1
|
Tebbett SB, Emslie MJ, Jonker MJ, Ling SD, Pratchett MS, Siqueira AC, Thompson AA, Yan HF, Bellwood DR. Epilithic algal composition and the functioning of Anthropocene coral reefs. MARINE POLLUTION BULLETIN 2025; 210:117322. [PMID: 39591677 DOI: 10.1016/j.marpolbul.2024.117322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Epilithic algae dominate cover on coral reefs globally, forming a critical ecological interface between the benthos and reef organisms. Yet, the drivers of epilithic algal composition, and how composition relates to the distribution of key taxa, remain unclear. We develop a novel metric, the Epilithic Algal Ratio, based on turf cover relative to total epilithic algae cover, and use this metric to assess cross-scale patterns. We reveal water quality and hydrodynamics as the key environmental drivers of the Epilithic Algal Ratio across the Great Barrier Reef (GBR), and reefs globally. On the GBR, the abundance of herbivorous fishes and juvenile corals were also related to the Epilithic Algal Ratio, suggesting that reefs with long-dense turfs support fewer herbivores and corals. Ultimately, epilithic algae represent the interface through which the effects of declining water quality, which impacts a third of reefs globally, can reverberate up through coral reefs, compromising their functioning.
Collapse
Affiliation(s)
- Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Queensland 4811, Australia; College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia.
| | - Michael J Emslie
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - Michelle J Jonker
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - Scott D Ling
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia
| | - Morgan S Pratchett
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Alexandre C Siqueira
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Queensland 4811, Australia; College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Perth, WA 6027, Australia
| | - Angus A Thompson
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - Helen F Yan
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Queensland 4811, Australia; College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Queensland 4811, Australia; College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
2
|
Caldwell IR, McClanahan TR, Oddenyo RM, Graham NA, Beger M, Vigliola L, Sandin SA, Friedlander AM, Randriamanantsoa B, Wantiez L, Green AL, Humphries AT, Hardt MJ, Caselle JE, Feary DA, Karkarey R, Jadot C, Hoey AS, Eurich JG, Wilson SK, Crane N, Tupper M, Ferse SC, Maire E, Mouillot D, Cinner JE. Protection efforts have resulted in ~10% of existing fish biomass on coral reefs. Proc Natl Acad Sci U S A 2024; 121:e2308605121. [PMID: 39374392 PMCID: PMC11494344 DOI: 10.1073/pnas.2308605121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/16/2024] [Indexed: 10/09/2024] Open
Abstract
The amount of ocean protected from fishing and other human impacts has often been used as a metric of conservation progress. However, protection efforts have highly variable outcomes that depend on local conditions, which makes it difficult to quantify what coral reef protection efforts to date have actually achieved at a global scale. Here, we develop a predictive model of how local conditions influence conservation outcomes on ~2,600 coral reef sites across 44 ecoregions, which we used to quantify how much more fish biomass there is on coral reefs compared to a modeled scenario with no protection. Under the assumptions of our model, our study reveals that without existing protection efforts there would be ~10% less fish biomass on coral reefs. Thus, we estimate that coral reef protection efforts have led to approximately 1 in every 10 kg of existing fish biomass.
Collapse
Affiliation(s)
- Iain R. Caldwell
- Thriving Oceans Research Hub, School of Geosciences, University of Sydney, Camperdown, NSW2006, Australia
- College of Arts, Society and Education, James Cook University, Townsville, QLD4811, Australia
| | - Tim R. McClanahan
- Wildlife Conservation Society, Global Marine Program, Bronx, NY10460
- Wildlife Conservation Society, Kenya Marine Program, Mombasa80107, Kenya
| | - Remy M. Oddenyo
- Wildlife Conservation Society, Kenya Marine Program, Mombasa80107, Kenya
| | - Nicholas A.J. Graham
- Lancaster Environment Centre, Lancaster University, LancasterLA1 4YQ, United Kingdom
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, QLD4072, Australia
| | - Laurent Vigliola
- Écologie Marine Tropicale des Océans Pacifique et Indien research unit, Institut de Recherche pour le Développement, Université de la Réunion, Université de la Nouvelle-Calédonie, Institut Français de Recherche pour l'Exploitation de la Mer, CNRS, Nouméa, New Caledonia98800, France
| | - Stuart A. Sandin
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92037
| | - Alan M. Friedlander
- Pristine Seas, National Geographic Society, Washington, DC20036
- Hawai’i Institute of Marine Biology, University of Hawai’i, Kāne’ohe, HI96744
| | | | - Laurent Wantiez
- Département des Sciences et Techniques, University of New Caledonia, Nouméa98851, New Caledonia
| | | | - Austin T. Humphries
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, RI02881
| | | | | | - David A. Feary
- General Organization for Conservation of Coral Reefs and Turtles in the Red Sea, Jeddah21431, Kingdom of Saudi Arabia
| | - Rucha Karkarey
- Lancaster Environment Centre, Lancaster University, LancasterLA1 4YQ, United Kingdom
- Nature Conservation Foundation, Mysore570017, India
| | | | - Andrew S. Hoey
- College of Science and Engineering, James Cook University, Townsville, QLD4811, Australia
| | - Jacob G. Eurich
- Marine Science Institute, University of California, Santa Barbara, CA93106
- Environmental Defense Fund, Santa Barbara, CA93106
| | - Shaun K. Wilson
- University of Western Australia, Oceans Institute, Crawley, Western Australia6009, Australia
- Marine Science Program, Science and Conservation Division, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia6151, Australia
| | - Nicole Crane
- Society For Conservation Biology, Smith Fellows Program, Washington, DC20005
- One People One Reef, Santa Cruz, CA95076
| | - Mark Tupper
- Centre for National Parks and Protected Areas, Institute of Science and the Environment, University of Cumbria, Ambleside, CumbriaLA22 9BB, United Kingdom
- Terra Nexus, Business Center 1, Meydan Hotel, Nad al Sheba, Dubai34252, United Arab Emirates
| | - Sebastian C.A. Ferse
- Department of Ecology, Leibniz Centre for Tropical Marine Research, Bremen28359, Germany
- Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Bremen28359, Germany
- Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor16680, Indonesia
| | - Eva Maire
- Lancaster Environment Centre, Lancaster University, LancasterLA1 4YQ, United Kingdom
- Marine Biodiversity, Exploitation, & Conservation (MARBEC), Université de Montpellier, CNRS, Institut Français de Recherche pour l'Exploitation de la Mer, Institut de Recherche pour le Développement, Montpellier34090, Cedex5, France
| | - David Mouillot
- Marine Biodiversity, Exploitation, & Conservation (MARBEC), Université de Montpellier, CNRS, Institut Français de Recherche pour l'Exploitation de la Mer, Institut de Recherche pour le Développement, Montpellier34090, Cedex5, France
- Institut Universitaire de France, Paris75480, France
| | - Joshua E. Cinner
- Thriving Oceans Research Hub, School of Geosciences, University of Sydney, Camperdown, NSW2006, Australia
- College of Arts, Society and Education, James Cook University, Townsville, QLD4811, Australia
| |
Collapse
|
3
|
Donovan MK, Counsell CWW, Donahue MJ, Lecky J, Gajdzik L, Marcoux SD, Sparks R, Teague C. Evidence for managing herbivores for reef resilience. Proc Biol Sci 2023; 290:20232101. [PMID: 38052442 DOI: 10.1098/rspb.2023.2101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 11/19/2023] [Indexed: 12/07/2023] Open
Abstract
Herbivore management is an important tool for resilience-based approaches to coral reef conservation, and evidence-based science is needed to enact successful management. We synthesized data from multiple monitoring programs in Hawai'i to measure herbivore biomass and benthic condition over a 10-year period preceding any major coral bleaching. We analysed data from 20 242 transects alongside data on 27 biophysical and human drivers and found herbivore biomass was highly variable throughout Hawai'i, with high values in remote locations and the lowest values near population centres. Both human and biophysical drivers explained variation in herbivore biomass, and among the human drivers both fishing and land-based pollution had negative effects on biomass. We also found evidence that herbivore functional group biomass is strongly linked to benthic condition, and that benthic condition is sensitive to changes in herbivore biomass associated with fishing. We show that when herbivore biomass is below 80% of potential biomass, benthic condition is predicted to decline. We also show that a range of management actions, including area-specific fisheries regulations and gear restrictions, can increase parrotfish biomass. Together, these results provide lines of evidence to support managing herbivores as an effective strategy for maintaining or bolstering reef resilience in a changing climate.
Collapse
Affiliation(s)
- Mary K Donovan
- Hawai'i Monitoring and Reporting Collaborative (HIMARC), Honolulu, HI, USA
- Center for Global Discovery and Conservation Science, School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, USA
| | - Chelsie W W Counsell
- Hawai'i Monitoring and Reporting Collaborative (HIMARC), Honolulu, HI, USA
- Cooperative Institute for Marine and Atmospheric Research, Honolulu, HI, USA
| | - Megan J Donahue
- Hawai'i Monitoring and Reporting Collaborative (HIMARC), Honolulu, HI, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Joey Lecky
- Hawai'i Monitoring and Reporting Collaborative (HIMARC), Honolulu, HI, USA
- Pacific Islands Regional Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
| | - Laura Gajdzik
- Hawai'i Monitoring and Reporting Collaborative (HIMARC), Honolulu, HI, USA
- Division of Aquatic Resources, Department of Land and Natural Resources, State of Hawai'i, Honolulu, HI, USA
| | - Stacia D Marcoux
- Hawai'i Monitoring and Reporting Collaborative (HIMARC), Honolulu, HI, USA
- Division of Aquatic Resources, Department of Land and Natural Resources, State of Hawai'i, Honolulu, HI, USA
| | - Russell Sparks
- Hawai'i Monitoring and Reporting Collaborative (HIMARC), Honolulu, HI, USA
- Division of Aquatic Resources, Department of Land and Natural Resources, State of Hawai'i, Honolulu, HI, USA
| | - Christopher Teague
- Hawai'i Monitoring and Reporting Collaborative (HIMARC), Honolulu, HI, USA
- Division of Aquatic Resources, Department of Land and Natural Resources, State of Hawai'i, Honolulu, HI, USA
| |
Collapse
|
4
|
Randrianarivo M, Botosoamananto RL, Guilhaumon F, Penin L, Todinanahary G, Adjeroud M. Effects of Madagascar marine reserves on juvenile and adult coral abundance, and the implication for population regulation. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106080. [PMID: 37422994 DOI: 10.1016/j.marenvres.2023.106080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Recruitment is a critical component in the dynamics of coral assemblages, and a key question is to determine the degree to which spatial heterogeneity of adults is influenced by pre-vs. post-settlement processes. We analyzed the density of juvenile and adult corals among 18 stations located at three regions around Madagascar, and examined the effects of Marine Protected Areas (MPAs). Our survey did not detect a positive effect of MPAs on juveniles, except for Porites at the study scale. The MPA effect was more pronounced for adults, notably for Acropora, Montipora, Seriatopora, and Porites at the regional scale. For most dominant genera, densities of juveniles and adults were positively correlated at the study scale, and at least at one of the three regions. These outcomes suggest recruitment-limitation relationships for several coral taxa, although differences in post-settlement events may be sufficiently strong to distort the pattern established at settlement for other populations. The modest benefits of MPAs on the density of juvenile corals demonstrated here argue in favor of strengthening conservation measures more specifically focused to protect recruitment processes.
Collapse
Affiliation(s)
- Mahery Randrianarivo
- Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar; ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France
| | - Radonirina Lebely Botosoamananto
- Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar; ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France
| | - François Guilhaumon
- ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France
| | - Lucie Penin
- ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France; Laboratoire d'Excellence "CORAIL", Paris, France
| | - Gildas Todinanahary
- Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar
| | - Mehdi Adjeroud
- ENTROPIE, IRD, Université de la Réunion, CNRS, IFREMER, Université de la Nouvelle-Calédonie, Perpignan, France; Laboratoire d'Excellence "CORAIL", Paris, France; PSL Université Paris, UAR 3278, CRIOBE EPHE-UPVD-CNRS, Perpignan, France.
| |
Collapse
|
5
|
Trends in Dominican Republic Coral Reef Biodiversity 2015–2022. DIVERSITY 2023. [DOI: 10.3390/d15030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
In 2015, we initiated a country-wide coral reef ecosystem-monitoring program in the Dominican Republic (DR) to establish biodiversity baselines against which trends in the most important components of coral reef ecosystem’s structure and function could be tracked. Replicate transects were set at a 10 m depth at each of the 12 coral reef sites within 6 DR regions in 2015, 2017, 2019, and 2022. We quantified the species-level abundances of adult and juvenile corals, reef fishes, sea urchins, lionfishes, and algal functional groups. Country-wide, coral cover and reef fishes have declined. The steepest declines occurred for reefs that had been among the best in the Caribbean in 2015. However, by 2022, adult and juvenile coral, parrotfish, and other herbivores had declined, and macroalgae had increased. The declines in north-shore coral abundance corresponded with the observed disturbances from coral bleaching, hurricanes, and disease. The capacity of reefs to recover from such disturbances has been compromised by abundant and increasing macroalgae that have likely contributed to north-shore declines in juvenile corals. Country-wide, the abundance of all reef fish species has declined below those of other regions of the Caribbean. Improved management of fishing pressure on coral reefs would likely yield positive results.
Collapse
|
6
|
Guglielmi G. Tuna catch rates soared after creation of no-fishing zone in Hawaii. Nature 2022:10.1038/d41586-022-03352-w. [PMID: 36271039 DOI: 10.1038/d41586-022-03352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
A contemporary baseline of Madagascar's coral assemblages: Reefs with high coral diversity, abundance, and function associated with marine protected areas. PLoS One 2022; 17:e0275017. [PMID: 36264983 PMCID: PMC9584525 DOI: 10.1371/journal.pone.0275017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022] Open
Abstract
Madagascar is a major hotspot of biodiversity in the Western Indian Ocean, but, as in many other regions, coral reefs surrounding the island confront large-scale disturbances and human-induced local stressors. Conservation actions have been implemented with encouraging results for fisheries, though their benefit on coral assemblages has never been rigorously addressed. In this context, we analyzed the multiscale spatial variation of the composition, generic richness, abundance, life history strategies, and cover of coral assemblages among 18 stations placed at three regions around the island. The potential influences of marine protected areas (MPAs), algal cover, substrate rugosity, herbivorous fish biomass, and geographic location were also analyzed. Our results highlight the marked spatial variability, with variation at either or both regional and local scales for all coral descriptors. The northeast coastal region of Masoala was characterized by the high abundance of coral colonies, most notably of the competitive Acropora and Pocillopora genera and stress-tolerant taxa at several stations. The southwest station of Salary Nord was distinguished by lower abundances, with depauperate populations of competitive taxa. On the northwest coast, Nosy-Be was characterized by higher diversity and abundance as well as by high coral cover (~42-70%) recorded at unfished stations. Results clearly underline the positive effects of MPAs on all but one of the coral descriptors, particularly at Nosy-Be where the highest contrast between fished and unfished stations was observed. Biomass of herbivorous fishes, crustose coralline algae cover, and substrate rugosity were also positively related to several coral descriptors. The occurrence of reefs with high diversity, abundance, and cover of corals, including the competitive Acropora, is a major finding of this study. Our results strongly support the implementation of locally managed marine areas with strong involvement by primary users, particularly to assist in management in countries with reduced logistic and human resources such as Madagascar.
Collapse
|
8
|
Fish community structure and dynamics are insufficient to mediate coral resilience. Nat Ecol Evol 2022; 6:1700-1709. [PMID: 36192541 DOI: 10.1038/s41559-022-01882-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
Coral reefs are being impacted by myriad stressors leading to drastic changes to their structure and function. Fishes play essential roles in driving ecosystem processes on coral reefs but the extent to which these processes are emergent at temporal or ecosystem scales or otherwise masked by other drivers (for example, climatic events and crown-of-thorns starfish outbreaks) is poorly understood. Using time series data on fish community composition and coral and macroalgae percentage cover between 2006 and 2017 from 57 sites around Mo'orea, Polynesia, we found that fish community diversity predicts temporal stability in fish biomass but did not translate to temporal stability of coral cover. Furthermore, we found limited evidence of directional influence of fish on coral dynamics at temporal and ecosystem scales and no evidence that fish mediate coral recovery rate from disturbance. Our findings suggest that coral reef fisheries management will benefit from maintaining fish diversity but that this level of management is unlikely to strongly mediate coral loss or recovery over time.
Collapse
|
9
|
Greiner A, S. Darling E, Fortin MJ, Krkošek M. The combined effects of dispersal and herbivores on stable states in coral reefs. THEOR ECOL-NETH 2022. [DOI: 10.1007/s12080-022-00546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Arif S, Graham NAJ, Wilson S, MacNeil MA. Causal drivers of climate‐mediated coral reef regime shifts. Ecosphere 2022. [DOI: 10.1002/ecs2.3956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Suchinta Arif
- Department of Biology Dalhousie University Halifax Nova Scotia Canada
| | | | - Shaun Wilson
- Department of Biodiversity Conservation and Attractions Perth Western Australia Australia
- Oceans Institute University of Western Australia Crawley Western Australia Australia
| | - M. Aaron MacNeil
- Department of Biology Dalhousie University Halifax Nova Scotia Canada
| |
Collapse
|
11
|
Alves C, Valdivia A, Aronson RB, Bood N, Castillo KD, Cox C, Fieseler C, Locklear Z, McField M, Mudge L, Umbanhowar J, Bruno JF. Twenty years of change in benthic communities across the Belizean Barrier Reef. PLoS One 2022; 17:e0249155. [PMID: 35041688 PMCID: PMC8765652 DOI: 10.1371/journal.pone.0249155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/26/2021] [Indexed: 11/23/2022] Open
Abstract
Disease, storms, ocean warming, and pollution have caused the mass mortality of reef-building corals across the Caribbean over the last four decades. Subsequently, stony corals have been replaced by macroalgae, bacterial mats, and invertebrates including soft corals and sponges, causing changes to the functioning of Caribbean reef ecosystems. Here we describe changes in the absolute cover of benthic reef taxa, including corals, gorgonians, sponges, and algae, at 15 fore-reef sites (12-15m depth) across the Belizean Barrier Reef (BBR) from 1997 to 2016. We also tested whether Marine Protected Areas (MPAs), in which fishing was prohibited but likely still occurred, mitigated these changes. Additionally, we determined whether ocean-temperature anomalies (measured via satellite) or local human impacts (estimated using the Human Influence Index, HII) were related to changes in benthic community structure. We observed a reduction in the cover of reef-building corals, including the long-lived, massive corals Orbicella spp. (from 13 to 2%), and an increase in fleshy and corticated macroalgae across most sites. These and other changes to the benthic communities were unaffected by local protection. The covers of hard-coral taxa, including Acropora spp., Montastraea cavernosa, Orbicella spp., and Porites spp., were negatively related to the frequency of ocean-temperature anomalies. Only gorgonian cover was related, negatively, to our metric of the magnitude of local impacts (HII). Our results suggest that benthic communities along the BBR have experienced disturbances that are beyond the capacity of the current management structure to mitigate. We recommend that managers devote greater resources and capacity to enforcing and expanding existing marine protected areas and to mitigating local stressors, and most importantly, that government, industry, and the public act immediately to reduce global carbon emissions.
Collapse
Affiliation(s)
- Catherine Alves
- Environment, Ecology, and Energy Program, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- ECS Federal, Inc., in support of Northeast Fisheries Science Center, Social Science Branch, National Oceanic and Atmospheric Administration, Narragansett, RI, United States of America
| | | | - Richard B. Aronson
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, Florida, United States of America
| | - Nadia Bood
- World Wildlife Fund Mesoamerica, Belize Field Programme Office, Belize City, Belize, Central America
| | - Karl D. Castillo
- Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Courtney Cox
- Rare, Arlington, Virginia, United States of America
| | - Clare Fieseler
- Science, Technology, and International Affairs Program, Georgetown University, Washington, District of Columbia, United States of America
| | - Zachary Locklear
- Green Bay Wildlife Conservation Office, United States Fish and Wildlife Service, New Franken, Wisconsin, United States of America
| | - Melanie McField
- Healthy Reefs for Healthy People Initiative, Smithsonian Institution, Fort Pierce, FL, United States of America
| | - Laura Mudge
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Integral Consulting Inc., Annapolis, Maryland, United States of America
| | - James Umbanhowar
- Environment, Ecology, and Energy Program, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John F. Bruno
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
12
|
Mumby PJ, Chaloupka M, Bozec Y, Steneck RS, Montero‐Serra I. Revisiting the evidentiary basis for ecological cascades with conservation impacts. Conserv Lett 2021. [DOI: 10.1111/conl.12847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Peter J. Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences The University of Queensland St. Lucia Queensland Australia
| | - Milani Chaloupka
- Marine Spatial Ecology Lab, School of Biological Sciences The University of Queensland St. Lucia Queensland Australia
| | - Yves‐Marie Bozec
- Marine Spatial Ecology Lab, School of Biological Sciences The University of Queensland St. Lucia Queensland Australia
| | - Robert S. Steneck
- Darling Marine Center, School of Marine Sciences University of Maine Walpole Maine USA
| | - Ignasi Montero‐Serra
- Marine Spatial Ecology Lab, School of Biological Sciences The University of Queensland St. Lucia Queensland Australia
| |
Collapse
|
13
|
Mumby PJ, Steneck RS, Roff G, Paul VJ. Marine reserves, fisheries ban, and 20 years of positive change in a coral reef ecosystem. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:1473-1483. [PMID: 33909928 DOI: 10.1111/cobi.13738] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
By 2004, Belize was exhibiting classic fishing down of the food web. Groupers (Serranidae) and snappers (Lutjanidae) were scarce and fisheries turned to parrotfishes (Scarinae), leading to a 41% decline in their biomass. Several policies were enacted in 2009-2010, including a moratorium on fishing parrotfish and a new marine park with no-take areas. Using a 20-year time series on reef fish and benthos, we evaluated the impact of these policies approximately 10 years after their implementation. Establishment of the Southwater Caye Marine Reserve led to a recovery of snapper at 2 out of 3 sites, but there was no evidence of recovery outside the reserve. Snapper populations in an older reserve continued to increase, implying that at least 9 years is required for their recovery. Despite concerns over the feasibility of banning parrotfish harvest once it has become a dominant fin fishery, parrotfishes returned and exceeded biomass levels prior to the fishery. The majority of these changes involved an increase in parrotfish density; species composition and adult body size generally exhibited little change. Recovery occurred equally well in reserves and areas open to other forms of fishing, implying strong compliance. Temporal trends in parrotfish grazing intensity were strongly negatively associated with the cover of macroalgae, which by 2018 had fallen to the lowest levels observed since measurements began in 1998. Coral populations remained resilient and continued to exhibit periods of net recovery after disturbance. We found that a moratorium on parrotfish harvesting is feasible and appears to help constrain macroalgae, which can otherwise impede coral resilience.
Collapse
Affiliation(s)
- Peter J Mumby
- Marine Spatial Ecology Lab & ARC Centre of Excellence for Coral Reef Science, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Robert S Steneck
- Darling Marine Center, School of Marine Sciences, University of Maine, Walpole, Maine, USA
| | - George Roff
- Marine Spatial Ecology Lab & ARC Centre of Excellence for Coral Reef Science, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | | |
Collapse
|
14
|
Gouezo M, Fabricius K, Harrison P, Golbuu Y, Doropoulos C. Optimizing coral reef recovery with context-specific management actions at prioritized reefs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113209. [PMID: 34346392 DOI: 10.1016/j.jenvman.2021.113209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/06/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Assisting the natural recovery of coral reefs through local management actions is needed in response to increasing ecosystem disturbances in the Anthropocene. There is growing evidence that commonly used resilience-based passive management approaches may not be sufficient to maintain coral reef key functions. We synthesize and discuss advances in coral reef recovery research, and its application to coral reef conservation and restoration practices. We then present a framework to guide the decision-making of reef managers, scientists and other stakeholders, to best support reef recovery after a disturbance. The overall aim of this management framework is to catalyse reef recovery, to minimize recovery times, and to limit the need for ongoing management interventions into the future. Our framework includes two main stages: first, a prioritization method for assessment following a large-scale disturbance, which is based on a reef's social-ecological values, and on a classification of the likelihood of recovery or succession resulting in degraded, novel, hybrid or historical states. Second, a flow chart to assist with determining management actions for highly valued reefs. Potential actions are chosen based on the ecological attributes of the disturbed reef, defined during ecological assessments. Depending on the context, management actions may include (1) substrata rehabilitation actions to facilitate natural coral recruitment, (2) repopulating actions using active restoration techniques, (3) resilience-based management actions and (4) monitoring coral recruitment and growth to assess the effectiveness of management interventions. We illustrate the proposed decision framework with a case study of typhoon-damaged eastern outer reefs in Palau, Micronesia. The decisions made following this framework lead to the conclusion that some reefs may not return to their historical state for many decades. However, if motivation and funds are available, new management approaches can be explored to assist coral reefs at valued locations to return to a functional state providing key ecosystem services.
Collapse
Affiliation(s)
- Marine Gouezo
- Palau International Coral Reef Center, PO Box 7086, Koror, Palau; Marine Ecology Research Centre, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.
| | - Katharina Fabricius
- Australian Institute of Marine Science, PMB 3, Townsville, QLD 4810, Australia.
| | - Peter Harrison
- Marine Ecology Research Centre, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.
| | - Yimnang Golbuu
- Palau International Coral Reef Center, PO Box 7086, Koror, Palau.
| | | |
Collapse
|
15
|
Ortiz JC, Pears RJ, Beeden R, Dryden J, Wolff NH, Gomez Cabrera MDC, Mumby PJ. Important ecosystem function, low redundancy and high vulnerability: The trifecta argument for protecting the Great Barrier Reef's tabular
Acropora. Conserv Lett 2021. [DOI: 10.1111/conl.12817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Juan C. Ortiz
- Australian Institute of Marine Science Townsville Queensland Australia
| | - Rachel J. Pears
- Great Barrier Reef Marine Park Authority Townsville Queensland Australia
| | - Roger Beeden
- Great Barrier Reef Marine Park Authority Townsville Queensland Australia
| | - Jen Dryden
- Great Barrier Reef Marine Park Authority Townsville Queensland Australia
| | | | | | - Peter J Mumby
- School of Biological Sciences The University of Queensland St Lucia Queensland Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies Douglas Queensland Australia
| |
Collapse
|
16
|
Tebbett SB, Bellwood DR. Algal turf productivity on coral reefs: A meta-analysis. MARINE ENVIRONMENTAL RESEARCH 2021; 168:105311. [PMID: 33798994 DOI: 10.1016/j.marenvres.2021.105311] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 05/26/2023]
Abstract
Algal turfs are an abundant and highly productive component of coral reef ecosystems. However, our understanding of the drivers that shape algal turf productivity across studies and among reefs is limited. Based on published studies we considered how different factors may shape turf productivity and turnover rates. Of the factors considered, depth was the primary driver of turf productivity rates, while turnover was predominantly related to turf biomass. We also highlight shortcomings in the available data collected on turf productivity to-date; most data were collected prior to global coral bleaching events, within a limited geographic range, and were largely from experimental substrata. Despite the fact turfs are a widespread benthic covering on most coral reefs, and one of the major sources of benthic productivity, our understanding of their productivity is constrained by both a paucity of data and methodological limitations. We offer a potential way forward to address these challenges.
Collapse
Affiliation(s)
- Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia.
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
17
|
Cortés-Useche C, Hernández-Delgado EA, Calle-Triviño J, Sellares Blasco R, Galván V, Arias-González JE. Conservation actions and ecological context: optimizing coral reef local management in the Dominican Republic. PeerJ 2021; 9:e10925. [PMID: 33854832 PMCID: PMC7953877 DOI: 10.7717/peerj.10925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/20/2021] [Indexed: 01/04/2023] Open
Abstract
Over the past few decades, coral reef ecosystems have been lost at accelerated rates as a result of global climate change and local stressors. Local management schemes can help improve the condition of coral reefs by enhancing their ecosystem recovery capacity. Caribbean conservation efforts include mitigation of local anthropogenic stressors, and integrating social participation. Here, we analyzed the case of the Bayahibe reefs in the Southeastern (SE) Dominican Republic to identify conservation actions and illustrate a conceptual example of local seascape management. We assessed reef health indicators from 2011 to 2016. Overall, our results show increases in total fish biomass, in both commercial and herbivorous fishes. Mean live coral cover was 31% and fleshy macroalgae was 23% after multiple disturbances such as Hurricanes Sandy and Isaac (2012), Mathew (2016) and heat stress presented in the study area in 2015. We also described actions taken by stakeholders and government institutions, including the implementation of a policy declaring an area of 869,000 ha as a marine protected area (MPA), enhanced water quality treatment, local restrictions to vessel traffic, enforcement of fishing regulations, and the removal of invasive lionfish (Pterois spp.). In addition, a restoration program for the threatened staghorn coral (Acropora cervicornis) was established in 2011, and currently has eight coral nurseries and six outplanting sites. Considering the biology and ecology of these reefs, we observed good results for these indicators (live coral cover, fish biomass, and water quality) in contrast with severely degraded Caribbean reefs, suggesting that optimizing local management may be a useful example for improving reef condition. Our results provide an overview of trends in reef condition in the SE Dominican Republic and could support current strategies to better protect reefs in the region. Given that Caribbean coral reefs face extreme challenges from global climate change, management measures may improve reef conditions across the region but stronger policy processes and increased scientific knowledge are needed for the successful management of coral reefs.
Collapse
Affiliation(s)
- Camilo Cortés-Useche
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N, Mérida, Yucatán, México.,Wave Of Change, Iberostar Hotels & Resorts, Playa Paraíso, Quintana Roo, México
| | - Edwin A Hernández-Delgado
- Deparment of Environmental Sciences, University of Puerto Rico, San Juan, Puerto Rico.,Center for Applied Tropical Ecology and Conservation, University of Puerto Rico, San Juan, Puerto Rico.,Sociedad Ambiente Marino, San Juan, Puerto Rico
| | - Johanna Calle-Triviño
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N, Mérida, Yucatán, México.,Wave Of Change, Iberostar Hotels & Resorts, Playa Paraíso, Quintana Roo, México
| | - Rita Sellares Blasco
- Fundación Dominicana de Estudios Marinos, Bayahibe, La Altagracia, Dominican Republic
| | - Victor Galván
- Wave Of Change, Iberostar Hotels & Resorts, Playa Paraíso, Quintana Roo, México
| | - Jesús E Arias-González
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N, Mérida, Yucatán, México
| |
Collapse
|
18
|
Abstract
Once spectacular coral reefs have often become overrun by persistent seaweed. A new study reveals that elevating the density of herbivorous spider crabs to unnatural levels can reduce seaweed and help corals recover.
Collapse
Affiliation(s)
- Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
19
|
Knowlton N. Ocean Optimism: Moving Beyond the Obituaries in Marine Conservation. ANNUAL REVIEW OF MARINE SCIENCE 2021; 13:479-499. [PMID: 32503374 DOI: 10.1146/annurev-marine-040220-101608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
While the ocean has suffered many losses, there is increasing evidence that important progress is being made in marine conservation. Examples include striking recoveries of once-threatened species, increasing rates of protection of marine habitats, more sustainably managed fisheries and aquaculture, reductions in some forms of pollution, accelerating restoration of degraded habitats, and use of the ocean and its habitats to sequester carbon and provide clean energy. Many of these achievements have multiple benefits, including improved human well-being. Moreover, better understanding of how to implement conservation strategies effectively, new technologies and databases, increased integration of the natural and social sciences, and use of indigenous knowledge promise continued progress. Enormous challenges remain, and there is no single solution; successful efforts typically are neither quick nor cheap and require trust and collaboration. Nevertheless, a greater focus on solutions and successes will help them to become the norm rather than the exception.
Collapse
Affiliation(s)
- Nancy Knowlton
- National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA;
| |
Collapse
|
20
|
Abstract
Abstract
Modern-day Indo-Pacific coral reefs are characterized by rapid recovery driven by pulses of coral recruitment, but Caribbean reefs exhibit low rates of recruitment and poor recovery following a wide range of disturbance events. The contrasting evolutionary history of coral taxa offers key insight into biogeographic patterns of coral resilience. Following the closure of the Isthmus of Panama approximately 2.8 million years ago, widespread extinction of Caribbean corals led to an evolutionary bottleneck that favored large and long-lived species with a relatively high reliance on asexual versus sexual reproduction. In contrast, adaptive radiation led to the evolution of superrecruiting tabular, digitate, and corymbose corals that drive the rapid recovery of modern-day Indo-Pacific reefs following disturbance. The dominance of branching growth forms and evolutionary absence of superrecruiting growth forms throughout the entire evolutionary history of the Caribbean (approximately 38 million years ago to present) may explain the exceptionally high recruitment rates on modern-day Indo-Pacific reefs and low historical recruitment on Caribbean reefs. The evolutionary history of the Caribbean coral reef-building taxa implies that, even with a reversal of ecosystem state, widespread recovery of Caribbean reefs may be limited.
Collapse
Affiliation(s)
- George Roff
- School of Biological Sciences, University of Queensland, in St. Lucia, Australia
| |
Collapse
|
21
|
Spadaro AJ, Butler MJ. Herbivorous Crabs Reverse the Seaweed Dilemma on Coral Reefs. Curr Biol 2020; 31:853-859.e3. [PMID: 33306950 DOI: 10.1016/j.cub.2020.10.097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/23/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022]
Abstract
Coral reefs are on a steep trajectory of decline, with natural recovery in many areas unlikely.1-3 Eutrophication, overfishing, climate change, and disease have fueled the supremacy of seaweeds on reefs,4,5 particularly in the Caribbean, where many reefs have undergone an ecological phase shift so that seaweeds now dominate previously coral-rich reefs.6-8 Discovery of the powerful grazing capability of the Caribbean's largest herbivorous crab (Maguimithrax spinosissimus)9 led us to test the effectiveness of their grazing on seaweed removal and coral reef recovery in two experiments conducted sequentially at separate locations 15 km apart in the Florida Keys (USA). In those experiments, we transplanted crabs onto several patch reefs, leaving others as controls (n = 24 reefs total; each 10-20 m2 in area) and then monitored benthic cover, coral recruitment, and fish community structure on each patch reef for a year. We also compared the effectiveness of crab herbivory to scrubbing reefs by hand to remove algae. Crabs reduced the cover of seaweeds by 50%-80%, resulting in a commensurate 3-5-fold increase in coral recruitment and reef fish community abundance and diversity. Although laborious hand scrubbing of reefs also reduced algal cover, that effect was transitory unless maintained by the addition of herbivorous crabs. With the persistence of Caribbean coral reefs in the balance, our findings demonstrate that large-scale restoration that includes enhancement of invertebrate herbivores can reverse the ecological phase shift on coral reefs away from seaweed dominance.
Collapse
Affiliation(s)
- Angelo Jason Spadaro
- Division of Marine Science and Technology, The College of the Florida Keys, Key West, FL 33040, USA.
| | - Mark J Butler
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33181, USA.
| |
Collapse
|
22
|
Gómez-Andújar NX, Hernandez-Delgado EA. Spatial benthic community analysis of shallow coral reefs to support coastal management in Culebra Island, Puerto Rico. PeerJ 2020; 8:e10080. [PMID: 33088617 PMCID: PMC7568481 DOI: 10.7717/peerj.10080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/11/2020] [Indexed: 11/20/2022] Open
Abstract
Caribbean coral reefs provide essential ecosystem services to society, including fisheries, tourism and shoreline protection from coastal erosion. However, these reefs are also exhibiting major declining trends, leading to the evolution of novel ecosystems dominated by non-reef building taxa, with potentially altered ecological functions. In the search for effective management strategies, this study characterized coral reefs in front of a touristic beach which provides economic benefits to the surrounding coastal communities yet faces increasing anthropogenic pressures and conservation challenges. Haphazard photo-transects were used to address spatial variation patterns in the reef’s benthic community structure in eight locations. Statistically significant differences were found with increasing distance from the shoreline, reef rugosity, Diadema antillarum density, among reef locations, and as a function of recreational use. Nearshore reefs reflected higher percent macroalgal cover, likely due to increased exposure from both recreational activities and nearby unsustainable land-use practices. However, nearshore reefs still support a high abundance of the endangered reef-building coral Orbicella annularis, highlighting the need to conserve these natural shoreline protectors. There is an opportunity for local stakeholders and regulatory institutions to collaboratively implement sea-urchin propagation, restoration of endangered Acroporid coral populations, and zoning of recreational densities across reefs. Our results illustrate vulnerable reef hotspots where these management interventions are needed and recommend guidelines to address them.
Collapse
Affiliation(s)
- Nicolás X Gómez-Andújar
- Department of Environmental Sciences, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico.,Sociedad Ambiente Marino, San Juan, Puerto Rico.,Marine Resource Management, College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - Edwin A Hernandez-Delgado
- Department of Environmental Sciences, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico.,Sociedad Ambiente Marino, San Juan, Puerto Rico.,Center for Applied Tropical Ecology and Conservation, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
23
|
Keith DM, Sameoto JA, Keyser FM, Ward-Paige CA. Evaluating socio-economic and conservation impacts of management: A case study of time-area closures on Georges Bank. PLoS One 2020; 15:e0240322. [PMID: 33048972 PMCID: PMC7553282 DOI: 10.1371/journal.pone.0240322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/23/2020] [Indexed: 12/02/2022] Open
Abstract
Globally, economies and marine ecosystems are increasingly dependent on sustainable fisheries management (SFM) to balance social, economic, and conservation needs. The overarching objectives of SFM are to maximize both conservation and socio-economic benefits, while minimizing short-term socio-economic costs. A number of tools have been developed to achieve SFM objectives, ranging from fishery specific to ecosystem-based strategies. Closures are a common SFM tool used to balance the trade-off between socio-economic and conservation considerations; they vary in scope from small-scale temporary closures to large-scale permanent networks. Unfortunately, closures are frequently implemented without a plan for monitoring or assessing whether SFM objectives are met. In situations in which a monitoring plan is not in place we propose that commonly available fishery data can often be used to evaluate whether management tools are effective in meeting SFM objectives. Here, we present a case study of closures on Georges Bank that shows how fishery data can be analyzed to perform such an assessment. Since 2006, on the Canadian side of Georges Bank, seasonal scallop fishery closures have been implemented with the aim of reducing by-catch of Atlantic cod (Gadus morhua) and yellowtail flounder (Pleuronectes ferruginea) during spawning. In lieu of data from a dedicated monitoring program, we analyzed data from Vessel Monitoring Systems (VMS), fishery logbooks, and a scallop survey to assess the impact of these closures on the scallop fishery, and use observer data (i.e. by-catch) to assess the effectiveness of these closures in meeting their conservation objective. While compliance for these time-area closures was high, the closures did not significantly displace fishing activity and overall there was limited evidence of an impact on the scallop fishery. Further, the discard rates for both cod and yellowtail were above average when their respective closures were active. These results suggest that improvements to the closures design and/or other measures may be required to achieve the desired SFM objectives.
Collapse
Affiliation(s)
- David M. Keith
- Population Ecology Division, Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| | - Jessica A. Sameoto
- Population Ecology Division, Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
| | - Freya M. Keyser
- Population Ecology Division, Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
| | | |
Collapse
|
24
|
Site-Level Variation in Parrotfish Grazing and Bioerosion as a Function of Species-Specific Feeding Metrics. DIVERSITY 2020. [DOI: 10.3390/d12100379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Parrotfish provide important ecological functions on coral reefs, including the provision of new settlement space through grazing and the generation of sediment through bioerosion of reef substrate. Estimating these functions at an ecosystem level depends on accurately quantifying the functional impact of individuals, yet parrotfish feeding metrics are only available for a limited range of sites, species and size classes. We quantified bite rates, proportion of bites leaving scars and scar sizes in situ for the dominant excavator (Cetoscarus ocellatus, Chlorurus strongylocephalus, Ch. sordidus) and scraper species (Scarus rubroviolaceus, S. frenatus, S. niger, S. tricolor, S. scaber, S. psittacus) in the central Indian Ocean. This includes the first record of scar frequencies and sizes for the latter three species. Bite rates varied with species and life phase and decreased with body size. The proportion of bites leaving scars and scar sizes differed among species and increased with body size. Species-level allometric relationships between body size and each of these feeding metrics were used to parameterize annual individual grazing and bioerosion rates which increase non-linearly with body size. Large individuals of C. ocellatus, Ch. strongylocephalus and S. rubroviolaceus can graze 200–400 m2 and erode >500 kg of reef substrate annually. Smaller species graze 1–100 m2 yr−1 and erode 0.2–30 kg yr−1. We used these individual functional rates to quantify community grazing and bioerosion levels at 15 sites across the Maldives and the Chagos Archipelago. Although parrotfish density was 2.6 times higher on Maldivian reefs, average grazing (3.9 ± 1.4 m2 m−2 reef yr−1) and bioerosion levels (3.1 ± 1.2 kg m−2 reef yr−1) were about 15% lower than in the Chagos Archipelago (4.5 ± 2.3 and 3.7 ± 3.0, respectively), due to the dominance of small species and individuals in the Maldives (90% <30 cm length). This demonstrates that large-bodied species and individuals contribute disproportionally to both grazing and bioerosion. Across all sites, grazing increased by 66 ± 5 m2 ha−1 and bioerosion by 109 ± 9 kg ha−1 for every kg increase in parrotfish biomass. However, for a given level of parrotfish biomass, grazing and bioerosion levels were higher on Maldivian reefs than in the Chagos Archipelago. This suggests that small-bodied fish assemblages can maintain ecosystem functions, but only if key species are present in sufficiently high numbers.
Collapse
|
25
|
Tebbett SB, Goatley CHR, Streit RP, Bellwood DR. Algal turf sediments limit the spatial extent of function delivery on coral reefs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139422. [PMID: 32460082 DOI: 10.1016/j.scitotenv.2020.139422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
The presence of key organisms is frequently associated with the delivery of specific ecosystem functions. Areas with such organisms are therefore often considered to have greater levels of these functions. While this assumption has been the backbone of coral reef ecosystem-based management approaches for decades, we currently have only a limited understanding of how fish presence equates to function on coral reefs and whether this relationship is susceptible to stressors. To assess the capacity of a stressor to shape function delivery we used a multi-scale approach ranging from tens of kilometres across the continental shelf of Australia's Great Barrier Reef, down to centimetres within a reef habitat. At each scale, we quantified the spatial extent of a model function (detritivory) by a coral reef surgeonfish (Ctenochaetus striatus) and its potential to be shaped by sediments. At broad spatial scales, C. striatus presence was correlated strongly with algal turf sediment loads, while at smaller spatial scales, function delivery appears to be constrained by algal turf sediment distributions. In all cases, sediment loads above ~250-500 g m-2 were associated with a marked decrease in fish abundance or feeding activity, suggesting that a common ecological threshold lies within this range. Our results reveal a complex functional dynamic between proximate agents of function delivery (fish) and the ultimate drivers of function delivery (sediments), which emphasizes: a) weaknesses in the assumed links between fish presence and function, and b) the multi-scale capacity of algal turf sediments to shape reef processes. Unless direct extractive activities (e.g. fishing) are the main driver of function loss on coral reefs, managing to conserve fish abundance is unlikely to yield the desired outcomes. It only addresses one potential driver. Instead, management of both the agents that deliver functions (e.g. fishes), and the drivers that modify functions (e.g. sediments), is needed.
Collapse
Affiliation(s)
- Sterling B Tebbett
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| | - Christopher H R Goatley
- Function, Evolution and Anatomy Research Lab and Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia; Australian Museum Research Institute, Australian Museum, Sydney, New South Wales 2010, Australia
| | - Robert P Streit
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - David R Bellwood
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
26
|
Lester SE, Rassweiler A, McCoy SJ, Dubel AK, Donovan MK, Miller MW, Miller SD, Ruttenberg BI, Samhouri JF, Hay ME. Caribbean reefs of the Anthropocene: Variance in ecosystem metrics indicates bright spots on coral depauperate reefs. GLOBAL CHANGE BIOLOGY 2020; 26:4785-4799. [PMID: 32691514 PMCID: PMC7497265 DOI: 10.1111/gcb.15253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 05/18/2023]
Abstract
Dramatic coral loss has significantly altered many Caribbean reefs, with potentially important consequences for the ecological functions and ecosystem services provided by reef systems. Many studies examine coral loss and its causes-and often presume a universal decline of ecosystem services with coral loss-rather than evaluating the range of possible outcomes for a diversity of ecosystem functions and services at reefs varying in coral cover. We evaluate 10 key ecosystem metrics, relating to a variety of different reef ecosystem functions and services, on 328 Caribbean reefs varying in coral cover. We focus on the range and variability of these metrics rather than on mean responses. In contrast to a prevailing paradigm, we document high variability for a variety of metrics, and for many the range of outcomes is not related to coral cover. We find numerous "bright spots," where herbivorous fish biomass, density of large fishes, fishery value, and/or fish species richness are high, despite low coral cover. Although it remains critical to protect and restore corals, understanding variability in ecosystem metrics among low-coral reefs can facilitate the maintenance of reefs with sustained functions and services as we work to restore degraded systems. This framework can be applied to other ecosystems in the Anthropocene to better understand variance in ecosystem service outcomes and identify where and why bright spots exist.
Collapse
Affiliation(s)
- Sarah E. Lester
- Department of GeographyFlorida State UniversityTallahasseeFLUSA
| | - Andrew Rassweiler
- Department of Biological ScienceFlorida State UniversityTallahasseeFLUSA
| | - Sophie J. McCoy
- Department of Biological ScienceFlorida State UniversityTallahasseeFLUSA
| | - Alexandra K. Dubel
- Department of Biological ScienceFlorida State UniversityTallahasseeFLUSA
| | - Mary K. Donovan
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHIUSA
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCAUSA
| | | | - Scott D. Miller
- Department of Biological ScienceFlorida State UniversityTallahasseeFLUSA
| | - Benjamin I. Ruttenberg
- Biological Sciences Department and Center for Coastal Marine SciencesCalifornia Polytechnic State UniversitySan Luis ObispoCAUSA
| | - Jameal F. Samhouri
- Conservation Biology DivisionNorthwest Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWAUSA
| | - Mark E. Hay
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| |
Collapse
|
27
|
Camacho R, Steele S, Challenger S, Archibald M. Status of coral reefs in Antigua & Barbuda: using data to inform management. PeerJ 2020; 8:e9236. [PMID: 32547869 PMCID: PMC7271886 DOI: 10.7717/peerj.9236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/05/2020] [Indexed: 12/02/2022] Open
Abstract
The nation of Antigua and Barbuda has experienced major degradation of its coral reef ecosystems over the past 40+ years. The primary drivers of this degradation are multiple and are highly linked to anthropogenic influences, including over-exploitation and poor management of marine resources. The effectiveness of management actions in marine protected areas (MPAs) has often been hampered by a lack of data to inform management recommendations. This was emphasized by The Nature Conservancy’s (TNC) Coral Reef Report Card which highlighted not only the lack of data collection in Antigua and Barbuda and other Caribbean nations, but also illustrated how spatially dispersed available datasets are. The government of Antigua and Barbuda recognized the need for a marine data collection program to better inform the designation and management of MPAs as a tool to improve the health of the marine ecosystems. The Atlantic Gulf Rapid Reef Assessment (AGRRA) protocol has been identified as a means to address planning and management for marine areas. Three AGRRA surveys have been conducted in the years following the TNC 2016 report, in previously established managed areas: North East Marine Management Area (NEMMA) in 2017 and Nelson Dockyard National Park (NDNP) in 2019 as well as areas outlined for future management (Redonda in 2018). Our surveys were conducted to provide updated datasets to inform management for the aforementioned areas. While the results of these surveys mirror the underlying poor coral reef-health conditions, which have been shown to exist within the Caribbean region, they also highlight intra-site variation that exists within each survey location. This knowledge can be crucial in guiding management decisions in these marine areas, through zoning and other management prescriptions. Additionally, the marine surveys conducted around Redonda established useful marine baselines to aid in monitoring the island’s recovery following removal of terrestrial invasive species. This article provides an overview of data collected using the AGRRA methodology in marine zones across Antigua and Barbuda which have current or future management prescriptions and provides recommendations to demonstrate the data’s future utilization for marine conservation and management.
Collapse
Affiliation(s)
- Ruleo Camacho
- Department of Environment, Government of Antigua and Barbuda, St. John, Antigua and Barbuda
| | | | - Shanna Challenger
- Redonda Restoration Program, Environmental Awareness Group, St. John, Antigua and Barbuda
| | - Mark Archibald
- Fisheries Division, Government of Antigua and Barbuda, St. John, Antigua and Barbuda
| |
Collapse
|
28
|
Cinner JE, Zamborain-Mason J, Gurney GG, Graham NAJ, MacNeil MA, Hoey AS, Mora C, Villéger S, Maire E, McClanahan TR, Maina JM, Kittinger JN, Hicks CC, D’agata S, Huchery C, Barnes ML, Feary DA, Williams ID, Kulbicki M, Vigliola L, Wantiez L, Edgar GJ, Stuart-Smith RD, Sandin SA, Green AL, Beger M, Friedlander AM, Wilson SK, Brokovich E, Brooks AJ, Cruz-Motta JJ, Booth DJ, Chabanet P, Tupper M, Ferse SCA, Sumaila UR, Hardt MJ, Mouillot D. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science 2020; 368:307-311. [DOI: 10.1126/science.aax9412] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 03/18/2020] [Indexed: 12/26/2022]
Abstract
The worldwide decline of coral reefs necessitates targeting management solutions that can sustain reefs and the livelihoods of the people who depend on them. However, little is known about the context in which different reef management tools can help to achieve multiple social and ecological goals. Because of nonlinearities in the likelihood of achieving combined fisheries, ecological function, and biodiversity goals along a gradient of human pressure, relatively small changes in the context in which management is implemented could have substantial impacts on whether these goals are likely to be met. Critically, management can provide substantial conservation benefits to most reefs for fisheries and ecological function, but not biodiversity goals, given their degraded state and the levels of human pressure they face.
Collapse
Affiliation(s)
- Joshua E. Cinner
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Jessica Zamborain-Mason
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Georgina G. Gurney
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Nicholas A. J. Graham
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Lancaster University, Lancaster, Lancashire, UK
| | | | - Andrew S. Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Camilo Mora
- University of Hawai‘i at Manoa, Honolulu, HI, USA
| | | | - Eva Maire
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Lancaster University, Lancaster, Lancashire, UK
- University of Montpellier, Montpellier, France
| | | | - Joseph M. Maina
- Wildlife Conservation Society, Bronx, NY, USA
- Macquarie University, Sydney, NSW, Australia
| | | | - Christina C. Hicks
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Lancaster University, Lancaster, Lancashire, UK
| | - Stephanie D’agata
- University of Montpellier, Montpellier, France
- Wildlife Conservation Society, Bronx, NY, USA
- Macquarie University, Sydney, NSW, Australia
- ENTROPIE, IRD-UR-UNC-CNRS-IFREMER, La Réunion/New Caledonia, France
| | - Cindy Huchery
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Michele L. Barnes
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | | | - Ivor D. Williams
- National Oceanic and Atmospheric Administration, Washington, DC, USA
| | - Michel Kulbicki
- ENTROPIE, IRD-UR-UNC-CNRS-IFREMER, La Réunion/New Caledonia, France
| | - Laurent Vigliola
- ENTROPIE, IRD-UR-UNC-CNRS-IFREMER, La Réunion/New Caledonia, France
| | - Laurent Wantiez
- ENTROPIE, IRD-UR-UNC-CNRS-IFREMER, La Réunion/New Caledonia, France
| | | | | | | | | | - Maria Beger
- University of Leeds, Leeds, West Yorkshire, UK
| | | | - Shaun K. Wilson
- Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia
| | | | | | | | | | - Pascale Chabanet
- ENTROPIE, IRD-UR-UNC-CNRS-IFREMER, La Réunion/New Caledonia, France
| | - Mark Tupper
- University of Portsmouth, Portsmouth, Hampshire, UK
| | | | | | | | - David Mouillot
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- University of Montpellier, Montpellier, France
| |
Collapse
|
29
|
Tebbett SB, Bellwood DR. Sediments ratchet-down coral reef algal turf productivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136709. [PMID: 32019043 DOI: 10.1016/j.scitotenv.2020.136709] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 05/21/2023]
Abstract
Coral reefs are highly productive ecosystems, with much of this productivity arising from the algal turfs which cover the hard reef substratum. This productivity can flow up the food chain through herbivorous fishes, to be harvested by humans as fishable biomass. However, algal turfs exist on a spectrum of forms from short productive algal turfs (SPATs), to long sediment-laden algal turfs (LSATs). The latter are increasingly likely to typify Anthropocene coral reefs, however, we have a limited understanding of their nature and potential productivity. We assessed the nature of algal turfs in terms of length, biomass, relative detritus content, and productivity across a sediment load gradient, from SPATs to LSATs, at two reefs separated by >450 km along Australia's Great Barrier Reef (GBR). Furthermore, to assess the capacity of sediments to shape productivity, we modelled algal turf productivity, as a function of sediment load, across multiple spatial scales in a Bayesian framework. We recorded precipitous declines in both the productivity of algal turfs, and the relative nutritional value of particulates, up to sediment loads of ~100 g m-2. However, algal turf biomass did not change with sediment loads. This appears to reflect a shift in algal community composition from short, high-biomass, highly-productive algae at low sediment loads, to longer, low-biomass, less productive algae at high sediment loads. Importantly, these relationships provide a robust framework for estimating algal turf productivity on coral reefs. Indeed, when we applied our models to known sediment loads, we reveal that sediment loads alone can explain observed algal turf productivity gradients across multiple spatial scales. In an era of global climate change and coral reef reconfiguration, algal turf sediments may hold the key to maintaining benthic productivity on coral reefs in the Anthropocene.
Collapse
Affiliation(s)
- Sterling B Tebbett
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| | - David R Bellwood
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
30
|
Lam VYY, Doropoulos C, Bozec YM, Mumby PJ. Resilience Concepts and Their Application to Coral Reefs. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Gouezo M, Golbuu Y, Fabricius K, Olsudong D, Mereb G, Nestor V, Wolanski E, Harrison P, Doropoulos C. Drivers of recovery and reassembly of coral reef communities. Proc Biol Sci 2020; 286:20182908. [PMID: 30963834 DOI: 10.1098/rspb.2018.2908] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding processes that drive community recovery are needed to predict ecosystem trajectories and manage for impacts under increasing global threats. Yet, the quantification of community recovery in coral reefs has been challenging owing to a paucity of long-term ecological data and high frequency of disturbances. Here we investigate community re-assembly and the bio-physical drivers that determine the capacity of coral reefs to recover following the 1998 bleaching event, using long-term monitoring data across four habitats in Palau. Our study documents that the time needed for coral reefs to recover from bleaching disturbance to coral-dominated state in disturbance-free regimes is at least 9-12 years. Importantly, we show that reefs in two habitats achieve relative stability to a climax community state within that time frame. We then investigated the direct and indirect effects of drivers on the rate of recovery of four dominant coral groups using a structural equation modelling approach. While the rates of recovery differed among coral groups, we found that larval connectivity and juvenile coral density were prominent drivers of recovery for fast growing Acropora but not for the other three groups. Competitive algae and parrotfish had negative and positive effects on coral recovery in general, whereas wave exposure had variable effects related to coral morphology. Overall, the time needed for community re-assembly is habitat specific and drivers of recovery are taxa specific, considerations that require incorporation into planning for ecosystem management under climate change.
Collapse
Affiliation(s)
- Marine Gouezo
- 1 Palau International Coral Reef Center , PO Box 7086, Koror , Palau.,2 Marine Ecology Research Centre, Southern Cross University , PO Box 157, Lismore, New South Wales 2480 , Australia
| | - Yimnang Golbuu
- 1 Palau International Coral Reef Center , PO Box 7086, Koror , Palau
| | - Katharina Fabricius
- 3 Australian Institute of Marine Science , PMB 3, Townsville, Queensland 4810 , Australia
| | - Dawnette Olsudong
- 1 Palau International Coral Reef Center , PO Box 7086, Koror , Palau
| | - Geory Mereb
- 1 Palau International Coral Reef Center , PO Box 7086, Koror , Palau
| | - Victor Nestor
- 1 Palau International Coral Reef Center , PO Box 7086, Koror , Palau
| | - Eric Wolanski
- 4 TropWATER and College of Marine and Environmental Sciences, James Cook University , Townsville, Queensland , Australia
| | - Peter Harrison
- 2 Marine Ecology Research Centre, Southern Cross University , PO Box 157, Lismore, New South Wales 2480 , Australia
| | | |
Collapse
|
32
|
Suggett DJ, Smith DJ. Coral bleaching patterns are the outcome of complex biological and environmental networking. GLOBAL CHANGE BIOLOGY 2020; 26:68-79. [PMID: 31618499 DOI: 10.1111/gcb.14871] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/20/2019] [Indexed: 05/26/2023]
Abstract
Continued declines in coral reef health over the past three decades have been punctuated by severe mass coral bleaching-induced mortality events that have grown in intensity and frequency under climate change. Intensive global research efforts have therefore persistently focused on bleaching phenomena to understand where corals bleach, when and why-resulting in a large-yet still somewhat patchy-knowledge base. Particularly catastrophic bleaching-induced coral mortality events in the past 5 years have catalyzed calls for a more diverse set of reef management tools, extending far beyond climate mitigation and reef protection, to also include more aggressive interventions. However, the effectiveness of these various tools now rests on rapidly assimilating our knowledge base of coral bleaching into more integrated frameworks. Here, we consider how the past three decades of intensive coral bleaching research has established the basis for complex biological and environmental networks, which together regulate outcomes of bleaching severity. We discuss how we now have enough scaffold for conceptual biological and environmental frameworks underpinning bleaching susceptibility, but that new tools are urgently required to translate this to an operational system informing-and testing-bleaching outcomes. Specifically, adopting network models that can fully describe and predict metabolic functioning of coral holobionts, and how this functioning is regulated by complex doses and interactions among environmental factors. Identifying knowledge gaps limiting operation of such models is the logical step to immediately guide and prioritize future experiments and observations. We are at a time-critical point where we can implement new capacity to resolve how coral bleaching patterns emerge from complex biological-environmental networks, and so more effectively inform rapidly evolving ecological management and social adaptation frameworks aimed at securing the future of coral reefs.
Collapse
Affiliation(s)
- David J Suggett
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - David J Smith
- Coral Reef Research Unit, School of Biological Sciences, University of Essex, Colchester, UK
| |
Collapse
|
33
|
Robinson JPW, McDevitt‐Irwin JM, Dajka J, Hadj‐Hammou J, Howlett S, Graba‐Landry A, Hoey AS, Nash KL, Wilson SK, Graham NAJ. Habitat and fishing control grazing potential on coral reefs. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13457] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | - Jan‐Claas Dajka
- Lancaster Environment Centre Lancaster University Lancaster UK
| | | | | | - Alexia Graba‐Landry
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | - Andrew S. Hoey
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | - Kirsty L. Nash
- Centre for Marine Socioecology University of Tasmania Hobart Tas. Australia
- Institute for Marine & Antarctic Studies University of Tasmania Hobart Tas. Australia
| | - Shaun K. Wilson
- Department of Biodiversity, Conservation and Attractions: Marine Science Program Kensington WA Australia
- Oceans Institute University of Western Australia Crawley WA Australia
| | | |
Collapse
|
34
|
Lefcheck JS, Innes-Gold AA, Brandl SJ, Steneck RS, Torres RE, Rasher DB. Tropical fish diversity enhances coral reef functioning across multiple scales. SCIENCE ADVANCES 2019; 5:eaav6420. [PMID: 30854434 PMCID: PMC6402845 DOI: 10.1126/sciadv.aav6420] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/23/2019] [Indexed: 05/24/2023]
Abstract
There is now a general consensus that biodiversity positively affects ecosystem functioning. This consensus, however, stems largely from small-scale experiments, raising the question of whether diversity effects operate at multiple spatial scales and flow on to affect ecosystem structure in nature. Here, we quantified rates of fish herbivory on algal turf communities across multiple coral reefs spanning >1000 km of coastline in the Dominican Republic. We show that mass-standardized herbivory rates are best predicted by herbivore biomass and herbivore species richness both within (α-diversity) and across sites in the region (β-diversity). Using species-diversity models, we demonstrate that many common grazer species are necessary to maximize the process of herbivory. Last, we link higher herbivory rates to reduced algal turf height and enhanced juvenile coral recruitment throughout the ecosystem. Our results suggest that, in addition to high herbivore biomass, conserving biodiversity at multiple scales is important for sustaining coral reef function.
Collapse
Affiliation(s)
- Jonathan S. Lefcheck
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA
- Tennenbaum Marine Observatories Network, MarineGEO, Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
| | | | | | | | - Ruben E. Torres
- Reef Check Dominican Republic, Santo Domingo, DN 10148, Dominican Republic
| | | |
Collapse
|
35
|
Bruno JF, Côté IM, Toth LT. Climate Change, Coral Loss, and the Curious Case of the Parrotfish Paradigm: Why Don't Marine Protected Areas Improve Reef Resilience? ANNUAL REVIEW OF MARINE SCIENCE 2019; 11:307-334. [PMID: 30606097 DOI: 10.1146/annurev-marine-010318-095300] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Scientists have advocated for local interventions, such as creating marine protected areas and implementing fishery restrictions, as ways to mitigate local stressors to limit the effects of climate change on reef-building corals. However, in a literature review, we find little empirical support for the notion of managed resilience. We outline some reasons for why marine protected areas and the protection of herbivorous fish (especially parrotfish) have had little effect on coral resilience. One key explanation is that the impacts of local stressors (e.g., pollution and fishing) are often swamped by the much greater effect of ocean warming on corals. Another is the sheer complexity (including numerous context dependencies) of the five cascading links assumed by the managed-resilience hypothesis. If reefs cannot be saved by local actions alone, then it is time to face reef degradation head-on, by directly addressing anthropogenic climate change-the root cause of global coral decline.
Collapse
Affiliation(s)
- John F Bruno
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA;
| | - Isabelle M Côté
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Lauren T Toth
- St. Petersburg Coastal and Marine Science Center, US Geological Survey, St. Petersburg, Florida 33701, USA
| |
Collapse
|
36
|
Assessing Cognitive and Social Attitudes toward Environmental Conservation in Coral Reef Social-Ecological Systems. SOCIAL SCIENCES 2018. [DOI: 10.3390/socsci7070109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|