1
|
Immorlano F, Eyring V, le Monnier de Gouville T, Accarino G, Elia D, Mandt S, Aloisio G, Gentine P. Transferring climate change physical knowledge. Proc Natl Acad Sci U S A 2025; 122:e2413503122. [PMID: 40198708 PMCID: PMC12012549 DOI: 10.1073/pnas.2413503122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/26/2025] [Indexed: 04/10/2025] Open
Abstract
Precise and reliable climate projections are required for climate adaptation and mitigation, but Earth system models still exhibit great uncertainties. Several approaches have been developed to reduce the spread of climate projections and feedbacks, yet those methods cannot capture the nonlinear complexity inherent in the climate system. Using a Transfer Learning approach, we show that Machine Learning can be used to optimally leverage and merge the knowledge gained from global temperature maps simulated by Earth system models and observed in the historical period to reduce the spread of global surface air temperature fields projected in the 21st century. We reach an uncertainty reduction of more than 50% with respect to state-of-the-art approaches while giving evidence that our method provides improved regional temperature patterns together with narrower projections uncertainty, urgently required for climate adaptation.
Collapse
Affiliation(s)
- Francesco Immorlano
- Centro Euro-Mediterraneo sui Cambiamenti Climatici Foundation — Euro-Mediterranean Center on Climate Change, Lecce73100, Italy
- Department of Computer Science, University of California, Irvine, CA92697
- Learning the Earth with AI and Physics, New York, NY10027
| | - Veronika Eyring
- Department of Earth System Model Evaluation and Analysis, Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Physik der Atmosphäre, Oberpfaffenhofen, Wessling82234, Germany
- Department of Climate Modelling, University of Bremen, Institute of Environmental Physics, Bremen28359, Germany
| | - Thomas le Monnier de Gouville
- Department of Earth and Environmental Engineering, Columbia University, New York, NY10027
- Ecole Polytechnique, Palaiseau91120, France
| | - Gabriele Accarino
- Centro Euro-Mediterraneo sui Cambiamenti Climatici Foundation — Euro-Mediterranean Center on Climate Change, Lecce73100, Italy
- Learning the Earth with AI and Physics, New York, NY10027
- Department of Earth and Environmental Engineering, Columbia University, New York, NY10027
| | - Donatello Elia
- Centro Euro-Mediterraneo sui Cambiamenti Climatici Foundation — Euro-Mediterranean Center on Climate Change, Lecce73100, Italy
| | - Stephan Mandt
- Department of Computer Science, University of California, Irvine, CA92697
- Learning the Earth with AI and Physics, New York, NY10027
| | - Giovanni Aloisio
- Centro Euro-Mediterraneo sui Cambiamenti Climatici Foundation — Euro-Mediterranean Center on Climate Change, Lecce73100, Italy
- Department of Engineering for Innovation, University of Salento, Lecce73100, Italy
| | - Pierre Gentine
- Learning the Earth with AI and Physics, New York, NY10027
- Department of Earth and Environmental Engineering, Columbia University, New York, NY10027
| |
Collapse
|
2
|
Mondanaro A, Girardi G, Castiglione S, Timmermann A, Zeller E, Venugopal T, Serio C, Melchionna M, Esposito A, Di Febbraro M, Raia P. EutherianCoP. An integrated biotic and climate database for conservation paleobiology based on eutherian mammals. Sci Data 2025; 12:6. [PMID: 39805871 PMCID: PMC11729879 DOI: 10.1038/s41597-024-04181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
We present a new database, EutherianCoP, of fossil mammals which lived globally from the Late Pleistocene to the Holocene. The database includes 13,972 fossil occurrences of 786 extant or recently extinct placental mammal species, plus 155,198 current occurrences for those of them which survived to the present. The occurrences are correlated with radiometric age information. For all species, we provide 32 different traits, inclusive of taxonomic, phenotypic, life history, biogeographic and phylogenetic information. Differently from any other compilation, the occurrences are complemented with estimates of past climatic conditions, including site-interpolated monthly and annual precipitation and temperature, leaf area index, megabiome type and net primary productivity, which are derived from transient paleo model simulations conducted with the Community Earth System Model 1.2 and the BIOME4 vegetation model. All data are further downloadable for further investigation.
Collapse
Affiliation(s)
- Alessandro Mondanaro
- Department of Earth Science, University of Florence, via G. La Pira 4, 50121, Florence, Italy.
| | - Giorgia Girardi
- DiSTAR, University of Naples "Federico II", 80126, via Vicinale Cupa Cintia 26, Naples, Italy
| | - Silvia Castiglione
- DiSTAR, University of Naples "Federico II", 80126, via Vicinale Cupa Cintia 26, Naples, Italy
| | - Axel Timmermann
- IBS Center for Climate Physics, 46241, Busan, South Korea
- Pusan National University, 46241, Busan, South Korea
| | - Elke Zeller
- IBS Center for Climate Physics, 46241, Busan, South Korea
- Pusan National University, 46241, Busan, South Korea
| | - Thushara Venugopal
- IBS Center for Climate Physics, 46241, Busan, South Korea
- Pusan National University, 46241, Busan, South Korea
| | - Carmela Serio
- DiSTAR, University of Naples "Federico II", 80126, via Vicinale Cupa Cintia 26, Naples, Italy
| | - Marina Melchionna
- DiSTAR, University of Naples "Federico II", 80126, via Vicinale Cupa Cintia 26, Naples, Italy
| | - Antonella Esposito
- DiSTAR, University of Naples "Federico II", 80126, via Vicinale Cupa Cintia 26, Naples, Italy
| | - Mirko Di Febbraro
- EnviXLab, Department of Biosciences and Territory, University of Molise, 86090, Pesche (Isernia), Italy
| | - Pasquale Raia
- DiSTAR, University of Naples "Federico II", 80126, via Vicinale Cupa Cintia 26, Naples, Italy.
| |
Collapse
|
3
|
Mandal G, An SI, Park JH, Yun KS, Liu C, Paik S. Northern Hemisphere sea ice variability in a transient CGCM simulation of the past 2.6 Ma. Nat Commun 2025; 16:39. [PMID: 39746961 PMCID: PMC11695940 DOI: 10.1038/s41467-024-55327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
The recent sea ice changes in the Northern Hemisphere (NH), necessitate elucidating the sea ice variability over the past 2.6 million years (Ma), when the Earth's glacial cycles transitioned from ∼41 to ∼100 kyr periodicity, following the Mid-Pleistocene Transition (MPT) period (0.7-1.2 Ma). Here, we analyze a coupled general circulation model (CGCM) simulation to understand how the NH sea ice responds to changes in the transient orbital, greenhouse gas (GHG), and ice-sheet forcings. We find that the Earth's axial tilt (obliquity) and axial wobble (precession) strongly influence the variability in high-latitude (>70° N) perennial sea ice and mid-latitude (35° N-70° N) seasonal sea ice, respectively, by modifying the net surface shortwave radiation. Meanwhile, the GHG forcing affects the glacial-interglacial sea ice predominantly in the Labrador Sea, Irminger-Iceland basin sector, and Central North Pacific regions during the MPT and post-MPT (0.0-0.7 Ma) periods by modulating the downwelling longwave radiation. Additionally, we confirm that variability with longer periodicity (∼100 kyr) from GHG and ice-sheet forcings is most pronounced in NH sea ice during the MPT and post-MPT periods.
Collapse
Affiliation(s)
- Gagan Mandal
- Irreversible Climate Change Research Center, Yonsei University, Seoul, Republic of Korea
| | - Soon-Il An
- Irreversible Climate Change Research Center, Yonsei University, Seoul, Republic of Korea.
- Department of Atmospheric Sciences, Yonsei University, Seoul, Republic of Korea.
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
| | - Jae-Heung Park
- School of Earth and Environmental Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Sook Yun
- Center for Climate Physics, Institute for Basic Science (IBS), Busan, Republic of Korea
- Pusan National University, Busan, Republic of Korea
| | - Chao Liu
- Irreversible Climate Change Research Center, Yonsei University, Seoul, Republic of Korea
| | - Seungmok Paik
- Irreversible Climate Change Research Center, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Zeller E, Timmermann A. The evolving three-dimensional landscape of human adaptation. SCIENCE ADVANCES 2024; 10:eadq3613. [PMID: 39383234 PMCID: PMC11463275 DOI: 10.1126/sciadv.adq3613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
Over the past 3 million years, humans have expanded their ecological niche and adapted to more diverse environments. The temporal evolution and underlying drivers behind this niche expansion remain largely unknown. By combining archeological findings with landscape topographic data and model simulations of the climate and biomes, we show that human sites clustered in areas with increased terrain roughness, corresponding to higher levels of biodiversity. We find a gradual increase in human habitat preferences toward rough terrains until about 1.1 million years ago (Ma), followed by a 300 thousand-year-long contraction of the ecological niche. This period coincided with the Mid-Pleistocene Transition and previously hypothesized ancestral population bottlenecks. Our statistical analysis further reveals that from 0.8 Ma onward, the human niche expanded again, with human species (e.g., H. heidelbergensis, H. neanderthalensis, and H. sapiens) adapting to rougher terrain, colder and drier conditions, and toward regions of higher ecological diversity.
Collapse
Affiliation(s)
- Elke Zeller
- IBS Center for Climate Physics, Busan, Republic of Korea
- Department of Climate System, PNU, Busan, Republic of Korea
| | - Axel Timmermann
- IBS Center for Climate Physics, Busan, Republic of Korea
- Department of Climate System, PNU, Busan, Republic of Korea
| |
Collapse
|
5
|
Eisenman I, Armour KC. The radiative feedback continuum from Snowball Earth to an ice-free hothouse. Nat Commun 2024; 15:6582. [PMID: 39097571 PMCID: PMC11297920 DOI: 10.1038/s41467-024-50406-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/01/2024] [Indexed: 08/05/2024] Open
Abstract
Paleoclimate records have been used to estimate the modern equilibrium climate sensitivity. However, this requires understanding how the feedbacks governing the climate response vary with the climate itself. Here we warm and cool a state-of-the-art climate model to simulate a continuum of climates ranging from a nearly ice-covered Snowball Earth to a nearly ice-free hothouse. We find that the pre-industrial (PI) climate is near a stability optimum: warming leads to a less-stable (more-sensitive) climate, as does cooling of more than 2K. Physically interpreting the results, we find that the decrease in stability for climates colder than the PI occurs mainly due to the albedo and lapse-rate feedbacks, and the decrease in stability for warmer climates occurs mainly due to the cloud feedback. These results imply that paleoclimate records provide a stronger constraint than has been calculated in previous studies, suggesting a reduction in the uncertainty range of the climate sensitivity.
Collapse
Affiliation(s)
- Ian Eisenman
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA.
| | - Kyle C Armour
- Department of Atmospheric Sciences and School of Oceanography, University of Washington, Seattle, USA
| |
Collapse
|
6
|
Cooper VT, Armour KC, Hakim GJ, Tierney JE, Osman MB, Proistosescu C, Dong Y, Burls NJ, Andrews T, Amrhein DE, Zhu J, Dong W, Ming Y, Chmielowiec P. Last Glacial Maximum pattern effects reduce climate sensitivity estimates. SCIENCE ADVANCES 2024; 10:eadk9461. [PMID: 38630811 PMCID: PMC11023557 DOI: 10.1126/sciadv.adk9461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
Here, we show that the Last Glacial Maximum (LGM) provides a stronger constraint on equilibrium climate sensitivity (ECS), the global warming from increasing greenhouse gases, after accounting for temperature patterns. Feedbacks governing ECS depend on spatial patterns of surface temperature ("pattern effects"); hence, using the LGM to constrain future warming requires quantifying how temperature patterns produce different feedbacks during LGM cooling versus modern-day warming. Combining data assimilation reconstructions with atmospheric models, we show that the climate is more sensitive to LGM forcing because ice sheets amplify extratropical cooling where feedbacks are destabilizing. Accounting for LGM pattern effects yields a median modern-day ECS of 2.4°C, 66% range 1.7° to 3.5°C (1.4° to 5.0°C, 5 to 95%), from LGM evidence alone. Combining the LGM with other lines of evidence, the best estimate becomes 2.9°C, 66% range 2.4° to 3.5°C (2.1° to 4.1°C, 5 to 95%), substantially narrowing uncertainty compared to recent assessments.
Collapse
Affiliation(s)
- Vincent T. Cooper
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - Kyle C. Armour
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Gregory J. Hakim
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | | | | | - Cristian Proistosescu
- Department of Climate, Meteorology, and Atmospheric Sciences and Department of Earth Sciences and Environmental Change, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Yue Dong
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, CO, USA
| | - Natalie J. Burls
- Department of Atmospheric, Oceanic & Earth Sciences, Center for Ocean-Land-Atmosphere Studies, George Mason University, Fairfax, VA, USA
| | | | - Daniel E. Amrhein
- Climate and Global Dynamics Laboratory, NSF National Center for Atmospheric Research, Boulder, CO, USA
| | - Jiang Zhu
- Climate and Global Dynamics Laboratory, NSF National Center for Atmospheric Research, Boulder, CO, USA
| | - Wenhao Dong
- Cooperative Programs for the Advancement of Earth System Science, University Corporation for Atmospheric Research, Boulder, CO, USA
- NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
| | - Yi Ming
- Earth and Environmental Sciences and Schiller Institute for Integrated Science and Society, Boston College, Boston, MA, USA
| | - Philip Chmielowiec
- Department of Climate, Meteorology, and Atmospheric Sciences and Department of Earth Sciences and Environmental Change, University of Illinois at Urbana Champaign, Urbana, IL, USA
| |
Collapse
|
7
|
Clark PU, Shakun JD, Rosenthal Y, Köhler P, Bartlein PJ. Global and regional temperature change over the past 4.5 million years. Science 2024; 383:884-890. [PMID: 38386742 DOI: 10.1126/science.adi1908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
Much of our understanding of Cenozoic climate is based on the record of δ18O measured in benthic foraminifera. However, this measurement reflects a combined signal of global temperature and sea level, thus preventing a clear understanding of the interactions and feedbacks of the climate system in causing global temperature change. Our new reconstruction of temperature change over the past 4.5 million years includes two phases of long-term cooling, with the second phase of accelerated cooling during the Middle Pleistocene Transition (1.5 to 0.9 million years ago) being accompanied by a transition from dominant 41,000-year low-amplitude periodicity to dominant 100,000-year high-amplitude periodicity. Changes in the rates of long-term cooling and variability are consistent with changes in the carbon cycle driven initially by geologic processes, followed by additional changes in the Southern Ocean carbon cycle.
Collapse
Affiliation(s)
- Peter U Clark
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
- School of Geography and Environmental Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK
| | - Jeremy D Shakun
- Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA 02467, USA
| | - Yair Rosenthal
- Department of Marine and Coastal Science, Rutgers The State University, New Brunswick, NJ 08901, USA
- Department of Earth and Planetary Sciences, Rutgers The State University, New Brunswick, NJ 08901, USA
| | - Peter Köhler
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27570 Bremerhaven, Germany
| | | |
Collapse
|
8
|
Raavi PH, Chu JE, Timmermann A, Lee SS, Walsh KJE. Moisture control of tropical cyclones in high-resolution simulations of paleoclimate and future climate. Nat Commun 2023; 14:6426. [PMID: 37833276 PMCID: PMC10575924 DOI: 10.1038/s41467-023-42033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The intensity of tropical cyclones (TCs) is expected to increase in response to greenhouse warming. However, how future climate change will affect TC frequencies and tracks is still under debate. Here, to further elucidate the underlying sensitivities and mechanisms, we study TCs response to different past and future climate forcings. Using a high-resolution TC-resolving global Earth system model with 1/4° atmosphere and 1/10° ocean resolution, we conducted a series of paleo-time-slice and future greenhouse warming simulations targeting the last interglacial (Marine Isotope Stage (MIS) 5e, 125 ka), glacial sub-stage MIS5d (115 ka), present-day (PD), and CO2 doubling (2×CO2) conditions. Our analysis reveals that precessional forcing created an interhemispheric difference in simulated TC densities, whereas future CO2 forcing impacts both hemispheres in the same direction. In both cases, we find that TC genesis frequency, density, and intensity are primarily controlled by changes in tropospheric thermal and moisture structure, exhibiting a clear reduction in TC genesis density in warmer hemispheres.
Collapse
Affiliation(s)
- Pavan Harika Raavi
- Center for Climate Physics, Institute for Basic Science (IBS), Busan, 46241, Republic of Korea
- Centre for Climate Research Singapore (CCRS), Singapore, Singapore
| | - Jung-Eun Chu
- Center for Climate Physics, Institute for Basic Science (IBS), Busan, 46241, Republic of Korea.
- Low-Carbon and Climate Impact Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China.
| | - Axel Timmermann
- Center for Climate Physics, Institute for Basic Science (IBS), Busan, 46241, Republic of Korea
- Pusan National University, Busan, 46241, Republic of Korea
| | - Sun-Seon Lee
- Center for Climate Physics, Institute for Basic Science (IBS), Busan, 46241, Republic of Korea
- Pusan National University, Busan, 46241, Republic of Korea
| | - Kevin J E Walsh
- School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
9
|
Zeller E, Timmermann A, Yun KS, Raia P, Stein K, Ruan J. Human adaptation to diverse biomes over the past 3 million years. Science 2023; 380:604-608. [PMID: 37167387 DOI: 10.1126/science.abq1288] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
To investigate the role of vegetation and ecosystem diversity on hominin adaptation and migration, we identify past human habitat preferences over time using a transient 3-million-year earth system-biome model simulation and an extensive hominin fossil and archaeological database. Our analysis shows that early African hominins predominantly lived in open environments such as grassland and dry shrubland. Migrating into Eurasia, hominins adapted to a broader range of biomes over time. By linking the location and age of hominin sites with corresponding simulated regional biomes, we also find that our ancestors actively selected for spatially diverse environments. The quantitative results lead to a new diversity hypothesis: Homo species, in particular Homo sapiens, were specially equipped to adapt to landscape mosaics.
Collapse
Affiliation(s)
- Elke Zeller
- Center for Climate Physics, Institute for Basic Science, Busan, Republic of Korea
- Department of Climate System, Pusan National University, Busan, Republic of Korea
| | - Axel Timmermann
- Center for Climate Physics, Institute for Basic Science, Busan, Republic of Korea
- Pusan National University, Busan, Republic of Korea
| | - Kyung-Sook Yun
- Center for Climate Physics, Institute for Basic Science, Busan, Republic of Korea
- Pusan National University, Busan, Republic of Korea
| | - Pasquale Raia
- DiSTAR, Napoli Università di Napoli Federico II, Monte Sant'Angelo, Italy
| | - Karl Stein
- Center for Climate Physics, Institute for Basic Science, Busan, Republic of Korea
- Pusan National University, Busan, Republic of Korea
| | - Jiaoyang Ruan
- Center for Climate Physics, Institute for Basic Science, Busan, Republic of Korea
- Pusan National University, Busan, Republic of Korea
| |
Collapse
|
10
|
Information about historical emissions drives the division of climate change mitigation costs. Nat Commun 2023; 14:1408. [PMID: 36918577 PMCID: PMC10012302 DOI: 10.1038/s41467-023-37130-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Despite worsening climate change, the international community still disagrees on how to divide the costs of mitigation between developing countries and developed countries, which emitted the bulk of historical carbon emissions. We study this issue using an economic experiment. Specifically, we test how information about historical emissions influences how much participants pay for climate change mitigation. In a four-player game, participants are assigned to lead two fictional countries as members of either the first or the second generation. The first generation produces wealth at the expense of greater carbon emissions. The second generation inherits their predecessor's wealth and negotiates how to split the climate change mitigation costs. Here we show that when the second generation knows that the previous generation created the current wealth and mitigation costs, participants whose predecessor generated more carbon emissions offered to pay more, whereas the successors of low-carbon emitters offered to pay less.
Collapse
|
11
|
Park JY, Schloesser F, Timmermann A, Choudhury D, Lee JY, Nellikkattil AB. Future sea-level projections with a coupled atmosphere-ocean-ice-sheet model. Nat Commun 2023; 14:636. [PMID: 36788205 PMCID: PMC9929224 DOI: 10.1038/s41467-023-36051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023] Open
Abstract
Climate-forced, offline ice-sheet model simulations have been used extensively in assessing how much ice-sheets can contribute to future global sea-level rise. Typically, these model projections do not account for the two-way interactions between ice-sheets and climate. To quantify the impact of ice-ocean-atmosphere feedbacks, here we conduct greenhouse warming simulations with a coupled global climate-ice-sheet model of intermediate complexity. Following the Shared Socioeconomic Pathway (SSP) 1-1.9, 2-4.5, 5-8.5 emission scenarios, the model simulations ice-sheet contributions to global sea-level rise by 2150 of 0.2 ± 0.01, 0.5 ± 0.01 and 1.4 ± 0.1 m, respectively. Antarctic ocean-ice-sheet-ice-shelf interactions enhance future subsurface basal melting, while freshwater-induced atmospheric cooling reduces surface melting and iceberg calving. The combined effect is likely to decelerate global sea-level rise contributions from Antarctica relative to the uncoupled climate-forced ice-sheet model configuration. Our results demonstrate that estimates of future sea-level rise fundamentally depend on the complex interactions between ice-sheets, icebergs, ocean and the atmosphere.
Collapse
Affiliation(s)
- Jun-Young Park
- Center for Climate Physics, Institute for Basic Science, Busan, Republic of Korea. .,Department of Climate System, Pusan National University, Busan, Republic of Korea.
| | - Fabian Schloesser
- International Pacific Research Center, University of Hawaii, Honolulu, Hawaii, USA.
| | - Axel Timmermann
- grid.410720.00000 0004 1784 4496Center for Climate Physics, Institute for Basic Science, Busan, Republic of Korea ,grid.262229.f0000 0001 0719 8572Pusan National University, Busan, Republic of Korea
| | - Dipayan Choudhury
- grid.410720.00000 0004 1784 4496Center for Climate Physics, Institute for Basic Science, Busan, Republic of Korea ,grid.1005.40000 0004 4902 0432Climate Change Research Centre, University of New South Wales, Sydney, NSW Australia
| | - June-Yi Lee
- grid.410720.00000 0004 1784 4496Center for Climate Physics, Institute for Basic Science, Busan, Republic of Korea ,grid.262229.f0000 0001 0719 8572Department of Climate System, Pusan National University, Busan, Republic of Korea ,grid.262229.f0000 0001 0719 8572Research Center for Climate Sciences, Pusan National University, Busan, Republic of Korea
| | - Arjun Babu Nellikkattil
- grid.410720.00000 0004 1784 4496Center for Climate Physics, Institute for Basic Science, Busan, Republic of Korea ,grid.262229.f0000 0001 0719 8572Department of Climate System, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
12
|
Ma L, Conradie SR, Crawford CL, Gardner AS, Kearney MR, Maclean IMD, McKechnie AE, Mi CR, Senior RA, Wilcove DS. Global patterns of climate change impacts on desert bird communities. Nat Commun 2023; 14:211. [PMID: 36639376 PMCID: PMC9839677 DOI: 10.1038/s41467-023-35814-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
The world's warm deserts are predicted to experience disproportionately large temperature increases due to climate change, yet the impacts on global desert biodiversity remain poorly understood. Because species in warm deserts live close to their physiological limits, additional warming may induce local extinctions. Here, we combine climate change projections with biophysical models and species distributions to predict physiological impacts of climate change on desert birds globally. Our results show heterogeneous impacts between and within warm deserts. Moreover, spatial patterns of physiological impacts do not simply mirror air temperature changes. Climate change refugia, defined as warm desert areas with high avian diversity and low predicted physiological impacts, are predicted to persist in varying extents in different desert realms. Only a small proportion (<20%) of refugia fall within existing protected areas. Our analysis highlights the need to increase protection of refugial areas within the world's warm deserts to protect species from climate change.
Collapse
Affiliation(s)
- Liang Ma
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA. .,School of Ecology, Shenzhen Campus of SunYat-sen University, Shenzhen, Guangdong, People's Republic of China.
| | - Shannon R Conradie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, 2 Cussonia Ave, Brummeria, Pretoria, 0184, South Africa.,DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Lynnwood Rd., Pretoria, 0002, South Africa
| | - Christopher L Crawford
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| | - Alexandra S Gardner
- Environment and Sustainability Institute, University of Exeter Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Michael R Kearney
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ilya M D Maclean
- Environment and Sustainability Institute, University of Exeter Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, 2 Cussonia Ave, Brummeria, Pretoria, 0184, South Africa.,DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Lynnwood Rd., Pretoria, 0002, South Africa
| | - Chun-Rong Mi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Rebecca A Senior
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA.,Conservation Ecology Group, Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - David S Wilcove
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
13
|
Optimising a method for aragonite precipitation in simulated biogenic calcification media. PLoS One 2022; 17:e0278627. [PMID: 36459517 PMCID: PMC9718392 DOI: 10.1371/journal.pone.0278627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/19/2022] [Indexed: 12/03/2022] Open
Abstract
Resolving how factors such as temperature, pH, biomolecules and mineral growth rate influence the geochemistry and structure of biogenic CaCO3, is essential to the effective development of palaeoproxies. Here we optimise a method to precipitate the CaCO3 polymorph aragonite from seawater, under tightly controlled conditions that simulate the saturation state (Ω) of coral calcification fluids. We then use the method to explore the influence of aspartic acid (one of the most abundant amino acids in coral skeletons) on aragonite structure and morphology. Using ≥200 mg of aragonite seed (surface area 0.84 m2), to provide a surface for mineral growth, in a 330 mL seawater volume, generates reproducible estimates of precipitation rate over Ωaragonite = 6.9-19.2. However, unseeded precipitations are highly variable in duration and do not provide consistent estimates of precipitation rate. Low concentrations of aspartic acid (1-10 μM) promote aragonite formation, but high concentrations (≥ 1 mM) inhibit precipitation. The Raman spectra of aragonite precipitated in vitro can be separated from the signature of the starting seed by ensuring that at least 60% of the analysed aragonite is precipitated in vitro (equivalent to using a seed of 200 mg and precipitating 300 mg aragonite in vitro). Aspartic acid concentrations ≥ 1mM caused a significant increase in the full width half maxima of the Raman aragonite v1 peak, reflective of increased rotational disorder in the aragonite structure. Changes in the organic content of coral skeletons can drive variations in the FWHM of the Raman aragonite ν1 peak, and if not accounted for, may confuse the interpretation of calcification fluid saturation state from this parameter.
Collapse
|
14
|
Burls N, Sagoo N. Increasingly Sophisticated Climate Models Need the Out-Of-Sample Tests Paleoclimates Provide. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS 2022; 14:e2022MS003389. [PMID: 37035628 PMCID: PMC10078273 DOI: 10.1029/2022ms003389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 06/19/2023]
Abstract
Climate models are becoming increasingly sophisticated as climate scientists continually work to improve the realism with which the processes influencing Earth's climate are represented. One example is the treatment of cloud microphysics: as complexity is added to cloud microphysical schemes, Earth's energy budget can respond to changes in climate forcings, such as carbon dioxide or aerosols, in new ways. This increase in degrees of freedom has illuminated larger spread in climate sensitivity across the latest generation of climate models participating Coupled Model Intercomparison Project, Phase 6, with more high climate sensitivity models (Zelinka et al., 2020, https://doi.org/10.1029/2019gl085782). Whilst the historical record gives us just over a century of data to apply toward climate sensitivity constraints (e.g., Nijsse et al., 2020, https://doi.org/10.5194/esd-11-737-2020), the ocean is still taking up much of the heat trapped by anthropogenic greenhouse gas emissions and the climate system is far from equilibrium which limits our understanding how climate sensitivity might change in response to long-term forced climate change. Here we discuss the valuable tests that paleoclimate reconstructions can provide the latest generation of climate models, as demonstrated by the recent study of Zhu et al., 2022, https://doi.org/10.1029/2021ms002776. Their study provides an example of the benefits for climate model development when climate models are confronted with simulating climates very different from today. Ideally the climate model development stage under future iterations of CMIP will involve such tests as an effort to constrain global climate sensitivity and the regional patterns of climate, such as polar amplification and subtropical aridification.
Collapse
Affiliation(s)
- Natalie Burls
- Department of Atmospheric, Oceanic, and Earth SciencesCenter for Ocean‐Land‐Atmosphere StudiesGeorge Mason UniversityVAFairfaxUSA
| | - Navjit Sagoo
- Department of MeteorologyStockholm UniversityStockholmSweden
| |
Collapse
|
15
|
AbdElgawad H, Sheteiwy MS, Saleh AM, Mohammed AE, Alotaibi MO, Beemster GTS, Madany MMY, van Dijk JR. Elevated CO 2 differentially mitigates chromium (VI) toxicity in two rice cultivars by modulating mineral homeostasis and improving redox status. CHEMOSPHERE 2022; 307:135880. [PMID: 35964713 DOI: 10.1016/j.chemosphere.2022.135880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/05/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Chromium (Cr) contamination reduces crop productivity worldwide. On the other hand, the expected increase in the future CO2 levels (eCO2) would improve plant growth under diverse growth conditions. However, the synergetic effect of eCO2 has not been investigated at both physiological and biochemical levels in Cr-contaminated soil. This study aims to analyze the mitigating effect of eCO2 on Cr VI phytotoxicity in two rice cultivars (Giza 181 and Sakha 106). Plants are exposed to different Cr concentrations (0, 200 and 400 mg Cr/kg Soil) at ambient (aCO2) and eCO2 (410 and 620 ppm, respectively). Unlike the stress parameters (MDA, H2O2 and protein oxidation), growth and photosynthetic reactions significantly dropped with increasing Cr concentration. However, in eCO2 conditions, plants were able to mitigate the Cr stress by inducing antioxidants as well as higher concentrations of phytochelatins to detoxify Cr. Notably, the expression levels of the genes involved in mineral nutrition i.e., OsNRAMP1, OsRT1, OsHMA3, OsLCT1 and iron chelate reductase were upregulated in Cr-stressed Giza 181 plants grown under eCO2. Mainly in Sakha 106, eCO2 induced ascorbate-glutathione (ASC/GSH)-mediated antioxidative defense system. The present study brings the first ever comprehensive assessment of how future eCO2 differentially mitigated Cr toxicity in rice.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt.
| | - Ahmed M Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Mahmoud M Y Madany
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Jesper R van Dijk
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium; Geobiology, Department of Biology, University of Antwerp, Antwerp, Universiteitsplein 1, Wilrijk, B-2610, Belgium
| |
Collapse
|
16
|
Timmermann A, Yun KS, Raia P, Ruan J, Mondanaro A, Zeller E, Zollikofer C, Ponce de León M, Lemmon D, Willeit M, Ganopolski A. Climate effects on archaic human habitats and species successions. Nature 2022; 604:495-501. [PMID: 35418680 PMCID: PMC9021022 DOI: 10.1038/s41586-022-04600-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 03/01/2022] [Indexed: 01/02/2023]
Abstract
It has long been believed that climate shifts during the last 2 million years had a pivotal role in the evolution of our genus Homo1–3. However, given the limited number of representative palaeo-climate datasets from regions of anthropological interest, it has remained challenging to quantify this linkage. Here, we use an unprecedented transient Pleistocene coupled general circulation model simulation in combination with an extensive compilation of fossil and archaeological records to study the spatiotemporal habitat suitability for five hominin species over the past 2 million years. We show that astronomically forced changes in temperature, rainfall and terrestrial net primary production had a major impact on the observed distributions of these species. During the Early Pleistocene, hominins settled primarily in environments with weak orbital-scale climate variability. This behaviour changed substantially after the mid-Pleistocene transition, when archaic humans became global wanderers who adapted to a wide range of spatial climatic gradients. Analysis of the simulated hominin habitat overlap from approximately 300–400 thousand years ago further suggests that antiphased climate disruptions in southern Africa and Eurasia contributed to the evolutionary transformation of Homo heidelbergensis populations into Homo sapiens and Neanderthals, respectively. Our robust numerical simulations of climate-induced habitat changes provide a framework to test hypotheses on our human origin. A new model simulation of climate change during the past 2 million years indicates that the appearances and disappearances of hominin species correlate with long-term climatic anomalies.
Collapse
Affiliation(s)
- Axel Timmermann
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea. .,Pusan National University, Busan, South Korea.
| | - Kyung-Sook Yun
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea.,Pusan National University, Busan, South Korea
| | - Pasquale Raia
- DiSTAR, Università di Napoli Federico II, Monte Sant'Angelo, Naples, Italy
| | - Jiaoyang Ruan
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea.,Pusan National University, Busan, South Korea
| | | | - Elke Zeller
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea.,Pusan National University, Busan, South Korea
| | | | | | - Danielle Lemmon
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea.,Pusan National University, Busan, South Korea
| | - Matteo Willeit
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | | |
Collapse
|
17
|
Ugurlu A. An investigation on well-to-wheel emissions of passenger cars in Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16692-16715. [PMID: 34657255 DOI: 10.1007/s11356-021-16738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Passenger cars are responsible for a great amount of energy consumption and emissions in the world. Turkey is one of the world's twenty largest emission producers. The reason behind this study is to determine the most appropriate energy source for passenger cars particularly in Turkey in terms of main vehicle emissions. The results will be supportive for general inferences also. The impact of technological year, vehicle type, fuel type, fuel production, and electricity generation from different energy sources on well-to-wheel emissions for Turkey has been analyzed using the GREET software in this study. In the realization of emission analysis, transportation statistics of Turkey in the last 10 years have been evaluated. In addition, different scenarios have been presented for the years 2030 and 2050. It is found that average emissions emitted from passenger cars in Turkey decrease by year, and the use of LPG and CNG in plug-in hybrid cars generates lower emissions in future scenarios.
Collapse
Affiliation(s)
- Adem Ugurlu
- Department of Mechatronics Engineering, Kirklareli University, Kirklareli, Turkey.
| |
Collapse
|
18
|
Jaramillo A, Mendoza-Ponce A. Climate Change Overview. Fungal Biol 2022. [DOI: 10.1007/978-3-030-89664-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Roles of insolation forcing and CO 2 forcing on Late Pleistocene seasonal sea surface temperatures. Nat Commun 2021; 12:5742. [PMID: 34593821 PMCID: PMC8484283 DOI: 10.1038/s41467-021-26051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Late Pleistocene changes in insolation, greenhouse gas concentrations, and ice sheets have different spatially and seasonally modulated climatic fingerprints. By exploring the seasonality of paleoclimate proxy data, we gain deeper insight into the drivers of climate changes. Here, we investigate changes in alkenone-based annual mean and Globigerinoides ruber Mg/Ca-based summer sea surface temperatures in the East China Sea and their linkages to climate forcing over the past 400,000 years. During interglacial-glacial cycles, there are phase differences between annual mean and seasonal (summer and winter) temperatures, which relate to seasonal insolation changes. These phase differences are most evident during interglacials. During glacial terminations, temperature changes were strongly affected by CO2. Early temperature minima, ~20,000 years before glacial terminations, except the last glacial period, coincide with the largest temperature differences between summer and winter, and with the timing of the lowest atmospheric CO2 concentration. These findings imply the need to consider proxy seasonality and seasonal climate variability to estimate climate sensitivity. How temperatures at different seasons differ in response to different forcings is not well known. Here, the authors reconstruct annual and seasonal sea surface temperatures in the East China Sea and show that they react differently to CO2 and insolation forcing on glacial-interglacial timescales.
Collapse
|
20
|
AbdElgawad H, Schoenaers S, Zinta G, Hassan YM, Abdel-Mawgoud M, Alkhalifah DHM, Hozzein WN, Asard H, Abuelsoud W. Soil arsenic toxicity differentially impacts C3 (barley) and C4 (maize) crops under future climate atmospheric CO 2. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125331. [PMID: 34030395 DOI: 10.1016/j.jhazmat.2021.125331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/14/2020] [Accepted: 02/01/2021] [Indexed: 05/13/2023]
Abstract
Soil arsenic (As) contamination limits global agricultural productivity. Anthropogenic emissions are causing atmospheric CO2 levels to rise. Elevated CO2 (eCO2) boosts plant growth both under optimal and suboptimal growth conditions. However, the crop-specific interaction between eCO2 and soil arsenic exposure has not been investigated at the whole plant, physiological and biochemical level. Here, we tested the effects of eCO2 (620 ppm) and soil As exposure (mild and severe treatments, 25 and 100 mg As/Kg soil) on growth, photosynthesis and redox homeostasis in barley (C3) and maize (C4). Compared to maize, barley was more susceptible to soil As exposure at ambient CO2 levels. Barley plants accumulated more As, particularly in roots. As accumulation inhibited plant growth and induced oxidative damage in a species-specific manner. As-exposed barley experienced severe oxidative stress as illustrated by high H2O2 and protein oxidation levels. Interestingly, eCO2 differentially mitigated As-induced stress in barley and maize. In barley, eCO2 exposure reduced photorespiration, H2O2 production, and lipid/protein oxidation. In maize eCO2 exposure led to an upregulation of the ascorbate-glutathione (ASC/GSH)-mediated antioxidative defense system. Combined, this work highlights how ambient and future eCO2 levels differentially affect the growth, physiology and biochemistry of barley and maize crops exposed to soil As pollution.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Gaurav Zinta
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, India; Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.
| | - Yasser M Hassan
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | | | - Dalal Hussien M Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Wael N Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Han Asard
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Walid Abuelsoud
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
21
|
Zhao C, Rohling EJ, Liu Z, Yang X, Zhang E, Cheng J, Liu Z, An Z, Yang X, Feng X, Sun X, Zhang C, Yan T, Long H, Yan H, Yu Z, Liu W, Yu SY, Shen J. Possible obliquity-forced warmth in southern Asia during the last glacial stage. Sci Bull (Beijing) 2021; 66:1136-1145. [PMID: 36654347 DOI: 10.1016/j.scib.2020.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/20/2023]
Abstract
Orbital-scale global climatic changes during the late Quaternary are dominated by high-latitude influenced ~100,000-year global ice-age cycles and monsoon influenced ~23,000-year low-latitude hydroclimate variations. However, the shortage of highly-resolved land temperature records remains a limiting factor for achieving a comprehensive understanding of long-term low-latitude terrestrial climatic changes. Here, we report paired mean annual air temperature (MAAT) and monsoon intensity proxy records over the past 88,000 years from Lake Tengchongqinghai in southwestern China. While summer monsoon intensity follows the ~23,000-year precession beat found also in previous studies, we identify previously unrecognized warm periods at 88,000-71,000 and 45,000-22,000 years ago, with 2-3 °C amplitudes that are close to our recorded full glacial-interglacial range. Using advanced transient climate simulations and comparing with forcing factors, we find that these warm periods in our MAAT record probably depends on local annual mean insolation, which is controlled by Earth's ~41,000-year obliquity cycles and is anti-phased to annual mean insolation at high latitudes. The coincidence of our identified warm periods and intervals of high-frequent dated archaeological evidence highlights the importance of temperature on anatomically modern humans in Asia during the last glacial stage.
Collapse
Affiliation(s)
- Cheng Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an 710061, China; School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China.
| | - Eelco J Rohling
- Research School of Earth Sciences, the Australian National University, Canberra ACT 2601, Australia; Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton SO14 3ZH, UK
| | - Zhengyu Liu
- Department of Geography, Ohio State University, Columbus 43210, USA
| | - Xiaoqiang Yang
- Department of Earth Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Enlou Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jun Cheng
- Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhonghui Liu
- Department of Earth Sciences, University of Hong Kong, Hong Kong 999077, China
| | - Zhisheng An
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an 710061, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Xiangdong Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaoping Feng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaoshuang Sun
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Can Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tianlong Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hao Long
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an 710061, China
| | - Hong Yan
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an 710061, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Zicheng Yu
- Department of Earth and Environmental Sciences, Lehigh University, Bethlehem 18015, USA; Institute for Peat and Mire Research, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Weiguo Liu
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an 710061, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Shi-Yong Yu
- School of Geography, Geomatics, and Planning, Jiangsu Normal University, Xuzhou 221116, China
| | - Ji Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
22
|
Life Cycle GHG Emissions of Residential Buildings in Humid Subtropical and Tropical Climates: Systematic Review and Analysis. BUILDINGS 2020. [DOI: 10.3390/buildings11010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Improving the environmental life cycle performance of buildings by focusing on the reduction of greenhouse gas (GHG) emissions along the building life cycle is considered a crucial step in achieving global climate targets. This paper provides a systematic review and analysis of 75 residential case studies in humid subtropical and tropical climates. The study investigates GHG emissions across the building life cycle, i.e., it analyses both embodied and operational GHG emissions. Furthermore, the influence of various parameters, such as building location, typology, construction materials and energy performance, as well as methodological aspects are investigated. Through comparative analysis, the study identifies promising design strategies for reducing life cycle-related GHG emissions of buildings operating in subtropical and tropical climate zones. The results show that life cycle GHG emissions in the analysed studies are mostly dominated by operational emissions and are the highest for energy-intensive multi-family buildings. Buildings following low or net-zero energy performance targets show potential reductions of 50–80% for total life cycle GHG emissions, compared to buildings with conventional energy performance. Implementation of on-site photovoltaic (PV) systems provides the highest reduction potential for both operational and total life cycle GHG emissions, with potential reductions of 92% to 100% and 48% to 66%, respectively. Strategies related to increased use of timber and other bio-based materials present the highest potential for reduction of embodied GHG emissions, with reductions of 9% to 73%.
Collapse
|
23
|
Sherwood SC, Webb MJ, Annan JD, Armour KC, Forster PM, Hargreaves JC, Hegerl G, Klein SA, Marvel KD, Rohling EJ, Watanabe M, Andrews T, Braconnot P, Bretherton CS, Foster GL, Hausfather Z, von der Heydt AS, Knutti R, Mauritsen T, Norris JR, Proistosescu C, Rugenstein M, Schmidt GA, Tokarska KB, Zelinka MD. An Assessment of Earth's Climate Sensitivity Using Multiple Lines of Evidence. REVIEWS OF GEOPHYSICS (WASHINGTON, D.C. : 1985) 2020; 58:e2019RG000678. [PMID: 33015673 PMCID: PMC7524012 DOI: 10.1029/2019rg000678] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 04/22/2020] [Accepted: 06/24/2020] [Indexed: 05/10/2023]
Abstract
We assess evidence relevant to Earth's equilibrium climate sensitivity per doubling of atmospheric CO2, characterized by an effective sensitivity S. This evidence includes feedback process understanding, the historical climate record, and the paleoclimate record. An S value lower than 2 K is difficult to reconcile with any of the three lines of evidence. The amount of cooling during the Last Glacial Maximum provides strong evidence against values of S greater than 4.5 K. Other lines of evidence in combination also show that this is relatively unlikely. We use a Bayesian approach to produce a probability density function (PDF) for S given all the evidence, including tests of robustness to difficult-to-quantify uncertainties and different priors. The 66% range is 2.6-3.9 K for our Baseline calculation and remains within 2.3-4.5 K under the robustness tests; corresponding 5-95% ranges are 2.3-4.7 K, bounded by 2.0-5.7 K (although such high-confidence ranges should be regarded more cautiously). This indicates a stronger constraint on S than reported in past assessments, by lifting the low end of the range. This narrowing occurs because the three lines of evidence agree and are judged to be largely independent and because of greater confidence in understanding feedback processes and in combining evidence. We identify promising avenues for further narrowing the range in S, in particular using comprehensive models and process understanding to address limitations in the traditional forcing-feedback paradigm for interpreting past changes.
Collapse
Affiliation(s)
- S C Sherwood
- Climate Change Research Centre and ARC Centre of Excellence for Climate Extremes University of New South Wales Sydney Sydney New South Wales Australia
| | - M J Webb
- Met Office Hadley Centre Exeter UK
| | | | | | - P M Forster
- Priestley International Centre for Climate University of Leeds Leeds UK
| | | | - G Hegerl
- School of Geosciences University of Edinburgh Edinburgh UK
| | | | - K D Marvel
- Department of Applied Physics and Applied Math Columbia University New York NY USA
- NASA Goddard Institute for Space Studies New York NY USA
| | - E J Rohling
- Research School of Earth Sciences Australian National University Canberra ACT Australia
- Ocean and Earth Science, National Oceanography Centre University of Southampton Southampton UK
| | - M Watanabe
- Atmosphere and Ocean Research Institute The University of Tokyo Tokyo Japan
| | | | - P Braconnot
- Laboratoire des Sciences du Climat et de l'Environnement, unité mixte CEA-CNRS-UVSQ Université Paris-Saclay Gif sur Yvette France
| | | | - G L Foster
- Ocean and Earth Science, National Oceanography Centre University of Southampton Southampton UK
| | | | - A S von der Heydt
- Institute for Marine and Atmospheric Research, and Centre for Complex Systems Science Utrecht University Utrecht The Netherlands
| | - R Knutti
- Institute for Atmospheric and Climate Science Zurich Switzerland
| | - T Mauritsen
- Department of Meteorology Stockholm University Stockholm Sweden
| | - J R Norris
- Scripps Institution of Oceanography La Jolla CA USA
| | - C Proistosescu
- Department of Atmospheric Sciences and Department of Geology University of Illinois at Urbana-Champaign Urbana IL USA
| | - M Rugenstein
- Max Planck Institute for Meteorology Hamburg Germany
| | - G A Schmidt
- NASA Goddard Institute for Space Studies New York NY USA
| | - K B Tokarska
- School of Geosciences University of Edinburgh Edinburgh UK
- Institute for Atmospheric and Climate Science Zurich Switzerland
| | | |
Collapse
|
24
|
Tierney JE, Poulsen CJ, Montañez IP, Bhattacharya T, Feng R, Ford HL, Hönisch B, Inglis GN, Petersen SV, Sagoo N, Tabor CR, Thirumalai K, Zhu J, Burls NJ, Foster GL, Goddéris Y, Huber BT, Ivany LC, Kirtland Turner S, Lunt DJ, McElwain JC, Mills BJW, Otto-Bliesner BL, Ridgwell A, Zhang YG. Past climates inform our future. Science 2020; 370:370/6517/eaay3701. [DOI: 10.1126/science.aay3701] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | - Christopher J. Poulsen
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Isabel P. Montañez
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA, USA
| | - Tripti Bhattacharya
- Department of Earth and Environmental Sciences, Syracuse University, Syracuse, NY, USA
| | - Ran Feng
- Department of Geosciences, University of Connecticut, Storrs, CT, USA
| | - Heather L. Ford
- School of Geography, Queen Mary University of London, London, UK
| | - Bärbel Hönisch
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Gordon N. Inglis
- Department of Earth and Environmental Sciences, Columbia University, Palisades, NY, USA
| | - Sierra V. Petersen
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Navjit Sagoo
- Department of Meteorology, University of Stockholm, Stockholm, Sweden
| | - Clay R. Tabor
- Department of Geosciences, University of Connecticut, Storrs, CT, USA
| | | | - Jiang Zhu
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Natalie J. Burls
- Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, VA, USA
| | - Gavin L. Foster
- Department of Earth and Environmental Sciences, Columbia University, Palisades, NY, USA
| | - Yves Goddéris
- Centre National de la Recherche Scientifique, Géosciences Environnement Toulouse, Toulouse, France
| | - Brian T. Huber
- Department of Paleobiology, Smithsonian National Museum of Natural History, Washington, DC, USA
| | - Linda C. Ivany
- Department of Earth and Environmental Sciences, Syracuse University, Syracuse, NY, USA
| | | | - Daniel J. Lunt
- School of Geographical Sciences, University of Bristol, Bristol, UK
| | | | | | | | - Andy Ridgwell
- Department of Earth Science, University of California, Riverside, Riverside, CA, USA
| | - Yi Ge Zhang
- Department of Oceanography, Texas A&M University, College Station, TX, USA
| |
Collapse
|
25
|
Tierney JE, Zhu J, King J, Malevich SB, Hakim GJ, Poulsen CJ. Glacial cooling and climate sensitivity revisited. Nature 2020; 584:569-573. [DOI: 10.1038/s41586-020-2617-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/15/2020] [Indexed: 01/25/2023]
|
26
|
Meehl GA, Senior CA, Eyring V, Flato G, Lamarque JF, Stouffer RJ, Taylor KE, Schlund M. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. SCIENCE ADVANCES 2020; 6:eaba1981. [PMID: 32637602 PMCID: PMC7314520 DOI: 10.1126/sciadv.aba1981] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/11/2020] [Indexed: 05/08/2023]
Abstract
For the current generation of earth system models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6), the range of equilibrium climate sensitivity (ECS, a hypothetical value of global warming at equilibrium for a doubling of CO2) is 1.8°C to 5.6°C, the largest of any generation of models dating to the 1990s. Meanwhile, the range of transient climate response (TCR, the surface temperature warming around the time of CO2 doubling in a 1% per year CO2 increase simulation) for the CMIP6 models of 1.7°C (1.3°C to 3.0°C) is only slightly larger than for the CMIP3 and CMIP5 models. Here we review and synthesize the latest developments in ECS and TCR values in CMIP, compile possible reasons for the current values as supplied by the modeling groups, and highlight future directions. Cloud feedbacks and cloud-aerosol interactions are the most likely contributors to the high values and increased range of ECS in CMIP6.
Collapse
Affiliation(s)
| | | | - Veronika Eyring
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
- University of Bremen, Institute of Environmental Physics (IUP), Bremen, Germany
| | - Gregory Flato
- Canadian Centre for Modelling and Analysis, Environment and Climate Change Canada, Victoria, Canada
| | | | | | | | - Manuel Schlund
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
| |
Collapse
|
27
|
Delgado-Bonal A, Marshak A, Yang Y, Holdaway D. Analyzing changes in the complexity of climate in the last four decades using MERRA-2 radiation data. Sci Rep 2020; 10:922. [PMID: 31969616 PMCID: PMC6976651 DOI: 10.1038/s41598-020-57917-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/08/2020] [Indexed: 11/15/2022] Open
Abstract
The energy balance of the Earth is controlled by the shortwave and longwave radiation emitted to space. Changes in the thermodynamic state of the system over time affect climate and are noticeable when viewing the system as a whole. In this paper, we study the changes in the complexity of climate in the last four decades using data from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2). First, we study the complexity of the shortwave and longwave radiation fields independently using Approximate Entropy and Sample Entropy, observing that the rate of complexity change is faster for shortwave radiation. Then, we study the causality of those changes using Transfer Entropy to capture the non-linear dynamics of climate, showing that the changes are mainly driven by the variations in shortwave radiation. The observed behavior of climatic complexity could be explained by the changes in cloud amount, and we research that possibility by investigating its evolution from a complexity perspective using data from the International Satellite Cloud Climatology Project (ISCCP).
Collapse
Affiliation(s)
- Alfonso Delgado-Bonal
- NASA Goddard Space Flight Center, Earth Sciences Division, Greenbelt, Maryland, United States.
- Universities Space Research Association, Columbia, Maryland, United States.
| | - Alexander Marshak
- NASA Goddard Space Flight Center, Earth Sciences Division, Greenbelt, Maryland, United States
| | - Yuekui Yang
- NASA Goddard Space Flight Center, Earth Sciences Division, Greenbelt, Maryland, United States
| | - Daniel Holdaway
- NASA Goddard Space Flight Center, Global Modeling and Assimilation Office, Greenbelt, MD, United States
- University Corporation for Atmospheric Research, Boulder, Colorado, United States
| |
Collapse
|
28
|
Strommen K, Watson PAG, Palmer TN. The Impact of a Stochastic Parameterization Scheme on Climate Sensitivity in EC-Earth. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2019; 124:12726-12740. [PMID: 31998573 PMCID: PMC6972692 DOI: 10.1029/2019jd030732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Stochastic schemes, designed to represent unresolved subgrid-scale variability, are frequently used in short and medium-range weather forecasts, where they are found to improve several aspects of the model. In recent years, the impact of stochastic physics has also been found to be beneficial for the model's long-term climate. In this paper, we demonstrate for the first time that the inclusion of a stochastic physics scheme can notably affect a model's projection of global warming, as well as its historical climatological global temperature. Specifically, we find that when including the "stochastically perturbed parametrization tendencies" (SPPT) scheme in the fully coupled climate model EC-Earth v3.1, the predicted level of global warming between 1850 and 2100 is reduced by 10% under an RCP8.5 forcing scenario. We link this reduction in climate sensitivity to a change in the cloud feedbacks with SPPT. In particular, the scheme appears to reduce the positive low cloud cover feedback and increase the negative cloud optical feedback. A key role is played by a robust, rapid increase in cloud liquid water with SPPT, which we speculate is due to the scheme's nonlinear interaction with condensation.
Collapse
Affiliation(s)
- K. Strommen
- Department of PhysicsUniversity of OxfordOxfordUK
| | | | - T. N. Palmer
- Department of PhysicsUniversity of OxfordOxfordUK
| |
Collapse
|
29
|
What does mitogenomics tell us about the evolutionary history of the Drosophila buzzatii cluster (repleta group)? PLoS One 2019; 14:e0220676. [PMID: 31697700 PMCID: PMC6837510 DOI: 10.1371/journal.pone.0220676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/01/2019] [Indexed: 12/05/2022] Open
Abstract
The Drosophila repleta group is an array of more than 100 species endemic to the “New World”, many of which are cactophilic. The ability to utilize decaying cactus tissues as breeding and feeding sites is a key aspect that allowed the successful diversification of the repleta group in American deserts and arid lands. Within this group, the Drosophila buzzatii cluster is a South American clade of seven closely related species in different stages of divergence, making them a valuable model system for evolutionary research. Substantial effort has been devoted to elucidating the phylogenetic relationships among members of the D. buzzatii cluster, including molecular phylogenetic studies that have generated ambiguous results where different tree topologies have resulted dependent on the kinds of molecular marker used. Even though mitochondrial DNA regions have become useful markers in evolutionary biology and population genetics, none of the more than twenty Drosophila mitogenomes assembled so far includes this cluster. Here, we report the assembly of six complete mitogenomes of five species: D. antonietae, D. borborema, D. buzzatii, two strains of D. koepferae and D. seriema, with the aim of revisiting phylogenetic relationships and divergence times by means of mitogenomic analyses. Our recovered topology using complete mitogenomes supports the hypothesis of monophyly of the D. buzzatii cluster and shows two main clades, one including D. buzzatii and D. koepferae (both strains), and the other containing the remaining species. These results are in agreement with previous reports based on a few mitochondrial and/or nuclear genes, but conflict with the results of a recent large-scale nuclear phylogeny, indicating that nuclear and mitochondrial genomes depict different evolutionary histories.
Collapse
|
30
|
Chan EKF, Timmermann A, Baldi BF, Moore AE, Lyons RJ, Lee SS, Kalsbeek AMF, Petersen DC, Rautenbach H, Förtsch HEA, Bornman MSR, Hayes VM. Human origins in a southern African palaeo-wetland and first migrations. Nature 2019; 575:185-189. [PMID: 31659339 DOI: 10.1038/s41586-019-1714-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 09/24/2019] [Indexed: 01/17/2023]
Abstract
Anatomically modern humans originated in Africa around 200 thousand years ago (ka)1-4. Although some of the oldest skeletal remains suggest an eastern African origin2, southern Africa is home to contemporary populations that represent the earliest branch of human genetic phylogeny5,6. Here we generate, to our knowledge, the largest resource for the poorly represented and deepest-rooting maternal L0 mitochondrial DNA branch (198 new mitogenomes for a total of 1,217 mitogenomes) from contemporary southern Africans and show the geographical isolation of L0d1'2, L0k and L0g KhoeSan descendants south of the Zambezi river in Africa. By establishing mitogenomic timelines, frequencies and dispersals, we show that the L0 lineage emerged within the residual Makgadikgadi-Okavango palaeo-wetland of southern Africa7, approximately 200 ka (95% confidence interval, 240-165 ka). Genetic divergence points to a sustained 70,000-year-long existence of the L0 lineage before an out-of-homeland northeast-southwest dispersal between 130 and 110 ka. Palaeo-climate proxy and model data suggest that increased humidity opened green corridors, first to the northeast then to the southwest. Subsequent drying of the homeland corresponds to a sustained effective population size (L0k), whereas wet-dry cycles and probable adaptation to marine foraging allowed the southwestern migrants to achieve population growth (L0d1'2), as supported by extensive south-coastal archaeological evidence8-10. Taken together, we propose a southern African origin of anatomically modern humans with sustained homeland occupation before the first migrations of people that appear to have been driven by regional climate changes.
Collapse
Affiliation(s)
- Eva K F Chan
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Axel Timmermann
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea. .,Pusan National University, Busan, South Korea.
| | - Benedetta F Baldi
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Andy E Moore
- Department of Geology, Rhodes University, Grahamstown, South Africa
| | - Ruth J Lyons
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Sun-Seon Lee
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea.,Pusan National University, Busan, South Korea
| | - Anton M F Kalsbeek
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Desiree C Petersen
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,The Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | - Hannes Rautenbach
- Climate Change and Variability, South African Weather Service, Pretoria, South Africa.,School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Akademia, Johannesburg, South Africa
| | | | - M S Riana Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Vanessa M Hayes
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. .,St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia. .,School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa. .,Faculty of Health Sciences, University of Limpopo, Sovenga, South Africa. .,Central Clinical School, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
31
|
Wang Q, Zhang Y, Lin H, Zhu J. Recent Advances in Metal-Organic Frameworks for Photo-/Electrocatalytic CO 2 Reduction. Chemistry 2019; 25:14026-14035. [PMID: 31271476 DOI: 10.1002/chem.201902203] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/03/2019] [Indexed: 02/01/2023]
Abstract
Considerable attention has been paid to the utilization of CO2 , an abundant carbon source in nature. In this regard, porous catalysts have been eagerly explored with excellent performance for photo-/electrocatalytic reduction of CO2 to high valued products. Metal-organic frameworks (MOFs), featuring large surface area, high porosity, tunable composition and unique structural characteristics, have been widely exploited in catalytic CO2 reduction. This Minireview first reports the current progress of MOFs in CO2 reduction. Then, a specific interest is focused on MOFs in photo-/electrocatalytic reduction of CO2 by modifying their metal centers, organic linkers, and pores. Finally, the future directions of study are also highlighted to satisfy the requirement of practical applications.
Collapse
Affiliation(s)
- Qingqing Wang
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P.R. China.,Key Laboratory of Flexible Electronics (KLOFE) & Institute of, Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center, for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Yao Zhang
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P.R. China.,Key Laboratory of Flexible Electronics (KLOFE) & Institute of, Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center, for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Huijuan Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of, Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center, for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Jixin Zhu
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P.R. China.,Key Laboratory of Flexible Electronics (KLOFE) & Institute of, Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center, for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P.R. China
| |
Collapse
|
32
|
Wagner B, Vogel H, Francke A, Friedrich T, Donders T, Lacey JH, Leng MJ, Regattieri E, Sadori L, Wilke T, Zanchetta G, Albrecht C, Bertini A, Combourieu-Nebout N, Cvetkoska A, Giaccio B, Grazhdani A, Hauffe T, Holtvoeth J, Joannin S, Jovanovska E, Just J, Kouli K, Kousis I, Koutsodendris A, Krastel S, Lagos M, Leicher N, Levkov Z, Lindhorst K, Masi A, Melles M, Mercuri AM, Nomade S, Nowaczyk N, Panagiotopoulos K, Peyron O, Reed JM, Sagnotti L, Sinopoli G, Stelbrink B, Sulpizio R, Timmermann A, Tofilovska S, Torri P, Wagner-Cremer F, Wonik T, Zhang X. Mediterranean winter rainfall in phase with African monsoons during the past 1.36 million years. Nature 2019; 573:256-260. [PMID: 31477908 DOI: 10.1038/s41586-019-1529-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/28/2019] [Indexed: 11/09/2022]
Abstract
Mediterranean climates are characterized by strong seasonal contrasts between dry summers and wet winters. Changes in winter rainfall are critical for regional socioeconomic development, but are difficult to simulate accurately1 and reconstruct on Quaternary timescales. This is partly because regional hydroclimate records that cover multiple glacial-interglacial cycles2,3 with different orbital geometries, global ice volume and atmospheric greenhouse gas concentrations are scarce. Moreover, the underlying mechanisms of change and their persistence remain unexplored. Here we show that, over the past 1.36 million years, wet winters in the northcentral Mediterranean tend to occur with high contrasts in local, seasonal insolation and a vigorous African summer monsoon. Our proxy time series from Lake Ohrid on the Balkan Peninsula, together with a 784,000-year transient climate model hindcast, suggest that increased sea surface temperatures amplify local cyclone development and refuel North Atlantic low-pressure systems that enter the Mediterranean during phases of low continental ice volume and high concentrations of atmospheric greenhouse gases. A comparison with modern reanalysis data shows that current drivers of the amount of rainfall in the Mediterranean share some similarities to those that drive the reconstructed increases in precipitation. Our data cover multiple insolation maxima and are therefore an important benchmark for testing climate model performance.
Collapse
Affiliation(s)
- Bernd Wagner
- Institute of Geology and Mineralogy, University of Cologne, Cologne, Germany.
| | - Hendrik Vogel
- Institute of Geological Sciences & Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Alexander Francke
- Institute of Geology and Mineralogy, University of Cologne, Cologne, Germany.,School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Tobias Friedrich
- International Pacific Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Timme Donders
- Palaeoecology, Department of Physical Geography, Utrecht University, Utrecht, The Netherlands
| | - Jack H Lacey
- National Environmental Isotope Facility, British Geological Survey, Nottingham, UK
| | - Melanie J Leng
- National Environmental Isotope Facility, British Geological Survey, Nottingham, UK.,Centre for Environmental Geochemistry, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Eleonora Regattieri
- Dipartimento di Scienze della Terra, University of Pisa, Pisa, Italy.,Institute of Earth Sciences and Earth Resources-Italian National Research Council (IGG-CNR), Pisa, Italy
| | - Laura Sadori
- Dipartimento di Biologia Ambientale, Università di Roma 'La Sapienza', Rome, Italy
| | - Thomas Wilke
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Giessen, Germany
| | | | - Christian Albrecht
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Adele Bertini
- Dipartimento di Scienze della Terra, Università di Firenze, Florence, Italy
| | | | - Aleksandra Cvetkoska
- Palaeoecology, Department of Physical Geography, Utrecht University, Utrecht, The Netherlands.,Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Biagio Giaccio
- Istituto di Geologia Ambientale e Geoingegneria - CNR, Rome, Italy
| | - Andon Grazhdani
- Faculty of Geology and Mineralogy, University of Tirana, Tirana, Albania
| | - Torsten Hauffe
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Giessen, Germany
| | | | - Sebastien Joannin
- Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, CNRS UMR 5554, Montpellier, France
| | - Elena Jovanovska
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Janna Just
- Institute of Geology and Mineralogy, University of Cologne, Cologne, Germany.,Fachbereich Geowissenschaften, Universität Bremen, Bremen, Germany
| | - Katerina Kouli
- Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece
| | - Ilias Kousis
- Paleoenvironmental Dynamics Group, Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany
| | - Andreas Koutsodendris
- Paleoenvironmental Dynamics Group, Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany
| | - Sebastian Krastel
- Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Markus Lagos
- Institute of Geosciences and Meteorology, University of Bonn, Bonn, Germany
| | - Niklas Leicher
- Institute of Geology and Mineralogy, University of Cologne, Cologne, Germany
| | - Zlatko Levkov
- Institute of Biology, University Ss Cyril and Methodius, Skopje, North Macedonia
| | - Katja Lindhorst
- Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Alessia Masi
- Dipartimento di Biologia Ambientale, Università di Roma 'La Sapienza', Rome, Italy
| | - Martin Melles
- Institute of Geology and Mineralogy, University of Cologne, Cologne, Germany
| | - Anna M Mercuri
- Laboratorio di Palinologia e Paleobotanica, Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | - Sebastien Nomade
- Laboratoire des Sciences du Climat et de l'Environnement, Université Paris-Saclay, CEA/CNRS/UVSQ UMR 8212, Gif-Sur-Yvette, France
| | - Norbert Nowaczyk
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany
| | | | - Odile Peyron
- Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, CNRS UMR 5554, Montpellier, France
| | - Jane M Reed
- Department of Geography, Geology and Environment, University of Hull, Hull, UK
| | | | - Gaia Sinopoli
- Dipartimento di Biologia Ambientale, Università di Roma 'La Sapienza', Rome, Italy
| | - Björn Stelbrink
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Roberto Sulpizio
- Dipartimento di Scienze della Terra e Geoambientali, University of Bari, Bari, Italy.,IDPA-CNR, Milan, Italy
| | - Axel Timmermann
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea.,Pusan National University, Busan, South Korea
| | - Slavica Tofilovska
- Institute of Geosciences and Meteorology, University of Bonn, Bonn, Germany
| | - Paola Torri
- Laboratorio di Palinologia e Paleobotanica, Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | | | - Thomas Wonik
- Leibniz Institute for Applied Geophysics (LIAG), Hannover, Germany
| | - Xiaosen Zhang
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| |
Collapse
|
33
|
Bradshaw CJA, Ulm S, Williams AN, Bird MI, Roberts RG, Jacobs Z, Laviano F, Weyrich LS, Friedrich T, Norman K, Saltré F. Minimum founding populations for the first peopling of Sahul. Nat Ecol Evol 2019; 3:1057-1063. [PMID: 31209287 DOI: 10.1038/s41559-019-0902-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/15/2019] [Indexed: 11/09/2022]
Abstract
The timing, context and nature of the first people to enter Sahul is still poorly understood owing to a fragmented archaeological record. However, quantifying the plausible demographic context of this founding population is essential to determine how and why the initial peopling of Sahul occurred. We developed a stochastic, age-structured model using demographic rates from hunter-gatherer societies, and relative carrying capacity hindcasted with LOVECLIM's net primary productivity for northern Sahul. We projected these populations to determine the resilience and minimum sizes required to avoid extinction. A census founding population of between 1,300 and 1,550 individuals was necessary to maintain a quasi-extinction threshold of ≲0.1. This minimum founding population could have arrived at a single point in time, or through multiple voyages of ≥130 people over ~700-900 years. This result shows that substantial population amalgamation in Sunda and Wallacea in Marine Isotope Stages 3-4 provided the conditions for the successful, large-scale and probably planned peopling of Sahul.
Collapse
Affiliation(s)
- Corey J A Bradshaw
- Global Ecology, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia. .,ARC Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia.
| | - Sean Ulm
- ARC Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia.,College of Arts, Society and Education, James Cook University, Cairns, Queensland, Australia
| | - Alan N Williams
- ARC Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia.,Climate Change Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia.,Extent Heritage Pty Ltd, Sydney, New South Wales, Australia
| | - Michael I Bird
- ARC Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia.,College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Richard G Roberts
- ARC Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia.,Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Zenobia Jacobs
- ARC Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia.,Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Fiona Laviano
- Global Ecology, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Laura S Weyrich
- ARC Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia.,Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia
| | - Tobias Friedrich
- Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Kasih Norman
- ARC Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia.,Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Frédérik Saltré
- Global Ecology, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,ARC Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| |
Collapse
|
34
|
Lu H, Liu W, Yang H, Wang H, Liu Z, Leng Q, Sun Y, Zhou W, An Z. 800-kyr land temperature variations modulated by vegetation changes on Chinese Loess Plateau. Nat Commun 2019; 10:1958. [PMID: 31036861 PMCID: PMC6488643 DOI: 10.1038/s41467-019-09978-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/05/2019] [Indexed: 11/10/2022] Open
Abstract
The complicity of long-term land surface temperature (LST) changes has been under investigated and less understood, hindering our understanding of the history and mechanism of terrestrial climate change. Here, we report the longest (800 thousand years) LSTs based on distributions of soil fossil bacterial glycerol dialkyl glycerol tetraethers preserved in well-dated loess-paleosol sequences at the center of the Chinese Loess Plateau. We have found a previously-unrecognized increasing early and prolonged warming pattern toward the northwestern plateau at the onset of the past seven deglaciations, corresponding to the decrease in vegetation coverage, suggesting underlying surface vegetation or lack of has played an important role in regulating LSTs, superimposed on the fundamental global glacial–interglacial changes. Our results support that LSTs in semi-humid and semi-arid regions with little vegetation will be more sensitive to the anticipated global temperature rise, while improving vegetation coverage would reduce LSTs and thus ecological impacts. Modern observation indicates that vegetation cover could modulate land surface temperatures substantially. Here the authors demonstrate that such vegetation feedbacks could be clearly identified in the Chinese Loess Plateau land surface temperature records during past cool periods when vegetation cover was reduced.
Collapse
Affiliation(s)
- Hongxuan Lu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, 710061, Xi'an, China.,CAS Center for Excellence in Quaternary Science and Global Change, 710061, Xi'an, China
| | - Weiguo Liu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, 710061, Xi'an, China. .,CAS Center for Excellence in Quaternary Science and Global Change, 710061, Xi'an, China.
| | - Hong Yang
- Laboratory for Terrestrial Environments, Department of Science and Technology, College of Arts and Sciences, Bryant University, Smithfield, RI, 02917, USA.
| | - Huanye Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, 710061, Xi'an, China.,CAS Center for Excellence in Quaternary Science and Global Change, 710061, Xi'an, China
| | - Zhonghui Liu
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| | - Qin Leng
- Laboratory for Terrestrial Environments, Department of Science and Technology, College of Arts and Sciences, Bryant University, Smithfield, RI, 02917, USA
| | - Youbin Sun
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, 710061, Xi'an, China.,CAS Center for Excellence in Quaternary Science and Global Change, 710061, Xi'an, China
| | - Weijian Zhou
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, 710061, Xi'an, China.,CAS Center for Excellence in Quaternary Science and Global Change, 710061, Xi'an, China
| | - Zhisheng An
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, 710061, Xi'an, China.,CAS Center for Excellence in Quaternary Science and Global Change, 710061, Xi'an, China
| |
Collapse
|
35
|
Suwal MK, Huettmann F, Regmi GR, Vetaas OR. Parapatric subspecies of Macaca assamensis show a marginal overlap in their predicted potential distribution: Some elaborations for modern conservation management. Ecol Evol 2018; 8:9712-9727. [PMID: 30386569 PMCID: PMC6202702 DOI: 10.1002/ece3.4405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/01/2018] [Accepted: 07/04/2018] [Indexed: 11/10/2022] Open
Abstract
Phylogenetic niche conservatism implies that sister taxa will have similar niches, although the niches of disjunct subspecies may evolve differently. This study uses Macaca assamensis, subspecies assamensis and pelops, to investigate the similarities of realized climatic niches of two disjunct subspecies (separated by the Brahmaputra River) along with a similarity analysis of their respective regions' climate. Modeled distributions were used to quantify their potential distribution under current and future climate scenarios. The climatic similarity between regions of each subspecies was tested with principal component analysis (PCA), and the realized climatic niche overlap between two subspecies was tested with a multivariate analysis of variance (MANOVA) on a subset of the least correlated variables out of 24 publicly available topo-bioclimatic variables. Tukey's honest significance difference (HSD) was used to test the range differences (on all 24 variables) between subspecies. The potential distribution of both taxa in the current climate and projected future climate was model-predicted using MaxEnt and Random Forest. We found significantly different climatic ranges for 21 predictors (HSD; p < 0.05) for the two subspecies, significantly different climatic conditions for their regions (using PCA; p < 0.001), and significantly different realized climatic niches for the two subspecies (MANOVA; p < 0.001). The distribution models generated a larger potential area than the currently known distributions. Although literature show that the Brahmaputra River is an effective dispersal barrier, we found some of the neighboring geographic range for both subspecies appears to be potentially suitable for the other taxon. The projected future potential areas indicate that some parts of the currently occupied geography, mostly southern parts, may become climatically unsuitable, whereas other new geographical areas may become suitable. Most of these new potential areas will be toward the north where higher and fragmented mountains, which has conservation implications.
Collapse
Affiliation(s)
| | | | | | - Ole R. Vetaas
- Department of GeographyUniversity of BergenBergenNorway
| |
Collapse
|
36
|
Paris Agreement, Precautionary Principle and Human Rights: Zero Emissions in Two Decades? SUSTAINABILITY 2018. [DOI: 10.3390/su10082812] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Paris Agreement of December 2015 is subject to much criticism of being inadequate. This however neglects its very ambitious objective, which limits legally-binding global warming to 1.5 to 1.8 degrees in comparison to pre-industrial levels. This article shows, based on the overlap of unanswered questions for prognoses in natural science and the legal precautionary principle, that this objective indicates a legal imperative towards zero emissions globally within a short timeframe. Furthermore, it becomes apparent that policies need to be focused on achieving the 1.5-degree temperature limit. From a legal standpoint with regard to existential matters, only those policies are justified that are fit to contribute to reaching the temperature limit with high certainty, without overshoot, without leaving the 1.5 limit aside and without geoengineering measures, in contrast to the tendencies of the IPCC. This creates a big challenge even for the alleged forerunners of climate policies, Germany and the EU; because, according to the objective, the EU and Germany have to raise the level of ambition in their climate policies rapidly and drastically.
Collapse
|
37
|
Novikova PY, Hohmann N, Van de Peer Y. Polyploid Arabidopsis species originated around recent glaciation maxima. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:8-15. [PMID: 29448159 DOI: 10.1016/j.pbi.2018.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/17/2018] [Indexed: 05/20/2023]
Abstract
Polyploidy may provide adaptive advantages and is considered to be important for evolution and speciation. Polyploidy events are found throughout the evolutionary history of plants, however they do not seem to be uniformly distributed along the time axis. For example, many of the detected ancient whole-genome duplications (WGDs) seem to cluster around the K/Pg boundary (∼66Mya), which corresponds to a drastic climate change event and a mass extinction. Here, we discuss more recent polyploidy events using Arabidopsis as the most developed plant model at the level of the entire genus. We review the history of the origin of allotetraploid species A. suecica and A. kamchatica, and tetraploid lineages of A. lyrata, A. arenosa and A. thaliana, and discuss potential adaptive advantages. Also, we highlight an association between recent glacial maxima and estimated times of origins of polyploidy in Arabidopsis. Such association might further support a link between polyploidy and environmental challenge, which has been observed now for different time-scales and for both ancient and recent polyploids.
Collapse
Affiliation(s)
- Polina Yu Novikova
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Nora Hohmann
- University of Basel, Department of Environmental Sciences, Basel, Switzerland
| | - Yves Van de Peer
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium; Department of Genetics, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
38
|
Abstract
Mineral dust aerosols cool Earth directly by scattering incoming solar radiation and indirectly by affecting clouds and biogeochemical cycles. Recent Earth history has featured quasi-100,000-y, glacial-interglacial climate cycles with lower/higher temperatures and greenhouse gas concentrations during glacials/interglacials. Global average, glacial maxima dust levels were more than 3 times higher than during interglacials, thereby contributing to glacial cooling. However, the timing, strength, and overall role of dust-climate feedbacks over these cycles remain unclear. Here we use dust deposition data and temperature reconstructions from ice sheet, ocean sediment, and land archives to construct dust-climate relationships. Although absolute dust deposition rates vary greatly among these archives, they all exhibit striking, nonlinear increases toward coldest glacial conditions. From these relationships and reconstructed temperature time series, we diagnose glacial-interglacial time series of dust radiative forcing and iron fertilization of ocean biota, and use these time series to force Earth system model simulations. The results of these simulations show that dust-climate feedbacks, perhaps set off by orbital forcing, push the system in and out of extreme cold conditions such as glacial maxima. Without these dust effects, glacial temperature and atmospheric CO2 concentrations would have been much more stable at higher, intermediate glacial levels. The structure of residual anomalies over the glacial-interglacial climate cycles after subtraction of dust effects provides constraints for the strength and timing of other processes governing these cycles.
Collapse
|
39
|
Kok JF, Ward DS, Mahowald NM, Evan AT. Global and regional importance of the direct dust-climate feedback. Nat Commun 2018; 9:241. [PMID: 29339783 PMCID: PMC5770443 DOI: 10.1038/s41467-017-02620-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/11/2017] [Indexed: 11/09/2022] Open
Abstract
Feedbacks between the global dust cycle and the climate system might have amplified past climate changes. Yet, it remains unclear what role the dust-climate feedback will play in future anthropogenic climate change. Here, we estimate the direct dust-climate feedback, arising from changes in the dust direct radiative effect (DRE), using a simple theoretical framework that combines constraints on the dust DRE with a series of climate model results. We find that the direct dust-climate feedback is likely in the range of -0.04 to +0.02 Wm -2 K-1, such that it could account for a substantial fraction of the total aerosol feedbacks in the climate system. On a regional scale, the direct dust-climate feedback is enhanced by approximately an order of magnitude close to major source regions. This suggests that it could play an important role in shaping the future climates of Northern Africa, the Sahel, the Mediterranean region, the Middle East, and Central Asia.
Collapse
Affiliation(s)
- Jasper F Kok
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, 90095, USA.
| | - Daniel S Ward
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, 08544, USA
| | - Natalie M Mahowald
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Amato T Evan
- Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA, 92037, USA
| |
Collapse
|
40
|
Rohling EJ, Marino G, Foster GL, Goodwin PA, von der Heydt AS, Köhler P. Comparing Climate Sensitivity, Past and Present. ANNUAL REVIEW OF MARINE SCIENCE 2018; 10:261-288. [PMID: 28938079 DOI: 10.1146/annurev-marine-121916-063242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Climate sensitivity represents the global mean temperature change caused by changes in the radiative balance of climate; it is studied for both present/future (actuo) and past (paleo) climate variations, with the former based on instrumental records and/or various types of model simulations. Paleo-estimates are often considered informative for assessments of actuo-climate change caused by anthropogenic greenhouse forcing, but this utility remains debated because of concerns about the impacts of uncertainties, assumptions, and incomplete knowledge about controlling mechanisms in the dynamic climate system, with its multiple interacting feedbacks and their potential dependence on the climate background state. This is exacerbated by the need to assess actuo- and paleoclimate sensitivity over different timescales, with different drivers, and with different (data and/or model) limitations. Here, we visualize these impacts with idealized representations that graphically illustrate the nature of time-dependent actuo- and paleoclimate sensitivity estimates, evaluating the strengths, weaknesses, agreements, and differences of the two approaches. We also highlight priorities for future research to improve the use of paleo-estimates in evaluations of current climate change.
Collapse
Affiliation(s)
- Eelco J Rohling
- Research School of Earth Sciences, The Australian National University, Canberra 2601, Australia; ,
- Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, United Kingdom; ,
| | - Gianluca Marino
- Research School of Earth Sciences, The Australian National University, Canberra 2601, Australia; ,
| | - Gavin L Foster
- Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, United Kingdom; ,
| | - Philip A Goodwin
- Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, United Kingdom; ,
| | - Anna S von der Heydt
- Institute for Marine and Atmospheric Research Utrecht and Center for Extreme Matter and Emergent Phenomena, Utrecht University, 3584 CC Utrecht, The Netherlands;
| | - Peter Köhler
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung (AWI), 27515 Bremerhaven, Germany;
| |
Collapse
|
41
|
Nonlinear climatic sensitivity to greenhouse gases over past 4 glacial/interglacial cycles. Sci Rep 2017; 7:4626. [PMID: 28676721 PMCID: PMC5496849 DOI: 10.1038/s41598-017-04031-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/17/2017] [Indexed: 11/16/2022] Open
Abstract
The paleoclimatic sensitivity to atmospheric greenhouse gases (GHGs) has recently been suggested to be nonlinear, however a GHG threshold value associated with deglaciation remains uncertain. Here, we combine a new sea surface temperature record spanning the last 360,000 years from the southern Western Pacific Warm Pool with records from five previous studies in the equatorial Pacific to document the nonlinear relationship between climatic sensitivity and GHG levels over the past four glacial/interglacial cycles. The sensitivity of the responses to GHG concentrations rises dramatically by a factor of 2–4 at atmospheric CO2 levels of >220 ppm. Our results suggest that the equatorial Pacific acts as a nonlinear amplifier that allows global climate to transition from deglacial to full interglacial conditions once atmospheric CO2 levels reach threshold levels.
Collapse
|