1
|
Lee JH, Song J, Hong S, Kim Y, Song M, Cho B, Wu T, Riley LW, Landegren U, Lee LP. Nanoplasmonic Rapid Antimicrobial-Resistance Point-of-Care Identification Device: RAPIDx. Adv Healthc Mater 2025; 14:e2402044. [PMID: 39205550 DOI: 10.1002/adhm.202402044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
The emergence of antibiotic resistance has become a global health crisis, and everyone must arm themselves with wisdom to effectively combat the "silent tsunami" of infections that are no longer treatable with antibiotics. However, the overuse or inappropriate use of unnecessary antibiotics is still routine for administering them due to the unavailability of rapid, precise, and point-of-care assays. Here, a rapid antimicrobial-resistance point-of-care identification device (RAPIDx) is reported for the accurate and simultaneous identification of bacterial species (genotype) and target enzyme activity (phenotype). First, a contamination-free active target enzyme is extracted via the photothermal lysis of preconcentrated bacteria cells on a nanoplasmonic functional layer on-chip. Second, the rapid, precise identification of pathogens is achieved by the photonic rolling circle amplification of DNA on a chip. Third, the simultaneous identification of bacterial species (genotype) and target enzyme activity (phenotype) is demonstrated within a sample-to-answer 45 min operation via the RAPIDx. It is believed that the RAPIDx will be a valuable method for solving the bottleneck of employing on-chip nanotechnology for antibiotic-resistant bioassay and other infectious diseases.
Collapse
Affiliation(s)
- Jong-Hwan Lee
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Jihwan Song
- Department of Mechanical Engineering, Hanbat National University, Daejeon, 34158, South Korea
| | - SoonGweon Hong
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yun Kim
- Department of Mechanical Engineering, Hanbat National University, Daejeon, 34158, South Korea
| | - Minsun Song
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Byungrae Cho
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Tiffany Wu
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Lee W Riley
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Ulf Landegren
- Departments of Immunology, Genetics and Pathology, Uppsala University, Uppsala, SE-751 08, Sweden
| | - Luke P Lee
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
2
|
Kim J, Lee GH, Nam D, Park KS. Enhancing multiplex detection capabilities of the Cas12a/blocker DNA system. Talanta 2025; 281:126864. [PMID: 39270605 DOI: 10.1016/j.talanta.2024.126864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
In the field of molecular diagnostics, the demand for multiplex detection, aimed at reducing overall analysis costs and streamlining procedures, is on the rise, prompting ongoing developments in various technologies. In this study, we developed a novel system, the split T7 promoter-based three-way junction-transcription, coupled with Cas12a/Blocker DNA (T3-CaB), for the multiplex detection of target nucleic acids. The T3-CaB system builds upon the foundation of the T3 system, generating numerous RNA transcripts upon encountering target nucleic acids. Subsequently, these RNA transcripts displace the blocker DNA from reporter DNA, allowing active Cas12a to engage in efficient trans-cleavage reaction on the reporter DNA, resulting in a strong fluorescence signal. Importantly, the proposed system operates at the isothermal condition (37 °C), with the entire analysis completed within 90 min. Further, the detection performance of the proposed system surpasses that of the preceding Cas12a/Blocker DNA system. Model targets, namely the 16S rRNA of Staphylococcus aureus and Escherichia coli, were selected, and a successful demonstration of multiplex detection was achieved. This technology holds promise for broadening the applicability of CRISPR/Cas-based diagnostics, especially in settings necessitating multiplex detection capabilities.
Collapse
Affiliation(s)
- Junhyeong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Gun Haeng Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Daehan Nam
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Eremin SA, Mukhametova LI, Krylov VB, Nifantiev NE. Fluorescence Polarization Assay for Infection Diagnostics: A Review. Molecules 2024; 29:4712. [PMID: 39407640 PMCID: PMC11478262 DOI: 10.3390/molecules29194712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Rapid and specific diagnosis is necessary for both the treatment and prevention of infectious diseases. Bacteria and viruses that enter the bloodstream can trigger a strong immune response in infected animals and humans. The fluorescence polarization assay (FPA) is a rapid and accurate method for detecting specific antibodies in the blood that are produced in response to infection. One of the first examples of FPA is the non-competitive test for detecting brucellosis in animals, which was followed by the development of other protocols for detecting various infections. Fluorescently labeled polysaccharides (in the case of brucellosis and salmonellosis) or specific peptides (in the case of tuberculosis and salmonellosis, etc.) can be used as biorecognition elements for detecting infections. The availability of new laboratory equipment and mobile devices for fluorescence polarization measurements outside the laboratory has stimulated the development of new fluorescence polarization assays (FPAs) and the emergence of commercial kits on the market for the detection of brucellosis, tuberculosis, and equine infectious anemia viruses. It has been shown that, in addition to antibodies, the FPA method can detect both viruses and nucleic acids. The development of more specific and sensitive biomarkers is essential for the diagnosis of infections and therapy monitoring. This review summarizes studies published between 2003 and 2023 that focus on the detection of infections using FPA. Furthermore, it demonstrates the potential for using new biorecognition elements (e.g., aptamers, proteins, peptides) and the combined use of FPA with new technologies, such as PCR and CRISPR/Cas12a systems, for detecting various infectious agents.
Collapse
Affiliation(s)
- Sergei A. Eremin
- Chemical Department, M.V. Lomonosov Moscow State University, Leninsky Gory, 1, 119991 Moscow, Russia;
| | - Liliya I. Mukhametova
- Chemical Department, M.V. Lomonosov Moscow State University, Leninsky Gory, 1, 119991 Moscow, Russia;
| | - Vadim B. Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991 Moscow, Russia
| | - Nikolay E. Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991 Moscow, Russia
| |
Collapse
|
4
|
Pang C, Xu H, Xu J, Zhang L, Wang J, Jing S. Qualifying P-glycoprotein in drug-resistant ovarian cancer cells: a dual-mode aptamer probe approach. Analyst 2024; 149:3928-3938. [PMID: 38916121 DOI: 10.1039/d4an00803k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Drug resistance presents a significant obstacle in treating human ovarian cancer. The development of effective methods for detecting drug-resistant cancer cells is pivotal for tailoring personalized therapies and prognostic assessments. In this investigation, we introduce a dual-mode detection technique employing a fluorogenic aptamer probe for the qualification of P-glycoprotein (P-gp) in drug-resistant ovarian cancer cells. The probe, initially in an "off" state due to the proximity of a quencher to the fluorophore, exhibits increased fluorescence intensity upon binding with the target. The fluorescence enhancement shows a linear correlation with both the concentration of P-gp and the presence of P-gp in drug-resistant ovarian cancer cells. This correlation is quantifiable, with detection limits of 1.56 nM and 110 cells per mL. In an alternate mode, the optimized fluorophores, attached to the aptamer, form larger complexes upon binding to the target protein, which diminishes the rotation speed, thereby augmenting fluorescence polarization. The alteration in fluorescence polarization enables the quantitative analysis of P-gp in the cells, ranging from 100 to 1500 cells per milliliter, with a detection limit of 40 cells per mL. Gene expression analyses, protein expression studies, and immunofluorescence imaging further validated the reliability of our aptamer-based probe for its specificity towards P-gp in drug-resistant cancer cells. Our findings underscore that the dual-mode detection approach promises to enhance the diagnosis and treatment of multidrug-resistant ovarian cancer.
Collapse
Affiliation(s)
- Chaobin Pang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Heng Xu
- Jiangsu Provincial Institute of Materia Medica, Nanjing Tech University, Nanjing, 211816, China
- Nanjing Health Run Biotechnology Co., Ltd, Nanjing, 211316, China
| | - Jichao Xu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Lei Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Jinhua Wang
- Department of Gynecological Oncology Surgery, Jiangsu Cancer Hospital (Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital), 42 Baiziting Road, Nanjing 210009, Jiangsu Province, China.
- Department of Gynaecology, NO.1 Hospital of Xining, 10 Huzhuxiang Road, Xining 810099, Qinghai Province, China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
5
|
Shao F, Li H, Hsieh K, Zhang P, Li S, Wang TH. Automated and miniaturized screening of antibiotic combinations via robotic-printed combinatorial droplet platform. Acta Pharm Sin B 2024; 14:1801-1813. [PMID: 38572105 PMCID: PMC10985126 DOI: 10.1016/j.apsb.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 04/05/2024] Open
Abstract
Antimicrobial resistance (AMR) has become a global health crisis in need of novel solutions. To this end, antibiotic combination therapies, which combine multiple antibiotics for treatment, have attracted significant attention as a potential approach for combating AMR. To facilitate advances in antibiotic combination therapies, most notably in investigating antibiotic interactions and identifying synergistic antibiotic combinations however, there remains a need for automated high-throughput platforms that can create and examine antibiotic combinations on-demand, at scale, and with minimal reagent consumption. To address these challenges, we have developed a Robotic-Printed Combinatorial Droplet (RoboDrop) platform by integrating a programmable droplet microfluidic device that generates antibiotic combinations in nanoliter droplets in automation, a robotic arm that arranges the droplets in an array, and a camera that images the array of thousands of droplets in parallel. We further implement a resazurin-based bacterial viability assay to accelerate our antibiotic combination testing. As a demonstration, we use RoboDrop to corroborate two pairs of antibiotics with known interactions and subsequently identify a new synergistic combination of cefsulodin, penicillin, and oxacillin against a model E. coli strain. We therefore envision RoboDrop becoming a useful tool to efficiently identify new synergistic antibiotic combinations toward combating AMR.
Collapse
Affiliation(s)
- Fangchi Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hui Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pengfei Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sixuan Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
6
|
Spengler C, Maikranz E, Glatz B, Klatt MA, Heintz H, Bischoff M, Santen L, Fery A, Jacobs K. The adhesion capability of Staphylococcus aureus cells is heterogeneously distributed over the cell envelope. SOFT MATTER 2024; 20:484-494. [PMID: 37842771 DOI: 10.1039/d3sm01045g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Understanding and controlling microbial adhesion is a critical challenge in biomedical research, given the profound impact of bacterial infections on global health. Many facets of bacterial adhesion, including the distribution of adhesion forces across the cell wall, remain poorly understood. While a recent 'patchy colloid' model has shed light on adhesion in Gram-negative Escherichia coli cells, a corresponding model for Gram-positive cells has been elusive. In this study, we employ single cell force spectroscopy to investigate the adhesion force of Staphylococcus aureus. Normally, only one contact point of the entire bacterial surface is measured. However, by using a sine-shaped surface and recording force-distance curves along a path perpendicular to the rippled structures, we can characterize almost a hemisphere of one and the same bacterium. This unique approach allows us to study a greater number of contact points between the bacterium and the surface compared to conventional flat substrata. Distributed over the bacterial surface, we identify sites of higher and lower adhesion, which we call 'patchy adhesion', reminiscent of the patchy colloid model. The experimental results show that only some cells exhibit particularly strong adhesion at certain locations. To gain a better understanding of these locations, a geometric model of the bacterial cell surface was created. The experimental results were best reproduced by a model that features a few (5-6) particularly strong adhesion sites (diameter about 250 nm) that are widely distributed over the cell surface. Within the simulated patches, the number of molecules or their individual adhesive strength is increased. A more detailed comparison shows that simple geometric considerations for interacting molecules are not sufficient, but rather strong angle-dependent molecule-substratum interactions are required. We discuss the implications of our results for the development of new materials and the design and analysis of future studies.
Collapse
Affiliation(s)
- Christian Spengler
- Experimental Physics, Saarland University, Center for Biophysics, 66123 Saarbrücken, Germany.
| | - Erik Maikranz
- Theoretical Physics, Saarland University, Center for Biophysics, 66123 Saarbrücken, Germany
| | - Bernhard Glatz
- Institute of Physical Chemistry and Physics of Polymers, Leibniz Institute of Polymer Research, 01069 Dresden, Germany
| | - Michael Andreas Klatt
- Experimental Physics, Saarland University, Center for Biophysics, 66123 Saarbrücken, Germany.
- Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08544-0001, USA
| | - Hannah Heintz
- Experimental Physics, Saarland University, Center for Biophysics, 66123 Saarbrücken, Germany.
| | - Markus Bischoff
- Insitute of Medical Microbiology and Hygiene, Saarland University, Center for Biophysics, 66421 Homburg/Saar, Germany
| | - Ludger Santen
- Theoretical Physics, Saarland University, Center for Biophysics, 66123 Saarbrücken, Germany
| | - Andreas Fery
- Institute of Physical Chemistry and Physics of Polymers, Leibniz Institute of Polymer Research, 01069 Dresden, Germany
- Physical Chemistry of Polymer Materials, Technical University Dresden, 01062 Dresden, Germany
| | - Karin Jacobs
- Experimental Physics, Saarland University, Center for Biophysics, 66123 Saarbrücken, Germany.
| |
Collapse
|
7
|
Huang Q, Zhang Y, Hu W, Chen K, Zhang J, Luo Z, Lu C. Characterization of Heat-labile Uracil-DNA Glycosylase from Oncorhynchus mykiss and its Application for Carry-over Contamination Control in RT-qPCR. Protein Pept Lett 2024; 31:169-177. [PMID: 38343045 DOI: 10.2174/0109298665283737240122105923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 06/14/2024]
Abstract
BACKGROUND Heat-labile uracil-DNA glycosylase (HL-UDG) is commonly employed to eliminate carry-over contamination in DNA amplifications. However, the prevailing HL-UDG is markedly inactivated at 50°C, rendering it unsuitable for specific one-step RT-qPCR protocols utilizing reverse transcriptase at an optimal temperature of 42°C. OBJECTIVE This study aimed to explore novel HL-UDG with lower inactivation temperature and for recombinant expression. METHODS The gene encoding an HL-UDG was cloned from the cold-water fish rainbow trout (Oncorhynchus mykiss) and expressed in Escherichia coli with high yield. The thermostability of this enzyme and other enzymatic characteristics were thoroughly examined. The novel HL-UDG was then applied for controlling carry-over contamination in one-step RT-qPCR. RESULTS This recombinantly expressed truncated HL-UDG of rainbow trout (OmUDG) exhibited high amino acids similarity (84.1% identity) to recombinant Atlantic cod UDG (rcUDG) and was easily denatured at 40°C. The optimal pH of OmUDG was 8.0, and the optimal concentrations of both Na+ and K+ were 10 mM. Since its inactivation temperature was lower than that of rcUDG, the OmUDG could be used to eliminate carry-over contamination in one-step RT-qPCR with moderate reverse transcription temperature. CONCLUSION We successfully identified and recombinantly expressed a novel HL-UDG with an inactivation temperature of 40°C. It is suitable for eliminating carry-over contamination in one-step RT-qPCR.
Collapse
Affiliation(s)
- Qingyuan Huang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yaqi Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
- Jiangsu Food & Pharmaceutical Science College, Huai'an 223023, China
| | - Wenhao Hu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Keqi Chen
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
- Jiangsu Best Enzymes Biotech Co., Ltd., Lianyungang, 222005, China
| | - Jian Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhidan Luo
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Chen Lu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
- Jiangsu Best Enzymes Biotech Co., Ltd., Lianyungang, 222005, China
| |
Collapse
|
8
|
Qin L, Lou F, Wang Y, Zhang Y, Liu S, Hun X. CRISPR/Cas12a Coupled with Enzyme-DNA Molecular Switch Photoelectrochemical Assay for HIV Nucleic Acid. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Gou H, Lin Q, Shen H, Jia K, Liang Y, Peng J, Zhang C, Qu X, Li Y, Lin J, Zhang J, Liao M. A novel linear displacement isothermal amplification with strand displacement probes (LDIA-SD) in a pocket-size device for point-of-care testing of infectious diseases. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 379:133244. [PMID: 36589905 PMCID: PMC9789534 DOI: 10.1016/j.snb.2022.133244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Nucleic acid amplification is crucial for disease diagnosis, especially lethal infectious diseases such as COVID-19. Compared with PCR, isothermal amplification methods are advantageous for point-of-care testing (POCT). However, complicated primer design limits their application in detecting some short targets or sequences with abnormal GC content. Herein, we developed a novel linear displacement isothermal amplification (LDIA) method using two pairs of conventional primers and Bacillus stearothermophilus (Bst) DNA polymerase, and reactions could be accelerated by adding an extra primer. Pseudorabies virus gE (high GC content) and Salmonella fimW (low GC content) genes were used to evaluate the LDIA assay. Using strand displacement (SD) probes, a LDIA-SD method was developed to realize probe-based specific detection. Additionally, we incorporated a nucleic acid-free extraction step and a pocket-sized device to realize POCT applications of the LDIA-SD method. The LDIA-SD method has advantages including facile primer design, high sensitivity and specificity, and applicability for POCT, especially for amplification of complex sequences and detection of infectious diseases.
Collapse
Affiliation(s)
- Hongchao Gou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Qijie Lin
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Haiyan Shen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Kaiyuan Jia
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yucen Liang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Junhao Peng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Chunhong Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Xiaoyun Qu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
- Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Zhang X, Peng Y, Yao L, Shang H, Zheng Z, Chen W, Xu J. Self-Assembly of Multivalent Aptamer-Tethered DNA Monolayers Dedicated to a Fluorescence Polarization-Responsive Circular Isothermal Strand Displacement Amplification for Salmonella Assay. Anal Chem 2023; 95:2570-2578. [PMID: 36653941 DOI: 10.1021/acs.analchem.2c05448] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pathogenic bacteria are pathogens widely spread that are capable of causing mild to life-threatening diseases in human beings or other organisms. Rationally organizing the simple helical motif of double-stranded DNA (dsDNA) tiles into designed ensemble structures with architecturally defined collective properties could lead to promising biosensing applications for pathogen detection. In this work, we facilely engineered multivalent hairpin aptamer probe-tethered DNA monolayers (MHAP-DNA monolayers) and applied them to build a fluorescence polarization-responsive circular isothermal strand displacement amplification (FP-CSDA) for Salmonella assay. In this system, the MHAP-DNA monolayers were constructed based on a dsDNA tile-directed self-assembly. A FAM-labeled reporting probe (RPFAM) with an inherent low FP signal serves as the signaling unit. The presence of target Salmonella leads to the trapping of F RPFAM into the super DNA monolayers via a target-triggered CSDA to peel off the tethered hairpin-structured aptamer probes (HAPs) responsible for the binding of RPFAM. As a result, the FP signal of the FAM fluorophore can be remarkably amplified due to the recycling of target Salmonella and the capacity of structural DNA materials to strongly restrict the free rotation of the FAM fluorophore but without a fluorescence quenching effect. Experimental results demonstrate that the FP assay is able to detect Salmonella with a low limit of detection (LOD) of 7.2 × 100 CFU/mL and high specificity. As a proof-of-concept study, we envision our study using DNA nanoarchitecture as the foundation to modulate CSDA-based FP assays, promising to open up a new avenue for disease diagnosis, food safety detection, and biochemical studies.
Collapse
Affiliation(s)
- Xinlei Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yubo Peng
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Li Yao
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huijie Shang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhi Zheng
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Wei Chen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianguo Xu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
11
|
Alhusaini Q, Scheld WS, Jia Z, Das D, Afzal F, Müller M, Schönherr H. Bare Eye Detection of Bacterial Enzymes of Pseudomonas aeruginosa with Polymer Modified Nanoporous Silicon Rugate Filters. BIOSENSORS 2022; 12:1064. [PMID: 36551031 PMCID: PMC9776340 DOI: 10.3390/bios12121064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The fabrication, characterization and application of a nanoporous Silicon Rugate Filter (pSiRF) loaded with an enzymatically degradable polymer is reported as a bare eye detection optical sensor for enzymes of pathogenic bacteria, which is devoid of any dyes. The nanopores of pSiRF were filled with poly(lactic acid) (PLA), which, upon enzymatic degradation, resulted in a change in the effective refractive index of the pSiRF film, leading to a readily discernible color change of the sensor. The shifts in the characteristic fringe patterns before and after the enzymatic reaction were analyzed quantitatively by Reflectometric Interference Spectroscopy (RIfS) to estimate the apparent kinetics and its dependence on enzyme concentration. A clear color change from green to blue was observed by the bare eye after PLA degradation by proteinase K. Moreover, the color change was further confirmed in measurements in bacterial suspensions of the pathogen Pseudomonas aeruginosa (PAO1) as well as in situ in the corresponding bacterial supernatants. This study highlights the potential of the approach in point of care bacteria detection.
Collapse
Affiliation(s)
- Qasim Alhusaini
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Walter Sebastian Scheld
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Zhiyuan Jia
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Dipankar Das
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, India
| | - Faria Afzal
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Mareike Müller
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| |
Collapse
|
12
|
Yu Z, Gong H, Gao Y, Li L, Xue F, Zeng Y, Li M, Liu X, Tang D. Integrated Photothermal-Pyroelectric Biosensor for Rapid and Point-of-Care Diagnosis of Acute Myocardial Infarction: A Convergence of Theoretical Research and Commercialization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202564. [PMID: 35775906 DOI: 10.1002/smll.202202564] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/31/2022] [Indexed: 01/23/2025]
Abstract
Acute myocardial infarction (AMI) survivors face a high risk of mortality as a result of increasing heart failure and irreparable myocardial injury. New portable methods for immediate diagnosis must be developed to provide patients with daily warnings. Herein, the development of a dual-mode photothermal-pyroelectric output system based on a point-of-care platform for rapid AMI detection is reported. Termed as Integrated Photothermal-Pyroelectric Biosensor for AMI (IPPBA), the method leverages cascade enzymatic amplification to convert the target signal into a thermal and pyrooelectric conversion of the testing process by delicate pyroelectric pervokite NaNbO3 nanocubes modified microelectrodes for sensitive detection of cTnI protein in whole blood. In addition, the mechanism of the proposed pyroelectric bioassay model is explored in depth based on in situ variable temperature X-ray diffraction (XRD) lattice change statistics and density function theory (DFT) calculations. With standard samples and under optimized experimental conditions, the proposed IPPBA platform exhibits excellent signal stability and ultra-low detection limit (0.05 ng mL-1 ) for the target cTn I. With further developments in digital technology (e.g., 5G signaling protocols, fully automated systems), the integrated digital bio-testing platform IPPBA is fully capable of accomplishing positive and timely diagnosis of AMI.
Collapse
Affiliation(s)
- Zhichao Yu
- Key Laboratory for Analytical Science of Food Safety and Biology, Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Hexiang Gong
- Key Laboratory for Analytical Science of Food Safety and Biology, Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yuan Gao
- Key Laboratory for Analytical Science of Food Safety and Biology, Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Ling Li
- The First Clinical Medical College of Fujian Medical University, Hepatopancreatobiliary Surgery Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
| | - Fangqing Xue
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
| | - Meijin Li
- Key Laboratory for Analytical Science of Food Safety and Biology, Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology, Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
13
|
Yoo H, Lee JY, Park KS, Oh SS. Lead-start isothermal polymerase amplification controlled by DNAzymatic switches. NANOSCALE 2022; 14:7828-7836. [PMID: 35583083 DOI: 10.1039/d1nr07894a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As DNA polymerases are even active at ambient temperature, there is inevitable non-specific amplification; to avoid the undesired amplification of analytes, a heat activation-based polymerase chain reaction (PCR), called hot-start PCR, is widely used to be highly precise and quantitative in detection. Unlike thermocycling amplification, isothermal amplification, compatible for point-of-care (PoC) tests, cannot be benefited by the heat-activation technique, making the method qualitative rather than quantitative. In this work, we newly developed a lead ion (Pb2+) activation technique, called lead-start isothermal amplification, allowing on-demand activation or deactivation of DNA polymerases at room temperature. We systematically correlated the DNA polymerase inhibition by the TQ30 aptamer with Pb2+-responsive strand cleavage by the GR5 DNAzyme, and relying on the type of interconnectors, Pb2+ successfully served as an initiator or a terminator of isothermal DNA amplification. Our lead-start isothermal amplification was exceptionally Pb2+-specific, dramatically increasing the enzymatic activity of DNA polymerase (>25 times) only by Pb2+ introduction. Despite one-by-one sample preparation, a number of reactions can begin and end at the same time, sharing the identical amplification conditions, and thereby allowing their quantitative analysis and comparison. Using a portable UV lamp and a smartphone camera, we also succeeded in quantifying the amounts of clinically important and human papillomavirus type 16 genes in human serum and SARS-CoV-2's nucleocapsid genes in human serum and saliva, and the limit of detection was as low as 0.1 nM, highly applicable for actual PoC tests in the field with no purification process.
Collapse
Affiliation(s)
- Hyebin Yoo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
| | - Ju Young Lee
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, South Korea
| | - Ki Soo Park
- Department of Biological Engineering, Konkuk University, Seoul, 05029, South Korea.
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
| |
Collapse
|
14
|
Li H, Zhang P, Hsieh K, Wang TH. Combinatorial nanodroplet platform for screening antibiotic combinations. LAB ON A CHIP 2022; 22:621-631. [PMID: 35015012 PMCID: PMC9035339 DOI: 10.1039/d1lc00865j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The emergence and spread of multidrug resistant bacterial strains and concomitant dwindling of effective antibiotics pose worldwide healthcare challenges. To address these challenges, advanced engineering tools are developed to personalize antibiotic treatments by speeding up the diagnostics that is critical to prevent antibiotic misuse and overuse and make full use of existing antibiotics. Meanwhile, it is necessary to investigate novel antibiotic strategies. Recently, repurposing mono antibiotics into combinatorial antibiotic therapies has shown great potential for treatment of bacterial infections. However, widespread adoption of drug combinations has been hindered by the complexity of screening techniques and the cost of reagent consumptions in practice. In this study, we developed a combinatorial nanodroplet platform for automated and high-throughput screening of antibiotic combinations while consuming orders of magnitude lower reagents than the standard microtiter-based screening method. In particular, the proposed platform is capable of creating nanoliter droplets with multiple reagents in an automatic manner, tuning concentrations of each component, performing biochemical assays with high flexibility (e.g., temperature and duration), and achieving detection with high sensitivity. A biochemical assay, based on the reduction of resazurin by the metabolism of bacteria, has been characterized and employed to evaluate the combinatorial effects of the antibiotics of interest. In a pilot study, we successfully screened pairwise combinations between 4 antibiotics for a model Escherichia coli strain.
Collapse
Affiliation(s)
- Hui Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Pengfei Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
15
|
Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface. Nat Commun 2021; 12:7136. [PMID: 34880250 PMCID: PMC8654979 DOI: 10.1038/s41467-021-27503-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022] Open
Abstract
Flexible actuation of droplets is crucial for biomedical and industrial applications. Hence, various approaches using optical, electrical, and magnetic forces have been exploited to actuate droplets. For broad applicability, an ideal approach should be programmable and be able to actuate droplets of arbitrary size and composition. Here we present an "additive-free" magnetic actuation method to programmably manipulate droplets of water, organic, and biological fluids of arbitrary composition, as well as solid samples, on a ferrofluid-infused porous surface. We specifically exploit the spontaneously formed ferrofluid wetting ridges to actuate droplets using spatially varying magnetic fields. We demonstrate programmed processing and analysis of biological samples in individual drops as well as the collective actuation of large ensembles of micrometer-sized droplets. Such model respiratory droplets can be accumulated for improved quantitative and sensitive bioanalysis - an otherwise prohibitively difficult task that may be useful in tracking coronavirus.
Collapse
|
16
|
Li N, Shen M, Liu J, Zhang L, Wang H, Xu Y, Cheng J. Multiplexed detection of respiratory pathogens with a portable analyzer in a "raw-sample-in and answer-out" manner. MICROSYSTEMS & NANOENGINEERING 2021; 7:94. [PMID: 34840805 PMCID: PMC8608563 DOI: 10.1038/s41378-021-00321-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/10/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has emerged, rapidly spread and caused significant morbidity and mortality worldwide. There is an urgent public health need for rapid, sensitive, specific, and on-site diagnostic tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In this study, a fully integrated and portable analyzer was developed to detect SARS-CoV-2 from swab samples based on solid-phase nucleic acid extraction and reverse transcription loop-mediated isothermal amplification (RT-LAMP). The swab can be directly inserted into a cassette for multiplexed detection of respiratory pathogens without pre-preparation. The overall detection process, including swab rinsing, magnetic bead-based nucleic acid extraction, and 8-plex real-time RT-LAMP, can be automatically performed in the cassette within 80 min. The functionality of the cassette was validated by detecting the presence of a SARS-CoV-2 pseudovirus and three other respiratory pathogens, i.e., Klebsiella pneumoniae, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. The limit of detection (LoD) for the SARS-CoV-2 pseudovirus was 2.5 copies/μL with both primer sets (N gene and ORF1ab gene), and the three bacterial species were successfully detected with an LoD of 2.5 colony-forming units (CFU)/μL in 800 μL of swab rinse. Thus, the analyzer developed in this study has the potential to rapidly detect SARS-CoV-2 and other respiratory pathogens on site in a “raw-sample-in and answer-out” manner.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Membrane Biology, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Minjie Shen
- State Key Laboratory of Membrane Biology, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Jiajia Liu
- State Key Laboratory of Membrane Biology, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Li Zhang
- State Key Laboratory of Membrane Biology, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Huili Wang
- State Key Laboratory of Membrane Biology, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Youchun Xu
- State Key Laboratory of Membrane Biology, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 China.,National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206 China
| | - Jing Cheng
- State Key Laboratory of Membrane Biology, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 China.,National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206 China.,Center for Precision Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
17
|
Lee CY, Degani I, Cheong J, Weissleder R, Lee JH, Cheon J, Lee H. Development of Integrated Systems for On-Site Infection Detection. Acc Chem Res 2021; 54:3991-4000. [PMID: 34677927 DOI: 10.1021/acs.accounts.1c00498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The modern healthcare system faces an unrelenting threat from microorganisms, as evidenced by global outbreaks of new viral diseases, emerging antimicrobial resistance, and the rising incidence of healthcare-associated infections (HAIs). An effective response to these threats requires rapid and accurate diagnostic tests that can identify causative pathogens at the point of care (POC). Such tests could eliminate diagnostic uncertainties, facilitating patient triaging, minimizing the empiric use of antimicrobial drugs, and enabling targeted treatments. Current standard methods, however, often fail to meet the needs of rapid diagnosis in POC settings. Culture-based assays entail long processing times and require specialized laboratory infrastructure; nucleic acid (NA) tests are often limited to centralized hospitals due to assay complexity and high costs. Here we discuss two new POC tests developed in our groups to enable the rapid diagnosis of infection. The first is nanoPCR that takes advantages of core-shell magnetoplasmonic nanoparticles (MPNs): (i) Au shell significantly accelerates thermocycling via volumetric, plasmonic light-to-heat conversion and (ii) a magnetic core enables sensitive in situ fluorescent detection via magnetic clearing. By adopting a Ferris wheel module, the system expedites multisamples in parallel with a minimal setup. When applied to COVID-19 diagnosis, nanoPCR detected SARS-CoV-2 RNA down to 3.2 copy/μL within 17 min. In particular, nanoPCR diagnostics accurately identified COVID-19 cases in clinical samples (n = 150), validating its clinical applicability. The second is a polarization anisotropy diagnostic (PAD) system that exploits the principle of fluorescence polarization (FP) as a detection modality. Fluorescent probes were designed to alter their molecular weight upon recognizing target NAs. This event modulates the probes' tumbling rate (Brownian motion), which leads to changes in FP. The approach is robust against environmental noise and benefits from the ratiometric nature of the signal readout. We applied PAD to detect clinically relevant HAI bacteria (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus). The PAD assay demonstrated detection sensitivity down to the single bacterium level and determined both drug resistance and virulence status. In summary, these new tests have the potential to become powerful tools for rapid diagnosis in the infectious disease space. They do not require highly skilled personnel or labor-intensive analyses, and the assays are quick and cost-effective. These attributes will make nanoPCR and PAD well-aligned with a POC workflow to aid physicians to initiate prompt and informed patient treatment.
Collapse
Affiliation(s)
- Chang Yeol Lee
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Institute for Basic Science (IBS), Center for NanoMedicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Ismail Degani
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02142, United States
| | - Jiyong Cheong
- Institute for Basic Science (IBS), Center for NanoMedicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Department of Systems Biology, Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Jae-Hyun Lee
- Institute for Basic Science (IBS), Center for NanoMedicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Jinwoo Cheon
- Institute for Basic Science (IBS), Center for NanoMedicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Institute for Basic Science (IBS), Center for NanoMedicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
18
|
Ye X, Feng T, Li L, Wang T, Li P, Huang W. Theranostic platforms for specific discrimination and selective killing of bacteria. Acta Biomater 2021; 125:29-40. [PMID: 33582362 DOI: 10.1016/j.actbio.2021.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/04/2021] [Accepted: 02/04/2021] [Indexed: 12/26/2022]
Abstract
Bacterial infections are serious threats to public health due to lack of advanced techniques to rapidly and accurately diagnose these infections in clinics. Although bacterial infections can be treated with broad-spectrum antibiotics based on empirical judgment, the emergence of antimicrobial resistance has attracted global attention due to long-term misuse and abuse of antibiotics by humans in recent decades. Therefore, it is imperative to selectively discriminate and precisely eliminate pathogenic bacteria. Herein, in addition to the conventional methods for bacterial identification, we comprehensively reviewed the recently developed theranostic platforms for specific discrimination and selective killing of bacteria according to their different interactions with the target bacteria, such as electrostatic and hydrophobic interactions, molecular recognition, microenvironment response, metabolic labeling, bacteriophage targeting, and others. These theranostic agents not only benefit from improved therapeutic efficiency but also present limited susceptibility to induce bacterial resistance. The strategies summarized in this review will open up new avenues in developing effective antimicrobial materials to accurately diagnose and treat bacterial infections in the post-antibiotic era. STATEMENT OF SIGNIFICANCE: Bacterial infections are difficult to be rapidly and accurately diagnosed, and are generally treated with broad-spectrum antibiotics, which leads to the development of drug resistance. By integrating imaging modalities and therapeutic methods in a single treatment, various theranostic agents have been developed to address the abovementioned issues. Therefore, the emerging theranostic platforms for selective identification and elimination of bacteria based on the distinct interactions of the theranostic agents with the target bacteria are summarized in this review. We believe that the information provided in this review will guide researchers in designing advanced antibacterial theranostics for practical applications in the post-antibiotic era.
Collapse
Affiliation(s)
- Xiaoting Ye
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Tao Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China; Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Chongqing 401120, China.
| | - Lin Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China; Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China; Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China; Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China; Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
19
|
Kim H, Huh HJ, Park E, Chung DR, Kang M. Multiplex Molecular Point-of-Care Test for Syndromic Infectious Diseases. BIOCHIP JOURNAL 2021; 15:14-22. [PMID: 33613852 PMCID: PMC7883532 DOI: 10.1007/s13206-021-00004-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
Point-of-care (POC) molecular diagnostics for clinical microbiology and virology has primarily focused on the detection of a single pathogen. More recently, it has transitioned into a comprehensive syndromic approach that employs multiplex capabilities, including the simultaneous detection of two or more pathogens. Multiplex POC tests provide higher accuracy to for actionable decisionmaking in critical care, which leads to pathogen-specific treatment and standardized usages of antibiotics that help prevent unnecessary processes. In addition, these tests can be simple enough to operate at the primary care level and in remote settings where there is no laboratory infrastructure. This review focuses on state-of-the-art multiplexed molecular point-of-care tests (POCT) for infectious diseases and efforts to overcome their limitations, especially related to inadequate throughput for the identification of syndromic diseases. We also discuss promising and imperative clinical POC approaches, as well as the possible hurdles of their practical applications as front-line diagnostic tests.
Collapse
Affiliation(s)
- Hanbi Kim
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Seoul, 06351 South Korea.,Department of Medical Device Management and Research, SAIHST (Samsung Advanced Institute for Health Sciences & Technology), Sungkyunkwan University, Seoul, 06355 South Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351 South Korea
| | - Eunkyoung Park
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Seoul, 06351 South Korea.,Department of Medical Device Management and Research, SAIHST (Samsung Advanced Institute for Health Sciences & Technology), Sungkyunkwan University, Seoul, 06355 South Korea
| | - Doo-Ryeon Chung
- Center for Infection Prevention and Control, Samsung Medical Center, Seoul, 06351 South Korea.,Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, 06367 South Korea.,Division of Infectious Diseases, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351 South Korea
| | - Minhee Kang
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Seoul, 06351 South Korea.,Department of Medical Device Management and Research, SAIHST (Samsung Advanced Institute for Health Sciences & Technology), Sungkyunkwan University, Seoul, 06355 South Korea
| |
Collapse
|
20
|
Maldonado J, Estévez MC, Fernández-Gavela A, González-López JJ, González-Guerrero AB, Lechuga LM. Label-free detection of nosocomial bacteria using a nanophotonic interferometric biosensor. Analyst 2020; 145:497-506. [PMID: 31750459 DOI: 10.1039/c9an01485c] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nosocomial infections are a major concern at the worldwide level. Early and accurate identification of nosocomial pathogens is crucial to provide timely and adequate treatment. A prompt response also prevents the progression of the infection to life-threatening conditions, such as septicemia or generalized bloodstream infection. We have implemented two highly sensitive methodologies using an ultrasensitive photonic biosensor based on a bimodal waveguide interferometer (BiMW) for the fast detection of Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA), two of the most prevalent bacteria associated with nosocomial infections. For that, we have developed a biofunctionalization strategy based on the use of a PEGylated silane (silane-PEG-COOH) which provides a highly resistant and bacteria-repelling surface, which is crucial to specifically detect each bacterium. Two different biosensor assays have been set under standard buffer conditions: one based on a specific direct immunoassay employing polyclonal antibodies for the detection of P. aeruginosa and another one employing aptamers for the direct detection of MRSA. The biosensor immunoassay for P. aeruginosa is fast (it only takes 12 min) and specific and has experimentally detected concentrations down to 800 cfu mL-1 (cfu: colony forming unit). The second one relies on the use of an aptamer that specifically detects penicillin-binding protein 2a (PBP2a), a protein only expressed in the MRSA mutant, providing a photonic biosensor with the ability to identify the resistant pathogen MRSA and differentiate it from methicillin-susceptible S. aureus (MSSA). Direct, label-free, and selective detection of whole MRSA bacteria has been achieved, making possible the direct detection of also 800 cfu mL-1. According to the signal-to-noise (S/N) ratio of the device, a theoretical limit of detection (LOD) of around 49 and 29 cfu mL-1 was estimated for P. aeruginosa and MRSA, respectively. Both results obtained under standard conditions reveal the great potential this interferometric biosensor device has as a versatile and specific tool for bacterial detection and quantification, providing a rapid method for the identification of nosocomial pathogens within the clinical requirements of sensitivity for the diagnosis of infections.
Collapse
Affiliation(s)
- Jesús Maldonado
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN, and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
21
|
Rajendran VK, Bakthavathsalam P, Bergquist PL, Sunna A. Smartphone technology facilitates point-of-care nucleic acid diagnosis: a beginner's guide. Crit Rev Clin Lab Sci 2020; 58:77-100. [PMID: 32609551 DOI: 10.1080/10408363.2020.1781779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The reliable detection of nucleic acids at low concentrations in clinical samples like blood, urine and saliva, and in food can be achieved by nucleic acid amplification methods. Several portable and hand-held devices have been developed to translate these laboratory-based methods to point-of-care (POC) settings. POC diagnostic devices could potentially play an important role in environmental monitoring, health, and food safety. Use of a smartphone for nucleic acid testing has shown promising progress in endpoint as well as real-time analysis of various disease conditions. The emergence of smartphone-based POC devices together with paper-based sensors, microfluidic chips and digital droplet assays are used currently in many situations to provide quantitative detection of nucleic acid targets. State-of-the-art portable devices are commercially available and rapidly emerging smartphone-based POC devices that allow the performance of laboratory-quality colorimetric, fluorescent and electrochemical detection are described in this review. We present a comprehensive review of smartphone-based POC sensing applications, specifically on microbial diagnostics, assess their performance and propose recommendations for the future.
Collapse
Affiliation(s)
| | - Padmavathy Bakthavathsalam
- School of Chemistry and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia
| | - Peter L Bergquist
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| |
Collapse
|
22
|
Abram TJ, Cherukury H, Ou CY, Vu T, Toledano M, Li Y, Grunwald JT, Toosky MN, Tifrea DF, Slepenkin A, Chong J, Kong L, Del Pozo DV, La KT, Labanieh L, Zimak J, Shen B, Huang SS, Gratton E, Peterson EM, Zhao W. Rapid bacterial detection and antibiotic susceptibility testing in whole blood using one-step, high throughput blood digital PCR. LAB ON A CHIP 2020; 20:477-489. [PMID: 31872202 PMCID: PMC7250044 DOI: 10.1039/c9lc01212e] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sepsis due to antimicrobial resistant pathogens is a major health problem worldwide. The inability to rapidly detect and thus treat bacteria with appropriate agents in the early stages of infections leads to excess morbidity, mortality, and healthcare costs. Here we report a rapid diagnostic platform that integrates a novel one-step blood droplet digital PCR assay and a high throughput 3D particle counter system with potential to perform bacterial identification and antibiotic susceptibility profiling directly from whole blood specimens, without requiring culture and sample processing steps. Using CTX-M-9 family ESBLs as a model system, we demonstrated that our technology can simultaneously achieve unprecedented high sensitivity (10 CFU per ml) and rapid sample-to-answer assay time (one hour). In head-to-head studies, by contrast, real time PCR and BioRad ddPCR only exhibited a limit of detection of 1000 CFU per ml and 50-100 CFU per ml, respectively. In a blinded test inoculating clinical isolates into whole blood, we demonstrated 100% sensitivity and specificity in identifying pathogens carrying a particular resistance gene. We further demonstrated that our technology can be broadly applicable for targeted detection of a wide range of antibiotic resistant genes found in both Gram-positive (vanA, nuc, and mecA) and Gram-negative bacteria, including ESBLs (blaCTX-M-1 and blaCTX-M-2 families) and CREs (blaOXA-48 and blaKPC), as well as bacterial speciation (E. coli and Klebsiella spp.) and pan-bacterial detection, without requiring blood culture or sample processing. Our rapid diagnostic technology holds great potential in directing early, appropriate therapy and improved antibiotic stewardship in combating bloodstream infections and antibiotic resistance.
Collapse
Affiliation(s)
- Timothy J Abram
- Velox Biosystems, 5 Mason, Suite 160, Irvine, CA 92618, USA.
| | - Hemanth Cherukury
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Suite 3027, Irvine, CA 92697, USA. and Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Chen-Yin Ou
- Velox Biosystems, 5 Mason, Suite 160, Irvine, CA 92618, USA.
| | - Tam Vu
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Suite 3027, Irvine, CA 92697, USA. and Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Michael Toledano
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Suite 3027, Irvine, CA 92697, USA.
| | - Yiyan Li
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Suite 3027, Irvine, CA 92697, USA. and Department of Physics and Engineering, Fort Lewis College, Durango, CO 81301, USA
| | | | - Melody N Toosky
- Velox Biosystems, 5 Mason, Suite 160, Irvine, CA 92618, USA.
| | - Delia F Tifrea
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Anatoly Slepenkin
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Jonathan Chong
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Suite 3027, Irvine, CA 92697, USA.
| | - Lingshun Kong
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Suite 3027, Irvine, CA 92697, USA.
| | - Domenica Vanessa Del Pozo
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Suite 3027, Irvine, CA 92697, USA.
| | - Kieu Thai La
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Suite 3027, Irvine, CA 92697, USA.
| | - Louai Labanieh
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Suite 3027, Irvine, CA 92697, USA.
| | - Jan Zimak
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Suite 3027, Irvine, CA 92697, USA.
| | - Byron Shen
- Velox Biosystems, 5 Mason, Suite 160, Irvine, CA 92618, USA.
| | - Susan S Huang
- Division of Infectious Diseases, UCI School of Medicine, Irvine, CA 92697, USA
| | - Enrico Gratton
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA and Laboratory for Fluorescence Dynamics, University of California, Irvine, CA 92697, USA
| | - Ellena M Peterson
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Suite 3027, Irvine, CA 92697, USA. and Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA and Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA and Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA and Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA and Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
23
|
Cho B, Lee SH, Song J, Bhattacharjee S, Feng J, Hong S, Song M, Kim W, Lee J, Bang D, Wang B, Riley LW, Lee LP. Nanophotonic Cell Lysis and Polymerase Chain Reaction with Gravity-Driven Cell Enrichment for Rapid Detection of Pathogens. ACS NANO 2019; 13:13866-13874. [PMID: 31756079 DOI: 10.1021/acsnano.9b04685] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rapid and precise detection of pathogens is a critical step in the prevention and identification of emergencies related to health and biosafety as well as the clinical management of community-acquired urinary tract infections or sexually transmitted diseases. However, a conventional culture-based pathogen diagnostic method is time-consuming, permitting physicians to use antibiotics without ample clinical data. Here, we present a nanophotonic Light-driven Integrated cell lysis and polymerase chain reaction (PCR) on a chip with Gravity-driven cell enrichment Health Technology (LIGHT) for rapid precision detection of pathogens (<20 min). We created the LIGHT, which has the three functions of (1) selective enrichment of pathogens, (2) photothermal cell lysis, and (3) photonic PCR on a chip. We designed the gravity-driven cell enrichment via a nanoporous membrane on a chip that allows an effective bacterial enrichment of 40 000-fold from a 1 mL sample in 2 min. We established a light-driven photothermal lysis of preconcentrated bacteria within 1 min by designing the network of nanoplasmonic optical antenna on a chip for ultrafast light-to-heat conversion, created the nanoplasmonic optical antenna network-based ultrafast photonic PCR on a chip, and identified Escherichia coli. Finally, we demonstrated the end-point detection of up to 103 CFU/mL of E. coli in 10 min. We believe that our nanophotonic LIGHT will provide rapid and precise identification of pathogens in both developing and developed countries.
Collapse
Affiliation(s)
- Byungrae Cho
- Department of Bioengineering , University of California , Berkeley , California 94720 , United States
- UC Berkeley and UCSF Joint Graduate Program in Bioengineering , University of California , Berkeley , California 94720 , United States
- Berkeley Sensor and Actuator Center , University of California , Berkeley , California 94720 , United States
| | - Sang Hun Lee
- Department of Bioengineering , University of California , Berkeley , California 94720 , United States
- Berkeley Sensor and Actuator Center , University of California , Berkeley , California 94720 , United States
| | - Jihwan Song
- Department of Bioengineering , University of California , Berkeley , California 94720 , United States
| | - Saptati Bhattacharjee
- Department of Bioengineering , University of California , Berkeley , California 94720 , United States
| | - Jeffrey Feng
- Department of Bioengineering , University of California , Berkeley , California 94720 , United States
| | - SoonGweon Hong
- Department of Bioengineering , University of California , Berkeley , California 94720 , United States
- Berkeley Sensor and Actuator Center , University of California , Berkeley , California 94720 , United States
| | - Minsun Song
- Department of Bioengineering , University of California , Berkeley , California 94720 , United States
- UC Berkeley and UCSF Joint Graduate Program in Bioengineering , University of California , Berkeley , California 94720 , United States
- Berkeley Sensor and Actuator Center , University of California , Berkeley , California 94720 , United States
| | - Wonseok Kim
- Department of Bioengineering , University of California , Berkeley , California 94720 , United States
- Berkeley Sensor and Actuator Center , University of California , Berkeley , California 94720 , United States
| | - Jonghwan Lee
- Department of Bioengineering , University of California , Berkeley , California 94720 , United States
- Berkeley Sensor and Actuator Center , University of California , Berkeley , California 94720 , United States
| | - Doyeon Bang
- Department of Bioengineering , University of California , Berkeley , California 94720 , United States
- Berkeley Sensor and Actuator Center , University of California , Berkeley , California 94720 , United States
| | - Bowen Wang
- Department of Bioengineering , University of California , Berkeley , California 94720 , United States
| | - Lee W Riley
- Division of Infectious Disease and Vaccinology, School of Public Health , University of California , Berkeley , California 94720 , United States
| | - Luke P Lee
- Department of Bioengineering , University of California , Berkeley , California 94720 , United States
- UC Berkeley and UCSF Joint Graduate Program in Bioengineering , University of California , Berkeley , California 94720 , United States
- Berkeley Sensor and Actuator Center , University of California , Berkeley , California 94720 , United States
- Department of Electrical Engineering and Computer Science , University of California , Berkeley , California 94720 , United States
- Biophysics Graduate Program , University of California , Berkeley , California 94720 , United States
- Biomedical Institute for Global Health Research and Technology (BIGHEART), Yong Loo Lin School of Medicine and Faculty of Engineering , National University of Singapore , Singapore 119077
| |
Collapse
|
24
|
Kwon WY, Cha BS, Kim S, Hwang SH, Kim JM, Kalimuthu K, Park HG, Park KS. Fluorescence polarization-based detection of cancer-related mutations using target-initiated rolling circle amplification. Analyst 2019; 144:4149-4152. [PMID: 31237578 DOI: 10.1039/c9an00429g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We devised a new method to detect cancer-related mutations based on target-initiated rolling circle amplification in combination with fluorescence polarization. We then applied this method to identify the presence of KRAS G13D and G12D, two of the most frequent mutations found in colorectal cancer patients, demonstrating high sensitivity and specificity.
Collapse
Affiliation(s)
- Woo Young Kwon
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Byung Seok Cha
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Seokjoon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Sung Hyun Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Ji Min Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Kalishwaralal Kalimuthu
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
25
|
Adaptable microfluidic system for single-cell pathogen classification and antimicrobial susceptibility testing. Proc Natl Acad Sci U S A 2019; 116:10270-10279. [PMID: 31068473 DOI: 10.1073/pnas.1819569116] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Infectious diseases caused by bacterial pathogens remain one of the most common causes of morbidity and mortality worldwide. Rapid microbiological analysis is required for prompt treatment of bacterial infections and to facilitate antibiotic stewardship. This study reports an adaptable microfluidic system for rapid pathogen classification and antimicrobial susceptibility testing (AST) at the single-cell level. By incorporating tunable microfluidic valves along with real-time optical detection, bacteria can be trapped and classified according to their physical shape and size for pathogen classification. By monitoring their growth in the presence of antibiotics at the single-cell level, antimicrobial susceptibility of the bacteria can be determined in as little as 30 minutes compared with days required for standard procedures. The microfluidic system is able to detect bacterial pathogens in urine, blood cultures, and whole blood and can analyze polymicrobial samples. We pilot a study of 25 clinical urine samples to demonstrate the clinical applicability of the microfluidic system. The platform demonstrated a sensitivity of 100% and specificity of 83.33% for pathogen classification and achieved 100% concordance for AST.
Collapse
|
26
|
Kalimuthu K, Kwon WY, Park KS. A simple approach for rapid and cost-effective quantification of extracellular vesicles using a fluorescence polarization technique. J Biol Eng 2019; 13:31. [PMID: 31015861 PMCID: PMC6469078 DOI: 10.1186/s13036-019-0160-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/31/2019] [Indexed: 12/30/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound phospholipid vesicles actively secreted by all cells. As they carry specific markers expressed by their parental cells, EVs are utilized to identify specific cells via liquid biopsy. To facilitate EV-based clinical diagnosis, a fast and reliable method to count EVs is critical. We developed a method for rapid and cost-effective quantification of EVs which relies on the fluorescence polarization (FP) detection of lipophilic fluorescein probe, 5-dodecanoylamino fluorescein (C12-FAM). The alkyl tail of C12-FAM is specifically incorporated into the EVs, producing high FP values due to a slow diffusional motion. We quantified EVs derived from two cell lines, HT29 and TCMK1 using the new strategy, with good sensitivity that was at par with the commercial method. The new method involves minimal complexity and hands-on time. In addition, FP signaling is inherently ratiometric and is robust against environmental noise.
Collapse
Affiliation(s)
- Kalishwaralal Kalimuthu
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Woo Young Kwon
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
27
|
Li J, Wang X, Shan Y, Huang H, Jian D, Xue L, Wang S, Liu F. Handheld Inkjet Printing Paper Chip Based Smart Tetracycline Detector. MICROMACHINES 2019; 10:E27. [PMID: 30609683 PMCID: PMC6356201 DOI: 10.3390/mi10010027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/12/2022]
Abstract
Tetracycline is widely used as medicine for disease treatments and additives in animal feeding. Unfortunately, the abuse of tetracycline inevitably causes tetracycline residue in animal-origin foods. Though classical methods can detect tetracycline in high sensitivity and precision, they often rely on huge and expensive setups as well as complicated and time-consuming operations, limiting their applications in rapid and on-site detection. Here, we propose a handheld inkjet printing paper chip based smart tetracycline detector: tetracycline can be determined by inkjet printing prepared paper chip based enzyme-linked immunosorbent assay (ELISA) with the advantages of high sensitivity, excellent specificity and low cost; moreover, a smartphone based paper chip reader and application is designed for automatically determining tetracycline with simple operations, high precision and fast speed. The smart tetracycline detector with a compact size of 154 mm × 80 mm × 50 mm and self-supplied internal power can reach a rather low detection limit of ~0.05 ng/mL, as proved by practical measurements. It is believed the proposed handheld inkjet printing paper chip based smart tetracycline detector is a potential tool in antibiotic sensing for routine uses at home and on-site detection in the field.
Collapse
Affiliation(s)
- Jiahao Li
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Xin Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yanke Shan
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Huachuan Huang
- School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China.
| | - Dan Jian
- Computational Optics Laboratory, School of Science, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Liang Xue
- College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Shouyu Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- Computational Optics Laboratory, School of Science, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
28
|
Lee KJ, Lee WS, Hwang A, Moon J, Kang T, Park K, Jeong J. Simple and rapid detection of bacteria using a nuclease-responsive DNA probe. Analyst 2018; 143:332-338. [PMID: 29210381 DOI: 10.1039/c7an01384a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate simple and rapid bacterial detection using a nuclease-responsive DNA probe. The probe consisting of a fluorescent dye and a quencher at the 5' and 3' termini, respectively, was designed to be cleaved by nucleases such as endonucleases, exonucleases, and DNases, which are released from bacteria using an optimized lysis buffer. The fluorescence signal of the cleaved DNA probe correlates with the number of Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, and the detection limit was 103 CFU for E. coli and 104 CFU for S. aureus. Moreover, this method is specific for live bacteria and takes just one minute to get the signal including sample collection. These features make the present bacterial detection method a powerful on-site bacterial contamination assay which is simple, rapid, and quantitative.
Collapse
Affiliation(s)
- Kyung Jin Lee
- BioNano Health Guard Research Center, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
29
|
Li XH, Zhang XL, Wu J, Lin N, Sun WM, Chen M, Ou QS, Lin ZY. Hyperbranched rolling circle amplification (HRCA)-based fluorescence biosensor for ultrasensitive and specific detection of single-nucleotide polymorphism genotyping associated with the therapy of chronic hepatitis B virus infection. Talanta 2018; 191:277-282. [PMID: 30262063 DOI: 10.1016/j.talanta.2018.08.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/14/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022]
Abstract
Detection of specific genes related to drug action can provide scientific guidance for personalized medicine. Taking the detection of a single-nucleotide polymorphism (SNP) genotyping related to the chronic hepatitis B virus (HBV) therapy as an example, a novel biosensor with high sensitivity and selectivity was developed based on the hyperbranched rolling circle amplification (HRCA) in this work. The single-base mutant DNA (mutDNA) sequence can perfectly hybridize with the specially designed discrimination padlock probe and initiate the HRCA reaction. Subsequently, a great abundant of double-strand DNA sequences were released and a strong fluorescence signal can be detected after adding SYBR Green I. In particular, the enhanced fluorescence intensity exhibits a linear relationship with the logarithm of mutDNA concentration ranging from 0.1 nM to 40 nM with a low detection limit of 0.05 nM. However, when there was even a single base mismatch in the target DNA, the HRCA was suppressed and fluorescence response process could not occur, resulting in a high selectivity of this biosensor. Moreover, this detection strategy also performs well in human serums, demonstrating its potential application in detecting SNPs in real biological samples.
Collapse
Affiliation(s)
- Xiang-Hui Li
- Medical Technology and Engineering College, Fujian Medical University, Fuzhou 350004, Fujian, People's Republic of China
| | - Xiao-Ling Zhang
- Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, People's Republic of China
| | - Juan Wu
- Medical Technology and Engineering College, Fujian Medical University, Fuzhou 350004, Fujian, People's Republic of China
| | - Ni Lin
- Medical Technology and Engineering College, Fujian Medical University, Fuzhou 350004, Fujian, People's Republic of China
| | - Wei-Ming Sun
- Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, People's Republic of China
| | - Min Chen
- Medical Technology and Engineering College, Fujian Medical University, Fuzhou 350004, Fujian, People's Republic of China.
| | - Qi-Shui Ou
- Medical Technology and Engineering College, Fujian Medical University, Fuzhou 350004, Fujian, People's Republic of China; Department of Laboratory Medicine, The 1st Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou 350004, Fujian, People's Republic of China.
| | - Zhen-Yu Lin
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
30
|
Visual and modular detection of pathogen nucleic acids with enzyme-DNA molecular complexes. Nat Commun 2018; 9:3238. [PMID: 30104566 PMCID: PMC6089962 DOI: 10.1038/s41467-018-05733-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
Rapid, visual detection of pathogen nucleic acids has broad applications in infection management. Here we present a modular detection platform, termed enzyme-assisted nanocomplexes for visual identification of nucleic acids (enVision). The system consists of an integrated circuit of enzyme–DNA nanostructures, which function as independent recognition and signaling elements, for direct and versatile detection of pathogen nucleic acids from infected cells. The built-in enzymatic cascades produce a rapid color readout for the naked eye; the assay is thus fast (<2 h), sensitive (<10 amol), and readily quantified with smartphones. When implemented on a configurable microfluidic platform, the technology demonstrates superior programmability to perform versatile computations, for detecting diverse pathogen targets and their virus–host genome integration loci. We further design the enVision platform for molecular-typing of infections in patient endocervical samples. The technology not only improves the clinical inter-subtype differentiation, but also expands the intra-subtype coverage to identify previously undetectable infections. Rapid, visual detection of pathogens is important for point-of-care diagnostics. Here the authors present enVision, which uses enzyme-DNA complexes to detect pathogen nucleic acids and provide a rapid, smartphone compatible readout.
Collapse
|
31
|
Min J, Nothing M, Coble B, Zheng H, Park J, Im H, Weber GF, Castro CM, Swirski FK, Weissleder R, Lee H. Integrated Biosensor for Rapid and Point-of-Care Sepsis Diagnosis. ACS NANO 2018; 12. [PMID: 29533646 PMCID: PMC6019292 DOI: 10.1021/acsnano.7b08965] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sepsis is an often fatal condition that arises when the immune response to an infection causes widespread systemic organ injury. A critical unmet need in combating sepsis is the lack of accurate early biomarkers that produce actionable results in busy clinical settings. Here, we report the development of a point-of-care platform for rapid sepsis detection. Termed IBS (integrated biosensor for sepsis), our approach leverages (i) the pathophysiological role of cytokine interleukin-3 (IL-3) in early sepsis and (ii) a hybrid magneto-electrochemical sensor for IL-3 detection. The developed platform produces test results within 1 h from native blood samples and detects IL-3 at a sensitivity of <10 pg/mL; this performance is >5-times faster and >10-times more sensitive than conventional enzyme-linked immunoadsorbent assays, the current gold standard. Using clinical samples, we show that elevated plasma IL-3 levels are associated with high organ failure rate and thus greater risk of mortality, confirming the potential of IL-3 as a sepsis diagnostic biomarker. With further system development ( e. g., full automation, data security measures) and rigorous validation studies, the compact and fast IBS could be a practical clinical tool for timely diagnosis and proactive treatment of sepsis.
Collapse
Affiliation(s)
- Jouha Min
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114
| | - Maria Nothing
- Department of Surgery, University Hospital of Erlangen, Erlangen, Germany
| | - Ben Coble
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Hui Zheng
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114
| | - Jongmin Park
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114
| | - Georg F. Weber
- Department of Surgery, University Hospital of Erlangen, Erlangen, Germany
| | - Cesar M. Castro
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Filip K. Swirski
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
- Corresponding authors: Ralph Weissleder, MD, PhD, Hakho Lee, PhD, ,
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114
- Corresponding authors: Ralph Weissleder, MD, PhD, Hakho Lee, PhD, ,
| |
Collapse
|
32
|
Park KS. Nucleic acid aptamer-based methods for diagnosis of infections. Biosens Bioelectron 2018; 102:179-188. [PMID: 29136589 PMCID: PMC7125563 DOI: 10.1016/j.bios.2017.11.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/20/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a serious global problem, which not only take an enormous human toll but also incur tremendous economic losses. In combating infectious diseases, rapid and accurate diagnostic tests are required for pathogen identification at the point of care (POC). In this review, investigations of diagnostic strategies for infectious diseases that are based on aptamers, especially nucleic acid aptamers, oligonucleotides that have high affinities and specificities toward their targets, are described. Owing to their unique features including low cost of production, easy chemical modification, high chemical stability, reproducibility, and low levels of immunogenicity and toxicity, aptamers have been widely utilized as bio-recognition elements (bio-receptors) for the development of infection diagnostic systems. We discuss nucleic acid aptamer-based methods that have been developed for diagnosis of infections using a format that organizes discussion according to the target pathogenic analytes including toxins or proteins, whole cells and nucleic acids. Also included is, a summary of recent advances made in the sensitive detection of pathogenic bacteria utilizing the isothermal nucleic acid amplification method. Lastly, a nucleic acid aptamer-based POC system is described and future directions of studies in this area are discussed.
Collapse
Affiliation(s)
- Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
33
|
Zhang Y, Wang L, Luo F, Qiu B, Guo L, Weng Z, Lin Z, Chen G. An electrochemiluminescence biosensor for Kras mutations based on locked nucleic acid functionalized DNA walkers and hyperbranched rolling circle amplification. Chem Commun (Camb) 2018; 53:2910-2913. [PMID: 28154878 DOI: 10.1039/c7cc00009j] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, an electrochemiluminescence (ECL) biosensor for ultrasensitive and specific detection of Kras mutant genes has been developed on the basis of the high discrimination capability of locked nucleic acid (LNA) and dual signal amplification techniques including DNA walkers and hyperbranched rolling circle amplification (HRCA).
Collapse
Affiliation(s)
- Ying Zhang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lixu Wang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Fang Luo
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Bin Qiu
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Longhua Guo
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zuquan Weng
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Zhenyu Lin
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Guonan Chen
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
34
|
Park KS, Kim H, Kim S, Lee K, Park S, Song J, Min C, Khanam F, Rashu R, Bhuiyan TR, Ryan ET, Qadri F, Weissleder R, Cheon J, Charles RC, Lee H. Nanomagnetic System for Rapid Diagnosis of Acute Infection. ACS NANO 2017; 11:11425-11432. [PMID: 29121461 PMCID: PMC6296367 DOI: 10.1021/acsnano.7b06074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Pathogen-activated antibody-secreting cells (ASCs) produce and secrete antigen-specific antibodies. ASCs are detectable in the peripheral blood as early as 3 days after antigen exposure, which makes ASCs a potential biomarker for early disease detection. Here, we present a magnetic capture and detection (MCD) assay for sensitive, on-site detection of ASCs. In this approach, ASCs are enriched through magnetic capture, and secreted antibodies are magnetically detected by a miniaturized nuclear magnetic resonance (μNMR) system. This approach is based entirely on magnetics, which supports high contrast against biological background and simplifies assay procedures. We advanced the MCD system by (i) synthesizing magnetic nanoparticles with high magnetic moments for both cell capture and antibody detection, (ii) developing a miniaturized magnetic device for high-yield cell capture, and (iii) optimizing the μNMR assay for antibody detection. Antibody responses targeting hemolysin E (HlyE) can accurately identify individuals with acute enteric fever. As a proof-of-concept, we applied MCD to detect antibodies produced by HlyE-specific hybridoma cells. The MCD achieved high sensitivity in detecting antibodies secreted from as few as 5 hybridoma cells (50 cells/mL). Importantly, the assay could be performed with whole blood with minimal sample processing.
Collapse
Affiliation(s)
- Ki Soo Park
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Hoyoung Kim
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Soojin Kim
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyungheon Lee
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Sohyeon Park
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jun Song
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Changwook Min
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Farhana Khanam
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rasheduzzaman Rashu
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Taufiqur Rahman Bhuiyan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Edward T. Ryan
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jinwoo Cheon
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Richelle C. Charles
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
35
|
Li Y, Yang X, Zhao W. Emerging Microtechnologies and Automated Systems for Rapid Bacterial Identification and Antibiotic Susceptibility Testing. SLAS Technol 2017; 22:585-608. [PMID: 28850804 DOI: 10.1177/2472630317727519] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rapid bacterial identification (ID) and antibiotic susceptibility testing (AST) are in great demand due to the rise of drug-resistant bacteria. Conventional culture-based AST methods suffer from a long turnaround time. By necessity, physicians often have to treat patients empirically with antibiotics, which has led to an inappropriate use of antibiotics, an elevated mortality rate and healthcare costs, and antibiotic resistance. Recent advances in miniaturization and automation provide promising solutions for rapid bacterial ID/AST profiling, which will potentially make a significant impact in the clinical management of infectious diseases and antibiotic stewardship in the coming years. In this review, we summarize and analyze representative emerging micro- and nanotechnologies, as well as automated systems for bacterial ID/AST, including both phenotypic (e.g., microfluidic-based bacterial culture, and digital imaging of single cells) and molecular (e.g., multiplex PCR, hybridization probes, nanoparticles, synthetic biology tools, mass spectrometry, and sequencing technologies) methods. We also discuss representative point-of-care (POC) systems that integrate sample processing, fluid handling, and detection for rapid bacterial ID/AST. Finally, we highlight major remaining challenges and discuss potential future endeavors toward improving clinical outcomes with rapid bacterial ID/AST technologies.
Collapse
Affiliation(s)
- Yiyan Li
- 1 Sue and Bill Gross Stem Cell Research Center, University of California-Irvine, Irvine, CA, USA.,7 Department of Physics and Engineering, Fort Lewis College, Durango, Colorado, USA
| | | | - Weian Zhao
- 1 Sue and Bill Gross Stem Cell Research Center, University of California-Irvine, Irvine, CA, USA.,6 Department of Biological Chemistry, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
36
|
Thelaus J, Lindberg A, Thisted Lambertz S, Byström M, Forsman M, Lindmark H, Knutsson R, Båverud V, Bråve A, Jureen P, Lundin Zumpe A, Melefors Ö. Network Experiences from a Cross-Sector Biosafety Level-3 Laboratory Collaboration: A Swedish Forum for Biopreparedness Diagnostics. Health Secur 2017; 15:384-391. [PMID: 28805472 PMCID: PMC5576262 DOI: 10.1089/hs.2016.0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Swedish Forum for Biopreparedness Diagnostics (FBD) is a network that fosters collaboration among the 4 agencies with responsibility for the laboratory diagnostics of high-consequence pathogens, covering animal health and feed safety, food safety, public health and biodefense, and security. The aim of the network is to strengthen capabilities and capacities for diagnostics at the national biosafety level-3 (BSL-3) laboratories to improve Sweden's biopreparedness, in line with recommendations from the EU and WHO. Since forming in 2007, the FBD network has contributed to the harmonization of diagnostic methods, equipment, quality assurance protocols, and biosafety practices among the national BSL-3 laboratories. Lessons learned from the network include: (1) conducting joint projects with activities such as method development and validation, ring trials, exercises, and audits has helped to build trust and improve communication among participating agencies; (2) rotating the presidency of the network steering committee has fostered trust and commitment from all agencies involved; and (3) planning for the implementation of project outcomes is important to maintain gained competencies in the agencies over time. Contacts have now been established with national agencies of the other Nordic countries, with an aim to expanding the collaboration, broadening the network, finding synergies in new areas, strengthening the ability to share resources, and consolidating long-term financing in the context of harmonized European biopreparedness. The Swedish Forum for Biopreparedness Diagnostics (FBD) is a network that fosters collaboration among the 4 agencies with responsibility for the laboratory diagnostics of high-consequence pathogens, covering animal health and feed safety, food safety, public health and biodefense, and security.
Collapse
|
37
|
Hong S, Park KS, Weissleder R, Castro CM, Lee H. Facile silicification of plastic surface for bioassays. Chem Commun (Camb) 2017; 53:2134-2137. [PMID: 28134385 PMCID: PMC5327824 DOI: 10.1039/c6cc09359k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We herein report a biomimetic technique to modify plastic substrates for bioassays. The method first places a polydopamine adhesion layer to plastic surface, and then grows conformal silica coating. As proof of principle, we coated plastic microbeads to construct a disposable filter for point-of-care nucleic acid extraction.
Collapse
Affiliation(s)
- Seonki Hong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ki Soo Park
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA and Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Cesar M Castro
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
38
|
Nayak S, Blumenfeld NR, Laksanasopin T, Sia SK. Point-of-Care Diagnostics: Recent Developments in a Connected Age. Anal Chem 2017; 89:102-123. [PMID: 27958710 PMCID: PMC5793870 DOI: 10.1021/acs.analchem.6b04630] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samiksha Nayak
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Nicole R. Blumenfeld
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Tassaneewan Laksanasopin
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
| | - Samuel K. Sia
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
39
|
Hong S, Pirovich D, Kilcoyne A, Huang CH, Lee H, Weissleder R. Supramolecular Metallo-Bioadhesive for Minimally Invasive Use. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8675-8680. [PMID: 27515068 PMCID: PMC5144581 DOI: 10.1002/adma.201602606] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/12/2016] [Indexed: 05/23/2023]
Abstract
A novel metallo-bioadhesive to be used as tissue sealant in minimally invasive procedures is reported. Metal complexation can be used to render gelatin derivatives adhesive, which occurs in minutes, is efficient, and fully biodegradable within weeks.
Collapse
Affiliation(s)
- Seonki Hong
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St., CPZN 5206, Boston, MA, 02114, USA
| | - David Pirovich
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St., CPZN 5206, Boston, MA, 02114, USA
| | - Aoife Kilcoyne
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St., CPZN 5206, Boston, MA, 02114, USA
- Division of Interventional Radiology, Massachusetts General Hospital, 55 Fruit St., Boston, MA, 02114, USA
| | - Chen-Han Huang
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St., CPZN 5206, Boston, MA, 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St., CPZN 5206, Boston, MA, 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St., CPZN 5206, Boston, MA, 02114, USA.
- Division of Interventional Radiology, Massachusetts General Hospital, 55 Fruit St., Boston, MA, 02114, USA.
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave., Boston, MA, 02115, USA.
| |
Collapse
|
40
|
Park KS, Chung HJ, Khanam F, Lee H, Rashu R, Bhuiyan MT, Berger A, Harris JB, Calderwood SB, Ryan ET, Qadri F, Weissleder R, Charles RC. A magneto-DNA nanoparticle system for the rapid and sensitive diagnosis of enteric fever. Sci Rep 2016; 6:32878. [PMID: 27605393 PMCID: PMC5015101 DOI: 10.1038/srep32878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/16/2016] [Indexed: 11/09/2022] Open
Abstract
There is currently no widely available optimal assay for diagnosing patients with enteric fever. Here we present a novel assay designed to detect amplified Salmonella nucleic acid (mRNA) using magneto-DNA probes and a miniaturized nuclear magnetic resonance device. We designed primers for genes specific to S. Typhi, S. Paratyphi A, and genes conserved among Salmonella enterica spp. and utilized strongly magnetized nanoparticles to enhance the detection signal. Blood samples spiked with in vitro grown S. Typhi, S. Paratyphi A, S. Typhimurium, and E. coli were used to confirm the specificity of each probe-set, and serial 10-fold dilutions were used to determine the limit of the detection of the assay, 0.01-1.0 CFU/ml. For proof of principle, we applied our assay to 0.5 mL blood samples from 5 patients with culture-confirmed enteric fever from Bangladesh in comparison to 3 healthy controls. We were able to detect amplified target cDNA in all 5 cases of enteric fever; no detectable signal was seen in the healthy controls. Our results suggest that a magneto-DNA nanoparticle system, with an assay time from blood collection of 3.5 hours, may be a promising platform for the rapid and culture-free diagnosis of enteric fever and non-typhoidal Salmonella bacteremia.
Collapse
Affiliation(s)
- Ki Soo Park
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, US
| | - Hyun Jung Chung
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Farhana Khanam
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, US
| | - Rasheduzzaman Rashu
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Taufiqur Bhuiyan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Amanda Berger
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, US.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Park KS, Lee CY, Kang KS, Park HG. Aptamer-mediated universal enzyme assay based on target-triggered DNA polymerase activity. Biosens Bioelectron 2016; 88:48-54. [PMID: 27499380 DOI: 10.1016/j.bios.2016.07.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 11/18/2022]
Abstract
We herein describe an innovative method for a universal fluorescence turn-on enzyme assay, which relies on the target enzyme-triggered DNA polymerase activity. In the first target recognition step, the target enzyme is designed to destabilize detection probe derived from an aptamer specific to DNA polymerase containing the overhang sequence and the complementary blocker DNA, which consequently leads to the recovery of DNA polymerase activity inhibited by the detection probe. This target-triggered polymerase activity is monitored in the second signal transduction step based on primer extension reaction coupled with TaqMan probe. Utilizing this design principle, we have successfully detected the activities of two model enzymes, exonuclease I and uracil DNA glycosylase with high sensitivity and selectivity. Since this strategy is composed of separated target recognition and signal transduction modules, it could be universally employed for the sensitive determination of numerous different target enzymes by simply redesigning the overhang sequence of detection probe, while keeping TaqMan probe-based signal transduction module as a universal signaling tool.
Collapse
Affiliation(s)
- Ki Soo Park
- Department of Chemical and Biomolecular Engineering (BK 21+ program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Chang Yeol Lee
- Department of Chemical and Biomolecular Engineering (BK 21+ program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea
| | - Kyoung Suk Kang
- Department of Chemical and Biomolecular Engineering (BK 21+ program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea.
| |
Collapse
|
42
|
Shi C, Shang F, Zhou M, Zhang P, Wang Y, Ma C. Triggered isothermal PCR by denaturation bubble-mediated strand exchange amplification. Chem Commun (Camb) 2016; 52:11551-4. [DOI: 10.1039/c6cc05906f] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here, we introduced the concept of strand exchange amplification (SEA) mediated by denaturation bubbles.
Collapse
Affiliation(s)
- Chao Shi
- College of Life Sciences
- Qingdao University
- Qingdao
- P. R. China
| | - Fanjin Shang
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Meiling Zhou
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Pansong Zhang
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Yifan Wang
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Cuiping Ma
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|