1
|
Shimada T, Yasui T, Yukawa H, Baba Y. Nanobiodevices and quantum life science for future healthcare. ANAL SCI 2025; 41:601-607. [PMID: 40035948 DOI: 10.1007/s44211-025-00742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025]
Abstract
Maintaining healthy life in old age (healthy aging) is an important social challenge. An effective approach to realizing healthy aging involves providing personalized healthcare through disease prevention, early diagnostics, and optimal treatments. Nanobiodevices and quantum life sciences have tremendous potential to revolutionize current techniques for disease prevention, diagnostics, and treatment via the efficient analyses of biomolecules, bioparticles, pathogens, and cells. In this review, we outline our research on nanobiodevices and quantum life sciences for future healthcare, including cancer diagnostics, pathogen detection, in vivo imaging-guided therapy, and intracellular sensing for stem cell quality checks.
Collapse
Affiliation(s)
- Taisuke Shimada
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba, 263-8555, Japan.
| | - Takao Yasui
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba, 263-8555, Japan
- Department of Life Science and Technology, Institute of Science Tokyo, Nagatsuta 4259, Midori-ku, Yokohama, 226-8501, Japan
- Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hiroshi Yukawa
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba, 263-8555, Japan
- Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- Development of Quantum-Nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Tsurumai 65, Showa-ku, Nagoya, 466-8550, Japan
- Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Nagoya University Institute for Advanced Research, Nagoya University, Tsurumai-cho 65, Showa-ku, Nagoya, 466-8550, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Yoshinobu Baba
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba, 263-8555, Japan.
- Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
2
|
Nakano K, Kamei R, Kanao E, Hosomi T, Yamada SK, Ishihama Y, Yanagida T, Kubo T. Novel Separation Media with Metal Oxide Nanostructures for Capillary Electrochromatography. ACS MEASUREMENT SCIENCE AU 2025; 5:199-207. [PMID: 40255607 PMCID: PMC12006950 DOI: 10.1021/acsmeasuresciau.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 04/22/2025]
Abstract
Zinc oxide nanowires (ZnO nanowire, ZnO NWs) are nanostructures that have drawn attention as separation media for efficient biomolecules because of high biological compatibility and low cost. Development of the capillary column (ZnO column) using a ZnO NW to an inner wall has been reported, although there are only a few studies about molecular recognition of a ZnO NW regardless of numerous studies reporting ZnO NWs. In our previous studies, we conducted fundamental research to elucidate molecular recognition of ZnO NW and develop a novel liquid phase separation field. Consequently, we achieved baseline separation of mixed adenosine phosphate analytes using a phosphate buffer in the mobile phase. In this study, to improve the low resistance of ZnO NW toward a solvent, we covered a surface of ZnO NW with titanium oxide (TiO2) thin layers using atomic layer deposition. As a result, the column (TiO2 NW column) showed high affinity toward acidic compounds like the ZnO column, strongly interacting with especially phosphate groups. Resistance of ZnO NW to a weak acidic buffer solution was then dramatically improved. This is because multipoint electrostatic interaction between the phosphate groups and the NW surface occurred. Next, we conducted capillary electrochromatography to examine the possibility for application of separation analysis. The elution order of the phosphorylated compound was successfully controlled by the migration solution containing aqueous acetonitrile with weak acids.
Collapse
Affiliation(s)
- Katsuya Nakano
- Graduate
School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryoma Kamei
- Seinan
Indusutries, Co. LTD, Kitagagaya 4-3-24, Suminoe-ku, Osaka 559-0011, Japan
| | - Eisuke Kanao
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
- National
Institutes of Biomedical Innovation, Health
and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Takuro Hosomi
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Sayaka Konishi Yamada
- Graduate
School of Life and Environmental Science, Kyoto Prefectural University, 1-5 Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Yasushi Ishihama
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takeshi Yanagida
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Takuya Kubo
- Graduate
School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Graduate
School of Life and Environmental Science, Kyoto Prefectural University, 1-5 Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
3
|
Musa M, Zhu Z, Takahashi H, Shinoda W, Baba Y, Yasui T. Selective adsorption of unmethylated DNA on ZnO nanowires for separation of methylated DNA. LAB ON A CHIP 2025; 25:1637-1646. [PMID: 39792009 DOI: 10.1039/d4lc00893f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
DNA methylation is a crucial epigenetic modification used as a biomarker for early cancer progression. However, existing methods for DNA methylation analysis are complex, time-consuming, and prone to DNA degradation. This work demonstrates selective capture of unmethylated DNAs using ZnO nanowires without chemical or biological modifications, thereby concentrating methylated DNA, particularly those with high methylation levels that can predict cancer risk. We observe varying affinities between methylated and unmethylated DNA on ZnO nanowires, which may be influenced by differences in hydrogen bonding strength, potentially related to the effects of methylation on DNA strand behavior, including self-aggregation and stretching inhibition. As a result, the nanowire-based microfluidic device effectively collects unmethylated DNA, leading to a significantly increased ratio of methylated to unmethylated DNA, particularly for collecting low-concentration methylated DNA. This simplified microfluidic device, composed of ZnO nanowires, enables direct separation of specific methylated DNA, offering a potential approach for DNA methylation mapping in clinical disease diagnostics.
Collapse
Affiliation(s)
- Marina Musa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Zetao Zhu
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.
| | - Hiromi Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Wataru Shinoda
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
- Institute of Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Takao Yasui
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| |
Collapse
|
4
|
Iwamoto Y, Salmon B, Yoshioka Y, Kojima R, Krull A, Ota S. High throughput analysis of rare nanoparticles with deep-enhanced sensitivity via unsupervised denoising. Nat Commun 2025; 16:1728. [PMID: 39979247 PMCID: PMC11842628 DOI: 10.1038/s41467-025-56812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/31/2025] [Indexed: 02/22/2025] Open
Abstract
The large-scale multiparametric analysis of individual nanoparticles is increasingly vital in the diverse fields of biology, medicine, and materials science. However, the current methods struggle with the tradeoff between measurement scalability and sensitivity, especially when identifying rare nanoparticles in heterogeneous mixtures. By developing and combining an unsupervised deep learning-based denoising method and an optofluidic device tuned for nanoparticle detection, we realize a nanoparticle analyzer that simultaneously achieves high scalability, throughput, and sensitivity levels; we name this approach "Deep Nanometry" (DNM). DNM detects polystyrene beads with a detection of limit of 30 nm at a throughput of over 100,000 events/second. The sensitive and scalable DNM directly detects rare target extracellular vesicles (EVs) in non-purified serum, making up as little as 0.002% of the 1,214,392 total particles. Moreover, DNM accurately and sufficiently counts diagnostic marker EVs present in only 0.93% and 0.17% of particle detections in sera of colorectal cancer patients and healthy controls, demonstrating its potential application to the early detection of colorectal cancer.
Collapse
Affiliation(s)
- Yuichiro Iwamoto
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro 4-6-1, Shibuya, Tokyo, Japan
| | - Benjamin Salmon
- School of Computer Science, University of Birmingham, Birmingham, UK
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Nishishinjuku 6-7-1, Shinjuku, Tokyo, Japan
| | - Ryosuke Kojima
- Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo, Japan
| | - Alexander Krull
- School of Computer Science, University of Birmingham, Birmingham, UK.
| | - Sadao Ota
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro 4-6-1, Shibuya, Tokyo, Japan.
| |
Collapse
|
5
|
Zhand S, Goss DM, Cheng YY, Warkiani ME. Recent Advances in Microfluidics for Nucleic Acid Analysis of Small Extracellular Vesicles in Cancer. Adv Healthc Mater 2025; 14:e2401295. [PMID: 39707658 DOI: 10.1002/adhm.202401295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/28/2024] [Indexed: 12/23/2024]
Abstract
Small extracellular vesicles (sEVs) are membranous vesicles released from cellular structures through plasma membrane budding. These vesicles contain cellular components such as proteins, lipids, mRNAs, microRNAs, long-noncoding RNA, circular RNA, and double-stranded DNA, originating from the cells they are shed from. Ranging in size from ≈25 to 300 nm and play critical roles in facilitating cell-to-cell communication by transporting signaling molecules. The discovery of sEVs in bodily fluids and their involvement in intercellular communication has revolutionized the fields of diagnosis, prognosis, and treatment, particularly in diseases like cancer. Conventional methods for isolating and analyzing sEVs, particularly their nucleic acid content face challenges including high costs, low purity, time-consuming processes, limited standardization, and inconsistent yield. The development of microfluidic devices, enables improved precision in sorting, isolating, and molecular-level separation using small sample volumes, and offers significant potential for the enhanced detection and monitoring of sEVs associated with cancer. These advanced techniques hold great promise for creating next-generation diagnostic and prognostic tools given their possibility of being cost-effective, simple to operate, etc. This comprehensive review explores the current state of research on microfluidic devices for the detection of sEV-derived nucleic acids as biomarkers and their translation into practical point-of-care and clinical applications.
Collapse
Affiliation(s)
- Sareh Zhand
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dale Mark Goss
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Theranostics, Sechenov First Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
6
|
Paisrisarn P, Chattrairat K, Nakamura Y, Nagashima K, Yanagida T, Baba Y, Yasui T. Non-toxic core-shell nanowires for in vitro extracellular vesicle scavenging. Chem Commun (Camb) 2025; 61:2269-2272. [PMID: 39714130 DOI: 10.1039/d4cc03767g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Extracellular vesicles (EVs) from cancer cells promote abnormal growth in normal cells, potentially leading to cancer proliferation. We developed a nanowire-based EV-elimination device that efficiently eliminated EVs without toxicity. This method restored normal growth in mammary gland cells cultured with breast adenocarcinoma-derived EVs containing medium treated with the device.
Collapse
Affiliation(s)
- Piyawan Paisrisarn
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kunanon Chattrairat
- Department of Life Science and Technology, Institute of Science Tokyo, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.
| | - Yuta Nakamura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kazuki Nagashima
- Research Institute for Electronic Science (RIES), Hokkaido University, Kita, Sapporo, Hokkaido 001-0020, Japan
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
- Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takao Yasui
- Department of Life Science and Technology, Institute of Science Tokyo, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.
- Institute of Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
- Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
7
|
Vasu S, Johnson V, M A, Reddy KA, Sukumar UK. Circulating Extracellular Vesicles as Promising Biomarkers for Precession Diagnostics: A Perspective on Lung Cancer. ACS Biomater Sci Eng 2025; 11:95-134. [PMID: 39636879 DOI: 10.1021/acsbiomaterials.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Extracellular vesicles (EVs) have emerged as promising biomarkers in liquid biopsy, owing to their ubiquitous presence in bodily fluids and their ability to carry disease-related cargo. Recognizing their significance in disease diagnosis and treatment, substantial efforts have been dedicated to developing efficient methods for EV isolation, detection, and analysis. EVs, heterogeneous membrane-encapsulated vesicles secreted by all cells, contain bioactive substances capable of modulating recipient cell biology upon internalization, including proteins, lipids, DNA, and various RNAs. Their prevalence across bodily fluids has positioned them as pivotal mediators in physiological and pathological processes, notably in cancer, where they hold potential as straightforward tumor biomarkers. This review offers a comprehensive examination of advanced nanotechnology-based techniques for detecting lung cancer through EV analysis. It begins by providing a brief overview of exosomes and their role in lung cancer progression. Furthermore, this review explores the evolving landscape of EV isolation and cargo analysis, highlighting the importance of characterizing specific biomolecular signatures within EVs for improved diagnostic accuracy in lung cancer patients. Innovative strategies for enhancing the sensitivity and specificity of EV isolation and detection, including the integration of microfluidic platforms and multiplexed biosensing technologies are summarized. The discussion then extends to key challenges associated with EV-based liquid biopsies, such as the standardization of isolation and detection protocols and the establishment of robust analytical platforms for clinical translation. This review highlights the transformative impact of EV-based liquid biopsy in lung cancer diagnosis, heralding a new era of personalized medicine and improved patient care.
Collapse
Affiliation(s)
- Sunil Vasu
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - Vinith Johnson
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - Archana M
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - K Anki Reddy
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - Uday Kumar Sukumar
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| |
Collapse
|
8
|
Wang L, Gong Z, Wang M, Liang YZ, Zhao J, Xie Q, Wu XW, Li QY, Zhang C, Ma LY, Zheng SY, Jiang M, Yu X, Xu L. Rapid and unbiased enrichment of extracellular vesicles via a meticulously engineered peptide. Bioact Mater 2025; 43:292-304. [PMID: 39399836 PMCID: PMC11470464 DOI: 10.1016/j.bioactmat.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024] Open
Abstract
Extracellular vesicles (EVs) have garnered significant attention in biomedical applications. However, the rapid, efficient, and unbiased separation of EVs from complex biological fluids remains a challenge due to their heterogeneity and low abundance in biofluids. Herein, we report a novel approach to reconfigure and modify an artificial insertion peptide for the unbiased and rapid isolation of EVs in 20 min with ∼80% recovery in neutral conditions. Moreover, the approach demonstrates exceptional anti-interference capability and achieves a high purity of EVs comparable to standard ultracentrifugation and other methods. Importantly, the isolated EVs could be directly applied for downstream protein and nucleic acid analyses, including proteomics analysis, exome sequencing analysis, as well as the detection of both epidermal growth factor receptor (EGFR) and V-Ki-ras2 Kirsten Rat Sarcoma Viral Oncogene Homologue (KRAS) gene mutation in clinical plasma samples. Our approach offers great possibilities for utilizing EVs in liquid biopsy, as well as in various other biomedical applications.
Collapse
Affiliation(s)
- Le Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhou Gong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ming Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi-Zhong Liang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Xie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Wei Wu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical Collage of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qin-Ying Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cong Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li-Yun Ma
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Si-Yang Zheng
- Department of Electrical Engineering and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, United States
| | - Ming Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
9
|
Yao C, Wang Q, Lu X, Chen X, Li Z. Hydrogel-Based Microdroplet Ensembles Encapsulating Multiplexed EXPAR Assays for Trichromic Digital Profiling of MicroRNAs and in-Depth Classification of Primary Urethral Cancers. NANO LETTERS 2024; 24:15861-15869. [PMID: 39585792 DOI: 10.1021/acs.nanolett.4c04898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The primary challenge in microarray-based biological analysis lies in achieving the sensitive and specific detection of single-molecule targets while ensuring high reproducibility. A user-friendly digital imaging platform has been developed for the encoded trichromic profiling of circulating microRNAs (miRNAs). This platform replaces the traditional exponential polymerase amplification reaction (EXPAR) conducted on the microliter scale with a system that confines the amplification process within thousands of femtoliter-sized microdroplet reactors, cross-linked from tetra-armed poly(ethylene glycol) acrylate (Tetra-PEGA) and poly(ethylene glycol) dithiol (HS-PEG-SH), thus offering significant advantages, including minimal sample input, enhanced reactivity, and simplified analytical procedures. The quantitative analysis relies on digital counting of fluorescently positive microdroplets, each containing an individual miRNA sequence. This approach significantly reduces nonspecific amplification and improves sensitivity by over 2 orders of magnitude. The system has shown great potential in differentiating between subtypes of primary urethral carcinoma, suggesting its practical application in routine cancer diagnostics through simple urinalysis.
Collapse
Affiliation(s)
- Chanyu Yao
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Qiang Wang
- Department of Radiology, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518000, People's Republic of China
| | - Xiaohui Lu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xiaofeng Chen
- School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Zheng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| |
Collapse
|
10
|
Yasui T, Natsume A, Yanagida T, Nagashima K, Washio T, Ichikawa Y, Chattrairat K, Naganawa T, Iida M, Kitano Y, Aoki K, Mizunuma M, Shimada T, Takayama K, Ochiya T, Kawai T, Baba Y. Early Cancer Detection via Multi-microRNA Profiling of Urinary Exosomes Captured by Nanowires. Anal Chem 2024; 96:17145-17153. [PMID: 39422334 PMCID: PMC11525924 DOI: 10.1021/acs.analchem.4c02488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
Multiple microRNAs encapsulated in extracellular vesicles (EVs) including exosomes, unique subtypes of EVs, differ in healthy and cancer groups of people, and they represent a warning sign for various cancer scenarios. Since all EVs in blood cannot be transferred from donor to recipient cells during a single blood circulation, kidney filtration could pass some untransferred EVs from blood to urine. Previously, we reported on the ability of zinc oxide nanowires to capture EVs based on surface charge and hydrogen bonding; these nanowires extracted massive numbers of microRNAs in urine, seeking cancer-related microRNAs through statistical analysis. Here, we report on the scalability of the nanowire performance capability to comprehensively capture EVs, including exosomes, in urine, extract microRNAs from the captured EVs in situ, and identify multiple microRNAs in the extracted microRNAs differing in noncancer and lung cancer subjects through machine learning-based analysis. The nanowire-based extraction allowed the presence of about 2500 species of urinary microRNAs to be confirmed, meaning that urine includes almost all human microRNA species. The machine learning-based analysis identified multiple microRNAs from the extracted microRNA species. The ensembles could classify cancer and noncancer subjects with the area under the receiver operating characteristic curve of 0.99, even though the former were staged early.
Collapse
Affiliation(s)
- Takao Yasui
- Department
of Life Science and Technology, Tokyo Institute
of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
- Institute
of Quantum Life Science, National Institutes
for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Craif
Inc., 3-38-14-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Atsushi Natsume
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Craif
Inc., 3-38-14-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Kawamura
Medical Society, Gifu 501-3144, Japan
| | - Takeshi Yanagida
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- The
Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kazuki Nagashima
- Research
Institute for Electronic Science (RIES), Hokkaido University, N21W10, Kita, Sapporo, Hokkaido 001-0021, Japan
| | - Takashi Washio
- The
Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yuki Ichikawa
- Craif
Inc., 3-38-14-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kunanon Chattrairat
- Department
of Life Science and Technology, Tokyo Institute
of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Tsuyoshi Naganawa
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mikiko Iida
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yotaro Kitano
- Department
of Neurosurgery, School of Medicine, Nagoya
University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kosuke Aoki
- Department
of Neurosurgery, School of Medicine, Nagoya
University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Mika Mizunuma
- Craif
Inc., 3-38-14-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taisuke Shimada
- Institute
of Quantum Life Science, National Institutes
for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Kazuya Takayama
- Craif
Inc., 3-38-14-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro Ochiya
- Department
of Molecular and Cellular Medicine, Tokyo
Medical University, 6-7-1 Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Tomoji Kawai
- The
Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yoshinobu Baba
- Institute
of Quantum Life Science, National Institutes
for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
11
|
Tang H, Yu D, Zhang J, Wang M, Fu M, Qian Y, Zhang X, Ji R, Gu J, Zhang X. The new advance of exosome-based liquid biopsy for cancer diagnosis. J Nanobiotechnology 2024; 22:610. [PMID: 39380060 PMCID: PMC11463159 DOI: 10.1186/s12951-024-02863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Liquid biopsy is a minimally invasive method that uses biofluid samples instead of tissue samples for cancer diagnosis. Exosomes are small extracellular vesicles secreted by donor cells and act as mediators of intercellular communication in human health and disease. Due to their important roles, exosomes have been considered as promising biomarkers for liquid biopsy. However, traditional methods for exosome isolation and cargo detection methods are time-consuming and inefficient, limiting their practical application. In the past decades, many new strategies, such as microfluidic chips, nanowire arrays and electrochemical biosensors, have been proposed to achieve rapid, accurate and high-throughput detection and analysis of exosomes. In this review, we discussed about the new advance in exosome-based liquid biopsy technology, including isolation, enrichment, cargo detection and analysis approaches. The comparison of currently available methods is also included. Finally, we summarized the advantages and limitations of the present strategies and further gave a perspective to their future translational use.
Collapse
Affiliation(s)
- Haozhou Tang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
| | - Dan Yu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jiahui Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Maoye Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Min Fu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Yu Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoxin Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Runbi Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jianmei Gu
- Departmemt of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong, 226300, China.
- Affiliated Cancer Hospital of Nantong University, Nantong, 226300, China.
| | - Xu Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
12
|
Takata T, Inoue S, Kunii K, Masauji T, Miyazawa K. Slot Blot- and Electrospray Ionization-Mass Spectrometry/Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry-Based Novel Analysis Methods for the Identification and Quantification of Advanced Glycation End-Products in the Urine. Int J Mol Sci 2024; 25:9632. [PMID: 39273579 PMCID: PMC11395049 DOI: 10.3390/ijms25179632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Proteins, saccharides, and low molecular organic compounds in the blood, urine, and saliva could potentially serve as biomarkers for diseases related to diet, lifestyle, and the use of illegal drugs. Lifestyle-related diseases (LSRDs) such as diabetes mellitus (DM), non-alcoholic steatohepatitis, cardiovascular disease, hypertension, kidney disease, and osteoporosis could develop into life-threatening conditions. Therefore, there is an urgent need to develop biomarkers for their early diagnosis. Advanced glycation end-products (AGEs) are associated with LSRDs and may induce/promote LSRDs. The presence of AGEs in body fluids could represent a biomarker of LSRDs. Urine samples could potentially be used for detecting AGEs, as urine collection is convenient and non-invasive. However, the detection and identification of AGE-modified proteins in the urine could be challenging, as their concentrations in the urine might be extremely low. To address this issue, we propose a new analytical approach. This strategy employs a method previously introduced by us, which combines slot blotting, our unique lysis buffer named Takata's lysis buffer, and a polyvinylidene difluoride membrane, in conjunction with electrospray ionization-mass spectrometry (ESI)/matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). This novel strategy could be used to detect AGE-modified proteins, AGE-modified peptides, and free-type AGEs in urine samples.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan
| | - Shinya Inoue
- Department of Urology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Inoue Iin Clinic, Kusatsu 525-0034, Shiga, Japan
| | - Kenshiro Kunii
- Department of Urology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| | - Togen Masauji
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan
| | - Katsuhito Miyazawa
- Department of Urology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| |
Collapse
|
13
|
Zhao J, Ma Y, Zheng X, Sun Z, Lin H, Du C, Cao J. Bladder cancer: non-coding RNAs and exosomal non-coding RNAs. Funct Integr Genomics 2024; 24:147. [PMID: 39217254 DOI: 10.1007/s10142-024-01433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Bladder cancer (BCa) is a highly prevalent type of cancer worldwide, and it is responsible for numerous deaths and cases of disease. Due to the diverse nature of this disease, it is necessary to conduct significant research that delves deeper into the molecular aspects, to potentially discover novel diagnostic and therapeutic approaches. Lately, there has been a significant increase in the focus on non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), due to their growing recognition for their involvement in the progression and manifestation of BCa. The interest in exosomes has greatly grown due to their potential for transporting a diverse array of active substances, including proteins, nucleic acids, carbohydrates, and lipids. The combination of these components differs based on the specific cell and its condition. Research indicates that using exosomes could have considerable advantages in identifying and forecasting BCa, offering a less invasive alternative. The distinctive arrangement of the lipid bilayer membrane found in exosomes is what makes them particularly effective for administering treatments aimed at managing cancer. In this review, we have tried to summarize different ncRNAs that are involved in BCa pathogenesis. Moreover, we highlighted the role of exosomal ncRNAs in BCa.
Collapse
Affiliation(s)
- Jingang Zhao
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China
| | - Yangyang Ma
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China
| | - Xiaodong Zheng
- Department of the First Surgery, Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Force, Hangzhou, 310051, Zhe'jiang, China
| | - Zhen Sun
- Department of the First Surgery, Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Force, Hangzhou, 310051, Zhe'jiang, China
| | - Hongxiang Lin
- Department of Urology, Ganzhou Donghe Hospital, Ganzhou, 341000, Jiang'xi, China
| | - Chuanjun Du
- Department of Urology, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310009, Zhe'jiang, China
| | - Jing Cao
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China.
| |
Collapse
|
14
|
Mazahir F, Yadav AK. Recent progress in engineered extracellular vesicles and their biomedical applications. Life Sci 2024; 350:122747. [PMID: 38797364 DOI: 10.1016/j.lfs.2024.122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
AIMS To present the recent update on the isolation, engineering techniques for extracellular vesicles, limitations associated with different isolation techniques, different biomedical applications, and challenges of engineered extracellular vesicles for the benefit of researchers from academic, industry, etc. MATERIALS AND METHODS: Peer-reviewed articles from most recognized journals were collected, and presented information was analyzed to discuss collection, chemical, electroporation, cellular, and membrane surface engineering to design extracellular vesicles for various therapeutic applications. In addition, we present the applications and limitations of techniques for the collection of extracellular vesicles. KEY FINDINGS There is a need for isolation techniques with the gold standard. However, advanced extracellular vesicle isolation techniques showed improved recovery, and purity of extracellular vesicles. Tumor therapy is a major part of the therapy section that illustrates the role of engineered extracellular vesicles in synergetic therapy such as phototherapy, theragnostic, and delivery of genetic materials. In addition, extracellular vesicles have shown their potential in the treatment of retinal disorders, neurodegenerative disease, tuberculosis, osteoporosis, inflammatory bowel disease, vaccine production, and wound healing. SIGNIFICANCE Engineered extracellular vesicles can deliver cargo to the specific cells, elicit an immune response and could be used for the development of the vaccines in the future. However, the progress is at the initial stage. Overall, this review will provide a comprehensive understanding and could serve as a reference for researchers in the clinical translation of engineered extracellular vesicles in different biomedical fields.
Collapse
Affiliation(s)
- Farhan Mazahir
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Raebareli, A Transit Campus, Bijnor-Sisendi Road, Bijnor, Lucknow-226002, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Raebareli, A Transit Campus, Bijnor-Sisendi Road, Bijnor, Lucknow-226002, India.
| |
Collapse
|
15
|
Kural S, Jain G, Agarwal S, Das P, Kumar L. Urinary extracellular vesicles-encapsulated miRNA signatures: A new paradigm for urinary bladder cancer diagnosis and classification. Urol Oncol 2024; 42:179-190. [PMID: 38594151 DOI: 10.1016/j.urolonc.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 04/11/2024]
Abstract
Bladder cancer (BCa) stands as prevalent malignancy of the urinary system globally, especially among men. The clinical classification of BCa into non-muscle invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) is crucial for prognosis and treatment decisions. However, challenges persist in current diagnostic methods like Urine cytopathology that shows poor sensitivity therefore compromising on accurately diagnosing and monitoring BCa. In recent years, research has emphasized the importance of identifying urine and blood-based specific biomarkers for BCa that can enable early and precise diagnosis, effective tumor classification, and monitoring. The convenient proximity of urine with the urinary bladder epithelium makes urine a good source of noninvasive biomarkers, in particular urinary EVs because of the packaged existence of tumor-associated molecules. Therefore, the review assesses the potential of urinary extracellular vesicles (uEVs) as noninvasive biomarkers for BCa. We have elaborately reviewed and discussed the research that delves into the role of urinary EVs in the context of BCa diagnosis and classification. Extensive research has been dedicated to investigating differential microRNA (miRNA) expressions, with the goal of establishing distinct, noninvasive biomarkers for BCa. The identification of such biomarkers has the potential to revolutionize early detection, risk stratification, therapeutic interventions, and ultimately, the long-term prognosis of BCa patients. Despite notable advancements, inconsistencies persist in the biomarkers identified, methodologies employed, and study populations. This review meticulously compiles reported miRNA biomarkers, critically assessing the variability and discrepancies observed in existing research. By synthesizing these findings, the article aims to direct future studies toward a more cohesive and dependable approach in BCa biomarker identification, fostering progress in patient care and management.
Collapse
Affiliation(s)
- Sukhad Kural
- Department of Urology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Garima Jain
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sakshi Agarwal
- Department of Obstetrics & Gynaecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Parimal Das
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Lalit Kumar
- Department of Urology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
16
|
Zhang M, Ono M, Kawaguchi S, Iida M, Chattrairat K, Zhu Z, Nagashima K, Yanagida T, Yamaguchi J, Nishikawa H, Natsume A, Baba Y, Yasui T. On-Site Stimulation of Dendritic Cells by Cancer-Derived Extracellular Vesicles on a Core-Shell Nanowire Platform. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29570-29580. [PMID: 38804616 PMCID: PMC11181270 DOI: 10.1021/acsami.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Extracellular vesicles (EVs) contain a subset of proteins, lipids, and nucleic acids that maintain the characteristics of the parent cell. Immunotherapy using EVs has become a focus of research due to their unique features and bioinspired applications in cancer treatment. Unlike conventional immunotherapy using tumor fragments, EVs can be easily obtained from bodily fluids without invasive actions. We previously fabricated nanowire devices that were specialized for EV collection, but they were not suitable for cell culturing. In this study, we fabricated a ZnO/Al2O3 core-shell nanowire platform that could collect more than 60% of the EVs from the cell supernatant. Additionally, we could continue to culture dendritic cells (DCs) on the platform as an artificial lymph node to investigate cell maturation into antigen-presenting cells. Finally, using this platform, we reproduced a series of on-site immune processes that are among the pivotal immune functions of DCs and include such processes as antigen uptake, antigen presentation, and endocytosis of cancer-derived EVs. This platform provides a new ex vivo tool for EV-DC-mediated immunotherapies.
Collapse
Affiliation(s)
- Min Zhang
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Miki Ono
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shota Kawaguchi
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mikiko Iida
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kunanon Chattrairat
- Department
of Life Science and Technology, Tokyo Institute
of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Zetao Zhu
- Department
of Life Science and Technology, Tokyo Institute
of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Kazuki Nagashima
- Research
Institute for Electronic Science (RIES), Hokkaido University, Kita, Sapporo, Hokkaido 001-0020, Japan
| | - Takeshi Yanagida
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junya Yamaguchi
- Department
of Immunology, Nagoya University Graduate
School of Medicine, Nagoya 466-8550, Japan
| | - Hiroyoshi Nishikawa
- Department
of Immunology, Nagoya University Graduate
School of Medicine, Nagoya 466-8550, Japan
- Division
of Cancer Immunology, Exploratory Oncology
Research and Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
| | - Atsushi Natsume
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Kawamura
Medical Society, Gifu 501-3144, Japan
| | - Yoshinobu Baba
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Takao Yasui
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department
of Life Science and Technology, Tokyo Institute
of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
17
|
Qiu J, Guo Q, Chu Y, Wang C, Xue H, Zhang Y, Liu H, Li G, Han L. Efficient EVs separation and detection by an alumina-nanochannel-array-membrane integrated microfluidic chip and an antibody barcode biochip. Anal Chim Acta 2024; 1304:342576. [PMID: 38637043 DOI: 10.1016/j.aca.2024.342576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Small endosome-derived lipid nanovesicles (30-200 nm) are actively secreted by living cells and serve as pivotal biomarkers for early cancer diagnosis. However, the study of extracellular vesicles (EVs) requires isolation and purification from various body fluids. Although traditional EVs isolation and detection technologies are mature, they usually require large amount of sample, consumes long-time, and have relatively low-throughput. How to efficiently isolate, purify and detect these structurally specific EVs from body fluids with high-throughput remains a great challenge in in vitro diagnostics and clinical research. RESULTS Herein, we suggest a nanosized microfluidic device for efficient and economical EVs filtration based on an alumina nanochannel array membrane. We evaluated the filtration device performance of alumina membranes with different diameters and found that an optimized chamber array with a hydrophilic-treated channel diameter of 90 nm could realize a filtration efficiency of up to 82% without any assistance from chemical or physical separation methods. Importantly, by integrating meticulously designed multichannel microfluidic biochips, EVs can be captured in-situ and monitored by antibody barcode biochip. The proposed filtration chip together with the high-throughput detection chip were capable of filtration of a few tens of μL samples and recognition of different phonotypes. The practical filtration and detection of EVs from clinical samples demonstrated the high performance of the device. SIGNIFICANT Overall, this work provides a cost-effective, highly efficient and automated EVs filtration chip and detection dual-function integrated chip platform, which can directly separate EVs from serum or cerebrospinal fluid with an efficiency of 82% and conduct in-situ detection. This small fluidic device can provide a powerful tool for highly efficient identifying and analyzing EVs, presenting great application potential in clinical detection.
Collapse
Affiliation(s)
- Jiaoyan Qiu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Qindong Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong, 250012, China
| | - Yujin Chu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Chunhua Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong, 250012, China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, Jinan, Shandong, 250100, China.
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong, 250012, China.
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
18
|
Hisaoka K, Matsuda S, Minoura K, Yamaguchi H, Ichikawa Y, Mizunuma M, Kobayashi R, Morimoto Y, Takeuchi M, Fukuda K, Nakamura R, Hori S, Yamazaki T, Sambe T, Kawakubo H, Kitagawa Y. Identifying the Trends of Urinary microRNAs within Extracellular Vesicles for Esophageal Cancer. Cancers (Basel) 2024; 16:1698. [PMID: 38730650 PMCID: PMC11083496 DOI: 10.3390/cancers16091698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Background: The advancement of multidisciplinary treatment has increased the need to develop tests to monitor tumor burden during treatment. We herein analyzed urinary microRNAs within extracellular vesicles from patients with esophageal squamous cell carcinoma (ESCC) and normal individuals using a microarray. Methods: Patients with advanced ESCC who underwent esophagectomy (A), endoscopic submucosal resection (ESD) (B), and healthy donors (C) were included. Based on microRNA expression among the groups (Analysis 1), microRNAs with significant differences between groups A and C were selected (Analysis 2). Of these candidates, microRNAs in which the change between A and C was consistent with the change between B and C were selected for downstream analysis (Analysis 3). Finally, microRNA expression was validated in patients with recurrence from A (exploratory analysis). Results: For analysis 1, 205 microRNAs were selected. For Analyses 2 and 3, the changes in 18 microRNAs were consistent with changes in tumor burden as determined by clinical imaging and pathological findings. The AUC for the detection of ESCC using 18 microRNAs was 0.72. In exploratory analysis, three of eighteen microRNAs exhibited a concordant trend with recurrence. Conclusions: The current study identified the urinary microRNAs which were significantly expressed in ESCC patients. Validation study is warranted to evaluate whether these microRNAs could reflect tumor burden during multidisciplinary treatment for ESCC.
Collapse
Affiliation(s)
- Kazuhiko Hisaoka
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoru Matsuda
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | - Ryota Kobayashi
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yosuke Morimoto
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masashi Takeuchi
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazumasa Fukuda
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Rieko Nakamura
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shutaro Hori
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taigi Yamazaki
- Department of Clinical Research and Development, Graduate School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Takehiko Sambe
- Department of Clinical Pharmacology, Graduate School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Hirofumi Kawakubo
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
19
|
Galeș LN, Păun MA, Anghel RM, Trifănescu OG. Cancer Screening: Present Recommendations, the Development of Multi-Cancer Early Development Tests, and the Prospect of Universal Cancer Screening. Cancers (Basel) 2024; 16:1191. [PMID: 38539525 PMCID: PMC10969110 DOI: 10.3390/cancers16061191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 11/11/2024] Open
Abstract
Cancer continues to pose a considerable challenge to global health. In the search for innovative strategies to combat this complex enemy, the concept of universal cancer screening has emerged as a promising avenue for early detection and prevention. In contrast to targeted approaches that focus on specific populations or high-risk individuals, universal screening seeks to cast a wide net to detect incipient malignancies in different demographic groups. This paradigm shift in cancer care underscores the importance of comprehensive screening programs that go beyond conventional boundaries. As our understanding of the complex molecular and genetic basis of cancer deepens, the need to develop comprehensive screening methods becomes increasingly apparent. In this article, we look at the rationale and potential benefits of universal cancer screening.
Collapse
Affiliation(s)
- Laurenția Nicoleta Galeș
- Department of Oncology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.N.G.); (R.M.A.); (O.G.T.)
- Department of Medical Oncology II, Prof. Dr. Al. Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Mihai-Andrei Păun
- Department of Radiotherapy II, Prof. Dr. Al. Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Rodica Maricela Anghel
- Department of Oncology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.N.G.); (R.M.A.); (O.G.T.)
- Department of Radiotherapy II, Prof. Dr. Al. Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Oana Gabriela Trifănescu
- Department of Oncology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.N.G.); (R.M.A.); (O.G.T.)
- Department of Radiotherapy II, Prof. Dr. Al. Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| |
Collapse
|
20
|
Yang M, Cheng G, Mathur N, Singha R, Yuan F, Yao N, Schoop LM. Chemical exfoliation of 1-dimensional antiferromagnetic nanoribbons from a non-van der Waals material. NANOSCALE HORIZONS 2024; 9:479-486. [PMID: 38258388 DOI: 10.1039/d3nh00408b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
As the demand for increasingly varied types of 1-dimensional (1D) materials grows, there is a greater need for new methods to synthesize these types of materials in a simple and scalable way. Chemical exfoliation is commonly used to make 2-dimensional (2D) materials, often in a way that is both straightforward and suitable for making larger quantities, yet this method has thus far been underutilized for synthesizing 1D materials. In the few instances when chemical exfoliation has been used to make 1D materials, the starting compound has been a van der Waals material, thus excluding any structures without these weak bonds inherently present. We demonstrate here that ionically bonded crystals can also be chemically exfoliated to 1D structures by choosing KFeS2 as an example. Using chemical exfoliation, antiferromagnetic 1D nanoribbons can be yielded in a single step. The nanoribbons are crystalline and closely resemble the parent compound both in structure and in intrinsic antiferromagnetism. The facile chemical exfoliation of an ionically bonded crystal shown in this work opens up opportunities for the synthesis of both magnetic and non-magnetic 1D nanomaterials from a greater variety of starting structures.
Collapse
Affiliation(s)
- Mulan Yang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | | | - Nitish Mathur
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | - Ratnadwip Singha
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | - Fang Yuan
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | - Nan Yao
- Princeton Materials Institute, Princeton, NJ 08544, USA
| | - Leslie M Schoop
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
21
|
Ko SY, Lee W, Naora H. Harnessing microRNA-enriched extracellular vesicles for liquid biopsy. Front Mol Biosci 2024; 11:1356780. [PMID: 38449696 PMCID: PMC10916008 DOI: 10.3389/fmolb.2024.1356780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
Extracellular microRNAs (miRNAs) can be detected in body fluids and hold great potential as cancer biomarkers. Extracellular miRNAs are protected from degradation by binding various proteins and through their packaging into extracellular vesicles (EVs). There is evidence that the diagnostic performance of cancer-associated extracellular miRNAs can be improved by assaying EV-miRNA instead of total cell-free miRNA, but several challenges have hampered the advancement of EV-miRNA in liquid biopsy. Because almost all types of cells release EVs, cancer cell-derived EVs might constitute only a minor fraction of EVs in body fluids of cancer patients with low volume disease. Furthermore, a given cell type can release several subpopulations of EVs that vary in their cargo, and there is evidence that the majority of EVs contain low copy numbers of miRNAs. In this mini-review, we discuss the potential of several candidate EV membrane proteins such as CD147 to define cancer cell-derived EVs, and approaches by which subpopulations of miRNA-rich EVs in body fluids might be identified. By integrating these insights, we discuss strategies by which EVs that are both cancer cell-derived and miRNA-rich could be isolated to enhance the diagnostic performance of extracellular miRNAs.
Collapse
Affiliation(s)
| | | | - Honami Naora
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
22
|
Zhu X, Shen A, Li N, Feng S, Tang T, Zhang Y, Jing J, Zhong X, Xie L, Huang S, Liu B, Lv L. Identification of stable reference genes for relative quantification of long RNA expression in urinary extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e136. [PMID: 38938675 PMCID: PMC11080903 DOI: 10.1002/jex2.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/07/2023] [Accepted: 12/24/2023] [Indexed: 06/29/2024]
Abstract
Urinary extracellular vesicles (uEVs) are rich in valuable biomolecule information which are increasingly recognized as potential biomarkers for various diseases. uEV long RNAs are among the critical cargos capable of providing unique transcriptome information of the source cells. However, consensus regarding ideal reference genes for relative long RNAs quantification in uEVs is not available as of date. Here we explored stable reference genes through profiling the long RNA expression by RNA-seq following unsupervised analysis and validation studies. Candidate reference genes were identified using four algorithms: NormFinder, GeNorm, BestKeeper and the Delta Ct method, followed by validation. RNA profile showed uEVs contained abundant long RNAs information and the core transcriptome was related to cellular structures, especially ribosome which functions mainly as translation, protein and RNA binding molecules. Analysis of RNA-seq data identified RPL18A, RPL11, RPL27, RACK1, RPSA, RPL41, H1-2, RPL4, GAPDH, RPS27A as candidate reference genes. RT-qPCR validation revealed that RPL41, RPSA and RPL18A were reliable reference genes for long RNA quantification in uEVs from patients with diabetes mellitus (DM), diabetic nephropathy (DN), IgA nephropathy (IgAN) and prostate cancer (PCA). Interestingly, RPL41 also outperformed traditional reference genes in renal tissues of DN and IgAN, as well as in plasma EVs of several types of cancers. The stable reference genes identified in this study may facilitate development of uEVs as novel biomarkers and increase the accuracy and comparability of biomarker studies.
Collapse
Affiliation(s)
- Xiao‐Xiao Zhu
- Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina
| | - An‐Ran Shen
- Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina
| | - Ning Li
- Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina
| | - Song‐Tao Feng
- Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina
| | - Tao‐Tao Tang
- Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina
| | - Yue Zhang
- Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina
| | - Jing Jing
- Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina
| | - Xin Zhong
- Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina
| | - Li‐Jun Xie
- Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina
| | - Sheng‐Lin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Bi‐Cheng Liu
- Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina
| | - Lin‐Li Lv
- Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina
| |
Collapse
|
23
|
Vahabi M, Comandatore A, Centra C, Blandino G, Morelli L, Giovannetti E. Thinking small to win big? A critical review on the potential application of extracellular vesicles for biomarker discovery and new therapeutic approaches in pancreatic cancer. Semin Cancer Biol 2023; 97:50-67. [PMID: 37956937 DOI: 10.1016/j.semcancer.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/29/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely deadly form of cancer, with limited progress in 5-year survival rates despite significant research efforts. The main challenges in treating PDAC include difficulties in early detection, and resistance to current therapeutic approaches due to aggressive molecular and microenvironment features. These challenges emphasize the importance of identifying clinically validated biomarkers for early detection and clinical management. Extracellular vesicles (EVs), particularly exosomes, have emerged as crucial mediators of intercellular communication by transporting molecular cargo. Recent research has unveiled their role in initiation, metastasis, and chemoresistance of PDAC. Consequently, utilizing EVs in liquid biopsies holds promise for the identification of biomarkers for early detection, prognosis, and monitoring of drug efficacy. However, numerous limitations, including challenges in isolation and characterization of homogeneous EVs populations, as well as the absence of standardized protocols, can affect the reliability of studies involving EVs as biomarkers, underscoring the necessity for a prudent approach. EVs have also garnered considerable attention as a promising drug delivery system and novel therapy for tumors. The loading of biomolecules or chemical drugs into exosomes and their subsequent delivery to target cells can effectively impede tumor progression. Nevertheless, there are obstacles that must be overcome to ensure the accuracy and efficacy of therapies relying on EVs for the treatment of tumors. In this review, we examine both recent advancements and remaining obstacles, exploring the potential of utilizing EVs in biomarker discovery as well as for the development of drug delivery vehicles.
Collapse
Affiliation(s)
- Mahrou Vahabi
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Annalisa Comandatore
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, Netherlands; General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Chiara Centra
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Giovanni Blandino
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Laboratory, Rome, Italy
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, Netherlands; Fondazione Pisana per la Scienza, Pisa, Italy.
| |
Collapse
|
24
|
Kulke M, Olson DM, Huang J, Kramer DM, Vermaas JV. Long-Range Electron Transport Rates Depend on Wire Dimensions in Cytochrome Nanowires. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304013. [PMID: 37653599 DOI: 10.1002/smll.202304013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/18/2023] [Indexed: 09/02/2023]
Abstract
The ability to redirect electron transport to new reactions in living systems opens possibilities to store energy, generate new products, or probe physiological processes. Recent work by Huang et al. showed that 3D crystals of small tetraheme cytochromes (STC) can transport electrons over nanoscopic to mesoscopic distances by an electron hopping mechanism, making them promising materials for nanowires. However, fluctuations at room temperature may distort the nanostructure, hindering efficient electron transport. Classical molecular dynamics simulations of these fluctuations at the nano- and mesoscopic scales allowed us to develop a graph network representation to estimate maximum electron flow that can be driven through STC wires. In longer nanowires, transient structural fluctuations at protein-protein interfaces tended to obstruct efficient electron transfer, but these blockages are ameliorated in thicker crystals where alternative electron transfer pathways become more efficient. The model implies that more flexible proteinprotein interfaces limit the required minimum diameter to carry currents commensurate with conventional electronics.
Collapse
Affiliation(s)
- Martin Kulke
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI, 48824, United States of America
| | - Dayna M Olson
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI, 48824, United States of America
| | - Jingcheng Huang
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI, 48824, United States of America
| | - David M Kramer
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI, 48824, United States of America
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI, 48824, United States of America
| |
Collapse
|
25
|
Marassi V, Giordani S, Placci A, Punzo A, Caliceti C, Zattoni A, Reschiglian P, Roda B, Roda A. Emerging Microfluidic Tools for Simultaneous Exosomes and Cargo Biosensing in Liquid Biopsy: New Integrated Miniaturized FFF-Assisted Approach for Colon Cancer Diagnosis. SENSORS (BASEL, SWITZERLAND) 2023; 23:9432. [PMID: 38067805 PMCID: PMC10708636 DOI: 10.3390/s23239432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
The early-stage diagnosis of cancer is a crucial clinical need. The inadequacies of surgery tissue biopsy have prompted a transition to a less invasive profiling of molecular biomarkers from biofluids, known as liquid biopsy. Exosomes are phospholipid bilayer vesicles present in many biofluids with a biologically active cargo, being responsible for cell-to-cell communication in biological systems. An increase in their excretion and changes in their cargo are potential diagnostic biomarkers for an array of diseases, including cancer, and they constitute a promising analyte for liquid biopsy. The number of exosomes released, the morphological properties, the membrane composition, and their content are highly related to the physiological and pathological states. The main analytical challenge to establishing liquid biopsy in clinical practice is the development of biosensors able to detect intact exosomes concentration and simultaneously analyze specific membrane biomarkers and those contained in their cargo. Before analysis, exosomes also need to be isolated from biological fluids. Microfluidic systems can address several issues present in conventional methods (i.e., ultracentrifugation, size-exclusion chromatography, ultrafiltration, and immunoaffinity capture), which are time-consuming and require a relatively high amount of sample; in addition, they can be easily integrated with biosensing systems. A critical review of emerging microfluidic-based devices for integrated biosensing approaches and following the major analytical need for accurate diagnostics is presented here. The design of a new miniaturized biosensing system is also reported. A device based on hollow-fiber flow field-flow fractionation followed by luminescence-based immunoassay is applied to isolate intact exosomes and characterize their cargo as a proof of concept for colon cancer diagnosis.
Collapse
Affiliation(s)
- Valentina Marassi
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- byFlow srl, 40129 Bologna, Italy
| | - Stefano Giordani
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
| | - Anna Placci
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
| | - Angela Punzo
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
| | - Cristiana Caliceti
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
- Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy—CIRI FRAME, University of Bologna, 40131 Bologna, Italy
- Interdepartmental Centre for Industrial Agrofood Research—CIRI Agrofood, University of Bologna, 47521 Cesena, Italy
| | - Andrea Zattoni
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- byFlow srl, 40129 Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- byFlow srl, 40129 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- byFlow srl, 40129 Bologna, Italy
| | - Aldo Roda
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
| |
Collapse
|
26
|
Fu J, Song W, Hao Z, Fan M, Li Y. Research trends and hotspots of exosomes in respiratory diseases. Medicine (Baltimore) 2023; 102:e35381. [PMID: 37773786 PMCID: PMC10545307 DOI: 10.1097/md.0000000000035381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023] Open
Abstract
Currently, theoretical studies on exosomes in respiratory diseases have received much attention from many scholars and have made remarkable progress, which has inestimable value and potential in future clinical and scientific research. Unfortunately, no scholar has yet addressed this field's bibliometric analysis and summary. We aim to comprehensively and profoundly study and explore the present situation and highlights of exosome research at the stage of respiratory diseases and to provide meaningful insights for the future development of this field. The WOSCC literature was gathered for the study using bibliometrics, and the data were collected and analyzed using CiteSpace, VOSviewer, Microsoft Excel, and Endnote software. The publication language is "English," and the search strategy is TS = (exosome OR exosomes OR exosomal) AND TS = (respiratory OR lung). The search time is from the beginning of the WOS construction, and the deadline is July 11, 2022, at 22:00 hours. The literature types selected were dissertation, review paper, and online published paper. The analysis includes 2456 publications in 738 journals from 76 countries, 2716 institutions, and 14,568 authors. The field's annual publications have been rising, especially in recent years. China and the US lead research, and prominent universities, including Harvard Medical School, Shanghai Jiao Tong University, and Fudan University, are essential research institutes. Takahiro Ochiya, whose research focuses on exosomes and lung cancer, and Clotilde Théry, a pioneering exosome researcher, are the most cited authors in this field. The key terms include lung cancer, non-small cell lung cancer, mesenchymal stem cells, intercellular communication, exosomal miRNAs, and oncology. Cell biology, biochemistry & biotechnology, and oncology are related fields. The final summary of research hotspots is exosomes and lung cancer, mesenchymal stem cell-derived exosomes and lung inflammation, and miRNAs in exosomes as biomarkers for respiratory illnesses. The present research situation and relevant hotspots of the area were analyzed through bibliometric studies on exosomes in respiratory diseases. The research development in this field has a considerable upside, and the exosome's function in diagnosing, treating, monitoring, and prognosis of respiratory illnesses cannot be taken lightly. Moreover, we believe the research results will bring the gospel to many patients with clinical respiratory diseases shortly.
Collapse
Affiliation(s)
- Jinjie Fu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenjie Song
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Medical History and Literature Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory Innovation and Transformation, Tianjin, China
| | - Zheng Hao
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Medical History and Literature Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory Innovation and Transformation, Tianjin, China
| | - Mengzhen Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
27
|
Kanao E, Ishida K, Mizuta R, Li Y, Imami K, Tanigawa T, Sasaki Y, Akiyoshi K, Adachi J, Otsuka K, Ishihama Y, Kubo T. Rapid and Highly Efficient Purification of Extracellular Vesicles Enabled by a TiO 2 Hybridized Spongy-like Polymer. Anal Chem 2023; 95:14502-14510. [PMID: 37703188 DOI: 10.1021/acs.analchem.3c03411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
We developed a novel purification medium of extracellular vesicles (EVs) by constructing a spongy-like monolithic polymer kneaded with TiO2 microparticles (TiO2-hybridized spongy monolith, TiO2-SPM). TiO2-SPM was applied in a solid-phase extraction format and enabled simple, rapid, and highly efficient purification of EVs. This is due to the high permeability caused by the continuous large flow-through pores of the monolithic skeleton (median pore size; 5.21 μm) and the specific interaction of embedded TiO2 with phospholipids of the lipid bilayers. Our method also excels in efficiency and comprehensiveness, collecting small EVs (SEVs) from the same volume of a cell culture medium 130.7 times more than typical ultracentrifugation and 4.3 times more than affinity purification targeting surface phosphatidylserine by magnetic beads. The purification method was completed within 1 h with simple operations and was directly applied to serum SEVs. Finally, we demonstrated flexibility toward the shape and size of our method by depleting EVs from fetal bovine serum (FBS), which is a necessary process to prevent contamination of culture cell-derived EVs with exogenous FBS-derived EVs. Our method will eliminate the tedious and difficult purification processes of EVs, providing a universal purification platform for EV-based drug discovery and pathological diagnosis.
Collapse
Affiliation(s)
- Eisuke Kanao
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 567-0085, Osaka, Japan
| | - Koki Ishida
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryosuke Mizuta
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuka Li
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Koshi Imami
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Tetsuya Tanigawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Jun Adachi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 567-0085, Osaka, Japan
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 567-0085, Osaka, Japan
| | - Takuya Kubo
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
28
|
Otsuka K, Nishiyama H, Kuriki D, Kawada N, Ochiya T. Connecting the dots in the associations between diet, obesity, cancer, and microRNAs. Semin Cancer Biol 2023; 93:52-69. [PMID: 37156343 DOI: 10.1016/j.semcancer.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
The prevalence of obesity has reached pandemic levels worldwide, leading to a lower quality of life and higher health costs. Obesity is a major risk factor for noncommunicable diseases, including cancer, although obesity is one of the major preventable causes of cancer. Lifestyle factors, such as dietary quality and patterns, are also closely related to the onset and development of obesity and cancer. However, the mechanisms underlying the complex association between diet, obesity, and cancer remain unclear. In the past few decades, microRNAs (miRNAs), a class of small non-coding RNAs, have been demonstrated to play critical roles in biological processes such as cell differentiation, proliferation, and metabolism, highlighting their importance in disease development and suppression and as therapeutic targets. miRNA expression levels can be modulated by diet and are involved in cancer and obesity-related diseases. Circulating miRNAs can also mediate cell-to-cell communications. These multiple aspects of miRNAs present challenges in understanding and integrating their mechanism of action. Here, we introduce a general consideration of the associations between diet, obesity, and cancer and review the current knowledge of the molecular functions of miRNA in each context. A comprehensive understanding of the interplay between diet, obesity, and cancer could be valuable for the development of effective preventive and therapeutic strategies in future.
Collapse
Affiliation(s)
- Kurataka Otsuka
- Tokyo NODAI Research Institure, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan; Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan; Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Hiroshi Nishiyama
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Daisuke Kuriki
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Naoki Kawada
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
29
|
Yokoi A, Ukai M, Yasui T, Inokuma Y, Hyeon-Deuk K, Matsuzaki J, Yoshida K, Kitagawa M, Chattrairat K, Iida M, Shimada T, Manabe Y, Chang IY, Asano-Inami E, Koya Y, Nawa A, Nakamura K, Kiyono T, Kato T, Hirakawa A, Yoshioka Y, Ochiya T, Hasegawa T, Baba Y, Yamamoto Y, Kajiyama H. Identifying high-grade serous ovarian carcinoma-specific extracellular vesicles by polyketone-coated nanowires. SCIENCE ADVANCES 2023; 9:eade6958. [PMID: 37418532 PMCID: PMC10328412 DOI: 10.1126/sciadv.ade6958] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/02/2023] [Indexed: 07/09/2023]
Abstract
Cancer cell-derived extracellular vesicles (EVs) have unique protein profiles, making them promising targets as disease biomarkers. High-grade serous ovarian carcinoma (HGSOC) is the deadly subtype of epithelial ovarian cancer, and we aimed to identify HGSOC-specific membrane proteins. Small EVs (sEVs) and medium/large EVs (m/lEVs) from cell lines or patient serum and ascites were analyzed by LC-MS/MS, revealing that both EV subtypes had unique proteomic characteristics. Multivalidation steps identified FRα, Claudin-3, and TACSTD2 as HGSOC-specific sEV proteins, but m/lEV-associated candidates were not identified. In addition, for using a simple-to-use microfluidic device for EV isolation, polyketone-coated nanowires (pNWs) were developed, which efficiently purify sEVs from biofluids. Multiplexed array assays of sEVs isolated by pNW showed specific detectability in cancer patients and predicted clinical status. In summary, the HGSOC-specific marker detection by pNW are a promising platform as clinical biomarkers, and these insights provide detailed proteomic aspects of diverse EVs in HGSOC patients.
Collapse
Affiliation(s)
- Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Nagoya University Institute for Advanced Research, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Japan Science and Technology Agency (JST), FOREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Mayu Ukai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takao Yasui
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yasuhide Inokuma
- Japan Science and Technology Agency (JST), FOREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Kim Hyeon-Deuk
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Department of Chemistry, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8502, Japan
| | - Juntaro Matsuzaki
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Nagoya University Institute for Advanced Research, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masami Kitagawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kunanon Chattrairat
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mikiko Iida
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Taisuke Shimada
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yumehiro Manabe
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - I-Ya Chang
- Department of Chemistry, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8502, Japan
| | - Eri Asano-Inami
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshihiro Koya
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akihiro Nawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kae Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Center for Low-Temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Tomoyasu Kato
- Department of Gynecologic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Akihiko Hirakawa
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Takeshi Hasegawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Kanagawa, Inage-ku, Chiba, Chiba 263-8555, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroaki Kajiyama
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| |
Collapse
|
30
|
Su P, Wu Y, Xie F, Zheng Q, Chen L, Liu Z, Meng X, Zhou F, Zhang L. A Review of Extracellular Vesicles in COVID-19 Diagnosis, Treatment, and Prevention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206095. [PMID: 37144543 PMCID: PMC10323633 DOI: 10.1002/advs.202206095] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The 2019 novel coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is ongoing, and has necessitated scientific efforts in disease diagnosis, treatment, and prevention. Interestingly, extracellular vesicles (EVs) have been crucial in these developments. EVs are a collection of various nanovesicles which are delimited by a lipid bilayer. They are enriched in proteins, nucleic acids, lipids, and metabolites, and naturally released from different cells. Their natural material transport properties, inherent long-term recycling ability, excellent biocompatibility, editable targeting, and inheritance of parental cell properties make EVs one of the most promising next-generation drug delivery nanocarriers and active biologics. During the COVID-19 pandemic, many efforts have been made to exploit the payload of natural EVs for the treatment of COVID-19. Furthermore, strategies that use engineered EVs to manufacture vaccines and neutralization traps have produced excellent efficacy in animal experiments and clinical trials. Here, the recent literature on the application of EVs in COVID-19 diagnosis, treatment, damage repair, and prevention is reviewed. And the therapeutic value, application strategies, safety, and biotoxicity in the production and clinical applications of EV agents for COVID-19 treatment, as well as inspiration for using EVs to block and eliminate novel viruses are discussed.
Collapse
Affiliation(s)
- Peng Su
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Yuchen Wu
- Department of Clinical MedicineThe First School of MedicineWenzhou Medical UniversityWenzhouZhejiang325035P. R. China
| | - Feng Xie
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Qinghui Zheng
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
| | - Long Chen
- Center for Translational MedicineThe Affiliated Zhangjiagang Hospital of Soochow UniversityZhangjiagangJiangsu215600China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123China
| | - Xuli Meng
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
31
|
Diao Y, Zhu B, Ding T, Li R, Li J, Yang L, Zhou L, Hao X, Liu J. Tumor-derived extracellular vesicle nucleic acids as promising diagnostic biomarkers for prostate cancer. Front Oncol 2023; 13:1201554. [PMID: 37456240 PMCID: PMC10338955 DOI: 10.3389/fonc.2023.1201554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Liquid biopsy as a non-invasive method has a bright future in cancer diagnosis. Tumor-related extracellular vesicles (EVs) and their components (nucleic acids, proteins, and lipids) in biofluids may exert multiple functions in tumor growth, metastasis, immune escape, and angiogenesis. Among all the components, nucleic acids have attracted the most interest due to their simplicity of extraction and detection. In this review, the biological functions of EVs in prostate cancer (PCa) genesis and progression were summarized. Moreover, the diagnostic value of EV RNA markers found in clinical body fluid samples was reviewed, including their trends, challenging isolation methods, and diagnostic efficacy. Lastly, because relatively much progress has been made in PCa, studies on EV DNA markers are also discussed.
Collapse
|
32
|
Pishbin E, Sadri F, Dehghan A, Kiani MJ, Hashemi N, Zare I, Mousavi P, Rahi A. Recent advances in isolation and detection of exosomal microRNAs related to Alzheimer's disease. ENVIRONMENTAL RESEARCH 2023; 227:115705. [PMID: 36958383 DOI: 10.1016/j.envres.2023.115705] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 05/08/2023]
Abstract
Alzheimer's disease, a progressive neurological condition, is associated with various internal and external risk factors in the disease's early stages. Early diagnosis of Alzheimer's disease is essential for treatment management. Circulating exosomal microRNAs could be a new class of valuable biomarkers for early Alzheimer's disease diagnosis. Different kinds of biosensors have been introduced in recent years for the detection of these valuable biomarkers. Isolation of the exosomes is a crucial step in the detection process which is traditionally carried out by multi-step ultrafiltration. Microfluidics has improved the efficiency and costs of exosome isolation by implementing various effects and forces on the nano and microparticles in the microchannels. This paper reviews recent advancements in detecting Alzheimer's disease related exosomal microRNAs based on methods such as electrochemical, fluorescent, and SPR. The presented devices' pros and cons and their efficiencies compared with the gold standard methods are reported. Moreover, the application of microfluidic devices to detect Alzheimer's disease related biomarkers is summarized and presented. Finally, some challenges with the performance of novel technologies for isolating and detecting exosomal microRNAs are addressed.
Collapse
Affiliation(s)
- Esmail Pishbin
- Bio-microfluidics Laboratory, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Fatemeh Sadri
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amin Dehghan
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Javad Kiani
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Amid Rahi
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
33
|
Ngo L, Pham LQA, Tukova A, Hassanzadeh-Barforoushi A, Zhang W, Wang Y. Emerging integrated SERS-microfluidic devices for analysis of cancer-derived small extracellular vesicles. LAB ON A CHIP 2023. [PMID: 37314042 DOI: 10.1039/d3lc00156c] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cancer-derived small extracellular vesicles (sEVs) are specific subgroups of lipid bilayer vesicles secreted from cancer cells to the extracellular environment. They carry distinct biomolecules (e.g., proteins, lipids and nucleic acids) from their parent cancer cells. Therefore, the analysis of cancer-derived sEVs can provide valuable information for cancer diagnosis. However, the use of cancer-derived sEVs in clinics is still limited due to their small size, low amounts in circulating fluids, and heterogeneous molecular features, making their isolation and analysis challenging. Recently, microfluidic technology has gained great attention for its ability to isolate sEVs in minimal volume. In addition, microfluidics allows the isolation and detection of sEVs to be integrated into a single device, offering new opportunities for clinical application. Among various detection techniques, surface-enhanced Raman scattering (SERS) has emerged as a promising candidate for integrating with microfluidic devices due to its ultra-sensitivity, stability, rapid readout, and multiplexing capability. In this tutorial review, we start with the design of microfluidics devices for isolation of sEVs and introduce the key factors to be considered for the design, and then discuss the integration of SERS and microfluidic devices by providing descriptive examples of the currently developed platforms. Lastly, we discuss the current limitations and provide our insights for utilising integrated SERS-microfluidics to isolate and analyse cancer-derived sEVs in clinical settings.
Collapse
Affiliation(s)
- Long Ngo
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| | - Le Que Anh Pham
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| | - Anastasiia Tukova
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| | | | - Wei Zhang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
34
|
Kurimoto M, Rockenbach Y, Kato A, Natsume A. Prediction of Tumor Development and Urine-Based Liquid Biopsy for Molecule-Targeted Therapy of Gliomas. Genes (Basel) 2023; 14:1201. [PMID: 37372381 DOI: 10.3390/genes14061201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The timing of the acquisition of tumor-specific gene mutations and the systems by which these gene mutations are acquired during tumorigenesis were clarified. Advances in our understanding of tumorigenesis are being made every day, and therapies targeting fundamental genetic alterations have great potential for cancer treatment. Moreover, our research team successfully estimated tumor progression using mathematical modeling and attempted early diagnosis of brain tumors. We developed a nanodevice that enables urinary genetic diagnosis in a simple and noninvasive manner. Mainly on the basis of our research and experience, this review article presents novel therapies being developed for central nervous system cancers and six molecules, which upon mutation cause tumorigenesis and tumor progression. Further understanding of the genetic characteristics of brain tumors will lead to the development of precise drugs and improve individual treatment outcomes.
Collapse
Affiliation(s)
- Michihiro Kurimoto
- Department of Neurosurgery, Aichi Children's Health and Medical Center, Obu 464-8710, Japan
| | - Yumi Rockenbach
- Institute of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| | - Akira Kato
- Institute of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| | - Atsushi Natsume
- Institute of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
35
|
Arya SS, Dias SB, Jelinek HF, Hadjileontiadis LJ, Pappa AM. The convergence of traditional and digital biomarkers through AI-assisted biosensing: A new era in translational diagnostics? Biosens Bioelectron 2023; 235:115387. [PMID: 37229842 DOI: 10.1016/j.bios.2023.115387] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Advances in consumer electronics, alongside the fields of microfluidics and nanotechnology have brought to the fore low-cost wearable/portable smart devices. Although numerous smart devices that track digital biomarkers have been successfully translated from bench-to-bedside, only a few follow the same fate when it comes to track traditional biomarkers. Current practices still involve laboratory-based tests, followed by blood collection, conducted in a clinical setting as they require trained personnel and specialized equipment. In fact, real-time, passive/active and robust sensing of physiological and behavioural data from patients that can feed artificial intelligence (AI)-based models can significantly improve decision-making, diagnosis and treatment at the point-of-procedure, by circumventing conventional methods of sampling, and in person investigation by expert pathologists, who are scarce in developing countries. This review brings together conventional and digital biomarker sensing through portable and autonomous miniaturized devices. We first summarise the technological advances in each field vs the current clinical practices and we conclude by merging the two worlds of traditional and digital biomarkers through AI/ML technologies to improve patient diagnosis and treatment. The fundamental role, limitations and prospects of AI in realizing this potential and enhancing the existing technologies to facilitate the development and clinical translation of "point-of-care" (POC) diagnostics is finally showcased.
Collapse
Affiliation(s)
- Sagar S Arya
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Sofia B Dias
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Interdisciplinary Center for Human Performance, Faculdade de Motricidade Humana, Universidade de Lisboa, Portugal.
| | - Herbert F Jelinek
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, United Arab Emirates
| | - Leontios J Hadjileontiadis
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, United Arab Emirates; Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, GR, 54124, Thessaloniki, Greece
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, UK.
| |
Collapse
|
36
|
Takahashi H, Yasui T, Hirano M, Shinjo K, Miyazaki Y, Shinoda W, Hasegawa T, Natsume A, Kitano Y, Ida M, Zhang M, Shimada T, Paisrisarn P, Zhu Z, Ohka F, Aoki K, Rahong S, Nagashima K, Yanagida T, Baba Y. Mutation detection of urinary cell-free DNA via catch-and-release isolation on nanowires for liquid biopsy. Biosens Bioelectron 2023; 234:115318. [PMID: 37172361 DOI: 10.1016/j.bios.2023.115318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/14/2023]
Abstract
Cell-free DNA (cfDNA) and extracellular vesicles (EVs) are molecular biomarkers in liquid biopsies that can be applied for cancer detection, which are known to carry information on the necessary conditions for oncogenesis and cancer cell-specific activities after oncogenesis, respectively. Analyses for both cfDNA and EVs from the same body fluid can provide insights into screening and identifying the molecular subtypes of cancer; however, a major bottleneck is the lack of efficient and standardized techniques for the isolation of cfDNA and EVs from clinical specimens. Here, we achieved catch-and-release isolation by hydrogen bond-mediated binding of cfDNA in urine to zinc oxide (ZnO) nanowires, which also capture EVs by surface charge, and subsequently we identified genetic mutations in urinary cfDNA. The binding strength of hydrogen bonds between single-crystal ZnO nanowires and DNA was found to be equal to or larger than that of conventional hydrophobic interactions, suggesting the possibility of isolating trace amounts of cfDNA. Our results demonstrated that nanowire-based cancer screening assay can screen cancer and can identify the molecular subtypes of cancer in urine from brain tumor patients through EV analysis and cfDNA mutation analysis. We anticipate our method to be a starting point for more sophisticated diagnostic models of cancer screening and identification.
Collapse
Affiliation(s)
- Hiromi Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan; School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Takao Yasui
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan; Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan; Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Masaki Hirano
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Kanokoden, Chikusa-ku, Nagoya, 464-0021, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Graduate School of Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yusuke Miyazaki
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
| | - Wataru Shinoda
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
| | - Takeshi Hasegawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Atsushi Natsume
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yotaro Kitano
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, Tsurumai-cho 65, Showa-ku, Nagoya, 466-8550, Japan
| | - Mikiko Ida
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Min Zhang
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Taisuke Shimada
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Piyawan Paisrisarn
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Zetao Zhu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, Tsurumai-cho 65, Showa-ku, Nagoya, 466-8550, Japan
| | - Kosuke Aoki
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Sakon Rahong
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok, 10520, Thailand
| | - Kazuki Nagashima
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan; Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka-cho, Ibaraki, Osaka, 567-0047, Japan; Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan; Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan; Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, 263-8555, Japan.
| |
Collapse
|
37
|
Li Q, Zhang Z, Wang F, Wang X, Zhan S, Yang X, Xu C, Liu D. Reversible zwitterionic coordination enables rapid, high-yield, and high-purity isolation of extracellular vesicles from biofluids. SCIENCE ADVANCES 2023; 9:eadf4568. [PMID: 37058564 PMCID: PMC10104463 DOI: 10.1126/sciadv.adf4568] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Extracellular vesicles (EVs) hold great clinical value as promising diagnostic biomarkers and therapeutic agents. This field, however, is hindered by technical challenges in the isolation of EVs from biofluids for downstream purposes. We here report a rapid (<30 min) isolation method for EV extraction from diverse biofluids with yield and purity exceeding 90%. These high performances are ascribed to the reversible zwitterionic coordination between the phosphatidylcholine (PC) on EV membranes and the "PC-inverse" choline phosphate (CP) decorated on magnetic beads. By coupling this isolation method with proteomics, a set of differentially expressed proteins on the EVs were identified as potential colon cancer biomarkers. Last, we demonstrated that the EVs in various clinically relevant biofluids, such as blood serum, urine, and saliva, can also be isolated efficiently, outperforming the conventional approaches in terms of simplicity, speed, yield, and purity.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaowei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fengchao Wang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiang Wang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Saisong Zhan
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoqing Yang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
38
|
He S, Ding L, Yuan H, Zhao G, Yang X, Wu Y. A review of sensors for classification and subtype discrimination of cancer: Insights into circulating tumor cells and tumor-derived extracellular vesicles. Anal Chim Acta 2023; 1244:340703. [PMID: 36737145 DOI: 10.1016/j.aca.2022.340703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Liquid biopsy can reflect the state of tumors in vivo non-invasively, thus providing a strong basis for the early diagnosis, individualized treatment monitoring and prognosis of tumors. Circulating tumor cells (CTCs) and tumor-derived extracellular vesicles (tdEVs) contain information-rich components, such as nucleic acids and proteins, and they are essential markers for liquid biopsies. Their capture and analysis are of great importance for the study of disease occurrence and development and, consequently, have been the subject of many reviews. However, both CTCs and tdEVs carry the biological characteristics of their original tissue, and few reviews have focused on their function in the staging and classification of cancer. In this review, we focus on state-of-the-art sensors based on the simultaneous detection of multiple biomarkers within CTCs and tdEVs, with clinical applications centered on cancer classification and subtyping. We also provide a thorough discussion of the current challenges and prospects for novel sensors with the ultimate goal of cancer classification and staging. It is hoped that these most advanced technologies will bring new insights into the clinical practice of cancer screening and diagnosis.
Collapse
Affiliation(s)
- Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huijie Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Gaofeng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiaonan Yang
- School of Information Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
39
|
Chattrairat K, Yasui T, Suzuki S, Natsume A, Nagashima K, Iida M, Zhang M, Shimada T, Kato A, Aoki K, Ohka F, Yamazaki S, Yanagida T, Baba Y. All-in-One Nanowire Assay System for Capture and Analysis of Extracellular Vesicles from an ex Vivo Brain Tumor Model. ACS NANO 2023; 17:2235-2244. [PMID: 36655866 PMCID: PMC9933609 DOI: 10.1021/acsnano.2c08526] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/04/2023] [Indexed: 05/27/2023]
Abstract
Extracellular vesicles (EVs) have promising potential as biomarkers for early cancer diagnosis. The EVs have been widely studied as biological cargo containing essential biological information not only from inside vesicles such as nucleic acids and proteins but also from outside vesicles such as membrane proteins and glycolipids. Although various methods have been developed to isolate EVs with high yields such as captures based on density, size, and immunoaffinity, different measurement systems are needed to analyze EVs after isolation, and a platform that enables all-in-one analysis of EVs from capture to detection in multiple samples is desired. Since a nanowire-based approach has shown an effective capability for capturing EVs via surface charge interaction compared to other conventional methods, here, we upgraded the conventional well plate assay to an all-in-one nanowire-integrated well plate assay system (i.e., a nanowire assay system) that enables charge-based EV capture and EV analysis of membrane proteins. We applied the nanowire assay system to analyze EVs from brain tumor organoids in which tumor environments, including vascular formations, were reconstructed, and we found that the membrane protein expression ratio of CD31/CD63 was 1.42-fold higher in the tumor organoid-derived EVs with a p-value less than 0.05. Furthermore, this ratio for urine samples from glioblastoma patients was 2.25-fold higher than that from noncancer subjects with a p-value less than 0.05 as well. Our results demonstrated that the conventional well plate method integrated with the nanowire-based EV capture approach allows users not only to capture EVs effectively but also to analyze them in one assay system. We anticipate that the all-in-one nanowire assay system will be a powerful tool for elucidating EV-mediated tumor-microenvironment crosstalk.
Collapse
Affiliation(s)
- Kunanon Chattrairat
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takao Yasui
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Japan
Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shunsuke Suzuki
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Atsushi Natsume
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kazuki Nagashima
- Japan
Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mikiko Iida
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Min Zhang
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Taisuke Shimada
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Akira Kato
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kosuke Aoki
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Fumiharu Ohka
- Department
of Neurosurgery, School of Medicine, Nagoya
University, 65 Tsurumai-cho,
Showa-ku, Nagoya 466-8550, Japan
| | - Shintaro Yamazaki
- Department
of Neurosurgery, School of Medicine, Nagoya
University, 65 Tsurumai-cho,
Showa-ku, Nagoya 466-8550, Japan
| | - Takeshi Yanagida
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoshinobu Baba
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
of Quantum Life Science, National Institutes
for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
40
|
Goss DM, Vasilescu SA, Sacks G, Gardner DK, Warkiani ME. Microfluidics facilitating the use of small extracellular vesicles in innovative approaches to male infertility. Nat Rev Urol 2023; 20:66-95. [PMID: 36348030 DOI: 10.1038/s41585-022-00660-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/09/2022]
Abstract
Sperm are transcriptionally and translationally quiescent and, therefore, rely on the seminal plasma microenvironment for function, survival and fertilization of the oocyte in the oviduct. The male reproductive system influences sperm function via the binding and fusion of secreted epididymal (epididymosomes) and prostatic (prostasomes) small extracellular vesicles (S-EVs) that facilitate the transfer of proteins, lipids and nucleic acids to sperm. Seminal plasma S-EVs have important roles in sperm maturation, immune and oxidative stress protection, capacitation, fertilization and endometrial implantation and receptivity. Supplementing asthenozoospermic samples with normospermic-derived S-EVs can improve sperm motility and S-EV microRNAs can be used to predict non-obstructive azoospermia. Thus, S-EV influence on sperm physiology might have both therapeutic and diagnostic potential; however, the isolation of pure populations of S-EVs from bodily fluids with current conventional methods presents a substantial hurdle. Many conventional techniques lack accuracy, effectiveness, and practicality; yet microfluidic technology has the potential to simplify and improve S-EV isolation and detection.
Collapse
Affiliation(s)
- Dale M Goss
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- IVF Australia, Sydney, NSW, Australia
| | - Steven A Vasilescu
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- NeoGenix Biosciences pty ltd, Sydney, NSW, Australia
| | - Gavin Sacks
- IVF Australia, Sydney, NSW, Australia
- University of New South Wales, Sydney, NSW, Australia
| | - David K Gardner
- Melbourne IVF, East Melbourne, VIC, Australia.
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Majid E Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
41
|
Kumar S, Gaur V, Mir IA, Saikia J, Kumar S. MicroRNA-3692-3p is overexpressed in lung tumors but may not serve as a prognostic biomarker in lung cancer patients. Mol Biol Rep 2023; 50:1147-1156. [PMID: 36414877 DOI: 10.1007/s11033-022-08119-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND We previously reported overexpression of miR-3692-3p in the serum of non-small cell lung cancer patients. However, the expression profile and clinical utility of miR-3692-3p in the tumor tissues of lung cancer patients are not yet reported. METHODS AND RESULTS We quantified the expression levels of miR-3692-3p in the tumors and adjacent normal lung tissues of early-stage (n = 29) and tissue biopsies of locally advanced and metastatic (n = 85) lung cancer patients using TaqMan advanced miRNA assay. We correlated miR-3692-3p expression with survival outcomes, therapeutic response, and other clinicopathological variables. We also predicted the target genes of miR-3692-3p, constructed a protein-protein interaction network, and performed functional enrichment analysis using various in silico tools. We found significant overexpression of miR-3692-3p in the tumors (Log2 fold change = 3.672; p < 0.0001) and tissue biopsies (Log2 fold change = 2.08; p = 0.0001) compared to normal lung tissues of lung cancer patients. The expression of miR-3692-3p did not correlate with overall survival (OS), progression-free survival (PFS), and response to therapy. In multivariate analysis, therapeutic response emerged as an independent prognostic biomarker of OS (HR = 3.47; p = 0.022) and PFS (HR = 19.86; p < 0.001). Our in silico analysis predicted 238 target genes of miR-3692-3p. CONCLUSIONS Overexpression of miR-3692-3p could contribute to the development of lung cancer. However, mechanistic studies are warranted to shed further light on its role in lung carcinogenesis.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Vikas Gaur
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.,Cardinal Bernardin Cancer Center, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Ishfaq A Mir
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Jyoutishman Saikia
- Department of Surgical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sunil Kumar
- Department of Surgical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
42
|
Ye S, You Q, Song S, Wang H, Wang C, Zhu L, Yang Y. Nanostructures and Nanotechnologies for the Detection of Extracellular Vesicle. Adv Biol (Weinh) 2023; 7:e2200201. [PMID: 36394211 DOI: 10.1002/adbi.202200201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/17/2022] [Indexed: 11/19/2022]
Abstract
Liquid biopsy has been taken as a minimally invasive examination and a promising surrogate to the clinically applied tissue-based test for the diagnosis and molecular analysis of cancer. Extracellular vesicles (EVs) carry complex molecular information from the tumor, allowing for the multicomponent analysis of cancer and would be beneficial to personalized medicine. In this review, the advanced nanomaterials and nanotechniques for the detection and molecular profiling of EVs, highlight the advantages of nanotechnology in the high-purity isolation and the high-sensitive and high-specific identification of EVs, are summarized. An outlook on the clinical application of nanotechnology-based liquid biopsy in the diagnosis, prognostication, and surveillance of cancer is also provided. It provides information for developing liquid biopsy based on EVs by discussing the advantages and challenges of functionalized nanomaterials and various nanotechnologies.
Collapse
Affiliation(s)
- Siyuan Ye
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Qing You
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Shuya Song
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huayi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,Translational Medicine Center, Chinese Institute for Brain Research (CIBR), Beijing, 102206, P. R. China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
43
|
Wang Y, Wang S, Li L, Zou Y, Liu B, Fang X. Microfluidics‐based molecular profiling of tumor‐derived exosomes for liquid biopsy. VIEW 2023. [DOI: 10.1002/viw.20220048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yuqing Wang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Shurong Wang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Lanting Li
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Yan Zou
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Baohong Liu
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Xiaoni Fang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| |
Collapse
|
44
|
Jafari A, Karimabadi K, Rahimi A, Rostaminasab G, Khazaei M, Rezakhani L, Ahmadi jouybari T. The Emerging Role of Exosomal miRNAs as Biomarkers for Early Cancer Detection: A Comprehensive Literature Review. Technol Cancer Res Treat 2023; 22:15330338231205999. [PMID: 37817634 PMCID: PMC10566290 DOI: 10.1177/15330338231205999] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
A significant number of cancer-related deaths are recorded globally each year, despite attempts to cure this illness. Medical science is working to develop new medication therapies as well as to find ways to identify this illness as early as possible, even using noninvasive techniques. Early detection of cancer can greatly aid its treatment. Studies into cancer diagnosis and therapy have recently shifted their focus to exosome (EXO) biomarkers, which comprise numerous RNA and proteins. EXOs are minuscule goblet vesicles that have a width of 30 to 140 nm and are released by a variety of cells, including immune, stem, and tumor cells, as well as bodily fluids. According to a growing body of research, EXOs, and cancer appear to be related. EXOs from tumors play a role in the genetic information transfer between tumor and basal cells, which controls angiogenesis and fosters tumor development and spread. To identify malignant activities early on, microRNAs (miRNAs) from cancers can be extracted from circulatory system EXOs. Specific markers can be used to identify cancer-derived EXOs containing miRNAs, which may be more reliable and precise for early detection. Conventional solid biopsy has become increasingly limited as precision and personalized medicine has advanced, while liquid biopsy offers a viable platform for noninvasive diagnosis and prognosis. Therefore, the use of body fluids such as serum, plasma, urine, and salivary secretions can help find cancer biomarkers using technologies related to EXOs.
Collapse
Affiliation(s)
- Ali Jafari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyvan Karimabadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aso Rahimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Touraj Ahmadi jouybari
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
45
|
Eibl RH, Schneemann M. Liquid biopsy and glioblastoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:28-41. [PMID: 36937320 PMCID: PMC10017188 DOI: 10.37349/etat.2023.00121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/22/2022] [Indexed: 02/27/2023] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor. Despite a century of research efforts, the survival of patients has not significantly improved. Currently, diagnosis is based on neuroimaging techniques followed by histopathological and molecular analysis of resected or biopsied tissue. A recent paradigm shift in diagnostics ranks the molecular analysis of tissue samples as the new gold standard over classical histopathology, thus correlating better with the biological behavior of glioblastoma and clinical prediction, especially when a tumor lacks the typical hallmarks for glioblastoma. Liquid biopsy aims to detect and quantify tumor-derived content, such as nucleic acids (DNA/RNA), circulating tumor cells (CTCs), or extracellular vesicles (EVs) in biofluids, mainly blood, cerebrospinal fluid (CSF), or urine. Liquid biopsy has the potential to overcome the limitations of both neuroimaging and tissue-based methods to identify early recurrence and to differentiate tumor progression from pseudoprogression, without the risks of repeated surgical biopsies. This review highlights the origins and time-frame of liquid biopsy in glioblastoma and points to recent developments, limitations, and challenges of adding liquid biopsy to support the clinical management of glioblastoma patients.
Collapse
Affiliation(s)
- Robert H. Eibl
- c/o M. Schneemann, Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
- Correspondence: Robert H. Eibl, c/o M. Schneemann, Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland.
| | - Markus Schneemann
- Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| |
Collapse
|
46
|
Meggiolaro A, Moccia V, Brun P, Pierno M, Mistura G, Zappulli V, Ferraro D. Microfluidic Strategies for Extracellular Vesicle Isolation: Towards Clinical Applications. BIOSENSORS 2022; 13:bios13010050. [PMID: 36671885 PMCID: PMC9855931 DOI: 10.3390/bios13010050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 05/15/2023]
Abstract
Extracellular vesicles (EVs) are double-layered lipid membrane vesicles released by cells. Currently, EVs are attracting a lot of attention in the biological and medical fields due to their role as natural carriers of proteins, lipids, and nucleic acids. Thus, they can transport useful genomic information from their parental cell through body fluids, promoting cell-to-cell communication even between different organs. Due to their functionality as cargo carriers and their protein expression, they can play an important role as possible diagnostic and prognostic biomarkers in various types of diseases, e.g., cancers, neurodegenerative, and autoimmune diseases. Today, given the invaluable importance of EVs, there are some pivotal challenges to overcome in terms of their isolation. Conventional methods have some limitations: they are influenced by the starting sample, might present low throughput and low purity, and sometimes a lack of reproducibility, being operator dependent. During the past few years, several microfluidic approaches have been proposed to address these issues. In this review, we summarize the most important microfluidic-based devices for EV isolation, highlighting their advantages and disadvantages compared to existing technology, as well as the current state of the art from the perspective of the use of these devices in clinical applications.
Collapse
Affiliation(s)
- Alessio Meggiolaro
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
| | - Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Matteo Pierno
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
| | - Giampaolo Mistura
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Davide Ferraro
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
- Correspondence:
| |
Collapse
|
47
|
A Highly Sensitive Urinary Exosomal miRNAs Biosensor Applied to Evaluation of Prostate Cancer Progression. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120803. [PMID: 36551009 PMCID: PMC9774101 DOI: 10.3390/bioengineering9120803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/24/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Prostate cancer is the most common cancer in the male population, carrying a significant disease burden. PSA is a widely available screening tools for this disease. Current screen-printed carbon electrode (SPCE)-based biosensors use a two-pronged probe approach to capture urinary miRNA. We were able to successfully detect specific exosomal miRNAs (exomiRs) in the urine of patients with prostate cancer, including exomiR-451 and exomiR-21, and used electrochemistry for measurement and analysis. Our results significantly reaffirmed the presence of exomiR-451 in urine and that a CV value higher than 220 nA is capable of identifying the presence of disease (p-value = 0.005). Similar results were further proven by a PAS greater than 4 (p-value = 0.001). Moreover, a higher urinary exomiR-21 was observed in the high-T3b stage; this significantly decreased following tumor removal (p-values were 0.016 and 0.907, respectively). According to analysis of the correlation with tumor metastasis, a higher exomiR-21 was associated with lymphatic metastasis (p-value 0.042), and higher exomiR-461 expression was correlated with tumor stage (p-value 0.031), demonstrating that the present exomiR biosensor can usefully predict tumor progression. In conclusion, this biosensor represents an easy-to-use, non-invasive screening tool that is both sensitive and specific. We strongly believe that this can be used in conjunction with PSA for the screening of prostate cancer.
Collapse
|
48
|
Xiang Y, Hu C, Wu G, Xu S, Li Y. Nanomaterial-based microfluidic systems for cancer biomarker detection: Recent applications and future perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Yin S, Chen A, Ding Y, Song J, Chen R, Zhang P, Yang C. Recent advances in exosomal RNAs analysis towards diagnostic and therapeutic applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Ebrahimi N, Faghihkhorasani F, Fakhr SS, Moghaddam PR, Yazdani E, Kheradmand Z, Rezaei-Tazangi F, Adelian S, Mobarak H, Hamblin MR, Aref AR. Tumor-derived exosomal non-coding RNAs as diagnostic biomarkers in cancer. Cell Mol Life Sci 2022; 79:572. [PMID: 36308630 PMCID: PMC11802992 DOI: 10.1007/s00018-022-04552-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 12/24/2022]
Abstract
Almost all clinical oncologists agree that the discovery of reliable, accessible, and non-invasive biomarkers is necessary to decrease cancer mortality. It is possible to employ reliable biomarkers to diagnose cancer in the early stages, predict the patient prognosis, follow up the response to treatment, and estimate the risk of disease recurrence with high sensitivity and specificity. Extracellular vesicles (EVs), especially exosomes, have been the focus of translational research to develop such biomarkers over the past decade. The abundance and distribution of exosomes in bodily fluids, including serum, saliva, and urine, as well as their ability to transport various biomolecules (nucleic acids, proteins, and lipids) derived from their parent cells, make exosomes reliable, accessible, and potent biomarkers for diagnosis and follow-up of solid and hematopoietic tumors. In addition, exosomes play a vital role in various cellular processes, including tumor progression, by participating in intercellular communication. Although these advantages underline the high potential of tumor-derived exosomes as diagnostic biomarkers, the lack of standardized effective methods for their isolation, identification, and precise characterization makes their application challenging in clinical settings. We discuss the importance of non-coding RNAs (ncRNAs) in cellular processes, and the role of tumor-derived exosomes containing ncRNAs as potential biomarkers in several types of cancer. In addition, the advantages and challenges of these studies for translation into clinical applications are covered.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Siavash Seifollahy Fakhr
- Division of Biotechnology, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus, Hamar, Norway
| | - Parichehr Roozbahani Moghaddam
- Department of Molecular Genetics, Faculty of Science, Tonekabon Branch, Islamic Azad University, Tehran, Mazandaran, Iran
| | - Elnaz Yazdani
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Zahra Kheradmand
- Department of Agriculture, Islamic Azad University Maragheh Branch, Maragheh, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Halimeh Mobarak
- Clinical Pathologist, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Translational Medicine Group, Xsphera Biosciences, 6 Tide Street, Boston, MA, 02210, USA.
| |
Collapse
|