1
|
Chabot E, Durantel D, Lucifora J. TRIM proteins: A 'swiss army knife' of antiviral immunity. PLoS Pathog 2025; 21:e1013147. [PMID: 40354393 PMCID: PMC12068639 DOI: 10.1371/journal.ppat.1013147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
With their modular structure and E3 ubiquitin ligase activity, Tripartite motif (TRIM) proteins interact with a wide range of cellular and viral substrates. This review summarizes how they have emerged as key players in the antiviral response. Shortly, TRIM proteins were shown (i) to enhance pro-inflammatory cytokines production by interacting with pattern recognition receptors and downstream components of immune signaling pathways, (ii) to interfere with viral trafficking by interacting with the cytoskeleton, and (iii) to exhibit direct antiviral effects by targeting viral proteins for proteasomal degradation or inducing autophagy. This combination of actions underscores TRIMs as a potent innate defense system, but also makes them vulnerable to viral evasion strategies.
Collapse
Affiliation(s)
- Elise Chabot
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Master de Biologie, École Normale Supérieure de Lyon, Lyon Cedex, France
| | - David Durantel
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Julie Lucifora
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| |
Collapse
|
2
|
Wei CH, Weng CW, Wu CY, Chen HY, Chang YH, Chang GC, Chen JJW. E3 ligase TRIM8 suppresses lung cancer metastasis by targeting MYOF degradation through K48-linked polyubiquitination. Cell Death Dis 2025; 16:88. [PMID: 39934162 PMCID: PMC11814372 DOI: 10.1038/s41419-025-07421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Ubiquitination is a posttranslational modification that regulates tumour progression-associated proteins through the ubiquitin‒proteasome system, making E3 ligases potential antitumour targets. Here, we report that TRIM8, a member of the TRIM family and an E3 ligase, can act as a tumour suppressor in non-small cell lung cancer (NSCLC). Both gain- and loss-of-function experiments revealed that TRIM8 inhibits the proliferation, colony formation, migration and invasion of NSCLC cells. Experiments with a xenograft model showed that TRIM8 expression suppresses tumour metastasis in vivo. Moreover, low expression of TRIM8 was associated with poor overall survival in both the Taiwanese and GEO lung cancer cohorts. TRIM8 overexpression in lung cancer cells reduced MYOF expression, and restoring MYOF rescued cell migration in TRIM8-overexpressing cells. TRIM8 targeted MYOF for K48-linked ubiquitination, facilitating proteasome-mediated degradation and subsequently suppressing the extracellular secretion of MMPs. Our results provide new insights into the contribution of TRIM8 to lung cancer progression, suggesting that TRIM8 is a new biomarker and a novel therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Chi-Hsuan Wei
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Wei Weng
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- School of Medicine and Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Ying Wu
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ya-Hsuan Chang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Gee-Chen Chang
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- School of Medicine and Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jeremy J W Chen
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.
- Graduate Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
3
|
Bi Z, Wang W, Gu S, Zhou Y, Wu Z, Bao W, Wang H. TRIM8 inhibits porcine epidemic diarrhoea virus replication by targeting and ubiquitinately degrading the nucleocapsid protein. Vet Res 2025; 56:14. [PMID: 39819815 PMCID: PMC11740423 DOI: 10.1186/s13567-024-01443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Porcine epidemic diarrhoea virus (PEDV) is an enteric pathogen that causes acute diarrhoea, dehydration and high mortality rates in suckling pigs. Tripartite motif 8 (TRIM8) has been shown to play multiple roles in the host's defence against viral infections. However, the functions of TRIM8 in regulating PEDV infection are still not well understood. In our study, we found a significant upregulation of TRIM8 following PEDV infection. We created TRIM8 knockout and overexpression cell lines and discovered that TRIM8 can inhibit PEDV replication within host cells. Co-immunoprecipitation assays revealed that TRIM8 directly interacts with the nucleocapsid protein (N) of PEDV, specifically within the coiled-coil structural domain of TRIM8. Furthermore, TRIM8 was shown to reduce the expression of the PEDV N protein in a dose-dependent manner. Mechanistically, TRIM8 inhibits the expression of PEDV N through K48-linked ubiquitin proteasome degradation. Transcriptomics analysis revealed that TRIM8 facilitates the expression of genes associated with several pathways, including the IL-17 signalling pathway, chemokine signalling pathway, and cytokine-cytokine receptor interaction. This suggests that TRIM8 plays a crucial role in boosting antiviral immune responses against PEDV infection. Our findings provide new insights into the functions and mechanisms of TRIM8 in regulating PEDV infection and highlight its potential as a molecular target for the prevention and control of this virus.
Collapse
Affiliation(s)
- Zhenbin Bi
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Wei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shanshen Gu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yajing Zhou
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
4
|
Fonseca D, Pisanelli G, Seoane R, Miorin L, García-Sastre A. TRIM65 regulates innate immune signaling by enhancing K6-linked ubiquitination of IRF3 and its chromatin recruitment. Cell Rep 2024; 43:114960. [PMID: 39580801 DOI: 10.1016/j.celrep.2024.114960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/25/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Viral infection triggers a rapid and effective cellular response primarily mediated by interferon β (IFNβ), which induces an antiviral state through complex signaling cascades. To maintain a robust antiviral response while preventing excessive activation, the induction of IFNβ and downstream signaling are tightly regulated. Members of the tripartite-motif (TRIM) family of E3 ubiquitin (Ub) ligases play crucial roles in modulating these processes. In this study, we demonstrate that TRIM65 interacts with interferon regulatory factor 3 (IRF3), a key transcription factor downstream of multiple innate immune signaling pathways, to regulate type-I IFN production. Specifically, TRIM65 activation enables interaction of TRIM65 BBCC domain with the IAD domain of IRF3. This interaction increases K6-linked ubiquitination of IRF3, enhancing IRF3 recruitment to chromatin and subsequent binding to the IFNβ promoter. This process boosts the expression of IFNβ and interferon-stimulated genes (ISGs), thereby strengthening the control of viral infection.
Collapse
Affiliation(s)
- Danae Fonseca
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Giuseppe Pisanelli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via F. Delpino 1, 80137 Naples, Italy
| | - Rocío Seoane
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
5
|
Lian H, Wang J, Yan S, Chen K, Jin L. An integrative analysis based on multiple cell death patterns identifies an immunosuppressive subtype and establishes a prognostic signature in lower-grade glioma. Ann Med 2024; 56:2412831. [PMID: 39387560 PMCID: PMC11469432 DOI: 10.1080/07853890.2024.2412831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/19/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Cell death modulates the biological behaviors of tumors. However, the comprehensive role of the multiple forms of cell death in lower-grade glioma (LGG) is unknown. METHODS We collected the transcriptional data of LGG patients from public repositories to comprehensively examine six cell death patterns (autophagy, apoptosis, cuproptosis, necroptosis, ferroptosis, and pyroptosis) in LGG samples and systematically correlated these patterns with patient survival, underlying biological processes, and drug sensitivity using serial bioinformatics analysis, clinical sample validation and in vitro assays. RESULTS We identified and independently validated three reproducible cell death-based clusters associated with distinct clinical outcomes and tumor microenvironment characteristics. The Tumor Immune Dysfunction and Exclusion algorithm was applied for predicting how these three clusters would respond to immune checkpoint blockade (ICB) therapy; we found potential resistance of cluster B to ICB therapy. We also performed drug screening to identify cluster-specific drugs. Furthermore, a scoring system, designated as the CDPM score, was developed to estimate the cell death patterns of patients with LGG; this system could predict both LGG patients' prognosis and immunotherapy efficacy. By performing multiplex immunofluorescence staining, we validated the correlations of GNAL expression with the molecular and clinical features of LGG in an independent LGG cohort. Finally, in vitro assays showed that GNAL promoted apoptosis and inhibited the proliferation of LGG cells. CONCLUSION The new cell death-based subtype system indicates several features of LGG biology and reveals novel insights into the use of precision medicine for treating LGG. The CDPM score could be used to predict the immunotherapy response and prognosis of LGG patients; moreover, it could indicate a novel direction for improving LGG management.
Collapse
Affiliation(s)
- Hao Lian
- Department of Traditional Chinese Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Yan
- Pudong New District, Huamu Community Health Service Center, Shanghai, P.R. China
| | - Kui Chen
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lilun Jin
- Department of Traditional Chinese Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Taylor DJ, Barnhart MH. Genomic transfers help to decipher the ancient evolution of filoviruses and interactions with vertebrate hosts. PLoS Pathog 2024; 20:e1011864. [PMID: 39226335 PMCID: PMC11398700 DOI: 10.1371/journal.ppat.1011864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 09/13/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Although several filoviruses are dangerous human pathogens, there is conflicting evidence regarding their origins and interactions with animal hosts. Here we attempt to improve this understanding using the paleoviral record over a geological time scale, protein structure predictions, tests for evolutionary maintenance, and phylogenetic methods that alleviate sources of bias and error. We found evidence for long branch attraction bias in the L gene tree for filoviruses, and that using codon-specific models and protein structural comparisons of paleoviruses ameliorated conflict and bias. We found evidence for four ancient filoviral groups, each with extant viruses and paleoviruses with open reading frames. Furthermore, we found evidence of repeated transfers of filovirus-like elements to mouse-like rodents. A filovirus-like nucleoprotein ortholog with an open reading frame was detected in three subfamilies of spalacid rodents (present since the Miocene). We provide evidence that purifying selection is acting to maintain amino acids, protein structure and open reading frames in these elements. Our finding of extant viruses nested within phylogenetic clades of paleoviruses informs virus discovery methods and reveals the existence of Lazarus taxa among RNA viruses. Our results resolve a deep conflict in the evolutionary framework for filoviruses and reveal that genomic transfers to vertebrate hosts with potentially functional co-options have been more widespread than previously appreciated.
Collapse
Affiliation(s)
- Derek J Taylor
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Max H Barnhart
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
7
|
Lu KP, Zhou XZ. Pin1-catalyzed conformational regulation after phosphorylation: A distinct checkpoint in cell signaling and drug discovery. Sci Signal 2024; 17:eadi8743. [PMID: 38889227 PMCID: PMC11409840 DOI: 10.1126/scisignal.adi8743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Protein phosphorylation is one of the most common mechanisms regulating cellular signaling pathways, and many kinases and phosphatases are proven drug targets. Upon phosphorylation, protein functions can be further regulated by the distinct isomerase Pin1 through cis-trans isomerization. Numerous protein targets and many important roles have now been elucidated for Pin1. However, no tools are available to detect or target cis and trans conformation events in cells. The development of Pin1 inhibitors and stereo- and phospho-specific antibodies has revealed that cis and trans conformations have distinct and often opposing cellular functions. Aberrant conformational changes due to the dysregulation of Pin1 can drive pathogenesis but can be effectively targeted in age-related diseases, including cancers and neurodegenerative disorders. Here, we review advances in understanding the roles of Pin1 signaling in health and disease and highlight conformational regulation as a distinct signal transduction checkpoint in disease development and treatment.
Collapse
Affiliation(s)
- Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Robarts Research Institute, Schulich School of Medicine & Dentistry
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry
- Lawson Health Research Institute, Western University, London, ON N6G 2V4, Canada
| |
Collapse
|
8
|
Fang H, Wu XM, Zheng SY, Chang MX. Tripartite motif 2b ( trim2b) restricts spring viremia of carp virus by degrading viral proteins and negative regulators NLRP12-like receptors. J Virol 2024; 98:e0015824. [PMID: 38695539 PMCID: PMC11237789 DOI: 10.1128/jvi.00158-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/04/2024] [Indexed: 06/14/2024] Open
Abstract
Tripartite motif (TRIM) proteins are involved in different cellular functions, including regulating virus infection. In teleosts, two orthologous genes of mammalian TRIM2 are identified. However, the functions and molecular mechanisms of piscine TRIM2 remain unclear. Here, we show that trim2b-knockout zebrafish are more susceptible to spring viremia of carp virus (SVCV) infection than wild-type zebrafish. Transcriptomic analysis demonstrates that NOD-like receptor (NLR), but not RIG-I-like receptor (RLR), signaling pathway is significantly enriched in the trim2b-knockout zebrafish. In vitro, overexpression of Trim2b fails to degrade RLRs and those key proteins involved in the RLR signaling pathway but does for negative regulators NLRP12-like proteins. Zebrafish Trim2b degrades NLRP12-like proteins through its NHL_TRIM2_like and IG_FLMN domains in a ubiquitin-proteasome degradation pathway. SVCV-N and SVCV-G proteins are also degraded by NHL_TRIM2_like domains, and the degradation pathway is an autophagy lysosomal pathway. Moreover, zebrafish Trim2b can interfere with the binding between NLRP12-like protein and SVCV viral RNA and can completely block the negative regulation of NLRP12-like protein on SVCV infection. Taken together, our data demonstrate that the mechanism of action of zebrafish trim2b against SVCV infection is through targeting the degradation of host-negative regulators NLRP12-like receptors and viral SVCV-N/SVCV-G genes.IMPORTANCESpring viremia of carp virus (SVCV) is a lethal freshwater pathogen that causes high mortality in cyprinid fish. In the present study, we identified zebrafish trim2b, NLRP12-L1, and NLRP12-L2 as potential pattern recognition receptors (PRRs) for sensing and binding viral RNA. Zebrafish trim2b functions as a positive regulator; however, NLRP12-L1 and NLRP12-L2 function as negative regulators during SVCV infection. Furthermore, we find that zebrafish trim2b decreases host lethality in two manners. First, zebrafish Trim2b promotes protein degradations of negative regulators NLRP12-L1 and NLRP12-L2 by enhancing K48-linked ubiquitination and decreasing K63-linked ubiquitination. Second, zebrafish trim2b targets viral RNAs for degradation. Therefore, this study reveals a special antiviral mechanism in lower vertebrates.
Collapse
Affiliation(s)
- Hong Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Si Yao Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Jeong J, Usman M, Li Y, Zhou XZ, Lu KP. Pin1-Catalyzed Conformation Changes Regulate Protein Ubiquitination and Degradation. Cells 2024; 13:731. [PMID: 38727267 PMCID: PMC11083468 DOI: 10.3390/cells13090731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
The unique prolyl isomerase Pin1 binds to and catalyzes cis-trans conformational changes of specific Ser/Thr-Pro motifs after phosphorylation, thereby playing a pivotal role in regulating the structure and function of its protein substrates. In particular, Pin1 activity regulates the affinity of a substrate for E3 ubiquitin ligases, thereby modulating the turnover of a subset of proteins and coordinating their activities after phosphorylation in both physiological and disease states. In this review, we highlight recent advancements in Pin1-regulated ubiquitination in the context of cancer and neurodegenerative disease. Specifically, Pin1 promotes cancer progression by increasing the stabilities of numerous oncoproteins and decreasing the stabilities of many tumor suppressors. Meanwhile, Pin1 plays a critical role in different neurodegenerative disorders via the regulation of protein turnover. Finally, we propose a novel therapeutic approach wherein the ubiquitin-proteasome system can be leveraged for therapy by targeting pathogenic intracellular targets for TRIM21-dependent degradation using stereospecific antibodies.
Collapse
Affiliation(s)
- Jessica Jeong
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| | - Muhammad Usman
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| | - Yitong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Department of Pathology and Laboratory Medicine, and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
- Lawson Health Research Institute, Western University, London, ON N6C 2R5, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
10
|
Saleem A, Mumtaz PT, Saleem S, Manzoor T, Taban Q, Dar MA, Bhat B, Ahmad SM. Comparative transcriptome analysis of E. coli & Staphylococcus aureus infected goat mammary epithelial cells reveals genes associated with infection. Int Immunopharmacol 2024; 126:111213. [PMID: 37995572 DOI: 10.1016/j.intimp.2023.111213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Mastitis, an inflammatory disease of the mammary gland, imposes a significant financial burden on the dairy sector. However, the specific molecular mechanisms underlying their interactions with goat mammary epithelial cells (GMECs) remain poorly understood. This study aimed to investigate the transcriptomic response of GMECs during infection with E. coli and S. aureus, providing insights into the host-pathogen interactions. Differential expression of gene (DEGs) analysis was done to find genes and pathways dysregulated in the wake of infection. E. coli infection triggered a robust upregulation of immune response genes, including pro-inflammatory chemokines and cytokines as well as genes involved in tissue repair and remodeling. Conversely, S. aureus infection showed a more complex pattern, involving the activation of immune-related gene as well as those involved in autophagy, apoptosis and tissue remodeling. Furthermore, several key pathways, such as Toll-like receptor signaling and cytokine-cytokine receptor interaction, were differentially modulated in response to each pathogen. Understanding the specific responses of GMECs to these pathogens will provide a foundation for understanding the complex dynamics of infection and host response, offering potential avenues for the development of novel strategies to prevent and treat bacterial infections in both animals and humans.
Collapse
Affiliation(s)
- Afnan Saleem
- Division of Animal Biotechnology, FVSc & AH, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India
| | | | - Sahar Saleem
- Division of Animal Biotechnology, FVSc & AH, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India
| | - Tasaduq Manzoor
- Division of Animal Biotechnology, FVSc & AH, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India
| | - Qamar Taban
- Nutrition & Health Sciences, University of Nebraska-Lincoln, United States
| | - Mashooq Ahmad Dar
- Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Poland
| | - Basharat Bhat
- Division of Animal Biotechnology, FVSc & AH, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India.
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, FVSc & AH, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India.
| |
Collapse
|
11
|
Sun L, Chen Y, Xia L, Wang J, Zhu J, Li J, Wang K, Shen K, Zhang D, Zhang G, Shi T, Chen W. TRIM69 suppressed the anoikis resistance and metastasis of gastric cancer through ubiquitin‒proteasome-mediated degradation of PRKCD. Oncogene 2023; 42:3619-3632. [PMID: 37864033 DOI: 10.1038/s41388-023-02873-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
The tripartite motif (TRIM) protein family has been investigated in multiple human cancers, including gastric cancer (GC). However, the role of TRIM69 in the anoikis resistance and metastasis of GC cells remains to be elucidated. We identified the differentially expressed genes in anoikis-resistant GC cells using RNA-sequencing analysis. The interaction between TRIM69 and PRKCD was analyzed by coimmunoprecipitation and mass spectrometry. Our results have shown that TRIM69 was significantly downregulated in anoikis-resistant GC cells. TRIM69 overexpression markedly suppressed the anoikis resistance and metastasis of GC cells in vitro and in vivo. TRIM69 knockdown had the opposite effects. Mechanistically, TRIM69 interacted with PRKCD through its B-box domain and catalyzed the K48-linked polyubiquitination of PRKCD. Moreover, TRIM69 inhibited BDNF production in a PRKCD-dependent manner. Importantly, overexpression of PRKCD or BDNF blocked the effects of TRIM69 on the anoikis resistance and metastasis of GC cells. Interestingly, a TRIM69-PRKCD+BDNF+ cell subset was positively associated with metastasis in GC patients. TRIM69-mediated suppression of the anoikis resistance and metastasis of GC cells via modulation of the PRKCD/BDNF axis, with potential implications for novel therapeutic approaches for metastatic GC.
Collapse
Affiliation(s)
- Linqing Sun
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqi Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu Xia
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinghan Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kanger Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongze Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangbo Zhang
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
12
|
Ma W, Huang G, Wang Z, Wang L, Gao Q. IRF7: role and regulation in immunity and autoimmunity. Front Immunol 2023; 14:1236923. [PMID: 37638030 PMCID: PMC10449649 DOI: 10.3389/fimmu.2023.1236923] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Interferon regulatory factor (IRF) 7 was originally identified as master transcriptional factor that produced IFN-I and regulated innate immune response, subsequent studies have revealed that IRF7 performs a multifaceted and versatile functions in multiple biological processes. In this review, we provide a comprehensive overview on the current knowledge of the role of IRF7 in immunity and autoimmunity. We focus on the latest regulatory mechanisms of IRF7 in IFN-I, including signaling pathways, transcription, translation, and post-translational levels, the dimerization and nuclear translocation, and the role of IRF7 in IFN-III and COVID-19. In addition to antiviral immunity, we also discuss the role and mechanism of IRF7 in autoimmunity, and the further research will expand our understanding of IRF7.
Collapse
Affiliation(s)
- Wei Ma
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Huang
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhi Wang
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Wang
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qiangguo Gao
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
13
|
Zhang B, Cai T, He H, Huang X, Chen G, Lai Y, Luo Y, Huang S, Luo J, Guo X. TRIM21 Promotes Rabies Virus Production by Degrading IRF7 through Ubiquitination. Int J Mol Sci 2023; 24:10892. [PMID: 37446070 PMCID: PMC10341556 DOI: 10.3390/ijms241310892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Rabies, a highly fatal zoonotic disease, is a significant global public health threat. Currently, the pathogenic mechanism of rabies has not been fully elucidated, and no effective treatment for rabies is available. Increasing evidence shows that the tripartite-motif protein (TRIM) family of proteins participates in the host's regulation of viral replication. Studies have demonstrated the upregulated expression of tripartite-motif protein 21 (TRIM21) in the brain tissue of mice infected with the rabies virus. Related studies have shown that TRIM21 knockdown inhibits RABV replication, while overexpression of TRIM21 exerted the opposite effect. Knockdown of interferon-alpha and interferon-beta modulates the inhibition of RABV replication caused by TRIM21 knockdown and promotes the replication of the virus. Furthermore, our previous study revealed that TRIM21 regulates the secretion of type I interferon during RABV infection by targeting interferon regulatory factor 7 (IRF7). IRF7 knockdown reduced the inhibition of RABV replication caused by the knockdown of TRIM21 and promoted viral replication. TRIM21 regulates RABV replication via the IRF7-IFN axis. Our study identified TRIM21 as a novel host factor required by RABV for replication. Thus, TRIM21 is a potential target for rabies treatment or management.
Collapse
Affiliation(s)
- Boyue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Ting Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Hongling He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Xuezhe Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Guie Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Yanqin Lai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA;
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| |
Collapse
|
14
|
Calzari L, Zanotti L, Inglese E, Scaglione F, Cavagnola R, Ranucci F, Di Blasio AM, Stefanini G, Carlo G, Parati G, Gentilini D. Role of epigenetics in the clinical evolution of COVID-19 disease. Epigenome-wide association study identifies markers of severe outcome. Eur J Med Res 2023; 28:81. [PMID: 36800980 PMCID: PMC9936487 DOI: 10.1186/s40001-023-01032-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND COVID-19 has a wide spectrum of clinical manifestations and given its impact on morbidity and mortality, there is an unmet medical need to discover endogenous cellular and molecular biomarkers that predict the expected clinical course of the disease. Recently, epigenetics and especially DNA methylation have been pointed out as a promising tool for outcome prediction in several diseases. METHODS AND RESULTS Using the Illumina Infinium Methylation EPIC BeadChip850K, we investigated genome-wide differences in DNA methylation in an Italian Cohort of patients with comorbidities and compared severe (n = 64) and mild (123) prognosis. Results showed that the epigenetic signature, already present at the time of Hospital admission, can significantly predict risk of severe outcomes. Further analyses provided evidence of an association between age acceleration and a severe prognosis after COVID-19 infection. The burden of Stochastic Epigenetic Mutation (SEMs) has been significantly increased in patients with poor prognosis. Results have been replicated in silico considering COVID-19 negative subjects and available previously published datasets. CONCLUSIONS Using original methylation data and taking advantage of already published datasets, we confirmed in the blood that epigenetics is actively involved in immune response after COVID-19 infection, allowing the identification of a specific signature able to discriminate the disease evolution. Furthermore, the study showed that epigenetic drift and age acceleration are associated with severe prognosis. All these findings prove that host epigenetics undergoes notable and specific rearrangements to respond to COVID-19 infection which can be used for a personalized, timely, and targeted management of COVID-19 patients during the first stages of hospitalization.
Collapse
Affiliation(s)
- Luciano Calzari
- grid.418224.90000 0004 1757 9530Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy
| | - Lucia Zanotti
- grid.418224.90000 0004 1757 9530Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, San Luca Hospital, Milan, Italy
| | - Elvira Inglese
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy ,Chemical-Clinical Analysis Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Francesco Scaglione
- Chemical-Clinical Analysis Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Rebecca Cavagnola
- grid.418224.90000 0004 1757 9530Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy ,grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Francesco Ranucci
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Anna Maria Di Blasio
- grid.418224.90000 0004 1757 9530Molecular Biology Laboratory, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy
| | - Giulio Stefanini
- grid.452490.eDepartment of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy ,grid.417728.f0000 0004 1756 8807IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Gaetano Carlo
- grid.511455.1Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| | - Gianfranco Parati
- grid.418224.90000 0004 1757 9530Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, San Luca Hospital, Milan, Italy ,grid.7563.70000 0001 2174 1754Department of Medicine and Surgery, University of Milan‐Bicocca, Milan, Italy
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy. .,Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy.
| |
Collapse
|
15
|
Leiba J, Özbilgiç R, Hernández L, Demou M, Lutfalla G, Yatime L, Nguyen-Chi M. Molecular Actors of Inflammation and Their Signaling Pathways: Mechanistic Insights from Zebrafish. BIOLOGY 2023; 12:153. [PMID: 36829432 PMCID: PMC9952950 DOI: 10.3390/biology12020153] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Inflammation is a hallmark of the physiological response to aggressions. It is orchestrated by a plethora of molecules that detect the danger, signal intracellularly, and activate immune mechanisms to fight the threat. Understanding these processes at a level that allows to modulate their fate in a pathological context strongly relies on in vivo studies, as these can capture the complexity of the whole process and integrate the intricate interplay between the cellular and molecular actors of inflammation. Over the years, zebrafish has proven to be a well-recognized model to study immune responses linked to human physiopathology. We here provide a systematic review of the molecular effectors of inflammation known in this vertebrate and recapitulate their modes of action, as inferred from sterile or infection-based inflammatory models. We present a comprehensive analysis of their sequence, expression, and tissue distribution and summarize the tools that have been developed to study their function. We further highlight how these tools helped gain insights into the mechanisms of immune cell activation, induction, or resolution of inflammation, by uncovering downstream receptors and signaling pathways. These progresses pave the way for more refined models of inflammation, mimicking human diseases and enabling drug development using zebrafish models.
Collapse
|
16
|
Qian Y, Wang Z, Lin H, Lei T, Zhou Z, Huang W, Wu X, Zuo L, Wu J, Liu Y, Wang LF, Guan XH, Deng KY, Fu M, Xin HB. TRIM47 is a novel endothelial activation factor that aggravates lipopolysaccharide-induced acute lung injury in mice via K63-linked ubiquitination of TRAF2. Signal Transduct Target Ther 2022; 7:148. [PMID: 35513381 PMCID: PMC9072678 DOI: 10.1038/s41392-022-00953-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 12/18/2022] Open
Abstract
Endothelial activation plays an essential role in the pathogenesis of sepsis-induced acute lung injury, however, the detailed regulatory mechanisms remain largely unknown. Here, we reported that TRIM47, an E3 ubiquitin ligase of the tripartite motif-containing protein family, was highly expressed in vascular endothelial cells. TRIM47-deficient mice were effectively resistant to lipopolysaccharide (LPS)-induced acute lung injury and death by attenuating pulmonary inflammation. TRIM47 was upregulated during TNFα-induced endothelial activation in vitro. Knockdown of TRIM47 in endothelial cells inhibited the transcription of multiple pro-inflammatory cytokines, reduced monocyte adhesion and the expression of adhesion molecules, and suppressed the secretion of IL-1β and IL-6 in endothelial cells. By contrast, overexpression of TRIM47 promoted inflammatory response and monocyte adhesion upon TNFα stimulation. In addition, TRIM47 was able to activate the NF-κB and MAPK signaling pathways during endothelial activation. Furthermore, our experiments revealed that TRIM47 resulted in endothelial activation by promoting the K63-linked ubiquitination of TRAF2, a key component of the TNFα signaling pathway. Taken together, our studies demonstrated that TRIM47 as a novel activator of endothelial cells, promoted LPS-induced pulmonary inflammation and acute lung injury through potentiating the K63-linked ubiquitination of TRAF2, which in turn activates NF-κB and MAPK signaling pathways to trigger an inflammatory response in endothelial cells.
Collapse
Affiliation(s)
- Yisong Qian
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - Ziwei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Hongru Lin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Tianhua Lei
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - Zhou Zhou
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - Weilu Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Xuehan Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Li Zuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Jie Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Yu Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Ling-Fang Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Xiao-Hui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Mingui Fu
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA.
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China.
| |
Collapse
|
17
|
Dissecting the Functional Role of the TRIM8 Protein on Cancer Pathogenesis. Cancers (Basel) 2022; 14:cancers14092309. [PMID: 35565438 PMCID: PMC9099786 DOI: 10.3390/cancers14092309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The tripartite motif (TRIM) gene family is a large group of E3 ubiquitin ligase proteins that can also have proteasome-independent functions. This review summarizes the structural organization, the biological functions and the mechanisms involved in cancer pathogenesis of TRIM proteins. Furthermore, this paper focuses on TRIM8, a member of the TRIM family proteins, describing its role both as a tumor suppressor and as an oncogene. Abstract TRIM/RBCC are a large family of proteins that include more than 80 proteins, most of which act as E3 ligases and catalyze the direct transfer of Ubiquitin, SUMO and ISG15 on specific protein substrates. They are involved in oncogenesis processes and in cellular immunity. On this topic, we focus on TRIM8 and its multiple roles in tumor pathologies. TRIM8 inhibits breast cancer proliferation through the regulation of estrogen signaling. TRIM8 downregulation in glioma is involved in cell proliferation, and it is related to patients’ survival. Several studies suggested that TRIM8 regulates the p53 suppressor signaling pathway: it is involved in the NF-kB pathway (Nuclear Factor kappa light- chain-enhancer of activated B cells) and in STAT3 (Signal Transducer and Activator of Transcription 3) of the JAK-STAT pathway. In this review, we summarize how the association between these different pathways reflects a dual role of TRIM8 in cancer as an oncogene or a tumor suppressor gene.
Collapse
|
18
|
Li Y, Liu S, Chen Y, Chen B, Xiao M, Yang B, Rai KR, Maarouf M, Guo G, Chen JL. Syk Facilitates Influenza A Virus Replication by Restraining Innate Immunity at the Late Stage of Viral Infection. J Virol 2022; 96:e0020022. [PMID: 35293768 PMCID: PMC9006912 DOI: 10.1128/jvi.00200-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/18/2022] [Indexed: 12/30/2022] Open
Abstract
Spleen tyrosine kinase (Syk) has recently come forth as a critical regulator of innate immune response. Previous studies identify Syk as a key kinase for STAT1 activation at the early stage of influenza A virus (IAV) infection that is involved in initial antiviral immunity. However, the involvement of Syk in host antiviral immunity during the late phase of IAV infection and its effect on pathogenesis of the virus remain unknown. Here, we found through time course studies that Syk restrained antiviral immune response at the late stage of IAV infection, thereby promoting viral replication. Depletion of Syk suppressed IAV replication in vitro, whereas ectopic expression of Syk facilitated viral replication. Moreover, Syk-deficient mice were employed, and we observed that knockout of Syk rendered mice more resistant to IAV infection, as evidenced by a lower degree of lung injury, slower body weight loss, and an increased survival rate of Syk knockout mice challenged with IAV. Furthermore, we revealed that Syk repressed the interferon response at the late stage of viral infection. Loss of Syk potentiated the expression of type I and III interferons in both Syk-depleted cells and mice. Mechanistically, Syk interacted with TBK1 and modulated its phosphorylation status, thereby impeding TBK1 activation and restraining innate immune signaling that governs interferon response. Together, these findings unveil a role of Syk in temporally regulating host antiviral immunity and advance our understanding of complicated mechanisms underlying regulation of innate immunity against viral invasion. IMPORTANCE Innate immunity must be tightly controlled to eliminate invading pathogens while avoiding autoimmune or inflammatory diseases. Syk is essential for STAT1 activation at the early stage of IAV infection, which is critical for initial antiviral responses. Surprisingly, here a time course study showed that Syk suppressed innate immunity during late phases of IAV infection and thereby promoted IAV replication. Syk deficiency enhanced the expression of type I and III interferons, inhibited IAV replication, and rendered mice more resistant to IAV infection. Syk impaired innate immune signaling through impeding TBK1 activation. These data reveal that Syk participates in the initiation of antiviral defense against IAV infection and simultaneously contributes to the restriction of innate immunity at the late stage of viral infection, suggesting that Syk serves a dual function in regulating antiviral responses. This finding provides new insights into complicated mechanisms underlying interaction between virus and host immune system.
Collapse
Affiliation(s)
- Yingying Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shasha Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meng Xiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bincai Yang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kul Raj Rai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed Maarouf
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Guijie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
19
|
Yan C, Liu Q, Nie M, Hu W, Jia R. Comprehensive Analysis of the Immune and Prognostic Implication of TRIM8 in Breast Cancer. Front Genet 2022; 13:835540. [PMID: 35368651 PMCID: PMC8969022 DOI: 10.3389/fgene.2022.835540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Breast cancer remains one of most lethal illnesses and the most common malignancies among women, making it important to discover novel biomarkers and therapeutic targets for the disease. Immunotherapy has become a promising therapeutic tool for breast cancer. The role of TRIM8 in breast cancer has rarely been reported. Method: Here we identified TRIM8 expression and its potential function on survival in patients with breast cancer using TCGA (The cancer genome atlas), GEO (Gene expression omnibus) database and METABRIC (Molecular Taxonomy of Breast Cancer International Consortium). Then, TIMER and TISIDB databases were used to investigate the correlations between TRIM8 mRNA levels and immune characteristics. Using stepwise cox regression, we established an immune prognostic signature based on five differentially expression immune-related genes (DE-IRGs). Finally, a nomogram, accompanied by a calibration curve was proposed to predict 1-, 3-, and 5-year survival for breast cancer patients. Results: We found that TRIM8 expression was dramatically lower in breast cancer tissues in comparison with normal tissues. Lower TRIM8 expression was related with worse prognosis in breast cancer. TIMER and TISIDB analysis showed that there were strong correlations between TRIM8 expression and immune characteristics. The receiver operating characteristic (ROC) curve confirmed the good performance in survival prediction and showed good accuracy of the immune prognostic signature. We demonstrated the model usefulness of predictions by nomogram and calibration curves. Our findings indicated that TRIM8 might be a potential link between progression and prognosis survival of breast cancer. Conclusion: This is a comprehensive study to reveal that tripartite motif 8 (TRIM8) may serve as a potential prognostic biomarker associating with immune characteristics and provide a novel therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Cheng Yan
- School of Pharmacy, Xinxiang University, Xinxiang, China
- Key Laboratory of Nano-carbon Modified Film Technology of Henan Province, Xinxiang University, Xinxiang, China
- Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, China
| | - Qingling Liu
- School of Pharmacy, Xinxiang University, Xinxiang, China
| | - Mingkun Nie
- School of Physical Education, Xinxiang University, Xinxiang, China
| | - Wei Hu
- Xinyang Sericulture Test Station, Xinyang, China
| | - Ruoling Jia
- School of Pharmacy, Xinxiang University, Xinxiang, China
- *Correspondence: Ruoling Jia,
| |
Collapse
|
20
|
Laghi V, Rezelj V, Boucontet L, Frétaud M, Da Costa B, Boudinot P, Salinas I, Lutfalla G, Vignuzzi M, Levraud JP. Exploring Zebrafish Larvae as a COVID-19 Model: Probable Abortive SARS-CoV-2 Replication in the Swim Bladder. Front Cell Infect Microbiol 2022; 12:790851. [PMID: 35360100 PMCID: PMC8963489 DOI: 10.3389/fcimb.2022.790851] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/04/2022] [Indexed: 12/16/2022] Open
Abstract
Animal models are essential to understanding COVID-19 pathophysiology and for preclinical assessment of drugs and other therapeutic or prophylactic interventions. We explored the small, cheap, and transparent zebrafish larva as a potential host for SARS-CoV-2. Bath exposure, as well as microinjection in the coelom, pericardium, brain ventricle, or bloodstream, resulted in a rapid decrease of SARS-CoV-2 RNA in wild-type larvae. However, when the virus was inoculated in the swim bladder, viral RNA stabilized after 24 h. By immunohistochemistry, epithelial cells containing SARS-CoV-2 nucleoprotein were observed in the swim bladder wall. Our data suggest an abortive infection of the swim bladder. In some animals, several variants of concern were also tested with no evidence of increased infectivity in our model. Low infectivity of SARS-CoV-2 in zebrafish larvae was not due to the host type I interferon response, as comparable viral loads were detected in type I interferon-deficient animals. A mosaic overexpression of human ACE2 was not sufficient to increase SARS-CoV-2 infectivity in zebrafish embryos or in fish cells in vitro. In conclusion, wild-type zebrafish larvae appear mostly non-permissive to SARS-CoV-2, except in the swim bladder, an aerial organ sharing similarities with the mammalian lung.
Collapse
Affiliation(s)
- Valerio Laghi
- Institut Pasteur, Centre National de la Recherche Scientifique (CNRS) Unité mixte de Recherche (UMR) 3637, Unité Macrophages et Développement de l’Immunité, Paris, France
| | - Veronica Rezelj
- Institut Pasteur, Unité Populations Virales et Pathogénèse, Institut Pasteur, Paris, France
| | - Laurent Boucontet
- Institut Pasteur, Centre National de la Recherche Scientifique (CNRS) Unité mixte de Recherche (UMR) 3637, Unité Macrophages et Développement de l’Immunité, Paris, France
| | - Maxence Frétaud
- Université Paris-Saclay, Institut National pour la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Versailles Saint-Quentin (UVSQ), Virologie et Immunologie Moléculaire (VIM), Jouy-en-Josas, France
| | - Bruno Da Costa
- Université Paris-Saclay, Institut National pour la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Versailles Saint-Quentin (UVSQ), Virologie et Immunologie Moléculaire (VIM), Jouy-en-Josas, France
| | - Pierre Boudinot
- Université Paris-Saclay, Institut National pour la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Versailles Saint-Quentin (UVSQ), Virologie et Immunologie Moléculaire (VIM), Jouy-en-Josas, France
| | - Irene Salinas
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Georges Lutfalla
- Laboratory of Pathogen-Host Interactions (LPHI), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Marco Vignuzzi
- Institut Pasteur, Unité Populations Virales et Pathogénèse, Institut Pasteur, Paris, France
| | - Jean-Pierre Levraud
- Institut Pasteur, Centre National de la Recherche Scientifique (CNRS) Unité mixte de Recherche (UMR) 3637, Unité Macrophages et Développement de l’Immunité, Paris, France
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), Institut Pasteur, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
- *Correspondence: Jean-Pierre Levraud,
| |
Collapse
|
21
|
Laghi V, Rezelj V, Boucontet L, Frétaud M, Da Costa B, Boudinot P, Salinas I, Lutfalla G, Vignuzzi M, Levraud JP. Exploring Zebrafish Larvae as a COVID-19 Model: Probable Abortive SARS-CoV-2 Replication in the Swim Bladder. Front Cell Infect Microbiol 2022. [PMID: 35360100 DOI: 10.1101/2021.04.08.439059v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Animal models are essential to understanding COVID-19 pathophysiology and for preclinical assessment of drugs and other therapeutic or prophylactic interventions. We explored the small, cheap, and transparent zebrafish larva as a potential host for SARS-CoV-2. Bath exposure, as well as microinjection in the coelom, pericardium, brain ventricle, or bloodstream, resulted in a rapid decrease of SARS-CoV-2 RNA in wild-type larvae. However, when the virus was inoculated in the swim bladder, viral RNA stabilized after 24 h. By immunohistochemistry, epithelial cells containing SARS-CoV-2 nucleoprotein were observed in the swim bladder wall. Our data suggest an abortive infection of the swim bladder. In some animals, several variants of concern were also tested with no evidence of increased infectivity in our model. Low infectivity of SARS-CoV-2 in zebrafish larvae was not due to the host type I interferon response, as comparable viral loads were detected in type I interferon-deficient animals. A mosaic overexpression of human ACE2 was not sufficient to increase SARS-CoV-2 infectivity in zebrafish embryos or in fish cells in vitro. In conclusion, wild-type zebrafish larvae appear mostly non-permissive to SARS-CoV-2, except in the swim bladder, an aerial organ sharing similarities with the mammalian lung.
Collapse
Affiliation(s)
- Valerio Laghi
- Institut Pasteur, Centre National de la Recherche Scientifique (CNRS) Unité mixte de Recherche (UMR) 3637, Unité Macrophages et Développement de l'Immunité, Paris, France
| | - Veronica Rezelj
- Institut Pasteur, Unité Populations Virales et Pathogénèse, Institut Pasteur, Paris, France
| | - Laurent Boucontet
- Institut Pasteur, Centre National de la Recherche Scientifique (CNRS) Unité mixte de Recherche (UMR) 3637, Unité Macrophages et Développement de l'Immunité, Paris, France
| | - Maxence Frétaud
- Université Paris-Saclay, Institut National pour la Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université Versailles Saint-Quentin (UVSQ), Virologie et Immunologie Moléculaire (VIM), Jouy-en-Josas, France
| | - Bruno Da Costa
- Université Paris-Saclay, Institut National pour la Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université Versailles Saint-Quentin (UVSQ), Virologie et Immunologie Moléculaire (VIM), Jouy-en-Josas, France
| | - Pierre Boudinot
- Université Paris-Saclay, Institut National pour la Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université Versailles Saint-Quentin (UVSQ), Virologie et Immunologie Moléculaire (VIM), Jouy-en-Josas, France
| | - Irene Salinas
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Georges Lutfalla
- Laboratory of Pathogen-Host Interactions (LPHI), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Marco Vignuzzi
- Institut Pasteur, Unité Populations Virales et Pathogénèse, Institut Pasteur, Paris, France
| | - Jean-Pierre Levraud
- Institut Pasteur, Centre National de la Recherche Scientifique (CNRS) Unité mixte de Recherche (UMR) 3637, Unité Macrophages et Développement de l'Immunité, Paris, France
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), Institut Pasteur, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
22
|
Roy M, Singh K, Shinde A, Singh J, Mane M, Bedekar S, Tailor Y, Gohel D, Vasiyani H, Currim F, Singh R. TNF-α-induced E3 ligase, TRIM15 inhibits TNF-α-regulated NF-κB pathway by promoting turnover of K63 linked ubiquitination of TAK1. Cell Signal 2021; 91:110210. [PMID: 34871740 DOI: 10.1016/j.cellsig.2021.110210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/22/2023]
Abstract
Ubiquitin E3-ligases are recruited at different steps of TNF-α-induced NF-κB activation; however, their role in temporal regulation of the pathway remains elusive. The study systematically identified TRIMs as potential feedback regulators of the TNF-α-induced NF-κB pathway. We further observed that TRIM15 is "late" response TNF-α-induced gene and inhibits the TNF-α-induced NF-κB pathway in several human cell lines. TRIM15 promotes turnover of K63-linked ubiquitin chains in a PRY/SPRY domain-dependent manner. TRIM15 interacts with TAK1 and inhibits its K63-linked ubiquitination, thus NF-κB activity. Further, TRIM15 interacts with TRIM8 and inhibits cytosolic translocation to antagonize TRIM8 modualted NF-κB. TRIM8 and TRIM15 also show functionally inverse correlation in psoriasis condition. In conclusion, TRIM15 is TNF-α-induced late response gene and inhibits TNF-α induced NF-κB pathway hence a feedback modulator to keep the proinflammatory NF-κB pathway under control.
Collapse
Affiliation(s)
- Milton Roy
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Kritarth Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Anjali Shinde
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Jyoti Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Minal Mane
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Sawani Bedekar
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Yamini Tailor
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Dhruv Gohel
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Hitesh Vasiyani
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Fatema Currim
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India.
| |
Collapse
|
23
|
Wang J, Qiao X, Liu Z, Wang Y, Li Y, Liang Y, Liu C, Wang L, Song L. A tripartite motif protein (CgTRIM1) involved in CgIFNLP mediated antiviral immunity in the Pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104146. [PMID: 34052233 DOI: 10.1016/j.dci.2021.104146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Tripartite motif (TRIM) proteins are a large family of E3 ubiquitin ligases involved in many biological processes, such as inflammation and antiviral immunity. In the present study, a novel TRIM protein homolog named CgTRIM1 was identified from Pacific oyster Crassostrea gigas. The open reading frame (ORF) of CgTRIM1 was of 1914 bp encoding a putative polypeptide of 637 amino acid residues. There were three classical domains in the predicted CgTRIM1 protein, including one RING domain, two b-box domains and one coiled-coil domain in N-terminal. For the lack of C-terminal domains, the CgTRIM1 was classified as the member of C-V TRIM subfamily. The mRNA transcripts of CgTRIM1 were detected in all the tested tissues and haemocytes, with the highest expression level in gill. The mRNA and protein levels of CgTRIM1 in gill were significantly up-regulated at 6 h after poly (I:C) stimulation. Moreover, the nuclear translocation of CgTRIM1 was observed in haemocytes of oysters after poly (I:C) stimulation. After IFN-like protein (CgIFNLP) was knocked down by RNA interference (RNAi), the expression of CgTRIM1 in gill was markedly inhibited in both mRNA (0.14-fold, p < 0.001) and protein levels after poly (I:C) stimulation. Furthermore, after knocking down of CgTRIM1, the mRNA expression levels of IFN-stimulated genes, including myxovirus resistance of oyster (CgMx) and Interferon-induced protein 44 (CgIFI44) were significantly down-regulated post poly (I:C) stimulation, while no significant change of the CgIFNLP expression was observed. These results indicated that CgTRIM1 participated in the antiviral response of C. gigas by regulating the mRNA expressions of IFN-stimulated genes.
Collapse
Affiliation(s)
- Jihan Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuting Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuanmei Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yage Liang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
24
|
Seong BKA, Dharia NV, Lin S, Donovan KA, Chong S, Robichaud A, Conway A, Hamze A, Ross L, Alexe G, Adane B, Nabet B, Ferguson FM, Stolte B, Wang EJ, Sun J, Darzacq X, Piccioni F, Gray NS, Fischer ES, Stegmaier K. TRIM8 modulates the EWS/FLI oncoprotein to promote survival in Ewing sarcoma. Cancer Cell 2021; 39:1262-1278.e7. [PMID: 34329586 PMCID: PMC8443273 DOI: 10.1016/j.ccell.2021.07.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/24/2021] [Accepted: 07/01/2021] [Indexed: 12/26/2022]
Abstract
Fusion-transcription factors (fusion-TFs) represent a class of driver oncoproteins that are difficult to therapeutically target. Recently, protein degradation has emerged as a strategy to target these challenging oncoproteins. The mechanisms that regulate fusion-TF stability, however, are generally unknown. Using CRISPR-Cas9 screening, we discovered tripartite motif-containing 8 (TRIM8) as an E3 ubiquitin ligase that ubiquitinates and degrades EWS/FLI, a driver fusion-TF in Ewing sarcoma. Moreover, we identified TRIM8 as a selective dependency in Ewing sarcoma compared with >700 other cancer cell lines. Mechanistically, TRIM8 knockout led to an increase in EWS/FLI protein levels that was not tolerated. EWS/FLI acts as a neomorphic substrate for TRIM8, defining the selective nature of the dependency. Our results demonstrate that fusion-TF protein stability is tightly regulated and highlight fusion oncoprotein-specific regulators as selective therapeutic targets. This study provides a tractable strategy to therapeutically exploit oncogene overdose in Ewing sarcoma and potentially other fusion-TF-driven cancers.
Collapse
Affiliation(s)
- Bo Kyung A Seong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Shan Lin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shasha Chong
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Amanda Robichaud
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amy Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amanda Hamze
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Linda Ross
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Biniam Adane
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Behnam Nabet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Fleur M Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Björn Stolte
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Dr.von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Munich, Germany
| | - Emily Jue Wang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jialin Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; CIRM Center of Excellence, University of California, Berkeley, CA, USA
| | | | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
25
|
Ouyang W, Cen M, Yang L, Zhang W, Xia J, Xu F. NMI Facilitates Influenza A Virus Infection by Promoting Degradation of IRF7 through TRIM21. Am J Respir Cell Mol Biol 2021; 65:30-40. [PMID: 33761305 DOI: 10.1165/rcmb.2020-0391oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acute respiratory infections caused by influenza A virus (IAV) spread widely and lead to substantial morbidity and mortality. Host cell induction of type I interferon (IFN-I) plays a fundamental role in eliminating the virus during the innate antiviral response. The potential role of N-myc and STAT interactor (NMI) and its underlying mechanisms of action during IAV infection, however, remain elusive. In this study, we found that the expression of NMI increased after IAV infection. Nmi-knockout mice infected with IAV displayed increased survival rate, decreased weight loss, lower viral replication, and attenuated lung inflammation when compared with wild-type mice. Deficiency of NMI promoted the production of IFN-I and IFN-stimulated genes in vivo and in vitro. Reduced levels of NMI also resulted in an increase of the expression of IFN regulator factor (IRF) 7. Further studies have revealed that NMI could interact with IRF7 after IAV infection, and this interaction involved its NID1 and NID2 domain. In addition, NMI facilitated ubiquitination and proteasome-dependent degradation of IRF7 through recruitment of the E3 ubiquitin ligase TRIM21 (tripartite motif-containing 21) to limit the IAV-triggered innate immunity. Our findings reveal a clearer understanding of the role of NMI in regulating the host innate antiviral response and provide a potential therapeutic target for controlling IAV infection.
Collapse
Affiliation(s)
| | | | | | | | - Jingyan Xia
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Xu
- Department of Infectious Diseases and
| |
Collapse
|
26
|
Jin Z, Zhu Z. The role of TRIM proteins in PRR signaling pathways and immune-related diseases. Int Immunopharmacol 2021; 98:107813. [PMID: 34126340 DOI: 10.1016/j.intimp.2021.107813] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 12/25/2022]
Abstract
Pattern recognition receptors (PRRs) are a kind of recognition molecules mainly expressed on innate immune cells. PRRs recognize one or more kinds of pathogen-associated molecular patterns (PAMPs), inducing the production of interleukin (IL), tumor necrosis factor (TNF), interferon (IFN) and other related cytokines to aggravate immune-related diseases. PPR signaling pathways play an important role in both innate and adaptive immune system, and they are easy to be activated or regulated. Tripartite motif (TRIM) proteins are a group of highly conserved proteins in structure. Most of TRIM proteins contain RING domain, which is thought to play a role in ubiquitination. TRIM proteins are involved in viral immunity, inflammatory response, autophagy, and tumor growth. In this review, we focus on the regulation of TRIM proteins on PRR signaling pathways and their roles in immune-related diseases.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern, Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
27
|
Measuring the subcellular compartmentalization of viral infections by protein complementation assay. Proc Natl Acad Sci U S A 2021; 118:2010524118. [PMID: 33402530 DOI: 10.1073/pnas.2010524118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recent emergence and reemergence of viruses in the human population has highlighted the need to develop broader panels of therapeutic molecules. High-throughput screening assays opening access to untargeted steps of the viral replication cycle will provide powerful leverage to identify innovative antiviral molecules. We report here the development of an innovative protein complementation assay, termed αCentauri, to measure viral translocation between subcellular compartments. As a proof of concept, the Centauri fragment was either tethered to the nuclear pore complex or sequestered in the nucleus, while the complementary α fragment (<16 amino acids) was attached to the integrase proteins of infectious HIV-1. The translocation of viral ribonucleoproteins from the cytoplasm to the nuclear envelope or to the nucleoplasm efficiently reconstituted superfolder green fluorescent protein or NanoLuc αCentauri reporters. These fluorescence- or bioluminescence-based assays offer a robust readout of specific steps of viral infection in a multiwell format that is compatible for high-throughput screening and is validated by a short hairpin RNA-based prototype screen.
Collapse
|
28
|
Bencze D, Fekete T, Pázmándi K. Type I Interferon Production of Plasmacytoid Dendritic Cells under Control. Int J Mol Sci 2021; 22:ijms22084190. [PMID: 33919546 PMCID: PMC8072550 DOI: 10.3390/ijms22084190] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
One of the most powerful and multifaceted cytokines produced by immune cells are type I interferons (IFNs), the basal secretion of which contributes to the maintenance of immune homeostasis, while their activation-induced production is essential to effective immune responses. Although, each cell is capable of producing type I IFNs, plasmacytoid dendritic cells (pDCs) possess a unique ability to rapidly produce large amounts of them. Importantly, type I IFNs have a prominent role in the pathomechanism of various pDC-associated diseases. Deficiency in type I IFN production increases the risk of more severe viral infections and the development of certain allergic reactions, and supports tumor resistance; nevertheless, its overproduction promotes autoimmune reactions. Therefore, the tight regulation of type I IFN responses of pDCs is essential to maintain an adequate level of immune response without causing adverse effects. Here, our goal was to summarize those endogenous factors that can influence the type I IFN responses of pDCs, and thus might serve as possible therapeutic targets in pDC-associated diseases. Furthermore, we briefly discuss the current therapeutic approaches targeting the pDC-type I IFN axis in viral infections, cancer, autoimmunity, and allergy, together with their limitations defined by the Janus-faced nature of pDC-derived type I IFNs.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
29
|
Budroni V, Versteeg GA. Negative Regulation of the Innate Immune Response through Proteasomal Degradation and Deubiquitination. Viruses 2021; 13:584. [PMID: 33808506 PMCID: PMC8066222 DOI: 10.3390/v13040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/25/2022] Open
Abstract
The rapid and dynamic activation of the innate immune system is achieved through complex signaling networks regulated by post-translational modifications modulating the subcellular localization, activity, and abundance of signaling molecules. Many constitutively expressed signaling molecules are present in the cell in inactive forms, and become functionally activated once they are modified with ubiquitin, and, in turn, inactivated by removal of the same post-translational mark. Moreover, upon infection resolution a rapid remodeling of the proteome needs to occur, ensuring the removal of induced response proteins to prevent hyperactivation. This review discusses the current knowledge on the negative regulation of innate immune signaling pathways by deubiquitinating enzymes, and through degradative ubiquitination. It focusses on spatiotemporal regulation of deubiquitinase and E3 ligase activities, mechanisms for re-establishing proteostasis, and degradation through immune-specific feedback mechanisms vs. general protein quality control pathways.
Collapse
Affiliation(s)
| | - Gijs A. Versteeg
- Max Perutz Labs, Department of Microbiology, Immunobiology, and Genetics, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
30
|
Emerging Roles of TRIM8 in Health and Disease. Cells 2021; 10:cells10030561. [PMID: 33807506 PMCID: PMC7998878 DOI: 10.3390/cells10030561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
The superfamily of TRIM (TRIpartite Motif-containing) proteins is one of the largest groups of E3 ubiquitin ligases. Among them, interest in TRIM8 has greatly increased in recent years. In this review, we analyze the regulation of TRIM8 gene expression and how it is involved in many cell reactions in response to different stimuli such as genotoxic stress and attacks by viruses or bacteria, playing a central role in the immune response and orchestrating various fundamental biological processes such as cell survival, carcinogenesis, autophagy, apoptosis, differentiation and inflammation. Moreover, we show how TRIM8 functions are not limited to ubiquitination, and contrasting data highlight its role either as an oncogene or as a tumor suppressor gene, acting as a “double-edged weapon”. This is linked to its involvement in the selective regulation of three pivotal cellular signaling pathways: the p53 tumor suppressor, NF-κB and JAK-STAT pathways. Lastly, we describe how TRIM8 dysfunctions are linked to inflammatory processes, autoimmune disorders, rare developmental and cardiovascular diseases, ischemia, intellectual disability and cancer.
Collapse
|
31
|
Marzano F, Caratozzolo MF, Pesole G, Sbisà E, Tullo A. TRIM Proteins in Colorectal Cancer: TRIM8 as a Promising Therapeutic Target in Chemo Resistance. Biomedicines 2021; 9:biomedicines9030241. [PMID: 33673719 PMCID: PMC7997459 DOI: 10.3390/biomedicines9030241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) represents one of the most widespread forms of cancer in the population and, as all malignant tumors, often develops resistance to chemotherapies with consequent tumor growth and spreading leading to the patient’s premature death. For this reason, a great challenge is to identify new therapeutic targets, able to restore the drugs sensitivity of cancer cells. In this review, we discuss the role of TRIpartite Motifs (TRIM) proteins in cancers and in CRC chemoresistance, focusing on the tumor-suppressor role of TRIM8 protein in the reactivation of the CRC cells sensitivity to drugs currently used in the clinical practice. Since the restoration of TRIM8 protein levels in CRC cells recovers chemotherapy response, it may represent a new promising therapeutic target in the treatment of CRC.
Collapse
Affiliation(s)
- Flaviana Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70126 Bari, Italy; (F.M.); (M.F.C.); (G.P.)
| | - Mariano Francesco Caratozzolo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70126 Bari, Italy; (F.M.); (M.F.C.); (G.P.)
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70126 Bari, Italy; (F.M.); (M.F.C.); (G.P.)
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, “Aldo Moro”, 70125 Bari, Italy
| | - Elisabetta Sbisà
- Institute for Biomedical Technologies, National Research Council, CNR, 70126 Bari, Italy;
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70126 Bari, Italy; (F.M.); (M.F.C.); (G.P.)
- Correspondence:
| |
Collapse
|
32
|
Wang L, Ning S. TRIMming Type I Interferon-Mediated Innate Immune Response in Antiviral and Antitumor Defense. Viruses 2021; 13:279. [PMID: 33670221 PMCID: PMC7916971 DOI: 10.3390/v13020279] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
The tripartite motif (TRIM) family comprises at least 80 members in humans, with most having ubiquitin or SUMO E3 ligase activity conferred by their N-terminal RING domain. TRIMs regulate a wide range of processes in ubiquitination- or sumoylation-dependent manners in most cases, and fewer as adaptors. Their roles in the regulation of viral infections, autophagy, cell cycle progression, DNA damage and other stress responses, and carcinogenesis are being increasingly appreciated, and their E3 ligase activities are attractive targets for developing specific immunotherapeutic strategies for immune diseases and cancers. Given their importance in antiviral immune response, viruses have evolved sophisticated immune escape strategies to subvert TRIM-mediated mechanisms. In this review, we focus on their regulation of IFN-I-mediated innate immune response, which plays key roles in antiviral and antitumor defense.
Collapse
Affiliation(s)
- Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA;
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA;
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
33
|
Weng PL, Majmundar AJ, Khan K, Lim TY, Shril S, Jin G, Musgrove J, Wang M, Ahram DF, Aggarwal VS, Bier LE, Heinzen EL, Onuchic-Whitford AC, Mann N, Buerger F, Schneider R, Deutsch K, Kitzler TM, Klämbt V, Kolb A, Mao Y, Moufawad El Achkar C, Mitrotti A, Martino J, Beck BB, Altmüller J, Benz MR, Yano S, Mikati MA, Gunduz T, Cope H, Shashi V, Trachtman H, Bodria M, Caridi G, Pisani I, Fiaccadori E, AbuMaziad AS, Martinez-Agosto JA, Yadin O, Zuckerman J, Kim A, John-Kroegel U, Tyndall AV, Parboosingh JS, Innes AM, Bierzynska A, Koziell AB, Muorah M, Saleem MA, Hoefele J, Riedhammer KM, Gharavi AG, Jobanputra V, Pierce-Hoffman E, Seaby EG, O'Donnell-Luria A, Rehm HL, Mane S, D'Agati VD, Pollak MR, Ghiggeri GM, Lifton RP, Goldstein DB, Davis EE, Hildebrandt F, Sanna-Cherchi S. De novo TRIM8 variants impair its protein localization to nuclear bodies and cause developmental delay, epilepsy, and focal segmental glomerulosclerosis. Am J Hum Genet 2021; 108:357-367. [PMID: 33508234 PMCID: PMC7895901 DOI: 10.1016/j.ajhg.2021.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is the main pathology underlying steroid-resistant nephrotic syndrome (SRNS) and a leading cause of chronic kidney disease. Monogenic forms of pediatric SRNS are predominantly caused by recessive mutations, while the contribution of de novo variants (DNVs) to this trait is poorly understood. Using exome sequencing (ES) in a proband with FSGS/SRNS, developmental delay, and epilepsy, we discovered a nonsense DNV in TRIM8, which encodes the E3 ubiquitin ligase tripartite motif containing 8. To establish whether TRIM8 variants represent a cause of FSGS, we aggregated exome/genome-sequencing data for 2,501 pediatric FSGS/SRNS-affected individuals and 48,556 control subjects, detecting eight heterozygous TRIM8 truncating variants in affected subjects but none in control subjects (p = 3.28 × 10-11). In all six cases with available parental DNA, we demonstrated de novo inheritance (p = 2.21 × 10-15). Reverse phenotyping revealed neurodevelopmental disease in all eight families. We next analyzed ES from 9,067 individuals with epilepsy, yielding three additional families with truncating TRIM8 variants. Clinical review revealed FSGS in all. All TRIM8 variants cause protein truncation clustering within the last exon between residues 390 and 487 of the 551 amino acid protein, indicating a correlation between this syndrome and loss of the TRIM8 C-terminal region. Wild-type TRIM8 overexpressed in immortalized human podocytes and neuronal cells localized to nuclear bodies, while constructs harboring patient-specific variants mislocalized diffusely to the nucleoplasm. Co-localization studies demonstrated that Gemini and Cajal bodies frequently abut a TRIM8 nuclear body. Truncating TRIM8 DNVs cause a neuro-renal syndrome via aberrant TRIM8 localization, implicating nuclear bodies in FSGS and developmental brain disease.
Collapse
Affiliation(s)
- Patricia L Weng
- Division of Pediatric Nephrology, UCLA, Los Angeles, CA 90095, USA
| | - Amar J Majmundar
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kamal Khan
- Center for Disease Modeling, Duke University, Durham, NC 27701, USA; Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Tze Y Lim
- Division of Nephrology, Columbia University, New York, NY 10032, USA
| | - Shirlee Shril
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Gina Jin
- Division of Nephrology, Columbia University, New York, NY 10032, USA
| | - John Musgrove
- Center for Disease Modeling, Duke University, Durham, NC 27701, USA; Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA
| | - Minxian Wang
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dina F Ahram
- Division of Nephrology, Columbia University, New York, NY 10032, USA
| | - Vimla S Aggarwal
- Institute of Genomic Medicine, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Louise E Bier
- Institute of Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Erin L Heinzen
- Institute of Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Ana C Onuchic-Whitford
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nina Mann
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Florian Buerger
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ronen Schneider
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Konstantin Deutsch
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Thomas M Kitzler
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Verena Klämbt
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Amy Kolb
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Youying Mao
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Christelle Moufawad El Achkar
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Adele Mitrotti
- Division of Nephrology, Columbia University, New York, NY 10032, USA
| | - Jeremiah Martino
- Division of Nephrology, Columbia University, New York, NY 10032, USA
| | - Bodo B Beck
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Center for Molecular Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | | | - Shoji Yano
- Genetics Division, Department of Pediatrics, LAC+USC Medical Center, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Talha Gunduz
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Heidi Cope
- Department of Pediatrics, Division of Medical Genetics. Duke University Medical Center, Durham, NC 27710, USA
| | - Vandana Shashi
- Department of Pediatrics, Division of Medical Genetics. Duke University Medical Center, Durham, NC 27710, USA
| | - Howard Trachtman
- Department of Pediatrics, Division of Nephrology, New York University Langone Health, New York, NY 10016, USA
| | - Monica Bodria
- Division of Nephrology, Dialysis and Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, 16147 Genova GE, Italy
| | - Gianluca Caridi
- Division of Nephrology, Dialysis and Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, 16147 Genova GE, Italy
| | - Isabella Pisani
- U.O. Nefrologia, Azienda Ospedaliero-Universitaria di Parma and Dipartimento di Medicina e Chirurgia, Università di Parma, 43126 Parma PR, Italy
| | - Enrico Fiaccadori
- U.O. Nefrologia, Azienda Ospedaliero-Universitaria di Parma and Dipartimento di Medicina e Chirurgia, Università di Parma, 43126 Parma PR, Italy
| | - Asmaa S AbuMaziad
- Division of Pediatric Nephrology, University of Arizona-Tucson, AZ 85724, USA
| | - Julian A Martinez-Agosto
- Department of Pediatrics, Division of Medical Genetics, UCLA, Los Angeles, CA 90095, USA; Department of Human Genetics, UCLA, Los Angeles, CA 90095, USA; Department of Psychiatry, UCLA, Los Angeles, CA 90095, USA
| | - Ora Yadin
- Division of Pediatric Nephrology, UCLA, Los Angeles, CA 90095, USA
| | - Jonathan Zuckerman
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Arang Kim
- Department of Pediatrics, Division of Medical Genetics, UCLA, Los Angeles, CA 90095, USA
| | | | - Amanda V Tyndall
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jillian S Parboosingh
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Agnieszka Bierzynska
- Bristol Renal, University of Bristol and Bristol Royal Hospital for Children, Bristol BS2 8BJ, UK
| | - Ania B Koziell
- Department of Paediatric Nephrology, Evelina London, London SE1 7EH, UK; Faculty of Life Sciences, King's College London SE1 9RT, UK
| | - Mordi Muorah
- Renal Unit, Birmingham Children's Hospital, Birmingham, B4 6NH, UK
| | - Moin A Saleem
- Bristol Renal, University of Bristol and Bristol Royal Hospital for Children, Bristol BS2 8BJ, UK
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Ali G Gharavi
- Division of Nephrology, Columbia University, New York, NY 10032, USA
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; New York Genome Center, New York, NY 10013, USA
| | - Emma Pierce-Hoffman
- Broad Center for Mendelian Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Eleanor G Seaby
- Broad Center for Mendelian Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Anne O'Donnell-Luria
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Broad Center for Mendelian Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Heidi L Rehm
- Broad Center for Mendelian Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Vivette D D'Agati
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Martin R Pollak
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis and Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, 16147 Genova GE, Italy
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, CT 06520, USA; Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - David B Goldstein
- Institute of Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Erica E Davis
- Center for Disease Modeling, Duke University, Durham, NC 27701, USA; Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
34
|
TRIM Proteins in Inflammation: from Expression to Emerging Regulatory Mechanisms. Inflammation 2021; 44:811-820. [PMID: 33415537 DOI: 10.1007/s10753-020-01394-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/07/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Inflammation is an immune response to exogenous or endogenous insults that helps to maintain the tissue homeostasis under stressful conditions. Depending on the differential types of insults, inflammation is classified into microbial, autoimmune, metabolic, allergic, and physical inflammation. With regard to its involvement in the pathogenesis of most of human diseases, dissecting the key molecules in the regulation of inflammatory process is vital for the prevention and therapeutics of human diseases. Tripartite motif (TRIM) proteins are a versatile family of E3 ligases, which are composed of > 80 distinct members in humans recognized for their roles in antiviral responses. Recently, a large number of studies have shown the regulatory roles of TRIM proteins in mediating the inflammation. Herein in this review, we discuss the aberrations of TRIM proteins in autoimmune and autoinflammatory diseases, with a focus on the regulation of different components of inflammatory process, including inflammasome, NF-κB signaling, type I IFN (interferon) production, and Th1/Th17 cell differentiation. Importantly, elucidation of the mechanism underlying the regulation of inflammation by TRIMs provides insights into the use of TRIMs as therapeutic targets for disease treatment.
Collapse
|
35
|
Danov O, Wolff M, Bartel S, Böhlen S, Obernolte H, Wronski S, Jonigk D, Hammer B, Kovacevic D, Reuter S, Krauss-Etschmann S, Sewald K. Cigarette Smoke Affects Dendritic Cell Populations, Epithelial Barrier Function, and the Immune Response to Viral Infection With H1N1. Front Med (Lausanne) 2020; 7:571003. [PMID: 33240904 PMCID: PMC7678748 DOI: 10.3389/fmed.2020.571003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/25/2020] [Indexed: 01/21/2023] Open
Abstract
Smokers with apparently “healthy” lungs suffer from more severe and frequent viral respiratory infections, but the mechanisms underlying this observation are still unclear. Epithelial cells and dendritic cells (DC) form the first line of defense against inhaled noxes such as smoke or viruses. We therefore aimed to obtain insight into how cigarette smoke affects DCs and epithelial cells and how this influences the response to viral infection. Female C57BL/6J mice were exposed to cigarette smoke (CS) for 1 h daily for 24 days and then challenged i.n. with the viral mimic and Toll-like receptor 3 (TLR3) ligand poly (I:C) after the last exposure. DC subpopulations were analyzed 24 h later in whole lung homogenates by flow cytometry. Calu-3 cells or human precision-cut lung slices (PCLS) cultured at air-liquid interface were exposed to CS or air and subsequently inoculated with influenza H1N1. At 48 h post infection cytokines were analyzed by multiplex technology. Cytotoxic effects were measured by release of lactate dehydrogenase (LDH) and confocal imaging. In Calu-3 cells the trans-epithelial electrical resistance (TEER) was assessed. Smoke exposure of mice increased numbers of inflammatory and plasmacytoid DCs in lung tissue. Additional poly (I:C) challenge further increased the population of inflammatory DCs and conventional DCs, especially CD11b+ cDCs. Smoke exposure led to a loss of the barrier function in Calu-3 cells, which was further exaggerated by additional influenza H1N1 infection. Influenza H1N1-induced secretion of antiviral cytokines (IFN-α2a, IFN-λ, interferon-γ-induced protein 10 [IP-10]), pro-inflammatory cytokine IL-6, as well as T cell-associated cytokines (e.g., I-TAC) were completely suppressed in both Calu-3 cells and human PCLS after smoke exposure. In summary, cigarette smoke exposure increased the number of inflammatory DCs in the lung and disrupted epithelial barrier functions, both of which was further enhanced by viral stimulation. Additionally, the antiviral immune response to influenza H1N1 was strongly suppressed by smoke. These data suggest that smoke impairs protective innate mechanisms in the lung, which could be responsible for the increased susceptibility to viral infections in “healthy” smokers.
Collapse
Affiliation(s)
- Olga Danov
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Centre for Immune Mediated Diseases (CIMD), Hanover, Germany
| | - Martin Wolff
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Sabine Bartel
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Department of Pathology and Medical Biology, University Medical Center Groningen, GRIAC Research Institute, University of Groningen, Groningen, Netherlands
| | - Sebastian Böhlen
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Centre for Immune Mediated Diseases (CIMD), Hanover, Germany
| | - Helena Obernolte
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Centre for Immune Mediated Diseases (CIMD), Hanover, Germany
| | - Sabine Wronski
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Centre for Immune Mediated Diseases (CIMD), Hanover, Germany
| | - Danny Jonigk
- Department of Pathology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hanover, Germany
| | - Barbara Hammer
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Draginja Kovacevic
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Sebastian Reuter
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Department of Pulmonary Medicine, University Medical Center Essen - Ruhrlandklinik, Essen, Germany
| | - Susanne Krauss-Etschmann
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Asthma Research, Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Centre for Immune Mediated Diseases (CIMD), Hanover, Germany
| |
Collapse
|
36
|
Vila IK, Fretaud M, Vlachakis D, Laguette N, Langevin C. Animal Models for the Study of Nucleic Acid Immunity: Novel Tools and New Perspectives. J Mol Biol 2020; 432:5529-5543. [PMID: 32860771 PMCID: PMC7611023 DOI: 10.1016/j.jmb.2020.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 02/08/2023]
Abstract
Unresolved inflammation fosters and supports a wide range of human pathologies. There is growing evidence for a role played by cytosolic nucleic acids in initiating and supporting pathological chronic inflammation. In particular, the cGAS-STING pathway has emerged as central to the mounting of nucleic acid-dependent type I interferon responses, leading to the identification of small-molecule modulators of STING that have raised clinical interest. However, several new challenges have emerged, representing potential obstacles to efficient clinical translation. Indeed, the current literature underscores that nucleic acid-induced inflammatory responses are subjected to several layers of regulation, further suggesting complex coordination at the cell-type, tissue or organism level. Untangling the underlying processes is paramount to the identification of specific therapeutic strategies targeting deleterious inflammation. Herein, we present an overview of human pathologies presenting with deregulated interferon levels and with accumulation of cytosolic nucleic acids. We focus on the central role of the STING adaptor protein in these pathologies and discuss how in vivo models have forged our current understanding of nucleic acid immunity. We present our opinion on the advantages and limitations of zebrafish and mice models to highlight their complementarity for the study of inflammatory human pathologies and the development of therapeutics. Finally, we discuss high-throughput screening strategies that generate multi-parametric datasets that allow integrative analysis of heterogeneous information (imaging and omics approaches). These approaches are likely to structure the future of screening strategies for the treatment of human pathologies.
Collapse
Affiliation(s)
- Isabelle K Vila
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France.
| | - Maxence Fretaud
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; University Research Institute of Maternal and Child Health & Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nadine Laguette
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France
| | | |
Collapse
|
37
|
Abstract
The human tripartite motif containing protein 8 (TRIM8), a member of TRIM family proteins, is known to play a dual role as both tumor suppressor and oncogene, and to function at the crosstalk of cancer and innate immunity. In this review, in addition to accumulating recent corroborations that endorse this dual character of TRIM8, we appraise the game-changing capacity of TRIM8 under stress conditions against the backdrop of cell proliferation, apoptosis, and cancer, and also highlight the duality of TRIM8 in multiple contexts like cellular localization, stress-induced conditions, and E3 ubiquitin ligase activity. Finally, we discuss the emerging role of TRIM8 during bipolar spindle formation and mitotic progression, and its growing sphere of influence across multiple human cancers and pathologies, and suggest TRIM8-linked axes that can be modulated further for anti-cancer therapeutics development.
Collapse
Affiliation(s)
- Utsa Bhaduri
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (Foggia), Italy.,PhD Programme in Molecular Biomedicine, Department of Life Sciences, University of Trieste, Trieste, Italy.,European Union's Horizon 2020 TRIM-NET Innovative Training Network (ITN) of Marie Sklodowska-Curie Actions (MSCA), University of Trieste, Trieste, Italy
| | - Giuseppe Merla
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (Foggia), Italy
| |
Collapse
|
38
|
Song Z, Bian Y, Liu J, Sun Y, Xu D. B-box proteins: Pivotal players in light-mediated development in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1293-1309. [PMID: 32237198 DOI: 10.1111/jipb.12935] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/25/2020] [Indexed: 05/05/2023]
Abstract
Light signals mediate a number of physiological and developmental processes in plants, such as flowering, photomorphogenesis, and pigment accumulation. Emerging evidence has revealed that a group of B-box proteins (BBXs) function as central players in these light-mediated developmental processes. B-box proteins are a class of zinc-coordinated transcription factors or regulators that not only directly mediate the transcription of target genes but also interact with various other factors to create a complex regulatory network involved in the precise control of plant growth and development. This review summarizes and highlights the recent findings concerning the critical regulatory functions of BBXs in photoperiodic flowering, light signal transduction and light-induced pigment accumulation and their molecular modes of action at the transcriptional and post-translational levels in plants.
Collapse
Affiliation(s)
- Zhaoqing Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yeting Bian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiujie Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuting Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
39
|
Koepke L, Gack MU, Sparrer KM. The antiviral activities of TRIM proteins. Curr Opin Microbiol 2020; 59:50-57. [PMID: 32829025 DOI: 10.1016/j.mib.2020.07.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 01/04/2023]
Abstract
Tripartite motif (TRIM) proteins are a highly versatile family of host-cell factors that play an integral role in the mammalian defense against pathogens. TRIM proteins regulate either transcription-dependent antiviral responses such as pro-inflammatory cytokine induction, or they modulate other important cell-intrinsic defense pathways like autophagy. Additionally, TRIM proteins exert direct antiviral activity whereby they antagonize specific viral components through diverse mechanisms. Here, we summarize the latest discoveries on the molecular mechanisms of antiviral TRIM proteins and also discuss current and future trends in this fast-evolving field.
Collapse
Affiliation(s)
- Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, United States; Department of Microbiology, The University of Chicago, Chicago, IL 60637, United States.
| | | |
Collapse
|
40
|
Abstract
Purpose of Review Tripartite motif (TRIM) proteins are a large group of E3 ubiquitin ligases involved in different cellular functions. Of special interest are their roles in innate immunity, inflammation, and virus replication. We discuss novel roles of TRIM proteins during virus infections that lead to increased pathogenicity. Recent Findings TRIM proteins regulate different antiviral and inflammatory signaling pathways, mostly by promoting ubiquitination of important factors including pattern recognition receptors, adaptor proteins, kinases, and transcription factors that are involved in type I interferon and NF-κB pathways. Therefore, viruses have developed mechanisms to target TRIMs for immune evasion. New evidence is emerging indicating that viruses have the ability to directly use TRIMs and the ubiquitination process to enhance the viral replication cycle and cause increased pathogenesis. A new report on TRIM7 also highlights the potential pro-viral role of TRIMs via ubiquitination of viral proteins and suggests a novel mechanism by which ubiquitination of virus envelope protein may provide determinants of tissue and species tropism. Summary TRIM proteins have important functions in promoting host defense against virus infection; however, viruses have adapted to evade TRIM-mediated immune responses and can hijack TRIMs to ultimately increase virus pathogenesis. Only by understanding specific TRIM-virus interactions and by using more in vivo approaches can we learn how to harness TRIM function to develop therapeutic approaches to reduce virus pathogenesis.
Collapse
|
41
|
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic. An unbalanced immune response, characterized by a weak production of type I interferons (IFN-Is) and an exacerbated release of proinflammatory cytokines, contributes to the severe forms of the disease. SARS-CoV-2 is genetically related to SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV), which caused outbreaks in 2003 and 2013, respectively. Although IFN treatment gave some encouraging results against SARS-CoV and MERS-CoV in animal models, its potential as a therapeutic against COVID-19 awaits validation. Here, we describe our current knowledge of the complex interplay between SARS-CoV-2 infection and the IFN system, highlighting some of the gaps that need to be filled for a better understanding of the underlying molecular mechanisms. In addition to the conserved IFN evasion strategies that are likely shared with SARS-CoV and MERS-CoV, novel counteraction mechanisms are being discovered in SARS-CoV-2-infected cells. Since the last coronavirus epidemic, we have made considerable progress in understanding the IFN-I response, including its spatiotemporal regulation and the prominent role of plasmacytoid dendritic cells (pDCs), which are the main IFN-I-producing cells. While awaiting the results of the many clinical trials that are evaluating the efficacy of IFN-I alone or in combination with antiviral molecules, we discuss the potential benefits of a well-timed IFN-I treatment and propose strategies to boost pDC-mediated IFN responses during the early stages of viral infection.
Collapse
Affiliation(s)
- Margarida Sa Ribero
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | | | - Marlène Dreux
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Sébastien Nisole
- IRIM, CNRS UMR9004, Université de Montpellier, Montpellier, France
| |
Collapse
|
42
|
MicroRNA-665-3p attenuates oxygen-glucose deprivation-evoked microglial cell apoptosis and inflammatory response by inhibiting NF-κB signaling via targeting TRIM8. Int Immunopharmacol 2020; 85:106650. [PMID: 32512270 DOI: 10.1016/j.intimp.2020.106650] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/09/2020] [Accepted: 05/28/2020] [Indexed: 12/21/2022]
Abstract
Microglial inflammation induced by ischemic stroke aggravates brain damage. MicroRNAs (miRNAs) have emerged as pivotal regulators in ischemic stroke-induced inflammation in microglial cells. miR-665-3p has been reported as a critical inflammation-associated miRNA. However, whether miR-665-3p participates in regulating microglial inflammation during ischemic stroke is underdetermined. This study investigated the potential role of miR-665-3p in stroke-induced inflammation in microglial cells using a cellular model of oxygen-glucose deprivation (OGD)-stimulated microglial cells in vitro. We found that miR-665-3p expression was decreased in microglial cells exposed to OGD treatment. Functional experiments demonstrated that the overexpression of miR-665-3p attenuated OGD-induced apoptosis and inflammation in microglial cells. Notably, tripartite motif 8 (TRIM8) was identified as a target gene of miR-665-3p. TRIM8 expression was induced by OGD treatment in microglial cells and the knockdown of TRIM8 protected microglial cells from OGD -induced cytotoxicity and inflammation. Moreover, TRIM8 knockdown or miR-665-3p overexpression blocked OGD-induced activation of nuclear factor (NF)-κB signaling in microglial cells. In addition, TRIM8 overexpression partially reversed the miR-665-3p overexpression-mediated inhibitory effect on OGD-induced inflammation in microglial cells. Taken together, these results indicate that miR-665-3p up-regulation protects microglial cells from OGD-induced apoptosis and inflammatory response by targeting TRIM8 to inhibit NF-κB signaling.
Collapse
|
43
|
Zhang L, Hofer TP, Zawada AM, Rotter B, Krezdorn N, Noessner E, Devaux Y, Heine G, Ziegler-Heitbrock L. Epigenetics in non-classical monocytes support their pro-inflammatory gene expression. Immunobiology 2020; 225:151958. [PMID: 32517883 DOI: 10.1016/j.imbio.2020.151958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 01/12/2023]
Abstract
Non-classical human monocytes are characterized by high-level expression of cytokines like TNF, but the mechanisms involved are elusive. We have identified miRNAs and CpG-methylation sites that are unique to non-classical monocytes, defined via CD14 and CD16 expression levels. For down-regulated miRNAs that are linked to up-regulated mRNAs the dominant gene ontology term was intracellular signal transduction. This included down-regulated miRNA-20a-5p and miRNA-106b-5p, which both are linked to increased mRNA for the TRIM8 signaling molecule. Methylation analysis revealed 16 hypo-methylated CpG sites upstream of 14 differentially increased mRNAs including 2 sites upstream of TRIM8. Consistent with a positive role in signal transduction, high TRIM8 levels went along with high basal TNF mRNA levels in non-classical monocytes. Since cytokine expression levels in monocytes strongly increase after stimulation with toll-like-receptor ligands, we have analyzed non-classical monocytes (defined via slan expression) after stimulation with lipopolysaccharide (LPS). LPS-stimulated cells continued to have low miRNA-20a and miRNA-106b and high TRIM8 mRNA levels and they showed a 10-fold increase in TNF mRNA. These data suggest that decreased miRNAs and CpG hypo-methylation is linked to enhanced expression of TRIM8 and that this can contribute to the increased TNF levels in non-classical human monocytes.
Collapse
Affiliation(s)
- Lu Zhang
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg
| | - Thomas P Hofer
- Immunoanalytics Research Group Tissue Control of Immunocytes, Helmholtz Center Munich, Munich, Germany
| | - Adam M Zawada
- Department of Internal Medicine IV, Saarland University Medical Center, Homburg, Germany
| | | | | | - Elfriede Noessner
- Immunoanalytics Research Group Tissue Control of Immunocytes, Helmholtz Center Munich, Munich, Germany
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg
| | - Gunnar Heine
- Department of Internal Medicine IV, Saarland University Medical Center, Homburg, Germany
| | | |
Collapse
|
44
|
Maarifi G, Smith N, Nisole S. [Interferon response: with great power comes great responsibility]. Med Sci (Paris) 2020; 36:206-209. [PMID: 32228834 DOI: 10.1051/medsci/2020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ghizlane Maarifi
- Institut de recherche en infectiologie de Montpellier (IRIM), CNRS UMR9004, université de Montpellier, 1919 route de Mende, 34090 Montpellier, France
| | - Nikaïa Smith
- Immunobiologie des cellules dendritiques, Inserm U1223, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | - Sébastien Nisole
- Institut de recherche en infectiologie de Montpellier (IRIM), CNRS UMR9004, université de Montpellier, 1919 route de Mende, 34090 Montpellier, France
| |
Collapse
|
45
|
Yang W, Gu Z, Zhang H, Hu H. To TRIM the Immunity: From Innate to Adaptive Immunity. Front Immunol 2020; 11:02157. [PMID: 33117334 PMCID: PMC7578260 DOI: 10.3389/fimmu.2020.02157] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/07/2020] [Indexed: 02/05/2023] Open
Abstract
The tripartite motif (TRIM) proteins have been intensively studied as essential modulators in various biological processes, especially in regulating a wide range of signaling pathways involved in immune responses. Most TRIM proteins have E3 ubiquitin ligase activity, mediating polyubiquitination of target proteins. Emerging evidence demonstrates that TRIM proteins play important roles in innate immunity by regulating pattern recognition receptors, vital adaptor proteins, kinases, and transcription factors in innate immune signaling pathways. Additionally, the critical roles of TRIM proteins in adaptive immunity, especially in T cell development and activation, are increasingly appreciated. In this review, we aim to summarize the studies on TRIMs in both innate and adaptive immunity, focusing on their E3 ubiquitin ligase functions in pattern recognition receptor signaling pathways and T cell functions, shedding light on the developing new strategies for modulating innate and adaptive immune responses against invading pathogens and avoiding autoimmunity.
Collapse
Affiliation(s)
| | | | | | - Hongbo Hu
- *Correspondence: Huiyuan Zhang, ; Hongbo Hu,
| |
Collapse
|