
Collapse
Affiliation(s)
- Daniel J. Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Andrew R. Hudson
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Joshua W. Tashman
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ezgi Bakirci
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samuel Moss
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Brian D. Coffin
- Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Adam W. Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
12
|
Fredrikson JP, Roth DM, Cosgrove JA, Sener G, Crow LA, Eckenstein K, Wu L, Hosseini M, Thomas G, Eksi SE, Bertassoni L. Engineering neuronal networks in granular microgels to innervate bioprinted cancer organoids on-a-chip. LAB ON A CHIP 2025. [PMID: 40269972 DOI: 10.1039/d5lc00134j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Organoid models are invaluable for studying organ processes in vitro, offering an unprecedented ability to replicate organ function. Despite recent advancements that have increased their cellular complexity, organoids generally lack key specialized cell types, such as neurons, limiting their ability to fully model organ function and dysfunction. Innervating organoids remains a significant challenge due to the asynchronous biological cues governing neural and organ development. Here, we present a versatile organ-on-a-chip platform designed to innervate organoids across diverse tissue types. Our strategy enables the development of innervated granular hydrogel tissue constructs, followed by the sequential addition of organoids. The microfluidic device features an open tissue chamber, which can be easily manipulated using standard pipetting or advanced bioprinting techniques. Engineered to accommodate microgels of any material larger than 50 μm, the chamber provides flexibility for constructing customizable hydrogel environments. Organoids and other particles can be precisely introduced into the device at any stage using aspiration-assisted bioprinting. To validate this platform, we demonstrate the successful growth of primary mouse superior cervical ganglia (mSCG) neurons and the platform's effectiveness in innervating prostate cancer spheroids and patient-derived renal cell carcinoma organoids. This platform offers a robust and adaptable tool for generating complex innervated organoids, paving the way for more accurate in vitro models of organ development, function, and disease.
Collapse
Affiliation(s)
- Jacob P Fredrikson
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA.
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - Daniela M Roth
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA.
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - Jameson A Cosgrove
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA.
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - Gulsu Sener
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - Lily A Crow
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA.
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - Kazumi Eckenstein
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - Lillian Wu
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA.
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - Mahshid Hosseini
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA.
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
| | - George Thomas
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Sebnem Ece Eksi
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Luiz Bertassoni
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA.
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| |
Collapse
|
13
|
Ralph JE, Lauck BJ, Colson CB, Ebangwese S, O'Neill CN, Anastasio AT, Adams SB. Current Utilization of Gel-Based Scaffolds and Templates in Foot and Ankle Surgery-A Review. Gels 2025; 11:316. [PMID: 40422336 DOI: 10.3390/gels11050316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 05/28/2025] Open
Abstract
As tissue engineering and regenerative medicine (TERM) continues to revolutionize medicine and surgery, there is also growing interest in applying these advancements to foot and ankle surgery. The purpose of this article is to provide a comprehensive review of the types of gel scaffolds and templates, their applications in foot and ankle surgery, the challenges with current utilization, and the future directions of TERM in foot and ankle surgery. With multiple compelling scaffold prospects across the numerous natural, synthetic, and hybrid polymers currently utilized in TERM, promising results have been described in the treatment of osteoarthritis (OA) and osteochondral lesions (OCLs). However, concerns with material biocompatibility, structural integrity, feasibility during surgery, and degradation still exist and limit the extent of utilization. As researchers continue to develop enhanced polymers and formulations that address current issues, there are many opportunities to increase applications across foot and ankle surgery.
Collapse
Affiliation(s)
- Julia E Ralph
- Duke University School of Medicine, Durham, NC 27710, USA
| | - Bradley J Lauck
- University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Charles B Colson
- Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | - Conor N O'Neill
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Albert T Anastasio
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Samuel B Adams
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
14
|
Mohseni M, Cometta S, Klein L, Wille ML, Vaquette C, Hutmacher DW, Medeiros Savi F. In vitro and in vivo degradation studies of a dual medical-grade scaffold design for guided soft tissue regeneration. Biomater Sci 2025; 13:2115-2133. [PMID: 40066976 DOI: 10.1039/d4bm01132e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Biodegradable scaffolds with tailored mechanical and structural properties are essential for scaffold-guided soft tissue regeneration (SGSTR). SGSTR requires scaffolds with controllable degradation and erosion characteristics to maintain mechanical and structural integrity and strength for at least four to six months. Additionally, these scaffolds must allow for porosity expansion to create space for the growing tissue and exhibit increased mechanical compliance to match the properties of the newly formed tissue. Although progress has been made in this area, previous studies have yet to fully explore these aspects using biodegradable polymers that are synthesized and 3D printed into filaments classified as medical-grade. In this study, we optimized scaffold design based on the properties of biodegradable materials and employed digital-assisted 3D printing to adjust the degradation pathway of dual-material scaffolds dynamically, thereby modulating mechanical and structural changes. Two medical-grade 3D printing filaments were utilized: Dioxaprene® (DIO), which has a degradation rate of approximately six months, and Caproprene™ (CAP), which has a degradation rate of about 36 months. The scaffolds were 3D printed with these materials to create the desired architecture. An in vitro degradation study showed the increasing pore size and compliance (>90% increase) of the scaffold architecture via the breakdown of DIO. Meanwhile, the slow-degrading CAP maintained long-term mechanical and structural integrity. Furthermore, over six months of subcutaneous implantation in rats, the dual material showed an approximately two-fold increase in mechanical compliance and free volume expansion, with the pore size increasing from 1 mm to 2 mm to accommodate the growing tissue. The scaffold remained structurally intact and provided mechanical support for the newly formed tissue. Histological and immunohistochemical analyses indicated good in vivo biocompatibility, tissue guidance, and the formation of organized soft tissue architecture, supported by an extensive network of blood vessels.
Collapse
Affiliation(s)
- Mina Mohseni
- Regenerative Medicine Group, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Silvia Cometta
- Regenerative Medicine Group, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Leopold Klein
- Regenerative Medicine Group, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Marie-Luise Wille
- Regenerative Medicine Group, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Cedryck Vaquette
- School of Dentistry, The University of Queensland, Herston, QLD, 4001, Australia
| | - Dietmar W Hutmacher
- Regenerative Medicine Group, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Flavia Medeiros Savi
- Regenerative Medicine Group, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
15
|
Khan SB, Irfan S, Zhang Z, Yuan W. Redefining Medical Applications with Safe and Sustainable 3D Printing. ACS APPLIED BIO MATERIALS 2025. [PMID: 40200689 DOI: 10.1021/acsabm.4c01923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Additive manufacturing (AM) has revolutionized biomedical applications by enabling personalized designs, intricate geometries, and cost-effective solutions. This progress stems from interdisciplinary collaborations across medicine, biomaterials, engineering, artificial intelligence, and microelectronics. A pivotal aspect of AM is the development of materials that respond to stimuli such as heat, light, moisture, and chemical changes, paving the way for intelligent systems tailored to specific needs. Among the materials employed in AM, polymers have gained prominence due to their flexibility, synthetic versatility, and broad property spectrum. Their adaptability has made them the most widely used material class in AM processes, offering the potential for diverse applications, including surgical tools, structural composites, photovoltaic devices, and filtration systems. Despite this, integrating multiple polymer systems to achieve multifunctional and dynamic performance remains a significant challenge, highlighting the need for further research. This review explores the foundational principles of AM, emphasizing its application in tissue engineering and medical technologies. It provides an in-depth analysis of polymer systems, besides inorganic oxides and bioinks, and examines their unique properties, advantages, and limitations within the context of AM. Additionally, the review highlights emerging techniques like rapid prototyping and 3D printing, which hold promise for advancing biomedical applications. By addressing the critical factors influencing AM processes and proposing innovative approaches to polymer integration, this review aims to guide future research and development in the field. The insights presented here underscore the transformative potential of AM in creating dynamic, multifunctional systems to meet evolving biomedical and healthcare demands.
Collapse
Affiliation(s)
- Sadaf Bashir Khan
- School of Manufacturing Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Syed Irfan
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhengjun Zhang
- The Key laboratory of Advanced materials (MOE), School of Material Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Weifeng Yuan
- School of Manufacturing Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
16
|
Alberts A, Bratu AG, Niculescu AG, Grumezescu AM. Collagen-Based Wound Dressings: Innovations, Mechanisms, and Clinical Applications. Gels 2025; 11:271. [PMID: 40277707 PMCID: PMC12026876 DOI: 10.3390/gels11040271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/30/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
Collagen-based wound dressings have developed as an essential component of contemporary wound care, utilizing collagen's inherent properties to promote healing. This review thoroughly analyzes collagen dressing advances, examining different formulations such as hydrogels, films, and foams that enhance wound care. The important processes by which collagen promotes healing (e.g., promoting angiogenesis, encouraging cell proliferation, and offering structural support) are discussed to clarify its function in tissue regeneration. The effectiveness and adaptability of collagen dressings are demonstrated via clinical applications investigated in acute and chronic wounds. Additionally, commercially accessible collagen-based skin healing treatments are discussed, demonstrating their practical use in healthcare settings. Despite the progress, the study discusses the obstacles and restrictions encountered in producing and adopting collagen-based dressings, such as the difficulties of manufacturing and financial concerns. Finally, the current landscape's insights indicate future research possibilities for collagen dressing optimization, bioactive agent integration, and overcoming existing constraints. This analysis highlights the potential of collagen-based innovations to improve wound treatment methods and patient care.
Collapse
Affiliation(s)
- Adina Alberts
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Andreea Gabriela Bratu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
17
|
Ribes Martinez E, Franko Y, Franko R, Ferronato GA, Viana AES, Windenbach E, Stoeckl JB, Fröhlich T, Ferraz MAMM. Developing and characterising bovine decellularized extracellular matrix hydrogels to biofabricate female reproductive tissues. Acta Biomater 2025; 196:152-170. [PMID: 40058619 DOI: 10.1016/j.actbio.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/16/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
This study investigated the development and characterization of decellularized extracellular matrix (dECM) hydrogels tailored for the biofabrication of female reproductive tissues, specifically targeting ovarian cortex, endometrium, ovarian medulla, and oviduct tissues. We aimed to evaluate the cytocompatibility, biomechanical properties, and overall efficacy of these dECMs in promoting cell viability, proliferation, and morphology using the bovine model. Bovine species provide a valuable model due to their accessibility from slaughterhouse tissues, offering a practical alternative to human samples, which are often limited in availability. Additionally, bovine tissue closely mirrors certain physiological and biological characteristics of humans, making it a relevant model for translational research. Our findings revealed that these dECMs exhibited high biocompatibility with embryo development and cell viability, supporting micro vascularization and cellular morphology without the need for external growth factors. It is important to note that the addition of alginate was crucial for maintaining the structural integrity of the hydrogel during long-term cultures. These hydrogels displayed biomechanical properties that closely mimicked native tissues, which was vital for maintaining their functional integrity and supporting cellular activities. The printability assessments showed that dECMs, particularly those from cortex tissues, achieved high precision in replicating the intended structures, though challenges such as low porosity remained. The bioprinted constructs demonstrated robust cell growth, with over 97% viability observed by day 7, indicating their suitability for cell culture. This work represented a significant advancement in reproductive tissue biofabrication, demonstrating the potential of dECM-based hydrogels in creating structurally and viable tissue constructs. By tailoring each dECM to match the unique biomechanical properties of different tissues, we paved the way for more effective and reliable applications in reproductive medicine and tissue engineering. STATEMENT OF SIGNIFICANCE: This research explores the use of decellularized extracellular matrix (dECM) hydrogels as bio-inks for creating reproductive tissues. Ovarian cortex and medulla, oviduct and endometrium dECMs demonstrated biomechanical properties that mimicked native tissues, which is essential for maintaining functional integrity and supporting cellular processes. Notably, these hydrogels exhibited high biocompatibility with embryo development and cell viability, promoting microvascularization and cell differentiation without the need for supplemental growth factors. The successful bioprinting of these bio-inks underscores their potential for creating more complex models. This work represents a significant advancement in tissue engineering, offering promising new avenues for reproductive medicine.
Collapse
Affiliation(s)
- E Ribes Martinez
- Clinic of Ruminants, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Sonnenstr. 16, Oberschleißheim, 85764, Germany; Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen Str. 25, Munich, 81377, Germany
| | - Y Franko
- Clinic of Ruminants, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Sonnenstr. 16, Oberschleißheim, 85764, Germany; Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen Str. 25, Munich, 81377, Germany
| | - R Franko
- Clinic of Ruminants, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Sonnenstr. 16, Oberschleißheim, 85764, Germany; Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen Str. 25, Munich, 81377, Germany
| | - G A Ferronato
- Clinic of Ruminants, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Sonnenstr. 16, Oberschleißheim, 85764, Germany; Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen Str. 25, Munich, 81377, Germany
| | - A E S Viana
- Department of Veterinary Medicine, Faculty of Zootechnic and Food Engineering, University of São Paulo, Duque de Caxias Norte, 225, Jardim Elite, Pirassununga, São Paulo, 13635-900, Brazil
| | - E Windenbach
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen Str. 25, Munich, 81377, Germany
| | - J B Stoeckl
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen Str. 25, Munich, 81377, Germany
| | - T Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen Str. 25, Munich, 81377, Germany
| | - M A M M Ferraz
- Clinic of Ruminants, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Sonnenstr. 16, Oberschleißheim, 85764, Germany; Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen Str. 25, Munich, 81377, Germany.
| |
Collapse
|
18
|
Hua W, Zhang C, Cui H, Mitchell K, Hensley DK, Chen J, Do C, Raymond L, Coulter R, Bandala E, Rubbi F, Chai G, Zhang Z, Liao Y, Zhao D, Wang Y, Gaharwar AK, Jin Y. High-Speed Embedded Ink Writing of Anatomic-Size Organ Constructs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405980. [PMID: 39932855 PMCID: PMC11967790 DOI: 10.1002/advs.202405980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/29/2024] [Indexed: 02/13/2025]
Abstract
Embedded ink writing (EIW) is an emerging 3D printing technique that fabricates complex 3D structures from various biomaterial inks but is limited to a printing speed of ∼10 mm s-1 due to suboptimal rheological properties of particulate-dominated yield-stress fluids when used as liquid baths. In this work, a particle-hydrogel interactive system to design advanced baths with enhanced yield stress and extended thixotropic response time for realizing high-speed EIW is developed. In this system, the interactions between particle additive and three representative polymeric hydrogels enable the resulting nanocomposites to demonstrate different rheological behaviors. Accordingly, the interaction models for the nanocomposites are established, which are subsequently validated by macroscale rheological measurements and advanced microstructure characterization techniques. Filament formation mechanisms in the particle-hydrogel interactive baths are comprehensively investigated at high printing speeds. To demonstrate the effectiveness of the proposed high-speed EIW method, an anatomic-size human kidney construct is successfully printed at 110 mm s-1, which only takes ∼4 h. This work breaks the printing speed barrier in current EIW and propels the maximum printing speed by at least 10 times, providing an efficient and promising solution for organ reconstruction in the future.
Collapse
Affiliation(s)
- Weijian Hua
- Mechanical Engineering DepartmentUniversity of Nevada RenoRenoNevada89557USA
| | - Cheng Zhang
- Mechanical Engineering DepartmentUniversity of Nevada RenoRenoNevada89557USA
- State Key Laboratory of High‐Performance Precision ManufacturingDalian University of TechnologyDalianLiaoning116024China
| | - Haoran Cui
- Mechanical Engineering DepartmentUniversity of Nevada RenoRenoNevada89557USA
| | - Kellen Mitchell
- Mechanical Engineering DepartmentUniversity of Nevada RenoRenoNevada89557USA
| | - Dale K. Hensley
- Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeTennessee37830USA
| | - Jihua Chen
- Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeTennessee37830USA
| | - Changwoo Do
- Neutron Scattering DivisionOak Ridge National LaboratoryOak RidgeTennessee37831USA
| | - Lily Raymond
- Mechanical Engineering DepartmentUniversity of Nevada RenoRenoNevada89557USA
| | - Ryan Coulter
- Mechanical Engineering DepartmentUniversity of Nevada RenoRenoNevada89557USA
| | - Erick Bandala
- Mechanical Engineering DepartmentUniversity of Nevada RenoRenoNevada89557USA
| | - Fazlay Rubbi
- Department of Industrial and Manufacturing Systems EngineeringIowa State UniversityAmesIowa50011USA
| | - Guangrui Chai
- Department of OphthalmologyShengjing Hospital of China Medical UniversityShenyangLiaoning110004China
| | - Zhengyi Zhang
- School of Naval Architecture and Ocean EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Yiliang Liao
- Department of Industrial and Manufacturing Systems EngineeringIowa State UniversityAmesIowa50011USA
| | - Danyang Zhao
- State Key Laboratory of High‐Performance Precision ManufacturingDalian University of TechnologyDalianLiaoning116024China
| | - Yan Wang
- Mechanical Engineering DepartmentUniversity of Nevada RenoRenoNevada89557USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical EngineeringTexas A&M University, College StationTexas77843USA
| | - Yifei Jin
- Mechanical Engineering DepartmentUniversity of Nevada RenoRenoNevada89557USA
| |
Collapse
|
19
|
Francis RM, Kopyeva I, Lai N, Yang S, Filteau JR, Wang X, Baker D, DeForest CA. Rapid and Inexpensive Image-Guided Grayscale Biomaterial Customization via LCD Printing. J Biomed Mater Res A 2025; 113:e37897. [PMID: 40145385 DOI: 10.1002/jbm.a.37897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/04/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025]
Abstract
Hydrogels are an important class of biomaterials that permit cells to be cultured and studied within engineered microenvironments of user-defined physical and chemical properties. Though conventional 3D extrusion and stereolithographic (SLA) printing readily enable homogeneous and multimaterial hydrogels to be formed with specific macroscopic geometries, strategies that further afford spatiotemporal customization of the underlying gel physicochemistry in a non-discrete manner would be profoundly useful toward recapitulating the complexity of native tissue in vitro. Here, we demonstrate that grayscale control over local biomaterial biochemistry and mechanics can be rapidly achieved across large constructs using an inexpensive (~$300) and commercially available liquid crystal display (LCD)-based printer. Template grayscale images are first processed into a "height-extruded" 3D object, which is then printed on a standard LCD printer with an immobile build head. As the local height of the 3D object corresponds to the final light dosage delivered at the corresponding xy-coordinate, this method provides a route toward spatially specifying the extent of various dosage-dependent and biomaterial, forming/modifying photochemistries. Demonstrating the utility of this approach, we photopattern the grayscale polymerization of poly(ethylene glycol) (PEG) diacrylate gels, biochemical functionalization of agarose- and PEG-based gels via oxime ligation, and the controlled 2D adhesion and 3D growth of cells in response to a de novo-designed α5β1-modulating protein via thiol-norbornene click chemistry. Owing to the method's low cost, simple implementation, and high compatibility with many biomaterial photochemistries, we expect this strategy will prove useful toward fundamental biological studies and functional tissue engineering alike.
Collapse
Affiliation(s)
- Ryan M Francis
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Nicholas Lai
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Shiyu Yang
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Jeremy R Filteau
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Xinru Wang
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - David Baker
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington, USA
| | - Cole A DeForest
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington, USA
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
20
|
Miklosic G, De Oliveira S, Schlittler M, Le Visage C, Hélary C, Ferguson SJ, D'Este M. Hyaluronan composite bioink preserves nucleus pulposus cell phenotype in a stiffness-dependent manner. Carbohydr Polym 2025; 353:123277. [PMID: 39914983 DOI: 10.1016/j.carbpol.2025.123277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 05/07/2025]
Abstract
Intervertebral disc degeneration is a major cause of neck and back pain, representing a significant global socioeconomic burden. The polysaccharide hyaluronan is key to maintaining disc physiology and mediating disc disease through its structural and biological roles in the nucleus pulposus, a component of the intervertebral disc highly susceptible to degeneration. In this study, we introduce a novel composite bioink designed for extrusion bioprinting of structures resembling the nucleus pulposus. Our bioink combines levels of hyaluronic acid and collagen that approach physiological concentrations and effectively mimics the disc's hydrated and mechanically resilient environment. We modulated the composite's mechanical properties through the tyramination of hyaluronic acid and subsequent photocrosslinking, influencing morphology and gene expression of embedded bovine nucleus pulposus cells. This allows us to replicate a range of properties from healthy to degenerated human nucleus pulposus, which would be challenging to achieve with traditional cell culture and in vivo models. Our results show that modulating hyaluronan physico-chemical properties influenced embedded cell phenotype. The outcomes of this study inform the future design of biomaterials for the modelling of disc disease and regeneration, and present a versatile platform that can be readily integrated with other biofabricated components to form engineered intervertebral disc-like structures.
Collapse
Affiliation(s)
- Gregor Miklosic
- AO Research Institute Davos, 7270 Davos, Switzerland; Institute for Biomechanics, ETH Zürich, 8092 Zürich, Switzerland
| | - Stéphanie De Oliveira
- Laboratory of Condensed Matter Chemistry of Paris, Sorbonne University, 75005 Paris, France
| | | | - Catherine Le Visage
- Nantes Université, Oniris, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Christophe Hélary
- Laboratory of Condensed Matter Chemistry of Paris, Sorbonne University, 75005 Paris, France
| | | | - Matteo D'Este
- AO Research Institute Davos, 7270 Davos, Switzerland.
| |
Collapse
|
21
|
Correia FP, Monteiro MV, Borralho M, Zhang YS, Mano JF, Gaspar VM. Advanced Toolboxes for Cryobioprinting Human Tissue Analogs. Adv Healthc Mater 2025; 14:e2405011. [PMID: 40029023 DOI: 10.1002/adhm.202405011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/14/2025] [Indexed: 03/05/2025]
Abstract
The increasing demand for biofabricating human tissue analogs for therapeutic applications has encouraged the pursuit of innovative techniques that shift from conventional bioprint-to-use approaches toward instantaneous bioprint-cryopreserve strategies. Such enabling concepts and next-generation technologies open new possibilities for fabricating shelf-ready living constructs for applications in regenerative medicine, preclinical disease modeling, and beyond. The generation of living constructs either for short- or long-term cryostorage requires, however, a careful design of cryoprotective bioinks to maximize biofunctionality and limit cell damage during processing. Gathering on this, herein the most recent updates in cryo(bio)printing technologies are showcased and discussed, along with demonstrative applications of these approaches. The technical toolboxes for designing cryoprotective inks and optimizing freezing/thawing processes are also critically addressed, considering their underlying bioengineering challenges. Realizing the full potential of cryobioprinting is envisioned to unlock the fabrication of increasingly biomimetic tissue constructs and personalized medicine solutions that are readily available, precisely when needed.
Collapse
Affiliation(s)
- Francisca P Correia
- Department of Chemistry, CICECO - Aveiro Institute of Materials, Campus Universitário de Santiago, University of Aveiro, Aveiro, Portugal, 3810-193
| | - Maria V Monteiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, Campus Universitário de Santiago, University of Aveiro, Aveiro, Portugal, 3810-193
| | - Mafalda Borralho
- Department of Chemistry, CICECO - Aveiro Institute of Materials, Campus Universitário de Santiago, University of Aveiro, Aveiro, Portugal, 3810-193
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, Campus Universitário de Santiago, University of Aveiro, Aveiro, Portugal, 3810-193
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, Campus Universitário de Santiago, University of Aveiro, Aveiro, Portugal, 3810-193
| |
Collapse
|
22
|
Haack AJ, Brown LG, Goldstein AJ, Mulimani P, Berthier J, Viswanathan AR, Kopyeva I, Whitten JM, Lin A, Nguyen SH, Leahy TP, Bouker EE, Padgett RM, Mazzawi NA, Tokihiro JC, Bretherton RC, Wu A, Tapscott SJ, DeForest CA, Popowics TE, Berthier E, Sniadecki NJ, Theberge AB. Suspended Tissue Open Microfluidic Patterning (STOMP). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.04.616662. [PMID: 39416011 PMCID: PMC11482760 DOI: 10.1101/2024.10.04.616662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Free-standing tissue structures tethered between pillars are powerful mechanobiology tools for studying cell contraction. To model interfaces ubiquitous in natural tissues and upgrade existing single-region suspended constructs, we developed Suspended Tissue Open Microfluidic Patterning (STOMP), a method to create multiregional suspended tissues. STOMP uses open microfluidics and capillary pinning to pattern subregions within free-standing tissues, facilitating the study of complex tissue interfaces, such as diseased-healthy boundaries (e.g., fibrotic-healthy) and tissue-type interfaces (e.g., bone-ligament). We observed altered contractile dynamics in fibrotic-healthy engineered heart tissues compared to single-region tissues and differing contractility in bone-ligament enthesis constructs compared to single-tissue periodontal ligament models. STOMP is a versatile platform - surface tension-driven patterning removes material requirements common with other patterning methods (e.g., shear-thinning, photopolymerizable) allowing tissue generation in multiple geometries with native extracellular matrices and advanced 4D materials. STOMP combines the contractile functionality of suspended tissues with precise patterning, enabling dynamic and spatially controlled studies.
Collapse
Affiliation(s)
- Amanda J. Haack
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, 98195 USA
| | - Lauren G. Brown
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Alex J. Goldstein
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195 USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195 USA
| | - Priti Mulimani
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195 USA
| | - Jean Berthier
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | | | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
| | - Jamison M. Whitten
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ariel Lin
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98109 USA
| | - Serena H. Nguyen
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Thomas P. Leahy
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195 USA
| | - Ella E. Bouker
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ruby M. Padgett
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195 USA
| | - Natalie A. Mazzawi
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195 USA
- Department of Microbiology, University of Washington, Seattle, WA, 98195 USA
| | - Jodie C. Tokihiro
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ross C. Bretherton
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
| | - Aaliyah Wu
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Neurology, University of Washington, Seattle WA 98195, USA
| | - Cole A. DeForest
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98109 USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195 USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
| | - Tracy E. Popowics
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195 USA
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Nathan J. Sniadecki
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195 USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195 USA
| | - Ashleigh B. Theberge
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Department of Urology, University of Washington School of Medicine, Seattle, WA, 98195 USA
| |
Collapse
|
23
|
Banigo AT, Nauta L, Zoetebier B, Karperien M. Hydrogel-Based Bioinks for Coaxial and Triaxial Bioprinting: A Review of Material Properties, Printing Techniques, and Applications. Polymers (Basel) 2025; 17:917. [PMID: 40219306 PMCID: PMC11991663 DOI: 10.3390/polym17070917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Three-dimensional bioprinting technology has emerged as a rapidly advancing multidisciplinary field with significant potential for tissue engineering applications. This technology enables the formation of complex tissues and organs by utilizing hydrogels, with or without cells, as scaffolds or structural supports. Among various bioprinting methods, advanced bioprinting using coaxial and triaxial nozzles stands out as a promising technique. Coaxial bioprinting technique simultaneously deposits two material streams through a coaxial nozzle, enabling controlled formation of an outer shell and inner core construct. In contrast, triaxial bioprinting utilizes three material streams namely the outer shell, inner shell and inner core to fabricate more complex constructs. Despite the growing interest in 3D bioprinting, the development of suitable cell-laden bioinks for creating complex tissues remains unclear. To address this gap, a systematic review was conducted using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) flowchart, collecting 1621 papers from various databases, including Web of Science, PUBMED, SCOPUS, and Springer Link. After careful selection, 85 research articles focusing on coaxial and triaxial bioprinting were included in the review. Specifically, 77 research articles concentrated on coaxial bioprinting and 11 focused on triaxial bioprinting, with 3 covering both techniques. The search, conducted between 1 April and 30 September 2023, had no restrictions on publication date, and no meta-analyses were carried out due to the heterogeneity of studies. The primary objective of this review is to assess and identify the most commonly occurring cell-laden bioinks critical for successful advancements in bioprinting technologies. Specifically, the review focuses on delineating the commonly explored bioinks utilized in coaxial and triaxial bioprinting approaches. It focuses on evaluating the inherent merits of these bioinks, systematically comparing them while emphasizing their classifications, essential attributes, properties, and potential limitations within the domain of tissue engineering. Additionally, the review considers the applications of these bioinks, offering comprehensive insights into their efficacy and utility in the field of bioprinting technology. Overall, this review provides a comprehensive overview of some conditions of the relevant hydrogel bioinks used for coaxial and triaxial bioprinting of tissue constructs. Future research directions aimed at advancing the field are also briefly discussed.
Collapse
Affiliation(s)
| | | | | | - Marcel Karperien
- Department of Developmental BioEngineering, Faculty of Science and Technology and TechMed Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands; (A.T.B.); (L.N.); (B.Z.)
| |
Collapse
|
24
|
Kim JE, Jeong GJ, Yoo YM, Bhang SH, Kim JH, Shin YM, Yoo KH, Lee BC, Baek W, Heo DN, Mongrain R, Lee JB, Yoon JK. 3D bioprinting technology for modeling vascular diseases and its application. Biofabrication 2025; 17:022014. [PMID: 40081017 DOI: 10.1088/1758-5090/adc03a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
In vitromodeling of vascular diseases provides a useful platform for drug screening and mechanistic studies, by recapitulating the essential structures and physiological characteristics of the native tissue. Bioprinting is an emerging technique that offers high-resolution 3D capabilities, which have recently been employed in the modeling of various tissues and associated diseases. Blood vessels are composed of multiple layers of distinct cell types, and experience different mechanical conditions depending on the vessel type. The intimal layer, in particular, is directly exposed to such hemodynamic conditions inducing shear stress, which in turn influence vascular physiology. 3D bioprinting techniques have addressed the structural limitations of the previous vascular models, by incorporating supporting cells such as smooth muscle cells, geometrical properties such as dilation, curvature, or branching, or mechanical stimulation such as shear stress and pulsatile pressure. This paper presents a review of the physiology of blood vessels along with the pathophysiology of the target diseases including atherosclerosis, thrombosis, aneurysms, and tumor angiogenesis. Additionally, it discusses recent advances in fabricatingin vitro3D vascular disease models utilizing bioprinting techniques, while addressing the current challenges and future perspectives for the potential clinical translation into therapeutic interventions.
Collapse
Affiliation(s)
- Ju-El Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| | - Gun-Jae Jeong
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Young Min Yoo
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Hoon Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| | - Young Min Shin
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Kyung Hyun Yoo
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Byung-Chul Lee
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Wooyeol Baek
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
- Biofriends Inc., Seoul 02447, Republic of Korea
| | - Rosaire Mongrain
- Mechanical Engineering Department, McGill University, H3A 0C3 Montréal, Canada
| | - Jung Bok Lee
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| |
Collapse
|
25
|
Kotani T, Hananouchi T, Sakai S. Enhancing visible light-induced 3D bioprinting: alternating extruded support materials for bioink gelation. Biomed Mater 2025; 20:035005. [PMID: 40085966 DOI: 10.1088/1748-605x/adc0d6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/14/2025] [Indexed: 03/16/2025]
Abstract
In 3D bioprinting, two promising approaches have gained significant attention: the use of support materials during printing and the utilization of bioinks gelled through ruthenium(II) tris-bipyridyl dication ([Ru(bpy)3]2+)-catalyzed photocrosslinking consuming sodium persulfate (SPS). Integrating these approaches while ensuring simplicity and printability remains a challenge. To address this challenge, we propose a technique in which the support material containing SPS is alternately extruded with the bioink containing polymer having phenolic hydroxyl moieties (polymer-Ph) and [Ru(bpy)3]2+under visible light irradiation. This method eliminates the problems of light shading and deformation caused by the support material, as the contact between the alternately extruded ink and the support material initiates the gelation of the ink via photocrosslinking. Using an ink containing 0.5 w/v% hyaluronic acid with phenolic hydroxyl moieties (HA-Ph) and 2.0 mM [Ru(bpy)3]2+alongside a support material containing 10 mM SPS, various constructs were successfully printed under 450 nm visible light. The human hepatoblastoma cells embedded in the printed construct showed approximately 95% viability after printing and proliferation over 14 d of culture. These results highlight the potential of this method to advance 3D bioprinting for tissue engineering applications.
Collapse
Affiliation(s)
- Takashi Kotani
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Takehito Hananouchi
- Medical Engineering Laboratory, Department of Mechanical Engineering, Faculty of Engineering, Osaka Sangyo University, Daito, Osaka 574-8530, Japan
- Biodesign division, Department of Academia-Government-Industry Collaboration, Office of Research and Academia-Government-Community Collaboration, Hiroshima University, Hiroshima 734-8551, Japan
| | - Shinji Sakai
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
26
|
Akter MZ, Tufail F, Ahmad A, Oh YW, Kim JM, Kim S, Hasan MM, Li L, Lee DW, Kim YS, Lee SJ, Kim HS, Ahn Y, Choi YJ, Yi HG. Harnessing native blueprints for designing bioinks to bioprint functional cardiac tissue. iScience 2025; 28:111882. [PMID: 40177403 PMCID: PMC11964760 DOI: 10.1016/j.isci.2025.111882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Cardiac tissue lacks regenerative capacity, making heart transplantation the primary treatment for end-stage heart failure. Engineered cardiac tissues developed through three-dimensional bioprinting (3DBP) offer a promising alternative. However, reproducing the native structure, cellular diversity, and functionality of cardiac tissue requires advanced cardiac bioinks. Major obstacles in CTE (cardiac tissue engineering) include accurately characterizing bioink properties, replicating the cardiac microenvironment, and achieving precise spatial organization. Optimizing bioink properties to closely mimic the extracellular matrix (ECM) is essential, as deviations may result in pathological effects. This review encompasses the rheological and electromechanical properties of bioinks and the function of the cardiac microenvironment in the design of functional cardiac constructs. Furthermore, it focuses on improving the rheological characteristics, printability, and functionality of bioinks, offering valuable perspectives for developing new bioinks especially designed for CTE.
Collapse
Affiliation(s)
- Mst Zobaida Akter
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Fatima Tufail
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ashfaq Ahmad
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yoon Wha Oh
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung Min Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seoyeon Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Md Mehedee Hasan
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Longlong Li
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Weon Lee
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Su-jin Lee
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Youngkeun Ahn
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Yeong-Jin Choi
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
- Advanced Materials Engineering, Korea National University of Science and Technology (UST), Changwon, Republic of Korea
| | - Hee-Gyeong Yi
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
27
|
Holland I. Extrusion bioprinting: meeting the promise of human tissue biofabrication? PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2025; 7:023001. [PMID: 39904058 PMCID: PMC11894458 DOI: 10.1088/2516-1091/adb254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/04/2024] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
Extrusion is the most popular bioprinting platform. Predictions of human tissue and whole-organ printing have been made for the technology. However, after decades of development, extruded constructs lack the essential microscale resolution and heterogeneity observed in most human tissues. Extrusion bioprinting has had little clinical impact with the majority of research directed away from the tissues most needed by patients. The distance between promise and reality is a result of technology hype and inherent design flaws that limit the shape, scale and survival of extruded features. By more widely adopting resolution innovations and softening its ambitions the biofabrication field could define a future for extrusion bioprinting that more closely aligns with its capabilities.
Collapse
Affiliation(s)
- Ian Holland
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
- Deanery of Biomedical Science, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Engineering Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
28
|
Kontakis MG, Moulin M, Andersson B, Norein N, Samanta A, Stelzl C, Engberg A, Diez-Escudero A, Kreuger J, Hailer NP. Trabecular-bone mimicking osteoconductive collagen scaffolds: an optimized 3D printing approach using freeform reversible embedding of suspended hydrogels. 3D Print Med 2025; 11:11. [PMID: 40064747 PMCID: PMC11895158 DOI: 10.1186/s41205-025-00255-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/01/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Technological constraints limit 3D printing of collagen structures with complex trabecular shapes. However, the Freeform Reversible Embedding of Suspended Hydrogels (FRESH) method may allow for precise 3D printing of porous collagen scaffolds that carry the potential for repairing critical size bone defects. METHODS Collagen type I scaffolds mimicking trabecular bone were fabricated through FRESH 3D printing and compared either with 2D collagen coatings or with 3D-printed polyethylene glycol diacrylate (PEGDA) scaffolds. The porosity of the printed scaffolds was visualized by confocal microscopy, the surface geometry of the scaffolds was investigated by scanning electron microscopy (SEM), and their mechanical properties were assessed with a rheometer. The osteoconductive properties of the different scaffolds were evaluated for up to four weeks by seeding and propagation of primary human osteoblasts (hOBs) or SaOS-2 cells. Intracellular alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) activities were measured, and cells colonizing scaffolds were stained for osteocalcin (OCN). RESULTS The FRESH technique enables printing of constructs at the millimetre scale using highly concentrated collagen, and the creation of stable trabecular structures that can support the growth osteogenic cells. FRESH-printed collagen scaffolds displayed an intricate and fibrous 3D network, as visualized by SEM, whereas the PEGDA scaffolds had a smooth surface. Amplitude sweep analyses revealed that the collagen scaffolds exhibited predominantly elastic behaviour, as indicated by higher storage modulus values relative to loss modulus values, while the degradation rate of collagen scaffolds was greater than PEGDA. The osteoconductive properties of collagen scaffolds were similar to those of PEGDA scaffolds but superior to 2D collagen, as verified by cell culture followed by analysis of ALP/LDH activity and OCN immunostaining. CONCLUSIONS Our findings suggest that FRESH-printed collagen scaffolds exhibit favourable mechanical, degradation and osteoconductive properties, potentially outperforming synthetic polymers such as PEGDA in bone tissue engineering applications.
Collapse
Affiliation(s)
- Michael G Kontakis
- OrthoLab, Department of Surgical Sciences/Orthopaedics, Uppsala University, Uppsala, SE-751 85, Sweden.
| | - Marie Moulin
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Brittmarie Andersson
- OrthoLab, Department of Surgical Sciences/Orthopaedics, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Norein Norein
- Department of Chemistry - Ångström Laboratory, Macromolecular Chemistry, Uppsala University, Uppsala, SE-751 21, Sweden
| | - Ayan Samanta
- Department of Chemistry - Ångström Laboratory, Macromolecular Chemistry, Uppsala University, Uppsala, SE-751 21, Sweden
| | - Christina Stelzl
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Adam Engberg
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Anna Diez-Escudero
- OrthoLab, Department of Surgical Sciences/Orthopaedics, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Johan Kreuger
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Nils P Hailer
- OrthoLab, Department of Surgical Sciences/Orthopaedics, Uppsala University, Uppsala, SE-751 85, Sweden
| |
Collapse
|
29
|
Bakirci E, Asghari Adib A, Ashraf SF, Feinberg AW. Advancing extrusion-based embedded 3D bioprinting via scientific, engineering, and process innovations. Biofabrication 2025; 17:023002. [PMID: 39965539 DOI: 10.1088/1758-5090/adb7c3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/18/2025] [Indexed: 02/20/2025]
Abstract
Extrusion-based embedded 3D bioprinting, where bioinks and biomaterials are extruded within a support bath, has greatly expanded the achievable tissue architectures and complexity of biologic constructs that can be fabricated. However, significant scientific, engineering, and process-related challenges remain to recreate the full anatomic structure and physiologic function required for many therapeutic applications. This perspective explores the future advances in extrusion-based embedded 3D bioprinting that could address these challenges, paving the way for clinical translation of bioprinted tissues.
Collapse
Affiliation(s)
- Ezgi Bakirci
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Ali Asghari Adib
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Syed Faaz Ashraf
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| |
Collapse
|
30
|
Ru Y, Liu M. Superwetting Gels: Wetting Principles, Applications, and Challenges. ACS NANO 2025; 19:7583-7600. [PMID: 39970347 DOI: 10.1021/acsnano.4c17507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Along with the in-depth understanding of wetting behaviors in nature, superwetting gels have received a lot of attention in the past decade. The viscoelasticity of gel materials makes wetting characteristics different from those of rigid materials and brings diverse functionality. In this Review, we summarize the current progress in principles of gel wettability from two aspects: wetting on gels and wetting of gels. Distinct from rigid substrates, the viscoelasticity and solid-liquid coexistence of gel materials introduce additional factors, including surface tension and deformation, resulting in various wetting phenomena. Besides, the similarity between gels and tissues broadens its applications in biomedical devices and smart interfacial regulation. We further conclude the current application that utilizes superwetting gels. Finally, we provide our perspective for future research directions.
Collapse
Affiliation(s)
- Yunfei Ru
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Mingjie Liu
- Center for Bioinspired Science and Technology, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, P. R. China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
31
|
Ahmed MS, Yun S, Kim HY, Ko S, Islam M, Nam KW. Hydrogels and Microgels: Driving Revolutionary Innovations in Targeted Drug Delivery, Strengthening Infection Management, and Advancing Tissue Repair and Regeneration. Gels 2025; 11:179. [PMID: 40136884 PMCID: PMC11942270 DOI: 10.3390/gels11030179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Hydrogels and microgels are emerging as pivotal platforms in biomedicine, with significant potential in targeted drug delivery, enhanced infection management, and tissue repair and regeneration. These gels, characterized by their high water content, unique structures, and adaptable mechanical properties, interact seamlessly with biological systems, making them invaluable for controlled and targeted drug release. In the realm of infection management, hydrogels and microgels can incorporate antimicrobial agents, offering robust defenses against bacterial infections. This capability is increasingly important in the fight against antibiotic resistance, providing innovative solutions for infection prevention in wound dressings, surgical implants, and medical devices. Additionally, the biocompatibility and customizable mechanical properties of these gels make them ideal scaffolds for tissue engineering, supporting the growth and repair of damaged tissues. Despite their promising applications, challenges such as ensuring long-term stability, enhancing therapeutic agent loading capacities, and scaling production must be addressed for widespread adoption. This review explores the current advancements, opportunities, and limitations of hydrogels and microgels, highlighting research and technological directions poised to revolutionize treatment strategies through personalized and regenerative approaches.
Collapse
Affiliation(s)
- Md. Shahriar Ahmed
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea; (M.S.A.)
| | - Sua Yun
- Department of Advanced Battery Convergence Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Hae-Yong Kim
- Department of Advanced Battery Convergence Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sunho Ko
- Department of Advanced Battery Convergence Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Mobinul Islam
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea; (M.S.A.)
| | - Kyung-Wan Nam
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea; (M.S.A.)
| |
Collapse
|
32
|
Orr A, Kalantarnia F, Nazir S, Bolandi B, Alderson D, O'Grady K, Hoorfar M, Julian LM, Willerth SM. Recent advances in 3D bioprinted neural models: A systematic review on the applications to drug discovery. Adv Drug Deliv Rev 2025; 218:115524. [PMID: 39900293 DOI: 10.1016/j.addr.2025.115524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/12/2024] [Accepted: 01/26/2025] [Indexed: 02/05/2025]
Abstract
The design of neural tissue models with architectural and biochemical relevance to native tissues opens the way for the fundamental study and development of therapies for many disorders with limited treatment options. Here, we systematically review the most recent literature on 3D bioprinted neural models, including their potential for use in drug screening. Neural tissues that model the central nervous system (CNS) from the relevant literature are reviewed with comprehensive summaries of each study, and discussion of the model types, bioinks and additives, cell types used, bioprinted construct shapes and culture time, and the characterization methods used. In this review, we accentuate the lack of standardization among characterization methods to analyze the functionality (including chemical, metabolic and other pathways) and mechanical relevance of the 3D bioprinted constructs, and discuss this as a critical area for future exploration. These gaps must be addressed for this technology to be applied for effective drug screening applications, despite its enormous potential for rapid and efficient drug screening. The future of biomimetic, 3D printed neural tissues is promising and evaluation of the in vivo relevance on multiple levels should be sought to adequately compare model performance and develop viable treatment options for neurodegenerative diseases, or other conditions that affect the CNS.
Collapse
Affiliation(s)
- Amanda Orr
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | | | - Shama Nazir
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Behzad Bolandi
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Dominic Alderson
- Newcastle University Biosciences Institute, Newcastle-Upon-Tyne, NE2 4HH, UK
| | - Kerrin O'Grady
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| | - Mina Hoorfar
- Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Lisa M Julian
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Stephanie M Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; Centre for Advanced Materials and Technology, University of Victoria, Victoria, BC V8W 2Y2, Canada; School of Biomedical Engineering, University of British Columbia, Victoria, BC V6T 1Z4, Canada.
| |
Collapse
|
33
|
Weiss JD, Mermin‐Bunnell A, Solberg FS, Tam T, Rosalia L, Sharir A, Rütsche D, Sinha S, Choi PS, Shibata M, Palagani Y, Nilkant R, Paulvannan K, Ma M, Skylar‐Scott MA. A Low-Cost, Open-Source 3D Printer for Multimaterial and High-Throughput Direct Ink Writing of Soft and Living Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414971. [PMID: 39748617 PMCID: PMC11899504 DOI: 10.1002/adma.202414971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Indexed: 01/04/2025]
Abstract
Direct ink writing is a 3D printing method that is compatible with a wide range of structural, elastomeric, electronic, and living materials, and it continues to expand its uses into physics, engineering, and biology laboratories. However, the large footprint, closed hardware and software ecosystems, and expense of commercial systems often hamper widespread adoption. This work introduces a compact, low-cost, multimaterial, and high-throughput direct ink writing 3D printer platform with detailed assembly files and instructions provided freely online. In contrast to existing low-cost 3D printers and bioprinters, which typically modify off-the-shelf plastic 3D printers, this system is built from scratch, offering a lower cost and full customizability. Active mixing of cell-laden bioinks, high-throughput production of auxetic lattices using multimaterial multinozzle 3D (MM3D) printing methods, and a high-toughness, photocurable hydrogel for fabrication of heart valves are introduced. Finally, hardware for embedded multinozzle and 3D gradient nozzle printing is developed for producing high-throughput and graded 3D parts. This powerful, simple-to-build, and customizable printing platform can help stimulate a vibrant biomaker community of engineers, biologists, and educators.
Collapse
Affiliation(s)
| | - Alana Mermin‐Bunnell
- Harvard‐MIT Program in Health Science and TechnologyMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Fredrik S. Solberg
- Department of Mechanical EngineeringStanford UniversityStanfordCA94305USA
| | - Tony Tam
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Luca Rosalia
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Amit Sharir
- Department of Cardiothoracic SurgeryStanford University School of MedicineStanfordCA94305USA
| | - Dominic Rütsche
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Soham Sinha
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Perry S. Choi
- Department of Cardiothoracic SurgeryStanford University School of MedicineStanfordCA94305USA
| | - Masafumi Shibata
- Department of Cardiothoracic SurgeryStanford University School of MedicineStanfordCA94305USA
| | - Yellappa Palagani
- Department of Cardiothoracic SurgeryStanford University School of MedicineStanfordCA94305USA
| | - Riya Nilkant
- Department of Cardiothoracic SurgeryStanford University School of MedicineStanfordCA94305USA
| | | | - Michael Ma
- Department of Cardiothoracic SurgeryStanford University School of MedicineStanfordCA94305USA
| | - Mark A. Skylar‐Scott
- Department of BioengineeringStanford UniversityStanfordCA94305USA
- Basic Science and Engineering InitiativeChildren's Heart CenterStanford UniversityStanfordCA94304USA
- Chan Zuckerberg BiohubSan FranciscoCA94158USA
| |
Collapse
|
34
|
Dutta SD, An JM, Hexiu J, Randhawa A, Ganguly K, Patil TV, Thambi T, Kim J, Lee YK, Lim KT. 3D bioprinting of engineered exosomes secreted from M2-polarized macrophages through immunomodulatory biomaterial promotes in vivo wound healing and angiogenesis. Bioact Mater 2025; 45:345-362. [PMID: 39669126 PMCID: PMC11636135 DOI: 10.1016/j.bioactmat.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/29/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024] Open
Abstract
Biomaterial composition and surface charge play a critical role in macrophage polarization, providing a molecular cue for immunomodulation and tissue regeneration. In this study, we developed bifunctional hydrogel inks for accelerating M2 macrophage polarization and exosome (Exo) cultivation for wound healing applications. For this, we first fabricated polyamine-modified three-dimensional (3D) printable hydrogels consisting of alginate/gelatin/polydopamine nanospheres (AG/NSPs) to boost M2-exosome (M2-Exo) secretion. The cultivated M2-Exo were finally encapsulated into a biocompatible collagen/decellularized extracellular matrix (COL@d-ECM) bioink for studying angiogenesis and in vivo wound healing study. Our findings show that 3D-printed AGP hydrogel promoted M2 macrophage polarization by Janus kinase/signal transducer of activation (JAK/STAT), peroxisome proliferator-activated receptor (PPAR) signaling pathways and facilitated the M2-Exo secretion. Moreover, the COL@d-ECM/M2-Exo was found to be biocompatible with skin cells. Transcriptomic (RNA-Seq) and real-time PCR (qRT-PCR) study revealed that co-culture of fibroblast/keratinocyte/stem cells/endothelial cells in a 3D bioprinted COL@d-ECM/M2-Exo hydrogel upregulated the skin-associated signature biomarkers through various regulatory pathways during epidermis remodeling and downregulated the mitogen-activated protein kinase (MAPK) signaling pathway after 7 days. In a subcutaneous wound model, the 3D bioprinted COL@d-ECM/M2-Exo hydrogel displayed robust wound remodeling and hair follicle (HF) induction while reducing canonical pro-inflammatory activation after 14 days, presenting a viable therapeutic strategy for skin-related disorders.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, 24341, Chuncheon, Republic of Korea
- Institute of Forest Science, Kangwon National University, 24341, Chuncheon, Republic of Korea
- School of Medicine, University of California Davis, 95817, Sacramento, United States
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, 04763, Seoul, Republic of Korea
| | - Jin Hexiu
- Department of Plastic and Traumatic Surgery, Capital Medical University, 100069, Beijing, China
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, 24341, Chuncheon, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, 24341, Chuncheon, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, 24341, Chuncheon, Republic of Korea
| | - Tejal V. Patil
- Department of Biosystems Engineering, Kangwon National University, 24341, Chuncheon, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, 24341, Chuncheon, Republic of Korea
| | - Thavasyappan Thambi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, 17104, Yongin, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, 61186, Gwangju, Republic of Korea
| | - Yong-kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, 27470, Chungju, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, 24341, Chuncheon, Republic of Korea
- Institute of Forest Science, Kangwon National University, 24341, Chuncheon, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, 24341, Chuncheon, Republic of Korea
| |
Collapse
|
35
|
Michelutti L, Tel A, Robiony M, Vinayahalingam S, Agosti E, Ius T, Gagliano C, Zeppieri M. The Properties and Applicability of Bioprinting in the Field of Maxillofacial Surgery. Bioengineering (Basel) 2025; 12:251. [PMID: 40150715 PMCID: PMC11939734 DOI: 10.3390/bioengineering12030251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Perhaps the most innovative branch of medicine is represented by regenerative medicine. It deals with regenerating or replacing tissues damaged by disease or aging. The innovative frontier of this branch is represented by bioprinting. This technology aims to reconstruct tissues, organs, and anatomical structures, such as those in the head and neck region. This would mean revolutionizing therapeutic and surgical approaches in the management of multiple conditions in which a conspicuous amount of tissue is lost. The application of bioprinting for the reconstruction of anatomical areas removed due to the presence of malignancy would represent a revolutionary new step in personalized and precision medicine. This review aims to investigate recent advances in the use of biomaterials for the reconstruction of anatomical structures of the head-neck region, particularly those of the oral cavity. The characteristics and properties of each biomaterial currently available will be presented, as well as their potential applicability in the reconstruction of areas affected by neoplasia damaged after surgery. In addition, this study aims to examine the current limitations and challenges and to analyze the future prospects of this technology in maxillofacial surgery.
Collapse
Affiliation(s)
- Luca Michelutti
- Clinic of Maxillofacial Surgery, Head-Neck and NeuroScience Department, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy; (L.M.); (A.T.)
| | - Alessandro Tel
- Clinic of Maxillofacial Surgery, Head-Neck and NeuroScience Department, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy; (L.M.); (A.T.)
| | - Massimo Robiony
- Clinic of Maxillofacial Surgery, Head-Neck and NeuroScience Department, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy; (L.M.); (A.T.)
| | | | - Edoardo Agosti
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy
| | - Tamara Ius
- Academic Neurosurgery, Department of Neurosciences, University of Padova, 35121 Padova, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Mediterranean Foundation “G.B. Morgagni”, 95125 Catania, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34100 Trieste, Italy
| |
Collapse
|
36
|
Aye SSS, Fang Z, Wu MCL, Lim KS, Ju LA. Integrating microfluidics, hydrogels, and 3D bioprinting for personalized vessel-on-a-chip platforms. Biomater Sci 2025; 13:1131-1160. [PMID: 39834160 DOI: 10.1039/d4bm01354a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Thrombosis, a major cause of morbidity and mortality worldwide, presents a complex challenge in cardiovascular medicine due to the intricacy of clotting mechanisms in living organisms. Traditional research approaches, including clinical studies and animal models, often yield conflicting results due to the inability to control variables in these complex systems, highlighting the need for more precise investigative tools. This review explores the evolution of in vitro thrombosis models, from conventional polydimethylsiloxane (PDMS)-based microfluidic devices to advanced hydrogel-based systems and cutting-edge 3D bioprinted vascular constructs. We discuss how these emerging technologies, particularly vessel-on-a-chip platforms, are enabling researchers to control previously unmanageable factors, thereby offering unprecedented opportunities to pinpoint specific clotting mechanisms. While PDMS-based devices offer optical transparency and fabrication ease, their inherent limitations, including non-physiological rigidity and surface properties, have driven the development of hydrogel-based systems that better mimic the extracellular matrix of blood vessels. The integration of microfluidics with biomimetic materials and tissue engineering approaches has led to the development of sophisticated models capable of simulating patient-specific vascular geometries, flow dynamics, and cellular interactions under highly controlled conditions. The advent of 3D bioprinting further enables the creation of complex, multi-layered vascular structures with precise spatial control over geometry and cellular composition. Despite significant progress, challenges remain in achieving long-term stability, incorporating immune components, and translating these models to clinical applications. By providing a comprehensive overview of current advancements and future prospects, this review aims to stimulate further innovation in thrombosis research and accelerate the development of more effective, personalized approaches to thrombosis prevention and treatment.
Collapse
Affiliation(s)
- San Seint Seint Aye
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
| | - Zhongqi Fang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
| | - Mike C L Wu
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Khoon S Lim
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2006, Australia
- Heart Research Institute, Newtown, NSW 2042, Australia
| |
Collapse
|
37
|
Mei X, Yang Z, Wang X, Shi A, Blanchard J, Elahi F, Kang H, Orive G, Zhang YS. Integrating microfluidic and bioprinting technologies: advanced strategies for tissue vascularization. LAB ON A CHIP 2025; 25:764-786. [PMID: 39775452 DOI: 10.1039/d4lc00280f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Tissue engineering offers immense potential for addressing the unmet needs in repairing tissue damage and organ failure. Vascularization, the development of intricate blood vessel networks, is crucial for the survival and functions of engineered tissues. Nevertheless, the persistent challenge of ensuring an ample nutrient supply within implanted tissues remains, primarily due to the inadequate formation of blood vessels. This issue underscores the vital role of the human vascular system in sustaining cellular functions, facilitating nutrient exchange, and removing metabolic waste products. In response to this challenge, new approaches have been explored. Microfluidic devices, emulating natural blood vessels, serve as valuable tools for investigating angiogenesis and allowing the formation of microvascular networks. In parallel, bioprinting technologies enable precise placement of cells and biomaterials, culminating in vascular structures that closely resemble the native vessels. To this end, the synergy of microfluidics and bioprinting has further opened up exciting possibilities in vascularization, encompassing innovations such as microfluidic bioprinting. These advancements hold great promise in regenerative medicine, facilitating the creation of functional tissues for applications ranging from transplantation to disease modeling and drug testing. This review explores the potentially transformative impact of microfluidic and bioprinting technologies on vascularization strategies within the scope of tissue engineering.
Collapse
Affiliation(s)
- Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Ziyi Yang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
- School of Biological Science, University of California Irvine, Irvine, CA 92697, USA
| | - Xiran Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, CA 92161, USA
| | - Alan Shi
- Brookline High School, Brookline, MA 02445, USA
| | - Joel Blanchard
- Departments of Neurology, Neuroscience, and Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fanny Elahi
- Departments of Neurology, Neuroscience, and Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
- College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, 01007, Spain
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
38
|
Cho WW, Park W, Cho DW. Recent trends in embedded 3D bioprinting of vascularized tissue constructs. Biofabrication 2025; 17:022002. [PMID: 39879658 DOI: 10.1088/1758-5090/adafdd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/29/2025] [Indexed: 01/31/2025]
Abstract
3D bioprinting technology offers significant advantages in the fabrication of tissue and organ structures by allowing precise layer-by-layer patterning of cells and various biomaterials. However, conventional bioinks exhibit poor mechanical properties, which limit their use in the fabrication of large-scale vascularized tissue constructs. To address these limitations, recent studies have focused on the development of rapidly crosslinkable bioinks through chemical modification. These enable rapid crosslinking within minutes, offering substantial advantages for engineering large-scale tissue constructs. Nevertheless, challenges remain in the production of constructs that fully incorporate the complex vascular networks inherent to native tissues. Recently, embedded bioprinting technique, which involves the direct writing of bioink into a support bath that provides physical support, has gained significant attention for enabling the freeform fabrication of 3D structures. This method has been extensively studied and offers the advantage of fabricating structures ranging from tissue constructs with simple vascular channels to complex structures containing multiscale vascular networks. This review presents an overview of the various materials utilized in embedded bioprinting and elucidates the rheological properties of these materials. Furthermore, it examines the current research trends in the biofabrication of vascularized tissue constructs using embedded bioprinting techniques, along with their associated limitations. The review concludes by proposing areas for future improvement, specifically addressing material and biofabrication approaches as well as bioprinting systems.
Collapse
Affiliation(s)
- Won-Woo Cho
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Wonbin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
39
|
Wang Z, Lin Z, Mei X, Cai L, Lin KC, Rodríguez JF, Ye Z, Parraguez XS, Guajardo EM, García Luna PC, Zhang JYJ, Zhang YS. Engineered Living Systems Based on Gelatin: Design, Manufacturing, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416260. [PMID: 39910847 DOI: 10.1002/adma.202416260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/26/2024] [Indexed: 02/07/2025]
Abstract
Engineered living systems (ELSs) represent purpose-driven assemblies of living components, encompassing cells, biomaterials, and active agents, intricately designed to fulfill diverse biomedical applications. Gelatin and its derivatives have been used extensively in ELSs owing to their mature translational pathways, favorable biological properties, and adjustable physicochemical characteristics. This review explores the intersection of gelatin and its derivatives with fabrication techniques, offering a comprehensive examination of their synergistic potential in creating ELSs for various applications in biomedicine. It offers a deep dive into gelatin, including its structures and production, sources, processing, and properties. Additionally, the review explores various fabrication techniques employing gelatin and its derivatives, including generic fabrication techniques, microfluidics, and various 3D printing methods. Furthermore, it discusses the applications of ELSs based on gelatin in regenerative engineering as well as in cell therapies, bioadhesives, biorobots, and biosensors. Future directions and challenges in gelatin fabrication are also examined, highlighting emerging trends and potential areas for improvements and innovations. In summary, this comprehensive review underscores the significance of gelatin-based ELSs in advancing biomedical engineering and lays the groundwork for guiding future research and developments within the field.
Collapse
Affiliation(s)
- Zhenwu Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zeng Lin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ling Cai
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ko-Chih Lin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jimena Flores Rodríguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zixin Ye
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ximena Salazar Parraguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Emilio Mireles Guajardo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Pedro Cortés García Luna
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jun Yi Joey Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| |
Collapse
|
40
|
Debnath S, Agrawal A, Jain N, Chatterjee K, Player DJ. Collagen as a bio-ink for 3D printing: a critical review. J Mater Chem B 2025; 13:1890-1919. [PMID: 39775500 DOI: 10.1039/d4tb01060d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The significance of three-dimensional (3D) bioprinting in the domain of regenerative medicine and tissue engineering is readily apparent. To create a multi-functional bioinspired structure, 3D bioprinting requires high-performance bioinks. Bio-inks refer to substances that encapsulate viable cells and are employed in the printing procedure to construct 3D objects progressive through successive layers. For a bio-ink to be considered high-performance, it must meet several critical criteria: printability, gelation kinetics, structural integrity, elasticity and strength, cell adhesion and differentiation, mimicking the native ECM, cell viability and proliferation. As an exemplar application, tissue grafting is used to repair and replace severely injured tissues. The primary considerations in this case include compatibility, availability, advanced surgical techniques, and potential complications after the operation. 3D printing has emerged as an advancement in 3D culture for its use as a regenerative medicine approach. Thus, additive technologies such as 3D bioprinting may offer safe, compatible, and fast-healing tissue engineering options. Multiple methods have been developed for hard and soft tissue engineering during the past few decades, however there are many limitations. Despite significant advances in 3D cell culture, 3D printing, and material creation, a gold standard strategy for designing and rebuilding bone, cartilage, skin, and other tissues has not yet been achieved. Owing to its abundance in the human body and its critical role in protecting and supporting human tissues, soft and hard collagen-based bioinks is an attractive proposition for 3D bioprinting. Collagen, offers a good combination of biocompatibility, controllability, and cell loading. Collagen made of triple helical collagen subunit is a protein-based organic polymer present in almost every extracellular matrix of tissues. Collagen-based bioinks, which create bioinspired scaffolds with multiple functionalities and uses them in various applications, is a represent a breakthrough in the regenerative medicine and biomedical engineering fields. This protein can be blended with a variety of polymers and inorganic fillers to improve the physical and biological performance of the scaffolds. To date, there has not been a comprehensive review appraising the existing literature surround the use of collagen-based bioink applications in 'soft' or 'hard' tissue applications. The uses of the target region in soft tissues include the skin, nerve, and cartilage, whereas in the hard tissues, it specifically refers to bone. For soft tissue healing, collagen-based bioinks must meet greater functional criteria, whereas hard tissue restoration requires superior mechanical qualities. Herein, we summarise collagen-based bioink's features and highlight the most essential ones for diverse healing situations. We conclude with the primary challenges and difficulties of using collagen-based bioinks and suggest future research objectives.
Collapse
Affiliation(s)
- Souvik Debnath
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
| | - Akhilesh Agrawal
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Nipun Jain
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Darren J Player
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK.
| |
Collapse
|
41
|
Maggiotto F, Bova L, Micheli S, Pozzer C, Fusco P, Sgarbossa P, Billi F, Cimetta E. 3D bioprinting for the production of a perfusable vascularized model of a cancer niche. Front Bioeng Biotechnol 2025; 13:1484738. [PMID: 39980862 PMCID: PMC11841441 DOI: 10.3389/fbioe.2025.1484738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/07/2025] [Indexed: 02/22/2025] Open
Abstract
The ever-growing need for improved in vitro models of human tissues to study both healthy and diseased states is advancing the use of techniques such as 3D Bioprinting. We here present our results on the development of a vascularized and perfusable 3D tumor mimic for studies of the early steps of Neuroblastoma metastatic spread. We used a multi-material and sacrificial bioprinting approach to fabricate vascularized 3D cell-laden structures and developed a customized perfusion system enabling maintenance of growth and viability of the constructs for up to 3 weeks. Cell phenotypes and densities in co-culture for both the bulk of the construct and the endothelialization of the vascular channels were optimized to better replicate in vivo conditions and ideally simulate tumor progression. We proved the formation of an endothelium layer lining the vascular channel after 14 days of perfused culture. Cells in the bulk of the construct reflected Neuroblastoma growth and its tendency to recruit endothelial cells contributing to neovascularization. We also collected preliminary evidence of Neuroblastoma cells migration towards the vascular compartment, recapitulating the first stages of metastatic dissemination.
Collapse
Affiliation(s)
- Federico Maggiotto
- Department of Industrial Engineering (DII), University of Padua, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
| | - Lorenzo Bova
- Department of Industrial Engineering (DII), University of Padua, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
- UCLA Department of Orthopaedic Surgery, David Geffen School of Medicine, Los Angeles, CA, United States
| | - Sara Micheli
- Department of Industrial Engineering (DII), University of Padua, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
| | - Camilla Pozzer
- Department of Industrial Engineering (DII), University of Padua, Padova, Italy
| | - Pina Fusco
- Department of Industrial Engineering (DII), University of Padua, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
| | - Paolo Sgarbossa
- Department of Industrial Engineering (DII), University of Padua, Padova, Italy
| | - Fabrizio Billi
- UCLA Department of Orthopaedic Surgery, David Geffen School of Medicine, Los Angeles, CA, United States
| | - Elisa Cimetta
- Department of Industrial Engineering (DII), University of Padua, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
| |
Collapse
|
42
|
Sergis V, Kelly D, Pramanick A, Britchfield G, Mason K, Daly AC. In-situquality monitoring during embedded bioprinting using integrated microscopy and classical computer vision. Biofabrication 2025; 17:025004. [PMID: 39808934 DOI: 10.1088/1758-5090/adaa22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
Despite significant advances in bioprinting technology, current hardware platforms lack the capability for process monitoring and quality control. This limitation hampers the translation of the technology into industrial GMP-compliant manufacturing settings. As a key step towards a solution, we developed a novel bioprinting platform integrating a high-resolution camera forin-situmonitoring of extrusion outcomes during embedded bioprinting. Leveraging classical computer vision and image analysis techniques, we then created a custom software module for assessing print quality. This module enables quantitative comparison of printer outputs to input points of the computer-aided design model's 2D projections, measuring area and positional accuracy. To showcase the platform's capabilities, we then investigated compatibility with various bioinks, dyes, and support bath materials for both 2D and 3D print path trajectories. In addition, we performed a detailed study on how the rheological properties of granular support hydrogels impact print quality during embedded bioprinting, illustrating a practical application of the platform. Our results demonstrated that lower viscosity, faster thixotropy recovery, and smaller particle sizes significantly enhance print fidelity. This novel bioprinting platform, equipped with integrated process monitoring, holds great potential for establishing auditable and more reproducible biofabrication processes for industrial applications.
Collapse
Affiliation(s)
- Vasileios Sergis
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, Ireland
- Biomedical Engineering, University of Galway, Galway, Ireland
| | - Daniel Kelly
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, Ireland
- Biomedical Engineering, University of Galway, Galway, Ireland
| | - Ankita Pramanick
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, Ireland
- Biomedical Engineering, University of Galway, Galway, Ireland
| | - Graham Britchfield
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, Ireland
- Biomedical Engineering, University of Galway, Galway, Ireland
| | - Karl Mason
- School of Computer Science, University of Galway, University Road, Galway, Ireland
| | - Andrew C Daly
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, Ireland
- Biomedical Engineering, University of Galway, Galway, Ireland
| |
Collapse
|
43
|
Bektas CK, Luo J, Conley B, Le KPN, Lee KB. 3D bioprinting approaches for enhancing stem cell-based neural tissue regeneration. Acta Biomater 2025; 193:20-48. [PMID: 39793745 DOI: 10.1016/j.actbio.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Three-dimensional (3D) bioprinting holds immense promise for advancing stem cell research and developing novel therapeutic strategies in the field of neural tissue engineering and disease modeling. This paper critically analyzes recent breakthroughs in 3D bioprinting, specifically focusing on its application in these areas. We comprehensively explore the advantages and limitations of various 3D printing methods, the selection and formulation of bioink materials tailored for neural stem cells, and the incorporation of nanomaterials with dual functionality, enhancing the bioprinting process and promoting neurogenesis pathways. Furthermore, the paper reviews the diverse range of stem cells employed in neural bioprinting research, discussing their potential applications and associated challenges. We also introduce the emerging field of 4D bioprinting, highlighting current efforts to develop time-responsive constructs that improve the integration and functionality of bioprinted neural tissues. In short, this manuscript aims to provide a comprehensive understanding of this rapidly evolving field. It underscores the transformative potential of 3D and 4D bioprinting technologies in revolutionizing stem cell research and paving the way for novel therapeutic solutions for neurological disorders and injuries, ultimately contributing significantly to the advancement of regenerative medicine. STATEMENT OF SIGNIFICANCE: This comprehensive review critically examines the current bioprinting research landscape, highlighting efforts to overcome key limitations in printing technologies-improving cell viability post-printing, enhancing resolution, and optimizing cross-linking efficiencies. The continuous refinement of material compositions aims to control the spatiotemporal delivery of therapeutic agents, ensuring better integration of transplanted cells with host tissues. Specifically, the review focuses on groundbreaking advancements in neural tissue engineering. The development of next-generation bioinks, hydrogels, and scaffolds specifically designed for neural regeneration complexities holds the potential to revolutionize treatments for debilitating neural conditions, especially when nanotechnologies are being incorporated. This review offers the readers both a comprehensive analysis of current breakthroughs and an insightful perspective on the future trajectory of neural tissue engineering.
Collapse
Affiliation(s)
- Cemile Kilic Bektas
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Jeffrey Luo
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Brian Conley
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Kim-Phuong N Le
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
44
|
Kamani KM, Shim YH, Griebler J, Narayanan S, Zhang Q, Leheny RL, Harden JL, Deptula A, Espinosa-Marzal RM, Rogers SA. Linking structural and rheological memory in disordered soft materials. SOFT MATTER 2025; 21:750-759. [PMID: 39791209 DOI: 10.1039/d4sm00953c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Linking the macroscopic flow properties and nanoscopic structure is a fundamental challenge to understanding, predicting, and designing disordered soft materials. Under small stresses, these materials are soft solids, while larger loads can lead to yielding and the acquisition of plastic strain, which adds complexity to the task. In this work, we connect the transient structure and rheological memory of a colloidal gel under cyclic shearing across a range of amplitudes via a generalized memory function using rheo-X-ray photon correlation spectroscopy (rheo-XPCS). Our rheo-XPCS data show that the nanometer scale aggregate-level structure recorrelates whenever the change in recoverable strain over some interval is zero. The macroscopic recoverable strain is therefore a measure of the nano-scale structural memory. We further show that yielding in disordered colloidal materials is strongly heterogeneous and that memories of prior deformation can exist even after the material has been subjected to flow.
Collapse
Affiliation(s)
- Krutarth M Kamani
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| | - Yul Hui Shim
- School of Chemical and Materials Engineering, The University of Suwon, Hwaseong-si, Gyeonggi-do, 18323, Republic of Korea
| | - James Griebler
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Qingteng Zhang
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
| | - James L Harden
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Alexander Deptula
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Illinois, USA, 61801
| | - Rosa M Espinosa-Marzal
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Illinois, USA, 61801
| | - Simon A Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| |
Collapse
|
45
|
Mueller MC, Blomberg R, Tanneberger AE, Davis-Hall D, Neeves KB, Magin CM. Female fibroblast activation is estrogen-mediated in sex-specific 3D-bioprinted pulmonary artery adventitia models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633670. [PMID: 39896610 PMCID: PMC11785021 DOI: 10.1101/2025.01.17.633670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Pulmonary arterial hypertension (PAH) impacts male and female patients in different ways. Female patients exhibit a greater susceptibility to disease (4:1 female-to-male ratio) but live longer after diagnosis than male patients. This complex sexual dimorphism is known as the estrogen paradox. Prior studies suggest that estrogen signaling may be pathologic in the pulmonary vasculature and protective in the heart, yet the mechanisms underlying these sex-differences in PAH remain unclear. PAH is a form of a pulmonary vascular disease that results in scarring of the small blood vessels, leading to impaired blood flow and increased blood pressure. Over time, this increase in blood pressure causes damage to the heart. Many previous studies of PAH relied on male cells or cells of undisclosed origin for in vitro modeling. Here we present a dynamic, 3D-bioprinted model that incorporates cells and circulating sex hormones from female patients to specifically study how female patients respond to changes in microenvironmental stiffness and sex hormone signaling. Poly(ethylene glycol)-alpha methacrylate (PEGαMA)-based hydrogels containing female human pulmonary artery adventitia fibroblasts (hPAAFs) from idiopathic PAH (IPAH) or control donors were 3D bioprinted to mimic pulmonary artery adventitia. These biomaterials were initially soft, like healthy blood vessels, and then stiffened using light to mimic vessel scarring in PAH. These 3D-bioprinted models showed that stiffening the microenvironment around female IPAH hPAAFs led to hPAAF activation. On both the protein and gene-expression levels, cellular activation markers significantly increased in stiffened samples and were highest in IPAH patient-derived cells. Treatment with a selective estrogen receptor modulator reduced expression hPAAF activation markers, demonstrating that hPAAF activation is a one pathologic response mediated by estrogen signaling in the vasculature, validating that drugs currently in clinical trials could be evaluated in sex-specific 3D-bioprinted pulmonary artery adventitia models.
Collapse
|
46
|
Sousa AC, Alvites R, Lopes B, Sousa P, Moreira A, Coelho A, Santos JD, Atayde L, Alves N, Maurício AC. Three-Dimensional Printing/Bioprinting and Cellular Therapies for Regenerative Medicine: Current Advances. J Funct Biomater 2025; 16:28. [PMID: 39852584 PMCID: PMC11765675 DOI: 10.3390/jfb16010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
The application of three-dimensional (3D) printing/bioprinting technologies and cell therapies has garnered significant attention due to their potential in the field of regenerative medicine. This paper aims to provide a comprehensive overview of 3D printing/bioprinting technology and cell therapies, highlighting their results in diverse medical applications, while also discussing the capabilities and limitations of their combined use. The synergistic combination of 3D printing and cellular therapies has been recognised as a promising and innovative approach, and it is expected that these technologies will progressively assume a crucial role in the treatment of various diseases and conditions in the foreseeable future. This review concludes with a forward-looking perspective on the future impact of these technologies, highlighting their potential to revolutionize regenerative medicine through enhanced tissue repair and organ replacement strategies.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Instituto Universitário de Ciências da Saúde (IUCS), Avenida Central de Gandra 1317, Gandra, 4585-116 Paredes, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Alícia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - José Domingos Santos
- REQUIMTE-LAQV, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, UP, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Luís Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, Rua de Portugal—Zona Industrial, 2430-028 Marinha Grande, Portugal;
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
47
|
Chen S, Tan L, Serpooshan V, Chen H. A 3D bioprinted adhesive tissue engineering scaffold to repair ischemic heart injury. Biomater Sci 2025; 13:506-522. [PMID: 39639799 DOI: 10.1039/d4bm00988f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Adhesive tissue engineering scaffold (ATES) devices can be secured on tissues by relying on their intrinsic adhesive properties, hence, avoiding the complications such as host tissue/scaffold damage that are associated with conventional scaffold fixation methods like suturing or bioglue. This study introduces a new generation of three-dimensional (3D) bioprinted ATES systems for use as cardiac patches to regenerate the adult human heart. Tyramine-modified methacrylated hyaluronic acid (HAMA-tyr), gelatin methacrylate (GelMA), and gelatin were used to create the hybrid bioink formulation with self-adhesive properties. ATESs were bioprinted and further modified to improve the adhesion properties. In-depth characterization of printing fidelity, pore size, mechanical properties, swelling behavior, as well as biocompatibility was used to create ATESs with optimal biological function. Following in vitro testing, the ATESs were tested in a mouse model of myocardial infarction to study the scaffold adhesive strength in biological milieu. The method developed in this study can be used to manufacture off-the-shelf ATESs with complex cellular and extracellular architecture, with robust potential for clinical translation into a variety of personalized tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.
| | - Lindan Tan
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Haifeng Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.
| |
Collapse
|
48
|
Moss S, Shiwarski DJ, Feinberg AW. FRESH 3D Bioprinting of Collagen Types I, II, and III. ACS Biomater Sci Eng 2025; 11:556-563. [PMID: 39622052 PMCID: PMC11733922 DOI: 10.1021/acsbiomaterials.4c01826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/14/2025]
Abstract
Collagens play a vital role in the mechanical integrity of tissues as well as in physical and chemical signaling throughout the body. As such, collagens are widely used biomaterials in tissue engineering; however, most 3D fabrication methods use only collagen type I and are restricted to simple cast or molded geometries that are not representative of native tissue. Freeform reversible embedding of suspended hydrogel (FRESH) 3D bioprinting has emerged as a method to fabricate complex 3D scaffolds from collagen I but has yet to be leveraged for other collagen isoforms. Here, we developed collagen type II, collagen type III, and combination bioinks for FRESH 3D bioprinting of millimeter-sized scaffolds with micrometer scale features with fidelity comparable to scaffolds fabricated with the established collagen I bioink. At the microscale, single filament extrusions were similar across all collagen bioinks with a nominal diameter of ∼100 μm using a 34-gauge needle. Scaffolds as large as 10 × 10 × 2 mm were also fabricated and showed similar overall resolution and fidelity across collagen bioinks. Finally, cell adhesion and growth on the different collagen bioinks as either cast or FRESH 3D bioprinted scaffolds were compared and found to support similar growth behaviors. In total, our results expand the range of collagen isoform bioinks that can be 3D bioprinted and demonstrate that collagen types I, II, III, and combinations thereof can all be FRESH printed with high fidelity and comparable biological response. This serves to expand the toolkit for the fabrication of tailored collagen scaffolds that can better recapitulate the extracellular matrix properties of specific tissue types.
Collapse
Affiliation(s)
- Samuel
P Moss
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States of America
| | - Daniel J. Shiwarski
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States of America
| | - Adam W. Feinberg
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States of America
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States of America
| |
Collapse
|
49
|
Donzanti MJ, Ferrick BJ, Mhatre O, Chernokal B, Renteria DC, Gleghorn JP. Stochastic to Deterministic: A Straightforward Approach to Create Serially Perfusable Multiscale Capillary Beds. ACS Biomater Sci Eng 2025; 11:239-248. [PMID: 39606830 DOI: 10.1021/acsbiomaterials.4c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Generation of in vitro tissue models with serially perfused hierarchical vasculature would allow greater control of fluid perfusion throughout the network and enable direct mechanistic investigation of vasculogenesis, angiogenesis, and vascular remodeling. In this work, we have developed a method to produce a closed, serially perfused, multiscale vessel network fully embedded within an acellular hydrogel, where flow through the capillary bed is required prior to fluid exit. We confirmed that the acellular and cellular gel-gel interface was functionally annealed without preventing or biasing cell migration and endothelial self-assembly. Multiscale connectivity of the vessel network was validated via high-resolution microscopy techniques to confirm anastomosis between self-assembled and patterned vessels. Lastly, using a simple acrylic cassette and fluorescently labeled microspheres, the multiscale network was demonstrated to be perfusable. Directed flow from inlet to outlet mandated flow through the capillary bed. This method for producing closed, multiscale vascular networks was developed with the intention of straightforward fabrication and engineering techniques so as to be a low barrier to entry for researchers who wish to investigate mechanistic questions in vascular biology. This ease of use offers a facile extension of these methods for incorporation into organoid culture, organ-on-a-chip (OOC) models, and bioprinted tissues.
Collapse
Affiliation(s)
- Michael J Donzanti
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware United States 19713
| | - Bryan J Ferrick
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware United States 19713
| | - Omkar Mhatre
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware United States 19713
| | - Brea Chernokal
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware United States 19713
| | - Diana C Renteria
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware United States 19713
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware United States 19713
| |
Collapse
|
50
|
Steiner RC, Buchen JT, Phillips ER, Fellin CR, Yuan X, Jariwala SH. FRESH extrusion 3D printing of type-1 collagen hydrogels photocrosslinked using ruthenium. PLoS One 2025; 20:e0317350. [PMID: 39792905 PMCID: PMC11723599 DOI: 10.1371/journal.pone.0317350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
The extrusion bioprinting of collagen material has many applications relevant to tissue engineering and regenerative medicine. Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technology is capable of 3D printing collagen material with the specifications and details needed for precise tissue guidance, a crucial requirement for effective tissue repair. While FRESH has shown repeated success and reliability for extrusion printing, the mechanical properties of completed collagen prints can be improved further by post-print crosslinking methodologies. Photoinitiator-based crosslinking methods are simple and have proven effective in strengthening protein-based materials. The ruthenium and sodium persulfate photoinitiator system (Ru(bpy)3/SPS) has been suggested as an effective crosslinking method for collagen materials. Herein, we describe the procedure our group has developed to combine extrusion-based 3D printing of type-1 collagen using FRESH technology with Ru(bpy)3/SPS photoinitiated crosslinking methods to improve the strength and stability of 3D printed collagen structures. Mechanical testing and cell biocompatibility assessments were performed to investigate the impact of Ru(bpy)3/SPS photoinitiated crosslinking and highlight the potential limitations of this method. These results demonstrate a significant improvement in the compressive strength of type-1 collagen samples as the Ru(bpy)3/SPS concentration increases. Additionally, type-1 collagen samples crosslinked with up to 1/10 mM Ru(bpy)3/SPS support PC12 cell viability over a period of 7 days. The primary limitations that were observed and described in detail in this protocol are: the FRESH slurry preparation, printing environment, extrusion printer hardware, and quality of the ruthenium reagent.
Collapse
Affiliation(s)
- Richard C. Steiner
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - Jack T. Buchen
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - Evan R. Phillips
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- CytoSorbents Medical Inc., Princeton, New Jersey, United States of America
| | - Christopher R. Fellin
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - Xiaoning Yuan
- Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - Shailly H. Jariwala
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|