1
|
Yusuf A, Li M, Zhang SY, Odedishemi-Ajibade F, Luo RF, Wu YX, Zhang TT, Yunusa Ugya A, Zhang Y, Duan S. Harnessing plant-microbe interactions: strategies for enhancing resilience and nutrient acquisition for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2025; 16:1503730. [PMID: 40336613 PMCID: PMC12056976 DOI: 10.3389/fpls.2025.1503730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/28/2025] [Indexed: 05/09/2025]
Abstract
The rhizosphere, a biologically active zone where plant roots interface with soil, plays a crucial role in enhancing plant health, resilience, and stress tolerance. As a key component in achieving Sustainable Development Goal 2, the rhizosphere is increasingly recognized for its potential to promote sustainable agricultural productivity. Engineering the rhizosphere microbiome is emerging as an innovative strategy to foster plant growth, improve stress adaptation, and restore soil health while mitigating the detrimental effects of conventional farming practices. This review synthesizes recent advancements in omics technologies, sequencing tools, and synthetic microbial communities (SynComs), which have provided insights into the complex interactions between plants and microbes. We examine the role of root exudates, composed of organic acids, amino acids, sugars, and secondary metabolites, as biochemical cues that shape beneficial microbial communities in the rhizosphere. The review further explores how advanced omics techniques like metagenomics and metabolomics are employed to elucidate the mechanisms by which root exudates influence microbial communities and plant health. Tailored SynComs have shown promising potential in enhancing plant resilience against both abiotic stresses (e.g., drought and salinity) and biotic challenges (e.g., pathogens and pests). Integration of these microbiomes with optimized root exudate profiles has been shown to improve nutrient cycling, suppress diseases, and alleviate environmental stresses, thus contributing to more sustainable agricultural practices. By leveraging multi-disciplinary approaches and optimizing root exudate profiles, ecological engineering of plant-microbiome interactions presents a sustainable pathway for boosting crop productivity. This approach also aids in managing soil-borne diseases, reducing chemical input dependency, and aligning with Sustainable Development Goals aimed at global food security and ecological sustainability. The ongoing research into rhizosphere microbiome engineering offers significant promise for ensuring long-term agricultural productivity while preserving soil and plant health for future generations.
Collapse
Affiliation(s)
- Abdulhamid Yusuf
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Plant Science and Biotechnology, Federal University, Dutsin-ma, Katsina State, Nigeria
| | - Min Li
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Si-Yu Zhang
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Fidelis Odedishemi-Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology Akure, Akure, Nigeria
| | - Rui-Fang Luo
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Ya-Xiao Wu
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Ting-Ting Zhang
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Adamu Yunusa Ugya
- Department of Environmental Management, Kaduna State University, Kaduna State, Kaduna, Nigeria
| | - Yunzeng Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shuo Duan
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
2
|
Liu X, Zhang G, Ling J. New Dawn of Edible and Medicinal Fungi Unlocking Central Nervous System Diseases. J Food Sci 2025; 90:e70230. [PMID: 40285455 DOI: 10.1111/1750-3841.70230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Central nervous system (CNS) diseases present unique clinical challenges characterized by insidious symptom onset, complex pathophysiology with incomplete mechanistic understanding, and substantial difficulties in therapeutic evaluation, thereby these inherent complexities create substantial obstacles for developing effective CNS diseases management strategies. Certain edible and medicinal fungi contain bioactive components, including polysaccharides, triterpenoids, alkaloids, and so on, which have therapeutic promise for CNS diseases. This paper reviews the current research advancements regarding the use of edible and medicinal fungi in the context of CNS diseases, highlighting their advantages as prospective therapeutic options and potential roles in both prevention and treatment. Through a comprehensive analysis of existing studies, the mechanisms and applications of these fungi are elucidated, providing valuable insights for the development of novel pharmaceuticals or functional foods aimed at combating CNS diseases.
Collapse
Affiliation(s)
- Xiaojin Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Pharmacy, Shandong Medical College, Linyi, China
| | - Guoying Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianya Ling
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Xiang F, Zhang Z, Xie J, Xiong S, Yang C, Liao D, Xia B, Lin L. Comprehensive review of the expanding roles of the carnitine pool in metabolic physiology: beyond fatty acid oxidation. J Transl Med 2025; 23:324. [PMID: 40087749 PMCID: PMC11907856 DOI: 10.1186/s12967-025-06341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/01/2025] [Indexed: 03/17/2025] Open
Abstract
Traditionally, the carnitine pool is closely related to fatty acid metabolism. However, with increasing research, the pleiotropic effects of the carnitine pool have gradually emerged. The purpose of this review is to comprehensively investigate of the emerging understanding of the pleiotropic role of the carnitine pool, carnitine/acylcarnitines are not only auxiliaries or metabolites of fatty acid oxidation, but also play more complex and diverse roles, including energy metabolism, mitochondrial homeostasis, epigenetic regulation, regulation of inflammation and the immune system, tumor biology, signal transduction, and neuroprotection. This review provides an overview of the complex network of carnitine synthesis, transport, shuttle, and regulation, carnitine/acylcarnitines have the potential to be used as communication molecules, biomarkers and therapeutic targets for multiple diseases, with profound effects on intercellular communication, metabolic interactions between organs and overall metabolic health. The purpose of this review is to comprehensively summarize the multidimensional biological effects of the carnitine pool beyond its traditional role in fatty acid oxidation and to summarize the systemic effects mediated by carnitine/acylcarnitine to provide new perspectives for pharmacological research and treatment innovation and new strategies for the prevention and treatment of a variety of diseases.
Collapse
Affiliation(s)
- Feng Xiang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jingchen Xie
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Suhui Xiong
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chen Yang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bohou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
4
|
Said SS, Ibrahim WN. Gut Microbiota-Tumor Microenvironment Interactions: Mechanisms and Clinical Implications for Immune Checkpoint Inhibitor Efficacy in Cancer. Cancer Manag Res 2025; 17:171-192. [PMID: 39881948 PMCID: PMC11776928 DOI: 10.2147/cmar.s405590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/21/2024] [Indexed: 01/31/2025] Open
Abstract
Cancer immunotherapy has transformed cancer treatment in recent years, with immune checkpoint inhibitors (ICIs) emerging as a key therapeutic approach. ICIs work by inhibiting the mechanisms that allow tumors to evade immune detection. Although ICIs have shown promising results, especially in solid tumors, patient responses vary widely due to multiple intrinsic and extrinsic factors within the tumor microenvironment. Emerging evidence suggests that the gut microbiota plays a pivotal role in modulating immune responses at the tumor site and may even influence treatment outcomes in cancer patients receiving ICIs. This review explores the complex interactions between the gut microbiota and the tumor microenvironment, examining how these interactions could impact the effectiveness of ICI therapy. Furthermore, we discuss how dysbiosis, an imbalance in gut microbiota composition, may contribute to resistance to ICIs, and highlight microbiota-targeted strategies to potentially overcome this challenge. Additionally, we review recent studies investigating the diagnostic potential of microbiota profiles in cancer patients, considering how microbial markers might aid in early detection and stratification of patient responses to ICIs. By integrating insights from recent preclinical and clinical studies, we aim to shed light on the potential of microbiome modulation as an adjunct to cancer immunotherapy and as a diagnostic tool, paving the way for personalized therapeutic approaches that optimize patient outcomes.
Collapse
Affiliation(s)
- Sawsan Sudqi Said
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Weinberg J, Liu KH, Lee CM, Crandall WJ, Cuevas AR, Druzak SA, Morgan ET, Jarrell ZR, Ortlund EA, Martin GS, Singer G, Strobel FH, Go YM, Jones DP. Mammalian hydroxylation of microbiome-derived obesogen, delta-valerobetaine, to homocarnitine, a 5-carbon carnitine analog. J Biol Chem 2025; 301:108074. [PMID: 39675709 PMCID: PMC11773067 DOI: 10.1016/j.jbc.2024.108074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/04/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024] Open
Abstract
The recently discovered microbiome-generated obesogen, δ-valerobetaine (5-(trimethylammonio)pentanoate), is a 5-carbon structural analog of the carnitine precursor, γ-butyrobetaine. Here, we report that δ-valerobetaine is enzymatically hydroxylated by mammalian γ-butyrobetaine dioxygenase (BBOX) to form 3-hydroxy-5-(trimethylammonio)pentanoate, a 5-carbon analog of carnitine, which we term homocarnitine. Homocarnitine production by human liver extracts depends upon the required BBOX cofactors, 2-oxoglutarate, Fe2+, and ascorbate. Molecular dynamics simulations show successful docking of δ-valerobetaine and homocarnitine to BBOX, pharmacological inhibition of BBOX prevents homocarnitine production, and transfection of a liver cell line with BBOX substantially increases production. Furthermore, an in vivo isotope tracer study shows the conversion of 13C3-trimethyllysine to 13C3-δ-valerobetaine then 13C3-homocarnitine in mice, confirming the in vivo production of homocarnitine. Functional assays show that carnitine palmitoyltransferase acylates homocarnitine to acyl-homocarnitine, analogous to the reactions for the carnitine shuttle. Studies of mouse tissues and human plasma show widespread distribution of homocarnitine and fatty acyl-homocarnitines. The respective structural similarities of homocarnitine and acyl-homocarnitines to carnitine and acyl-carnitines indicate that homocarnitine could impact multiple sites of carnitine distribution and activity, potentially mediating microbiome-associated obesity and metabolic disorders.
Collapse
Affiliation(s)
- Jaclyn Weinberg
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ken H Liu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Choon-Myung Lee
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William J Crandall
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - André R Cuevas
- Department of Biochemistry, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Samuel A Druzak
- Department of Biochemistry, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Edward T Morgan
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, USA
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Eric A Ortlund
- Department of Biochemistry, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Greg S Martin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Grant Singer
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
6
|
Jia W, Peng J, Zhang Y, Zhu J, Qiang X, Zhang R, Shi L. Amelioration impact of gut-brain communication on obesity control by regulating gut microbiota composition through the ingestion of animal-plant-derived peptides and dietary fiber: can food reward effect as a hidden regulator? Crit Rev Food Sci Nutr 2024; 64:11575-11589. [PMID: 37526310 DOI: 10.1080/10408398.2023.2241078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Various roles of intestinal flora in the gut-brain axis response pathway have received enormous attention because of their unique position in intestinal flora-derived metabolites regulating hormones, inducing appetite, and modulating energy metabolism. Reward pathways in the brain play a crucial role in gut-brain communications, but the mechanisms have not been methodically understood. This review outlined the mechanisms by which leptin, ghrelin, and insulin are influenced by intestinal flora-derived metabolites to regulate appetite and body weight, focused on the significance of the paraventricular nucleus and ventromedial prefrontal cortex in food reward. The vagus nerve and mitochondria are essential pathways of the intestinal flora involved in the modulation of neurotransmitters, neural signaling, and neurotransmission in gut-brain communications. The dynamic response to nutrient intake and changes in the characteristics of feeding activity requires the participation of the vagus nerve to transmit messages to be completed. SCFAs, Bas, BCAAs, and induced hormones mediate the sensory information and reward signaling of the host in the complex regulatory mechanism of food selection, and the composition of the intestinal flora significantly impacts this process. Food reward in the process of obesity based on gut-brain communications expands new ideas for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
- Shaanxi Sky Pet Biotechnology Co., Ltd, Xi'an, China
| | - Jian Peng
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yan Zhang
- Inspection and Testing Center of Fuping County (Shaanxi Goat Milk Product Quality Supervision and Inspection Center), Wei nan, China
| | - Jiying Zhu
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xin Qiang
- Inspection and Testing Center of Fuping County (Shaanxi Goat Milk Product Quality Supervision and Inspection Center), Wei nan, China
| | - Rong Zhang
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Lin Shi
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
7
|
Adams L, Li X, Burchmore R, Goodwin RJA, Wall DM. Microbiome-derived metabolite effects on intestinal barrier integrity and immune cell response to infection. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001504. [PMID: 39392674 PMCID: PMC11469068 DOI: 10.1099/mic.0.001504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
The gut microbiota exerts a significant influence on human health and disease. While compositional changes in the gut microbiota in specific diseases can easily be determined, we lack a detailed mechanistic understanding of how these changes exert effects at the cellular level. However, the putative local and systemic effects on human physiology that are attributed to the gut microbiota are clearly being mediated through molecular communication. Here, we determined the effects of gut microbiome-derived metabolites l-tryptophan, butyrate, trimethylamine (TMA), 3-methyl-4-(trimethylammonio)butanoate (3,4-TMAB), 4-(trimethylammonio)pentanoate (4-TMAP), ursodeoxycholic acid (UDCA), glycocholic acid (GCA) and benzoate on the first line of defence in the gut. Using in vitro models of intestinal barrier integrity and studying the interaction of macrophages with pathogenic and non-pathogenic bacteria, we could ascertain the influence of these metabolites at the cellular level at physiologically relevant concentrations. Nearly all metabolites exerted positive effects on barrier function, but butyrate prevented a reduction in transepithelial resistance in the presence of the pathogen Escherichia coli, despite inducing increased apoptosis and exerting increased cytotoxicity. Induction of IL-8 was unaffected by all metabolites, but GCA stimulated increased intra-macrophage growth of E. coli and tumour necrosis-alpha (TNF-α) release. Butyrate, 3,4-TMAB and benzoate all increased TNF-α release independent of bacterial replication. These findings reiterate the complexity of understanding microbiome effects on host physiology and underline that microbiome metabolites are crucial mediators of barrier function and the innate response to infection. Understanding these metabolites at the cellular level will allow us to move towards a better mechanistic understanding of microbiome influence over host physiology, a crucial step in advancing microbiome research.
Collapse
Affiliation(s)
- Lauren Adams
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| | - Xiang Li
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| | - Richard Burchmore
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| | - Richard J. A. Goodwin
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Daniel M. Wall
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
8
|
Shekarabi A, Qureishy I, Puglisi CH, Dalseth M, Vuong HE. Host-microbe interactions: communication in the microbiota-gut-brain axis. Curr Opin Microbiol 2024; 80:102494. [PMID: 38824840 PMCID: PMC11323153 DOI: 10.1016/j.mib.2024.102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
Animals harbor a diverse array of symbiotic micro-organisms that coexist in communities across different body sites. These microbes maintain host homeostasis and respond to environmental insults to impact host physiological processes. Trillions of indigenous microbes reside in the gastrointestinal tract and engage with the host central nervous system (microbiota-gut-brain axis) by modulating immune responses, interacting with gut intrinsic and extrinsic nervous system, and regulating neuromodulators and biochemicals. These gut microbiota to brain signaling pathways are constantly informed by each other and are hypothesized to mediate brain health across the lifespan. In this review, we will examine the crosstalk of gut microbiota to brain communications in neurological pathologies, with an emphasis on microbial metabolites and neuromodulators, and provide a discussion of recent advances that help elucidate the microbiota as a therapeutic target for treating brain and behavioral disorders.
Collapse
Affiliation(s)
- Aryan Shekarabi
- University of Minnesota Twin-Cities, Department of Pediatrics, Neonatology Division, USA
| | - Izhan Qureishy
- University of Minnesota Twin-Cities, Department of Pediatrics, Neonatology Division, USA
| | - Chloe H Puglisi
- University of Minnesota Twin-Cities, Department of Pediatrics, Neonatology Division, USA
| | - Marge Dalseth
- University of Minnesota Twin-Cities, Department of Pediatrics, Neonatology Division, USA
| | - Helen E Vuong
- University of Minnesota Twin-Cities, Department of Pediatrics, Neonatology Division, USA.
| |
Collapse
|
9
|
Qin Z, Li Y, Liu D, Hua Y, Lv Y, Zhang X, Fan C, Yang J. Deciphering the benefits and intensity levels of primary metabolites from Allium macrostemon Bunge and Allium chinense G. Don. Chin Med 2024; 19:99. [PMID: 39010119 PMCID: PMC11251333 DOI: 10.1186/s13020-024-00957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/31/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Allii Macrostemonis Bulbus is also named Xiebai in China. It is an edible vegetable, and also a famous herb for treating coronary heart disease. Allium chinense G. Don (ACGD) and Allium macrostemon Bunge (AMB) are it botanical sources. The aim of this study was to explore the cardioprotective effects, and decipher the visual spatial distribution and absolute content of primary metabolites derived from these two herbs. METHODS H9c2 cells were used to perform the hypoxia-reoxygenation (H/R)-induced myocardial injury model. Their protective effects were evaluated by apoptosis levels. Furthermore, matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry imaging approach (MALDI-TOF MSI) was carried out to present the spatial location of primary metabolites including fatty acids, amino acids, carotenoids, and vitamins in these two Allium herbs. Multiple analytical methods were applied to perform quantitative analysis of these primary metabolites in AMB and ACGD bulbs by liquid chromatography tandem mass spectrometry (LC-MS). RESULTS First, AMB and ACGD extracts both could increase the cell viability in H9c2 cells, and attenuate H/R-induced injury. They markedly decreased apoptosis, accompanied by activating the BCL-2/BAX pathway. Further, MALDI-TOF MSI-based relative quantification results showed several amino acids, fatty acids, carotenoids, and vitamins were largely rich in the tunics and outside scales of fresh bulbs, while some primary metabolites were abundant in their developing flower buds. Absolute quantification results displayed total contents of amino acids in ACGD bulbs were higher than those in AMB, while total contents of fatty acids and vitamins provides opposite trends in these two Allium herbs. The total contents of carotenoids and trace elements showed no significant differences between AMB and ACGD samples. CONCLUSIONS This study would be helpful to understand the myocardial injury protection effects of these two Allium herbs, and the spatial accumulation and quantitative content levels of their main nutrients.
Collapse
Affiliation(s)
- Zifei Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuan Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dongmei Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuzhuo Hua
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, 467000, China
| | - Yuandong Lv
- Hangzhou EXPECLIN Medical Technology Co., Ltd., Hangzhou, 311305, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Research Center of Application & Translation of Precision Clinical Pharmacy, Zhengzhou, 450052, China
| | - Cailian Fan
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, 467000, China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Engineering Research Center of Application & Translation of Precision Clinical Pharmacy, Zhengzhou, 450052, China.
| |
Collapse
|
10
|
Wheeler K, Gosmanov C, Sandoval MJ, Yang Z, McCall LI. Frontiers in Mass Spectrometry-Based Spatial Metabolomics: Current Applications and Challenges in the Context of Biomedical Research. Trends Analyt Chem 2024; 175:117713. [PMID: 40094101 PMCID: PMC11905388 DOI: 10.1016/j.trac.2024.117713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Metabolites are critical products and mediators of cellular and tissue function, and key signals in cell-to-cell, organ-to-organ and cross-organism communication. Many of these interactions are spatially segregated. Thus, spatial metabolomics can provide valuable insight into healthy tissue function and disease pathogenesis. Here, we review major mass spectrometry-based spatial metabolomics techniques and the biological insights they have enabled, with a focus on brain and microbiota function and on cancer, neurological diseases and infectious diseases. These techniques also present significant translational utility, for example in cancer diagnosis, and for drug development. However, spatial mass spectrometry techniques still encounter significant challenges, including artifactual features, metabolite annotation, open data, and ethical considerations. Addressing these issues represent the future challenges in this field.
Collapse
Affiliation(s)
- Kate Wheeler
- Department of Biology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Camil Gosmanov
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | | | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182
| |
Collapse
|
11
|
Yaqub A, Vojinovic D, Vernooij MW, Slagboom PE, Ghanbari M, Beekman M, van der Grond J, Hankemeier T, van Duijn CM, Ikram MA, Ahmad S. Plasma trimethylamine N-oxide (TMAO): associations with cognition, neuroimaging, and dementia. Alzheimers Res Ther 2024; 16:113. [PMID: 38769578 PMCID: PMC11103865 DOI: 10.1186/s13195-024-01480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND The gut-derived metabolite Trimethylamine N-oxide (TMAO) and its precursors - betaine, carnitine, choline, and deoxycarnitine - have been associated with an increased risk of cardiovascular disease, but their relation to cognition, neuroimaging markers, and dementia remains uncertain. METHODS In the population-based Rotterdam Study, we used multivariable regression models to study the associations between plasma TMAO, its precursors, and cognition in 3,143 participants. Subsequently, we examined their link to structural brain MRI markers in 2,047 participants, with a partial validation in the Leiden Longevity Study (n = 318). Among 2,517 participants, we assessed the risk of incident dementia using multivariable Cox proportional hazard models. Following this, we stratified the longitudinal associations by medication use and sex, after which we conducted a sensitivity analysis for individuals with impaired renal function. RESULTS Overall, plasma TMAO was not associated with cognition, neuroimaging markers or incident dementia. Instead, higher plasma choline was significantly associated with poor cognition (adjusted mean difference: -0.170 [95% confidence interval (CI) -0.297;-0.043]), brain atrophy and more markers of cerebral small vessel disease, such as white matter hyperintensity volume (0.237 [95% CI: 0.076;0.397]). By contrast, higher carnitine concurred with lower white matter hyperintensity volume (-0.177 [95% CI: -0.343;-0.010]). Only among individuals with impaired renal function, TMAO appeared to increase risk of dementia (hazard ratio (HR): 1.73 [95% CI: 1.16;2.60]). No notable differences were observed in stratified analyses. CONCLUSIONS Plasma choline, as opposed to TMAO, was found to be associated with cognitive decline, brain atrophy, and markers of cerebral small vessel disease. These findings illustrate the complexity of relationships between TMAO and its precursors, and emphasize the need for concurrent study to elucidate gut-brain mechanisms.
Collapse
Affiliation(s)
- Amber Yaqub
- Department of Epidemiology, Erasmus MC, University Medical Center, PO Box 2040, Rotterdam, CA, 3000, the Netherlands
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus MC, University Medical Center, PO Box 2040, Rotterdam, CA, 3000, the Netherlands
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC, University Medical Center, PO Box 2040, Rotterdam, CA, 3000, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - P Eline Slagboom
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center, PO Box 2040, Rotterdam, CA, 3000, the Netherlands
| | - Marian Beekman
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | | | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center, PO Box 2040, Rotterdam, CA, 3000, the Netherlands.
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus MC, University Medical Center, PO Box 2040, Rotterdam, CA, 3000, the Netherlands
| |
Collapse
|
12
|
Song Y, Xiao F, Aa J, Wang G. Desorption Electrospray Ionization Mass Spectrometry Imaging Techniques Depict a Reprogramming of Energy and Purine Metabolism in the Core Brain Regions of Chronic Social Defeat Stress Mice. Metabolites 2024; 14:284. [PMID: 38786761 PMCID: PMC11123228 DOI: 10.3390/metabo14050284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Depression is associated with pathological changes and metabolic abnormalities in multiple brain regions. The simultaneous comprehensive and in situ detection of endogenous molecules in all brain regions is essential for a comprehensive understanding of depression pathology, which is described in this paper. A method based on desorption electrospray ionization mass spectrometry imaging (DESI-MSI) technology was developed to classify mouse brain regions using characteristic lipid molecules and to detect the metabolites in mouse brain tissue samples simultaneously. The results showed that characteristic lipid molecules can be used to clearly distinguish each subdivision of the mouse brain, and the accuracy of this method is higher than that of the conventional staining method. The cerebellar cortex, medial prefrontal cortex, hippocampus, striatum, nucleus accumbens-core, and nucleus accumbens-shell exhibited the most significant differences in the chronic social defeat stress model. An analysis of metabolic pathways revealed that 13 kinds of molecules related to energy metabolism and purine metabolism exhibited significant changes. A DESI-MSI method was developed for the detection of pathological brain sections. We found, for the first time, that there are characteristic changes in the energy metabolism in the cortex and purine metabolism in the striatum, which is highly important for obtaining a deeper and more comprehensive understanding of the pathology of depression and discovering regulatory targets.
Collapse
Affiliation(s)
| | | | - Jiye Aa
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China; (Y.S.); (F.X.)
| | - Guangji Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China; (Y.S.); (F.X.)
| |
Collapse
|
13
|
Bu L, Wang C, Bai J, Song J, Zhang Y, Chen H, Suo H. Gut microbiome-based therapies for alleviating cognitive impairment: state of the field, limitations, and future perspectives. Food Funct 2024; 15:1116-1134. [PMID: 38224464 DOI: 10.1039/d3fo02307a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Cognitive impairment (CI) is a multifaceted neurological condition that can trigger negative emotions and a range of concurrent symptoms, imposing significant public health and economic burdens on society. Therefore, it is imperative to discover a remedy for CI. Nevertheless, the mechanisms behind the onset of this disease are multifactorial, which makes the search for effective amelioration difficult and complex, hindering the search for effective measures. Intriguingly, preclinical research indicates that gut microbiota by influencing brain function, plays an important role in the progression of CI. Furthermore, numerous preclinical studies have highlighted the potential of probiotics, prebiotics, fecal microbiota transplantation (FMT), and diet in modulating the gut microbiota, thereby ameliorating CI symptoms. This review provides a comprehensive evaluation of CI pathogenesis, emphasizing the contribution of gut microbiota disorders to CI development. It also summarizes and discusses current strategies and mechanisms centered on the synergistic role of gut microbiota modulation in the microbiota-gut-brain axis in CI development. Finally, problems with existing approaches are contemplated and the development of microbial modulation strategies as therapeutic approaches to promote and restore brain cognition is discussed. Further research considerations and directions are highlighted to provide ideas for future CI prevention and treatment strategies.
Collapse
Affiliation(s)
- Linli Bu
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Yuhong Zhang
- Institute of Food Sciences and Technology, Tibet Academy of Agricultural and Animal Husbandry Sciences, Xizang 850000, China
| | - Hongyu Chen
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| |
Collapse
|
14
|
Wang Y, Zhang X, Yao Y, Hu S, Wang W, Wang D, Huang C, Liu H, Zhang Q, He T, Wang S, Wu Z, Jiang R, Yang C. Inferior social hierarchy is vulnerable to anxiety-like behavior in chronic pain mice: Potential role of gut microbiota and metabolites. Neurobiol Dis 2024; 191:106402. [PMID: 38184015 DOI: 10.1016/j.nbd.2024.106402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/24/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024] Open
Abstract
Social dominance is a universal phenomenon among grouped animals that profoundly affects survival, health, and reproductive success by determining access to resources, and exerting a powerful influence on subsequent behavior. However, the understanding of pain and anxiety comorbidities in dominant or subordinate animals suffering from chronic pain is not well-defined. Here, we provide evidence that subordinate mice are more susceptible to pain-induced anxiety compared to dominant mice. We propose that the gut microbiota may play a mediating role in this mechanism. Our findings demonstrate that transplantation of fecal microbiota from subordinate mice with chronic inflammatory pain, but not dominant mice, into antibiotics-treated pseudo-germ-free mice significantly amplifies anxiety-like phenotypes, highlighting the critical involvement of gut microbiota in this behavioral response. Using chronic inflammatory pain model, we carried out 16S rRNA sequencing and untargeted metabolomic analyses to explore the relationship between microbiota and metabolites in a stable social hierarchy of mice. Interestingly, anxiety-like behaviors were directly associated with some microbial genera and metabolites, especially bile acid metabolism. Overall, we have demonstrated a close relationship between social status and anxiety susceptibility, highlighting the contributions of gut microbiota and the associated metabolites in the high-anxiety state of subordinate mice with chronic inflammatory pain.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinying Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yiting Yao
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wenli Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Di Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chaoli Huang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hanyu Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qi Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Teng He
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Sen Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Riyue Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chun Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
15
|
He Z, Zhao C, He Y, Liu Z, Fan G, Zhu K, Wang Y, Zhang N, Fu Y, Hu X. Enterogenic Stenotrophomonas maltophilia migrates to the mammary gland to induce mastitis by activating the calcium-ROS-AMPK-mTOR-autophagy pathway. J Anim Sci Biotechnol 2023; 14:157. [PMID: 38124149 PMCID: PMC10731779 DOI: 10.1186/s40104-023-00952-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/16/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Mastitis is an inflammatory disease of the mammary gland that has serious economic impacts on the dairy industry and endangers food safety. Our previous study found that the body has a gut/rumen-mammary gland axis and that disturbance of the gut/rumen microbiota could result in 'gastroenterogenic mastitis'. However, the mechanism has not been fully clarified. Recently, we found that long-term feeding of a high-concentrate diet induced mastitis in dairy cows, and the abundance of Stenotrophomonas maltophilia (S. maltophilia) was significantly increased in both the rumen and milk microbiota. Accordingly, we hypothesized that 'gastroenterogenic mastitis' can be induced by the migration of endogenous gut bacteria to the mammary gland. Therefore, this study investigated the mechanism by which enterogenic S. maltophilia induces mastitis. RESULTS First, S. maltophilia was labelled with superfolder GFP and administered to mice via gavage. The results showed that treatment with S. maltophilia promoted the occurrence of mastitis and increased the permeability of the blood-milk barrier, leading to intestinal inflammation and intestinal leakage. Furthermore, tracking of ingested S. maltophilia revealed that S. maltophilia could migrate from the gut to the mammary gland and induce mastitis. Subsequently, mammary gland transcriptome analysis showed that the calcium and AMPK signalling pathways were significantly upregulated in mice treated with S. maltophilia. Then, using mouse mammary epithelial cells (MMECs), we verified that S. maltophilia induces mastitis through activation of the calcium-ROS-AMPK-mTOR-autophagy pathway. CONCLUSIONS In conclusion, the results showed that enterogenic S. maltophilia could migrate from the gut to the mammary gland via the gut-mammary axis and activate the calcium-ROS-AMPK-mTOR-autophagy pathway to induce mastitis. Targeting the gut-mammary gland axis may also be an effective method to treat mastitis.
Collapse
Affiliation(s)
- Zhaoqi He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Yuhong He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Zhuoyu Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Guyue Fan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Kun Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Yiqi Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China.
| |
Collapse
|
16
|
Li L, Yang J, Liu T, Shi Y. Role of the gut-microbiota-metabolite-brain axis in the pathogenesis of preterm brain injury. Biomed Pharmacother 2023; 165:115243. [PMID: 37517290 DOI: 10.1016/j.biopha.2023.115243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023] Open
Abstract
Brain injury, a common complication in preterm infants, includes the destruction of the key structural and functional connections of the brain and causes neurodevelopmental disorders; it has high morbidity and mortality rates. The exact mechanism underlying brain injury in preterm infants is unclear. Intestinal flora plays a vital role in brain development and the maturation of the immune system in infants; however, detailed understanding of the gut microbiota-metabolite-brain axis in preterm infants is lacking. In this review, we summarise the key mechanisms by which the intestinal microbiota contribute to neurodevelopment and brain injury in preterm infants, with special emphasis on the influence of microorganisms and their metabolites on the regulation of neurocognitive development and neurodevelopmental risks related to preterm birth, infection and neonatal necrotising enterocolitis (NEC). This review provides support for the development and application of novel therapeutic strategies, including probiotics, prebiotics, synbiotics, and faecal bacteria transplantation targeting at brain injury in preterm infants.
Collapse
Affiliation(s)
- Ling Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Jiahui Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Tianjing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
17
|
Alexander JL, Posma JM, Scott A, Poynter L, Mason SE, Doria ML, Herendi L, Roberts L, McDonald JAK, Cameron S, Hughes DJ, Liska V, Susova S, Soucek P, der Sluis VHV, Gomez-Romero M, Lewis MR, Hoyles L, Woolston A, Cunningham D, Darzi A, Gerlinger M, Goldin R, Takats Z, Marchesi JR, Teare J, Kinross J. Pathobionts in the tumour microbiota predict survival following resection for colorectal cancer. MICROBIOME 2023; 11:100. [PMID: 37158960 PMCID: PMC10165813 DOI: 10.1186/s40168-023-01518-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/15/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS The gut microbiota is implicated in the pathogenesis of colorectal cancer (CRC). We aimed to map the CRC mucosal microbiota and metabolome and define the influence of the tumoral microbiota on oncological outcomes. METHODS A multicentre, prospective observational study was conducted of CRC patients undergoing primary surgical resection in the UK (n = 74) and Czech Republic (n = 61). Analysis was performed using metataxonomics, ultra-performance liquid chromatography-mass spectrometry (UPLC-MS), targeted bacterial qPCR and tumour exome sequencing. Hierarchical clustering accounting for clinical and oncological covariates was performed to identify clusters of bacteria and metabolites linked to CRC. Cox proportional hazards regression was used to ascertain clusters associated with disease-free survival over median follow-up of 50 months. RESULTS Thirteen mucosal microbiota clusters were identified, of which five were significantly different between tumour and paired normal mucosa. Cluster 7, containing the pathobionts Fusobacterium nucleatum and Granulicatella adiacens, was strongly associated with CRC (PFDR = 0.0002). Additionally, tumoral dominance of cluster 7 independently predicted favourable disease-free survival (adjusted p = 0.031). Cluster 1, containing Faecalibacterium prausnitzii and Ruminococcus gnavus, was negatively associated with cancer (PFDR = 0.0009), and abundance was independently predictive of worse disease-free survival (adjusted p = 0.0009). UPLC-MS analysis revealed two major metabolic (Met) clusters. Met 1, composed of medium chain (MCFA), long-chain (LCFA) and very long-chain (VLCFA) fatty acid species, ceramides and lysophospholipids, was negatively associated with CRC (PFDR = 2.61 × 10-11); Met 2, composed of phosphatidylcholine species, nucleosides and amino acids, was strongly associated with CRC (PFDR = 1.30 × 10-12), but metabolite clusters were not associated with disease-free survival (p = 0.358). An association was identified between Met 1 and DNA mismatch-repair deficiency (p = 0.005). FBXW7 mutations were only found in cancers predominant in microbiota cluster 7. CONCLUSIONS Networks of pathobionts in the tumour mucosal niche are associated with tumour mutation and metabolic subtypes and predict favourable outcome following CRC resection. Video Abstract.
Collapse
Affiliation(s)
- James L Alexander
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, 10th Floor, QEQM Building, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, London, UK
| | - Joram M Posma
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alasdair Scott
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Liam Poynter
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Sam E Mason
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - M Luisa Doria
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Lili Herendi
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, National Phenome Centre, Imperial College London, London, UK
| | - Lauren Roberts
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, 10th Floor, QEQM Building, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Julie A K McDonald
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Simon Cameron
- Institute of Global Food Security, School of Biosciences, Queen's University Belfast, Belfast, UK
| | - David J Hughes
- Cancer Biology and Therapeutics Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Vaclav Liska
- Department of Surgery, Faculty Hospital and Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Simona Susova
- Faculty of Medicine in Pilsen, Biomedical Centre, Charles University in Prague, Pilsen, Czech Republic
| | - Pavel Soucek
- Faculty of Medicine in Pilsen, Biomedical Centre, Charles University in Prague, Pilsen, Czech Republic
| | - Verena Horneffer-van der Sluis
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, National Phenome Centre, Imperial College London, London, UK
| | - Maria Gomez-Romero
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, National Phenome Centre, Imperial College London, London, UK
| | - Matthew R Lewis
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, National Phenome Centre, Imperial College London, London, UK
| | - Lesley Hoyles
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, 10th Floor, QEQM Building, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
- Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Andrew Woolston
- Translational Oncogenomics Laboratory, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - David Cunningham
- GI Cancer Unit, Department of Medical Oncology, Royal Marsden NHS Foundation Trust, London, UK
| | - Ara Darzi
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Marco Gerlinger
- Translational Oncogenomics Laboratory, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
- GI Cancer Unit, Department of Medical Oncology, Royal Marsden NHS Foundation Trust, London, UK
| | - Robert Goldin
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, 10th Floor, QEQM Building, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Zoltan Takats
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, National Phenome Centre, Imperial College London, London, UK
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, 10th Floor, QEQM Building, St. Mary's Hospital, Praed Street, London, W2 1NY, UK.
| | - Julian Teare
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - James Kinross
- Department of Surgery & Cancer, Imperial College London, London, UK
| |
Collapse
|
18
|
Geier B, Gil-Mansilla E, Liutkevičiūtė Z, Hellinger R, Vanden Broeck J, Oetjen J, Liebeke M, Gruber CW. Multiplexed neuropeptide mapping in ant brains integrating microtomography and three-dimensional mass spectrometry imaging. PNAS NEXUS 2023; 2:pgad144. [PMID: 37215633 PMCID: PMC10194420 DOI: 10.1093/pnasnexus/pgad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023]
Abstract
Neuropeptides are important regulators of animal physiology and behavior. Hitherto the gold standard for the localization of neuropeptides have been immunohistochemical methods that require the synthesis of antibody panels, while another limiting factor has been the brain's opacity for subsequent in situ light or fluorescence microscopy. To address these limitations, we explored the integration of high-resolution mass spectrometry imaging (MSI) with microtomography for a multiplexed mapping of neuropeptides in two evolutionary distant ant species, Atta sexdens and Lasius niger. For analyzing the spatial distribution of chemically diverse peptide molecules across the brain in each species, the acquisition of serial mass spectrometry images was essential. As a result, we have comparatively mapped the three-dimensional (3D) distributions of eight conserved neuropeptides throughout the brain microanatomy. We demonstrate that integrating the 3D MSI data into high-resolution anatomy models can be critical for studying organs with high plasticity such as brains of social insects. Several peptides, like the tachykinin-related peptides (TK) 1 and 4, were widely distributed in many brain areas of both ant species, whereas others, for instance myosuppressin, were restricted to specific regions only. Also, we detected differences at the species level; many peptides were identified in the optic lobe of L. niger, but only one peptide (ITG-like) was found in this region in A. sexdens. Building upon MS imaging studies on neuropeptides in invertebrate model systems, our approach leverages correlative MSI and computed microtomography for investigating fundamental neurobiological processes by visualizing the unbiased 3D neurochemistry in its complex anatomic environment.
Collapse
Affiliation(s)
- Benedikt Geier
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
- Department of Pediatrics and Infectious Diseases, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Esther Gil-Mansilla
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Zita Liutkevičiūtė
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction Group, Zoological Institute, KU Leuven, Leuven 3000, Belgium
| | - Janina Oetjen
- Bruker Daltonics GmbH & Co. KG, Life Science Mass Spectrometry, Bremen 28359, Germany
- MALDI Imaging Lab, University of Bremen, Bremen 28359, Germany
| | - Manuel Liebeke
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
- Department of Metabolomics, Institute of Human Nutrition and Food Science, Kiel University, 24118 Kiel, Germany
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
19
|
Zuber A, Peric A, Pluchino N, Baud D, Stojanov M. Human Male Genital Tract Microbiota. Int J Mol Sci 2023; 24:ijms24086939. [PMID: 37108103 PMCID: PMC10139050 DOI: 10.3390/ijms24086939] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The human body is vastly colonised by microorganisms, whose impact on health is increasingly recognised. The human genital tract hosts a diverse microbiota, and an increasing number of studies on the male genital tract microbiota suggest that bacteria have a role in male infertility and pathological conditions, such as prostate cancer. Nevertheless, this research field remains understudied. The study of bacterial colonisation of the male genital tract is highly impacted by the invasive nature of sampling and the low abundance of the microbiota. Therefore, most studies relied on the analysis of semen microbiota to describe the colonisation of the male genital tract (MGT), which was thought to be sterile. The aim of this narrative review is to present the results of studies that used next-generation sequencing (NGS) to profile the bacterial colonisation patterns of different male genital tract anatomical compartments and critically highlight their findings and their weaknesses. Moreover, we identified potential research axes that may be crucial for our understanding of the male genital tract microbiota and its impact on male infertility and pathophysiology.
Collapse
Affiliation(s)
- Arnaud Zuber
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Adriana Peric
- 360° Fertility Center Zurich, 8702 Zollikon, Switzerland
| | - Nicola Pluchino
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - David Baud
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Milos Stojanov
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
20
|
Lai Y, Dhingra R, Zhang Z, Ball LM, Zylka MJ, Lu K. Toward Elucidating the Human Gut Microbiota-Brain Axis: Molecules, Biochemistry, and Implications for Health and Diseases. Biochemistry 2022; 61:2806-2821. [PMID: 34910469 PMCID: PMC10857864 DOI: 10.1021/acs.biochem.1c00656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, a substantial amount of data have supported an active role of gut microbiota in mediating mammalian brain function and health. Mining gut microbiota and their metabolites for neuroprotection is enticing but requires that the fundamental biochemical details underlying such microbiota-brain crosstalk be deciphered. While a neuronal gut-brain axis (through the vagus nerve) is not disputable, accumulating studies also point to a humoral route (via blood/lymphatic circulation) by which innumerable microbial molecular cues translocate from local gut epithelia to circulation with potentials to further cross the blood-brain barrier and reach the brain. In this Perspective, we review a realm of gut microbial molecules to evaluate their fate, function, and neuroactivities in vivo as mediated by microbiota. We turn to seminal studies of neurophysiology and neurologic disease models for the elucidation of biochemical pathways that link microbiota to gut-brain signaling. In addition, we discuss opportunities and challenges for advancing the microbiota-brain axis field while calling for high-throughput discovery of microbial molecules and studies for resolving the interspecies, interorgan, and interclass interaction among these neuroactive microbial molecules.
Collapse
Affiliation(s)
- Yunjia Lai
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Campus Box 7431, Chapel Hill, North Carolina 27599, United States
| | - Radhika Dhingra
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Campus Box 7431, Chapel Hill, North Carolina 27599, United States
- Institute of Environmental Health Solutions, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zhenfa Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Campus Box 7431, Chapel Hill, North Carolina 27599, United States
| | - Louise M Ball
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Campus Box 7431, Chapel Hill, North Carolina 27599, United States
| | - Mark J Zylka
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Carrboro, North Carolina 27510, United States
- Department of Cell and Molecular Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Campus Box 7431, Chapel Hill, North Carolina 27599, United States
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
21
|
Xu MY, Guo CC, Li MY, Lou YH, Chen ZR, Liu BW, Lan L. Brain-gut-liver axis: Chronic psychological stress promotes liver injury and fibrosis via gut in rats. Front Cell Infect Microbiol 2022; 12:1040749. [PMID: 36579341 PMCID: PMC9791198 DOI: 10.3389/fcimb.2022.1040749] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background The effect of chronic psychological stress on hepatitis and liver fibrosis is concerned. However, its mechanism remains unclear. We investigated the effect and mechanism of chronic psychological stress in promoting liver injury and fibrosis through gut. Methods Sixty male SD rats were randomly assigned to 6 groups. Rat models of chronic psychological stress (4 weeks) and liver fibrosis (8 weeks) were established. The diversity of gut microbiota in intestinal feces, permeability of intestinal mucosa, pathologies of intestinal and liver tissues, collagen fibers, protein expressions of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear factor kappa β (NF-κβ), tumor necrosis factor α (TNF-α) and interleukin 1 (IL-1) in liver tissue, liver function and coagulation function in blood and lipopolysaccharide (LPS) in portal vein blood were detected and analyzed. Results The diversities and abundances of gut microbiota were significant differences in rats among each group. The pathological lesions of intestinal and liver tissues, decreased expression of occludin protein in intestinal mucosa, deposition of collagen fibers and increased protein expression of TLR4, MyD88, NF-κβ, TNF-α and IL-1 in liver tissue, increased LPS level in portal vein blood, and abnormalities of liver function and coagulation function, were observed in rats exposed to chronic psychological stress or liver fibrosis. There were significant differences with normal rats. When the dual intervention factors of chronic psychological stress and liver fibrosis were superimposed, the above indicators were further aggravated. Conclusion Chronic psychological stress promotes liver injury and fibrosis, depending on changes in the diversity of gut microbiota and increased intestinal permeability caused by psychological stress, LPS that enters liver and acts on TLR4, and active LPS-TLR4 pathway depend on MyD88. It demonstrates the possibility of existence of brain-gut-liver axis.
Collapse
Affiliation(s)
- Meng-Yang Xu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Henan University, Kaifeng, China
| | - Can-Can Guo
- Department of Infectious Diseases, Jining No.1 People′s Hospital, Jining, China
| | - Meng-Ying Li
- Department of Gastroenterology and Hepatology, Kaifeng Central Hospital, Kaifeng, China
| | - Yu-Han Lou
- Department of Gastroenterology and Hepatology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Zhuo-Ran Chen
- Department of Gastroenterology and Hepatology, Henan No.3 Provincial People’s Hospital, Zhengzhou, China
| | - Bo-Wei Liu
- Department of Gastroenterology and Hepatology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Ling Lan
- Department of Gastroenterology and Hepatology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China,*Correspondence: Ling Lan,
| |
Collapse
|
22
|
Visual authentication of steroidal saponins in Allium macrostemon Bge. and Allium chinense G. Don using MALDI-TOF imaging mass spectrometry and their structure activity relationship. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Ahmed H, Leyrolle Q, Koistinen V, Kärkkäinen O, Layé S, Delzenne N, Hanhineva K. Microbiota-derived metabolites as drivers of gut-brain communication. Gut Microbes 2022; 14:2102878. [PMID: 35903003 PMCID: PMC9341364 DOI: 10.1080/19490976.2022.2102878] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Alterations in the gut microbiota composition have been associated with a range of neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. The gut microbes transform and metabolize dietary- and host-derived molecules generating a diverse group of metabolites with local and systemic effects. The bi-directional communication between brain and the microbes residing in the gut, the so-called gut-brain axis, consists of a network of immunological, neuronal, and endocrine signaling pathways. Although the full variety of mechanisms of the gut-brain crosstalk is yet to be established, the existing data demonstrates that a single metabolite or its derivatives are likely among the key inductors within the gut-brain axis communication. However, more research is needed to understand the molecular mechanisms underlying how gut microbiota associated metabolites alter brain functions, and to examine if different interventional approaches targeting the gut microbiota could be used in prevention and treatment of neurological disorders, as reviewed herein.Abbreviations:4-EPS 4-ethylphenylsulfate; 5-AVA(B) 5-aminovaleric acid (betaine); Aβ Amyloid beta protein; AhR Aryl hydrocarbon receptor; ASD Autism spectrum disorder; BBB Blood-brain barrier; BDNF Brain-derived neurotrophic factor; CNS Central nervous system; GABA ɣ-aminobutyric acid; GF Germ-free; MIA Maternal immune activation; SCFA Short-chain fatty acid; 3M-4-TMAB 3-methyl-4-(trimethylammonio)butanoate; 4-TMAP 4-(trimethylammonio)pentanoate; TMA(O) Trimethylamine(-N-oxide); TUDCA Tauroursodeoxycholic acid; ZO Zonula occludens proteins.
Collapse
Affiliation(s)
- Hany Ahmed
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland,CONTACT Hany Ahmed Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Quentin Leyrolle
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Ville Koistinen
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland,School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Sophie Layé
- Laboratoire NutriNeuro, UMR INRAE 1286, Bordeaux INP, Université de Bordeaux, Bordeaux, France
| | - Nathalie Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Kati Hanhineva
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland,School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland,Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
24
|
Haikonen R, Kärkkäinen O, Koistinen V, Hanhineva K. Diet- and microbiota-related metabolite, 5-aminovaleric acid betaine (5-AVAB), in health and disease. Trends Endocrinol Metab 2022; 33:463-480. [PMID: 35508517 DOI: 10.1016/j.tem.2022.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 12/01/2022]
Abstract
5-Aminovaleric acid betaine (5-AVAB) is a trimethylated compound associated with the gut microbiota, potentially produced endogenously, and related to the dietary intake of certain foods such as whole grains. 5-AVAB accumulates within the metabolically active tissues and has been typically found in higher concentrations in the heart, muscle, and brown adipose tissue. Furthermore, 5-AVAB has been associated with positive health effects such as fetal brain development, insulin secretion, and reduced cancer risk. However, it also has been linked with some negative health outcomes such as cardiovascular disease and fatty liver disease. At the cellular level, 5-AVAB can influence cellular energy metabolism by reducing β-oxidation of fatty acids. This review will focus on the metabolic role of 5-AVAB with respect to both physiology and pathology. Moreover, the analytics and origin of 5-AVAB and related compounds will be reviewed.
Collapse
Affiliation(s)
- Retu Haikonen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| | - Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Ville Koistinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, Turku, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, Turku, Finland; Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
25
|
Choi J, Kim BR, Akuzum B, Chang L, Lee JY, Kwon HK. TREGking From Gut to Brain: The Control of Regulatory T Cells Along the Gut-Brain Axis. Front Immunol 2022; 13:916066. [PMID: 35844606 PMCID: PMC9279871 DOI: 10.3389/fimmu.2022.916066] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract has an enormous and diverse microbial community, termed microbiota, that is necessary for the development of the immune system and tissue homeostasis. In contrast, microbial dysbiosis is associated with various inflammatory and autoimmune diseases as well as neurological disorders in humans by affecting not only the immune system in the gastrointestinal tract but also other distal organs. FOXP3+ regulatory T cells (Tregs) are a subset of CD4+ helper T cell lineages that function as a gatekeeper for immune activation and are essential for peripheral autoimmunity prevention. Tregs are crucial to the maintenance of immunological homeostasis and tolerance at barrier regions. Tregs reside in both lymphoid and non-lymphoid tissues, and tissue-resident Tregs have unique tissue-specific phenotype and distinct function. The gut microbiota has an impact on Tregs development, accumulation, and function in periphery. Tregs, in turn, modulate antigen-specific responses aimed towards gut microbes, which supports the host–microbiota symbiotic interaction in the gut. Recent studies have indicated that Tregs interact with a variety of resident cells in central nervous system (CNS) to limit the progression of neurological illnesses such as ischemic stroke, Alzheimer’s disease, and Parkinson’s disease. The gastrointestinal tract and CNS are functionally connected, and current findings provide insights that Tregs function along the gut-brain axis by interacting with immune, epithelial, and neuronal cells. The purpose of this study is to explain our current knowledge of the biological role of tissue-resident Tregs, as well as the interaction along the gut-brain axis.
Collapse
Affiliation(s)
- Juli Choi
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Bo-Ram Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
| | - Begum Akuzum
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
| | - Leechung Chang
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: June-Yong Lee, ; Ho-Keun Kwon,
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: June-Yong Lee, ; Ho-Keun Kwon,
| |
Collapse
|
26
|
Hulme H, Meikle LM, Strittmatter N, Swales J, Hamm G, Brown SL, Milling S, MacDonald AS, Goodwin RJ, Burchmore R, Wall DM. Mapping the Influence of the Gut Microbiota on Small Molecules across the Microbiome Gut Brain Axis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:649-659. [PMID: 35262356 PMCID: PMC9047441 DOI: 10.1021/jasms.1c00298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Microbes exert influence across the microbiome-gut-brain axis through neurotransmitter production, induction of host immunomodulators, or the release or induction of other microbial or host molecules. Here, we used mass spectrometry imaging (MSI), a label-free imaging tool, to map molecular changes in the gut and brain in germ-free, antibiotic-treated and control mice. We determined spatial distribution and relative quantification of neurotransmitters and their precursors in response to the microbiome. Using untargeted MSI, we detected a significant change in the levels of four identified small molecules in the brains of germ-free animals compared to controls. However, antibiotic treatment induced no significant changes in these same metabolites in the brain after 1 week of treatment. This work exemplifies the utility of MSI as a tool for the study of known and discovery of novel, mediators of microbiome-gut-brain axis communication.
Collapse
Affiliation(s)
- Heather Hulme
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Lynsey M. Meikle
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Nicole Strittmatter
- Imaging
and Data Analytics, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, U.K.
| | - John Swales
- Imaging
and Data Analytics, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, U.K.
| | - Gregory Hamm
- Imaging
and Data Analytics, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, U.K.
| | - Sheila L. Brown
- Lydia
Becker Institute of Immunology and Inflammation, Faculty of Biology,
Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9NT, U.K.
| | - Simon Milling
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Andrew S. MacDonald
- Lydia
Becker Institute of Immunology and Inflammation, Faculty of Biology,
Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9NT, U.K.
| | - Richard J.A. Goodwin
- Imaging
and Data Analytics, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, U.K.
| | - Richard Burchmore
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Daniel M. Wall
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
27
|
Wang N, Wu X, Yang Q, Wang D, Wu Z, Wei Y, Cui J, Hong L, Xiong L, Qin D. Qinglong Zhidong Decoction Alleviated Tourette Syndrome in Mice via Modulating the Level of Neurotransmitters and the Composition of Gut Microbiota. Front Pharmacol 2022; 13:819872. [PMID: 35392572 PMCID: PMC8981146 DOI: 10.3389/fphar.2022.819872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Qinglong Zhidong Decoction (QLZDD), a traditional Chinese medicine (TCM) prescription, has been effectively used to alleviate Tourette syndrome (TS) in children. However, the therapeutic mechanism of QLZDD on TS has not been evaluated. The present study aims to elucidate the therapeutic effect and the possible therapeutic mechanism of QLZDD on TS in mouse model. A 3,3-iminodipropionitrile (IDPN, 350 mg/kg)-induced-TS mouse model was established. The mice were randomly divided into the control group, the model group, the haloperidol group (14 mg/kg), the low-, middle-, or high-QLZDD-dose groups (6.83 g/kg, 13.65 g/kg, 27.3 g/kg). QLZDD was administrated orally once a day for 4 weeks. The tic-like behavior was recorded weekly. Then, neurotransmitters and neurotransmitter receptors were analyzed by ELISA, immunohistochemistry (IHC), and quantitative reverse transcription PCR in striatum. Further, the alteration to intestinal flora was monitored by 16s rRNA sequencing, and the role of gut microbiota in the alleviation of TS by QLZDD was investigated. QLZDD ameliorated the tic-like behavior, and decreased the level of excitatory neurotransmitters such as Glu and DA and increased the level of the inhibitory neurotransmitter GABA significantly. Moreover, QLZDD significantly blocked the mRNA expression and the protein expression of D1R and D2R in the striatum, while activated the levels of DAT and GABAR. Interestingly, QLZDD mediated the composition of gut microbiota by increasing the abundance of Lactobacillus and Bacteroides but decreasing the abundance of Alloprevotella and Akkermansia. Taken together, QLZDD ameliorated the tic-like behavior in TS mouse, its mechanism of action may be associated with restoring the balance of gut microbiota and neurotransmitters. The study indicated a promising role of QLZDD in alleviating TS and a therapeutic strategy for fighting TS in clinical settings.
Collapse
Affiliation(s)
- Na Wang
- Yunnan University of Chinese Medicine, Kunming, China
- Huanghe S & T University, Zhengzhou, China
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinchen Wu
- Yunnan University of Chinese Medicine, Kunming, China
| | - Qi Yang
- Yunnan University of Chinese Medicine, Kunming, China
| | - Dingyue Wang
- Yunnan University of Chinese Medicine, Kunming, China
| | - Zhao Wu
- Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- Yunnan University of Chinese Medicine, Kunming, China
| | - Jieqiong Cui
- Yunnan University of Chinese Medicine, Kunming, China
| | - Li Hong
- Yunnan University of Chinese Medicine, Kunming, China
| | - Lei Xiong
- Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
28
|
Wang T, Xu J, Xu Y, Xiao J, Bi N, Gu X, Wang HL. Gut microbiota shapes social dominance through modulating HDAC2 in the medial prefrontal cortex. Cell Rep 2022; 38:110478. [PMID: 35263606 DOI: 10.1016/j.celrep.2022.110478] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/29/2021] [Accepted: 02/08/2022] [Indexed: 12/17/2022] Open
Abstract
Social dominance is a ubiquitous phenomenon among social animals, including humans. To date, individual attributes leading to dominance (after a contest) remain largely elusive. Here, we report that socially dominant rats can be distinguished from subordinates based on their intestinal microbiota. When dysbiosis is induced, rats are predisposed to a subordinate state, while dysbiotic rats reclaim social dominance following microbiota transplantation. Winning hosts are characterized by core microbes, a majority of which are associated with butyrate production, and the sole colonization of Clostridium butyricum is sufficient to restore dominance. Regarding molecular aspects, a histone deacetylase, HDAC2, is responsive to microbial status and mediates competition outcome; however, this occurs only in a restricted population of cells in the medial prefrontal cortex (mPFC). Furthermore, HDAC2 acts by modulating synaptic activity in mPFC. Together, these findings uncover a link between commensals and host dominance, providing insight into the gut-brain mechanisms underlying dominance determination.
Collapse
Affiliation(s)
- Tian Wang
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Jinchun Xu
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Yi Xu
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China.
| | - Jie Xiao
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Nanxi Bi
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaozhen Gu
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Hui-Li Wang
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China.
| |
Collapse
|
29
|
Bauermeister A, Mannochio-Russo H, Costa-Lotufo LV, Jarmusch AK, Dorrestein PC. Mass spectrometry-based metabolomics in microbiome investigations. Nat Rev Microbiol 2022; 20:143-160. [PMID: 34552265 PMCID: PMC9578303 DOI: 10.1038/s41579-021-00621-9] [Citation(s) in RCA: 238] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
Microbiotas are a malleable part of ecosystems, including the human ecosystem. Microorganisms affect not only the chemistry of their specific niche, such as the human gut, but also the chemistry of distant environments, such as other parts of the body. Mass spectrometry-based metabolomics is one of the key technologies to detect and identify the small molecules produced by the human microbiota, and to understand the functional role of these microbial metabolites. This Review provides a foundational introduction to common forms of untargeted mass spectrometry and the types of data that can be obtained in the context of microbiome analysis. Data analysis remains an obstacle; therefore, the emphasis is placed on data analysis approaches and integrative analysis, including the integration of microbiome sequencing data.
Collapse
Affiliation(s)
- Anelize Bauermeister
- Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil,Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Helena Mannochio-Russo
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, Araraquara, SP, Brazil,Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | | | - Alan K. Jarmusch
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA.,Department of Pediatrics, University of California, San Diego, CA, USA.,Center for Microbiome Innovation, University of California, San Diego, CA, USA
| |
Collapse
|
30
|
Zhu Y, Li Y, Zhang Q, Song Y, Wang L, Zhu Z. Interactions Between Intestinal Microbiota and Neural Mitochondria: A New Perspective on Communicating Pathway From Gut to Brain. Front Microbiol 2022; 13:798917. [PMID: 35283843 PMCID: PMC8908256 DOI: 10.3389/fmicb.2022.798917] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies shown that neurological diseases are associated with neural mitochondrial dysfunctions and microbiome composition alterations. Since mitochondria emerged from bacterial ancestors during endosymbiosis, mitochondria, and bacteria had analogous genomic characteristics, similar bioactive compounds and comparable energy metabolism pathways. Therefore, it is necessary to rationalize the interactions of intestinal microbiota with neural mitochondria. Recent studies have identified neural mitochondrial dysfunction as a critical pathogenic factor for the onset and progress of multiple neurological disorders, in which the non-negligible role of altered gut flora composition was increasingly noticed. Here, we proposed a new perspective of intestinal microbiota – neural mitochondria interaction as a communicating channel from gut to brain, which could help to extend the vision of gut-brain axis regulation and provide additional research directions on treatment and prevention of responsive neurological disorders.
Collapse
Affiliation(s)
- Yao Zhu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Ying Li
- Medical Technology College, Xuzhou Medical University, Xuzhou, China
| | - Qiang Zhang
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Yuanjian Song
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Liang Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Liang Wang,
| | - Zuobin Zhu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Zuobin Zhu,
| |
Collapse
|
31
|
Psychobiotics, gut microbiota and fermented foods can help preserving mental health. Food Res Int 2022; 152:110892. [DOI: 10.1016/j.foodres.2021.110892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
|
32
|
Gebeyew K, Chen K, Wassie T, Azad MAK, He J, Jiang W, Song W, He Z, Tan Z. Dietary Amylose/Amylopectin Ratio Modulates Cecal Microbiota and Metabolites in Weaned Goats. Front Nutr 2021; 8:774766. [PMID: 34957184 PMCID: PMC8697430 DOI: 10.3389/fnut.2021.774766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/31/2021] [Indexed: 01/10/2023] Open
Abstract
Increasing the ratio of amylose in the diet can increase the quantity of starch that flows to the large intestine for microbial fermentation. This leads to the alteration of microbiota and metabolite of the hindgut, where the underlying mechanism is not clearly understood. The present study used a combination of 16S amplicon sequencing technology and metabolomics technique to reveal the effects of increasing ratios of amylose/amylopectin on cecal mucosa- and digesta-associated microbiota and their metabolites in young goats. Twenty-seven Xiangdong black female goats with average body weights (9.00 ± 1.12 kg) were used in this study. The goats were randomly allocated to one of the three diets containing starch with 0% amylose corn (T1), 50% high amylose corn (T2), and 100% high amylose corn (T3) for 35 days. Results showed that cecal valerate concentration was higher (P < 0.05) in the T2 group than those in the T1 and T3 groups. The levels of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 were decreased (P < 0.05) in cecal tissue while IL-10 was increased (P < 0.05) in the T2 group when compared with T1 or T3 groups. At the phylum level, the proportion of mucosa-associated Spirochaetes was increased (P < 0.05), while Proteobacteria was deceased by feeding high amylose ratios (P < 0.05). The abundance of Verrucomicrobia was decreased (P < 0.05) in the T3 group compared with the T1 and T2 groups. The abundance of digesta-associated Firmicutes was increased (P < 0.05) while Verrucomicrobia and Tenericutes were deceased (P < 0.05) with the increment of amylose/amylopectin ratios. The LEfSe analysis showed that a diet with 50% high amylose enriched the abundance of beneficial bacteria such as Faecalibacterium and Lactobacillus in the digesta and Akkermansia in the mucosa compared with the T1 diet. The metabolomics results revealed that feeding a diet containing 50% high amylose decreased the concentration of fatty acyls-related metabolites, including dodecanedioic acid, heptadecanoic acid, and stearidonic acid ethyl ester compared with the T1 diet. The results suggested that a diet consisting of 50% high amylose could maintain a better cecal microbiota composition and host immune function.
Collapse
Affiliation(s)
- Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kai Chen
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Teketay Wassie
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Md Abul Kalam Azad
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Weimin Jiang
- Herbivore Nutrition Department, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Wu Song
- Herbivore Nutrition Department, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Vallianatou T, Lin W, Bèchet NB, Correia MSP, Shanbhag NC, Lundgaard I, Globisch D. Differential regulation of oxidative stress, microbiota-derived, and energy metabolites in the mouse brain during sleep. J Cereb Blood Flow Metab 2021; 41:3324-3338. [PMID: 34293940 PMCID: PMC8669215 DOI: 10.1177/0271678x211033358] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/25/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022]
Abstract
Sleep has evolved as a universal core function to allow for restorative biological processes. Detailed knowledge of metabolic changes necessary for the sleep state in the brain is missing. Herein, we have performed an in-depth metabolic analysis of four mouse brain regions and uncovered region-specific circadian variations. Metabolites linked to oxidative stress were altered during sleep including acylcarnitines, hydroxylated fatty acids, phenolic compounds, and thiol-containing metabolites. These findings provide molecular evidence of a significant metabolic shift of the brain energy metabolism. Specific alterations were observed for brain metabolites that have previously not been associated with a circadian function including the microbiome-derived metabolite ergothioneine that suggests a regulatory function. The pseudopeptide β-citryl-glutamate has been linked to brain development and we have now discovered a previously unknown regioisomer. These metabolites altered by the circadian rhythm represent the foundation for hypothesis-driven studies of the underlying metabolic processes and their function.
Collapse
Affiliation(s)
- Theodosia Vallianatou
- Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Weifeng Lin
- Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nicholas B Bèchet
- Department of Experimental Medical Science, Lund University, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund University, Lund, Sweden
| | - Mario SP Correia
- Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nagesh C Shanbhag
- Department of Experimental Medical Science, Lund University, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund University, Lund, Sweden
| | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund University, Lund, Sweden
| | - Daniel Globisch
- Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
34
|
Davies C, Mishra D, Eshraghi RS, Mittal J, Sinha R, Bulut E, Mittal R, Eshraghi AA. Altering the gut microbiome to potentially modulate behavioral manifestations in autism spectrum disorders: A systematic review. Neurosci Biobehav Rev 2021; 128:549-557. [PMID: 34271306 DOI: 10.1016/j.neubiorev.2021.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/04/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022]
Abstract
There is a potential association between gastrointestinal (GI) symptoms and the severity of autism spectrum disorder (ASD). Given this correlation, the possible impact of probiotics and prebiotics have been explored in research studies to modify the gut microbiome and ameliorate behavioral manifestations of ASD via modulating the gut-brain-microbiome axis. This systematic review focuses on the interplay between these factors in altering the behavioral manifestations of ASD. Probiotic supplementation tended to mitigate some of the behavioral manifestations of ASD, with less of a discernible trend on the microbiome level. Studies supplementing multiple probiotic species, such as microbiota transfer therapy, or including prebiotics performed better than single strain supplementation. Our analysis suggests that gut dysbiosis may increase intestinal permeability, leading to more severe GI symptoms and a systemic inflammatory response, which can alter permeability across the blood-brain barrier and synaptogenesis in the brain. Future studies are warranted to understand the precise contribution of altering gut microbiome on clinical manifestations of ASD that will open up avenues to develop preventive and treatment modalities.
Collapse
Affiliation(s)
- Camron Davies
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Dibyanshi Mishra
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Rebecca S Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Jeenu Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Rahul Sinha
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Erdogan Bulut
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Rahul Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Adrien A Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States; Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States; Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, United States.
| |
Collapse
|
35
|
Geier B, Oetjen J, Ruthensteiner B, Polikarpov M, Gruber-Vodicka HR, Liebeke M. Connecting structure and function from organisms to molecules in small-animal symbioses through chemo-histo-tomography. Proc Natl Acad Sci U S A 2021; 118:e2023773118. [PMID: 34183413 PMCID: PMC8300811 DOI: 10.1073/pnas.2023773118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Our understanding of metabolic interactions between small symbiotic animals and bacteria or parasitic eukaryotes that reside within their bodies is extremely limited. This gap in knowledge originates from a methodological challenge, namely to connect histological changes in host tissues induced by beneficial and parasitic (micro)organisms to the underlying metabolites. We addressed this challenge and developed chemo-histo-tomography (CHEMHIST), a culture-independent approach to connect anatomic structure and metabolic function in millimeter-sized symbiotic animals. CHEMHIST combines chemical imaging of metabolites based on mass spectrometry imaging (MSI) and microanatomy-based micro-computed X-ray tomography (micro-CT) on the same animal. Both high-resolution MSI and micro-CT allowed us to correlate the distribution of metabolites to the same animal's three-dimensional (3D) histology down to submicrometer resolutions. Our protocol is compatible with tissue-specific DNA sequencing and fluorescence in situ hybridization for the taxonomic identification and localization of the associated micro(organisms). Building CHEMHIST upon in situ imaging, we sampled an earthworm from its natural habitat and created an interactive 3D model of its physical and chemical interactions with bacteria and parasitic nematodes in its tissues. Combining MSI and micro-CT, we present a methodological groundwork for connecting metabolic and anatomic phenotypes of small symbiotic animals that often represent keystone species for ecosystem functioning.
Collapse
Affiliation(s)
- Benedikt Geier
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany;
| | - Janina Oetjen
- MALDI Imaging Lab, University of Bremen, 28334 Bremen, Germany
| | | | - Maxim Polikarpov
- European Molecular Biology Laboratory, Hamburg Unit c/o Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | | | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany;
| |
Collapse
|
36
|
Shariatgorji R, Nilsson A, Fridjonsdottir E, Strittmatter N, Dannhorn A, Svenningsson P, Goodwin RJA, Odell LR, Andrén PE. Spatial visualization of comprehensive brain neurotransmitter systems and neuroactive substances by selective in situ chemical derivatization mass spectrometry imaging. Nat Protoc 2021; 16:3298-3321. [PMID: 34075230 DOI: 10.1038/s41596-021-00538-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/05/2021] [Indexed: 02/04/2023]
Abstract
Molecule-specific techniques such as MALDI and desorption electrospray ionization mass spectrometry imaging enable direct and simultaneous mapping of biomolecules in tissue sections in a single experiment. However, neurotransmitter imaging in the complex environment of biological samples remains challenging. Our covalent charge-tagging approach using on-tissue chemical derivatization of primary and secondary amines and phenolic hydroxyls enables comprehensive mapping of neurotransmitter networks. Here, we present robust and easy-to-use chemical derivatization protocols that facilitate quantitative and simultaneous molecular imaging of complete neurotransmitter systems and drugs in diverse biological tissue sections with high lateral resolution. This is currently not possible with any other imaging technique. The protocol, using fluoromethylpyridinium and pyrylium reagents, describes all steps from tissue preparation (~1 h), chemical derivatization (1-2 h), data collection (timing depends on the number of samples and lateral resolution) and data analysis and interpretation. The specificity of the chemical reaction can also help users identify unknown chemical identities. Our protocol can reveal the cellular locations in which signaling molecules act and thus shed light on the complex responses that occur after the administration of drugs or during the course of a disease.
Collapse
Affiliation(s)
- Reza Shariatgorji
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | - Elva Fridjonsdottir
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Nicole Strittmatter
- Imaging & Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Andreas Dannhorn
- Imaging & Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Per Svenningsson
- Department of Clinical Neuroscience, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Richard J A Goodwin
- Imaging & Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden.
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
37
|
Tran SMS, Mohajeri MH. The Role of Gut Bacterial Metabolites in Brain Development, Aging and Disease. Nutrients 2021; 13:732. [PMID: 33669008 PMCID: PMC7996516 DOI: 10.3390/nu13030732] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
In the last decade, emerging evidence has reported correlations between the gut microbiome and human health and disease, including those affecting the brain. We performed a systematic assessment of the available literature focusing on gut bacterial metabolites and their associations with diseases of the central nervous system (CNS). The bacterial metabolites short-chain fatty acids (SCFAs) as well as non-SCFAs like amino acid metabolites (AAMs) and bacterial amyloids are described in particular. We found significantly altered SCFA levels in patients with autism spectrum disorder (ASD), affective disorders, multiple sclerosis (MS) and Parkinson's disease (PD). Non-SCFAs yielded less significantly distinct changes in faecal levels of patients and healthy controls, with the majority of findings were derived from urinary and blood samples. Preclinical studies have implicated different bacterial metabolites with potentially beneficial as well as detrimental mechanisms in brain diseases. Examples include immunomodulation and changes in catecholamine production by histone deacetylase inhibition, anti-inflammatory effects through activity on the aryl hydrocarbon receptor and involvement in protein misfolding. Overall, our findings highlight the existence of altered bacterial metabolites in patients across various brain diseases, as well as potential neuroactive effects by which gut-derived SCFAs, p-cresol, indole derivatives and bacterial amyloids could impact disease development and progression. The findings summarized in this review could lead to further insights into the gut-brain-axis and thus into potential diagnostic, therapeutic or preventive strategies in brain diseases.
Collapse
Affiliation(s)
| | - M. Hasan Mohajeri
- Department of Medicine, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland;
| |
Collapse
|
38
|
Mentis AFA, Dardiotis E, Katsouni E, Chrousos GP. From warrior genes to translational solutions: novel insights into monoamine oxidases (MAOs) and aggression. Transl Psychiatry 2021; 11:130. [PMID: 33602896 PMCID: PMC7892552 DOI: 10.1038/s41398-021-01257-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/16/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
The pervasive and frequently devastating nature of aggressive behavior calls for a collective effort to understand its psychosocial and neurobiological underpinnings. Regarding the latter, diverse brain areas, neural networks, neurotransmitters, hormones, and candidate genes have been associated with antisocial and aggressive behavior in humans and animals. This review focuses on the role of monoamine oxidases (MAOs) and the genes coding for them, in the modulation of aggression. During the past 20 years, a substantial number of studies using both pharmacological and genetic approaches have linked the MAO system with aggressive and impulsive behaviors in healthy and clinical populations, including the recent discovery of MAALIN, a long noncoding RNA (lncRNA) regulating the MAO-A gene in the human brain. Here, we first provide an overview of the MAOs and their physiological functions, we then summarize recent key findings linking MAO-related enzymatic and gene activity and aggressive behavior, and, finally, we offer novel insights into the mechanisms underlying this association. Using the existing experimental evidence as a foundation, we discuss the translational implications of these findings in clinical practice and highlight what we believe are outstanding conceptual and methodological questions in the field. Ultimately, we propose that unraveling the specific role of MAO in aggression requires an integrated approach, where this question is pursued by combining psychological, radiological, and genetic/genomic assessments. The translational benefits of such an approach include the discovery of novel biomarkers of aggression and targeting the MAO system to modulate pathological aggression in clinical populations.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Public Health Laboratories, Hellenic Pasteur Institute, Vas. Sofias Avenue 127, 115 21, Athens, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece
| | - Eleni Katsouni
- Department of Experimental Psychology, Oxford University, Oxford, UK
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Medical School, Aghia Sophia Children's Hospital, Livadias 8, 115 27, Athens, Greece.
- UNESCO Chair on Adolescent Health Care, Athens, Greece.
| |
Collapse
|
39
|
Stassen MJJ, Hsu SH, Pieterse CMJ, Stringlis IA. Coumarin Communication Along the Microbiome-Root-Shoot Axis. TRENDS IN PLANT SCIENCE 2021; 26:169-183. [PMID: 33023832 DOI: 10.1016/j.tplants.2020.09.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 05/06/2023]
Abstract
Plants shape their rhizosphere microbiome by secreting root exudates into the soil environment. Recently, root-exuded coumarins were identified as novel players in plant-microbiome communication. Beneficial members of the root-associated microbiome stimulate coumarin biosynthesis in roots and their excretion into the rhizosphere. The iron-mobilizing activity of coumarins facilitates iron uptake from the soil environment, while their selective antimicrobial activity shapes the root microbiome, resulting in promotion of plant growth and health. Evidence is accumulating that, in analogy to strigolactones and flavonoids, coumarins may act in microbiome-to-root-to-shoot signaling events. Here, we review this multifaceted role of coumarins in bidirectional chemical communication along the microbiome-root-shoot axis.
Collapse
Affiliation(s)
- Max J J Stassen
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Shu-Hua Hsu
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands; Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, 10617, Taipei, Taiwan
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.
| |
Collapse
|
40
|
Silpe J, Balskus EP. Deciphering Human Microbiota-Host Chemical Interactions. ACS CENTRAL SCIENCE 2021; 7:20-29. [PMID: 33532566 PMCID: PMC7844856 DOI: 10.1021/acscentsci.0c01030] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Indexed: 05/04/2023]
Abstract
Our gut harbors more microbes than any other body site, and accumulating evidence suggests that these organisms have a sizable impact on human health. Though efforts to classify the metabolic activities that define this microbial community have transformed the way we think about health and disease, our knowledge of gut microbially produced small molecules and their effects on host biology remains in its infancy. This Outlook surveys a range of approaches, hurdles, and advances in defining the chemical repertoire of the gut microbiota, drawing on examples with particularly strong links to human health. Progress toward understanding and manipulating this chemical language is being made with diverse chemical and biological expertise and could hold the key for combatting certain human diseases.
Collapse
Affiliation(s)
- Justin
E. Silpe
- Department of Chemistry and
Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and
Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
41
|
Lamichhane S, Sen P, Alves MA, Ribeiro HC, Raunioniemi P, Hyötyläinen T, Orešič M. Linking Gut Microbiome and Lipid Metabolism: Moving beyond Associations. Metabolites 2021; 11:55. [PMID: 33467644 PMCID: PMC7830997 DOI: 10.3390/metabo11010055] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
Various studies aiming to elucidate the role of the gut microbiome-metabolome co-axis in health and disease have primarily focused on water-soluble polar metabolites, whilst non-polar microbial lipids have received less attention. The concept of microbiota-dependent lipid biotransformation is over a century old. However, only recently, several studies have shown how microbial lipids alter intestinal and circulating lipid concentrations in the host, thus impacting human lipid homeostasis. There is emerging evidence that gut microbial communities play a particularly significant role in the regulation of host cholesterol and sphingolipid homeostasis. Here, we review and discuss recent research focusing on microbe-host-lipid co-metabolism. We also discuss the interplay of human gut microbiota and molecular lipids entering host systemic circulation, and its role in health and disease.
Collapse
Affiliation(s)
- Santosh Lamichhane
- Turku Bioscience Centre, University of Turku and Abo Akademi University, FI-20520 Turku, Finland; (P.S.); (M.A.A.); (H.C.R.); (P.R.); (M.O.)
| | - Partho Sen
- Turku Bioscience Centre, University of Turku and Abo Akademi University, FI-20520 Turku, Finland; (P.S.); (M.A.A.); (H.C.R.); (P.R.); (M.O.)
- School of Medical Sciences, Orebro University, 702 81 Orebro, Sweden
| | - Marina Amaral Alves
- Turku Bioscience Centre, University of Turku and Abo Akademi University, FI-20520 Turku, Finland; (P.S.); (M.A.A.); (H.C.R.); (P.R.); (M.O.)
| | - Henrique C. Ribeiro
- Turku Bioscience Centre, University of Turku and Abo Akademi University, FI-20520 Turku, Finland; (P.S.); (M.A.A.); (H.C.R.); (P.R.); (M.O.)
| | - Peppi Raunioniemi
- Turku Bioscience Centre, University of Turku and Abo Akademi University, FI-20520 Turku, Finland; (P.S.); (M.A.A.); (H.C.R.); (P.R.); (M.O.)
| | | | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Abo Akademi University, FI-20520 Turku, Finland; (P.S.); (M.A.A.); (H.C.R.); (P.R.); (M.O.)
- School of Medical Sciences, Orebro University, 702 81 Orebro, Sweden
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
42
|
Javed I, Cui X, Wang X, Mortimer M, Andrikopoulos N, Li Y, Davis TP, Zhao Y, Ke PC, Chen C. Implications of the Human Gut-Brain and Gut-Cancer Axes for Future Nanomedicine. ACS NANO 2020; 14:14391-14416. [PMID: 33138351 DOI: 10.1021/acsnano.0c07258] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent clinical and pathological evidence have implicated the gut microbiota as a nexus for modulating the homeostasis of the human body, impacting conditions from cancer and dementia to obesity and social behavior. The connections between microbiota and human diseases offer numerous opportunities in medicine, most of which have limited or no therapeutic solutions available. In light of this paradigm-setting trend in science, this review aims to provide a comprehensive and timely summary of the mechanistic pathways governing the gut microbiota and their implications for nanomedicines targeting cancer and neurodegenerative diseases. Specifically, we discuss in parallel the beneficial and pathogenic relationship of the gut microbiota along the gut-brain and gut-cancer axes, elaborate on the impact of dysbiosis and the gastrointestinal corona on the efficacy of nanomedicines, and highlight a molecular mimicry that manipulates the universal cross-β backbone of bacterial amyloid to accelerate neurological disorders. This review further offers a forward-looking section on the rational design of cancer and dementia nanomedicines exploiting the gut-brain and gut-cancer axes.
Collapse
Affiliation(s)
- Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiaoyu Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Nikolaos Andrikopoulos
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai 200032, China
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai 200032, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, China
| |
Collapse
|
43
|
Correlation between the Antimicrobial Activity and Metabolic Profiles of Cell Free Supernatants and Membrane Vesicles Produced by Lactobacillus reuteri DSM 17938. Microorganisms 2020; 8:microorganisms8111653. [PMID: 33114410 PMCID: PMC7692313 DOI: 10.3390/microorganisms8111653] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
The aim of the work is to assess the antimicrobial activities of Cell Free Supernatants (CFS) and Membrane Vesicles (MVs), produced by Lactobacillus reuteri DSM 17938, versus Gram-positive and Gram-negative bacteria and investigate their metabolic profiles. The Minimum Inhibitory Concentration was determined through the broth microdilution method and cell proliferation assay while the Minimum Bactericidal Concentration was determined by Colony Forming Units counts. The characteristics of the antimicrobial compounds were evaluated by pH adjustments, proteinase treatment, and size fractionation of the CFS. The cytotoxicity of CFS was tested on two human cell lines. A detailed snapshot of the L. reuteri metabolism was attained through an untargeted metabolic profiling by means of high resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) coupled with Electrospray Ionization Source (ESI). The results showed (i) a greater efficacy of CFS and its fractions towards Gram-negative compared to Gram-positive bacteria; (ii) an antimicrobial effect related to pH-dependent compounds but not to MVs; (iii) a molecular weight < 3 KDa as well as an a non-proteinaceous nature of the antimicrobial compounds; and (iv) more than 200 and 500 putative metabolites annotated in MVs and supernatants, covering several classes of metabolites, including amino acids, lipids, fatty and organic acids, polyalcohols, nucleotides, and vitamins. Some putative compounds were proposed not only as characteristic of specific fractions, but also possibly involved in antimicrobial activity.
Collapse
|
44
|
Pagano G, Pallardó FV, Lyakhovich A, Tiano L, Fittipaldi MR, Toscanesi M, Trifuoggi M. Aging-Related Disorders and Mitochondrial Dysfunction: A Critical Review for Prospect Mitoprotective Strategies Based on Mitochondrial Nutrient Mixtures. Int J Mol Sci 2020; 21:ijms21197060. [PMID: 32992778 PMCID: PMC7582285 DOI: 10.3390/ijms21197060] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
A number of aging-related disorders (ARD) have been related to oxidative stress (OS) and mitochondrial dysfunction (MDF) in a well-established body of literature. Most studies focused on cardiovascular disorders (CVD), type 2 diabetes (T2D), and neurodegenerative disorders. Counteracting OS and MDF has been envisaged to improve the clinical management of ARD, and major roles have been assigned to three mitochondrial cofactors, also termed mitochondrial nutrients (MNs), i.e., α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and carnitine (CARN). These cofactors exert essential–and distinct—roles in mitochondrial machineries, along with strong antioxidant properties. Clinical trials have mostly relied on the use of only one MN to ARD-affected patients as, e.g., in the case of CoQ10 in CVD, or of ALA in T2D, possibly with the addition of other antioxidants. Only a few clinical and pre-clinical studies reported on the administration of two MNs, with beneficial outcomes, while no available studies reported on the combined administration of three MNs. Based on the literature also from pre-clinical studies, the present review is to recommend the design of clinical trials based on combinations of the three MNs.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy; (M.T.); (M.T.)
- Correspondence:
| | - Federico V. Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, CIBERER, E-46010 Valencia, Spain;
| | - Alex Lyakhovich
- Vall d’Hebron Institut de Recerca, E-08035 Barcelona, Catalunya, Spain;
- Institute of Molecular Biology and Biophysics of the “Federal Research Center of Fundamental and Translational Medicine”, Novosibirsk 630117, Russia
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnical University of Marche, I-60100 Ancona, Italy;
| | - Maria Rosa Fittipaldi
- Internal Medicine Unit, San Francesco d’Assisi Hospital, I-84020 Oliveto Citra (SA), Italy;
| | - Maria Toscanesi
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy; (M.T.); (M.T.)
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy; (M.T.); (M.T.)
| |
Collapse
|
45
|
Javed I, Zhang Z, Adamcik J, Andrikopoulos N, Li Y, Otzen DE, Lin S, Mezzenga R, Davis TP, Ding F, Ke PC. Accelerated Amyloid Beta Pathogenesis by Bacterial Amyloid FapC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001299. [PMID: 32999841 PMCID: PMC7509637 DOI: 10.1002/advs.202001299] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/10/2020] [Indexed: 05/03/2023]
Abstract
The gut-brain axis has attracted increasing attention in recent years, fueled by accumulating symptomatic, physiological, and pathological findings. In this study, the aggregation and toxicity of amyloid beta (Aβ), the pathogenic peptide associated with Alzheimer's disease (AD), seeded by FapC amyloid fragments (FapCS) of Pseudomonas aeruginosa that colonizes the gut microbiome through infections are examined. FapCS display favorable binding with Aβ and a catalytic capacity in seeding the peptide amyloidosis. Upon seeding, twisted Aβ fibrils assume a much-shortened periodicity approximating that of FapC fibrils, accompanied by a 37% sharp rise in the fibrillar diameter, compared with the control. The robust seeding capacity for Aβ by FapCS and the biofilm fragments derived from P. aeruginosa entail abnormal behavior pathology and immunohistology, as well as impaired cognitive function of zebrafish. Together, the data offer the first concrete evidence of structural integration and inheritance in peptide cross-seeding, a crucial knowledge gap in understanding the pathological correlations between different amyloid diseases. The catalytic role of infectious bacteria in promoting Aβ amyloidosis may be exploited as a potential therapeutic target, while the altered mesoscopic signatures of Aβ fibrils may serve as a prototype for molecular assembly and a biomarker for screening bacterial infections in AD.
Collapse
Affiliation(s)
- Ibrahim Javed
- Australian Institute for Bioengineering and NanotechnologyUniversity of QueenslandBrisbaneQLD4072Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Zhenzhen Zhang
- Department of Physics and AstronomyClemson UniversityClemsonSC29634USA
| | - Jozef Adamcik
- Food & Soft MaterialsDepartment of Health Science & TechnologyETH ZurichSchmelzbergstrasse 9, LFO, E23Zurich8092Switzerland
| | - Nicholas Andrikopoulos
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Center (iNANO)University of AarhusAarhus CAarhus8000Denmark
| | - Sijie Lin
- College of Environmental Science and EngineeringBiomedical Multidisciplinary Innovation Research InstituteShanghai East HospitalShanghai Institute of Pollution Control and Ecological SecurityTongji University1239 Siping RoadShanghai200092China
| | - Raffaele Mezzenga
- Food & Soft MaterialsDepartment of Health Science & TechnologyETH ZurichSchmelzbergstrasse 9, LFO, E23Zurich8092Switzerland
| | - Thomas P. Davis
- Australian Institute for Bioengineering and NanotechnologyUniversity of QueenslandBrisbaneQLD4072Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Feng Ding
- Department of Physics and AstronomyClemson UniversityClemsonSC29634USA
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Zhongshan HospitalFudan University111 Yixueyuan Rd, Xuhui DistrictShanghai200032China
| |
Collapse
|
46
|
Comer AL, Carrier M, Tremblay MÈ, Cruz-Martín A. The Inflamed Brain in Schizophrenia: The Convergence of Genetic and Environmental Risk Factors That Lead to Uncontrolled Neuroinflammation. Front Cell Neurosci 2020; 14:274. [PMID: 33061891 PMCID: PMC7518314 DOI: 10.3389/fncel.2020.00274] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a disorder with a heterogeneous etiology involving complex interplay between genetic and environmental risk factors. The immune system is now known to play vital roles in nervous system function and pathology through regulating neuronal and glial development, synaptic plasticity, and behavior. In this regard, the immune system is positioned as a common link between the seemingly diverse genetic and environmental risk factors for schizophrenia. Synthesizing information about how the immune-brain axis is affected by multiple factors and how these factors might interact in schizophrenia is necessary to better understand the pathogenesis of this disease. Such knowledge will aid in the development of more translatable animal models that may lead to effective therapeutic interventions. Here, we provide an overview of the genetic risk factors for schizophrenia that modulate immune function. We also explore environmental factors for schizophrenia including exposure to pollution, gut dysbiosis, maternal immune activation and early-life stress, and how the consequences of these risk factors are linked to microglial function and dysfunction. We also propose that morphological and signaling deficits of the blood-brain barrier, as observed in some individuals with schizophrenia, can act as a gateway between peripheral and central nervous system inflammation, thus affecting microglia in their essential functions. Finally, we describe the diverse roles that microglia play in response to neuroinflammation and their impact on brain development and homeostasis, as well as schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Ashley L. Comer
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Department of Biology, Boston University, Boston, MA, United States
- Neurophotonics Center, Boston University, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Micaël Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Alberto Cruz-Martín
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Department of Biology, Boston University, Boston, MA, United States
- Neurophotonics Center, Boston University, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, United States
| |
Collapse
|
47
|
Animated Guide to Represent a Novel Means of Gut-Brain Axis Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32613579 DOI: 10.1007/978-3-030-43961-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Novel scientific concepts must be made understandable to allow their further development, highlighting the need for better communication of abstract ideas that these discoveries are built upon. This project focused on visually communicating the discovery of microbiome-derived molecules that play a major role in microbiome-gut-brain axis communication through multimedia learning.A 4-min animated video that was segmented and used a combination of 2D and 3D models was created. It communicated the important information about the process of discovering the molecules in mouse models, their production by bacteria and their potential implications for human health. The animation was then provided to a scientific audience, alongside a short-answer survey and a Likert scale, to assess how visual aspects accompanied with narration compare to learning and comprehension of the same content if it is read.The findings are based on the total of 15 participants, 9 of which were exposed to the information via animation (Group A) and 6 who were given information in a form of written narrative (Group B). It was found that Group A scored average M = 15 (out of 25) on the post assessment compared to Group B with an average of M = 7. Higher scores correlated with higher rating on questions about perceived understanding through animated media. Additionally, the animation scored higher on helpfulness in learning abstract ideas, especially having to do with structure and spatial navigation. This indicates that scientific abstract concepts that are likely comprehended are needed in order to make definite conclusions.
Collapse
|
48
|
Qiao Y, Hayashi H, Chong Teo S. Chemical Toolbox to Decode the Microbiota Lexicon. Chem Asian J 2020; 15:2117-2128. [PMID: 32558250 DOI: 10.1002/asia.202000541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/14/2020] [Indexed: 12/15/2022]
Abstract
The human microbiota deploys a diverse range of molecules and metabolites to engage in chemical communications with the host, mediating fundamental aspects of host health. Studies of the structures and activities of bioactive molecules produced by the microbiota are imperative to address their implications in microbiota associated diseases in human. By drawing experiences from different research fields, chemists and chemical biologists, who are experts in dealing with chemical molecules, are uniquely positioned to contribute to the emerging knowledge of human microbiota. In this minireview, we discuss the current chemical tools and methods that are pertinent to the discovery of microbiota molecules and metabolites, characterizations of their protein targets, as well as evaluations of their biodistributions in hosts. These are key aspects in understanding the chemical underpinnings of the microbiota-host interactions that would enable future development of diagnostics and therapeutics targeting the human microbiota.
Collapse
Affiliation(s)
- Yuan Qiao
- School of Physical and Mathematical Sciences (SPMS), Nanyang Technological University (NTU), 21 Nanyang Link, CBC 04-22, Singapore, 637371, Singapore
| | - Hirohito Hayashi
- School of Physical and Mathematical Sciences (SPMS), Nanyang Technological University (NTU), 21 Nanyang Link, CBC 04-22, Singapore, 637371, Singapore
| | - Seng Chong Teo
- School of Physical and Mathematical Sciences (SPMS), Nanyang Technological University (NTU), 21 Nanyang Link, CBC 04-22, Singapore, 637371, Singapore
| |
Collapse
|