1
|
Cheng P, Klingenhof M, Honig H, Zhang L, Strasser P, Schaaf P, Lei D, Wang D. Synergizing Plasmonic Local Heating and 3D Nanostructures to Boost the Solar-to-Vapor Efficiency Beyond 100. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415655. [PMID: 39632702 PMCID: PMC11795728 DOI: 10.1002/adma.202415655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/14/2024] [Indexed: 12/07/2024]
Abstract
Solving the global challenge of freshwater scarcity is of great significance for over one billion people in the world. Solar water evaporation based on plasmonic nanostructures is one of the most promising technologies due to its high efficiency. However, the efficiency of this plasmonic nanostructure-based technology can hardly achieve 100%. Therefore, it is highly desired to develop new solar converters utilizing plasmonic local heating and reasonable structure design to break the limit of solar-to-vapor efficiency for freshwater production. Here, a plasmonic sponge is developed as a solar evaporation converter with excellent full-solar-spectrum absorption, good heat localization performance, and fast evaporation kinetics through 3D nanostructures, achieving a 131% solar-to-vapor efficiency. Distinct from the traditional 2D localized heating-based evaporation and nonmetallic 3D water evaporation, the 3D plasmonic sponge can simultaneously achieve highly efficient local heating and super large water-air interfaces for boosting solar-to-vapor efficiency. The 3D plasmonic sponge can be also used as a universal converter for purifying seawater, metal ion solutions, organic pollutant solutions, and strong acid and strong alkaline solutions. The full-solar-spectrum absorption, high efficiency, and universality in water purification suggest that the novel 3D plasmonic solar converter can bring a significant way to alleviate the crisis of freshwater resources.
Collapse
Affiliation(s)
- Pengfei Cheng
- Chair Materials for Electrical Engineering and ElectronicsInstitute of Materials Science and Engineering and Institute of Micro and Nanotechnologies MacroNanoTU IlmenauGustav‐Kirchhoff‐Str. 598693IlmenauGermany
- Department of Materials Science and Engineering, Department of PhysicsCentre for Functional PhotonicsHong Kong Branch of National Precious Metals Material Engineering Research Centre, and Hong Kong Institute of Clean EnergyCity University of Hong KongKowloonHong Kong999077China
| | - Malte Klingenhof
- The Electrochemical Energy, Catalysis, and Materials Science LaboratoryDepartment of ChemistryChemical Engineering DivisionTechnical University Berlin10623BerlinGermany
| | - Hauke Honig
- Chair Materials for Electrical Engineering and ElectronicsInstitute of Materials Science and Engineering and Institute of Micro and Nanotechnologies MacroNanoTU IlmenauGustav‐Kirchhoff‐Str. 598693IlmenauGermany
| | - Lei Zhang
- Key Laboratory of Physical Electronics and Devices of Ministry of Education & Shaanxi Key Laboratory of Information Photonic TechniqueSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Peter Strasser
- The Electrochemical Energy, Catalysis, and Materials Science LaboratoryDepartment of ChemistryChemical Engineering DivisionTechnical University Berlin10623BerlinGermany
| | - Peter Schaaf
- Chair Materials for Electrical Engineering and ElectronicsInstitute of Materials Science and Engineering and Institute of Micro and Nanotechnologies MacroNanoTU IlmenauGustav‐Kirchhoff‐Str. 598693IlmenauGermany
| | - Dangyuan Lei
- Department of Materials Science and Engineering, Department of PhysicsCentre for Functional PhotonicsHong Kong Branch of National Precious Metals Material Engineering Research Centre, and Hong Kong Institute of Clean EnergyCity University of Hong KongKowloonHong Kong999077China
| | - Dong Wang
- Chair Materials for Electrical Engineering and ElectronicsInstitute of Materials Science and Engineering and Institute of Micro and Nanotechnologies MacroNanoTU IlmenauGustav‐Kirchhoff‐Str. 598693IlmenauGermany
| |
Collapse
|
2
|
Ali I, Liu JA, Yin LC, Wang L, Liu G. Water adsorption on ferroelectric PbTiO 3 (0 0 1) surface: A density functional theory study. J Colloid Interface Sci 2025; 678:984-991. [PMID: 39270398 DOI: 10.1016/j.jcis.2024.09.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
In this work, combining the density functional theory (DFT) calculations and the ab initio molecular dynamics (AIMD) simulations, the water adsorption behavior, including the molecular and the dissociative adsorption on the negatively polarized (0 0 1) surface of ferroelectric PbTiO3 was comprehensively studied. Our theoretical results show that the dissociative adsorption of water is more energetically favorable than the molecular adsorption on the pristine PbTiO3 (0 0 1) surface. It has been also found that introducing surface oxygen vacancies (OV) can enhance the thermodynamic stability of dissociative adsorption of water molecule. The AIMD simulations demonstrate that water molecule can spontaneously dissociate into hydrogen atoms (H) and hydroxyl groups (OH) on the pristine PbTiO3 (0 0 1) surface at room temperature. Moreover, the surface OV can effectively facilitate the dissociative adsorption of water molecules, leading to a high surface coverage of OH group, thus giving rise to a high reactivity for water splitting on defective PbTiO3 (0 0 1) surface with OV. Our results not only comprehensively understand the reason for the photocatalytic water oxidation activity of single domain PbTiO3, but also shed light on the development of high performance ferroelectric photocatalysts for water splitting.
Collapse
Affiliation(s)
- Ijaz Ali
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Jian-An Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Li-Chang Yin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China.
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia
| | - Gang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
3
|
Elmessery WM, Habib A, Shams MY, Abd El-Hafeez T, El-Messery TM, Elsayed S, Fodah AEM, Abdelwahab TAM, Ali KAM, Osman YKOT, Abdelshafie MF, El-Wahhab GGA, Elwakeel AE. Deep regression analysis for enhanced thermal control in photovoltaic energy systems. Sci Rep 2024; 14:30600. [PMID: 39715782 DOI: 10.1038/s41598-024-81101-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Efficient cooling systems are critical for maximizing the electrical efficiency of Photovoltaic (PV) solar panels. However, conventional temperature probes often fail to capture the spatial variability in thermal patterns across panels, impeding accurate assessment of cooling system performance. Existing methods for quantifying cooling efficiency lack precision, hindering the optimization of PV system maintenance and renewable energy output. This research introduces a novel approach utilizing deep learning techniques to address these limitations. A U-Net architecture is employed to segment solar panels from background elements in thermal imaging videos, facilitating a comprehensive analysis of cooling system efficiency. Two predictive models-a 3-layer Feedforward Neural Network (FNN) and a proposed Convolutional Neural Network (CNN)-are developed and compared for estimating cooling percentages from individual images. The study aims to enhance the precision and reliability of heat mapping capabilities for non-invasive, vision-based monitoring of photovoltaic cooling dynamics. By leveraging deep regression techniques, the proposed CNN model demonstrates superior predictive capability compared to traditional methods, enabling accurate estimation of cooling efficiencies across diverse scenarios. Experimental evaluation illustrates the supremacy of the CNN model in predictive capability, yielding a mean square error (MSE) of just 0.001171821, as opposed to the FNN's MSE of 0.016. Furthermore, the CNN demonstrates remarkable improvements in mean absolute error (MAE) and R-square, registering values of 1.2% and 0.95, respectively, whereas the FNN posts comparatively inferior numbers of 3.5% and 0.85. This research introduces labeled thermal imaging datasets and tailored deep learning architectures, accelerating advancements in renewable energy technology solutions. Moreover, the study provides insights into the practical implementation and cost-effectiveness of the proposed cooling efficiency monitoring system, highlighting hardware requirements, integration with existing infrastructure, and sensitivity analysis. The economic viability and scalability of the system are assessed through comprehensive cost-benefit analysis and scalability assessment, demonstrating significant potential for cost savings and revenue increases in large-scale PV installations. Furthermore, strategies for addressing limitations, enhancing predictive accuracy, and scaling to larger datasets are discussed, laying the groundwork for future research and industry collaboration in the field of photovoltaic thermal management optimization.
Collapse
Affiliation(s)
- Wael M Elmessery
- Agricultural Engineering Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, 33516, Egypt.
| | - Abadeer Habib
- International Research Centre "Biotechnologies of the Third Millennium", Faculty of Biotechnologies (BioTech), ITMO University, St. Petersburg, 191002, Russia
| | - Mahmoud Y Shams
- Department of Machine Learning and Information Retrieval, Faculty of Artificial Intelligence, Kafrelsheikh University, Kafr Elsheikh, 33516, Egypt.
| | - Tarek Abd El-Hafeez
- Department of Computer Science, Faculty of Science, Minia University, Minia, 61519, Egypt.
- Computer Science Unit, Deraya University, Minia University, Minia, 61765, Egypt.
| | - Tamer M El-Messery
- International Research Centre "Biotechnologies of the Third Millennium", Faculty of Biotechnologies (BioTech), ITMO University, St. Petersburg, 191002, Russia.
| | - Salah Elsayed
- Agricultural Engineering, Evaluation of Natural Resources Department, Environmental Studies and Research Institute, University of Sadat City, Cairo, 32897, Minufia, Egypt
| | - Ahmed E M Fodah
- College of Agricultural Engineering, Al-Azhar University, Cairo, 11768, Egypt
| | - Taha A M Abdelwahab
- College of Agricultural Engineering, Al-Azhar University, Cairo, 11768, Egypt
| | - Khaled A M Ali
- College of Agricultural Engineering, Al-Azhar University, Cairo, 11768, Egypt
- College of Engineering, South China Agriculture University, Guangzhou, China
| | - Yasser K O T Osman
- College of Agricultural Engineering, Al-Azhar University, Cairo, 11768, Egypt
| | | | | | - Abdallah E Elwakeel
- Agricultural Engineering Department, Faculty of Agriculture and Natural Resources, Aswan University, Aswan, 81528, Egypt
| |
Collapse
|
4
|
Zha J, Dong D, Huang H, Xia Y, Tong J, Liu H, Chan HP, Ho JC, Zhao C, Chai Y, Tan C. Electronics and Optoelectronics Based on Tellurium. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408969. [PMID: 39279605 DOI: 10.1002/adma.202408969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/28/2024] [Indexed: 09/18/2024]
Abstract
As a true 1D system, group-VIA tellurium (Te) is composed of van der Waals bonded molecular chains within a triangular crystal lattice. This unique crystal structure endows Te with many intriguing properties, including electronic, optoelectronic, thermoelectric, piezoelectric, chirality, and topological properties. In addition, the bandgap of Te exhibits thickness dependence, ranging from 0.31 eV in bulk to 1.04 eV in the monolayer limit. These diverse properties make Te suitable for a wide range of applications, addressing both established and emerging challenges. This review begins with an elaboration of the crystal structures and fundamental properties of Te, followed by a detailed discussion of its various synthesis methods, which primarily include solution phase, and chemical and physical vapor deposition technologies. These methods form the foundation for designing Te-centered devices. Then the device applications enabled by Te nanostructures are introduced, with an emphasis on electronics, optoelectronics, sensors, and large-scale circuits. Additionally, performance optimization strategies are discussed for Te-based field-effect transistors. Finally, insights into future research directions and the challenges that lie ahead in this field are shared.
Collapse
Affiliation(s)
- Jiajia Zha
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, 999077, China
| | - Dechen Dong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, 999077, China
| | - Haoxin Huang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Yunpeng Xia
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Jingyi Tong
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Handa Liu
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Hau Ping Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Chunsong Zhao
- Huawei Technologies CO., LTD, Shenzhen, 518000, China
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, 999077, China
| | - Chaoliang Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, 999077, China
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| |
Collapse
|
5
|
Zeng P, Zhou Y, Zhang C, Yao J, Pan M, Fu Y, Chen H, Chen G, Zhao Q, Guan X, Zheng M. Nanostructures/TiN layer/Al 2O 3 layer/TiN substrate configuration-based high-performance refractory metasurface solar absorber. Sci Rep 2024; 14:25827. [PMID: 39468174 PMCID: PMC11519511 DOI: 10.1038/s41598-024-76118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Metasurface solar absorber serves as a kind of important component for green energy devices to convert solar electromagnetic waves into thermal energy. In this work, we design a new solar light absorber configuration that incorporates the titanium nitride substrate, aluminum oxide layer, titanium nitride layer, and the topmost refractory nanostructures. The metasurface absorber based on this configuration can achieve an average spectral absorption of over 91% and a total solar radiation absorption of 91.5% at ultra-wide wavelengths of 300-2500 nm. It is discovered that the excellent performance of the proposed metasurface absorber is attributed to the synergistic effects of surface plasmonic effect and Fabry-Pérot (FP) cavity resonance by comprehensive analysis of the simulated field distributions. Furthermore, the effect of geometrical parameter of the proposed configuration on absorber performance is studied, indicating the proposed configuration possesses a large fabrication tolerance. Moreover, the proposed configuration is not sensitive to the polarization direction and the angle of incident light. It is also found that the use of other refractory metal materials and other shapes as the topmost absorbent nanostructures also have good results with this configuration. This work can offer a universal platform for constructing and guiding the design of refractory metasurface solar absorbers.
Collapse
Affiliation(s)
- Pei Zeng
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Jihua Laboratory, Foshan, 528000, China
| | - Yuting Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Chonghao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Jingtong Yao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | | | - Yifei Fu
- Jihua Laboratory, Foshan, 528000, China
| | - Hao Chen
- Jihua Laboratory, Foshan, 528000, China
| | | | - Qian Zhao
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Xun Guan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China.
| | | |
Collapse
|
6
|
Zhang Y, Shi Y, Hu D, Liang S, Yu W, Xu F, Hu Z, Yang J, Yuan S, Van der Bruggen B. Salvinia natans-Based Hierarchical Structures for Solar Thermal Clean Water Production from High-Salinity Wastewater. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53930-53937. [PMID: 39327699 DOI: 10.1021/acsami.4c11832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Biomaterial-based solar-driven evaporation has great potential for wastewater treatment and seawater desalination with a high energy conversion and utilization efficiency. However, technology gaps still exist for effectively and directly applying multiscale structures and intrinsic water transport channels of natural materials to enhance high-efficiency photothermal evaporation. In this study, a high-performance biomass-derived photothermal evaporative material was obtained using Salvinia natans, a common aquatic floating plant, together with simple poly(m-phenylenediamine) oxidation modification, building a hybrid biomass evaporator. With advantageous natural features of adequate water transport, microscale-nanoscale hierarchical structures, effective water activation, and antisalt-fouling function, the hybrid biomass evaporator achieves a high evaporation rate of 2.24 kg m-2 h-1 under one sun radiation (1 kW m-2). In addition, modified Salvinia natans also demonstrate certain ability to remove heavy metals during the photothermal evaporation of wastewater. This work offers a new perspective on the synthesis of an environmentally friendly and cost-effective solar-driven evaporator material, which has the advantages of low cost, simple process, and high photothermal conversion efficiency, and can be widely applied to seawater desalination and the treatment of wastewater with high salt concentrations.
Collapse
Affiliation(s)
- Yuting Zhang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yimeng Shi
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dongpu Hu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Sha Liang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Wenbo Yu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Fang Xu
- Wenzhou Haichen Technology Development Co., Wenzhou, Zhejiang 325000, China
| | - Zhen Hu
- Wuhan Huzhenyu Environmental Technology Co., Wuhan, Hubei 430000, China
| | - Jiakuan Yang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, China
- Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shushan Yuan
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Bart Van der Bruggen
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| |
Collapse
|
7
|
Ao B, Jiang H, Cai X, Liu D, Tu J, Shi X, Wang Y, He F, Lv J, Li J, Hu Y, Xia X, Hou J. Synthesis of Tellurium Nanoparticles Using Moringa oleifera Extract, and Their Antibacterial and Antibiofilm Effects against Bacterial Pathogens. Microorganisms 2024; 12:1847. [PMID: 39338521 PMCID: PMC11434551 DOI: 10.3390/microorganisms12091847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Today, pathogenic microorganisms are increasingly developing resistance to conventional drugs, necessitating the exploration of alternative strategies. In addressing this challenge, nano-based antibacterial agents offer a promising avenue of research. In the present study, we used an extract of Moringa oleifera, a widely recognized edible and medicinal plant, to synthesize biogenetic tellurium nanoparticles (Bio-TeNPs). Transmission electron microscopy, scanning electron microscopy, and dynamic light scattering analyses revealed that the obtained Bio-TeNPs had diameters between 20 and 50 nm, and zeta potential values of 23.7 ± 3.3 mV. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the Bio-TeNPs consisted primarily of Te(0), along with some organic constituents. Remarkably, these Bio-TeNPs exhibited potent antibacterial activity against a spectrum of pathogens, including Escherichia coli, Klebsiella pneumoniae, Shigella dysenteriae, Salmonella typhimurium, Streptococcus pneumoniae, and Streptococcus agalactiae. In addition, findings from growth curve experiments, live/dead cell staining, and scanning electron microscopy observations of cell morphology demonstrated that Bio-TeNPs at a concentration of 0.07 mg/mL effectively disrupted E. coli and K. pneumoniae cells, leading to cell rupture or shrinkage. The biofilm inhibition rates of 0.7 mg/mL Bio-TeNPs against E. coli and K. pneumoniae reached 92% and 90%, respectively. In addition, 7 mg/mL Bio-TeNPs effectively eradicated E. coli from the surfaces of glass slides, with a 100% clearance rate. These outcomes underscore the exceptional antibacterial efficacy of Bio-TeNPs and highlight their potential as promising nanomaterials for combating bacterial infections.
Collapse
Affiliation(s)
- Bo Ao
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Honglin Jiang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (H.J.); (F.H.); (J.L.)
| | - Xuan Cai
- Wuhan University, Wuhan 430060, China;
| | - Decheng Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
| | - Junming Tu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
| | - Xiaoshan Shi
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
| | - Yanxiang Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
| | - Fei He
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (H.J.); (F.H.); (J.L.)
| | - Jing Lv
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (H.J.); (F.H.); (J.L.)
| | - Jingjing Li
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
| | - Yuanliang Hu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
| | - Xian Xia
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
| |
Collapse
|
8
|
Liu M, Qin H, Chen Y, Lu Y, Song Y, Gao Z, Xiong C, Liu F. Recent Progress of Functional Solvent-free Nanofluids: A Review. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41766-41787. [PMID: 39101359 DOI: 10.1021/acsami.4c08256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Nanoparticles have aroused widespread interest because of their unique surface structure and nano effect, which presents novel characteristics like as sound, light, electricity, magnetism, and thermal properties. However, two critical defects have hindered their applications: (1) poor processability resulting from the high melting temperature (e.g., >1000 °C) for some inorganic nanoparticles; (2) the restriction of the nano effect caused by the easy aggregation of the nanoparticles. To solve those issues, solvent-free nanofluids (SNFs) with hard cores and flexible organic chains were successfully designed and fabricated at the beginning of the twenty-first century. The promising technology of SNFs not only solved the dispersion problem of nanomaterials but also imparted novel functionalization to nanoparticles. Up to now, many researchers have been devoted to developing diverse cores and flexible organic polymer chains to endow SNFs with particular functions, such as conductivity, fluorescence, lubricity, and so on. However, there are few review reports on the research progress in the fabrication and applications of functional SNFs. To gain a better understanding of SNFs, this paper presents an overall investigation into the development, fabrication, as well as the applications of functional SNFs.
Collapse
Affiliation(s)
- Man Liu
- State Key Laboratory of Silicate Materials for Architectures, Hubei Engineering Research Center for Green & Precision Material Forming, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Hongmei Qin
- State Key Laboratory of Silicate Materials for Architectures, Hubei Engineering Research Center for Green & Precision Material Forming, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yu Chen
- State Key Laboratory of Silicate Materials for Architectures, Hubei Engineering Research Center for Green & Precision Material Forming, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yao Lu
- State Key Laboratory of Silicate Materials for Architectures, Hubei Engineering Research Center for Green & Precision Material Forming, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yiheng Song
- State Key Laboratory of Silicate Materials for Architectures, Hubei Engineering Research Center for Green & Precision Material Forming, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhaodongfang Gao
- State Key Laboratory of Silicate Materials for Architectures, Hubei Engineering Research Center for Green & Precision Material Forming, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chuanxi Xiong
- State Key Laboratory of Silicate Materials for Architectures, Hubei Engineering Research Center for Green & Precision Material Forming, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Feihua Liu
- Sauvage Laboratory for Smart Materials, The School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
9
|
Chu F, Hu Z, Feng Y, Lai NC, Wu X, Wang R. Advanced Anti-Icing Strategies and Technologies by Macrostructured Photothermal Storage Superhydrophobic Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402897. [PMID: 38801015 DOI: 10.1002/adma.202402897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Water is the source of life and civilization, but water icing causes catastrophic damage to human life and diverse industrial processes. Currently, superhydrophobic surfaces (inspired by the lotus effect) aided anti-icing attracts intensive attention due to their energy-free property. Here, recent advances in anti-icing by design and functionalization of superhydrophobic surfaces are reviewed. The mechanisms and advantages of conventional, macrostructured, and photothermal superhydrophobic surfaces are introduced in turn. Conventional superhydrophobic surfaces, as well as macrostructured ones, easily lose the icephobic property under extreme conditions, while photothermal superhydrophobic surfaces strongly rely on solar illumination. To address the above issues, a potentially smart strategy is found by developing macrostructured photothermal storage superhydrophobic (MPSS) surfaces, which integrate the functions of macrostructured superhydrophobic materials, photothermal materials, and phase change materials (PCMs), and are expected to achieve all-day anti-icing in various fields. Finally, the latest achievements in developing MPSS surfaces, showcasing their immense potential, are highlighted. Besides, the perspectives on the future development of MPSS surfaces are provided and the problems that need to be solved in their practical applications are proposed.
Collapse
Affiliation(s)
- Fuqiang Chu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhifeng Hu
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanhui Feng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Nien-Chu Lai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaomin Wu
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Ruzhu Wang
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
10
|
Wei Y, Yang Y, Zhao Q, Ma Y, Qiang M, Fu L, Liu Y, Zhang J, Qu Z, Que W. Numerical Simulation Technologies in Solar-Driven Interfacial Evaporation Processes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312241. [PMID: 38506575 DOI: 10.1002/smll.202312241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/02/2024] [Indexed: 03/21/2024]
Abstract
Solar interfacial evaporation technology has the advantages of environmentally conscious and sustainable benefits. Recent research on light absorption, water transportation, and thermal management has improved the evaporation performance of solar interfacial evaporators. However, many studies on photothermal materials and structures only aim to improve performance, neglecting explanations for heat and mass transfer coupling or providing evidence for performance enhancement. Numerical simulation can simulate the diffusion paths and heat and water transfer processes to understand the thermal and mass transfer mechanism, thereby better achieving the design of efficient solar interfacial evaporators. Therefore, this review summarizes the latest exciting findings and tremendous advances in numerical simulation for solar interfacial evaporation. First, it presents a macroscopic summary of the application of simulation in temperature distribution, salt concentration distribution, and vapor flux distribution during evaporation. Second, the utilization of simulation in the microscopic is summed up, specifically focusing on the movement of water molecules and the mechanisms of light responses during evaporation. Finally, all simulation methods have the goal of validating the physical processes in solar interfacial evaporation. It is hoped that the use of numerical simulation can provide theoretical guidance and technical support for the application of solar-driven interfacial evaporation technology.
Collapse
Affiliation(s)
- Yumeng Wei
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yawei Yang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qi Zhao
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yong Ma
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mengyuan Qiang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Linjing Fu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yihong Liu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jianfei Zhang
- Ministry of Education Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhiguo Qu
- Ministry of Education Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenxiu Que
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
11
|
Kim M, Kim H, Kim W, Lee SY, Park YI, Shim YA, Jeon TY, Kim JY, Ahn CY, Shim H, Lee JE, Yu SH. Suppressing the Shuttle Effect via Polypyrrole-Coated Te Nanotubes for Advanced Na-Te Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34892-34901. [PMID: 38949109 DOI: 10.1021/acsami.4c03576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
There is a growing demand for research and development of advanced energy storage devices with high energy density utilizing earth-abundant metal anodes such as sodium metal. Tellurium, a member of the chalcogen group, stands out as a promising cathode material due to its remarkable volumetric capacity, comparable to sulfur, and significantly high electrical conductivity. However, critical issues arise from soluble sodium polytellurides, leading to the shuttle effect. This phenomenon can result in the loss of active materials, self-discharge, and anode instability. Here, we introduce polypyrrole-coated tellurium nanotubes as the cathode materials, where polypyrrole plays a crucial role in preventing the dissolution of polytellurides, as confirmed through operando optical microscopy. The polypyrrole-coated tellurium nanotubes exhibited an outstanding rate performance and long cycle stability in sodium-tellurium batteries. These research findings are anticipated to bolster the viability of polypyrrole-coated tellurium nanotubes as promising cathode materials, making a substantial contribution to the commercialization of sodium-ion battery technology.
Collapse
Affiliation(s)
- Mihyun Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyosik Kim
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Won Kim
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Song Yeul Lee
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Yong Il Park
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Yun A Shim
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Tae-Yeol Jeon
- Pohang Accelerator Laboratory, POSTECH, 80 Jigokro 127-beongil, Nam-gu, Pohang 37673, Republic of Korea
| | - Jae-Yup Kim
- Department of Chemical Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin 16890, Republic of Korea
| | - Chi-Yeong Ahn
- Alternative Fuels and Power System Research Center, Korea Research Institute of Ships and Ocean Engineering (KRISO), 32 Yuseong-daero, Yuseong-gu, Daejeon 34103, Republic of Korea
- Department of Green Mobility, Korean National University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hyungwon Shim
- Alternative Fuels and Power System Research Center, Korea Research Institute of Ships and Ocean Engineering (KRISO), 32 Yuseong-daero, Yuseong-gu, Daejeon 34103, Republic of Korea
| | - Ji Eun Lee
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Seung-Ho Yu
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Battery-Smart Factory, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
12
|
Xie C, Wilson BA, Qin Z. Regulating nanoscale directional heat transfer with Janus nanoparticles. NANOSCALE ADVANCES 2024; 6:3082-3092. [PMID: 38868822 PMCID: PMC11166103 DOI: 10.1039/d3na00781b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/25/2024] [Indexed: 06/14/2024]
Abstract
Janus nanoparticles (JNPs) with heterogeneous compositions or interfacial properties can exhibit directional heating upon external excitation with optical or magnetic energy. This directional heating may be harnessed for new nanotechnology and biomedical applications. However, it remains unclear how the JNP properties (size, interface) and laser excitation method (pulsed vs. continuous) regulate the directional heating. Here, we developed a numerical framework to analyze the asymmetric thermal transport in JNP heating under photothermal stimulation. We found that JNP-induced temperature contrast, defined as the ratio of temperature increase on the opposite sides in the surrounding medium, is highest for smaller JNPs and when a low thermal resistance coating covers a minor fraction of JNP surface. Notably, we discovered up to 20-fold enhancement of the temperature contrast based on thermal confinement under pulsed heating compared with continuous heating. This work brings new insights to maximize the asymmetric thermal responses for JNP heating.
Collapse
Affiliation(s)
- Chen Xie
- Department of Mechanical Engineering, University of Texas at Dallas 800 West Campbell Road EW31 Richardson Texas 75080 USA
| | - Blake A Wilson
- Department of Mechanical Engineering, University of Texas at Dallas 800 West Campbell Road EW31 Richardson Texas 75080 USA
| | - Zhenpeng Qin
- Department of Mechanical Engineering, University of Texas at Dallas 800 West Campbell Road EW31 Richardson Texas 75080 USA
- Department of Bioengineering, Center for Advanced Pain Studies, University of Texas at Dallas 800 West Campbell Road Richardson Texas 75080 USA
- Department of Biomedical Engineering, University of Texas at Southwestern Medical Center 5323 Harry Hines Boulevard Dallas Texas 75390 USA
| |
Collapse
|
13
|
Zvereva M. The Use of Polysaccharide Matrices as a Basis for the Formation of Tellurium Nanoparticles with Different Morphologies. Polymers (Basel) 2024; 16:1482. [PMID: 38891429 PMCID: PMC11174563 DOI: 10.3390/polym16111482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
The widening of possible areas of practical uses for zero-valent tellurium nanoparticles (Te0NPs) from biomedicine to optoelectronic and thermoelectric applications determines the actuality of the development of simple and affordable methods for their preparation. Among the existing variety of approaches to the synthesis of Te0NPs, special attention should be paid to chemical methods, and especially to "green" approaches, which are based on the use of precursors of tellurium in their powder bulk form and natural galactose-containing polysaccharides-arabinogalactan (Ar-Gal), galactomannan-(GM-dP) and κ-carrageenan (κ-CG) acting as ligands stabilizing the surface of the Te0NPs. The use of basic-reduction system "N2H4 H2O-NaOH" for preliminary activation of bulk-Te and Ar-Gal, GM-dP and κ-CG allowed us to obtain in aqueous medium a number of stable nanocomposites consisting of Te0NPs stabilized by the polysaccharides' macromolecules. By varying the precursor ratio, different morphologies of nanoparticles were obtained, ranging from spheres at a polysaccharide/Te ratio of 100:1 to rice-like at a 10:1 ratio. The type (branched, combed, or linear sulfated) of polysaccharide and its molecular weight value determined the size of the nanoparticles. Thus, the galactose-containing polysaccharides that were selected for this study may be promising renewable materials for the production of water-soluble Te0NPs with different morphology on this basis.
Collapse
Affiliation(s)
- Marina Zvereva
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky Street, 664033 Irkutsk, Russia
| |
Collapse
|
14
|
Zhu X, Lin L, Pang M, Jia C, Xia L, Shi G, Zhang S, Lu Y, Sun L, Yu F, Gao J, He Z, Wu X, Li A, Wang L, Wang M, Cao K, Fu W, Chen H, Li G, Zhang J, Wang Y, Yang Y, Zhu YG. Continuous and low-carbon production of biomass flash graphene. Nat Commun 2024; 15:3218. [PMID: 38622151 PMCID: PMC11018853 DOI: 10.1038/s41467-024-47603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Flash Joule heating (FJH) is an emerging and profitable technology for converting inexhaustible biomass into flash graphene (FG). However, it is challenging to produce biomass FG continuously due to the lack of an integrated device. Furthermore, the high-carbon footprint induced by both excessive energy allocation for massive pyrolytic volatiles release and carbon black utilization in alternating current-FJH (AC-FJH) reaction exacerbates this challenge. Here, we create an integrated automatic system with energy requirement-oriented allocation to achieve continuous biomass FG production with a much lower carbon footprint. The programmable logic controller flexibly coordinated the FJH modular components to realize the turnover of biomass FG production. Furthermore, we propose pyrolysis-FJH nexus to achieve biomass FG production. Initially, we utilize pyrolysis to release biomass pyrolytic volatiles, and subsequently carry out the FJH reaction to focus on optimizing the FG structure. Importantly, biochar with appropriate resistance is self-sufficient to initiate the FJH reaction. Accordingly, the medium-temperature biochar-based FG production without carbon black utilization exhibited low carbon emission (1.9 g CO2-eq g-1 graphene), equivalent to a reduction of up to ~86.1% compared to biomass-based FG production. Undoubtedly, this integrated automatic system assisted by pyrolysis-FJH nexus can facilitate biomass FG into a broad spectrum of applications.
Collapse
Affiliation(s)
- Xiangdong Zhu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210018, China.
| | - Litao Lin
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Mingyue Pang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Chao Jia
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Longlong Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210018, China
| | - Guosheng Shi
- Shanghai Applied Radiation Institute and State Key Laboratory Advanced Special Steel, Shanghai University, Shanghai, 200444, China
| | - Shicheng Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Yuanda Lu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Liming Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Fengbo Yu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Jie Gao
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Zhelin He
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xuan Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Aodi Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Liang Wang
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Meiling Wang
- Institute of Intelligent Machines Hefei Institutes of Physical Science, Chinese Academy of Sciences, Changzhou, 213164, China
| | - Kai Cao
- Institute of Intelligent Machines Hefei Institutes of Physical Science, Chinese Academy of Sciences, Changzhou, 213164, China
| | - Weiguo Fu
- Institute of Intelligent Machines Hefei Institutes of Physical Science, Chinese Academy of Sciences, Changzhou, 213164, China
| | - Huakui Chen
- Institute of Intelligent Machines Hefei Institutes of Physical Science, Chinese Academy of Sciences, Changzhou, 213164, China
| | - Gang Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210018, China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210018, China.
| | - Yi Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China.
| |
Collapse
|
15
|
Qi J, Dai Y, Ma C, Ke C, Wang W, Wu Z, Wang X, Bao K, Xu Y, Huang H, Wang L, Wu J, Luo G, Chen Y, Lin Z, He Q. Surfactant-Free Ultrasonication-Assisted Synthesis of 2d Tellurium Based on Metastable 1T'-MoTe 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306962. [PMID: 37652747 DOI: 10.1002/adma.202306962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/21/2023] [Indexed: 09/02/2023]
Abstract
Elemental 2D materials (E2DMs) have been attracting considerable attention owing to their chemical simplicity and excellent/exotic properties. However, the lack of robust chemical synthetic methods seriously limits their potential. Here, a surfactant-free liquid-phase synthesis of high-quality 2D tellurium is reported based on ultrasonication-assisted exfoliation of metastable 1T'-MoTe2. The as-grown 2D tellurium nanosheets exhibit excellent single crystallinity, ideal 2D morphology, surfactant-free surface, and negligible 1D by-products. Furthermore, a unique growth mechanism based on the atomic escape of Te atoms from metastable transition metal dichalcogenides and guided 2D growth in the liquid phase is proposed and verified. 2D tellurium-based field-effect transistors show ultrahigh hole mobility exceeding 1000 cm2 V-1 s-1 at room temperature attributing to the high crystallinity and surfactant-free surface, and exceptional chemical and operational stability using both solid-state dielectric and liquid-state electrical double layer. The facile ultrasonication-assisted synthesis of high-quality 2D tellurium paves the way for further exploration of E2DMs and expands the scope of liquid-phase exfoliation (LPE) methodology toward the controlled wet-chemical synthesis of functional nanomaterials.
Collapse
Affiliation(s)
- Junlei Qi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yongping Dai
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, 999077, China
| | - Chengxuan Ke
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenbin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Zongxiao Wu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Kai Bao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yue Xu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Haoxin Huang
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Lingzhi Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Jingkun Wu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Guangfu Luo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, 999077, China
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
16
|
Armghan A, Logeshwaran J, Raja S, Aliqab K, Alsharari M, Patel SK. Performance optimization of energy-efficient solar absorbers for thermal energy harvesting in modern industrial environments using a solar deep learning model. Heliyon 2024; 10:e26371. [PMID: 38404765 PMCID: PMC10884495 DOI: 10.1016/j.heliyon.2024.e26371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
Thermal energy harvesting has seen a rise in popularity in recent years due to its potential to generate renewable energy from the sun. One of the key components of this process is the solar absorber, which is responsible for converting solar radiation into thermal energy. In this paper, a smart performance optimization of energy efficient solar absorber for thermal energy harvesting is proposed for modern industrial environments using solar deep learning model. In this model, data is collected from multiple sensors over time that measure various environmental factors such as temperature, humidity, wind speed, atmospheric pressure, and solar radiation. This data is then used to train a machine learning algorithm to make predictions on how much thermal energy can be harvested from a particular panel or system. In a computational range, the proposed solar deep learning model (SDLM) reached 83.22 % of testing and 91.72 % of training results of false positive absorption rate, 69.88 % of testing and 81.48 % of training results of false absorption discovery rate, 81.40 % of testing and 72.08 % of training results of false absorption omission rate, 75.04 % of testing and 73.19 % of training results of absorbance prevalence threshold, and 90.81 % of testing and 78.09 % of training results of critical success index. The model also incorporates components such as insulation and orientation to further improve its accuracy in predicting the amount of thermal energy that can be harvested. Solar absorbers are used in industrial environments to absorb the sun's radiation and turn it into thermal energy. This thermal energy can then be used to power things such as heating and cooling systems, air compressors, and even some types of manufacturing operations. By using a solar deep learning model, businesses can accurately predict how much thermal energy can be harvested from a particular solar absorber before making an investment in a system.
Collapse
Affiliation(s)
- Ammar Armghan
- Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Jaganathan Logeshwaran
- Department of Electronics and Communication Engineering, Sri Eshwar College of Engineering, Coimbatore, 641202, India
| | - S. Raja
- Research and Development, Mr.R Business Corporation, Karur, 639004, Tamil Nadu, India
| | - Khaled Aliqab
- Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Meshari Alsharari
- Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Shobhit K. Patel
- Department of Computer Engineering, Marwadi University, Rajkot, Gujarat, 360003, India
| |
Collapse
|
17
|
Singh A, Modi SK, Joshi P, Nenavathu BP, Singh MS, Verma S, Hatshan MR. Sunlight mediated removal of toxic pollutants from Yamuna wastewater using efficient nano TeO 2-ZnO nanocomposites. CHEMOSPHERE 2024; 348:140658. [PMID: 37956931 DOI: 10.1016/j.chemosphere.2023.140658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
We have utilised our TeO2-ZnO nanocomposites for Yamuna wastewater treatment in natural sunlight wherein the sampling site was Nigam Bodh Ghat, Kashmere Gate, Delhi. In BET isotherm, TZ NCs exhibited type IV isotherm forming a H3 like hysteric loop sustaining mesoporous characteristic with an increase in surface area, pore volume and pore diameter of 56.76 m2/g, 0.257 cc/g and 17.18 nm respectively, when compared to pristine ZnO NPs. Yamuna wastewater treatment was carried out using various concentrations of TZ NCs (range 0.1-0.3 g/500 mL) under natural sunlight. Post-treatment, all the physicochemical parameters such as DO, BOD, COD, Nitrates, Ammonia and Phenolic contents were found to be reduced to 10 times bringing Yamuna water parameters within safe limits. Our TZ NCs have shown to have high selectivity for the removal of Chromium from water. Out of all the three concentrations 0.2 g/500 mL or 0.4 mg/mL is the most optimum concentration of TZ NCs for complete Yamuna wastewater treatment. Also, the bacterial culture present in Yamuna water was killed by 90% using TZ having MIC of 0.1 mg/mL. The antibiofilm activity of TZ against K.pneumoniae MTCC 109 was also checked using Congo Red Agar Assay. The presence of heavy metals, their corresponding degradation and leaching studies were analysed using ICP-OES. TZ NCs showed a very minimal leaching rate of Zinc into the water, proving no toxicity associated with these nanocomposites. Further, to observe the safe disposal of TZ NCs into the soil, TZ NCs were utilised for ecotoxicity studies.
Collapse
Affiliation(s)
- Aishwarya Singh
- Department of Applied Sciences and Humanities, Indira Gandhi Delhi Technical University for Women, Delhi, 110006, India
| | - Suraj Kumar Modi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, 201310, India; Centre of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Preeti Joshi
- Department of Applied Sciences and Humanities, Indira Gandhi Delhi Technical University for Women, Delhi, 110006, India
| | - Bhavani Prasad Nenavathu
- Department of Applied Sciences and Humanities, Indira Gandhi Delhi Technical University for Women, Delhi, 110006, India.
| | - Manu Smriti Singh
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, 201310, India; Centre of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India; Centre for Life Sciences, Mahindra University Survey, No: 62/1A, Bahadurpally Jeedimetla, Hyderabad, Telangana, 500043, India
| | - Swati Verma
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
18
|
Rani A, Ren W, Lee HJ, Hong SH, Kim TG. Synthesis, Properties, and Application of Ultrathin and Flexible Tellurium Nanorope Films: Beyond Conventional 2D Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300557. [PMID: 37641190 DOI: 10.1002/smll.202300557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/09/2023] [Indexed: 08/31/2023]
Abstract
Nanomaterials that can be easily processed into thin films are highly desirable for their wide range of applicability in electrical and optical devices. Currently, Te-based 2D materials are of interest because of their superior electrical properties compared to transition metal dichalcogenide materials. However, the large-scale manufacturing of these materials is challenging, impeding their commercialization. This paper reports on ultrathin, large-scale, and highly flexible Te and Te-metal nanorope films grown via low-power radiofrequency sputtering for a short period at 25 °C. Additionally, the feasibility of such films as transistor channels and flexible transparent conductive electrodes is discussed. A 20 nm thick Te-Ni-nanorope-channel-based transistor exhibits a high mobility (≈450 cm2 V-1 s-1 ) and on/off ratio (105 ), while 7 nm thick Te-W nanorope electrodes exhibit an extremely low haze (1.7%) and sheet resistance (30 Ω sq-1 ), and high transmittance (86.4%), work function (≈4.9 eV), and flexibility. Blue organic light-emitting diodes with 7 nm Te-W anodes exhibit significantly higher external quantum efficiencies (15.7%), lower turn-on voltages (3.2 V), and higher and more uniform viewing angles than indium-tin-oxide-based devices. The excellent mechanical flexibility and easy coating capability offered by Te nanoropes demonstrate their superiority over conventional nanomaterials and provide an effective outlet for multifunctional devices.
Collapse
Affiliation(s)
- Adila Rani
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02842, Republic of Korea
| | - Wanqi Ren
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02842, Republic of Korea
| | - Ho Jin Lee
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02842, Republic of Korea
| | - Seok Hee Hong
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02842, Republic of Korea
| | - Tae Geun Kim
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02842, Republic of Korea
| |
Collapse
|
19
|
Wang H, Zou H, Wang C, Lv S, Jin Y, Hu H, Wang X, Chi Y, Yang X. Controllable Synthesis, Formation Mechanism, and Photocatalytic Activity of Tellurium with Various Nanostructures. MICROMACHINES 2023; 15:1. [PMID: 38276829 PMCID: PMC10818636 DOI: 10.3390/mi15010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024]
Abstract
Telluriums (Te) with various nanostructures, including particles, wires, and sheets, are controllably synthesized by adjusting the content of polyvinylpyrrolidone (PVP) in a facile solvothermal reaction. Te nanostructures all have complete grain sizes with excellent crystallinity and mesopore structures. Further, the formation mechanisms of Te nanostructures are proposed to be that the primary nuclei of Te are released from the reduction of TeO32- using N2H4·H2O, and then grow into various nanostructures depending on the different content of PVP. These nanostructures of Te all exhibit the photocatalytic activities for the degradation of MB and H2 production under visible light irradiation, especially Te nanosheets, which have the highest efficiencies of degradation (99.8%) and mineralization (65.5%) at 120 min. In addition, compared with pure Te nanosheets, the rate of H2 production increases from 412 to 795 μmol∙h-1∙g-1 after the introduction of Pt, which increases the output by nearly two times. The above investigations indicate that Te with various nanostructures is a potential photocatalyst in the field of degradation of organic pollutants and H2 fuel cells.
Collapse
Affiliation(s)
- Huan Wang
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (H.W.); (C.W.); (S.L.); (Y.C.)
- Department of Materials Science, Jilin Jianzhu University, Changchun 130118, China; (H.Z.); (Y.J.); (H.H.)
| | - Hanlin Zou
- Department of Materials Science, Jilin Jianzhu University, Changchun 130118, China; (H.Z.); (Y.J.); (H.H.)
| | - Chao Wang
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (H.W.); (C.W.); (S.L.); (Y.C.)
| | - Sa Lv
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (H.W.); (C.W.); (S.L.); (Y.C.)
| | - Yujie Jin
- Department of Materials Science, Jilin Jianzhu University, Changchun 130118, China; (H.Z.); (Y.J.); (H.H.)
| | - Hongliang Hu
- Department of Materials Science, Jilin Jianzhu University, Changchun 130118, China; (H.Z.); (Y.J.); (H.H.)
| | - Xinwei Wang
- Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Yaodan Chi
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (H.W.); (C.W.); (S.L.); (Y.C.)
| | - Xiaotian Yang
- Department of Chemistry, Jilin Normal University, Siping 136000, China
| |
Collapse
|
20
|
Xing C, Li Z, Wang Z, Zhang S, Xie Z, Zhu X, Peng Z. Chemical Scissors Tailored Nano-Tellurium with High-Entropy Morphology for Efficient Foam-Hydrogel-Based Solar Photothermal Evaporators. NANO-MICRO LETTERS 2023; 16:47. [PMID: 38063910 PMCID: PMC10709277 DOI: 10.1007/s40820-023-01242-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/07/2023] [Indexed: 10/11/2024]
Abstract
The development of tellurium (Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns. However, the nanosized Te (nano-Te) materials reported to date suffer from a series of drawbacks, including limited light absorption and a lack of surface structures. Herein, we report the preparation of nano-Te by electrochemical exfoliation using an electrolyzable room-temperature ionic liquid. Anions, cations, and their corresponding electrolytic products acting as chemical scissors can precisely intercalate and functionalize bulk Te. The resulting nano-Te has high morphological entropy, rich surface functional groups, and broad light absorption. We also constructed foam hydrogels based on poly (vinyl alcohol)/nano-Te, which achieved an evaporation rate and energy efficiency of 4.11 kg m-2 h-1 and 128%, respectively, under 1 sun irradiation. Furthermore, the evaporation rate was maintained in the range 2.5-3.0 kg m-2 h-1 outdoors under 0.5-1.0 sun, providing highly efficient evaporation under low light conditions.
Collapse
Affiliation(s)
- Chenyang Xing
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Center for Stretchable Electronics and NanoSensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Zihao Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Center for Stretchable Electronics and NanoSensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Ziao Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, People's Republic of China
| | - Shaohui Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, 518038, Guangdong, People's Republic of China
| | - Xi Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, People's Republic of China.
| | - Zhengchun Peng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- Center for Stretchable Electronics and NanoSensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
21
|
Basuny BN, Kospa DA, Ibrahim AA, Gebreil A. Stable polyethylene glycol/biochar composite as a cost-effective photothermal absorber for 24 hours of steam and electricity cogeneration. RSC Adv 2023; 13:31077-31091. [PMID: 37881767 PMCID: PMC10595053 DOI: 10.1039/d3ra06028d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
Seawater desalination powered by solar energy is the most environmentally and economical solution in responding to the global water and energy crisis. However, solar desalination has been negatively impacted by intermittent sun radiation that alternates between day and night. In this study, sugarcane bagasse (SCB) was recycled via the pyrolysis process to biochar as a cost-effective solar absorber. Besides, polyethylene glycol (PEG) as a phase change material was encapsulated in the abundant pore structure of biochar to store the thermal energy for 24 hours of continuous steam generation. The BDB/1.5 PEG evaporator exhibited an evaporation rate of 2.11 kg m-2 h-1 (98.1% efficiency) under 1 sun irradiation. Additionally, the BDB/1.5 PEG evaporator incorporated by the TEC1-12706 module for continuous steam and electricity generation with a power density of 320.41 mW m-2. Moreover, 10 continuous hours of evaporation were applied to the composite demonstrating outstanding stability. The composite exhibited high water purification efficiency through solar desalination due to the abundant functional groups on the biochar surface. Finally, the resulting low-cost and highly efficient PCM-based absorber can be used on a wide scale to produce fresh water and energy.
Collapse
Affiliation(s)
- Belal N Basuny
- Department of Chemistry, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Doaa A Kospa
- Department of Chemistry, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Amr Awad Ibrahim
- Department of Chemistry, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Ahmed Gebreil
- Nile Higher Institutes of Engineering and Technology El-Mansoura Egypt
| |
Collapse
|
22
|
Yim G, Kang S, Kim S, Jang H. Peroxidase-Mimicking Ir-Te Nanorods for Photoconversion-Combined Multimodal Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111706. [PMID: 37299609 DOI: 10.3390/nano13111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
Owing to multiple physicochemical properties, the combination of hybrid elemental compositions of nanoparticles can be widely utilized for a variety of applications. To combine pristine tellurium nanorods, which act as a sacrificing template, with another element, iridium-tellurium nanorods (IrTeNRs) were synthesized via the galvanic replacement technique. Owing to the coexistence of iridium and tellurium, IrTeNRs exhibited unique properties, such as peroxidase-like activity and photoconversion. Additionally, the IrTeNRs demonstrated exceptional colloidal stability in complete media. Based on these properties, the IrTeNRs were applied to in vitro and in vivo cancer therapy, allowing for the possibility of multiple therapeutic methodologies. The enzymatic therapy was enabled by the peroxidase-like activity that generated reactive oxygen species, and the photoconversion under 473, 660 and 808 nm laser irradiation induced cancer cell apoptosis via photothermal and photodynamic therapy.
Collapse
Affiliation(s)
- Gyeonghye Yim
- Department of Chemistry, Kwangwoon University, 20 Gwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Seounghun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Subean Kim
- Department of Chemistry, Kwangwoon University, 20 Gwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University, 20 Gwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| |
Collapse
|
23
|
Torun G, Kishi T, Pugliese D, Milanese D, Bellouard Y. Formation Mechanism of Elemental Te Produced in Tellurite Glass Systems by Femtosecond Laser Irradiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210446. [PMID: 36749876 DOI: 10.1002/adma.202210446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Indexed: 05/19/2023]
Abstract
The formation of elemental trigonal tellurium (t-Te) on tellurite glass surfaces exposed to femtosecond laser pulses is discussed. Specifically, the underlying elemental crystallization phenomenon is investigated by altering laser parameters in common tellurite glass compositions under various ambient conditions. Elemental crystallization of t-Te by a single femtosecond laser pulse is unveiled by high-resolution imaging and analysis. The thermal diffusion model reveals the absence of lattice melting upon a single laser pulse, highlighting the complexity of the phase transformation. The typical cross-section displays three different crystal configurations over its depth, in which the overall thickness increases with each subsequent pulse. The effect of various controlled atmospheres shows the suppressing nature of the elemental crystallization, whereas the substrate temperature shows no significant impact on the nucleation of t-Te nanocrystals. This research gives new insight into the elemental crystallization of glass upon femtosecond laser irradiation and shows the potential to fabricate functional transparent electronic micro/nanodevices.
Collapse
Affiliation(s)
- Gözden Torun
- Galatea Laboratory, STI/IEM, Ecole Polytechnique Fédérale de Lausanne (EPFL), 2002, Neuchâtel, Switzerland
| | - Tetsuo Kishi
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8552, Japan
| | - Diego Pugliese
- Department of Electronics and Telecommunications, Polytechnic University of Turin, 10129, Turin, Italy
- Department of Applied Science and Technology and INSTM RU, Polytechnic University of Turin, 10129, Turin, Italy
| | - Daniel Milanese
- Department of Engineering and Architecture and INSTM RU, University of Parma, 43124, Parma, Italy
| | - Yves Bellouard
- Galatea Laboratory, STI/IEM, Ecole Polytechnique Fédérale de Lausanne (EPFL), 2002, Neuchâtel, Switzerland
| |
Collapse
|
24
|
Lu J, He Y, Ma C, Ye Q, Yi H, Zheng Z, Yao J, Yang G. Ultrabroadband Imaging Based on Wafer-Scale Tellurene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211562. [PMID: 36893428 DOI: 10.1002/adma.202211562] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/02/2023] [Indexed: 05/19/2023]
Abstract
High-resolution imaging is at the heart of the revolutionary breakthroughs of intelligent technologies, and it is established as an important approach toward high-sensitivity information extraction/storage. However, due to the incompatibility between non-silicon optoelectronic materials and traditional integrated circuits as well as the lack of competent photosensitive semiconductors in the infrared region, the development of ultrabroadband imaging is severely impeded. Herein, the monolithic integration of wafer-scale tellurene photoelectric functional units by exploiting room-temperature pulsed-laser deposition is realized. Taking advantage of the surface plasmon polaritons of tellurene, which results in the thermal perturbation promoted exciton separation, in situ formation of out-of-plane homojunction and negative expansion promoted carrier transport, as well as the band bending promoted electron-hole pair separation enabled by the unique interconnected nanostrip morphology, the tellurene photodetectors demonstrate wide-spectrum photoresponse from 370.6 to 2240 nm and unprecedented photosensitivity with the optimized responsivity, external quantum efficiency and detectivity of 2.7 × 107 A W-1 , 8.2 × 109 % and 4.5 × 1015 Jones. An ultrabroadband imager is demonstrated and high-resolution photoelectric imaging is realized. The proof-of-concept wafer-scale tellurene-based ultrabroadband photoelectric imaging system depicts a fascinating paradigm for the development of an advanced 2D imaging platform toward next-generation intelligent equipment.
Collapse
Affiliation(s)
- Jianting Lu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Yan He
- College of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| | - Churong Ma
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511443, P. R. China
| | - Qiaojue Ye
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Huaxin Yi
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| |
Collapse
|
25
|
Li M, Wang X, Odom L, Bryce K, Zhao D, Shen J, Ma Z, Bae C, Narayan S, Lian J. Three-Dimensional Hollow Reduced Graphene Oxide Tube Assembly for Highly Thermally Conductive Phase Change Composites and Efficient Solar-Thermal Energy Conversion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18940-18950. [PMID: 37037796 DOI: 10.1021/acsami.3c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Due to their extraordinary mechanical strength and electrical and thermal conductivities, graphene fibers and their derivatives have been widely utilized in various functional applications. In this work, we report the synthesis of a three-dimensional (3D) hollow reduced graphene oxide tube assembly (HrGOTA) using the same wet spinning method as graphene fibers. The HrGOTA has high thermal conductivity and displays the unique capability of encapsulating phase change materials for effective solar-thermal energy conversion. The HrGOTA comprises layers of moisture-fused hollow reduced graphene oxide tubes (HrGOTs), whose individual thermal conductivity is up to 578 W m-1 K-1. By impregnating 1-octadecanol into HrGOTs, a 1-octadecanol-filled HrGOT phase change composite (PCC) with a latent heat of 262.5 J g-1 is obtained. This high latent heat results from the interfacial interaction between 1-octadecanol and the reduced graphene oxide tube, as evidenced by the shifts in XRD patterns of 1-octadecanol-filled and 1-octadecanol/multiwalled carbon nanotube-filled HrGOTA samples. In addition, 1 wt % multiwalled carbon nanotubes are added to the PCC to enhance visible light absorption. Because of their high thermal conductivity and visible light absorption rates, these new PCCs display high solar-thermal energy conversion and storage efficiencies of up to 81.7%, commensurate with state-of-the-art carbon-based PCCs but with significantly lower carbon weight percentages.
Collapse
Affiliation(s)
- Mingxin Li
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Xuanjie Wang
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Lilian Odom
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Keith Bryce
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Dong Zhao
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Junhua Shen
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Zongwei Ma
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Chulsung Bae
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Shankar Narayan
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Jie Lian
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| |
Collapse
|
26
|
Ma D, Yin R, Liang Z, Liang Q, Xu G, Lian Q, Wong PK, He C, Xia D, Lu H. Photo-sterilization of groundwater by tellurium and enhancement by micro/nano bubbles. WATER RESEARCH 2023; 233:119781. [PMID: 36841167 DOI: 10.1016/j.watres.2023.119781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
In rural areas where low-temperature groundwater is used as a drinking water source, cost-effective sterilization techniques are needed to prevent groundwater consumers from the disease risks triggered by pathogenic microorganisms like Escherichia coli and fungal spores. In this study, micro/nano bubbles (MNBs) coupled with the tellurium (Te)-based catalysts were used to considerably enhance the solar disinfection (SODIS) efficiency while overcoming the intrinsic defects of SODIS, particularly in low-temperature. Sterilization tests showed that 6.5 log10 cfu/mL of E. coli K-12 and 4.0 log10 cfu/mL of Aspergillus niger spores were completely inactivated within 5 min while applying this novel process for disinfection of raw groundwater, even in low-temperature. The underlying mechanisms of the extraordinary sterilization efficiency were revealed through comprehensive characterization of the catalysts and the physiological changes of the microorganisms. The localized surface plasmon resonance (LSPR) effect of the Te catalysts was identified to take advantage of photothermal synergism to achieve cell death. The integration of MNBs with the facet-engineered Te catalysts improved the photothermal catalytic effect and extracellular electron transfer, which substantially strengthened disinfection efficiency. This study provides a targeted solution into microbial inactivation in groundwater and emphasizes a cost-effective groundwater sterilization process.
Collapse
Affiliation(s)
- Dingren Ma
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhuocheng Liang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Qiwen Liang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Guizhi Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Qiyu Lian
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Po Keung Wong
- School of Life Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, Guangdong 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, Guangdong 510275, China.
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
27
|
Indhu AR, Keerthana L, Dharmalingam G. Plasmonic nanotechnology for photothermal applications - an evaluation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:380-419. [PMID: 37025366 PMCID: PMC10071519 DOI: 10.3762/bjnano.14.33] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The application of plasmonic nanoparticles is motivated by the phenomenon of surface plasmon resonance. Owing to the tunability of optothermal properties and enhanced stability, these nanostructures show a wide range of applications in optical sensors, steam generation, water desalination, thermal energy storage, and biomedical applications such as photothermal (PT) therapy. The PT effect, that is, the conversion of absorbed light to heat by these particles, has led to thriving research regarding the utilization of plasmonic nanoparticles for a myriad of applications. The design of conventional nanomaterials for PT conversion has focussed predominantly on the manipulation of photon absorption through bandgap engineering, doping, incorporation, and modification of suitable matrix materials. Plasmonic nanomaterials offer an alternative and attractive approach in this regard, through the flexibility in the excitation of surface plasmons. Specific advantages are the considerable improved bandwidth of the absorption, a higher efficiency of photon absorption, facile tuning, as well as flexibility in the synthesis of plasmonic nanomaterials. This review of plasmonic PT (PPT) research begins with a theoretical discussion on the plasmonic properties of nanoparticles by means of the quasi-static approximation, Mie theory, Gans theory, generic simulations on common plasmonic material morphologies, and the evaluation processes of PT performance. Further, a variety of nanomaterials and material classes that have potential for PPT conversion are elucidated, such as plasmonic metals, bimetals, and metal-metal oxide nanocomposites. A detailed investigation of the essential, but often ignored, concept of thermal, chemical, and aggregation stability of nanoparticles is another part of this review. The challenges that remain, as well as prospective directions and chemistries, regarding nanomaterials for PT conversion are pondered on in the final section of the article, taking into account the specific requirements from different applications.
Collapse
Affiliation(s)
- A R Indhu
- Plasmonic Nanomaterials Laboratory, PSG Institute of Advanced Studies, Coimbatore-641004, India
| | - L Keerthana
- Plasmonic Nanomaterials Laboratory, PSG Institute of Advanced Studies, Coimbatore-641004, India
| | | |
Collapse
|
28
|
Su F, Xie J, Li X, He Z, Wang H, Zhang J, Xin Y, Zhang A, Yao D, Zheng Y. Electrostatically Assisted Construction Modified MXene-IL-Based Nanofluids for Photothermal Conversion. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36882929 DOI: 10.1021/acsami.2c22517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Solar energy, as renewable energy, has paid extensive attention for solar thermal utilization due to its unique characteristics such as rich resources, easy access, clean, and pollution-free. Among them, solar thermal utilization is the most extensive one. Nanofluid-based direct absorption solar collectors (DASCs), as an important alternative method, can further improve the solar thermal efficiency. Notably, the stability of photothermal conversion materials and flowing media is critical to the performance of DASC. Herein, we first proposed novel Ti3C2Tx-IL-based nanofluids by the electrostatic interaction, which consists of functional Ti3C2Tx modified with PDA and PEI as a photothermal conversion material and ionic liquid with low viscosity as the flow medium. Ti3C2Tx-IL-based nanofluids exhibit excellent cycle stability, wide spectrum, and efficient solar energy absorption performance. Besides, Ti3C2Tx-IL-based nanofluids maintain liquid state in a range of -80 to 200 °C, and its viscosity was as low as 0.3 Pa·s at 0 °C. Moreover, the equilibrium temperature of Ti3C2Tx@PDA-IL at a very low mass fraction of 0.04% reached 73.9 °C under 1 Sun, indicating an excellent photothermal conversion performance. Furthermore, the application of nanofluids in photosensitive inks has been preliminarily explored, which is expected to play a role in the fields of injectable biomedical materials and photo/electric double-generation thermal and hydrophobic anti ice coatings.
Collapse
Affiliation(s)
- Fangfang Su
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Jinliang Xie
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Xiaoqian Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Zhongjie He
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Hongni Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Yangyang Xin
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Aibo Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Dongdong Yao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Yaping Zheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| |
Collapse
|
29
|
Alessandro F, Macedonio F, Drioli E. Plasmonic Phenomena in Membrane Distillation. MEMBRANES 2023; 13:254. [PMID: 36984641 PMCID: PMC10058825 DOI: 10.3390/membranes13030254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Water scarcity raises important concerns with respect to human sustainability and the preservation of important ecosystem functions. To satisfy water requirements, seawater desalination represents one of the most sustainable solutions. In recent decades, membrane distillation has emerged as a promising thermal desalination process that may help to overcome the drawbacks of traditional desalination processes. Nevertheless, in membrane distillation, the temperature at the feed membrane interface is significantly lower than that of the bulk feed water, due to the latent heat flux associated with water evaporation. This phenomenon, known as temperature polarization, in membrane distillation is a crucial issue that could be responsible for a decay of about 50% in the initial transmembrane water flux. The use of plasmonic nanostructures, acting as thermal hotspots in the conventional membranes, may improve the performance of membrane distillation units by reducing or eliminating the temperature polarization problem. Furthermore, an efficient conversion of light into heat offers new opportunities for the use of solar energy in membrane distillation. This work summarizes recent developments in the field of plasmonic-enhanced solar evaporation with a particular focus on solar-driven membrane distillation applications and its potential prospects.
Collapse
|
30
|
Cheng P, Wang D. Easily Repairable and High-Performance Carbon Nanostructure Absorber for Solar Photothermoelectric Conversion and Photothermal Water Evaporation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8761-8769. [PMID: 36744969 DOI: 10.1021/acsami.2c22077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Carbon materials are a category of broadband solar energy harvesting materials that can convert solar energy into heat under irradiation, which can be used for photothermal water evaporation and photothermoelectric power generation. However, destruction of the carbon nanostructure during usage will significantly decrease the light-trapping performance and, thus, limit their practical applications. In this article, an easily repairable carbon nanostructure absorber with full-solar-spectrum absorption and a hierarchically porous structure is prepared. The carbon absorber shows a superhigh light absorption of above 97% across the whole solar spectrum because of multiple scatterings within the carbon nanostructure and photon interaction with the carbon nanoparticles. The excellent light absorption performance directly leads to a good photothermal effect. As a consequence, the carbon absorber integrated with a thermoelectric module can obtain a large power (133.3 μW cm-2) output under 1 sun. In addition, the carbon absorber combined with the sponge can achieve a high photothermal water evaporation efficiency of 83.6% under 1 sun. Its high-efficiency solar-to-electricity and photothermal water evaporation capabilities demonstrate that the carbon absorber with superhigh absorption, simple fabrication, and facile repairability shows great potential for practical fresh water production and electric power generation.
Collapse
Affiliation(s)
- Pengfei Cheng
- Chair Materials for Electrical Engineering and Electronics, Institute of Materials Science and Engineering and Institute of Micro- and Nanotechnologies MacroNano, Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 5, 98693Ilmenau, Germany
| | - Dong Wang
- Chair Materials for Electrical Engineering and Electronics, Institute of Materials Science and Engineering and Institute of Micro- and Nanotechnologies MacroNano, Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 5, 98693Ilmenau, Germany
| |
Collapse
|
31
|
Yang F, Liang Z, Meng D, Shi X, Qin Z, Dai R, Sun C, Ren Y, Feng J, Liu W. High-quality factor mid-infrared absorber based on all-dielectric metasurfaces. OPTICS EXPRESS 2023; 31:5747-5756. [PMID: 36823847 DOI: 10.1364/oe.482987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
The absorption spectrum of metasurface absorbers can be manipulated by changing structures. However, narrowband performance absorbers with high quality factors (Q-factor) are hard to achieve, mainly for the ohmic loss of metal resonators. Here, we propose an all-dielectric metasurface absorber with narrow absorption linewidth in the mid-infrared range. Magnetic quadrupole resonance is excited in the stacked Ge-Si3N4 nanoarrays with an absorption of 89.6% and a Q-factor of 6120 at 6.612 µm. The separate lossless Ge resonator and lossy Si3N4 layer realize high electromagnetic field gain and absorption, respectively. And the proposed method successfully reduced the intrinsic loss of the absorber, which reduced the absorption beyond the resonant wavelength and improved the absorption efficiency of Si3N4 in the low loss range. Furthermore, the absorption intensity and wavelength can be modulated by adjusting the geometric parameters of the structure. We believe this research has good application prospects in mid-infrared lasers, thermal emitters, gas feature sensing, and spectral detection.
Collapse
|
32
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
33
|
Gao X, Byram C, Adams J, Zhao C. Determining the laser-induced release probability of a nanoparticle from a soft substrate. OPTICS LETTERS 2022; 47:6181-6184. [PMID: 37219202 DOI: 10.1364/ol.475174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/28/2022] [Indexed: 05/24/2023]
Abstract
This Letter presents a study of laser-induced nanoparticle release from a soft substrate in air under different conditions. A continuous wave (CW) laser heats a nanoparticle and causes a rapid thermal expansion of the substrate, which gives an upward momentum that releases the nanoparticle from the substrate. The release probability of different nanoparticles from different substrates under different laser intensities is studied. The effects of surface properties of substrates and surface charges of the nanoparticles on the release are also investigated. The mechanism of nanoparticle release demonstrated in this work is different from that of laser-induced forward transfer (LIFT). Owing to the simplicity of this technology and the wide availability of commercial nanoparticles, this nanoparticle release technology may find applications in nanoparticle characterization and nanomanufacturing.
Collapse
|
34
|
Wan G, Yin L, Chen X, Xu X, Huang J, Zhen C, Zhu H, Huang B, Hu W, Ren Z, Tian H, Wang L, Liu G, Cheng HM. Photocatalytic Overall Water Splitting over PbTiO 3 Modulated by Oxygen Vacancy and Ferroelectric Polarization. J Am Chem Soc 2022; 144:20342-20350. [DOI: 10.1021/jacs.2c08177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gedeng Wan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Lichang Yin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Xing Chen
- Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaoxiang Xu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jie Huang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Chao Zhen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Huaze Zhu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Biaohong Huang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Weijin Hu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Zhaohui Ren
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - He Tian
- Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Shenzhen 518055, China
| |
Collapse
|
35
|
Multi-octave metasurface-based refractory superabsorber enhanced by a tapered unit-cell structure. Sci Rep 2022; 12:17066. [PMID: 36224251 PMCID: PMC9556832 DOI: 10.1038/s41598-022-21740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/30/2022] [Indexed: 11/20/2022] Open
Abstract
An ultra-broadband metasurface-based perfect absorber is proposed based on a periodic array of truncated cone-shaped \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {TiO}_2$$\end{document}TiO2 surrounded by TiN/\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {TiO}_2$$\end{document}TiO2 conical rings. Due to the refractory materials involved in the metasurface, the given structure can keep its structural stability at high temperatures. The proposed structure can achieve a broadband spectrum of 4.3 µm at normal incidence spanning in the range of 0.2–4.5 µm with the absorption higher than \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$90\%$$\end{document}90% and the average absorption around \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$94.71\%$$\end{document}94.71%. The absorption can be tuned through the angle of the cone. By optimizing geometrical parameters, a super absorption is triggered in the range of 0.2–3.25 µm with the absorption higher than 97.40\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\%$$\end{document}% and substantially average absorption over 99\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\%$$\end{document}%. In this regard, the proposed structure can gather more than \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$99\%$$\end{document}99% of the full spectrum of solar radiation. Furthermore, the absorption of the designed structure is almost insensitive to the launching angle up to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$50^\circ $$\end{document}50∘ for TE polarization, while it has a weak dependence on the incident angle for TM polarization. The proposed structure can be a promising candidate for thermal energy harvesting and solar absorption applications.
Collapse
|
36
|
Kang S, Yim G, Chae SY, Kim S, Gil YG, Kim YK, Min DH, Jang H. Rhodium-Tellurium Nanorod Synthesis Using Galvanic Replacement-Polyol Regrowth for Thermo-Dynamic Dual-Modal Cancer Phototherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40513-40521. [PMID: 36049895 DOI: 10.1021/acsami.2c07281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rh is a noble metal introduced in bioapplications, including diagnosis and therapy, in addition to its consolidated utilization in organic catalysis and electrocatalysis. Herein, we designed the synthesis of highly crystalline Rh nanocrystal-decorated Rh-Te nanorods (RhTeNRs) through galvanic replacement of sacrificial Te nanorod (TeNR) templates and subsequent polyol regrowth. The obtained RhTeNRs showed excellent colloidal stability and efficient heat dissipation and photocatalytic activity under various laser irradiation wavelengths. Based on the confirmed biocompatibility, RhTeNRs were introduced into in vitro and in vivo cancer phototherapies. The results confirmed the selective physical death of cancer cells in the local area through laser irradiation. While chemotherapy does not guarantee successful treatment due to side effects and resistance, phototherapy using heat and reactive oxygen species generation of RhTeNRs induces physical death.
Collapse
Affiliation(s)
- Seounghun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Gyeonghye Yim
- Department of Chemistry, Kwangwoon University, 20 Gwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Se-Youl Chae
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Subean Kim
- Department of Chemistry, Kwangwoon University, 20 Gwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Yeong-Gyu Gil
- Department of Chemistry, Kwangwoon University, 20 Gwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Young-Kwan Kim
- Department of Chemistry, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 08826, Republic of Korea
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University, 20 Gwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| |
Collapse
|
37
|
Wang R, He Z, Wang JL, Liu JY, Liu JW, Yu SH. Manipulating Nanowire Structures for an Enhanced Broad-Band Flexible Photothermoelectric Photodetector. NANO LETTERS 2022; 22:5929-5935. [PMID: 35833705 DOI: 10.1021/acs.nanolett.2c01957] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The photothermoelectric effect, directly converting light energy into electrical energy, shows promising prospects in self-powered broad-band optical detection, which can extend to various applications, such as sensing, optoelectronic communications, and wide-temperature-range measurements. However, the low photosensitivity, narrow-band response, and rapid performance degeneration under continuous illumination restrict its broad application. Herein, we propose a simple bottom-up strategy to manipulate nanowires (NWs) into a well-defined multilayer Te-Ag2Te-Ag NW film, resulting in a high-performance photothermoelectric photodetector with a broad-band responsivity (4.1 V/W), large detectivity (944 MHz1/2 W-1), and fast response speed (0.4-0.7 s from 365 to 1200 nm). In addition, the ultrathin structure endows this device with slow and weak transverse heat conduction, enabling a stable voltage without an obvious degeneration over 1500 s. The highly anisotropic arrangement of NWs gives this device a prominent polarization sensitivity. Prospectively, this hierarchically designed nanowire film provides a promising pathway toward engineering photodetectors with high performance.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Zhen He
- Institute of Innovative Materials (I2M), Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Jin-Long Wang
- Institute of Innovative Materials (I2M), Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Jia-Yang Liu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jian-Wei Liu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Institute of Innovative Materials (I2M), Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| |
Collapse
|
38
|
Cheng X, Bai X, Yang J, Zhu XM, Wang J. Titanium Oxynitride Spheres with Broad Plasmon Resonance for Solar Seawater Desalination. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28769-28780. [PMID: 35704447 DOI: 10.1021/acsami.2c03845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The facile production of hollow and solid nitridized submicrometer titania spheres has been successfully realized, with potential for mass production. The nitridation process gives submicrometer titanium oxynitride spheres, which possess a strong and broadband light absorption property. Interband-transition-induced resonance and plasmon resonance have been found to coexist in titanium oxynitride spheres through single-particle dark-field scattering measurements. Theoretical modeling has further confirmed that the excellent light absorption properties of the oxynitride spheres originate from the supported dual-mode optical resonance. A highly efficient, easy-to-build, and self-sustainable device is rationally designed for solar-driven seawater desalination, where the titanium oxynitride spheres function as photothermal transducers. The hollow spheres possess a higher water evaporation rate than the solid ones as the inner surface of the hollow spheres also provides surface sites for interaction with water molecules. Given the outstanding light absorption capability and the unique morphology of the hollow spheres, a water evaporation rate of ∼1.49 kg m-2 h-1 with a solar-to-thermal conversion efficiency of ∼89.1% has been achieved under the illumination of simulated solar light (1 sun, 1 kW m-2). This marks the record performance among reported plasmon-based solar seawater desalination systems.
Collapse
Affiliation(s)
- Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Jianhua Yang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiao-Ming Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR 999078, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
39
|
Xia D, Chen Q, Jiao Y, Lian Q, Sun M, He C, Shang J, Wang T. A modified flower pollen-based photothermocatalytic process for enhanced solar water disinfection: Photoelectric effect and bactericidal mechanisms. WATER RESEARCH 2022; 217:118423. [PMID: 35417821 DOI: 10.1016/j.watres.2022.118423] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Solar disinfection (SODIS) is regarded as an affordable and effective point-of-use (POU) water disinfection treatment urgently needed in rural developing world. This work developed an enhanced SODIS scheme that utilized a novel flower pollen-based catalyst (Te-TRP). The bench-scale experiments demonstrated 100% photothermocatalytic inactivation of approximately 7-log E. coli K-12, Spingopyxis sp. BM1-1, or S. aureus bacterium by Te-TRP within 40-60 min. Moving toward practical device design, we constructed a flow-through reactor and demonstrated the outstanding water disinfection performance of Te-TRP. The in-depth mechanistic study revealed the synergetic effect between photocatalysis and photothermal conversion and identified the bacterial inactivation pathway. 1O2 and ·O2¯ were verified to be the dominant reactive oxygen species involved in the bacterial inactivation. The damage to bacterial cells caused by photothermocatalytic reactions was systematically investigated, demonstrating the cell membrane destruction, the loss of enzyme activity, the increased cell membrane permeability, and the complete inactivation of bacteria without the viable but nonculturable state cells. This work not only affords a facile approach to preparing biomaterial-based catalysts capable of efficient photothermocatalytic bacterial inactivation, but also proposes a prototype of POU water treatment, opening up an avenue for sustainable environmental remediation.
Collapse
Affiliation(s)
- Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Qi Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yimu Jiao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Qiyu Lian
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Mingzhe Sun
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| | - Jin Shang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, China.
| | - Tianqi Wang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, China.
| |
Collapse
|
40
|
Kozhemyakin GN, Belov YS, Artemov VV, Trufanova MK, Volchkov IS. Tellurium Nanostructures Obtained by Thermal Evaporation Method. CRYSTALLOGR REP+ 2022. [DOI: 10.1134/s1063774522030129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Jin Y, Wang K, Li S, Liu J. Encapsulation of MXene/polydopamine in nitrogen-doped 3D carbon networks with high photothermal conversion efficiency for seawater desalination. J Colloid Interface Sci 2022; 614:345-354. [DOI: 10.1016/j.jcis.2022.01.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/03/2023]
|
42
|
Vafapour Z. Cost-Effective Bull's Eye Aperture-Style Multi-Band Metamaterial Absorber at Sub-THz Band: Design, Numerical Analysis, and Physical Interpretation. SENSORS (BASEL, SWITZERLAND) 2022; 22:2892. [PMID: 35458876 PMCID: PMC9029594 DOI: 10.3390/s22082892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 05/03/2023]
Abstract
Theoretical and numerical studies were conducted on plasmonic interactions at a polarization-independent semiconductor-dielectric-semiconductor (SDS) sandwiched layer design and a brief review of the basic theory model was presented. The potential of bull's eye aperture (BEA) structures as device elements has been well recognized in multi-band structures. In addition, the sub-terahertz (THz) band (below 1 THz frequency regime) is utilized in communications and sensing applications, which are in high demand in modern technology. Therefore, we produced theoretical and numerical studies for a THz-absorbing-metasurface BEA-style design, with N-beam absorption peaks at a sub-THz band, using economical and commercially accessible materials, which have a low cost and an easy fabrication process. Furthermore, we applied the Drude model for the dielectric function of semiconductors due to its ability to describe both free-electron and bound systems simultaneously. Associated with metasurface research and applications, it is essential to facilitate metasurface designs to be of the utmost flexible properties with low cost. Through the aid of electromagnetic (EM) coupling using multiple semiconductor ring resonators (RRs), we could tune the number of absorption peaks between the 0.1 and 1.0 THz frequency regime. By increasing the number of semiconductor rings without altering all other parameters, we found a translation trend of the absorption frequencies. In addition, we validated our spectral response results using EM field distributions and surface currents. Here, we mainly discuss the source of the N-band THz absorber and the underlying physics of the multi-beam absorber designed structures. The proposed microstructure has ultra-high potentials to utilize in high-power THz sources and optical biomedical sensing and detection applications based on opto-electronics technology based on having multi-band absorption responses.
Collapse
Affiliation(s)
- Zohreh Vafapour
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada; or or
- Department of Physics, School of Natural Sciences, University of California Merced, Merced, CA 95343, USA
| |
Collapse
|
43
|
Yan B, He Y, Yang G. Nanoscale Self-Wetting Driven Monatomization of Ag Nanoparticle for Excellent Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107840. [PMID: 35199465 DOI: 10.1002/smll.202107840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Metal nanoparticles (NPs) with <10 nm have demonstrated many novel applications including surprisingly low melting point, astonishing liquid-like pseudoelasticity, and outstanding hydrogen evolution performance. Here, a nanoscale self-wetting driven monatomization of Ag NPs with <5 nm on carbon nitride (CN) to fabricate Ag single-atom catalyst (Ag1 /CN SAC) is demonstrated, and a thermodynamic approach to elucidate Ag NPs decomposing into single atoms is established. Dynamic dispersion process of Ag NPs into atoms on CN is recorded using in situ AC-HADDF-TEM techniques. Density functional theory calculations and molecular dynamics simulations suggest that the spontaneous dispersion origins from the nanoscale self-wetting effect in thermodynamics. In atomic scale, the driving force of self-wetting derived from the balance between cohesive energy of Ag NPs and excess energy of Ag atoms in CN vacations. The fabricated Ag1 /CN SAC proved a higher efficiency for photocatalytic hydrogen evolution activity (3690 μmmol g-1 h-1 ) than Pt nanoparticles on CN (3192 μmmol g-1 h-1 ). This spontaneous monatomization resulting from the interaction between metal NPs and substrate provides a simple method to prepare SACs with a high active photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Bo Yan
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Physics, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Yan He
- College of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Physics, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| |
Collapse
|
44
|
Nanostructured Broadband Solar Absorber for Effective Photothermal Conversion and Electricity Generation. ENERGIES 2022. [DOI: 10.3390/en15041354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photothermal conversion is an environmentally friendly process that harvests energy from the sun and has been attracting growing research interest in recent years. However, nanostructured strategies to improve light capture performance deserve further development, and the application of solar heating effects for clean energy needs to be explored. Herein, a multiscale nanomaterial was prepared by in situ polymerizing the polyaniline (PANI) nanoparticles into porous anodic aluminum oxide (AAO) membrane. As a result, the as-prepared PANI-AAO shows broadband solar absorption and provides a platform for efficient photothermal conversion. What is more, we introduced a typical thermoelectricity generator (TEG) with excellent output performance and combined it with PANI-AAO to prepare a solar thermoelectric generator (s-TEG). The s-TEG harvests solar energy and converts it into electricity, showing an outstanding power generation capability in outdoor conditions. Thus, the nanostructured broadband solar absorber and the integrated solar thermoelectric generator offer a promising candidate for a sustainable and green energy source in the future.
Collapse
|
45
|
Huang X, Liu J, Zhou P, Su G, Zhou T, Zhang X, Zhang C. Ultrarobust Photothermal Materials via Dynamic Crosslinking for Solar Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104048. [PMID: 34862705 DOI: 10.1002/smll.202104048] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Highly efficient and mechanically durable photothermal materials are urgently needed for solar harvesting, but their development still remains challenging. Here, inspired by the hierarchically oriented architecture of natural spider silk, an ultrarobust liquid metals (LMs)/polymer composite is presented via dynamic crosslinking based on the unique mechanical deformable characteristic of LMs. Dynamically cross-linked core-shell structured LMs droplets can be squeezed along with the orientational crystallization of polymer chains during drawing, thus enabling LMs nanoparticles to be uniformly programmed in the rigid polyethylene nanofiber skeleton. The resultant composite exhibits an unprecedented combination of strong broad-band light absorption (96.9-99.3%), excellent photothermal conversion ability, remarkable mechanical property (tensile strength of 283.7 MPa, which can lift 200 000 times its own weight), and long-term structural reliability (bearing 100 000 bending cycles). A powerful and durable solar thermoelectric generator system for real-environmental solar-heat-electricity conversion is further demonstrated, providing a valuable guidance for the design and fabrication of high-performance solar-harvesting materials.
Collapse
Affiliation(s)
- Xin Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Jize Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Peng Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Gehong Su
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Tao Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| |
Collapse
|
46
|
Peng Y, Zhao W, Ni F, Yu W, Liu X. Forest-like Laser-Induced Graphene Film with Ultrahigh Solar Energy Utilization Efficiency. ACS NANO 2021; 15:19490-19502. [PMID: 34797050 DOI: 10.1021/acsnano.1c06277] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To achieve high solar energy utilization efficiency, photothermal materials with broadband absorption of sunlight and high conversion efficiency are becoming a fast-growing research focus. Inspired by the forest structure with efficient sunlight utilization, we designed and fabricated a graphene film consisting of densely arranged porous graphene though laser scribing on polybenzoxazine resin (poly(Ph-ddm)). This hierarchical structure significantly reduced the light reflection of graphene as a 2D material. With a combination of advanced photothermal conversion properties of graphene, the 3D structured graphene film, named forest-like laser-induced graphene (forest-like LIG), was endowed with a very high light absorption of 99.0% over the whole wavelength range of sunlight as well as advanced light-to-heat conversion performance (reaching up to 87.7 °C within 30 s under the illumination of simulated sunlight and showing an equilibrium temperature of 90.7 ± 0.4 °C). As a further benefit of its superhydrophobicity, a photothermal actuator with quick actuated response and high motion velocity, as well as a solar-driven interfacial desalination membrane with durable salt-rejecting properties and high solar evaporation efficiencies, was demonstrated.
Collapse
Affiliation(s)
- Yunyan Peng
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Zhao
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Feng Ni
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Yu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqing Liu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| |
Collapse
|
47
|
Li Y, Liao Y, Zhang J, Huang E, Ji L, Zhang Z, Zhao R, Zhang Z, Yang B, Zhang Y, Xu B, Qin G, Zhang X. High‐Entropy‐Alloy Nanoparticles with Enhanced Interband Transitions for Efficient Photothermal Conversion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yixing Li
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Yijun Liao
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Jian Zhang
- Institute of Advanced Magnetic Materials College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310012 P. R. China
| | - Enhui Huang
- School of Science China Pharmaceutical University Nanjing 211198 P. R. China
| | - Lianze Ji
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
- Institute of Advanced Magnetic Materials College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310012 P. R. China
| | - Zhengyu Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Rongzhi Zhao
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
- Institute of Advanced Magnetic Materials College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310012 P. R. China
| | - Zhimin Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Bo Yang
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Yanhui Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Bo Xu
- School of Science China Pharmaceutical University Nanjing 211198 P. R. China
| | - Gaowu Qin
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Xuefeng Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
- Institute of Advanced Magnetic Materials College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310012 P. R. China
| |
Collapse
|
48
|
Tang Z, Song D, Ma W, Zhang X. Two-level synergistic scatterings from porosity and particle aggregation in Cu nanofluids for the enhancement of solar thermal conversion. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Li Y, Liao Y, Zhang J, Huang E, Ji L, Zhang Z, Zhao R, Zhang Z, Yang B, Zhang Y, Xu B, Qin G, Zhang X. High-Entropy-Alloy Nanoparticles with Enhanced Interband Transitions for Efficient Photothermal Conversion. Angew Chem Int Ed Engl 2021; 60:27113-27118. [PMID: 34605601 DOI: 10.1002/anie.202112520] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 11/08/2022]
Abstract
Photothermal materials with broadband optical absorption and high conversion efficiency are intensively pursued to date. Here, proposing by the d-d interband transitions, we report an unprecedented high-entropy alloy FeCoNiTiVCrCu nanoparticles that the energy regions below and above the Fermi level (±4 eV) have been fully filled by the 3d transition metals, which realizes an average absorbance greater than 96 % in the entire solar spectrum (wavelength of 250 to 2500 nm). Furthermore, we also calculated the photothermal conversion efficiency and the evaporation rate towards the steam generation. Due to its pronounced full light capture and ultrafast local heating, our high-entropy-alloy nanoparticle-based solar steam generator has over 98 % efficiency under one sun irradiation, meanwhile enabling a high evaporation rate of 2.26 kg m-2 h-1 .
Collapse
Affiliation(s)
- Yixing Li
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Yijun Liao
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Jian Zhang
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, P. R. China
| | - Enhui Huang
- School of Science, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Lianze Ji
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China.,Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, P. R. China
| | - Zhengyu Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Rongzhi Zhao
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China.,Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, P. R. China
| | - Zhimin Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Bo Yang
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Yanhui Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Bo Xu
- School of Science, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Gaowu Qin
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Xuefeng Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China.,Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, P. R. China
| |
Collapse
|
50
|
Fan FR, Wang R, Zhang H, Wu W. Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chem Soc Rev 2021; 50:10983-11031. [PMID: 34617521 DOI: 10.1039/c9cs00821g] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elemental two-dimensional (2D) materials have emerged as promising candidates for energy and catalysis applications due to their unique physical, chemical, and electronic properties. These materials are advantageous in offering massive surface-to-volume ratios, favorable transport properties, intriguing physicochemical properties, and confinement effects resulting from the 2D ultrathin structure. In this review, we focus on the recent advances in emerging energy and catalysis applications based on beyond-graphene elemental 2D materials. First, we briefly introduce the general classification, structure, and properties of elemental 2D materials and the new advances in material preparation. We then discuss various applications in energy harvesting and storage, including solar cells, piezoelectric and triboelectric nanogenerators, thermoelectric devices, batteries, and supercapacitors. We further discuss the explorations of beyond-graphene elemental 2D materials for electrocatalysis, photocatalysis, and heterogeneous catalysis. Finally, the challenges and perspectives for the future development of elemental 2D materials in energy and catalysis are discussed.
Collapse
Affiliation(s)
- Feng Ru Fan
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, USA. .,Flex Laboratory, Purdue University, West Lafayette, Indiana 47907, USA
| | - Ruoxing Wang
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, USA. .,Flex Laboratory, Purdue University, West Lafayette, Indiana 47907, USA
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China. .,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Wenzhuo Wu
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, USA. .,Flex Laboratory, Purdue University, West Lafayette, Indiana 47907, USA.,Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|