1
|
Baka T, Moore J, Qin F, Yurista SR, Zhang A, He H, Chambers JM, Croteau D, Goel RK, Smith H, Wang MC, Chen CS, Hobai IA, Rombaldova M, Kuda O, Tardiff JC, Balschi JA, Pimentel DR, Seidman CE, Seidman JG, Emili A, Colucci WS, Luptak I. Empagliflozin enhances metabolic efficiency and improves left ventricular hypertrophy in a hypertrophic cardiomyopathy mouse model. Eur Heart J 2025:ehaf324. [PMID: 40396194 DOI: 10.1093/eurheartj/ehaf324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/30/2024] [Accepted: 04/29/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND AND AIMS Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disorder characterized by left ventricular hypertrophy (LVH), diastolic dysfunction, and impaired metabolic efficiency. This study investigates the therapeutic potential of the sodium-glucose cotransporter 2 inhibitor (SGLT2i) empagliflozin (EMPA) in ameliorating these pathological features in a mouse model carrying the myosin R403Q mutation. METHODS Male mice harbouring the R403Q mutation were treated with EMPA for 16 weeks. Multi-nuclear magnetic resonance spectroscopy (31P, 13C, and 23Na MRS), echocardiography, transcriptomic, proteomic, and phosphoproteomic profiling were utilized to assess metabolic, structural, and functional changes. RESULTS Empagliflozin facilitated the coupling of glycolysis with glucose oxidation and normalized elevated intracellular sodium levels. Treatment resulted in a significant reduction in LVH and myocardial fibrosis as evidenced by echocardiography and histopathology. These structural improvements correlated with enhancements in mitochondrial adenosine triphosphate (ATP) synthesis, fatty acid oxidation, and branched-chain amino acid catabolism. Furthermore, EMPA improved left ventricular diastolic function and contractile reserve, underscored by improved ATP production and reduced energy cost of contraction. Notably, these benefits were linked to down-regulation of the mammalian target of rapamycin signalling pathway and normalization of myocardial substrate metabolic fluxes. CONCLUSIONS Empagliflozin significantly mitigates structural and metabolic dysfunctions in a mouse model of HCM, underscoring its potential as a therapeutic agent for managing this condition. These findings suggest broader applicability of SGLT2i in cardiovascular diseases, including those due to myocardial-specific mutations, warranting further clinical investigation.
Collapse
Affiliation(s)
- Tomas Baka
- Myocardial Biology Unit, Boston University School of Medicine, 650 Albany Street, Evans Biomed Research Ctr (room 704B), Boston, MA 02118, USA
| | - Jarrod Moore
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Fuzhong Qin
- Myocardial Biology Unit, Boston University School of Medicine, 650 Albany Street, Evans Biomed Research Ctr (room 704B), Boston, MA 02118, USA
| | - Salva R Yurista
- Myocardial Biology Unit, Boston University School of Medicine, 650 Albany Street, Evans Biomed Research Ctr (room 704B), Boston, MA 02118, USA
| | - Aifeng Zhang
- Myocardial Biology Unit, Boston University School of Medicine, 650 Albany Street, Evans Biomed Research Ctr (room 704B), Boston, MA 02118, USA
| | - Huamei He
- Physiological NMR Core Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jordan M Chambers
- Myocardial Biology Unit, Boston University School of Medicine, 650 Albany Street, Evans Biomed Research Ctr (room 704B), Boston, MA 02118, USA
| | - Dominique Croteau
- Myocardial Biology Unit, Boston University School of Medicine, 650 Albany Street, Evans Biomed Research Ctr (room 704B), Boston, MA 02118, USA
| | - Raghuveera K Goel
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Hunter Smith
- Myocardial Biology Unit, Boston University School of Medicine, 650 Albany Street, Evans Biomed Research Ctr (room 704B), Boston, MA 02118, USA
| | - Miranda C Wang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ion A Hobai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Martina Rombaldova
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Kuda
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jil C Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - James A Balschi
- Physiological NMR Core Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David R Pimentel
- Myocardial Biology Unit, Boston University School of Medicine, 650 Albany Street, Evans Biomed Research Ctr (room 704B), Boston, MA 02118, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Andrew Emili
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Wilson S Colucci
- Myocardial Biology Unit, Boston University School of Medicine, 650 Albany Street, Evans Biomed Research Ctr (room 704B), Boston, MA 02118, USA
| | - Ivan Luptak
- Myocardial Biology Unit, Boston University School of Medicine, 650 Albany Street, Evans Biomed Research Ctr (room 704B), Boston, MA 02118, USA
| |
Collapse
|
2
|
Jani VP, Ma W. Thick-Filament-Based Regulation and the Determinants of Force Generation. Biomedicines 2025; 13:703. [PMID: 40149679 PMCID: PMC11939844 DOI: 10.3390/biomedicines13030703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Thick-filament-based regulation in muscle is generally conceived as processes that modulate the number of myosin heads capable of force generation. It has been generally assumed that biochemical and structural assays of myosin active and inactive states provide equivalent measures of myosin recruitment, but recent studies indicate that this may not always be the case. Here, we studied the steady-state and dynamic mechanical changes in skinned porcine myocardium before and after treatment with omecamtiv mecarbil (OM) or piperine to help decipher how the biochemical and structural states of myosin separately affect contractile force. Methods: Force-Ca2+ relationships were obtained from skinned cardiomyocytes isolated from porcine myocardium before and after exposure to 1 μM OM and 7 μM piperine. Crossbridge kinetics were acquired using a step response stretch activation protocol allowing myosin attachment and detachment rates to be calculated. Results: OM augmented calcium-activated force at submaximal calcium levels that can be attributed to increased thick filament recruitment, increases in calcium sensitivity, an increased duty ratio, and from decelerated crossbridge detachment resulting in slowed crossbridge cycling kinetics. Piperine, in contrast, was able to increase activated force at submaximal calcium levels without appreciably affecting crossbridge cycling kinetics. Conclusions: Our study supports the notion that thick filament activation is primarily a process of myosin recruitment that is not necessarily coupled with the chemo-cycling of crossbridges. These new insights into thick filament activation mechanisms will need to be considered in the design of sarcomere-based therapies for treatment of myopathies.
Collapse
Affiliation(s)
- Vivek P. Jani
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Weikang Ma
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60016, USA
- Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, IL 60016, USA
| |
Collapse
|
3
|
McMillan SN, Pitts JRT, Barua B, Winkelmann DA, Scarff CA. Mavacamten inhibits myosin activity by stabilising the myosin interacting-heads motif and stalling motor force generation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637875. [PMID: 39990378 PMCID: PMC11844505 DOI: 10.1101/2025.02.12.637875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Most sudden cardiac deaths in young people arise from hypertrophic cardiomyopathy, a genetic disease of the heart muscle, with many causative mutations found in the molecular motor beta-cardiac myosin that drives contraction. Therapeutic intervention has until recently been limited to symptomatic relief or invasive procedures. However, small molecule modulators of cardiac myosin are promising therapeutic options to target disease progression. Mavacamten is the first example to gain FDA approval but its molecular mode of action remains unclear, limiting our understanding of its functional effects in disease. To better understand this, we solved the cryoEM structures of beta-cardiac heavy meromyosin in three ADP.Pi-bound states, the primed motor domain in the presence and absence of mavacamten, and the sequestered autoinhibited interacting-heads motif (IHM) in complex with mavacamten, to 2.9 Å, 3.4 Å and 3.7 Å global resolution respectively. Together with quantitative crosslinking mass spectrometric analysis, these structures reveal how mavacamten inhibits myosin. Mavacamten stabilises ADP.Pi binding, stalling the motor domain in a primed state, reducing motor dynamics required for actin-binding cleft closure, and slowing progression through the force generation cycle. Within the two-headed myosin molecule, these effects are propagated and lead to stabilisation of the IHM, through increased contacts at the motor-motor interface. Critically, while mavacamten treatment can thus rescue cardiac muscle relaxation in diastole, it can also reduce contractile output in systole in the heart.
Collapse
Affiliation(s)
- Sean N McMillan
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, Faculty of Medicine and Health, University of Leeds (UoL), UK
- Astbury Centre for Structural Molecular Biology, UoL, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, UoL, UK
| | - Jaime R T Pitts
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, Faculty of Medicine and Health, University of Leeds (UoL), UK
- Astbury Centre for Structural Molecular Biology, UoL, UK
| | - Bipasha Barua
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Donald A Winkelmann
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Charlotte A Scarff
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, Faculty of Medicine and Health, University of Leeds (UoL), UK
- Astbury Centre for Structural Molecular Biology, UoL, UK
| |
Collapse
|
4
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
5
|
Greve JN, Schwäbe FV, Taft MH, Manstein DJ. Biochemical characterization of cardiac α-actin mutations A21V and D26N implicated in hypertrophic cardiomyopathy. Cytoskeleton (Hoboken) 2024; 81:815-831. [PMID: 38459932 PMCID: PMC11615838 DOI: 10.1002/cm.21852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
Familial hypertrophic cardiomyopathy (HCM) affects .2% of the world's population and is inherited in an autosomal dominant manner. Mutations in cardiac α-actin are the cause in 1%-5% of all observed cases. Here, we describe the recombinant production, purification, and characterization of the HCM-linked cardiac α-actin variants p.A21V and p.D26N. Mass spectrometric analysis of the initially purified recombinant cardiac α-actin variants and wild-type protein revealed improper N-terminal processing in the Spodoptera frugiperda (Sf-9) insect cell system, compromising the labeling of the protein with fluorescent probes for biochemical studies. Therefore, we produced N-terminal deletion mutants lacking the N-terminal cysteine (ΔC2). The ΔC2 wild-type construct behaved similar to porcine cardiac α-actin purified from native Sus scrofa heart tissue and all ΔC2 constructs showed improved fluorescent labeling. Further analysis of untruncated and ΔC2 constructs showed that while neither the A21V nor the D26N mutation affects nucleotide binding, they cause a similar slowing of the rate of filament formation as well as a reduction in the thermal stability of monomeric and filamentous cardiac α-actin. In vitro motility assays and transient-kinetic studies probing the interaction of the actin variants with cardiac β-myosin revealed perturbed actomyosin interactions and a reduced motile activity for the p.D26N variant. Addition of the small molecule effector EMD 57033, which targets cardiac β-myosin, rescued the approximately 40% drop in velocity observed with the p.D26N constructs and activated the motile activity of wild-type and p.D26N to the same level of 1100 nm s-1.
Collapse
Affiliation(s)
- Johannes N. Greve
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz‐Hartmann‐Centre for Medical ResearchHannoverGermany
| | - Frederic V. Schwäbe
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz‐Hartmann‐Centre for Medical ResearchHannoverGermany
| | - Manuel H. Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz‐Hartmann‐Centre for Medical ResearchHannoverGermany
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz‐Hartmann‐Centre for Medical ResearchHannoverGermany
- Division for Structural BiochemistryHannover Medical SchoolHannoverGermany
- RESiST, Cluster of Excellence 2155, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
6
|
Childers MC, Geeves MA, Regnier M. Interacting myosin head dynamics and their modification by 2'-deoxy-ADP. Biophys J 2024; 123:3997-4008. [PMID: 39444161 PMCID: PMC11617627 DOI: 10.1016/j.bpj.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/22/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024] Open
Abstract
The contraction of striated muscle is driven by cycling myosin motor proteins embedded within the thick filaments of sarcomeres. In addition to cross-bridge cycling with actin, these myosin proteins can enter an inactive, sequestered state in which the globular S1 heads rest along the thick filament surface and are inhibited from performing motor activities. Structurally, this state is called the interacting heads motif (IHM) and is a critical conformational state of myosin that regulates muscle contractility and energy expenditure. Structural perturbation of the sequestered state can pathologically disrupt IHM structure and the mechanical performance of muscle tissue. Thus, the IHM state has become a target for therapeutic intervention. An ATP analog called 2'-deoxy-ATP (dATP) is a potent myosin activator that destabilizes the IHM. Here, we use molecular dynamics simulations to study the molecular mechanisms by which dATP modifies the structure and dynamics of myosin in a sequestered state. Simulations of the IHM state containing ADP.Pi in both nucleotide binding pockets revealed dynamic motions of the blocked head-free head interface, light chain binding domain, and S2 in this "inactive" state of myosin. Replacement of ADP.Pi by dADP.Pi triggered a series of structural changes that increased heterogeneity among residue contact pairs at the blocked head-free head interface and a 14% decrease in the interaction energy at the interface. Dynamic changes to this interface were accompanied by dynamics in the light chain binding region. A comparative analysis of these dynamics predicted new structural sites that may affect IHM stability.
Collapse
Affiliation(s)
- Matthew Carter Childers
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, Washington
| | - Michael A Geeves
- Department of Biosciences, University of Kent, Kent, United Kingdom
| | - Michael Regnier
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, Washington.
| |
Collapse
|
7
|
Steffensen KE, Jones MR, Misini E, King CJ, Pace A, Dawson JF. Duality in disease: How two amino acid substitutions at actin residue 312 result in opposing forms of cardiomyopathy. J Biol Chem 2024; 300:107961. [PMID: 39510186 DOI: 10.1016/j.jbc.2024.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Two common types of cardiovascular disease are hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) which occur from changes to sarcomere contractile mechanisms and activity. Actin amino acid substitutions R312C and R312H have been found in HCM and DCM patients, respectively. Previously, we observed that R312C/H variants display both hyperactivity and hypoactivity in vitro, contradicting traditional characterizations of HCM- and DCM-causing variants. Here, we further characterized R312C/H actin variants in vitro and conducted in silico modeling to better understand the mechanisms differentiating HCM and DCM. Our results suggest that R312C/H substitutions cause structural changes that differentially impact actomyosin activity. A gradient of altered interactions with regulatory proteins troponin, tropomyosin, and the C0C2 domains of myosin-binding protein C was also observed, influencing the accessibility of active and inhibitory conformations of these proteins. The results presented here support our previous suggestion of a gradient of factors that differentiate between HCM and DCM. Further characterization of HCM- and DCM-causing actin variants using in vitro and in silico methods is required for better understanding cardiomyopathy and improving clinical outcomes.
Collapse
Affiliation(s)
- Karl E Steffensen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Michael R Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Elma Misini
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Chloe J King
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Andrea Pace
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - John F Dawson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
8
|
Spudich JA. From amoeboid myosin to unique targeted medicines for a genetic cardiac disease. Front Physiol 2024; 15:1496569. [PMID: 39529926 PMCID: PMC11550953 DOI: 10.3389/fphys.2024.1496569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The importance of fundamental basic research in the quest for much needed clinical treatments is a story that constantly must be retold. Funding of basic science in the USA by the National Institutes of Health and other agencies is provided under the assumption that fundamental research eventually will lead to improvements in healthcare worldwide. Understanding how basic research is connected to clinical developments is important, but just part of the story. Many basic science discoveries never see the light of day in a clinical setting because academic scientists are not interested in or do not have the inclination and/or support for entering the world of biotechnology. Even if the interest and inclination are there, often the unknowns about how to enter that world inhibit taking the initial step. Young investigators often ask me how I incorporated biotech opportunities into my otherwise purely academic research endeavors. Here I tell the story of the foundational basic science and early events of my career that led to forming the biotech companies responsible for the development of unique cardiac drugs, including mavacamten, a first in class human β-cardiac myosin inhibitor that is changing the lives of hypertrophic cardiomyopathy patients.
Collapse
Affiliation(s)
- James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
9
|
Dutton LC, Dudhia J, Guest DJ, Connolly DJ. CRISPR/Cas9 gene editing in induced pluripotent stem cells to investigate the feline hypertrophic cardiomyopathy causing MYBPC3/R820W mutation. PLoS One 2024; 19:e0311761. [PMID: 39388496 PMCID: PMC11466433 DOI: 10.1371/journal.pone.0311761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common heart disease in domestic cats, often leading to congestive heart failure and death, with current treatment strategies unable to reverse or prevent progression of the disease. The underlying pathological processes driving HCM remain unclear, which hinders novel drug discovery. The aim of this study was to generate a cellular model of the feline HCM-causing MYBPC3 mutation R820W. Using CRISPR/Cas9 gene editing we introduced the R820W mutation into a human induced pluripotent stem cell (iPSC) line. We differentiated both homozygous mutant clones and isogenic control clones to cardiomyocytes (iPSC-CMs). Protein quantification indicated that haploinsufficiency is not the disease mechanism of the mutation. Homozygous mutant iPSC-CMs had a larger cell area than isogenic controls, with the sarcomere structure and incorporation of cMyBP-C appearing similar between mutant and control iPSC-CMs. Contraction kinetic analysis indicated that homozygous iPSC-CMs have impaired relaxation and are hypocontractile compared to isogenic control iPSC-CMs. In summary, we demonstrate successful generation of an iPSC model of a feline MYBPC3 mutation, with the cellular model recapitulating aspects of HCM including cellular hypertrophy and impaired relaxation kinetics. We anticipate that further study of this model will lead to improved understanding of the disease-causing molecular mechanism, ultimately leading to novel drug discovery.
Collapse
Affiliation(s)
- Luke C. Dutton
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, London, United Kingdom
| | - Jayesh Dudhia
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, London, United Kingdom
| | - Deborah J. Guest
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, London, United Kingdom
| | - David J. Connolly
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, London, United Kingdom
| |
Collapse
|
10
|
Spudich JA, Nandwani N, Robert-Paganin J, Houdusse A, Ruppel KM. Reassessing the unifying hypothesis for hypercontractility caused by myosin mutations in hypertrophic cardiomyopathy. EMBO J 2024; 43:4139-4155. [PMID: 39192034 PMCID: PMC11445530 DOI: 10.1038/s44318-024-00199-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Significant advances in structural and biochemical research validate the 9-year-old hypothesis that cardiac hypercontractility seen in patients with hypertrophic cardiomyopathy is primarily caused by sarcomeric mutations that increase the number of myosin molecules available for actin interaction.
Collapse
Affiliation(s)
- James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Neha Nandwani
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Julien Robert-Paganin
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005, Paris, France
| | - Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005, Paris, France
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
11
|
Hartman JJ, Hwee DT, Robert-Paganin J, Chuang C, Chin ER, Edell S, Lee KH, Madhvani R, Paliwal P, Pernier J, Sarkar SS, Schaletzky J, Schauer K, Taheri KD, Wang J, Wehri E, Wu Y, Houdusse A, Morgan BP, Malik FI. Aficamten is a small-molecule cardiac myosin inhibitor designed to treat hypertrophic cardiomyopathy. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1003-1016. [PMID: 39196032 PMCID: PMC11358156 DOI: 10.1038/s44161-024-00505-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/06/2024] [Indexed: 08/29/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited disease of the sarcomere resulting in excessive cardiac contractility. The first-in-class cardiac myosin inhibitor, mavacamten, improves symptoms in obstructive HCM. Here we present aficamten, a selective small-molecule inhibitor of cardiac myosin that diminishes ATPase activity by strongly slowing phosphate release, stabilizing a weak actin-binding state. Binding to an allosteric site on the myosin catalytic domain distinct from mavacamten, aficamten prevents the conformational changes necessary to enter the strongly actin-bound force-generating state. In doing so, aficamten reduces the number of functional myosin heads driving sarcomere shortening. The crystal structure of aficamten bound to cardiac myosin in the pre-powerstroke state provides a basis for understanding its selectivity over smooth and fast skeletal muscle. Furthermore, in cardiac myocytes and in mice bearing the hypertrophic R403Q cardiac myosin mutation, aficamten reduces cardiac contractility. Our findings suggest aficamten holds promise as a therapy for HCM.
Collapse
Affiliation(s)
- James J Hartman
- Research and Non-Clinical Development, Cytokinetics, South San Francisco, CA, USA.
| | - Darren T Hwee
- Research and Non-Clinical Development, Cytokinetics, South San Francisco, CA, USA
| | - Julien Robert-Paganin
- Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144, Paris, France
| | - Chihyuan Chuang
- Research and Non-Clinical Development, Cytokinetics, South San Francisco, CA, USA
| | - Eva R Chin
- Research and Non-Clinical Development, Cytokinetics, South San Francisco, CA, USA
| | - Samantha Edell
- Research and Non-Clinical Development, Cytokinetics, South San Francisco, CA, USA
| | - Ken H Lee
- Research and Non-Clinical Development, Cytokinetics, South San Francisco, CA, USA
| | - Roshni Madhvani
- Research and Non-Clinical Development, Cytokinetics, South San Francisco, CA, USA
| | - Preeti Paliwal
- Research and Non-Clinical Development, Cytokinetics, South San Francisco, CA, USA
| | - Julien Pernier
- Tumor Cell Dynamics Unit, Inserm U1279 Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | | | - Julia Schaletzky
- Research and Non-Clinical Development, Cytokinetics, South San Francisco, CA, USA
| | - Kristine Schauer
- Tumor Cell Dynamics Unit, Inserm U1279 Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Khanha D Taheri
- Research and Non-Clinical Development, Cytokinetics, South San Francisco, CA, USA
| | - Jingying Wang
- Research and Non-Clinical Development, Cytokinetics, South San Francisco, CA, USA
| | - Eddie Wehri
- Research and Non-Clinical Development, Cytokinetics, South San Francisco, CA, USA
| | - Yangsong Wu
- Research and Non-Clinical Development, Cytokinetics, South San Francisco, CA, USA
| | - Anne Houdusse
- Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144, Paris, France
| | - Bradley P Morgan
- Research and Non-Clinical Development, Cytokinetics, South San Francisco, CA, USA
| | - Fady I Malik
- Research and Non-Clinical Development, Cytokinetics, South San Francisco, CA, USA
| |
Collapse
|
12
|
Herron TJ, Devaney E, Guerrero-Serna G, Mundada L, Metzger JM. Gene transfer of human cardiomyopathy β-MyHC mutant R403Q directly alters intact cardiac myocyte calcium homeostasis and causes hyper-contractility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605903. [PMID: 39211095 PMCID: PMC11361141 DOI: 10.1101/2024.07.31.605903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The R403Q mutation of human cardiac β-myosin heavy chain was the first missense mutation of a sarcomeric protein identified as being causal for hypertrophic cardiomyopathy (HCM), in humans. The direct effect of the R403Q mutant myosin on intracellular calcium homeostasis and contractility is not fully known. Here we have used in vitro gene transfer of the R403Q mutant human β-myosin to study its direct effects on single intact adult cardiac myocyte contractility and calcium homeostasis. In the first experiments, adult cardiac myocytes transduced with the R403Q mutant myosin recombinant viral vectors were compared to myocytes transduced with wild-type human β-myosin (wtMYH7). Efficiency of gene transfer was high in both groups (>98%) and the degree of stoichiometric myofilament incorporation of either the mutant or normal myosin was comparable at ∼40% in quiescent myocytes in primary culture. Sarcomere structure and cellular morphology were unaffected by R403Q myosin expression and myofilament incorporation. Functionally, in electrically paced cardiac myocytes, the R403Q mutant myosin caused a significant increase in intracellular calcium concentration and myocyte hyper-contractility. At the sub-cellular myofilament level, the mutant myosin increased the calcium sensitivity of steady state isometric tension development and increased isometric cross-bridge cycling kinetics. R403Q myocytes became arrhythmic after β-adrenergic stimulation with spontaneous calcium transients and contractions in between electrical stimuli. These results indicate that human R403Q mutant myosin directly alters myofilament function and intracellular calcium cycling. Elevated calcium levels may provide a trigger for the ensuing hypertrophy and susceptibility to arrhythmia that are characteristic of HCM.
Collapse
|
13
|
van den Berg M, Shi Z, Claassen WJ, Hooijman P, Lewis CTA, Andersen JL, van der Pijl RJ, Bogaards SJP, Conijn S, Peters EL, Begthel LPL, Uijterwijk B, Lindqvist J, Langlais PR, Girbes ARJ, Stapel S, Granzier H, Campbell KS, Ma W, Irving T, Hwee DT, Hartman JJ, Malik FI, Paul M, Beishuizen A, Ochala J, Heunks L, Ottenheijm CAC. Super-relaxed myosins contribute to respiratory muscle hibernation in mechanically ventilated patients. Sci Transl Med 2024; 16:eadg3894. [PMID: 39083588 PMCID: PMC11586073 DOI: 10.1126/scitranslmed.adg3894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/12/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Patients receiving mechanical ventilation in the intensive care unit (ICU) frequently develop contractile weakness of the diaphragm. Consequently, they may experience difficulty weaning from mechanical ventilation, which increases mortality and poses a high economic burden. Because of a lack of knowledge regarding the molecular changes in the diaphragm, no treatment is currently available to improve diaphragm contractility. We compared diaphragm biopsies from ventilated ICU patients (N = 54) to those of non-ICU patients undergoing thoracic surgery (N = 27). By integrating data from myofiber force measurements, x-ray diffraction experiments, and biochemical assays with clinical data, we found that in myofibers isolated from the diaphragm of ventilated ICU patients, myosin is trapped in an energy-sparing, super-relaxed state, which impairs the binding of myosin to actin during diaphragm contraction. Studies on quadriceps biopsies of ICU patients and on the diaphragm of previously healthy mechanically ventilated rats suggested that the super-relaxed myosins are specific to the diaphragm and not a result of critical illness. Exposing slow- and fast-twitch myofibers isolated from the diaphragm biopsies to small-molecule compounds activating troponin restored contractile force in vitro. These findings support the continued development of drugs that target sarcomere proteins to increase the calcium sensitivity of myofibers for the treatment of ICU-acquired diaphragm weakness.
Collapse
Affiliation(s)
- Marloes van den Berg
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
- Bispebjerg Hospital, Institute of Sports Medicine, Copenhagen 2400, Denmark
| | - Zhonghua Shi
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
- Amsterdam UMC, Location VUmc, Department of Intensive Care Medicine, Amsterdam 1081, HV, Netherlands
- Sanbo Brain Hospital, Capital Medical University, Intensive Care Medicine, Beijing 100093, China
| | - Wout J. Claassen
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
| | - Pleuni Hooijman
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
| | - Christopher T. A. Lewis
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen 2200, Denmark
- Research and Early Development, Novo Nordisk A/S, Måløv 2760, Denmark
| | - Jesper L. Andersen
- Bispebjerg Hospital, Institute of Sports Medicine, Copenhagen 2400, Denmark
| | | | - Sylvia J. P. Bogaards
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
| | - Stefan Conijn
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
| | - Eva L. Peters
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson AZ 85721, USA
| | - Leon P. L. Begthel
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Bas Uijterwijk
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
| | - Johan Lindqvist
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson AZ 85721, USA
| | - Paul R. Langlais
- Department of Endocrinology, University of Arizona, Tucson, AZ 85721, USA
| | - Armand R. J. Girbes
- Amsterdam UMC, Location VUmc, Department of Intensive Care Medicine, Amsterdam 1081, HV, Netherlands
| | - Sandra Stapel
- Amsterdam UMC, Location VUmc, Department of Intensive Care Medicine, Amsterdam 1081, HV, Netherlands
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson AZ 85721, USA
| | - Kenneth S. Campbell
- Division of Cardiovascular Medicine, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Weikang Ma
- BioCAT, Illinois Institute of Technology, Lemont, IL 60439, USA
| | - Thomas Irving
- BioCAT, Illinois Institute of Technology, Lemont, IL 60439, USA
| | - Darren T. Hwee
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - James J. Hartman
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - Fady I. Malik
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - Marinus Paul
- Amsterdam UMC, Location VUmc, Department of Cardiothoracic Surgery, Amsterdam 1081, HV, Netherlands
| | - Albertus Beishuizen
- Medisch Spectrum Twente, Intensive Care Center, Enschede 7511, HN, Netherlands
| | - Julien Ochala
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen 2200, Denmark
| | - Leo Heunks
- Radboud UMC, Department of Intensive Care, Nijmegen 6525, GA, Netherlands
| | - Coen A. C. Ottenheijm
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson AZ 85721, USA
| |
Collapse
|
14
|
Childers MC, Geeves MA, Regnier M. An atomistic model of myosin interacting heads motif dynamics and their modification by 2'-deoxy-ADP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597809. [PMID: 38895221 PMCID: PMC11185614 DOI: 10.1101/2024.06.06.597809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The contraction of striated muscle is driven by cycling myosin motor proteins embedded within the thick filaments of sarcomeres. In addition to cross-bridge cycling with actin, these myosin proteins can enter an inactive, sequestered state in which the globular S1 heads rest along the thick filament surface and are unable to perform motor activities. Structurally, this state is called the interacting heads motif (IHM) and is a critical conformational state of myosin that regulates muscle contractility and energy expenditure. Structural perturbation of the sequestered state via missense mutations can pathologically disrupt the mechanical performance of muscle tissue. Thus, the IHM state has become a target for therapeutic intervention. An ATP analogue called 2'-deoxy-ATP (dATP) is a potent myosin activator which destabilizes the IHM. Here we use molecular dynamics simulations to study the molecular mechanisms by which dATP modifies the structure and dynamics of myosin in a sequestered state. Simulations with IHM containing ADP.Pi in both nucleotide binding pockets revealed residual dynamics in an otherwise 'inactive' and 'sequestered' state of a motor protein. Replacement of ADP.Pi by dADP.Pi triggered a series of structural changes that modify the protein-protein interface that stabilizes the sequestered state, and changes to this interface were accompanied by allosteric changes in remote regions of the protein complex. A comparative analysis of these dynamics predicted new structural sites that may affect IHM stability.
Collapse
|
15
|
Chirikian O, Faynus MA, Merk M, Singh Z, Muray C, Pham J, Chialastri A, Vander Roest A, Goldstein A, Pyle T, Lane KV, Roberts B, Smith JE, Gunawardane RN, Sniadecki NJ, Mack DL, Davis J, Bernstein D, Streichan SJ, Clegg DO, Dey SS, Wilson MZ, Pruitt BL. YAP dysregulation triggers hypertrophy by CCN2 secretion and TGFβ uptake in human pluripotent stem cell-derived cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597045. [PMID: 38895282 PMCID: PMC11185505 DOI: 10.1101/2024.06.03.597045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hypertrophy Cardiomyopathy (HCM) is the most prevalent hereditary cardiovascular disease - affecting >1:500 individuals. Advanced forms of HCM clinically present with hypercontractility, hypertrophy and fibrosis. Several single-point mutations in b-myosin heavy chain (MYH7) have been associated with HCM and increased contractility at the organ level. Different MYH7 mutations have resulted in increased, decreased, or unchanged force production at the molecular level. Yet, how these molecular kinetics link to cell and tissue pathogenesis remains unclear. The Hippo Pathway, specifically its effector molecule YAP, has been demonstrated to be reactivated in pathological hypertrophic growth. We hypothesized that changes in force production (intrinsically or extrinsically) directly alter the homeostatic mechano-signaling of the Hippo pathway through changes in stresses on the nucleus. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we asked whether homeostatic mechanical signaling through the canonical growth regulator, YAP, is altered 1) by changes in the biomechanics of HCM mutant cardiomyocytes and 2) by alterations in the mechanical environment. We use genetically edited hiPSC-CM with point mutations in MYH7 associated with HCM, and their matched controls, combined with micropatterned traction force microscopy substrates to confirm the hypercontractile phenotype in MYH7 mutants. We next modulate contractility in healthy and disease hiPSC-CMs by treatment with positive and negative inotropic drugs and demonstrate a correlative relationship between contractility and YAP activity. We further demonstrate the activation of YAP in both HCM mutants and healthy hiPSC-CMs treated with contractility modulators is through enhanced nuclear deformation. We conclude that the overactivation of YAP, possibly initiated and driven by hypercontractility, correlates with excessive CCN2 secretion (connective tissue growth factor), enhancing cardiac fibroblast/myofibroblast transition and production of known hypertrophic signaling molecule TGFβ. Our study suggests YAP being an indirect player in the initiation of hypertrophic growth and fibrosis in HCM. Our results provide new insights into HCM progression and bring forth a testbed for therapeutic options in treating HCM.
Collapse
|
16
|
Wang L, Li L, Zhao D, Yuan H, Zhang H, Chen J, Pang D, Lu Y, Ouyang H. MYH7 R453C induced cardiac remodelling via activating TGF-β/Smad2/3, ERK1/2 and Nox4/ROS/NF-κB signalling pathways. Open Biol 2024; 14:230427. [PMID: 38862020 PMCID: PMC11286136 DOI: 10.1098/rsob.230427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/26/2024] [Accepted: 04/24/2024] [Indexed: 06/13/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a monogenic cardiac disorder commonly induced by sarcomere gene mutations. However, the mechanism for HCM is not well defined. Here, we generated transgenic MYH7 R453C and MYH6 R453C piglets and found both developed typical cardiac hypertrophy. Unexpectedly, we found serious fibrosis and cardiomyocyte loss in the ventricular of MYH7 R453C, not MYH6 R453C piglets, similar to HCM patients. Then, RNA-seq analysis and western blotting identified the activation of ERK1/2 and PI3K-Akt pathways in MYH7 R453C. Moreover, we observed an increased expression of fetal genes and an excess of reactive oxygen species (ROS) in MYH7 R453C piglet models, which was produced by Nox4 and subsequently induced inflammatory response. Additionally, the phosphorylation levels of Smad2/3, ERK1/2 and NF-kB p65 proteins were elevated in cardiomyocytes with the MYH7 R453C mutation. Furthermore, epigallocatechin gallate, a natural bioactive compound, could be used as a drug to reduce cell death by adjusting significant downregulation of the protein expression of Bax and upregulated Bcl-2 levels in the H9C2 models with MYH7 R453C mutation. In conclusion, our study illustrated that TGF-β/Smad2/3, ERK1/2 and Nox4/ROS pathways have synergistic effects on cardiac remodelling and inflammation in MYH7 R453C mutation.
Collapse
Affiliation(s)
- Lingyu Wang
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun130062, People's Republic of China
| | - Linquan Li
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun130062, People's Republic of China
| | - Dazhong Zhao
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun130062, People's Republic of China
| | - Hongming Yuan
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun130062, People's Republic of China
| | - Huanyu Zhang
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun130062, People's Republic of China
| | - Jiahuan Chen
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun130062, People's Republic of China
| | - Daxin Pang
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun130062, People's Republic of China
- Chongqing Research Institute, Jilin University, Chongqing401123, People's Republic of China
| | - Yi Lu
- Department of Human Genetics, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Hongsheng Ouyang
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun130062, People's Republic of China
- Chongqing Research Institute, Jilin University, Chongqing401123, People's Republic of China
| |
Collapse
|
17
|
Hessel AL, Kuehn MN, Han SW, Ma W, Irving TC, Momb BA, Song T, Sadayappan S, Linke WA, Palmer BM. Fast myosin binding protein C knockout in skeletal muscle alters length-dependent activation and myofilament structure. Commun Biol 2024; 7:648. [PMID: 38802450 PMCID: PMC11130249 DOI: 10.1038/s42003-024-06265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
In striated muscle, the sarcomeric protein myosin-binding protein-C (MyBP-C) is bound to the myosin thick filament and is predicted to stabilize myosin heads in a docked position against the thick filament, which limits crossbridge formation. Here, we use the homozygous Mybpc2 knockout (C2-/-) mouse line to remove the fast-isoform MyBP-C from fast skeletal muscle and then conduct mechanical functional studies in parallel with small-angle X-ray diffraction to evaluate the myofilament structure. We report that C2-/- fibers present deficits in force production and calcium sensitivity. Structurally, passive C2-/- fibers present altered sarcomere length-independent and -dependent regulation of myosin head conformations, with a shift of myosin heads towards actin. At shorter sarcomere lengths, the thin filament is axially extended in C2-/-, which we hypothesize is due to increased numbers of low-level crossbridges. These findings provide testable mechanisms to explain the etiology of debilitating diseases associated with MyBP-C.
Collapse
Affiliation(s)
- Anthony L Hessel
- Institute of Physiology II, University of Muenster, Muenster, Germany.
| | - Michel N Kuehn
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Seong-Won Han
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, USA
| | - Thomas C Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, USA
| | - Brent A Momb
- Department of Kinesiology, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Taejeong Song
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Sakthivel Sadayappan
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Bradley M Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
18
|
Lee S, Vander Roest AS, Blair CA, Kao K, Bremner SB, Childers MC, Pathak D, Heinrich P, Lee D, Chirikian O, Mohran SE, Roberts B, Smith JE, Jahng JW, Paik DT, Wu JC, Gunawardane RN, Ruppel KM, Mack DL, Pruitt BL, Regnier M, Wu SM, Spudich JA, Bernstein D. Incomplete-penetrant hypertrophic cardiomyopathy MYH7 G256E mutation causes hypercontractility and elevated mitochondrial respiration. Proc Natl Acad Sci U S A 2024; 121:e2318413121. [PMID: 38683993 PMCID: PMC11087781 DOI: 10.1073/pnas.2318413121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/05/2024] [Indexed: 05/02/2024] Open
Abstract
Determining the pathogenicity of hypertrophic cardiomyopathy-associated mutations in the β-myosin heavy chain (MYH7) can be challenging due to its variable penetrance and clinical severity. This study investigates the early pathogenic effects of the incomplete-penetrant MYH7 G256E mutation on myosin function that may trigger pathogenic adaptations and hypertrophy. We hypothesized that the G256E mutation would alter myosin biomechanical function, leading to changes in cellular functions. We developed a collaborative pipeline to characterize myosin function across protein, myofibril, cell, and tissue levels to determine the multiscale effects on structure-function of the contractile apparatus and its implications for gene regulation and metabolic state. The G256E mutation disrupts the transducer region of the S1 head and reduces the fraction of myosin in the folded-back state by 33%, resulting in more myosin heads available for contraction. Myofibrils from gene-edited MYH7WT/G256E human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) exhibited greater and faster tension development. This hypercontractile phenotype persisted in single-cell hiPSC-CMs and engineered heart tissues. We demonstrated consistent hypercontractile myosin function as a primary consequence of the MYH7 G256E mutation across scales, highlighting the pathogenicity of this gene variant. Single-cell transcriptomic and metabolic profiling demonstrated upregulated mitochondrial genes and increased mitochondrial respiration, indicating early bioenergetic alterations. This work highlights the benefit of our multiscale platform to systematically evaluate the pathogenicity of gene variants at the protein and contractile organelle level and their early consequences on cellular and tissue function. We believe this platform can help elucidate the genotype-phenotype relationships underlying other genetic cardiovascular diseases.
Collapse
Affiliation(s)
- Soah Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Department of Biopharmaceutical Convergence, Sungkyunkwan University School of Pharmacy, Suwon, Gyeonggi-do16419South Korea
- School of Pharmacy, Sungkyunkwan University School of Pharmacy, Suwon, Gyeonggi-do16419, South Korea
| | - Alison S. Vander Roest
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA94305
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Cheavar A. Blair
- Biological Engineering, University of California, Santa Barbara, CA93106
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY40536
| | - Kerry Kao
- Department of Bioengineering, University of Washington School of Medicine and College of Engineering, Seattle, WA98195
| | - Samantha B. Bremner
- Department of Bioengineering, University of Washington School of Medicine and College of Engineering, Seattle, WA98195
| | - Matthew C. Childers
- Department of Bioengineering, University of Washington School of Medicine and College of Engineering, Seattle, WA98195
| | - Divya Pathak
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Paul Heinrich
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Daniel Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Orlando Chirikian
- Biological Engineering, University of California, Santa Barbara, CA93106
| | - Saffie E. Mohran
- Department of Bioengineering, University of Washington School of Medicine and College of Engineering, Seattle, WA98195
| | | | | | - James W. Jahng
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
| | - David T. Paik
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | | | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - David L. Mack
- Department of Bioengineering, University of Washington School of Medicine and College of Engineering, Seattle, WA98195
| | - Beth L. Pruitt
- Biological Engineering, University of California, Santa Barbara, CA93106
| | - Michael Regnier
- Department of Bioengineering, University of Washington School of Medicine and College of Engineering, Seattle, WA98195
| | - Sean M. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Daniel Bernstein
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
19
|
Buvoli M, Wilson GC, Buvoli A, Gugel JF, Hau A, Bönnemann CG, Paradas C, Ryba DM, Woulfe KC, Walker LA, Buvoli T, Ochala J, Leinwand LA. A Laing distal myopathy-associated proline substitution in the β-myosin rod perturbs myosin cross-bridging activity. J Clin Invest 2024; 134:e172599. [PMID: 38690726 PMCID: PMC11060730 DOI: 10.1172/jci172599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/11/2024] [Indexed: 05/03/2024] Open
Abstract
Proline substitutions within the coiled-coil rod region of the β-myosin gene (MYH7) are the predominant mutations causing Laing distal myopathy (MPD1), an autosomal dominant disorder characterized by progressive weakness of distal/proximal muscles. We report that the MDP1 mutation R1500P, studied in what we believe to be the first mouse model for the disease, adversely affected myosin motor activity despite being in the structural rod domain that directs thick filament assembly. Contractility experiments carried out on isolated mutant muscles, myofibrils, and myofibers identified muscle fatigue and weakness phenotypes, an increased rate of actin-myosin detachment, and a conformational shift of the myosin heads toward the more reactive disordered relaxed (DRX) state, causing hypercontractility and greater ATP consumption. Similarly, molecular analysis of muscle biopsies from patients with MPD1 revealed a significant increase in sarcomeric DRX content, as observed in a subset of myosin motor domain mutations causing hypertrophic cardiomyopathy. Finally, oral administration of MYK-581, a small molecule that decreases the population of heads in the DRX configuration, significantly improved the limited running capacity of the R1500P-transgenic mice and corrected the increased DRX state of the myofibrils from patients. These studies provide evidence of the molecular pathogenesis of proline rod mutations and lay the groundwork for the therapeutic advancement of myosin modulators.
Collapse
Affiliation(s)
- Massimo Buvoli
- Department of Molecular, Cellular and Developmental Biology, and
- BioFrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Genevieve C.K. Wilson
- Department of Molecular, Cellular and Developmental Biology, and
- BioFrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Ada Buvoli
- Department of Molecular, Cellular and Developmental Biology, and
- BioFrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Jack F. Gugel
- Department of Molecular, Cellular and Developmental Biology, and
- BioFrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Abbi Hau
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, and
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, Guy’s Campus, King’s College London, London, United Kingdom
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA
| | - Carmen Paradas
- Neuromuscular Unit, Department of Neurology, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | | | - Kathleen C. Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado, Denver, Colorado, USA
| | - Lori A. Walker
- Division of Cardiology, Department of Medicine, University of Colorado, Denver, Colorado, USA
| | - Tommaso Buvoli
- Department of Mathematics, Tulane University, New Orleans, Louisiana, USA
| | - Julien Ochala
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, and
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, Guy’s Campus, King’s College London, London, United Kingdom
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leslie A. Leinwand
- Department of Molecular, Cellular and Developmental Biology, and
- BioFrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
20
|
Wijnker PJM, Dinani R, van der Laan NC, Algül S, Knollmann BC, Verkerk AO, Remme CA, Zuurbier CJ, Kuster DWD, van der Velden J. Hypertrophic cardiomyopathy dysfunction mimicked in human engineered heart tissue and improved by sodium-glucose cotransporter 2 inhibitors. Cardiovasc Res 2024; 120:301-317. [PMID: 38240646 PMCID: PMC10939456 DOI: 10.1093/cvr/cvae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 03/16/2024] Open
Abstract
AIMS Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiomyopathy, often caused by pathogenic sarcomere mutations. Early characteristics of HCM are diastolic dysfunction and hypercontractility. Treatment to prevent mutation-induced cardiac dysfunction is lacking. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a group of antidiabetic drugs that recently showed beneficial cardiovascular outcomes in patients with acquired forms of heart failure. We here studied if SGLT2i represent a potential therapy to correct cardiomyocyte dysfunction induced by an HCM sarcomere mutation. METHODS AND RESULTS Contractility was measured of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) harbouring an HCM mutation cultured in 2D and in 3D engineered heart tissue (EHT). Mutations in the gene encoding β-myosin heavy chain (MYH7-R403Q) or cardiac troponin T (TNNT2-R92Q) were investigated. In 2D, intracellular [Ca2+], action potential and ion currents were determined. HCM mutations in hiPSC-CMs impaired relaxation or increased force, mimicking early features observed in human HCM. SGLT2i enhance the relaxation of hiPSC-CMs, to a larger extent in HCM compared to control hiPSC-CMs. Moreover, SGLT2i-effects on relaxation in R403Q EHT increased with culture duration, i.e. hiPSC-CMs maturation. Canagliflozin's effects on relaxation were more pronounced than empagliflozin and dapagliflozin. SGLT2i acutely altered Ca2+ handling in HCM hiPSC-CMs. Analyses of SGLT2i-mediated mechanisms that may underlie enhanced relaxation in mutant hiPSC-CMs excluded SGLT2, Na+/H+ exchanger, peak and late Nav1.5 currents, and L-type Ca2+ current, but indicate an important role for the Na+/Ca2+ exchanger. Indeed, electrophysiological measurements in mutant hiPSC-CM indicate that SGLT2i altered Na+/Ca2+ exchange current. CONCLUSION SGLT2i (canagliflozin > dapagliflozin > empagliflozin) acutely enhance relaxation in human EHT, especially in HCM and upon prolonged culture. SGLT2i may represent a potential therapy to correct early cardiac dysfunction in HCM.
Collapse
Affiliation(s)
- Paul J M Wijnker
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rafeeh Dinani
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Nico C van der Laan
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Sila Algül
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arie O Verkerk
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Experimental Cardiology, Amsterdam UMC, Academic Medical Centre, Amsterdam, The Netherlands
| | - Carol Ann Remme
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Experimental Cardiology, Amsterdam UMC, Academic Medical Centre, Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Laboratory for Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam UMC, Academic Medical Centre, Amsterdam, The Netherlands
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
21
|
Garg A, Lavine KJ, Greenberg MJ. Assessing Cardiac Contractility From Single Molecules to Whole Hearts. JACC Basic Transl Sci 2024; 9:414-439. [PMID: 38559627 PMCID: PMC10978360 DOI: 10.1016/j.jacbts.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 04/04/2024]
Abstract
Fundamentally, the heart needs to generate sufficient force and power output to dynamically meet the needs of the body. Cardiomyocytes contain specialized structures referred to as sarcomeres that power and regulate contraction. Disruption of sarcomeric function or regulation impairs contractility and leads to cardiomyopathies and heart failure. Basic, translational, and clinical studies have adapted numerous methods to assess cardiac contraction in a variety of pathophysiological contexts. These tools measure aspects of cardiac contraction at different scales ranging from single molecules to whole organisms. Moreover, these studies have revealed new pathogenic mechanisms of heart disease leading to the development of novel therapies targeting contractility. In this review, the authors explore the breadth of tools available for studying cardiac contractile function across scales, discuss their strengths and limitations, highlight new insights into cardiac physiology and pathophysiology, and describe how these insights can be harnessed for therapeutic candidate development and translational.
Collapse
Affiliation(s)
- Ankit Garg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory J. Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
22
|
Doh CY, Schmidt AV, Chinthalapudi K, Stelzer JE. Bringing into focus the central domains C3-C6 of myosin binding protein C. Front Physiol 2024; 15:1370539. [PMID: 38487262 PMCID: PMC10937550 DOI: 10.3389/fphys.2024.1370539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Myosin binding protein C (MyBPC) is a multi-domain protein with each region having a distinct functional role in muscle contraction. The central domains of MyBPC have often been overlooked due to their unclear roles. However, recent research shows promise in understanding their potential structural and regulatory functions. Understanding the central region of MyBPC is important because it may have specialized function that can be used as drug targets or for disease-specific therapies. In this review, we provide a brief overview of the evolution of our understanding of the central domains of MyBPC in regard to its domain structures, arrangement and dynamics, interaction partners, hypothesized functions, disease-causing mutations, and post-translational modifications. We highlight key research studies that have helped advance our understanding of the central region. Lastly, we discuss gaps in our current understanding and potential avenues to further research and discovery.
Collapse
Affiliation(s)
- Chang Yoon Doh
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Alexandra V. Schmidt
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
23
|
Liu C, Karabina A, Meller A, Bhattacharjee A, Agostino CJ, Bowman GR, Ruppel KM, Spudich JA, Leinwand LA. Homologous mutations in human β, embryonic, and perinatal muscle myosins have divergent effects on molecular power generation. Proc Natl Acad Sci U S A 2024; 121:e2315472121. [PMID: 38377203 PMCID: PMC10907259 DOI: 10.1073/pnas.2315472121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024] Open
Abstract
Mutations at a highly conserved homologous residue in three closely related muscle myosins cause three distinct diseases involving muscle defects: R671C in β-cardiac myosin causes hypertrophic cardiomyopathy, R672C and R672H in embryonic skeletal myosin cause Freeman-Sheldon syndrome, and R674Q in perinatal skeletal myosin causes trismus-pseudocamptodactyly syndrome. It is not known whether their effects at the molecular level are similar to one another or correlate with disease phenotype and severity. To this end, we investigated the effects of the homologous mutations on key factors of molecular power production using recombinantly expressed human β, embryonic, and perinatal myosin subfragment-1. We found large effects in the developmental myosins but minimal effects in β myosin, and magnitude of changes correlated partially with clinical severity. The mutations in the developmental myosins dramatically decreased the step size and load-sensitive actin-detachment rate of single molecules measured by optical tweezers, in addition to decreasing overall enzymatic (ATPase) cycle rate. In contrast, the only measured effect of R671C in β myosin was a larger step size. Our measurements of step size and bound times predicted velocities consistent with those measured in an in vitro motility assay. Finally, molecular dynamics simulations predicted that the arginine to cysteine mutation in embryonic, but not β, myosin may reduce pre-powerstroke lever arm priming and ADP pocket opening, providing a possible structural mechanism consistent with the experimental observations. This paper presents direct comparisons of homologous mutations in several different myosin isoforms, whose divergent functional effects are a testament to myosin's highly allosteric nature.
Collapse
Affiliation(s)
- Chao Liu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA94550
| | - Anastasia Karabina
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
- Kainomyx, Inc., Palo Alto, CA94304
| | - Artur Meller
- Department of Biochemistry and Biophysics, Washington University in St. Louis, St. Louis, MO63110
- Medical Scientist Training Program, Washington University in St. Louis, St. Louis, MO63110
| | - Ayan Bhattacharjee
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Colby J. Agostino
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Greg R. Bowman
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Kainomyx, Inc., Palo Alto, CA94304
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Kainomyx, Inc., Palo Alto, CA94304
| | - Leslie A. Leinwand
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
| |
Collapse
|
24
|
Liu C, Ruppel KM, Spudich JA. Motility Assay to Probe the Calcium Sensitivity of Myosin and Regulated Thin Filaments. Methods Mol Biol 2024; 2735:169-189. [PMID: 38038849 PMCID: PMC10773985 DOI: 10.1007/978-1-0716-3527-8_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Calcium-dependent activation of the thin filament mediated by the troponin-tropomyosin complex is key in the regulation of actin-myosin based muscle contraction. Perturbations to this system, either physiological (e.g., phosphorylation of myosin light chains) or pathological (e.g., mutations that cause familial cardiomyopathies), can alter calcium sensitivity and thus have important implications in human health and disease. The in vitro motility assay provides a quantitative and precise method to study the calcium sensitivity of the reconstituted myosin-thin filament motile system. Here we present a simple and robust protocol to perform calcium-dependent motility of β-cardiac myosin and regulated thin filaments. The experiment is done on a multichannel microfluidic slide requiring minimal amounts of proteins. A complete velocity vs. calcium concentration curve is produced from one experiment in under 1 h.
Collapse
Affiliation(s)
- Chao Liu
- Department of Biochemistry, Beckman Center B405, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kathleen M Ruppel
- Department of Biochemistry, Beckman Center B405, Stanford University School of Medicine, Stanford, CA, USA.
- Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, USA.
| | - James A Spudich
- Department of Biochemistry, Beckman Center B405, Stanford University School of Medicine, Stanford, CA, USA.
- Cardiovascular Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
25
|
Scott B, Greenberg MJ. Multiscale biophysical models of cardiomyopathies reveal complexities challenging existing dogmas. Biophys J 2023; 122:4632-4634. [PMID: 38006882 PMCID: PMC10754685 DOI: 10.1016/j.bpj.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023] Open
Abstract
Mutations in sarcomeric proteins, including myosin, cause a variety of cardiomyopathies. A prominent hypothesis has been that myosin mutations causing hypercontractility of the motor lead to hypertrophic cardiomyopathy, while those causing hypocontractility lead to dilated cardiomyopathy; however, recent biophysical studies using multiscale computational and experimental models have revealed complexities not captured by this hypothesis. We summarize recent publications in Biophysical Journal challenging this dogma and highlighting the need for multiscale modeling of these complex diseases.
Collapse
Affiliation(s)
- Brent Scott
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
26
|
Parijat P, Attili S, Hoare Z, Shattock M, Kenyon V, Kampourakis T. Discovery of a novel cardiac-specific myosin modulator using artificial intelligence-based virtual screening. Nat Commun 2023; 14:7692. [PMID: 38001148 PMCID: PMC10673995 DOI: 10.1038/s41467-023-43538-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Direct modulation of cardiac myosin function has emerged as a therapeutic target for both heart disease and heart failure. However, the development of myosin-based therapeutics has been hampered by the lack of targeted in vitro screening assays. In this study we use Artificial Intelligence-based virtual high throughput screening (vHTS) to identify novel small molecule effectors of human β-cardiac myosin. We test the top scoring compounds from vHTS in biochemical counter-screens and identify a novel chemical scaffold called 'F10' as a cardiac-specific low-micromolar myosin inhibitor. Biochemical and biophysical characterization in both isolated proteins and muscle fibers show that F10 stabilizes both the biochemical (i.e. super-relaxed state) and structural (i.e. interacting heads motif) OFF state of cardiac myosin, and reduces force and left ventricular pressure development in isolated myofilaments and Langendorff-perfused hearts, respectively. F10 is a tunable scaffold for the further development of a novel class of myosin modulators.
Collapse
Affiliation(s)
- Priyanka Parijat
- Randall Centre for Cell and Molecular Biophysics; and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, United Kingdom
| | - Seetharamaiah Attili
- Randall Centre for Cell and Molecular Biophysics; and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, United Kingdom
| | - Zoe Hoare
- School of Cardiovascular and Metabolic Medicine and Sciences; Rayne Institute and British Heart Foundation Centre of Research Excellence, King's College London, London, SE5 9NU, United Kingdom
| | - Michael Shattock
- School of Cardiovascular and Metabolic Medicine and Sciences; Rayne Institute and British Heart Foundation Centre of Research Excellence, King's College London, London, SE5 9NU, United Kingdom
| | | | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics; and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, United Kingdom.
| |
Collapse
|
27
|
Hessel AL, Kuehn M, Han SW, Ma W, Irving TC, Momb BA, Song T, Sadayappan S, Linke WA, Palmer BM. Fast myosin binding protein C knockout in skeletal muscle alters length-dependent activation and myofilament structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563160. [PMID: 37961718 PMCID: PMC10634671 DOI: 10.1101/2023.10.19.563160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In striated muscle, some sarcomere proteins regulate crossbridge cycling by varying the propensity of myosin heads to interact with actin. Myosin-binding protein C (MyBP-C) is bound to the myosin thick filament and is predicted to interact and stabilize myosin heads in a docked position against the thick filament and limit crossbridge formation, the so-called OFF state. Via an unknown mechanism, MyBP-C is thought to release heads into the so-called ON state, where they are more likely to form crossbridges. To study this proposed mechanism, we used the C2-/- mouse line to knock down fast-isoform MyBP-C completely and total MyBP-C by ~24%, and conducted mechanical functional studies in parallel with small-angle X-ray diffraction to evaluate the myofilament structure. We report that C2-/- fibers presented deficits in force production and reduced calcium sensitivity. Structurally, passive C2-/- fibers presented altered SL-independent and SL-dependent regulation of myosin head ON/OFF states, with a shift of myosin heads towards the ON state. Unexpectedly, at shorter sarcomere lengths, the thin filament was axially extended in C2-/- vs. non-transgenic controls, which we postulate is due to increased low-level crossbridge formation arising from relatively more ON myosins in the passive muscle that elongates the thin filament. The downstream effect of increasing crossbridge formation in a passive muscle on contraction performance is not known. Such widespread structural changes to sarcomere proteins provide testable mechanisms to explain the etiology of debilitating MyBP-C-associated diseases.
Collapse
Affiliation(s)
- Anthony L. Hessel
- Institute of Physiology II, University of Muenster; Muenster, Germany
| | - Michel Kuehn
- Institute of Physiology II, University of Muenster; Muenster, Germany
| | - Seong-Won Han
- Institute of Physiology II, University of Muenster; Muenster, Germany
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology; Chicago, USA
| | - Thomas C. Irving
- BioCAT, Department of Biology, Illinois Institute of Technology; Chicago, USA
| | - Brent A. Momb
- Department of Kinesiology, University of Massachusetts – Amherst; Amherst, MA, USA
| | - Taejeong Song
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Sakthivel Sadayappan
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Wolfgang A. Linke
- Institute of Physiology II, University of Muenster; Muenster, Germany
| | - Bradley M. Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont; Burlington, VT, USA
| |
Collapse
|
28
|
Wang K, Schriver BJ, Aschar-Sobbi R, Yi AY, Feric NT, Graziano MP. Human engineered cardiac tissue model of hypertrophic cardiomyopathy recapitulates key hallmarks of the disease and the effect of chronic mavacamten treatment. Front Bioeng Biotechnol 2023; 11:1227184. [PMID: 37771571 PMCID: PMC10523579 DOI: 10.3389/fbioe.2023.1227184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction: The development of patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) offers an opportunity to study genotype-phenotype correlation of hypertrophic cardiomyopathy (HCM), one of the most common inherited cardiac diseases. However, immaturity of the iPSC-CMs and the lack of a multicellular composition pose concerns over its faithfulness in disease modeling and its utility in developing mechanism-specific treatment. Methods: The Biowire platform was used to generate 3D engineered cardiac tissues (ECTs) using HCM patient-derived iPSC-CMs carrying a β-myosin mutation (MYH7-R403Q) and its isogenic control (WT), withal ECTs contained healthy human cardiac fibroblasts. ECTs were subjected to electro-mechanical maturation for 6 weeks before being used in HCM phenotype studies. Results: Both WT and R403Q ECTs exhibited mature cardiac phenotypes, including a lack of automaticity and a ventricular-like action potential (AP) with a resting membrane potential < -75 mV. Compared to WT, R403Q ECTs demonstrated many HCM-associated pathological changes including increased tissue size and cell volume, shortened sarcomere length and disorganized sarcomere structure. In functional assays, R403Q ECTs showed increased twitch amplitude, slower contractile kinetics, a less pronounced force-frequency relationship, a smaller post-rest potentiation, prolonged AP durations, and slower Ca2+ transient decay time. Finally, we observed downregulation of calcium handling genes and upregulation of NPPB in R403Q vs. WT ECTs. In an HCM phenotype prevention experiment, ECTs were treated for 5-weeks with 250 nM mavacamten or a vehicle control. We found that chronic mavacamten treatment of R403Q ECTs: (i) shortened relaxation time, (ii) reduced APD90 prolongation, (iii) upregulated ADRB2, ATP2A2, RYR2, and CACNA1C, (iv) decreased B-type natriuretic peptide (BNP) mRNA and protein expression levels, and (v) increased sarcomere length and reduced sarcomere disarray. Discussion: Taken together, we demonstrated R403Q ECTs generated in the Biowire platform recapitulated many cardiac hypertrophy phenotypes and that chronic mavacamten treatment prevented much of the pathology. This demonstrates that the Biowire ECTs are well-suited to phenotypic-based drug discovery in a human-relevant disease model.
Collapse
Affiliation(s)
- Kai Wang
- Valo Health, Inc., Department of Discovery Research, New York, NY, United States
| | | | | | | | | | | |
Collapse
|
29
|
Mi K, Wu S, Lv C, Meng Y, Yin W, Li H, Li J, Yuan H. Comparing the efficacy and safety of medications in adults with hypertrophic cardiomyopathy: a systematic review and network meta-analysis. Front Cardiovasc Med 2023; 10:1190181. [PMID: 37645523 PMCID: PMC10461399 DOI: 10.3389/fcvm.2023.1190181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Background Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease. The purpose of this study was to evaluate the efficacy and safety of several medications and recommend better drug treatments for adults with HCM. Methods A review of PubMed, Embase, the Cochrane Controlled Register of Trials (CENTRAL), ClinicalTrials.gov and CNKI databases was conducted for studies on the efficacy and safety of drugs for adults with HCM. A frequentist random effects model was used in this network analysis. Results This network meta-analysis included 7 studies assessing seven medications, 6 studies evaluating monotherapy and 1 study evaluating combination therapy. Based on the network meta-analysis results, xiaoxinbi formula plus metoprolol (MD -56.50% [-72.43%, -40.57%]), metoprolol (MD -47.00% [-59.07%, -34.93%]) and mavacamten (MD -34.50% [-44.75%, -24.25%]) significantly reduced the resting left ventricular outflow tract gradient (LVOTG) in comparison with placebo. Resting LVOTG could also be reduced with N-acetylcysteine (NAC). The incidence of adverse drug reactions was not significantly different between the placebo group and the treatment group. Conclusion For adults with HCM, the top 4 treatments included xiaoxinbi formula plus metoprolol, metoprolol, mavacamten and NAC.Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=374222], identifier [CRD42022374222].
Collapse
Affiliation(s)
- Keying Mi
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China
- JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Sijia Wu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chanyuan Lv
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China
- JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Yongkang Meng
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China
- JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Wenchao Yin
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China
- JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Hongkai Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiangbing Li
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China
- JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China
- JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
30
|
Glavaški M, Velicki L, Vučinić N. Hypertrophic Cardiomyopathy: Genetic Foundations, Outcomes, Interconnections, and Their Modifiers. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1424. [PMID: 37629714 PMCID: PMC10456451 DOI: 10.3390/medicina59081424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent heritable cardiomyopathy. HCM is considered to be caused by mutations in cardiac sarcomeric protein genes. Recent research suggests that the genetic foundation of HCM is much more complex than originally postulated. The clinical presentations of HCM are very variable. Some mutation carriers remain asymptomatic, while others develop severe HCM, terminal heart failure, or sudden cardiac death. Heterogeneity regarding both genetic mutations and the clinical course of HCM hinders the establishment of universal genotype-phenotype correlations. However, some trends have been identified. The presence of a mutation in some genes encoding sarcomeric proteins is associated with earlier HCM onset, more severe left ventricular hypertrophy, and worse clinical outcomes. There is a diversity in the mechanisms implicated in the pathogenesis of HCM. They may be classified into groups, but they are interrelated. The lack of known supplementary elements that control the progression of HCM indicates that molecular mechanisms that exist between genotype and clinical presentations may be crucial. Secondary molecular changes in pathways implicated in HCM pathogenesis, post-translational protein modifications, and epigenetic factors affect HCM phenotypes. Cardiac loading conditions, exercise, hypertension, diet, alcohol consumption, microbial infection, obstructive sleep apnea, obesity, and environmental factors are non-molecular aspects that change the HCM phenotype. Many mechanisms are implicated in the course of HCM. They are mostly interconnected and contribute to some extent to final outcomes.
Collapse
Affiliation(s)
- Mila Glavaški
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (L.V.)
| | - Lazar Velicki
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (L.V.)
- Institute of Cardiovascular Diseases Vojvodina, Put Doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Nataša Vučinić
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (L.V.)
| |
Collapse
|
31
|
Doh CY, Kampourakis T, Campbell KS, Stelzer JE. Basic science methods for the characterization of variants of uncertain significance in hypertrophic cardiomyopathy. Front Cardiovasc Med 2023; 10:1238515. [PMID: 37600050 PMCID: PMC10432852 DOI: 10.3389/fcvm.2023.1238515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
With the advent of next-generation whole genome sequencing, many variants of uncertain significance (VUS) have been identified in individuals suffering from inheritable hypertrophic cardiomyopathy (HCM). Unfortunately, this classification of a genetic variant results in ambiguity in interpretation, risk stratification, and clinical practice. Here, we aim to review some basic science methods to gain a more accurate characterization of VUS in HCM. Currently, many genomic data-based computational methods have been developed and validated against each other to provide a robust set of resources for researchers. With the continual improvement in computing speed and accuracy, in silico molecular dynamic simulations can also be applied in mutational studies and provide valuable mechanistic insights. In addition, high throughput in vitro screening can provide more biologically meaningful insights into the structural and functional effects of VUS. Lastly, multi-level mathematical modeling can predict how the mutations could cause clinically significant organ-level dysfunction. We discuss emerging technologies that will aid in better VUS characterization and offer a possible basic science workflow for exploring the pathogenicity of VUS in HCM. Although the focus of this mini review was on HCM, these basic science methods can be applied to research in dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM), arrhythmogenic cardiomyopathy (ACM), or other genetic cardiomyopathies.
Collapse
Affiliation(s)
- Chang Yoon Doh
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King’s College London, London, United Kingdom
| | - Kenneth S. Campbell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, United States
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
32
|
Claassen WJ, Ottenheijm CA. Super relaxed myosins loosen up to different cues in cardiac and skeletal muscle sarcomeres. J Gen Physiol 2023; 155:e202213292. [PMID: 37191671 PMCID: PMC10192602 DOI: 10.1085/jgp.202213292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Recent papers by Nelson et al. and Pilagov et al. provide important new information on the ever-expanding role of myosin heads in the regulation of contraction.
Collapse
Affiliation(s)
- Wout J. Claassen
- Department of Physiology, Amsterdam UMC location, VU Medisch Centrum, Amsterdam, Netherlands
| | - Coen A.C. Ottenheijm
- Department of Physiology, Amsterdam UMC location, VU Medisch Centrum, Amsterdam, Netherlands
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
33
|
Liu C, Karabina A, Meller A, Bhattacharjee A, Agostino CJ, Bowman GR, Ruppel KM, Spudich JA, Leinwand LA. Homologous mutations in β, embryonic, and perinatal muscle myosins have divergent effects on molecular power generation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547385. [PMID: 37425764 PMCID: PMC10327197 DOI: 10.1101/2023.07.02.547385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Mutations at a highly conserved homologous residue in three closely related muscle myosins cause three distinct diseases involving muscle defects: R671C in β -cardiac myosin causes hypertrophic cardiomyopathy, R672C and R672H in embryonic skeletal myosin cause Freeman Sheldon syndrome, and R674Q in perinatal skeletal myosin causes trismus-pseudocamptodactyly syndrome. It is not known if their effects at the molecular level are similar to one another or correlate with disease phenotype and severity. To this end, we investigated the effects of the homologous mutations on key factors of molecular power production using recombinantly expressed human β , embryonic, and perinatal myosin subfragment-1. We found large effects in the developmental myosins, with the most dramatic in perinatal, but minimal effects in β myosin, and magnitude of changes correlated partially with clinical severity. The mutations in the developmental myosins dramatically decreased the step size and load-sensitive actin-detachment rate of single molecules measured by optical tweezers, in addition to decreasing ATPase cycle rate. In contrast, the only measured effect of R671C in β myosin was a larger step size. Our measurements of step size and bound times predicted velocities consistent with those measured in an in vitro motility assay. Finally, molecular dynamics simulations predicted that the arginine to cysteine mutation in embryonic, but not β , myosin may reduce pre-powerstroke lever arm priming and ADP pocket opening, providing a possible structural mechanism consistent with the experimental observations. This paper presents the first direct comparisons of homologous mutations in several different myosin isoforms, whose divergent functional effects are yet another testament to myosin's highly allosteric nature.
Collapse
Affiliation(s)
- Chao Liu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Anastasia Karabina
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303
- Kainomyx, Inc., Palo Alto, CA 94304
| | - Artur Meller
- Department of Biochemistry and Biophysics, Washington University in St. Louis, St. Louis, MO 63110
- Medical Scientist Training Program, Washington University in St. Louis, St. Louis, MO 63110
| | - Ayan Bhattacharjee
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Colby J Agostino
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Greg R Bowman
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Kainomyx, Inc., Palo Alto, CA 94304
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Kainomyx, Inc., Palo Alto, CA 94304
| | - Leslie A Leinwand
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303
| |
Collapse
|
34
|
Lee S, Roest ASV, Blair CA, Kao K, Bremner SB, Childers MC, Pathak D, Heinrich P, Lee D, Chirikian O, Mohran S, Roberts B, Smith JE, Jahng JW, Paik DT, Wu JC, Gunawardane RN, Spudich JA, Ruppel K, Mack D, Pruitt BL, Regnier M, Wu SM, Bernstein D. Multi-scale models reveal hypertrophic cardiomyopathy MYH7 G256E mutation drives hypercontractility and elevated mitochondrial respiration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544276. [PMID: 37333118 PMCID: PMC10274883 DOI: 10.1101/2023.06.08.544276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Rationale Over 200 mutations in the sarcomeric protein β-myosin heavy chain (MYH7) have been linked to hypertrophic cardiomyopathy (HCM). However, different mutations in MYH7 lead to variable penetrance and clinical severity, and alter myosin function to varying degrees, making it difficult to determine genotype-phenotype relationships, especially when caused by rare gene variants such as the G256E mutation. Objective This study aims to determine the effects of low penetrant MYH7 G256E mutation on myosin function. We hypothesize that the G256E mutation would alter myosin function, precipitating compensatory responses in cellular functions. Methods We developed a collaborative pipeline to characterize myosin function at multiple scales (protein to myofibril to cell to tissue). We also used our previously published data on other mutations to compare the degree to which myosin function was altered. Results At the protein level, the G256E mutation disrupts the transducer region of the S1 head and reduces the fraction of myosin in the folded-back state by 50.9%, suggesting more myosins available for contraction. Myofibrils isolated from hiPSC-CMs CRISPR-edited with G256E (MYH7 WT/G256E ) generated greater tension, had faster tension development and slower early phase relaxation, suggesting altered myosin-actin crossbridge cycling kinetics. This hypercontractile phenotype persisted in single-cell hiPSC-CMs and engineered heart tissues. Single-cell transcriptomic and metabolic profiling demonstrated upregulation of mitochondrial genes and increased mitochondrial respiration, suggesting altered bioenergetics as an early feature of HCM. Conclusions MYH7 G256E mutation causes structural instability in the transducer region, leading to hypercontractility across scales, perhaps from increased myosin recruitment and altered crossbridge cycling. Hypercontractile function of the mutant myosin was accompanied by increased mitochondrial respiration, while cellular hypertrophy was modest in the physiological stiffness environment. We believe that this multi-scale platform will be useful to elucidate genotype-phenotype relationships underlying other genetic cardiovascular diseases.
Collapse
|
35
|
Grinzato A, Auguin D, Kikuti C, Nandwani N, Moussaoui D, Pathak D, Kandiah E, Ruppel KM, Spudich JA, Houdusse A, Robert-Paganin J. Cryo-EM structure of the folded-back state of human β-cardiac myosin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.536999. [PMID: 37131793 PMCID: PMC10153137 DOI: 10.1101/2023.04.15.536999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
During normal levels of exertion, many cardiac muscle myosin heads are sequestered in an off-state even during systolic contraction to save energy and for precise regulation. They can be converted to an on-state when exertion is increased. Hypercontractility caused by hypertrophic cardiomyopathy (HCM) myosin mutations is often the result of shifting the equilibrium toward more heads in the on-state. The off-state is equated with a folded-back structure known as the interacting head motif (IHM), which is a regulatory feature of all muscle myosins and class-2 non-muscle myosins. We report here the human β-cardiac myosin IHM structure to 3.6 Å resolution. The structure shows that the interfaces are hot spots of HCM mutations and reveals details of the significant interactions. Importantly, the structures of cardiac and smooth muscle myosin IHMs are dramatically different. This challenges the concept that the IHM structure is conserved in all muscle types and opens new perspectives in the understanding of muscle physiology. The cardiac IHM structure has been the missing puzzle piece to fully understand the development of inherited cardiomyopathies. This work will pave the way for the development of new molecules able to stabilize or destabilize the IHM in a personalized medicine approach. *This manuscript was submitted to Nature Communications in August 2022 and dealt efficiently by the editors. All reviewers received this version of the manuscript before 9 208 August 2022. They also received coordinates and maps of our high resolution structure on the 18 208 August 2022. Due to slowness of at least one reviewer, this contribution was delayed for acceptance by Nature Communications and we are now depositing in bioRxiv the originally submitted version written in July 2022 for everyone to see. Indeed, two bioRxiv contributions at lower resolution but adding similar concepts on thick filament regulation were deposited this week in bioRxiv, one of the contributions having had access to our coordinates. We hope that our data at high resolution will be helpful for all readers that appreciate that high resolution information is required to build accurate atomic models and discuss implications for sarcomere regulation and the effects of cardiomyopathy mutations on heart muscle function.
Collapse
Affiliation(s)
- Alessandro Grinzato
- CM01 beamline. European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Daniel Auguin
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005 Paris, France
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, UPRES EA 1207, INRA-USC1328, F-45067 Orléans, France
| | - Carlos Kikuti
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005 Paris, France
| | - Neha Nandwani
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Dihia Moussaoui
- BM29 BIOSAXS beamline, European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Divya Pathak
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Eaazhisai Kandiah
- CM01 beamline. European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, United States
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005 Paris, France
| | - Julien Robert-Paganin
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005 Paris, France
| |
Collapse
|
36
|
Marcucci L. Muscle Mechanics and Thick Filament Activation: An Emerging Two-Way Interaction for the Vertebrate Striated Muscle Fine Regulation. Int J Mol Sci 2023; 24:ijms24076265. [PMID: 37047237 PMCID: PMC10094676 DOI: 10.3390/ijms24076265] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Contraction in striated muscle is classically described as regulated by calcium-mediated structural changes in the actin-containing thin filaments, which release the binding sites for the interaction with myosin motors to produce force. In this view, myosin motors, arranged in the thick filaments, are basically always ready to interact with the thin filaments, which ultimately regulate the contraction. However, a new “dual-filament” activation paradigm is emerging, where both filaments must be activated to generate force. Growing evidence from the literature shows that the thick filament activation has a role on the striated muscle fine regulation, and its impairment is associated with severe pathologies. This review is focused on the proposed mechanical feedback that activates the inactive motors depending on the level of tension generated by the active ones, the so-called mechanosensing mechanism. Since the main muscle function is to generate mechanical work, the implications on muscle mechanics will be highlighted, showing: (i) how non-mechanical modulation of the thick filament activation influences the contraction, (ii) how the contraction influences the activation of the thick filament and (iii) how muscle, through the mechanical modulation of the thick filament activation, can regulate its own mechanics. This description highlights the crucial role of the emerging bi-directional feedback on muscle mechanical performance.
Collapse
Affiliation(s)
- Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
- Center for Biosystems Dynamics Research, RIKEN, Suita 565-0874, Japan
| |
Collapse
|
37
|
Velayuthan LP, Moretto L, Tågerud S, Ušaj M, Månsson A. Virus-free transfection, transient expression, and purification of human cardiac myosin in mammalian muscle cells for biochemical and biophysical assays. Sci Rep 2023; 13:4101. [PMID: 36907906 PMCID: PMC10008826 DOI: 10.1038/s41598-023-30576-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023] Open
Abstract
Myosin expression and purification is important for mechanistic insights into normal function and mutation induced changes. The latter is particularly important for striated muscle myosin II where mutations cause several debilitating diseases. However, the heavy chain of this myosin is challenging to express and the standard protocol, using C2C12 cells, relies on viral infection. This is time and work intensive and associated with infrastructural demands and biological hazards, limiting widespread use and hampering fast generation of a wide range of mutations. We here develop a virus-free method to overcome these challenges. We use this system to transfect C2C12 cells with the motor domain of the human cardiac myosin heavy chain. After optimizing cell transfection, cultivation and harvesting conditions, we functionally characterized the expressed protein, co-purified with murine essential and regulatory light chains. The gliding velocity (1.5-1.7 µm/s; 25 °C) in the in vitro motility assay as well as maximum actin activated catalytic activity (kcat; 8-9 s-1) and actin concentration for half maximal activity (KATPase; 70-80 µM) were similar to those found previously using virus based infection. The results should allow new types of studies, e.g., screening of a wide range of mutations to be selected for further characterization.
Collapse
Affiliation(s)
- Lok Priya Velayuthan
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Luisa Moretto
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Sven Tågerud
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden.
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden.
| |
Collapse
|
38
|
Song T, Landim-Vieira M, Ozdemir M, Gott C, Kanisicak O, Pinto JR, Sadayappan S. Etiology of genetic muscle disorders induced by mutations in fast and slow skeletal MyBP-C paralogs. Exp Mol Med 2023; 55:502-509. [PMID: 36854776 PMCID: PMC10073172 DOI: 10.1038/s12276-023-00953-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 03/02/2023] Open
Abstract
Skeletal muscle, a highly complex muscle type in the eukaryotic system, is characterized by different muscle subtypes and functions associated with specific myosin isoforms. As a result, skeletal muscle is the target of numerous diseases, including distal arthrogryposes (DAs). Clinically, DAs are a distinct disorder characterized by variation in the presence of contractures in two or more distal limb joints without neurological issues. DAs are inherited, and up to 40% of patients with this condition have mutations in genes that encode sarcomeric protein, including myosin heavy chains, troponins, and tropomyosin, as well as myosin binding protein-C (MYBPC). Our research group and others are actively studying the specific role of MYBPC in skeletal muscles. The MYBPC family of proteins plays a critical role in the contraction of striated muscles. More specifically, three paralogs of the MYBPC gene exist, and these are named after their predominant expression in slow-skeletal, fast-skeletal, and cardiac muscle as sMyBP-C, fMyBP-C, and cMyBP-C, respectively, and encoded by the MYBPC1, MYBPC2, and MYBPC3 genes, respectively. Although the physiology of various types of skeletal muscle diseases is well defined, the molecular mechanism underlying the pathological regulation of DAs remains to be elucidated. In this review article, we aim to highlight recent discoveries involving the role of skeletal muscle-specific sMyBP-C and fMyBP-C as well as their expression profile, localization in the sarcomere, and potential role(s) in regulating muscle contractility. Thus, this review provides an overall summary of MYBPC skeletal paralogs, their potential roles in skeletal muscle function, and future research directions.
Collapse
Affiliation(s)
- Taejeong Song
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA.
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Mustafa Ozdemir
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Caroline Gott
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA.
| |
Collapse
|
39
|
Ma W, You S, Regnier M, McCammon JA. Integrating comparative modeling and accelerated simulations reveals conformational and energetic basis of actomyosin force generation. Proc Natl Acad Sci U S A 2023; 120:e2215836120. [PMID: 36802417 PMCID: PMC9992861 DOI: 10.1073/pnas.2215836120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/15/2023] [Indexed: 02/23/2023] Open
Abstract
Muscle contraction is performed by arrays of contractile proteins in the sarcomere. Serious heart diseases, such as cardiomyopathy, can often be results of mutations in myosin and actin. Direct characterization of how small changes in the myosin-actin complex impact its force production remains challenging. Molecular dynamics (MD) simulations, although capable of studying protein structure-function relationships, are limited owing to the slow timescale of the myosin cycle as well as a lack of various intermediate structures for the actomyosin complex. Here, employing comparative modeling and enhanced sampling MD simulations, we show how the human cardiac myosin generates force during the mechanochemical cycle. Initial conformational ensembles for different myosin-actin states are learned from multiple structural templates with Rosetta. This enables us to efficiently sample the energy landscape of the system using Gaussian accelerated MD. Key myosin loop residues, whose substitutions are related to cardiomyopathy, are identified to form stable or metastable interactions with the actin surface. We find that the actin-binding cleft closure is allosterically coupled to the myosin motor core transitions and ATP-hydrolysis product release from the active site. Furthermore, a gate between switch I and switch II is suggested to control phosphate release at the prepowerstroke state. Our approach demonstrates the ability to link sequence and structural information to motor functions.
Collapse
Affiliation(s)
- Wen Ma
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA92093
| | - Shengjun You
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA98109
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA92093
- Department of Pharmacology, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
40
|
Chai AC, Cui M, Chemello F, Li H, Chen K, Tan W, Atmanli A, McAnally JR, Zhang Y, Xu L, Liu N, Bassel-Duby R, Olson EN. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat Med 2023; 29:401-411. [PMID: 36797478 PMCID: PMC10053064 DOI: 10.1038/s41591-022-02176-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/07/2022] [Indexed: 02/18/2023]
Abstract
The most common form of genetic heart disease is hypertrophic cardiomyopathy (HCM), which is caused by variants in cardiac sarcomeric genes and leads to abnormal heart muscle thickening. Complications of HCM include heart failure, arrhythmia and sudden cardiac death. The dominant-negative c.1208G>A (p.R403Q) pathogenic variant (PV) in β-myosin (MYH7) is a common and well-studied PV that leads to increased cardiac contractility and HCM onset. In this study we identify an adenine base editor and single-guide RNA system that can efficiently correct this human PV with minimal bystander editing and off-target editing at selected sites. We show that delivery of base editing components rescues pathological manifestations of HCM in induced pluripotent stem cell cardiomyocytes derived from patients with HCM and in a humanized mouse model of HCM. Our findings demonstrate the potential of base editing to treat inherited cardiac diseases and prompt the further development of adenine base editor-based therapies to correct monogenic variants causing cardiac disease.
Collapse
Affiliation(s)
- Andreas C Chai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Miao Cui
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Francesco Chemello
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hui Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wei Tan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ayhan Atmanli
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John R McAnally
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yu Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
41
|
Rasicci DV, Tiwari P, Bodt SML, Desetty R, Sadler FR, Sivaramakrishnan S, Craig R, Yengo CM. Dilated cardiomyopathy mutation E525K in human beta-cardiac myosin stabilizes the interacting-heads motif and super-relaxed state of myosin. eLife 2022; 11:e77415. [PMID: 36422472 PMCID: PMC9691020 DOI: 10.7554/elife.77415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
The auto-inhibited, super-relaxed (SRX) state of cardiac myosin is thought to be crucial for regulating contraction, relaxation, and energy conservation in the heart. We used single ATP turnover experiments to demonstrate that a dilated cardiomyopathy (DCM) mutation (E525K) in human beta-cardiac myosin increases the fraction of myosin heads in the SRX state (with slow ATP turnover), especially in physiological ionic strength conditions. We also utilized FRET between a C-terminal GFP tag on the myosin tail and Cy3ATP bound to the active site of the motor domain to estimate the fraction of heads in the closed, interacting-heads motif (IHM); we found a strong correlation between the IHM and SRX state. Negative stain electron microscopy and 2D class averaging of the construct demonstrated that the E525K mutation increased the fraction of molecules adopting the IHM. Overall, our results demonstrate that the E525K DCM mutation may reduce muscle force and power by stabilizing the auto-inhibited SRX state. Our studies also provide direct evidence for a correlation between the SRX biochemical state and the IHM structural state in cardiac muscle myosin. Furthermore, the E525 residue may be implicated in crucial electrostatic interactions that modulate this conserved, auto-inhibited conformation of myosin.
Collapse
Affiliation(s)
- David V Rasicci
- Department of Cellular and Molecular Physiology, Penn State College of MedicineHersheyUnited States
| | - Prince Tiwari
- Department of Radiology, Division of Cell Biology and Imaging, UMass Chan Medical SchoolWorcesterUnited States
| | - Skylar ML Bodt
- Department of Cellular and Molecular Physiology, Penn State College of MedicineHersheyUnited States
| | - Rohini Desetty
- Department of Cellular and Molecular Physiology, Penn State College of MedicineHersheyUnited States
| | - Fredrik R Sadler
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin CitiesMinneapolisUnited States
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin CitiesMinneapolisUnited States
| | - Roger Craig
- Department of Radiology, Division of Cell Biology and Imaging, UMass Chan Medical SchoolWorcesterUnited States
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Penn State College of MedicineHersheyUnited States
| |
Collapse
|
42
|
Forouzandehmehr M, Paci M, Koivumäki JT, Hyttinen J. Altered contractility in mutation-specific hypertrophic cardiomyopathy: A mechano-energetic in silico study with pharmacological insights. Front Physiol 2022; 13:1010786. [PMID: 36388127 PMCID: PMC9659818 DOI: 10.3389/fphys.2022.1010786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/14/2022] [Indexed: 07/25/2023] Open
Abstract
Introduction: Mavacamten (MAVA), Blebbistatin (BLEB), and Omecamtiv mecarbil (OM) are promising drugs directly targeting sarcomere dynamics, with demonstrated efficacy against hypertrophic cardiomyopathy (HCM) in (pre)clinical trials. However, the molecular mechanism affecting cardiac contractility regulation, and the diseased cell mechano-energetics are not fully understood yet. Methods: We present a new metabolite-sensitive computational model of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) electromechanics to investigate the pathology of R403Q HCM mutation and the effect of MAVA, BLEB, and OM on the cell mechano-energetics. Results: We offer a mechano-energetic HCM calibration of the model, capturing the prolonged contractile relaxation due to R403Q mutation (∼33%), without assuming any further modifications such as an additional Ca2+ flux to the thin filaments. The HCM model variant correctly predicts the negligible alteration in ATPase activity in R403Q HCM condition compared to normal hiPSC-CMs. The simulated inotropic effects of MAVA, OM, and BLEB, along with the ATPase activities in the control and HCM model variant agree with in vitro results from different labs. The proposed model recapitulates the tension-Ca2+ relationship and action potential duration change due to 1 µM OM and 5 µM BLEB, consistently with in vitro data. Finally, our model replicates the experimental dose-dependent effect of OM and BLEB on the normalized isometric tension. Conclusion: This work is a step toward deep-phenotyping the mutation-specific HCM pathophysiology, manifesting as altered interfilament kinetics. Accordingly, the modeling efforts lend original insights into the MAVA, BLEB, and OM contributions to a new interfilament balance resulting in a cardioprotective effect.
Collapse
|
43
|
Kawana M, Spudich JA, Ruppel KM. Hypertrophic cardiomyopathy: Mutations to mechanisms to therapies. Front Physiol 2022; 13:975076. [PMID: 36225299 PMCID: PMC9548533 DOI: 10.3389/fphys.2022.975076] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) affects more than 1 in 500 people in the general population with an extensive burden of morbidity in the form of arrhythmia, heart failure, and sudden death. More than 25 years since the discovery of the genetic underpinnings of HCM, the field has unveiled significant insights into the primary effects of these genetic mutations, especially for the myosin heavy chain gene, which is one of the most commonly mutated genes. Our group has studied the molecular effects of HCM mutations on human β-cardiac myosin heavy chain using state-of-the-art biochemical and biophysical tools for the past 10 years, combining insights from clinical genetics and structural analyses of cardiac myosin. The overarching hypothesis is that HCM-causing mutations in sarcomere proteins cause hypercontractility at the sarcomere level, and we have shown that an increase in the number of myosin molecules available for interaction with actin is a primary driver. Recently, two pharmaceutical companies have developed small molecule inhibitors of human cardiac myosin to counteract the molecular consequences of HCM pathogenesis. One of these inhibitors (mavacamten) has recently been approved by the FDA after completing a successful phase III trial in HCM patients, and the other (aficamten) is currently being evaluated in a phase III trial. Myosin inhibitors will be the first class of medication used to treat HCM that has both robust clinical trial evidence of efficacy and that targets the fundamental mechanism of HCM pathogenesis. The success of myosin inhibitors in HCM opens the door to finding other new drugs that target the sarcomere directly, as we learn more about the genetics and fundamental mechanisms of this disease.
Collapse
Affiliation(s)
- Masataka Kawana
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States,Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States,*Correspondence: Kathleen M. Ruppel,
| |
Collapse
|
44
|
Morck MM, Bhowmik D, Pathak D, Dawood A, Spudich J, Ruppel KM. Hypertrophic cardiomyopathy mutations in the pliant and light chain-binding regions of the lever arm of human β-cardiac myosin have divergent effects on myosin function. eLife 2022; 11:e76805. [PMID: 35767336 PMCID: PMC9242648 DOI: 10.7554/elife.76805] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/12/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in the lever arm of β-cardiac myosin are a frequent cause of hypertrophic cardiomyopathy, a disease characterized by hypercontractility and eventual hypertrophy of the left ventricle. Here, we studied five such mutations: three in the pliant region of the lever arm (D778V, L781P, and S782N) and two in the light chain-binding region (A797T and F834L). We investigated their effects on both motor function and myosin subfragment 2 (S2) tail-based autoinhibition. The pliant region mutations had varying effects on the motor function of a myosin construct lacking the S2 tail: overall, D778V increased power output, L781P reduced power output, and S782N had little effect on power output, while all three reduced the external force sensitivity of the actin detachment rate. With a myosin containing the motor domain and the proximal S2 tail, the pliant region mutations also attenuated autoinhibition in the presence of filamentous actin but had no impact in the absence of actin. By contrast, the light chain-binding region mutations had little effect on motor activity but produced marked reductions in autoinhibition in both the presence and absence of actin. Thus, mutations in the lever arm of β-cardiac myosin have divergent allosteric effects on myosin function, depending on whether they are in the pliant or light chain-binding regions.
Collapse
Affiliation(s)
- Makenna M Morck
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | - Debanjan Bhowmik
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | - Divya Pathak
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | - Aminah Dawood
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | - James Spudich
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | - Kathleen M Ruppel
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
45
|
Desai DA, Rao VJ, Jegga AG, Dhandapany PS, Sadayappan S. Heterogeneous Distribution of Genetic Mutations in Myosin Binding Protein-C Paralogs. Front Genet 2022; 13:896117. [PMID: 35832193 PMCID: PMC9272480 DOI: 10.3389/fgene.2022.896117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022] Open
Abstract
Myosin binding protein-C (MyBP-C) is a sarcomeric protein which regulates the force of contraction in striated muscles. Mutations in the MYBPC family of genes, including slow skeletal (MYBPC1), fast skeletal (MYBPC2) and cardiac (MYBPC3), can result in cardiac and skeletal myopathies. Nonetheless, their evolutionary pattern, pathogenicity and impact on MyBP-C protein structure remain to be elucidated. Therefore, the present study aimed to systematically assess the evolutionarily conserved and epigenetic patterns of MYBPC family mutations. Leveraging a machine learning (ML) approach, the Genome Aggregation Database (gnomAD) provided variants in MYBPC1, MYBPC2, and MYBPC3 genes. This was followed by an analysis with Ensembl’s variant effect predictor (VEP), resulting in the identification of 8,618, 3,871, and 3,071 variants in MYBPC1, MYBPC2, and MYBPC3, respectively. Missense variants comprised 61%–66% of total variants in which the third nucleotide positions in the codons were highly altered. Arginine was the most mutated amino acid, important because most disease-causing mutations in MyBP-C proteins are arginine in origin. Domains C5 and C6 of MyBP-C were found to be hotspots for most mutations in the MyBP-C family of proteins. A high percentage of truncated mutations in cMyBP-C cause cardiomyopathies. Arginine and glutamate were the top hits in fMyBP-C and cMyBP-C, respectively, and tryptophan and tyrosine were the most common among the three paralogs changing to premature stop codons and causing protein truncations at the carboxyl terminus. A heterogeneous epigenetic pattern was identified among the three MYBP-C paralogs. Overall, it was shown that databases using computational approaches can facilitate diagnosis and drug discovery to treat muscle disorders caused by MYBPC mutations.
Collapse
Affiliation(s)
- Darshini A. Desai
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, United States
| | - Vinay J. Rao
- Cardiovascular Biology and Disease Theme, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Perundurai S. Dhandapany
- Cardiovascular Biology and Disease Theme, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, United States
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Sakthivel Sadayappan,
| |
Collapse
|
46
|
Bartolucci C, Forouzandehmehr M, Severi S, Paci M. A Novel In Silico Electromechanical Model of Human Ventricular Cardiomyocyte. Front Physiol 2022; 13:906146. [PMID: 35721558 PMCID: PMC9198403 DOI: 10.3389/fphys.2022.906146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
Contractility has become one of the main readouts in computational and experimental studies on cardiomyocytes. Following this trend, we propose a novel mathematical model of human ventricular cardiomyocytes electromechanics, BPSLand, by coupling a recent human contractile element to the BPS2020 model of electrophysiology. BPSLand is the result of a hybrid optimization process and it reproduces all the electrophysiology experimental indices captured by its predecessor BPS2020, simultaneously enabling the simulation of realistic human active tension and its potential abnormalities. The transmural heterogeneity in both electrophysiology and contractility departments was simulated consistent with previous computational and in vitro studies. Furthermore, our model could capture delayed afterdepolarizations (DADs), early afterdepolarizations (EADs), and contraction abnormalities in terms of aftercontractions triggered by either drug action or special pacing modes. Finally, we further validated the mechanical results of the model against previous experimental and in silico studies, e.g., the contractility dependence on pacing rate. Adding a new level of applicability to the normative models of human cardiomyocytes, BPSLand represents a robust, fully-human in silico model with promising capabilities for translational cardiology.
Collapse
Affiliation(s)
- Chiara Bartolucci
- Computational Physiopathology Unit, Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", University of Bologna, Bologna, Italy
| | | | - Stefano Severi
- Computational Physiopathology Unit, Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", University of Bologna, Bologna, Italy
| | - Michelangelo Paci
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
47
|
Abstract
Variants in >12 genes encoding sarcomeric proteins can cause various cardiomyopathies. The two most common are hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Current therapeutics do not target the root causes of these diseases, but attempt to prevent disease progression and/or to manage symptoms. Accordingly, novel approaches are being developed to treat the cardiac muscle dysfunction directly. Challenges to developing therapeutics for these diseases include the diverse mechanisms of pathogenesis, some of which are still being debated and defined. Four small molecules that modulate the myosin motor protein in the cardiac sarcomere have shown great promise in the settings of HCM and DCM, regardless of the underlying genetic pathogenesis, and similar approaches are being developed to target other components of the sarcomere. In the setting of HCM, mavacamten and aficamten bind to the myosin motor and decrease the ATPase activity of myosin. In the setting of DCM, omecamtiv mecarbil and danicamtiv increase myosin activity in cardiac muscle (but omecamtiv mecarbil decreases myosin activity in vitro). In this Review, we discuss the therapeutic strategies to alter sarcomere contractile activity and summarize the data indicating that targeting one protein in the sarcomere can be effective in treating patients with genetic variants in other sarcomeric proteins, as well as in patients with non-sarcomere-based disease.
Collapse
Affiliation(s)
- Sarah J Lehman
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
| | - Claudia Crocini
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Leslie A Leinwand
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA.
- Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
48
|
Knight WE, Woulfe KC. Dysfunctional sarcomeric relaxation in the heart. CURRENT OPINION IN PHYSIOLOGY 2022; 26:100535. [PMID: 35603011 PMCID: PMC9119547 DOI: 10.1016/j.cophys.2022.100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since cardiac relaxation is commonly impaired in heart failure caused by many different etiologies, identifying druggable targets is a common goal. While many factors contribute to cardiac relaxation, this review focuses on sarcomeric relaxation and dysfunction. Any alteration in how sarcomeric proteins interact can lead to significant shifts in sarcomeric relaxation that may contribute to diastolic dysfunction. Considering examples of sarcomeric dysfunction that have been reported in 3 different pathologies, hypertrophic cardiomyopathy, restrictive cardiomyopathy, and heart failure with preserved ejection fraction, will provide insights into the role sarcomeric dysfunction plays in impaired cardiac relaxation. This will ultimately improve our understanding of sarcomeric physiology and uncover new therapeutic targets.
Collapse
Affiliation(s)
- Walter E. Knight
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19 Ave, Aurora, CO 80045
| | - Kathleen C. Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19 Ave, Aurora, CO 80045
| |
Collapse
|
49
|
Suay-Corredera C, Alegre-Cebollada J. The mechanics of the heart: zooming in on hypertrophic cardiomyopathy and cMyBP-C. FEBS Lett 2022; 596:703-746. [PMID: 35224729 DOI: 10.1002/1873-3468.14301] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/10/2022]
Abstract
Hypertrophic cardiomyopathy (HCM), a disease characterized by cardiac muscle hypertrophy and hypercontractility, is the most frequently inherited disorder of the heart. HCM is mainly caused by variants in genes encoding proteins of the sarcomere, the basic contractile unit of cardiomyocytes. The most frequently mutated among them is MYBPC3, which encodes cardiac myosin-binding protein C (cMyBP-C), a key regulator of sarcomere contraction. In this review, we summarize clinical and genetic aspects of HCM and provide updated information on the function of the healthy and HCM sarcomere, as well as on emerging therapeutic options targeting sarcomere mechanical activity. Building on what is known about cMyBP-C activity, we examine different pathogenicity drivers by which MYBPC3 variants can cause disease, focussing on protein haploinsufficiency as a common pathomechanism also in nontruncating variants. Finally, we discuss recent evidence correlating altered cMyBP-C mechanical properties with HCM development.
Collapse
|
50
|
Ušaj M, Moretto L, Månsson A. Critical Evaluation of Current Hypotheses for the Pathogenesis of Hypertrophic Cardiomyopathy. Int J Mol Sci 2022; 23:2195. [PMID: 35216312 PMCID: PMC8880276 DOI: 10.3390/ijms23042195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Hereditary hypertrophic cardiomyopathy (HCM), due to mutations in sarcomere proteins, occurs in more than 1/500 individuals and is the leading cause of sudden cardiac death in young people. The clinical course exhibits appreciable variability. However, typically, heart morphology and function are normal at birth, with pathological remodeling developing over years to decades, leading to a phenotype characterized by asymmetric ventricular hypertrophy, scattered fibrosis and myofibrillar/cellular disarray with ultimate mechanical heart failure and/or severe arrhythmias. The identity of the primary mutation-induced changes in sarcomere function and how they trigger debilitating remodeling are poorly understood. Support for the importance of mutation-induced hypercontractility, e.g., increased calcium sensitivity and/or increased power output, has been strengthened in recent years. However, other ideas that mutation-induced hypocontractility or non-uniformities with contractile instabilities, instead, constitute primary triggers cannot yet be discarded. Here, we review evidence for and criticism against the mentioned hypotheses. In this process, we find support for previous ideas that inefficient energy usage and a blunted Frank-Starling mechanism have central roles in pathogenesis, although presumably representing effects secondary to the primary mutation-induced changes. While first trying to reconcile apparently diverging evidence for the different hypotheses in one unified model, we also identify key remaining questions and suggest how experimental systems that are built around isolated primarily expressed proteins could be useful.
Collapse
Affiliation(s)
| | | | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, SE-39182 Kalmar, Sweden; (M.U.); (L.M.)
| |
Collapse
|