1
|
Lu L, Liu X, Gu P, Hu Z, Liang X, Deng Z, Sun Z, Zhang X, Yang X, Yang J, Zu G, Huang J. Stretchable all-gel organic electrochemical transistors. Nat Commun 2025; 16:3831. [PMID: 40268969 PMCID: PMC12019246 DOI: 10.1038/s41467-025-59240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 04/16/2025] [Indexed: 04/25/2025] Open
Abstract
Stretchable organic electrochemical transistors (OECTs) are promising for flexible electronics. However, the balance between stretchability and electrical properties is a great challenge for OECTs. Here, high-performance stretchable all-gel OECTs based on semiconducting polymer gel active layers and poly(ionic liquid) ionogel electrolytes are developed. The all-gel network structures effectively promote ion penetration/transport and endows the OECTs with high stretchability. The resulting OECTs exhibit an excellent combination of ultra-high transconductance of 86.4 mS, on/off ratio of 1.2 × 105, stretchability up to 50%, and high stretching stability up to 10000 cycles under 30% strain. We demonstrate that the all-gel OECTs can be used as stretchable pressure-sensitive electronic skins with a low detection limit for tactile perception of robotic hands. In addition, the all-gel OECTs can be applied as stretchable artificial synapses for neuromorphic simulation and highly sensitive stretchable gas sensors for simulating olfactory perception process and monitoring food quality. This work provides a general all-gel strategy toward high-performance flexible electronics.
Collapse
Affiliation(s)
- Linlin Lu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Xu Liu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Puzhong Gu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Zhenyu Hu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Xing Liang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Zhiying Deng
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Zejun Sun
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Xiaoyu Zhang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Xiao Yang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Jie Yang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China.
| | - Guoqing Zu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China.
| | - Jia Huang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China.
| |
Collapse
|
2
|
Louie S, Jiang Q, Wisniewski DJ, Bao ST, Zhang H, Chivukula K, Fang Q, Garudapalli A, Docherty SR, Ng F, Steigerwald M, Zhong Y, Khodagholy D, Nuckolls C. Contorted acene ribbons for stable and ultrasensitive neural probes. SCIENCE ADVANCES 2025; 11:eadu2356. [PMID: 40173228 PMCID: PMC11963965 DOI: 10.1126/sciadv.adu2356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
Organic materials that conduct both electrons and ions are integral to implantable bioelectronics because of their conformable nature. There is a dearth of these materials that are highly sensitive to cations, which are the majority ions on the surface of neurons. This manuscript offers a solution using an extended ribbon structure that is defect-free, providing high electronic mobility along its fused backbone, while the edge structure of these ribbons promotes high ionic conductivity. We incorporated these mixed ion/electron conductors into neural probes and implanted them in a rodent brain where they offer a suite of useful properties: high cation sensitivity, stability over several weeks after implantation, and biocompatibility. These materials represent an innovative class of implantable biosensors.
Collapse
Affiliation(s)
- Shayan Louie
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Qifeng Jiang
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Duncan J. Wisniewski
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
- Samueli School of Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Si Tong Bao
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Honghu Zhang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kaushik Chivukula
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Qiyi Fang
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ashutosh Garudapalli
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Scott R. Docherty
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Fay Ng
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | - Yu Zhong
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Dion Khodagholy
- Samueli School of Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
3
|
Li T, Qu Z, Si J, Lee Y, Bandari VK, Schmidt OG. Monolithically integrated solid-state vertical organic electrochemical transistors switching between neuromorphic and logic functions. SCIENCE ADVANCES 2025; 11:eadt5186. [PMID: 40085713 PMCID: PMC11908494 DOI: 10.1126/sciadv.adt5186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025]
Abstract
Manipulating the ionic-electronic coupling in organic electrochemical transistors (OECTs) offers opportunities for interesting phenomena and advanced applications but has not been systematically exploited. Here, we develop monolithically integrated solid-state vertical OECTs to fully explore polyelectrolyte's strengths, enabling the OECTs to switch between neuromorphic and logic functions. This transition capability is achieved by mastering the complex transport of large-size polycations within the channel through well-designed drain electrodes. Frame drains positioned atop the organic channel act as ion barriers, regulating the penetration and relaxation of polycations. This regulation allows our multilevel synaptic OECTs to transform from short-term depression (STD) to STD-based long-term memory, and eventually to long-term depression (LTD). Conversely, placing frame drains beneath the channel exposes the polyelectrolyte fully, hence yielding high-density logic OECTs, which have been successfully used to construct unipolar integrated circuits such as NOT, NAND, and NOR gates. These achievements represent a substantial advancement in manipulating polyelectrolyte-based ionic-electronic interactions, introducing more possibilities beyond small ion-based OECTs.
Collapse
Affiliation(s)
- Tianming Li
- Research Center for Materials, Architectures, and Integration of Nanomembranes (Main), TU Chemnitz, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, TU Chemnitz, 09107, Chemnitz, Germany, TU Chemnitz, 09126 Chemnitz, Germany
| | - Zhe Qu
- Research Center for Materials, Architectures, and Integration of Nanomembranes (Main), TU Chemnitz, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, TU Chemnitz, 09107, Chemnitz, Germany, TU Chemnitz, 09126 Chemnitz, Germany
| | - Jiansong Si
- Research Center for Materials, Architectures, and Integration of Nanomembranes (Main), TU Chemnitz, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, TU Chemnitz, 09107, Chemnitz, Germany, TU Chemnitz, 09126 Chemnitz, Germany
| | - Yeji Lee
- Research Center for Materials, Architectures, and Integration of Nanomembranes (Main), TU Chemnitz, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, TU Chemnitz, 09107, Chemnitz, Germany, TU Chemnitz, 09126 Chemnitz, Germany
| | - Vineeth Kumar Bandari
- Research Center for Materials, Architectures, and Integration of Nanomembranes (Main), TU Chemnitz, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, TU Chemnitz, 09107, Chemnitz, Germany, TU Chemnitz, 09126 Chemnitz, Germany
| | - Oliver G. Schmidt
- Research Center for Materials, Architectures, and Integration of Nanomembranes (Main), TU Chemnitz, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, TU Chemnitz, 09107, Chemnitz, Germany, TU Chemnitz, 09126 Chemnitz, Germany
- International Institute for Intelligent Nanorobots and Nanosystems (IIINN), Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
4
|
Peng Y, Gao L, Liu C, Guo H, Huang W, Zheng D. Gel-Based Electrolytes for Organic Electrochemical Transistors: Mechanisms, Applications, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409384. [PMID: 39901575 DOI: 10.1002/smll.202409384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/06/2024] [Indexed: 02/05/2025]
Abstract
Organic electrochemical transistors (OECTs) have emerged as the core component of specialized bioelectronic technologies due to their high signal amplification capability, low operating voltage (<1 V), and biocompatibility. Under a gate bias, OECTs modulate device operation via ionic drift between the electrolyte and the channel. Compared to common electrolytes with a fluid nature (including salt aqueous solutions and ion liquids), gel electrolytes, with an intriguing structure consisting of a physically and/or chemically crosslinked polymer network where the interstitial spaces between polymers are filled with liquid electrolytes or mobile ion species, are promising candidates for quasi-solid electrolytes. Due to relatively high ionic conductivity, the potential for large-scale integration, and the capability to suppress channel swelling, gel electrolytes have been a research highlight in OECTs in recent years. This review summarizes recent progress on OECTs with gel electrolytes that demonstrate good mechanical as well as physical and chemical stabilities. Moreover, various components in forming gel electrolytes, including different mobile liquid phases and polymer components, are introduced. Furthermore, applications of these OECTs in the areas of sensors, neuromorphics, and organic circuits, are discussed. Last, future perspectives of OECTs based on gel electrolytes are discussed along with possible solutions for existing challenges.
Collapse
Affiliation(s)
- Yujie Peng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Lin Gao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Changjian Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Haihong Guo
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Wei Huang
- School of Automation Engineering, UESTC, Chengdu, 611731, P. R. China
| | - Ding Zheng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| |
Collapse
|
5
|
Granelli R, Kovács-Vajna ZM, Torricelli F. Additive Manufacturing of Organic Electrochemical Transistors: Methods, Device Architectures, and Emerging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410499. [PMID: 39945058 PMCID: PMC11922034 DOI: 10.1002/smll.202410499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/14/2025] [Indexed: 03/20/2025]
Abstract
Organic electrochemical transistors (OECTs) are key devices in a large set of application fields including bioelectronics, neuromorphics, sensing, and flexible electronics. This review explores the advancements in additive manufacturing techniques accounting for printing technologies, device architectures, and emerging applications. The promising applications of printed OECTs, ranging from biochemical sensors to neuromorphic computing are examined, showcasing their versatility. Despite significant advancements, ongoing challenges persist, such as material-related issues, inconsistencies in film homogeneity, and the scalability of integration processes. This review identifies these critical obstacles and offers targeted solutions and future research directions aimed at enhancing the performance and reliability of fully-printed OECTs. By addressing these challenges, the aim of this study is to facilitate the development of next-generation OECTs that can meet the demands of emerging applications in sustainable and intelligent electronic and bioelectronic systems.
Collapse
Affiliation(s)
- Roberto Granelli
- Department of Information Engineering, University of Brescia, via Branze 38, Brescia, 25123, Italy
| | - Zsolt M Kovács-Vajna
- Department of Information Engineering, University of Brescia, via Branze 38, Brescia, 25123, Italy
| | - Fabrizio Torricelli
- Department of Information Engineering, University of Brescia, via Branze 38, Brescia, 25123, Italy
| |
Collapse
|
6
|
Boufidis D, Garg R, Angelopoulos E, Cullen DK, Vitale F. Bio-inspired electronics: Soft, biohybrid, and "living" neural interfaces. Nat Commun 2025; 16:1861. [PMID: 39984447 PMCID: PMC11845577 DOI: 10.1038/s41467-025-57016-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/04/2025] [Indexed: 02/23/2025] Open
Abstract
Neural interface technologies are increasingly evolving towards bio-inspired approaches to enhance integration and long-term functionality. Recent strategies merge soft materials with tissue engineering to realize biologically-active and/or cell-containing living layers at the tissue-device interface that enable seamless biointegration and novel cell-mediated therapeutic opportunities. This review maps the field of bio-inspired electronics and discusses key recent developments in tissue-like and regenerative bioelectronics, from soft biomaterials and surface-functionalized bioactive coatings to cell-containing 'biohybrid' and 'all-living' interfaces. We define and contextualize key terminology in this emerging field and highlight how biological and living components can bridge the gap to clinical translation.
Collapse
Affiliation(s)
- Dimitris Boufidis
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Raghav Garg
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eugenia Angelopoulos
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - D Kacy Cullen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA.
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Flavia Vitale
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA.
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
7
|
Pyo WJ, Lee S, Hassan SZ, Kim D, Jung J, Kang ESH, Chung DS. Internalization of Ionic Transport Ability of Polymer Semiconductors via Photochemical Cross-Linking. ACS NANO 2025; 19:5801-5810. [PMID: 39875199 DOI: 10.1021/acsnano.4c18087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
In the field of organic electronics and optics, there is rapidly growing interest in enhancing both charge transport and the ion transport properties of semiconductors, particularly in light of recent emerging technologies such as organic electrochemical transistors (OECTs) and switchable organic nanoantennas. Herein, we propose a universal method for internalizing the ionic transport properties of conventional polymer semiconductors. The incorporation of a tetrafluorophenyl azide-based photochemical cross-linker with a tetraethylene glycol bridge into poly(3-hexylthiophene) (P3HT) significantly enhances the performance and operational stability of ion-gating devices. Changes in the characteristics of the OECTs with cross-linked P3HT are minimal even after 100 cycles of operation; moreover, the cross-linked OECTs exhibit faster switching properties. In addition, the enhanced doping efficiency allows for the clear observation of plasmon resonances in nanostructured, highly doped P3HT. We believe that the proposed technique for internalizing ionic transport abilities can be applied to various ion-based semiconductor applications.
Collapse
Affiliation(s)
- Won Jun Pyo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seunghyun Lee
- Department of Physics, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Syed Zahid Hassan
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dowan Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junho Jung
- Department of Physics, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Evan S H Kang
- Department of Physics, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dae Sung Chung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
8
|
Cheng H, Dutta A, Biswas AS, Meng L, Gerhard E, Calva AM, Zhang W, Abdullah AM, Joharji L, Che Y, Yang J, Hu X. Synergy of a Complimentary Ionic Biogel Network for Through-Hair Neurohaptics. RESEARCH SQUARE 2025:rs.3.rs-5829714. [PMID: 39975886 PMCID: PMC11838724 DOI: 10.21203/rs.3.rs-5829714/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Understanding the neural mechanisms underlying haptic sensations is crucial for advancing neuroprosthetics. However, achieving on-site amplification non-invasively through-hair neural recordings remains a significant challenge as it requires thermoreversible, bioadhesive, and semiconducting characteristics in the same material. Typical polymer composite compromises on complementary properties. To address this, we present a membraneless organelles - inspired ionic biogel that leverages liquid-liquid phase separation. This enables a unique synergy of complementary properties, including rapid thermoreversible transitions, p-type semiconductivity, thermoelectricity, enhanced electrochemical stability, self-healing, and bioadhesive capabilities. These characteristics enable to analyze the frequency dependence of event-related desynchronization during electrical stimulation over days mimicking the frequency response of mechanoreceptors sensation. This thermoresponsive, semiconducting ionic biogel also enables a phase-reversible, self-balancing, tip-shaped vertical organic electrochemical transistor with a high transconductance of 44 mS at 40°C. The ionic biogel demonstrates synergistic complementary properties to understand through-hair neurohaptics.
Collapse
|
9
|
Zhu Z, Pang Y, Li Y, Gu Y, Wang X, Yu A, Liu B, Liu S, Huang W, Zhao Q. The Rising of Flexible Organic Electrochemical Transistors in Sensors and Intelligent Circuits. ACS NANO 2025; 19:4084-4120. [PMID: 39829276 DOI: 10.1021/acsnano.4c12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Flexible electronic devices in biomedicine, environmental monitoring, and brain-like computing have garnered significant attention. Among these, organic electrochemical transistors (OECTs) have been spotlighted in flexible sensors and neuromorphic circuits for their low power consumption, high signal amplification, excellent biocompatibility, chemical stability, stretchability, and flexibility. However, OECTs will also face some challenges on the way to commercialized applications, including the need for improved long-term stability, enhanced performance of N-type materials, integration with existing technologies, and cost-effective manufacturing processes. This review presents the device physics of OECTs in detail, including the evaluation of their various properties and the introduction of different configurations of the aforementioned OECTs. Subsequently, the components of this device and their roles are explained in depth, and the main ways to design and fabricate flexible OECTs are summarized. Following this, we summarize and analyze the principles and applications of OECTs for electrophysiological signal sensing, chemical sensing, biosensing, and sensor arrays. In addition, the concepts of OECT-based digital and neuromorphic circuits and their applications are presented. Finally, the paper summarizes the opportunities and challenges of OECT-based flexible electronics.
Collapse
Affiliation(s)
- Zihan Zhu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Yuncong Pang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Yang Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Yuzhe Gu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Xiaotian Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Aoxi Yu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Baoguang Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| |
Collapse
|
10
|
Wisniewski DJ, Ma L, Rauhala OJ, Cea C, Zhao Z, Ranschaert A, Gelinas JN, Khodagholy D. Spatial control of doping in conducting polymers enables complementary, conformable, implantable internal ion-gated organic electrochemical transistors. Nat Commun 2025; 16:517. [PMID: 39788930 PMCID: PMC11717955 DOI: 10.1038/s41467-024-55284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Complementary transistors are critical for circuits with compatible input/output signal dynamic range and polarity. Organic electronics offer biocompatibility and conformability; however, generation of complementary organic transistors requires introduction of separate materials with inadequate stability and potential for tissue toxicity, limiting their use in biomedical applications. Here, we discovered that introduction of source/drain contact asymmetry enables spatial control of de/doping and creation of single-material complementary organic transistors from a variety of conducting polymers of both carrier types. When integrated with the vertical channel design and internal ion reservoirs of internal ion-gated organic electrochemical transistors, we produced matched complementary IGTs (cIGTs) that formed high-performance conformable amplifiers with 200 V/V uniform gain and 2 MHz bandwidth. These amplifiers showed long-term in vivo stability, and their miniaturized biocompatible design allowed implantation in developing rodents to monitor network maturation. cIGTs expand the use of organic electronics in standard circuit designs and enhance their biomedical potential.
Collapse
Affiliation(s)
- Duncan J Wisniewski
- Department of Electrical Engineering, University of California, Irvine, CA, USA
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Liang Ma
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Onni J Rauhala
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Claudia Cea
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | | | - Jennifer N Gelinas
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Pediatrics, University of California, Irvine, CA, USA.
- Children's Hospital of Orange County, Orange, CA, USA.
| | - Dion Khodagholy
- Department of Electrical Engineering, University of California, Irvine, CA, USA.
- Department of Electrical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
Lee I, Kim JH, Kim Y, Shin D, Lee H, Won J, Kang K, Choi JG, Yoon MH, Park S. Ultraflexible Vertical Corbino Organic Electrochemical Transistors for Epidermal Signal Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410444. [PMID: 39491808 DOI: 10.1002/adma.202410444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Skin-conformal organic electrochemical transistors (OECTs) have attracted significant attention for real-time physiological signal monitoring and are vital for health diagnostics and treatments. However, mechanical harmonization amid the inherent dynamic nature of the skin surface and the acquisition of intrinsic physiological signals are significant challenges that hinder the integration of the ultimate skin interface. Thus, this study proposes a novel 4-terminal (4-T) vertical Corbino OECT, exhibiting high transconductance (>400 mS) and offering remarkable resilience and operational stability at an extremely low voltage of 10 mV (1.9% of minimal current change after 104 biasing cycles and endurance up to 103 cycles of repetitive deformation with a 5 µm bending radius). Consequently, ultralow-power, motion-resistant epidermal electrocardiogram, electromyogram, and electrooculogram sensors are developed with an exceptional signal-to-noise ratio of 40.1 dB. The results of this study present a significant stride in non-invasive, skin-interfaced health-monitoring technologies and herald a new era in integrative health technologies.
Collapse
Affiliation(s)
- Inho Lee
- Department of Intelligence Semiconductor, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Ji Hwan Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youngseok Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Dongjoon Shin
- Department of Intelligence Semiconductor, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Hyeongbeom Lee
- Department of Intelligence Semiconductor, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Jonghyun Won
- Department of Intelligence Semiconductor, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Keehoon Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun-Gyu Choi
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Sungjun Park
- Department of Intelligence Semiconductor, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| |
Collapse
|
12
|
Zhong Y, Nayak PD, Wustoni S, Surgailis J, Parrado Agudelo JZ, Marks A, McCulloch I, Inal S. Ionic Liquid Gated Organic Electrochemical Transistors with Broadened Bandwidth. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61457-61466. [PMID: 37997899 DOI: 10.1021/acsami.3c11214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The organic electrochemical transistor (OECT) is a biosignal transducer known for its high amplification but relatively slow operation. Here, we demonstrate that the use of an ionic liquid as the dielectric medium significantly improves the switching speed of a p-type enhancement-mode OECT, regardless of the gate electrode used. The OECT response time with the ionic liquid improves up to ca. 41-fold and 46-fold for the silver/silver chloride (Ag/AgCl) and gold (Au) gates, respectively, compared with devices gated with the phosphate buffered saline (PBS) solution. Notably, the transistor gain remains uncompromised, and its maximum is reached at lower voltages compared to those of PBS-gated devices with Ag/AgCl as the gate electrode. Through ultraviolet-visible spectroscopy and etching X-ray photoelectron spectroscopy characterizations, we reveal that the enhanced bandwidth is associated with the prediffused ionic liquid inside the polymer, leading to a higher doping level compared to PBS. Using the ionic liquid-gated OECTs, we successfully detect electrocardiography (ECG) signals, which exhibit a complete waveform with well-distinguished features and a stable signal baseline. By integrating nonaqueous electrolytes that enhance the device bandwidth, we unlock the potential of enhancement-mode OECTs for physiological signal acquisition and other real-time biosignal monitoring applications.
Collapse
Affiliation(s)
- Yizhou Zhong
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Prem D Nayak
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Shofarul Wustoni
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Jokubas Surgailis
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Jessica Z Parrado Agudelo
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Adam Marks
- Department of Chemistry, University of Oxford, Oxford OX1 3TF, United Kingdom
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford OX1 3TF, United Kingdom
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| |
Collapse
|
13
|
Li W, Li Y, Song Z, Wang YX, Hu W. PEDOT-based stretchable optoelectronic materials and devices for bioelectronic interfaces. Chem Soc Rev 2024; 53:10575-10603. [PMID: 39254255 DOI: 10.1039/d4cs00541d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The rapid development of wearable and implantable electronics has enabled the real-time transmission of electrophysiological signals in situ, thus allowing the precise monitoring and regulation of biological functions. Devices based on organic materials tend to have low moduli and intrinsic stretchability, making them ideal choices for the construction of seamless bioelectronic interfaces. In this case, as an organic ionic-electronic conductor, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has low impedance to offer a high signal-to-noise ratio for monitoring bioelectrical signals, which has become one of the most promising conductive polymers. However, the initial conductivity and stretchability of pristine PEDOT:PSS are insufficient to meet the application requirements, and there is a trade-off between their improvement. In addition, PEDOT:PSS has poor stability in aqueous environments due to the hygroscopicity of the PSS chains, which severely limits its long-term applications in water-rich bioelectronic interfaces. Considering the growing demands of multi-function integration, the high-resolution fabrication of electronic devices is urgent. It is a great challenge to maintain both electrical and mechanical performance after miniaturization, particularly at feature sizes below 100 μm. In this review, we focus on the combined improvement in the conductivity and stretchability of PEDOT:PSS, as well as the corresponding mechanisms in detail. Also, we summarize the effective strategies to improve the stability of PEDOT:PSS in aqueous environments, which plays a vital role in long-term applications. Finally, we introduce the reliable micropatterning technologies and PEDOT:PSS-based stretchable optoelectronic devices applied at bio-interfaces.
Collapse
Affiliation(s)
- Weizhen Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yiming Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Ziyu Song
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yi-Xuan Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
14
|
Liu X, Sun C, Ye X, Zhu X, Hu C, Tan H, He S, Shao M, Li RW. Neuromorphic Nanoionics for Human-Machine Interaction: From Materials to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311472. [PMID: 38421081 DOI: 10.1002/adma.202311472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Human-machine interaction (HMI) technology has undergone significant advancements in recent years, enabling seamless communication between humans and machines. Its expansion has extended into various emerging domains, including human healthcare, machine perception, and biointerfaces, thereby magnifying the demand for advanced intelligent technologies. Neuromorphic computing, a paradigm rooted in nanoionic devices that emulate the operations and architecture of the human brain, has emerged as a powerful tool for highly efficient information processing. This paper delivers a comprehensive review of recent developments in nanoionic device-based neuromorphic computing technologies and their pivotal role in shaping the next-generation of HMI. Through a detailed examination of fundamental mechanisms and behaviors, the paper explores the ability of nanoionic memristors and ion-gated transistors to emulate the intricate functions of neurons and synapses. Crucial performance metrics, such as reliability, energy efficiency, flexibility, and biocompatibility, are rigorously evaluated. Potential applications, challenges, and opportunities of using the neuromorphic computing technologies in emerging HMI technologies, are discussed and outlooked, shedding light on the fusion of humans with machines.
Collapse
Affiliation(s)
- Xuerong Liu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaoyu Ye
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaojian Zhu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Cong Hu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Hongwei Tan
- Department of Applied Physics, Aalto University, Aalto, FI-00076, Finland
| | - Shang He
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Mengjie Shao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
15
|
Yu S, Sun X, Liu J, Li S. OECT - Inspired electrical detection. Talanta 2024; 275:126180. [PMID: 38703480 DOI: 10.1016/j.talanta.2024.126180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Organic Electrochemical Transistors (OECTs) are integral in detecting human bioelectric signals, attributing their significance to distinct electrochemical properties, the utilization of soft materials, compact dimensions, and pronounced biocompatibility. This review traverses the technological evolution of OECT, highlighting its profound impact on non-invasive detection methodologies within the biomedicalfield. Four sensor types rooted in OECT technology were introduced: Electrocardiogram (ECG), Electroencephalogram (EEG), Electromyography (EMG), and Electrooculography (EOG), which hold promise for integration into wearable detection systems. The fundamental detection principles, material compositions, and functional attributes of these sensors are examined. Additionally, the performance metrics and delineates viable optimization strategies for assorted physiological electrical detection sensors are discussed. The overarching goal of this review is to foster deeper insights into the generation, propagation, and modulation of electrophysiological signals, thereby advancing the application and development of OECT in medical sciences.
Collapse
Affiliation(s)
- Shixin Yu
- School of Automation Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Xiaojun Sun
- School of Automation Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Jingjing Liu
- School of Automation Engineering, Northeast Electric Power University, Jilin, 132012, China.
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
16
|
Pan T, Jiang X, van Doremaele ERW, Li J, van der Pol TPA, Yan C, Ye G, Liu J, Hong W, Chiechi RC, van de Burgt Y, Zhang Y. Over 60 h of Stable Water-Operation for N-Type Organic Electrochemical Transistors with Fast Response and Ambipolarity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400872. [PMID: 38810112 PMCID: PMC11304290 DOI: 10.1002/advs.202400872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/28/2024] [Indexed: 05/31/2024]
Abstract
Organic electrochemical transistors (OECTs) are of great interest in low-power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic-electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non-fused planar naphthalenediimide (NDI)-dialkoxybithiazole (2Tz) copolymers are fine-tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P-XO, X = 3-6) to achieve OECTs with high-stability and low threshold voltage. As a result, the NDI-2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra-high n-type stability. Notably, the P-6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n-type mode in an aqueous solution for over 60 h, maintaining an on-off ratio of over 105. This work sheds light on the design of exceptional n-type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water-operational integrated circuits for long-term biosensing systems and energy-efficient brain-inspired computing.
Collapse
Affiliation(s)
- Tao Pan
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Xinnian Jiang
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Eveline R. W. van Doremaele
- MicrosystemsDepartment of Mechanical Engineering & Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Junyu Li
- Sinopec Shanghai Research Institute of Petrochemical TechnologyShanghai201028P. R. China
| | - Tom P. A. van der Pol
- Molecular Materials and Nanosystems & Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Chenshuai Yan
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Gang Ye
- Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityYouyi Road 368Wuhan430062P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Wenjing Hong
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Ryan C. Chiechi
- Department of Chemistry & Organic and Carbon Electronics ClusterNorth Carolina State UniversityRaleighNC27695‐8204USA
| | - Yoeri van de Burgt
- MicrosystemsDepartment of Mechanical Engineering & Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Yanxi Zhang
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
17
|
Zhao C, Yang J, Ma W. Transient Response and Ionic Dynamics in Organic Electrochemical Transistors. NANO-MICRO LETTERS 2024; 16:233. [PMID: 38954272 PMCID: PMC11219702 DOI: 10.1007/s40820-024-01452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
The rapid development of organic electrochemical transistors (OECTs) has ushered in a new era in organic electronics, distinguishing itself through its application in a variety of domains, from high-speed logic circuits to sensitive biosensors, and neuromorphic devices like artificial synapses and organic electrochemical random-access memories. Despite recent strides in enhancing OECT performance, driven by the demand for superior transient response capabilities, a comprehensive understanding of the complex interplay between charge and ion transport, alongside electron-ion interactions, as well as the optimization strategies, remains elusive. This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses, emphasizing advancements in device physics and optimization approaches. We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications, as well as the impact of materials, morphology, device structure strategies on optimizing transient responses. This paper not only offers a detailed overview of the current state of the art, but also identifies promising avenues for future research, aiming to drive future performance advancements in diversified applications.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jintao Yang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
18
|
Liu H, Song J, Zhao Z, Zhao S, Tian Z, Yan F. Organic Electrochemical Transistors for Biomarker Detections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305347. [PMID: 38263718 PMCID: PMC11251571 DOI: 10.1002/advs.202305347] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Indexed: 01/25/2024]
Abstract
The improvement of living standards and the advancement of medical technology have led to an increased focus on health among individuals. Detections of biomarkers are feasible approaches to obtaining information about health status, disease progression, and response to treatment of an individual. In recent years, organic electrochemical transistors (OECTs) have demonstrated high electrical performances and effectiveness in detecting various types of biomarkers. This review provides an overview of the working principles of OECTs and their performance in detecting multiple types of biomarkers, with a focus on the recent advances and representative applications of OECTs in wearable and implantable biomarker detections, and provides a perspective for the future development of OECT-based biomarker sensors.
Collapse
Affiliation(s)
- Hong Liu
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Jiajun Song
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zeyu Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Sanqing Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zhiyuan Tian
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Feng Yan
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
- Research Institute of Intelligent Wearable SystemsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| |
Collapse
|
19
|
Merces L, Ferro LMM, Nawaz A, Sonar P. Advanced Neuromorphic Applications Enabled by Synaptic Ion-Gating Vertical Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305611. [PMID: 38757653 PMCID: PMC11251569 DOI: 10.1002/advs.202305611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/07/2023] [Indexed: 05/18/2024]
Abstract
Bioinspired synaptic devices have shown great potential in artificial intelligence and neuromorphic electronics. Low energy consumption, multi-modal sensing and recording, and multifunctional integration are critical aspects limiting their applications. Recently, a new synaptic device architecture, the ion-gating vertical transistor (IGVT), has been successfully realized and timely applied to perform brain-like perception, such as artificial vision, touch, taste, and hearing. In this short time, IGVTs have already achieved faster data processing speeds and more promising memory capabilities than many conventional neuromorphic devices, even while operating at lower voltages and consuming less power. This work focuses on the cutting-edge progress of IGVT technology, from outstanding fabrication strategies to the design and realization of low-voltage multi-sensing IGVTs for artificial-synapse applications. The fundamental concepts of artificial synaptic IGVTs, such as signal processing, transduction, plasticity, and multi-stimulus perception are discussed comprehensively. The contribution draws special attention to the development and optimization of multi-modal flexible sensor technologies and presents a roadmap for future high-end theoretical and experimental advancements in neuromorphic research that are mostly achievable by the synaptic IGVTs.
Collapse
Affiliation(s)
- Leandro Merces
- Research Center for MaterialsArchitectures, and Integration of Nanomembranes (MAIN)Chemnitz University of Technology09126ChemnitzGermany
| | - Letícia Mariê Minatogau Ferro
- Research Center for MaterialsArchitectures, and Integration of Nanomembranes (MAIN)Chemnitz University of Technology09126ChemnitzGermany
| | - Ali Nawaz
- Center for Sensors and DevicesBruno Kessler Foundation (FBK)Trento38123Italy
| | - Prashant Sonar
- School of Chemistry and PhysicsQueensland University of Technology (QUT)BrisbaneQLD4000Australia
- Centre for Materials ScienceQueensland University of Technology2 George StreetBrisbaneQLD4000Australia
| |
Collapse
|
20
|
Nguyen-Dang T, Bao ST, Kaiyasuan C, Li K, Chae S, Yi A, Joy S, Harrison K, Kim JY, Pallini F, Beverina L, Graham KR, Nuckolls C, Nguyen TQ. Air-Stable Perylene Diimide Trimer Material for N-Type Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312254. [PMID: 38521992 DOI: 10.1002/adma.202312254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/18/2024] [Indexed: 03/25/2024]
Abstract
A new method is reported to make air-stable n-type organic mixed ionic-electronic conductor (OMIEC) films for organic electrochemical transistors (OECTs) using a solution-processable small molecule helical perylene diimide trimer, hPDI[3]-C11. Alkyl side chains are attached to the conjugated core for processability and film making, which are then cleaved via thermal annealing. After the sidechains are removed, the hPDI[3] film becomes less hydrophobic, more ordered, and has a deeper lowest unoccupied molecular orbital (LUMO). These features provide improved ionic transport, greater electronic mobility, and increased stability in air and in aqueous solution. Subsequently, hPDI[3]-H is used as the active material in OECTs and a device with a transconductance of 44 mS, volumetric capacitance of ≈250 F cm-3, µC* value of 1 F cm-1 V-1 s-1, and excellent stability (> 5 weeks) is demonstrated. As proof of their practical applications, a hPDI[3]-H-based OECTs as a glucose sensor and electrochemical inverter is utilized. The approach of side chain removal after film formation charts a path to a wide range of molecular semiconductors to be used as stable, mixed ionic-electronic conductors.
Collapse
Affiliation(s)
- Tung Nguyen-Dang
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
- College of Engineering and Computer Science (CECS) and Center for Environmental Intelligence, VinUniversity, Gia-Lam, Hanoi, 12400, Vietnam
| | - Si Tong Bao
- Department of Chemistry, University of Columbia, New York, NY 10027, USA
| | - Chokchai Kaiyasuan
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Kunyu Li
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Sangmin Chae
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Ahra Yi
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Syed Joy
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Kelsey Harrison
- Department of Chemistry, University of Columbia, New York, NY 10027, USA
| | - Jae Young Kim
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Francesca Pallini
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
- Department of Materials Science, State University of Milano-Bicocca, Via Cozzi 55, Milano, I-20126, Italy
| | - Luca Beverina
- Department of Materials Science, State University of Milano-Bicocca, Via Cozzi 55, Milano, I-20126, Italy
| | - Kenneth R Graham
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Colin Nuckolls
- Department of Chemistry, University of Columbia, New York, NY 10027, USA
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| |
Collapse
|
21
|
Song J, Liu H, Zhao Z, Lin P, Yan F. Flexible Organic Transistors for Biosensing: Devices and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300034. [PMID: 36853083 DOI: 10.1002/adma.202300034] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable biosensors can offer seamless and conformable biological-electronic interfaces for continuously acquiring high-fidelity signals, permitting numerous emerging applications. Organic thin film transistors (OTFTs) are ideal transducers for flexible and stretchable biosensing due to their soft nature, inherent amplification function, biocompatibility, ease of functionalization, low cost, and device diversity. In consideration of the rapid advances in flexible-OTFT-based biosensors and their broad applications, herein, a timely and comprehensive review is provided. It starts with a detailed introduction to the features of various OTFTs including organic field-effect transistors and organic electrochemical transistors, and the functionalization strategies for biosensing, with a highlight on the seminal work and up-to-date achievements. Then, the applications of flexible-OTFT-based biosensors in wearable, implantable, and portable electronics, as well as neuromorphic biointerfaces are detailed. Subsequently, special attention is paid to emerging stretchable organic transistors including planar and fibrous devices. The routes to impart stretchability, including structural engineering and material engineering, are discussed, and the implementations of stretchable organic transistors in e-skin and smart textiles are included. Finally, the remaining challenges and the future opportunities in this field are summarized.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials and Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
22
|
Wu R, Ji X, Ma Q, Paulsen BD, Tropp J, Rivnay J. Direct quantification of ion composition and mobility in organic mixed ionic-electronic conductors. SCIENCE ADVANCES 2024; 10:eadn8628. [PMID: 38657078 PMCID: PMC11042751 DOI: 10.1126/sciadv.adn8628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
Ion transport in organic mixed ionic-electronic conductors (OMIECs) is crucial due to its direct impact on device response time and operating mechanisms but is often assessed indirectly or necessitates extra assumptions. Operando x-ray fluorescence (XRF) is a powerful, direct probe for elemental characterization of bulk OMIECs and was used to directly quantify ion composition and mobility in a model OMIEC, poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS), during device operation. The first cycle revealed slow electrowetting and cation-proton exchange. Subsequent cycles showed rapid response with minor cation fluctuation (~5%). Comparison with optical-tracked electrochromic fronts revealed mesoscale structure-dependent proton transport. The calculated effective ion mobility demonstrated thickness-dependent behavior, emphasizing an interfacial ion transport pathway with a higher mobile ion density. The decoupling of interfacial effects on bulk ion mobility and the decoupling of cation and proton migration elucidate ion transport in conventional and emerging OMIEC-based devices and has broader implications for other ionic conductors writ large.
Collapse
Affiliation(s)
- Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Xudong Ji
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Qing Ma
- DND-CAT, Synchrotron Research Center, Northwestern University, Evanston, IL 60208, USA
| | - Bryan D. Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Joshua Tropp
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Material Science and Engineering, Northwestern University, Evanston, IL 60611, USA
| |
Collapse
|
23
|
Bai J, Liu D, Tian X, Wang Y, Cui B, Yang Y, Dai S, Lin W, Zhu J, Wang J, Xu A, Gu Z, Zhang S. Coin-sized, fully integrated, and minimally invasive continuous glucose monitoring system based on organic electrochemical transistors. SCIENCE ADVANCES 2024; 10:eadl1856. [PMID: 38640241 PMCID: PMC11029813 DOI: 10.1126/sciadv.adl1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Continuous glucose monitoring systems (CGMs) are critical toward closed-loop diabetes management. The field's progress urges next-generation CGMs with enhanced antinoise ability, reliability, and wearability. Here, we propose a coin-sized, fully integrated, and wearable CGM, achieved by holistically synergizing state-of-the-art interdisciplinary technologies of biosensors, minimally invasive tools, and hydrogels. The proposed CGM consists of three major parts: (i) an emerging biochemical signal amplifier, the organic electrochemical transistor (OECT), improving the signal-to-noise ratio (SNR) beyond traditional electrochemical sensors; (ii) a microneedle array to facilitate subcutaneous glucose sampling with minimized pain; and (iii) a soft hydrogel to stabilize the skin-device interface. Compared to conventional CGMs, the OECT-CGM offers a high antinoise ability, tunable sensitivity and resolution, and comfort wearability, enabling personalized glucose sensing for future precision diabetes health care. Last, we discuss how OECT technology can help push the limit of detection of current wearable electrochemical biosensors, especially when operating in complicated conditions.
Collapse
Affiliation(s)
- Jing Bai
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Dingyao Liu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xinyu Tian
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yan Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Binbin Cui
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yilin Yang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Shilei Dai
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Wensheng Lin
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Jixiang Zhu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery Systems, Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery Systems, Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
24
|
Kim J, Pankow RM, Cho Y, Duplessis ID, Qin F, Meli D, Daso R, Zheng D, Huang W, Rivnay J, Marks TJ, Facchetti A. Monolithically integrated high-density vertical organic electrochemical transistor arrays and complementary circuits. NATURE ELECTRONICS 2024; 7:234-243. [PMID: 39155947 PMCID: PMC11326712 DOI: 10.1038/s41928-024-01127-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/18/2024] [Indexed: 08/20/2024]
Abstract
Organic electrochemical transistors (OECTs) can be used to create biosensors, wearable devices and neuromorphic systems. However, restrictions in the micro- and nanopatterning of organic semiconductors, as well as topological irregularities, often limit their use in monolithically integrated circuits. Here we show that the micropatterning of organic semiconductors by electron-beam exposure can be used to create high-density (up to around 7.2 million OECTs per cm2) and mechanically flexible vertical OECT arrays and circuits. The energetic electrons convert the semiconductor exposed area to an electronic insulator while retaining ionic conductivity and topological continuity with the redox-active unexposed areas essential for monolithic integration. The resulting p- and n-type vertical OECT active-matrix arrays exhibit transconductances of 0.08-1.7 S, transient times of less than 100 μs and stable switching properties of more than 100,000 cycles. We also fabricate vertically stacked complementary logic circuits, including NOT, NAND and NOR gates.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, USA
- Department of Semiconductor Science, Dongguk University, Seoul, Republic of Korea
| | - Robert M Pankow
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, USA
| | - Yongjoon Cho
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, USA
| | - Isaiah D Duplessis
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, USA
| | - Fei Qin
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, USA
| | - Dilara Meli
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Rachel Daso
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Ding Zheng
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, USA
| | - Wei Huang
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, USA
| | - Jonathan Rivnay
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Tobin J Marks
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Antonio Facchetti
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, USA
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
25
|
Zhong Y, Lopez-Larrea N, Alvarez-Tirado M, Casado N, Koklu A, Marks A, Moser M, McCulloch I, Mecerreyes D, Inal S. Eutectogels as a Semisolid Electrolyte for Organic Electrochemical Transistors. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1841-1854. [PMID: 38435047 PMCID: PMC10902863 DOI: 10.1021/acs.chemmater.3c02385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 03/05/2024]
Abstract
Organic electrochemical transistors (OECTs) are signal transducers offering high amplification, which makes them particularly advantageous for detecting weak biological signals. While OECTs typically operate with aqueous electrolytes, those employing solid-like gels as the dielectric layer can be excellent candidates for constructing wearable electrophysiology probes. Despite their potential, the impact of the gel electrolyte type and composition on the operation of the OECT and the associated device design considerations for optimal performance with a chosen electrolyte have remained ambiguous. In this work, we investigate the influence of three types of gel electrolytes-hydrogels, eutectogels, and iongels, each with varying compositions on the performance of OECTs. Our findings highlight the superiority of the eutectogel electrolyte, which comprises poly(glycerol 1,3-diglycerolate diacrylate) as the polymer matrix and choline chloride in combination with 1,3-propanediol deep eutectic solvent as the ionic component. This eutectogel electrolyte outperforms hydrogel and iongel counterparts of equivalent dimensions, yielding the most favorable transient and steady-state performance for both p-type depletion and p-type/n-type enhancement mode transistors gated with silver/silver chloride (Ag/AgCl). Furthermore, the eutectogel-integrated enhancement mode OECTs exhibit exceptional operational stability, reflected in the absence of signal-to-noise ratio (SNR) variation in the simulated electrocardiogram (ECG) recordings conducted continuously over a period of 5 h, as well as daily measurements spanning 30 days. Eutectogel-based OECTs also exhibit higher ECG signal amplitudes and SNR than their counterparts, utilizing the commercially available hydrogel, which is the most common electrolyte for cutaneous electrodes. These findings underscore the potential of eutectogels as a semisolid electrolyte for OECTs, particularly in applications demanding robust and prolonged physiological signal monitoring.
Collapse
Affiliation(s)
- Yizhou Zhong
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Naroa Lopez-Larrea
- POLYMAT,
University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San
Sebastian, Guipuzcoa 20018, Spain
| | - Marta Alvarez-Tirado
- POLYMAT,
University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San
Sebastian, Guipuzcoa 20018, Spain
| | - Nerea Casado
- POLYMAT,
University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San
Sebastian, Guipuzcoa 20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Anil Koklu
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Adam Marks
- Department
of Chemistry, University of Oxford, Oxford OX1 3TF, U.K.
| | - Maximilian Moser
- Department
of Chemistry, University of Oxford, Oxford OX1 3TF, U.K.
| | - Iain McCulloch
- Department
of Chemistry, University of Oxford, Oxford OX1 3TF, U.K.
| | - David Mecerreyes
- POLYMAT,
University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San
Sebastian, Guipuzcoa 20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Sahika Inal
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
26
|
Zhang P, Zhu B, Du P, Travas-Sejdic J. Electrochemical and Electrical Biosensors for Wearable and Implantable Electronics Based on Conducting Polymers and Carbon-Based Materials. Chem Rev 2024; 124:722-767. [PMID: 38157565 DOI: 10.1021/acs.chemrev.3c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Bioelectronic devices are designed to translate biological information into electrical signals and vice versa, thereby bridging the gap between the living biological world and electronic systems. Among different types of bioelectronics devices, wearable and implantable biosensors are particularly important as they offer access to the physiological and biochemical activities of tissues and organs, which is significant in diagnosing and researching various medical conditions. Organic conducting and semiconducting materials, including conducting polymers (CPs) and graphene and carbon nanotubes (CNTs), are some of the most promising candidates for wearable and implantable biosensors. Their unique electrical, electrochemical, and mechanical properties bring new possibilities to bioelectronics that could not be realized by utilizing metals- or silicon-based analogues. The use of organic- and carbon-based conductors in the development of wearable and implantable biosensors has emerged as a rapidly growing research field, with remarkable progress being made in recent years. The use of such materials addresses the issue of mismatched properties between biological tissues and electronic devices, as well as the improvement in the accuracy and fidelity of the transferred information. In this review, we highlight the most recent advances in this field and provide insights into organic and carbon-based (semi)conducting materials' properties and relate these to their applications in wearable/implantable biosensors. We also provide a perspective on the promising potential and exciting future developments of wearable/implantable biosensors.
Collapse
Affiliation(s)
- Peikai Zhang
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Bicheng Zhu
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
27
|
Jiang X, Shi C, Wang Z, Huang L, Chi L. Healthcare Monitoring Sensors Based on Organic Transistors: Surface/Interface Strategy and Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308952. [PMID: 37951211 DOI: 10.1002/adma.202308952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Indexed: 11/13/2023]
Abstract
Organic transistors possess inherent advantages such as flexibility, biocompatibility, customizable chemical structures, solution-processability, and amplifying capabilities, making them highly promising for portable healthcare sensor applications. Through convenient and diverse modifications at the material and device surfaces or interfaces, organic transistors allow for a wide range of sensor applications spanning from chemical and biological to physical sensing. In this comprehensive review, the surface and interface engineering aspect associated with four types of typical healthcare sensors is focused. The device operation principles and sensing mechanisms are systematically analyzed and highlighted, and particularly surface/interface functionalization strategies that contribute to the enhancement of sensing performance are focused. An outlook and perspective on the critical issues and challenges in the field of healthcare sensing using organic transistors are provided as well.
Collapse
Affiliation(s)
- Xingyu Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Cheng Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zi Wang
- Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215123, P. R. China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
28
|
Uguz I, Ohayon D, Arslan V, Sheelamanthula R, Griggs S, Hama A, Stanton JW, McCulloch I, Inal S, Shepard KL. Flexible switch matrix addressable electrode arrays with organic electrochemical transistor and pn diode technology. Nat Commun 2024; 15:533. [PMID: 38225257 PMCID: PMC10789794 DOI: 10.1038/s41467-023-44024-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/28/2023] [Indexed: 01/17/2024] Open
Abstract
Due to their effective ionic-to-electronic signal conversion and mechanical flexibility, organic neural implants hold considerable promise for biocompatible neural interfaces. Current approaches are, however, primarily limited to passive electrodes due to a lack of circuit components to realize complex active circuits at the front-end. Here, we introduce a p-n organic electrochemical diode using complementary p- and n-type conducting polymer films embedded in a 15-μm -diameter vertical stack. Leveraging the efficient motion of encapsulated cations inside this polymer stack and the opposite doping mechanisms of the constituent polymers, we demonstrate high current rectification ratios ([Formula: see text]) and fast switching speeds (230 μs). We integrate p-n organic electrochemical diodes with organic electrochemical transistors in the front-end pixel of a recording array. This configuration facilitates the access of organic electrochemical transistor output currents within a large network operating in the same electrolyte, while minimizing crosstalk from neighboring elements due to minimized reverse-biased leakage. Furthermore, we use these devices to fabricate time-division-multiplexed amplifier arrays. Lastly, we show that, when fabricated in a shank format, this technology enables the multiplexing of amplified local field potentials directly in the active recording pixel (26-μm diameter) in a minimally invasive form factor with shank cross-sectional dimensions of only 50×8 [Formula: see text].
Collapse
Affiliation(s)
- Ilke Uguz
- Electrical Engineering Department, Columbia University, New York, 10027, NY, USA.
| | - David Ohayon
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Volkan Arslan
- Electrical Engineering Department, Columbia University, New York, 10027, NY, USA
| | | | - Sophie Griggs
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Adel Hama
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - John William Stanton
- Electrical Engineering Department, Columbia University, New York, 10027, NY, USA
| | - Iain McCulloch
- Physical Science and Engineering Division, KAUST, Thuwal, 23955-6900, Saudi Arabia
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kenneth L Shepard
- Electrical Engineering Department, Columbia University, New York, 10027, NY, USA
| |
Collapse
|
29
|
Osazuwa PO, Lo CY, Feng X, Nolin A, Dhong C, Kayser LV. Surface Functionalization with (3-Glycidyloxypropyl)trimethoxysilane (GOPS) as an Alternative to Blending for Enhancing the Aqueous Stability and Electronic Performance of PEDOT:PSS Thin Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54711-54720. [PMID: 37962428 PMCID: PMC11751989 DOI: 10.1021/acsami.3c09452] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Organic mixed ionic-electronic conductors, such as poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), are essential materials for the fabrication of bioelectronic devices due to their unique ability to couple and transport ionic and electronic charges. The growing interest in bioelectronic devices has led to the development of organic electrochemical transistors (OECTs) that can operate in aqueous solutions and transduce ionic signals of biological origin into measurable electronic signals. A common challenge with OECTs is maintaining the stability and performance of the PEDOT:PSS films operating under aqueous conditions. Although the conventional approach of blending the PEDOT:PSS dispersions with a cross-linker such as (3-glycidyloxypropyl)trimethoxysilane (GOPS) helps to ensure strong adhesion of the films to device substrates, it also impacts the morphology and thus electrical properties of the PEDOT:PSS films, which leads to a significant reduction in the performance of OECTs. In this study, we instead functionalize only the surface of the device substrates with GOPS to introduce a silane monolayer before spin-coating the PEDOT:PSS dispersion on the substrate. In all cases, having a GOPS monolayer instead of a blend leads to increased electronic performance metrics, such as three times higher electronic conductivity, volumetric capacitance, and mobility-capacitance product [μC*] value in OECT devices, ultimately leading to a record value of 406 ± 39 F cm-1 V-1 s-1 for amorphous PEDOT:PSS. This increased performance does not come at the expense of operational stability, as both the blend and surface functionalization show similar performance when subjected to pulsed gate bias stress, long-term electrochemical cycling tests, and aging over 150 days. Overall, this study establishes a novel approach to using GOPS as a surface monolayer instead of a blended cross-linker, for achieving high-performance organic mixed ionic-electronic conductors that are stable in water for bioelectronics.
Collapse
Affiliation(s)
- Peter O Osazuwa
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Chun-Yuan Lo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Xu Feng
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Abigail Nolin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Charles Dhong
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Laure V Kayser
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
30
|
Wu HY, Huang JD, Jeong SY, Liu T, Wu Z, van der Pol T, Wang Q, Stoeckel MA, Li Q, Fahlman M, Tu D, Woo HY, Yang CY, Fabiano S. Stable organic electrochemical neurons based on p-type and n-type ladder polymers. MATERIALS HORIZONS 2023; 10:4213-4223. [PMID: 37477499 DOI: 10.1039/d3mh00858d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Organic electrochemical transistors (OECTs) are a rapidly advancing technology that plays a crucial role in the development of next-generation bioelectronic devices. Recent advances in p-type/n-type organic mixed ionic-electronic conductors (OMIECs) have enabled power-efficient complementary OECT technologies for various applications, such as chemical/biological sensing, large-scale logic gates, and neuromorphic computing. However, ensuring long-term operational stability remains a significant challenge that hinders their widespread adoption. While p-type OMIECs are generally more stable than n-type OMIECs, they still face limitations, especially during prolonged operations. Here, we demonstrate that simple methylation of the pyrrole-benzothiazine-based (PBBT) ladder polymer backbone results in stable and high-performance p-type OECTs. The methylated PBBT (PBBT-Me) exhibits a 25-fold increase in OECT mobility and an impressive 36-fold increase in μC* (mobility × volumetric capacitance) compared to the non-methylated PBBT-H polymer. Combining the newly developed PBBT-Me with the ladder n-type poly(benzimidazobenzophenanthroline) (BBL), we developed complementary inverters with a record-high DC gain of 194 V V-1 and excellent stability. These state-of-the-art complementary inverters were used to demonstrate leaky integrate-and-fire type organic electrochemical neurons (LIF-OECNs) capable of biologically relevant firing frequencies of about 2 Hz and of operating continuously for up to 6.5 h. This achievement represents a significant improvement over previous results and holds great potential for developing stable bioelectronic circuits capable of in-sensor computing.
Collapse
Affiliation(s)
- Han-Yan Wu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Jun-Da Huang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
- n-Ink AB, Bredgatan 33, SE-60221 Norrköping, Sweden
| | - Sang Young Jeong
- Department of Chemistry, College of Science, Korea University, Seoul 136-713, Republic of Korea
| | - Tiefeng Liu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, Seoul 136-713, Republic of Korea
| | - Tom van der Pol
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Qingqing Wang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Marc-Antoine Stoeckel
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
- n-Ink AB, Bredgatan 33, SE-60221 Norrköping, Sweden
| | - Qifan Li
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Mats Fahlman
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Deyu Tu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul 136-713, Republic of Korea
| | - Chi-Yuan Yang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
- n-Ink AB, Bredgatan 33, SE-60221 Norrköping, Sweden
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
- n-Ink AB, Bredgatan 33, SE-60221 Norrköping, Sweden
| |
Collapse
|
31
|
Cea C, Zhao Z, Wisniewski DJ, Spyropoulos GD, Polyravas A, Gelinas JN, Khodagholy D. Integrated internal ion-gated organic electrochemical transistors for stand-alone conformable bioelectronics. NATURE MATERIALS 2023; 22:1227-1235. [PMID: 37429941 PMCID: PMC10533388 DOI: 10.1038/s41563-023-01599-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/04/2023] [Indexed: 07/12/2023]
Abstract
Organic electronics can be biocompatible and conformable, enhancing the ability to interface with tissue. However, the limitations of speed and integration have, thus far, necessitated reliance on silicon-based technologies for advanced processing, data transmission and device powering. Here we create a stand-alone, conformable, fully organic bioelectronic device capable of realizing these functions. This device, vertical internal ion-gated organic electrochemical transistor (vIGT), is based on a transistor architecture that incorporates a vertical channel and a miniaturized hydration access conduit to enable megahertz-signal-range operation within densely packed integrated arrays in the absence of crosstalk. These transistors demonstrated long-term stability in physiologic media, and were used to generate high-performance integrated circuits. We leveraged the high-speed and low-voltage operation of vertical internal ion-gated organic electrochemical transistors to develop alternating-current-powered conformable circuitry to acquire and wirelessly communicate signals. The resultant stand-alone device was implanted in freely moving rodents to acquire, process and transmit neurophysiologic brain signals. Such fully organic devices have the potential to expand the utility and accessibility of bioelectronics to a wide range of clinical and societal applications.
Collapse
Affiliation(s)
- Claudia Cea
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Duncan J Wisniewski
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - George D Spyropoulos
- Department of Electrical Engineering, Columbia University, New York, NY, USA
- Department Information Technology, Waves, UGhent, Technology Campus, iGhent, Zwijnaarde, Belgium
| | | | - Jennifer N Gelinas
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA.
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
32
|
Li X, Bi R, Ou X, Han S, Sheng Y, Chen G, Xie Z, Liu C, Yue W, Wang Y, Hu W, Guo SZ. 3D-Printed Intrinsically Stretchable Organic Electrochemical Synaptic Transistor Array. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41656-41665. [PMID: 37610705 DOI: 10.1021/acsami.3c07169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Organic electrochemical transistors (OECTs) for skin-like bioelectronics require mechanical stretchability, softness, and cost-effective large-scale manufacturing. However, developing intrinsically stretchable OECTs using a simple and fast-response technique is challenging due to limitations in functional materials, substrate wettability, and integrated processing of multiple materials. In this regard, we propose a fabrication method devised by combining the preparation of a microstructured hydrophilic substrate, multi-material printing of functional inks with varying viscosities, and optimization of the device channel geometries. The resulting intrinsically stretchable OECT array with synaptic properties was successfully manufactured. These devices demonstrated high transconductance (22.5 mS), excellent mechanical softness (Young's modulus ∼ 2.2 MPa), and stretchability (∼30%). Notably, the device also exhibited artificial synapse functionality, mimicking the biological synapse with features such as paired-pulse depression, short-term plasticity, and long-term plasticity. This study showcases a promising strategy for fabricating intrinsically stretchable OECTs and provides valuable insights for the development of brain-computer interfaces.
Collapse
Affiliation(s)
- Xiaohong Li
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Ran Bi
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xingcheng Ou
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Songjia Han
- State Key Laboratory of Optoelectronic Materials and Technologies and Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Sheng
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Guoliang Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhuang Xie
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Wan Yue
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yan Wang
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Weijie Hu
- School of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Shuang-Zhuang Guo
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
33
|
Yao Y, Huang W, Chen J, Liu X, Bai L, Chen W, Cheng Y, Ping J, Marks TJ, Facchetti A. Flexible and Stretchable Organic Electrochemical Transistors for Physiological Sensing Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209906. [PMID: 36808773 DOI: 10.1002/adma.202209906] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable bioelectronics provides a biocompatible interface between electronics and biological systems and has received tremendous attention for in situ monitoring of various biological systems. Considerable progress in organic electronics has made organic semiconductors, as well as other organic electronic materials, ideal candidates for developing wearable, implantable, and biocompatible electronic circuits due to their potential mechanical compliance and biocompatibility. Organic electrochemical transistors (OECTs), as an emerging class of organic electronic building blocks, exhibit significant advantages in biological sensing due to the ionic nature at the basis of the switching behavior, low driving voltage (<1 V), and high transconductance (in millisiemens range). During the past few years, significant progress in constructing flexible/stretchable OECTs (FSOECTs) for both biochemical and bioelectrical sensors has been reported. In this regard, to summarize major research accomplishments in this emerging field, this review first discusses structure and critical features of FSOECTs, including working principles, materials, and architectural engineering. Next, a wide spectrum of relevant physiological sensing applications, where FSOECTs are the key components, are summarized. Last, major challenges and opportunities for further advancing FSOECT physiological sensors are discussed.
Collapse
Affiliation(s)
- Yao Yao
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Wei Huang
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Jianhua Chen
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Xiaoxue Liu
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Libing Bai
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Wei Chen
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| |
Collapse
|
34
|
Lee Y, Carnicer-Lombarte A, Han S, Woodington BJ, Chai S, Polyravas AG, Velasco-Bosom S, Kim EH, Malliaras GG, Jung S. Tunable Organic Active Neural Probe Enabling Near-Sensor Signal Processing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301782. [PMID: 37212503 DOI: 10.1002/adma.202301782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/13/2023] [Indexed: 05/23/2023]
Abstract
Neural recording systems have significantly progressed to provide an advanced understanding and treatment for neurological diseases. Flexible transistor-based active neural probes exhibit great potential in electrophysiology applications due to their intrinsic amplification capability and tissue-compliant nature. However, most current active neural probes exhibit bulky back-end connectivity since the output is current, and the development of an integrated circuit for voltage output is crucial for near-sensor signal processing at the abiotic/biotic interface. Here, inkjet-printed organic voltage amplifiers are presented by monolithically integrating organic electrochemical transistors and thin-film polymer resistors on a single, highly flexible substrate for in vivo brain activity recording. Additive inkjet printing enables the seamless integration of multiple active and passive components on the somatosensory cortex, leading to significant noise reduction over the externally connected typical configuration. It also facilitates fine-tuning of the voltage amplification and frequency properties. The organic voltage amplifiers are validated as electrocorticography devices in a rat in vivo model, showing their ability to record local field potentials in an experimental model of spontaneous and epileptiform activity. These results bring organic active neural probes to the forefront in applications where efficient sensory data processing is performed at sensor endpoints.
Collapse
Affiliation(s)
- Yongwoo Lee
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Alejandro Carnicer-Lombarte
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK
| | - Sanggil Han
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Ben J Woodington
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK
| | - Seungjin Chai
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Anastasios G Polyravas
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK
| | - Santiago Velasco-Bosom
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK
| | - Eun-Hee Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, 20 Bodeum 7-ro, Sejong, 30099, Republic of Korea
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK
| | - Sungjune Jung
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
35
|
Keene ST, Laulainen JEM, Pandya R, Moser M, Schnedermann C, Midgley PA, McCulloch I, Rao A, Malliaras GG. Hole-limited electrochemical doping in conjugated polymers. NATURE MATERIALS 2023; 22:1121-1127. [PMID: 37414944 PMCID: PMC10465356 DOI: 10.1038/s41563-023-01601-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
Simultaneous transport and coupling of ionic and electronic charges is fundamental to electrochemical devices used in energy storage and conversion, neuromorphic computing and bioelectronics. While the mixed conductors enabling these technologies are widely used, the dynamic relationship between ionic and electronic transport is generally poorly understood, hindering the rational design of new materials. In semiconducting electrodes, electrochemical doping is assumed to be limited by motion of ions due to their large mass compared to electrons and/or holes. Here, we show that this basic assumption does not hold for conjugated polymer electrodes. Using operando optical microscopy, we reveal that electrochemical doping speeds in a state-of-the-art polythiophene can be limited by poor hole transport at low doping levels, leading to substantially slower switching speeds than expected. We show that the timescale of hole-limited doping can be controlled by the degree of microstructural heterogeneity, enabling the design of conjugated polymers with improved electrochemical performance.
Collapse
Affiliation(s)
- Scott T Keene
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | | | - Raj Pandya
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Laboratoire Kastler Brossel, École Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Collège de France, Paris, France
| | | | | | - Paul A Midgley
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford, UK
- KAUST Solar Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| |
Collapse
|
36
|
Oh SH, Oh M, Lee S, Kim DK, Lee JS, Lee SK, Kang SK, Joo YC. Fast and Durable Nanofiber Mat Channel Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39614-39624. [PMID: 37556112 DOI: 10.1021/acsami.3c04590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Bioelectronic devices that offer real-time measurements, biological signal processing, and continuous monitoring while maintaining stable performance are in high demand. The materials used in organic electrochemical transistors (OECTs) demonstrate high transconductance (GM) and excellent biocompatibility, making them suitable for bioelectronics in a biological environment. However, ion migration in OECTs induces a delayed response time and low cut-off frequency, and the adverse biological environment causes OECT durability problems. Herein, we present OECTs with a faster response time and improved durability, made possible by using a nanofiber mat channel of a conventional OECT structure. Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/polyacrylamide (PAAm) nanofiber mat channel OECTs are fabricated and subjected to various durability tests for the first time based on continuous measurements and mechanical stability assessments. The results indicate that the nanofiber mat channel OECTs have a faster response time and longer life spans compared to those of film channel OECTs. The improvements can be attributed to the increased surface area and fibrous structure of the nanofiber mat channel. Furthermore, the hydrogel helps to maintain the structure of the nanofiber, facilitates material exchange, and eliminates the need for a crosslinker.
Collapse
Affiliation(s)
- Seung-Hyun Oh
- Department of Materials Science & Engineering, Seoul National University, Seoul 151-744, Korea
| | - Minseok Oh
- Department of Materials Science & Engineering, Seoul National University, Seoul 151-744, Korea
| | - Seongi Lee
- Department of Materials Science & Engineering, Seoul National University, Seoul 151-744, Korea
| | - Do-Kyun Kim
- Department of Materials Science & Engineering, Seoul National University, Seoul 151-744, Korea
| | - Jong-Sung Lee
- Department of Materials Science & Engineering, Seoul National University, Seoul 151-744, Korea
| | - Sol-Kyu Lee
- Department of Materials Science & Engineering, Seoul National University, Seoul 151-744, Korea
| | - Seung-Kyun Kang
- Department of Materials Science & Engineering, Seoul National University, Seoul 151-744, Korea
| | - Young-Chang Joo
- Department of Materials Science & Engineering, Seoul National University, Seoul 151-744, Korea
| |
Collapse
|
37
|
Li N, Li Y, Cheng Z, Liu Y, Dai Y, Kang S, Li S, Shan N, Wai S, Ziaja A, Wang Y, Strzalka J, Liu W, Zhang C, Gu X, Hubbell JA, Tian B, Wang S. Bioadhesive polymer semiconductors and transistors for intimate biointerfaces. Science 2023; 381:686-693. [PMID: 37561870 PMCID: PMC10768720 DOI: 10.1126/science.adg8758] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/14/2023] [Indexed: 08/12/2023]
Abstract
The use of bioelectronic devices relies on direct contact with soft biotissues. For transistor-type bioelectronic devices, the semiconductors that need to have direct interfacing with biotissues for effective signal transduction do not adhere well with wet tissues, thereby limiting the stability and conformability at the interface. We report a bioadhesive polymer semiconductor through a double-network structure formed by a bioadhesive brush polymer and a redox-active semiconducting polymer. The resulting semiconducting film can form rapid and strong adhesion with wet tissue surfaces together with high charge-carrier mobility of ~1 square centimeter per volt per second, high stretchability, and good biocompatibility. Further fabrication of a fully bioadhesive transistor sensor enabled us to produce high-quality and stable electrophysiological recordings on an isolated rat heart and in vivo rat muscles.
Collapse
Affiliation(s)
- Nan Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Yang Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Zhe Cheng
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Youdi Liu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Yahao Dai
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Seounghun Kang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Songsong Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Naisong Shan
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Shinya Wai
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Aidan Ziaja
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Yunfei Wang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Joseph Strzalka
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Wei Liu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Cheng Zhang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaodan Gu
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
- Committee on Immunology, The University of Chicago, Chicago, IL, 60637, USA
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
- Nanoscience and Technology Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, 60439, USA
| |
Collapse
|
38
|
Halaksa R, Kim JH, Thorley KJ, Gilhooly‐Finn PA, Ahn H, Savva A, Yoon M, Nielsen CB. The Influence of Regiochemistry on the Performance of Organic Mixed Ionic and Electronic Conductors. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202304390. [PMID: 38528843 PMCID: PMC10962556 DOI: 10.1002/ange.202304390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 03/27/2024]
Abstract
Thiophenes functionalised in the 3-position are ubiquitous building blocks for the design and synthesis of organic semiconductors. Their non-centrosymmetric nature has long been used as a powerful synthetic design tool exemplified by the vastly different properties of regiorandom and regioregular poly(3-hexylthiophene) owing to the repulsive head-to-head interactions between neighbouring side chains in the regiorandom polymer. The renewed interest in highly electron-rich 3-alkoxythiophene based polymers for bioelectronic applications opens up new considerations around the regiochemistry of these systems as both the head-to-tail and head-to-head couplings adopt near-planar conformations due to attractive intramolecular S-O interactions. To understand how this increased flexibility in the molecular design can be used advantageously, we explore in detail the geometrical and electronic effects that influence the optical, electrochemical, structural, and electrical properties of a series of six polythiophene derivatives with varying regiochemistry and comonomer composition. We show how the interplay between conformational disorder, backbone coplanarity and polaron distribution affects the mixed ionic-electronic conduction. Ultimately, we use these findings to identify a new conformationally restricted polythiophene derivative for p-type accumulation-mode organic electrochemical transistor applications with performance on par with state-of-the-art mixed conductors evidenced by a μC* product of 267 F V-1 cm-1 s-1.
Collapse
Affiliation(s)
- Roman Halaksa
- Department of ChemistryQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Ji Hwan Kim
- School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST)123 Cheomdangwagi-ro, Buk-guGwangju61005Republic of Korea
| | - Karl J. Thorley
- Center for Applied Energy ResearchUniversity of KentuckyLexingtonKY40511USA
| | | | - Hyungju Ahn
- Pohang Accelerator Laboratory, POSTECHPohang37673Republic of Korea
| | - Achilleas Savva
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Myung‐Han Yoon
- School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST)123 Cheomdangwagi-ro, Buk-guGwangju61005Republic of Korea
| | - Christian B. Nielsen
- Department of ChemistryQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
39
|
Halaksa R, Kim JH, Thorley KJ, Gilhooly‐Finn PA, Ahn H, Savva A, Yoon M, Nielsen CB. The Influence of Regiochemistry on the Performance of Organic Mixed Ionic and Electronic Conductors. Angew Chem Int Ed Engl 2023; 62:e202304390. [PMID: 37204070 PMCID: PMC10962546 DOI: 10.1002/anie.202304390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/20/2023]
Abstract
Thiophenes functionalised in the 3-position are ubiquitous building blocks for the design and synthesis of organic semiconductors. Their non-centrosymmetric nature has long been used as a powerful synthetic design tool exemplified by the vastly different properties of regiorandom and regioregular poly(3-hexylthiophene) owing to the repulsive head-to-head interactions between neighbouring side chains in the regiorandom polymer. The renewed interest in highly electron-rich 3-alkoxythiophene based polymers for bioelectronic applications opens up new considerations around the regiochemistry of these systems as both the head-to-tail and head-to-head couplings adopt near-planar conformations due to attractive intramolecular S-O interactions. To understand how this increased flexibility in the molecular design can be used advantageously, we explore in detail the geometrical and electronic effects that influence the optical, electrochemical, structural, and electrical properties of a series of six polythiophene derivatives with varying regiochemistry and comonomer composition. We show how the interplay between conformational disorder, backbone coplanarity and polaron distribution affects the mixed ionic-electronic conduction. Ultimately, we use these findings to identify a new conformationally restricted polythiophene derivative for p-type accumulation-mode organic electrochemical transistor applications with performance on par with state-of-the-art mixed conductors evidenced by a μC* product of 267 F V-1 cm-1 s-1 .
Collapse
Affiliation(s)
- Roman Halaksa
- Department of ChemistryQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Ji Hwan Kim
- School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST)123 Cheomdangwagi-ro, Buk-guGwangju61005Republic of Korea
| | - Karl J. Thorley
- Center for Applied Energy ResearchUniversity of KentuckyLexingtonKY40511USA
| | | | - Hyungju Ahn
- Pohang Accelerator Laboratory, POSTECHPohang37673Republic of Korea
| | - Achilleas Savva
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Myung‐Han Yoon
- School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST)123 Cheomdangwagi-ro, Buk-guGwangju61005Republic of Korea
| | - Christian B. Nielsen
- Department of ChemistryQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
40
|
Xiao M, Ren X, Ji K, Chung S, Shi X, Han J, Yao Z, Tao X, Zelewski SJ, Nikolka M, Zhang Y, Zhang Z, Wang Z, Jay N, Jacobs I, Wu W, Yu H, Abdul Samad Y, Stranks SD, Kang B, Cho K, Xie J, Yan H, Chen S, Sirringhaus H. Achieving ideal transistor characteristics in conjugated polymer semiconductors. SCIENCE ADVANCES 2023; 9:eadg8659. [PMID: 37267357 PMCID: PMC10413658 DOI: 10.1126/sciadv.adg8659] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/28/2023] [Indexed: 06/04/2023]
Abstract
Organic thin-film transistors (OTFTs) with ideal behavior are highly desired, because nonideal devices may overestimate the intrinsic property and yield inferior performance in applications. In reality, most polymer OTFTs reported in the literature do not exhibit ideal characteristics. Supported by a structure-property relationship study of several low-disorder conjugated polymers, here, we present an empirical selection rule for polymer candidates for textbook-like OTFTs with high reliability factors (100% for ideal transistors). The successful candidates should have low energetic disorder along their backbones and form thin films with spatially uniform energetic landscapes. We demonstrate that these requirements are satisfied in the semicrystalline polymer PffBT4T-2DT, which exhibits a reliability factor (~100%) that is exceptionally high for polymer devices, rendering it an ideal candidate for OTFT applications. Our findings broaden the selection of polymer semiconductors with textbook-like OTFT characteristics and would shed light upon the molecular design criteria for next-generation polymer semiconductors.
Collapse
Affiliation(s)
- Mingfei Xiao
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK
| | - Xinglong Ren
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK
| | - Kangyu Ji
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK
| | - Sein Chung
- Department of Chemical Engineering, Pohang University of Science and Technology Pohang, Pohang 790-784, South Korea
| | - Xiaoyu Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China
| | - Zefan Yao
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. of China
| | - Xudong Tao
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave., Cambridge CB3 0FA, UK
| | - Szymon J. Zelewski
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Mark Nikolka
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK
| | - Youcheng Zhang
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK
| | - Zhilong Zhang
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK
| | - Zichen Wang
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK
| | - Nathan Jay
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave., Cambridge CB3 0FA, UK
| | - Ian Jacobs
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK
| | - Weijing Wu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. of China
| | - Han Yu
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. of China
| | - Yarjan Abdul Samad
- Department of Aerospace Engineering, Khalifa University, Abu Dhabi 127788, UAE
| | - Samuel D. Stranks
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK
| | - Boseok Kang
- SKKU Advanced Institute of Nanotechnology and Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology Pohang, Pohang 790-784, South Korea
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China
| | - He Yan
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. of China
| | - Shangshang Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China
| | - Henning Sirringhaus
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK
| |
Collapse
|
41
|
Liu G, Wen W, Zhao Z, Huang X, Li Y, Qin M, Pan Z, Guo Y, Liu Y. Bionic Tactile-Gustatory Receptor for Object Identification Based on All-Polymer Electrochemical Transistor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300242. [PMID: 37025036 DOI: 10.1002/adma.202300242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/01/2023] [Indexed: 06/16/2023]
Abstract
Human sensory receptors enable the real world to be perceived effortlessly. Hence, massive efforts have been devoted to the development of bionic receptors capable of identifying objects. Unfortunately, most of the existing devices are limited to single sensory emulation and are established on solid-state electronic technologies, which are incompatible with the biological reactions occurring in electrolyte media. Here, an iontronic tactile-gustatory receptor using an all-polymer electrochemical transistor (AECT) is presented. The sensor is biocompatible with the operation voltage of 0.1 V, which is 1 to 2 orders lower than those of reported values. By this study, one receptor is able to accurately recognize various objects perceived by the human tactile and gustatory system without complex circuitry. Additionally, to promote its further application, flexible AECT arrays with channel length of 2 µm and density of 104 167 transistors cm-2 (yield of 97%) are fabricated, 1 to 5 orders higher than those of related works. Finally, a flexible integrated network for electrocardiogram recording is successfully constructed. This study moves a step forward toward state-of-the-art bionic sensors.
Collapse
Affiliation(s)
- Guocai Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Wen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyuan Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yifan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mingcong Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhichao Pan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
42
|
Tan X, Wang S, Zhang Q, He J, Chen S, Qu Y, Liu Z, Tang Y, Liu X, Wang C, Wang Q, Liu Q. Laser doping of 2D material for precise energy band design. NANOSCALE 2023. [PMID: 37161768 DOI: 10.1039/d3nr00808h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The number of excellent 2D materials is finite for nano optoelectric devices including transistors, diodes, sensors, and so forth, thus the modulation of 2D materials is important to improve the performance of the current eligible 2D materials, and even to transform unqualified 2D materials into eligible 2D materials. Here we develop a fine laser doping strategy based on highly controllable laser direct writing, and investigate its effectivity and practicability by doping multilayer molybdenum ditelluride (MoTe2). Power-gradient laser doping and patterned laser doping, for the first time, are presented for designable and fine doping of 2D materials. The laser-induced polar transition of MoTe2 indicates good controllability of the method for the carrier concentration distribution in MoTe2. Multiple devices with finely tuned energy band structures are demonstrated by means of power-gradient laser doping and patterned laser doping, further illustrating the design capability of a precise energy band in 2D materials.
Collapse
Affiliation(s)
- Xiang Tan
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology & University of Chinese Academy of Sciences, Beijing 100190, China.
- Zhenjiang key laboratory of advanced sensing materials and devices, Jiangsu University, Zhenjiang 212013, PR China
| | - Shu Wang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology & University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Qiaoxuan Zhang
- Hebei University of Water Resources and Electric Engineering Electrical Automation Department, 061001, Cangzhou, Hebei, China
| | - Juxing He
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology & University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Shengyao Chen
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology & University of Chinese Academy of Sciences, Beijing 100190, China.
- MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute, School of Physics, Nankai University, Tianjin 300457, China
| | - Yusong Qu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology & University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhenzhou Liu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology & University of Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Science and Technology, Inner Mongolia University, Inner Mongolia 010000, China
| | - Yong Tang
- Hebei University of Water Resources and Electric Engineering Electrical Automation Department, 061001, Cangzhou, Hebei, China
| | - Xintong Liu
- Hebei University of Water Resources and Electric Engineering Electrical Automation Department, 061001, Cangzhou, Hebei, China
| | - Cong Wang
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Quan Wang
- Zhenjiang key laboratory of advanced sensing materials and devices, Jiangsu University, Zhenjiang 212013, PR China
| | - Qian Liu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology & University of Chinese Academy of Sciences, Beijing 100190, China.
- MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute, School of Physics, Nankai University, Tianjin 300457, China
| |
Collapse
|
43
|
Bhatt S, Masterson E, Zhu T, Eizadi J, George J, Graupe N, Vareberg A, Phillips J, Bok I, Dwyer M, Ashtiani A, Hai A. Wireless in vivo Recording of Cortical Activity by an Ion-Sensitive Field Effect Transistor. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 382:133549. [PMID: 36970106 PMCID: PMC10035629 DOI: 10.1016/j.snb.2023.133549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wireless brain technologies are empowering basic neuroscience and clinical neurology by offering new platforms that minimize invasiveness and refine possibilities during electrophysiological recording and stimulation. Despite their advantages, most systems require on-board power supply and sizeable transmission circuitry, enforcing a lower bound for miniaturization. Designing new minimalistic architectures that can efficiently sense neurophysiological events will open the door to standalone microscale sensors and minimally invasive delivery of multiple sensors. Here we present a circuit for sensing ionic fluctuations in the brain by an ion-sensitive field effect transistor that detunes a single radiofrequency resonator in parallel. We establish sensitivity of the sensor by electromagnetic analysis and quantify response to ionic fluctuations in vitro. We validate this new architecture in vivo during hindpaw stimulation in rodents and verify correlation with local field potential recordings. This new approach can be implemented as an integrated circuit for wireless in situ recording of brain electrophysiology.
Collapse
Affiliation(s)
- Suyash Bhatt
- Department of Biomedical Engineering, University of Wisconsin–Madison
- Department of Electrical & Computer Engineering, University of Wisconsin–Madison
| | - Emily Masterson
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Tianxiang Zhu
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Jenna Eizadi
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Judy George
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Nesya Graupe
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Adam Vareberg
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Jack Phillips
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Ilhan Bok
- Department of Biomedical Engineering, University of Wisconsin–Madison
- Department of Electrical & Computer Engineering, University of Wisconsin–Madison
| | - Matthew Dwyer
- Department of Electrical & Computer Engineering, University of Wisconsin–Madison
| | - Alireza Ashtiani
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin–Madison
- Department of Electrical & Computer Engineering, University of Wisconsin–Madison
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| |
Collapse
|
44
|
Cucchi M, Parker D, Stavrinidou E, Gkoupidenis P, Kleemann H. In Liquido Computation with Electrochemical Transistors and Mixed Conductors for Intelligent Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209516. [PMID: 36813270 DOI: 10.1002/adma.202209516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Next-generation implantable computational devices require long-term-stable electronic components capable of operating in, and interacting with, electrolytic surroundings without being damaged. Organic electrochemical transistors (OECTs) emerged as fitting candidates. However, while single devices feature impressive figures of merit, integrated circuits (ICs) immersed in common electrolytes are hard to realize using electrochemical transistors, and there is no clear path forward for optimal top-down circuit design and high-density integration. The simple observation that two OECTs immersed in the same electrolytic medium will inevitably interact hampers their implementation in complex circuitry. The electrolyte's ionic conductivity connects all the devices in the liquid, producing unwanted and often unforeseeable dynamics. Minimizing or harnessing this crosstalk has been the focus of very recent studies. Herein, the main challenges, trends, and opportunities for realizing OECT-based circuitry in a liquid environment that could circumnavigate the hard limits of engineering and human physiology, are discussed. The most successful approaches in autonomous bioelectronics and information processing are analyzed. Elaborating on the strategies to circumvent and harness device crosstalk proves that platforms capable of complex computation and even machine learning (ML) can be realized in liquido using mixed ionic-electronic conductors (OMIECs).
Collapse
Affiliation(s)
- Matteo Cucchi
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Chemin des Mines 9, Geneva, 1202, Switzerland
- Dresden Integrated Center for Applied Photophysics and Photonic Materials (IAPP), Technische Universität Dresden, Helmholtzstr. 1, 01187, Dresden, Germany
| | - Daniela Parker
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | | | - Hans Kleemann
- Dresden Integrated Center for Applied Photophysics and Photonic Materials (IAPP), Technische Universität Dresden, Helmholtzstr. 1, 01187, Dresden, Germany
| |
Collapse
|
45
|
Ji X, Lin X, Rivnay J. Organic electrochemical transistors as on-site signal amplifiers for electrochemical aptamer-based sensing. Nat Commun 2023; 14:1665. [PMID: 36966131 PMCID: PMC10039935 DOI: 10.1038/s41467-023-37402-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/15/2023] [Indexed: 03/27/2023] Open
Abstract
Electrochemical aptamer-based sensors are typically deployed as individual, passive, surface-functionalized electrodes, but they exhibit limited sensitivity especially when the area of the electrode is reduced for miniaturization purposes. We demonstrate that organic electrochemical transistors (electrolyte gated transistors with volumetric gating) can serve as on-site amplifiers to improve the sensitivity of electrochemical aptamer-based sensors. By monolithically integrating an Au working/sensing electrode, on-chip Ag/AgCl reference electrode, and Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) counter electrode - also serving as the channel of an organic electrochemical transistor- we can simultaneously perform testing of organic electrochemical transistors and traditional electroanalytical measurement on electrochemical aptamer-based sensors including cyclic voltammetry and square-wave voltammetry. This device can directly amplify the current from the electrochemical aptamer-based sensor via the in-plane current modulation in the counter electrode/transistor channel. The integrated sensor can sense transforming growth factor beta 1 with 3 to 4 orders of magnitude enhancement in sensitivity compared to that in an electrochemical aptamer-based sensor (292 μA/dec vs. 85 nA/dec). This approach is believed to be universal, and can be applied to a wide range of tethered electrochemical reporter-based sensors to enhance sensitivity, aiding in sensor miniaturization and easing the burden on backend signal processing.
Collapse
Affiliation(s)
- Xudong Ji
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Xuanyi Lin
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
- Department of Psychology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
46
|
Lim DU, Jo SB, Cho JH. Monolithic Tandem Vertical Electrochemical Transistors for Printed Multi-Valued Logic. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208757. [PMID: 36484362 DOI: 10.1002/adma.202208757] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Organic electrochemical transistors (OECTs) have recently emerged as a feasible candidate to realize the next generation of printable electronics. Especially, their chemical versatility and the unique redox-based operating principle have provided new possibilities in high-functioning logic circuitry beyond the traditional binary Boolean logic. Here, a simple strategy to electrochemically realize monolithic multi-valued logic transistors is presented, which is one of the most promising branches of transistor technology in the forthcoming era of hyper Moore's law. A vertically stacked heterogeneous dual-channel architecture is introduced with a patterned reference electrode, which enables a facile manifestation of stable and equiprobable ternary logic states with a reduced transistor footprint. The dual-ion-penetration mechanism coupled with ultrashort vertical channel even allows a very-high accessing frequency to multiple logic states reaching over 10 MHz. Furthermore, printed arrays of ternary logic gates with full voltage swing within 1 V are demonstrated.
Collapse
Affiliation(s)
- Dong Un Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 305-600, Republic of Korea
| | - Sae Byeok Jo
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
47
|
Quill TJ, LeCroy G, Halat DM, Sheelamanthula R, Marks A, Grundy LS, McCulloch I, Reimer JA, Balsara NP, Giovannitti A, Salleo A, Takacs CJ. An ordered, self-assembled nanocomposite with efficient electronic and ionic transport. NATURE MATERIALS 2023; 22:362-368. [PMID: 36797383 DOI: 10.1038/s41563-023-01476-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Mixed conductors-materials that can efficiently conduct both ionic and electronic species-are an important class of functional solids. Here we demonstrate an organic nanocomposite that spontaneously forms when mixing an organic semiconductor with an ionic liquid and exhibits efficient room-temperature mixed conduction. We use a polymer known to form a semicrystalline microstructure to template ion intercalation into the side-chain domains of the crystallites, which leaves electronic transport pathways intact. Thus, the resulting material is ordered, exhibiting alternating layers of rigid semiconducting sheets and soft ion-conducting layers. This unique dual-network microstructure leads to a dynamic ionic/electronic nanocomposite with liquid-like ionic transport and highly mobile electronic charges. Using a combination of operando X-ray scattering and in situ spectroscopy, we confirm the ordered structure of the nanocomposite and uncover the mechanisms that give rise to efficient electron transport. These results provide fundamental insights into charge transport in organic semiconductors, as well as suggesting a pathway towards future improvements in these nanocomposites.
Collapse
Affiliation(s)
- Tyler J Quill
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Garrett LeCroy
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - David M Halat
- Department of Chemical and Biomolecular Engineering and College of Chemistry, University of California, Berkeley, CA, USA
- Materials Sciences Division and Joint Center for Energy Storage Research, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rajendar Sheelamanthula
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Adam Marks
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Lorena S Grundy
- Department of Chemical and Biomolecular Engineering and College of Chemistry, University of California, Berkeley, CA, USA
- Materials Sciences Division and Joint Center for Energy Storage Research, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Iain McCulloch
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Jeffrey A Reimer
- Department of Chemical and Biomolecular Engineering and College of Chemistry, University of California, Berkeley, CA, USA
- Materials Sciences Division and Joint Center for Energy Storage Research, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nitash P Balsara
- Department of Chemical and Biomolecular Engineering and College of Chemistry, University of California, Berkeley, CA, USA
- Materials Sciences Division and Joint Center for Energy Storage Research, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alexander Giovannitti
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| | - Christopher J Takacs
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
48
|
Sun F, Jiang H, Wang H, Zhong Y, Xu Y, Xing Y, Yu M, Feng LW, Tang Z, Liu J, Sun H, Wang H, Wang G, Zhu M. Soft Fiber Electronics Based on Semiconducting Polymer. Chem Rev 2023; 123:4693-4763. [PMID: 36753731 DOI: 10.1021/acs.chemrev.2c00720] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Fibers, originating from nature and mastered by human, have woven their way throughout the entire history of human civilization. Recent developments in semiconducting polymer materials have further endowed fibers and textiles with various electronic functions, which are attractive in applications such as information interfacing, personalized medicine, and clean energy. Owing to their ability to be easily integrated into daily life, soft fiber electronics based on semiconducting polymers have gained popularity recently for wearable and implantable applications. Herein, we present a review of the previous and current progress in semiconducting polymer-based fiber electronics, particularly focusing on smart-wearable and implantable areas. First, we provide a brief overview of semiconducting polymers from the viewpoint of materials based on the basic concepts and functionality requirements of different devices. Then we analyze the existing applications and associated devices such as information interfaces, healthcare and medicine, and energy conversion and storage. The working principle and performance of semiconducting polymer-based fiber devices are summarized. Furthermore, we focus on the fabrication techniques of fiber devices. Based on the continuous fabrication of one-dimensional fiber and yarn, we introduce two- and three-dimensional fabric fabricating methods. Finally, we review challenges and relevant perspectives and potential solutions to address the related problems.
Collapse
Affiliation(s)
- Fengqiang Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Hao Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoyu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yueheng Zhong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiman Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yi Xing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Muhuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Key Laboratory of Lightweight Structural Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liang-Wen Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Jun Liu
- National Key Laboratory on Electromagnetic Environment Effects and Electro-Optical Engineering, Nanjing 210007, China
| | - Hengda Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
49
|
Ohayon D, Druet V, Inal S. A guide for the characterization of organic electrochemical transistors and channel materials. Chem Soc Rev 2023; 52:1001-1023. [PMID: 36637165 DOI: 10.1039/d2cs00920j] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The organic electrochemical transistor (OECT) is one of the most versatile devices within the bioelectronics toolbox, with its compatibility with aqueous media and the ability to transduce and amplify ionic and biological signals into an electronic output. The OECT operation relies on the mixed (ionic and electronic charge) conduction properties of the material in its channel. With the increased popularity of OECTs in bioelectronics applications and to benchmark mixed conduction properties of channel materials, the characterization methods have broadened somewhat heterogeneously. We intend this review to be a guide for the characterization methods of the OECT and the channel materials used. Our review is composed of two main sections. First, we review techniques to fabricate the OECT, introduce different form factors and configurations, and describe the device operation principle. We then discuss the OECT performance figures of merit and detail the experimental procedures to obtain these characteristics. In the second section, we shed light on the characterization of mixed transport properties of channel materials and describe how to assess films' interactions with aqueous electrolytes. In particular, we introduce experimental methods to monitor ion motion and diffusion, charge carrier mobility, and water uptake in the films. We also discuss a few theoretical models describing ion-polymer interactions. We hope that the guidelines we bring together in this review will help researchers perform a more comprehensive and consistent comparison of new materials and device designs, and they will be used to identify advances and opportunities to improve the device performance, progressing the field of organic bioelectronics.
Collapse
Affiliation(s)
- David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
50
|
Bhatt S, Masterson E, Zhu T, Eizadi J, George J, Graupe N, Vareberg A, Phillips J, Bok I, Dwyer M, Ashtiani A, Hai A. Wireless in vivo Recording of Cortical Activity by an Ion-Sensitive Field Effect Transistor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524785. [PMID: 36711824 PMCID: PMC9882301 DOI: 10.1101/2023.01.19.524785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Wireless brain technologies are empowering basic neuroscience and clinical neurology by offering new platforms that minimize invasiveness and refine possibilities during electrophysiological recording and stimulation. Despite their advantages, most systems require on-board power supply and sizeable transmission circuitry, enforcing a lower bound for miniaturization. Designing new minimalistic architectures that can efficiently sense neurophysiological events will open the door to standalone microscale sensors and minimally invasive delivery of multiple sensors. Here we present a circuit for sensing ionic fluctuations in the brain by an ion-sensitive field effect transistor that detunes a single radiofrequency resonator in parallel. We establish sensitivity of the sensor by electromagnetic analysis and quantify response to ionic fluctuations in vitro . We validate this new architecture in vivo during hindpaw stimulation in rodents and verify correlation with local field potential recordings. This new approach can be implemented as an integrated circuit for wireless in situ recording of brain electrophysiology.
Collapse
Affiliation(s)
- Suyash Bhatt
- Department of Biomedical Engineering, University of Wisconsin–Madison
- Department of Electrical & Computer Engineering, University of Wisconsin–Madison
| | - Emily Masterson
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Tianxiang Zhu
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Jenna Eizadi
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Judy George
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Nesya Graupe
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Adam Vareberg
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Jack Phillips
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Ilhan Bok
- Department of Biomedical Engineering, University of Wisconsin–Madison
- Department of Electrical & Computer Engineering, University of Wisconsin–Madison
| | - Matthew Dwyer
- Department of Electrical & Computer Engineering, University of Wisconsin–Madison
| | - Alireza Ashtiani
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin–Madison
- Department of Electrical & Computer Engineering, University of Wisconsin–Madison
| |
Collapse
|