1
|
Montoya F, Bribiesca-Sánchez A, Hernández-Herrera P, Díaz-Guerrero DS, Gonzalez-Cota AL, Bloomfield-Gadelha H, Darszon A, Corkidi G. 3D+t Multifocal Imaging Dataset of Human Sperm. Sci Data 2025; 12:814. [PMID: 40383860 PMCID: PMC12086213 DOI: 10.1038/s41597-025-05177-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025] Open
Abstract
Understanding human fertility requires dynamic and three-dimensional (3D) analysis of sperm movement, which extends beyond the capabilities of traditional datasets focused primarily on two-dimensional sperm motility or static morphological characteristics. To address this limitation, we introduce the 3D+t Multifocal Imaging Dataset of Human Sperm (3D-SpermVid), a repository comprising 121 multifocal video-microscopy hyperstacks of freely swimming sperm cells, incubated under non-capacitating conditions (NCC) and capacitating conditions (CC). This collection enables detailed observation and analysis of 3D sperm flagellar motility patterns over time, offering novel insights into the capacitation process and its implications for fertility. Data were captured using a multifocal imaging (MFI) system based on an optical microscope equipped with a piezoelectric device that adjusts focus at various heights, recording sperm movement in a volumetric space. By making this data publicly available, we aim to enable applications in deep learning and pattern recognition to uncover hidden flagellar motility patterns, fostering significant advancements in understanding 3D sperm morphology and dynamics, and developing new diagnostic tools for assessing male fertility, as well as assisting in the self-organizaton mechanisms driving spontaneous motility and navigation in 3D.
Collapse
Affiliation(s)
- Fernando Montoya
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Andrés Bribiesca-Sánchez
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Posgrado en Ciencia e Ingeniería de la Computación, Universidad Nacional Autónoma de México, CDMX, Ciudad de México, México
| | - Paul Hernández-Herrera
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosi, SLP, México
| | - Dan Sidney Díaz-Guerrero
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | - Hermes Bloomfield-Gadelha
- School of Engineering Mathematics and Technology & Bristol Robotics Laboratory, University of Bristol, BS8 1UB, Bristol, UK
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos, México
| | - Gabriel Corkidi
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| |
Collapse
|
2
|
Kim J, Barroso Á, Ketelhut S, Schnekenburger J, Kemper B, Picazo-Bueno JÁ. Characterization of a Single-Capture Bright-Field and Off-Axis Digital Holographic Microscope for Biological Applications. SENSORS (BASEL, SWITZERLAND) 2025; 25:2675. [PMID: 40363114 PMCID: PMC12074500 DOI: 10.3390/s25092675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025]
Abstract
We present a single-capture multimodal bright-field (BF) and quantitative phase imaging (QPI) approach that enables the analysis of large, connected, or extended samples, such as confluent cell layers or tissue sections. The proposed imaging concept integrates a fiber-optic Mach-Zehnder interferometer-based off-axis digital holographic microscopy (DHM) with an inverted commercial optical BF microscope. Utilizing 8-bit grayscale dynamic range multiplexing, we simultaneously capture both BF images and digital holograms, which are then demultiplexed numerically via Fourier filtering, phase aberration compensation, and weighted image subtraction procedures. Compared to previous BF-DHM systems, our system avoids synchronization challenges caused by multiple image recording devices, improves acquisition speed, and enhances versatility for fast imaging of large, connected, and rapidly moving samples. Initially, we perform a systematic characterization of the system's multimodal imaging performance by optimizing numerical as well as coherent and incoherent illumination parameters. Subsequently, the application capabilities are evaluated by multimodal imaging of living cells. The results highlight the potential of single-capture BF-DHM for fast biomedical imaging.
Collapse
Affiliation(s)
- Jian Kim
- Biomedical Technology Center, University of Muenster, Mendelstr. 17, D-48149 Muenster, Germany; (J.K.); (Á.B.); (S.K.); (J.S.); (B.K.)
| | - Álvaro Barroso
- Biomedical Technology Center, University of Muenster, Mendelstr. 17, D-48149 Muenster, Germany; (J.K.); (Á.B.); (S.K.); (J.S.); (B.K.)
| | - Steffi Ketelhut
- Biomedical Technology Center, University of Muenster, Mendelstr. 17, D-48149 Muenster, Germany; (J.K.); (Á.B.); (S.K.); (J.S.); (B.K.)
| | - Jürgen Schnekenburger
- Biomedical Technology Center, University of Muenster, Mendelstr. 17, D-48149 Muenster, Germany; (J.K.); (Á.B.); (S.K.); (J.S.); (B.K.)
| | - Björn Kemper
- Biomedical Technology Center, University of Muenster, Mendelstr. 17, D-48149 Muenster, Germany; (J.K.); (Á.B.); (S.K.); (J.S.); (B.K.)
| | - José Ángel Picazo-Bueno
- Biomedical Technology Center, University of Muenster, Mendelstr. 17, D-48149 Muenster, Germany; (J.K.); (Á.B.); (S.K.); (J.S.); (B.K.)
- Department of Optics, Optometry and Vision Science, University of Valencia, c/Dr. Moliner 50, 46100 Burjassot, Spain
| |
Collapse
|
3
|
Michailov Y, Friedler S, Saar-Ryss B. First clinical pregnancy and delivery achieved after using a new 3D imaging technology for sperm selection: a case report. FRONTIERS IN REPRODUCTIVE HEALTH 2025; 7:1559684. [PMID: 40124653 PMCID: PMC11925932 DOI: 10.3389/frph.2025.1559684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Objective To report a case of a patient who, after experiencing recurrent failed implantations, underwent a novel technological intervention-using the Q300 device-which successfully led to a pregnancy and delivery of a healthy baby. Design Case report. Setting Barzilai University Medical Center. Patient s A 33-year-old woman with primary infertility experienced recurrent implantation failure (RIF), while her 32-year-old male partner was diagnosed with severe oligo-astheno-teratozoospermia (OTA) syndrome. Intervention Using Q300 device for selection of the morphologically compliant sperm cells for intracytoplasmic sperm injection (ICSI). Main outcome measures Successful pregnancy and delivery. Results A unique case of clinical pregnancy and delivery involving a couple facing RIF and severe OTA. In this case, a new technology for sperm selection was used. The semen sample was examined using the Q300 device to choose WHO2021-morphologically compliant sperm cells for micro-injection. The resulting embryos were developed and then frozen. Later, a frozen-thawed embryo transfer was performed during the following natural menstrual cycle, leading to successful pregnancy and delivery. Conclusion The utilization of this new 3D imaging technology underscores the evolving landscape of reproductive medicine and the potential it holds for transforming outcomes in challenging cases. By documenting such cases, we contribute to the ongoing dialogue to refine assisted reproductive technology (ART) protocols and improve reproductive outcomes for individuals facing similar challenges. Trial registration NCT06232720 https://clinicaltrials.gov/study/NCT06232720. Date of registration: 15 Feb 2023. Date of enrollment of the first subject: 20 August 2023.
Collapse
Affiliation(s)
- Yulia Michailov
- Obstetrics and Gynecology Department, Barzilai University Medical Center, Ashkelon, Israel
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Shevach Friedler
- Obstetrics and Gynecology Department, Barzilai University Medical Center, Ashkelon, Israel
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Bozhena Saar-Ryss
- Obstetrics and Gynecology Department, Barzilai University Medical Center, Ashkelon, Israel
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
4
|
Ren X, Bloomfield‐Gadêlha H. Swimming by Spinning: Spinning-Top Type Rotations Regularize Sperm Swimming Into Persistently Progressive Paths in 3D. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406143. [PMID: 39696833 PMCID: PMC11809349 DOI: 10.1002/advs.202406143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/17/2024] [Indexed: 12/20/2024]
Abstract
Sperm swimming is essential for reproduction, with movement strategies adapted to specific environments. Sperm navigate by modulating the symmetry of their flagellar beating, but how they swim forward with asymmetrical beats remains unclear. Current methods lack the ability to robustly detect the flagellar symmetry state in free-swimming spermatozoa, despite its importance in understanding sperm motility. This study uses numerical simulations to investigate the fluid mechanics of sperm swimming with asymmetrical flagellar beats. Results show that sperm rotation regularizes the swimming motion, allowing persistently progressive swimming even with asymmetrical flagellar beats. Crucially, 3D sperm head orientation, rather than the swimming path, provides critical insight into the flagellar symmetry state. Sperm rotations during swimming closely resemble spinning-top dynamics, with sperm head precession driven by the helical beating of the flagellum. These results may prove essential in future studies on the role of symmetry in microorganisms and artificial swimmers, as body orientation detection has been largely overlooked in favor of swimming path analysis. Altogether, this rotational mechanism provides a reliable solution for forward propulsion and navigation in nature, which would otherwise be challenging for flagella with broken symmetry.
Collapse
Affiliation(s)
- Xiaomeng Ren
- School of Engineering Mathematics and Technology & Bristol Robotics LaboratoryUniversity of BristolBristolBS8 1UBUK
| | - Hermes Bloomfield‐Gadêlha
- School of Engineering Mathematics and Technology & Bristol Robotics LaboratoryUniversity of BristolBristolBS8 1UBUK
| |
Collapse
|
5
|
Morawiec S, Ajduk A, Stremplewski P, Kennedy BF, Szkulmowski M. Full-field optical coherence microscopy enables high-resolution label-free imaging of the dynamics of live mouse oocytes and early embryos. Commun Biol 2024; 7:1057. [PMID: 39191989 PMCID: PMC11349948 DOI: 10.1038/s42003-024-06745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
High quality label-free imaging of oocytes and early embryos is essential for accurate assessment of their developmental potential, a key element of assisted reproduction procedures. To achieve this goal, we propose full-field optical coherence microscopy (FF-OCM), constructed as a compact module fully integrated with a commercial wide-field fluorescence microscope. Our system achieves optical sectioning in wide-field, high in-plane resolution of 0.5 µm, and high sensitivity to backscattered light. To demonstrate its imaging capabilities, we study live mouse oocytes and embryos at all important stages of meiotic maturation and early embryogenesis. Our system enables visualization of intracellular structures, which are not visible in common bright-field microscopy, i.e., internal structure of nuclear apparatus, cytoskeletal filaments, cellular cortex, cytoplasmic protrusions, or zona pellucida features. Additionally, we visualize and quantify intracellular dynamics like cytoplasmic stirring motion, nuclear envelope fluctuations and nucleolus mobility. Altogether, we demonstrate that FF-OCM is a powerful tool for research in developmental biology that also holds great potential for non-invasive time-lapse monitoring of oocyte and embryo quality in assisted reproduction.
Collapse
Affiliation(s)
- Seweryn Morawiec
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Torun, Poland.
| | - Anna Ajduk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Patrycjusz Stremplewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Brendan F Kennedy
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Torun, Poland
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, Australia
| | - Maciej Szkulmowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
6
|
Nassir M, Levi M, Shaked NT. The Synergic Effect of Tubal Endometriosis and Women's Aging on Fallopian Tube Function: Insights from a 3D Mechanical Model. Bioengineering (Basel) 2024; 11:852. [PMID: 39199809 PMCID: PMC11351632 DOI: 10.3390/bioengineering11080852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
The fallopian tubes are essential for human fertility, facilitating the movement of sperm and oocytes to the fertilization site and transporting fertilized oocytes to the uterus. Infertility can result from changes in the fallopian tubes due to tubal endometriosis and women's aging. In this study, we modeled human fallopian tubes with and without endometriosis for different women's age groups to evaluate the chances of normal sperm cells reaching the fertilization site and oocytes arriving at the uterine cavity. For this purpose, we employed a distinctive combination of simulation tools to develop a dynamic three-dimensional (3D) model of normal human sperm cells and oocytes swimming inside normal and endometriosis-affected human fallopian tubes for different women's group ages. We observed that in tubal endometriosis cases, fewer sperm cells reach the fertilization site and more oocytes become trapped in the tube walls compared to normal tubes. Additionally, aging decreases the number of sperm cells and oocytes reaching the fertilization site in normal and endometriosis-affected tubes. Our model evaluates the mechanisms of sperm and oocyte behaviors due to women's aging and fallopian tube issues caused by endometriosis, presenting new avenues for developing diagnostic and treatment tools for tubal endometriosis and age-related infertility issues.
Collapse
Affiliation(s)
| | | | - Natan T. Shaked
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; (M.N.); (M.L.)
| |
Collapse
|
7
|
Bhatt S, Butola A, Acuña S, Hansen DH, Tinguely JC, Nystad M, Mehta DS, Agarwal K. Characterizing the consistency of motion of spermatozoa through nanoscale motion tracing. F&S SCIENCE 2024; 5:215-224. [PMID: 38977198 DOI: 10.1016/j.xfss.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVE To demonstrate nanoscale motion tracing of spermatozoa and present analysis of the motion traces to characterize the consistency of motion of spermatozoa as a complement to progressive motility analysis. DESIGN Anonymized sperm samples were videographed under a quantitative phase microscope, followed by generating and analyzing superresolution motion traces of individual spermatozoa. SETTING Not applicable. PATIENT(S) Centrifuged human sperm samples. INTERVENTION(S) Not applicable. MAIN OUTCOME MEASURE(S) Precision of motion trace of individual sperms, presence of a helical pattern in the motion trace, mean and standard deviations of helical periods and radii of sperm motion traces, speed of progression. RESULT(S) Spatially sensitive quantitative phase imaging with a superresolution computational technique MUltiple SIgnal Classification ALgorithm allowed achieving motion precision of 340 nm using ×10, 0.25 numerical aperture lens whereas the diffraction-limited resolution at this setting was 1,320 nm. The motion traces thus derived facilitated new kinematic features of sperm, namely the statistics of helix period and radii per sperm. Through the analysis, 47 sperms with a speed >25 μm/s were randomly selected from the same healthy donor semen sample, it is seen that the kinematic features did not correlate with the speed of the sperms. In addition, it is noted that spermatozoa may experience changes in the periodicity and radius of the helical path over time. Further, some very fast sperms (e.g., >70 μm/s) may demonstrate irregular motion and need further investigation. Presented computational analysis can be used directly for sperm samples from both fertility patients with normal and abnormal sperm cell conditions. We note that MUltiple SIgnal Classification ALgorithm is an image analysis technique that may vaguely fall under the machine learning category, but the conventional metrics for reporting found in Enhancing the QUAlity and Transparency Of health Research network do not apply. Alternative suitable metrics are reported, and bias is avoided through random selection of regions for analysis. Detailed methods are included for reproducibility. CONCLUSION(S) Kinematic features derived from nanoscale motion traces of spermatozoa contain information complementary to the speed of the sperms, allowing further distinction among the progressively motile sperms. Some highly progressive spermatozoa may have irregular motion patterns, and whether irregularity of motion indicates poor quality regarding artificial insemination needs further investigation. The presented technique can be generalized for sperm analysis for a variety of fertility conditions.
Collapse
Affiliation(s)
- Sunil Bhatt
- Bio-photonics and Green-photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi, India
| | - Ankit Butola
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Sebastian Acuña
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Daniel Henry Hansen
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jean-Claude Tinguely
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Mona Nystad
- Department of Clinical Medicine, Women's Health and Perinatology Research Group, UiT The Arctic University of Norway, Tromsø, Norway; Department of Obstetrics and Gynecology, University Hospital of North Norway, Tromsø, Norway
| | - Dalip Singh Mehta
- Bio-photonics and Green-photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi, India
| | - Krishna Agarwal
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
8
|
Huang Z, Cao L. Quantitative phase imaging based on holography: trends and new perspectives. LIGHT, SCIENCE & APPLICATIONS 2024; 13:145. [PMID: 38937443 PMCID: PMC11211409 DOI: 10.1038/s41377-024-01453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 06/29/2024]
Abstract
In 1948, Dennis Gabor proposed the concept of holography, providing a pioneering solution to a quantitative description of the optical wavefront. After 75 years of development, holographic imaging has become a powerful tool for optical wavefront measurement and quantitative phase imaging. The emergence of this technology has given fresh energy to physics, biology, and materials science. Digital holography (DH) possesses the quantitative advantages of wide-field, non-contact, precise, and dynamic measurement capability for complex-waves. DH has unique capabilities for the propagation of optical fields by measuring light scattering with phase information. It offers quantitative visualization of the refractive index and thickness distribution of weak absorption samples, which plays a vital role in the pathophysiology of various diseases and the characterization of various materials. It provides a possibility to bridge the gap between the imaging and scattering disciplines. The propagation of wavefront is described by the complex amplitude. The complex-value in the complex-domain is reconstructed from the intensity-value measurement by camera in the real-domain. Here, we regard the process of holographic recording and reconstruction as a transformation between complex-domain and real-domain, and discuss the mathematics and physical principles of reconstruction. We review the DH in underlying principles, technical approaches, and the breadth of applications. We conclude with emerging challenges and opportunities based on combining holographic imaging with other methodologies that expand the scope and utility of holographic imaging even further. The multidisciplinary nature brings technology and application experts together in label-free cell biology, analytical chemistry, clinical sciences, wavefront sensing, and semiconductor production.
Collapse
Affiliation(s)
- Zhengzhong Huang
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Liangcai Cao
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Mu Y, Zhou X, Li L, Liu X, Wen X, Zhang L, Yan B, Zhang W, Dong K, Hu H, Liao Y, Ye Z, Deng A, Wang Y, Mao Z, Yang M, Xiao X. Automatic high-throughput and non-invasive selection of sperm at the biochemical level. MED 2024; 5:603-621.e7. [PMID: 38608708 DOI: 10.1016/j.medj.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/06/2023] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Sperm selection, a key step in assisted reproductive technology (ART), has long been restrained at the preliminary physical level (morphology or motility); however, subsequent fertilization and embryogenesis are complicated biochemical processes. Such an enormous "gap" poses tough problems for couples dealing with infertility, especially patients with severe/total asthenozoospermia . METHODS We developed a biochemical-level, automatic-screening/separation, smart droplet-TO-hydrogel chip (BLASTO-chip) for sperm selection. The droplet can sense the pH change caused by sperm's respiration products and then transforms into a hydrogel to be selected out. FINDINGS The BLASTO-chip system can select biochemically active sperm with an accuracy of over 90%, and its selection efficiency can be flexibly tuned by nearly 10-fold. All the substances in the system were proven to be biosafe via evaluating mice fertilization and offspring health. Live sperm down to 1% could be enriched by over 76-fold to 76%. For clinical application to patients with severe/total asthenozoospermia, the BLASTO-chip could select live sperm from human semen samples containing 10% live but 100% immotile sperm. The rates of fertilization, cleavage, early embryos, and blastocysts were drastically elevated from 15% to 70.83%, 10% to 62.5%, 5% to 37.5%, and 0% to 16.67%, respectively. CONCLUSIONS The BLASTO-chip represents a real biochemical-level technology for sperm selection that is completely independent of sperm's motility. It can be a powerful tool in ART, especially for patients with severe/total asthenozoospermia. FUNDING This work was funded by the Ministry of Science and Technology of China, the Ministry of Education of China, and the Shenzhen-Hong Kong Hetao Cooperation Zone.
Collapse
Affiliation(s)
- Yaoqin Mu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology (FRI), Department of Biomedical Sciences and Tung Biomedical Sciences Centre, Key Laboratory of Biochip Technology and Biotech and Health Centre (SRI), City University of Hong Kong, Hong Kong, China
| | - Longjie Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaowen Liu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Xu Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bei Yan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Kejun Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Hao Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yangwei Liao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhengxin Ye
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Aimin Deng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Yuan Wang
- Department of Precision Diagnostic and Therapeutic Technology (FRI), Department of Biomedical Sciences and Tung Biomedical Sciences Centre, Key Laboratory of Biochip Technology and Biotech and Health Centre (SRI), City University of Hong Kong, Hong Kong, China
| | - Zenghui Mao
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China.
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology (FRI), Department of Biomedical Sciences and Tung Biomedical Sciences Centre, Key Laboratory of Biochip Technology and Biotech and Health Centre (SRI), City University of Hong Kong, Hong Kong, China.
| | - Xianjin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
10
|
Ahmad A, Gocłowski P, Dubey V, Trusiak M, Ahluwalia BS. High space-time bandwidth product imaging in low coherence quantitative phase microscopy. Sci Rep 2024; 14:9191. [PMID: 38649400 PMCID: PMC11035680 DOI: 10.1038/s41598-024-59874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Current low coherence quantitative phase microscopy (LC-QPM) systems suffer from either reduced field of view (FoV) or reduced temporal resolution due to the short temporal coherence (TC) length of the light source. Here, we propose a hybrid, experimental and numerical approach to address this core problem associated with LC-QPM. We demonstrate high spatial resolution and high phase sensitivity in LC-QPM at high temporal resolution. High space-time bandwidth product is achieved by employing incoherent light source for sample illumination in QPM to increase the spatial resolution and single-shot Hilbert spiral transform (HST) based phase recovery algorithm to enhance the temporal resolution without sacrificing spatial resolution during the reconstruction steps. The high spatial phase sensitivity comes by default due to the use of incoherent light source in QPM which has low temporal coherence length and does not generate speckle noise and coherent noise. The spatial resolution achieved by the HST is slightly inferior to the temporal phase-shifting (TPS) method when tested on a specimen but surpasses that of the single-shot Fourier transform (FT) based phase recovery method. Contrary to HST method, FT method requires high density fringes for lossless phase recovery, which is difficult to achieve in LC-QPM over entire FoV. Consequently, integration of HST algorithm with LC-QPM system makes an attractive route. Here, we demonstrate scalable FoV and resolution in single-shot LC-QPM and experimentally corroborate it on a test object and on both live and fixed biological specimen such as MEF, U2OS and human red blood cells (RBCs). LC-QPM system with HST reconstruction offer high-speed single-shot QPM imaging at high phase sensitivity and high spatial resolution enabling us to study sub-cellular dynamic inside U2OS for extended duration (3 h) and observe high-speed (50 fps) dynamics of human RBCs. The experimental results validate the effectiveness of the present approach and will open new avenues in the domain of biomedical imaging in the future.
Collapse
Affiliation(s)
- Azeem Ahmad
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037, Tromsø, Norway.
| | - Paweł Gocłowski
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Vishesh Dubey
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Maciej Trusiak
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525, Warsaw, Poland
| | - Balpreet S Ahluwalia
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| |
Collapse
|
11
|
Nassir M, Levi M, Wiser A, Shaked NT. Evaluation of women's aging influence on sperm passage inside the fallopian tube using 3D dynamic mechanical modeling. Front Bioeng Biotechnol 2024; 12:1324802. [PMID: 38712332 PMCID: PMC11070836 DOI: 10.3389/fbioe.2024.1324802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/27/2024] [Indexed: 05/08/2024] Open
Abstract
The fallopian tubes play an important role in human fertility by facilitating the spermatozoa passage to the oocyte as well as later actively facilitating the fertilized oocyte transportation to the uterus cavity. The fallopian tubes undergo changes involving biological, physical, and morphological processes due to women aging, which may impair fertility. Here, we have modelled fallopian tubes of women at different ages and evaluated the chances of normal and pathological sperm cells reaching the fertilization site, the ampulla. By utilizing a unique combination of simulative tools, we implemented dynamic three-dimensional (3D) detailed geometrical models of many normal and pathological sperm cells swimming together in 3D geometrical models of three fallopian tubes associated with different women's age groups. By tracking the sperm cell swim, we found that for all age groups, the number of normal sperm cells in the ampulla is the largest, compared with the pathological sperm cells. On the other hand, the number of normal sperm cells in the fertilization site decreases due to the morphological and mechanical changes that occur in the fallopian tube with age. Moreover, in older ages, the normal sperm cells swim with lower velocities and for shorter distances inside the ampulla toward the ovary. Thus, the changes that the human fallopian tube undergoes due to women's aging have a significant influence on the human sperm cell motility. Our model of sperm cell motility through the fallopian tube in relation to the woman's age morphological changes provides a new scope for the investigation and treatment of diseases and infertility cases associated with aging, as well as a potential personalized medicine tool for evaluating the chances of a natural fertilization per specific features of a man's sperm and a woman's reproductive system.
Collapse
Affiliation(s)
- Mayssam Nassir
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Mattan Levi
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Amir Wiser
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natan T. Shaked
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Wang Z, Giugliano G, Behal J, Schiavo M, Memmolo P, Miccio L, Grilli S, Nazzaro F, Ferraro P, Bianco V. All-optical dual module platform for motility-based functional scrutiny of microencapsulated probiotic bacteria. BIOMEDICAL OPTICS EXPRESS 2024; 15:2202-2223. [PMID: 38633099 PMCID: PMC11019698 DOI: 10.1364/boe.510543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 04/19/2024]
Abstract
Probiotic bacteria are widely used in pharmaceutics to offer health benefits. Microencapsulation is used to deliver probiotics into the human body. Capsules in the stomach have to keep bacteria constrained until release occurs in the intestine. Once outside, bacteria must maintain enough motility to reach the intestine walls. Here, we develop a platform based on two label-free optical modules for rapidly screening and ranking probiotic candidates in the laboratory. Bio-speckle dynamics assay tests the microencapsulation effectiveness by simulating the gastrointestinal transit. Then, a digital holographic microscope 3D-tracks their motility profiles at a single element level to rank the strains.
Collapse
Affiliation(s)
- Zhe Wang
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, National Research Council (ISASI-CNR), Via Campi Flegrei, 34, Pozzuoli, 80078, Italy
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, Napoli 80125, Italy
| | - Giusy Giugliano
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, National Research Council (ISASI-CNR), Via Campi Flegrei, 34, Pozzuoli, 80078, Italy
| | - Jaromir Behal
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, National Research Council (ISASI-CNR), Via Campi Flegrei, 34, Pozzuoli, 80078, Italy
- Department of Optics, Faculty of Science, Palacky University, 17. listopadu 12, Olomouc 77146, Czechia
| | - Michela Schiavo
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, National Research Council (ISASI-CNR), Via Campi Flegrei, 34, Pozzuoli, 80078, Italy
| | - Pasquale Memmolo
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, National Research Council (ISASI-CNR), Via Campi Flegrei, 34, Pozzuoli, 80078, Italy
| | - Lisa Miccio
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, National Research Council (ISASI-CNR), Via Campi Flegrei, 34, Pozzuoli, 80078, Italy
| | - Simonetta Grilli
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, National Research Council (ISASI-CNR), Via Campi Flegrei, 34, Pozzuoli, 80078, Italy
| | - Filomena Nazzaro
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (ISA-CNR), Via Roma, 64, Avellino 83100, Italy
| | - Pietro Ferraro
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, National Research Council (ISASI-CNR), Via Campi Flegrei, 34, Pozzuoli, 80078, Italy
| | - Vittorio Bianco
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, National Research Council (ISASI-CNR), Via Campi Flegrei, 34, Pozzuoli, 80078, Italy
| |
Collapse
|
13
|
Pirone D, Bianco V, Miccio L, Memmolo P, Psaltis D, Ferraro P. Beyond fluorescence: advances in computational label-free full specificity in 3D quantitative phase microscopy. Curr Opin Biotechnol 2024; 85:103054. [PMID: 38142647 DOI: 10.1016/j.copbio.2023.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023]
Abstract
Despite remarkable progresses in quantitative phase imaging (QPI) microscopes, their wide acceptance is limited due to the lack of specificity compared with the well-established fluorescence microscopy. In fact, the absence of fluorescent tag prevents to identify subcellular structures in single cells, making challenging the interpretation of label-free 2D and 3D phase-contrast data. Great effort has been made by many groups worldwide to address and overcome such limitation. Different computational methods have been proposed and many more are currently under investigation to achieve label-free microscopic imaging at single-cell level to recognize and quantify different subcellular compartments. This route promises to bridge the gap between QPI and FM for real-world applications.
Collapse
Affiliation(s)
- Daniele Pirone
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Vittorio Bianco
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Lisa Miccio
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Pasquale Memmolo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Demetri Psaltis
- EPFL, Ecole Polytechnique Fédérale de Lausanne, Optics Laboratory, CH-1015 Lausanne, Switzerland
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| |
Collapse
|
14
|
Royfman A, Khanal S, Avidor-Reiss T. Structural Analysis of Sperm Centrioles Using N-STORM. Methods Mol Biol 2024; 2725:103-119. [PMID: 37856020 DOI: 10.1007/978-1-0716-3507-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A prominent technical barrier when imaging swimming sperm is capturing a singular sperm cell's head and tail position simultaneously at a high resolution to understand their relationship in different stages of the sperm tail beating cycle. This is due to the sperm's high beating frequency, rotational movement, and the large difference in diameter between the head and tail. These intricacies increase the complexity of determining the position of a dynamic subcellular structure in the sperm neck, such as the centriole. We have developed a way to obtain this information by snap freezing mobile sperm at different stages of the sperm tail beating cycle and then analyzing them with super-resolution microscopy. This method captures the position of both the sperm head and tail at the microscale and centriolar substructure details at the nanoscale. This chapter describes the detailed procedures for the selection, preparation, antibody staining, 3D N-STORM imaging, and image quantification of bovine spermatozoa.
Collapse
Affiliation(s)
- Abigail Royfman
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Sushil Khanal
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA.
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
15
|
Shaked NT, Boppart SA, Wang LV, Popp J. Label-free biomedical optical imaging. NATURE PHOTONICS 2023; 17:1031-1041. [PMID: 38523771 PMCID: PMC10956740 DOI: 10.1038/s41566-023-01299-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/22/2023] [Indexed: 03/22/2024]
Abstract
Label-free optical imaging employs natural and nondestructive approaches for the visualisation of biomedical samples for both biological assays and clinical diagnosis. Currently, this field revolves around multiple broad technology-oriented communities, each with a specific focus on a particular modality despite the existence of shared challenges and applications. As a result, biologists or clinical researchers who require label-free imaging are often not aware of the most appropriate modality to use. This manuscript presents a comprehensive review of and comparison among different label-free imaging modalities and discusses common challenges and applications. We expect this review to facilitate collaborative interactions between imaging communities, push the field forward and foster technological advancements, biophysical discoveries, as well as clinical detection, diagnosis, and monitoring of disease.
Collapse
Affiliation(s)
- Natan T Shaked
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering,; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
16
|
Corkidi G, Montoya F, González-Cota AL, Hernández-Herrera P, Bruce NC, Bloomfield-Gadêlha H, Darszon A. Human sperm rotate with a conserved direction during free swimming in four dimensions. J Cell Sci 2023; 136:jcs261306. [PMID: 37902031 PMCID: PMC10729817 DOI: 10.1242/jcs.261306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
Head rotation in human spermatozoa is essential for different swimming modes and fertilisation, as it links the molecular workings of the flagellar beat with sperm motion in three-dimensional (3D) space over time. Determining the direction of head rotation has been hindered by the symmetry and translucent nature of the sperm head, and by the fast 3D motion driven by the helical flagellar beat. Analysis has been mostly restricted to two-dimensional (2D) single focal plane image analysis, which enables tracking of head centre position but not tracking of head rotation. Despite the conserved helical beating of the human sperm flagellum, human sperm head rotation has been reported to be uni- or bi-directional, and even to intermittently change direction in a given cell. Here, we directly measure the head rotation of freely swimming human sperm using multi-plane 4D (3D+t) microscopy and show that: (1) 2D microscopy is unable to distinguish head rotation direction in human spermatozoa; (2) head rotation direction in non-capacitating and capacitating solutions, for both aqueous and viscous media, is counterclockwise (CCW), as seen from head to tail, in all rotating spermatozoa, regardless of the experimental conditions; and (3) head rotation is suppressed in 36% of spermatozoa swimming in non-capacitating viscous medium, although CCW rotation is recovered after incubation in capacitating conditions within the same viscous medium, possibly unveiling an unexplored aspect of the essential need of capacitation for fertilisation. Our observations show that the CCW head rotation in human sperm is conserved. It constitutes a robust and persistent helical driving mechanism that influences sperm navigation in 3D space over time, and thus is of critical importance in cell motility, propulsion of flagellated microorganisms, sperm motility assessments, human reproduction research, and self-organisation of flagellar beating patterns and swimming in 3D space.
Collapse
Affiliation(s)
- Gabriel Corkidi
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Fernando Montoya
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Ana L. González-Cota
- Departamento de Genética del Desarrollo y Fisiología Molecular and Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Paul Hernández-Herrera
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Neil C. Bruce
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510 Ciudad de México, México
| | - Hermes Bloomfield-Gadêlha
- School of Engineering Mathematics and Technology & Bristol Robotics Laboratory, University of Bristol, Bristol BS8 1TW, UK
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular and Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| |
Collapse
|
17
|
Zhao J, Bai C, Zhang Z, Zhang Q. Deep learning-based method for analyzing the optically trapped sperm rotation. Sci Rep 2023; 13:12575. [PMID: 37537346 PMCID: PMC10400645 DOI: 10.1038/s41598-023-39819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Optical tweezers exert a strong trapping force on cells, making it crucial to analyze the movement of trapped cells. The rotation of cells plays a significant role in their swimming patterns, such as in sperm cells. We proposed a fast deep-learning-based method that can automatically determine the projection orientation of ellipsoidal-like cells without additional optical design. This method was utilized for analyzing the planar rotation of trapped sperm cells using an optical tweezer, demonstrating its feasibility in extracting the rotation of the cell head. Furthermore, we employed this method to investigate sperm cell activity by examining variations in sperm rotation rates under different conditions, including temperature and laser output power. Our findings provide evidence for the effectiveness of this method and the rotation analysis method developed may have clinical potential for sperm quality evaluation.
Collapse
Affiliation(s)
- Jiangcheng Zhao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Chuanbiao Bai
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Zhiguo Zhang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230027, China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
18
|
Picazo-Bueno JÁ, Sanz M, Granero L, García J, Micó V. Multi-Illumination Single-Holographic-Exposure Lensless Fresnel (MISHELF) Microscopy: Principles and Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:1472. [PMID: 36772511 PMCID: PMC9918952 DOI: 10.3390/s23031472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Lensless holographic microscopy (LHM) comes out as a promising label-free technique since it supplies high-quality imaging and adaptive magnification in a lens-free, compact and cost-effective way. Compact sizes and reduced prices of LHMs make them a perfect instrument for point-of-care diagnosis and increase their usability in limited-resource laboratories, remote areas, and poor countries. LHM can provide excellent intensity and phase imaging when the twin image is removed. In that sense, multi-illumination single-holographic-exposure lensless Fresnel (MISHELF) microscopy appears as a single-shot and phase-retrieved imaging technique employing multiple illumination/detection channels and a fast-iterative phase-retrieval algorithm. In this contribution, we review MISHELF microscopy through the description of the principles, the analysis of the performance, the presentation of the microscope prototypes and the inclusion of the main biomedical applications reported so far.
Collapse
Affiliation(s)
- José Ángel Picazo-Bueno
- Department of Optics, Optometry and Vision Science, University of Valencia, 46100 Burjassot, Spain
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstr. 17, D-48149 Muenster, Germany
| | - Martín Sanz
- Department of Optics, Optometry and Vision Science, University of Valencia, 46100 Burjassot, Spain
| | - Luis Granero
- Department of Optics, Optometry and Vision Science, University of Valencia, 46100 Burjassot, Spain
| | - Javier García
- Department of Optics, Optometry and Vision Science, University of Valencia, 46100 Burjassot, Spain
| | - Vicente Micó
- Department of Optics, Optometry and Vision Science, University of Valencia, 46100 Burjassot, Spain
| |
Collapse
|
19
|
Nassir M, Levi M, Shaked NT. Dynamic 3D Modeling for Human Sperm Motility through the Female Cervical Canal and Uterine Cavity to Predict Sperm Chance of Reaching the Oocyte. Cells 2023; 12:203. [PMID: 36611996 PMCID: PMC9818231 DOI: 10.3390/cells12010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Sperm motility in the female genital tract is a key factor in the natural selection of competent cells that will produce a healthy offspring. We created a dynamic three-dimensional (3D) mechanical model of human sperm cells swimming inside cervical canal and uterine cavity dynamic 3D models, all generated based on experimental studies. Using these simulations, we described the sperm cells' behaviors during swimming inside the 3D tract model as a function of 3D displacement and time. We evaluated normal- and abnormal-morphology sperm cells according to their chances of reaching the oocyte site. As expected, we verified that the number of normal sperm cells that succeeded in reaching the fallopian tube sites is greater than the number of abnormal sperm cells. However, interestingly, after inspecting various abnormal sperm cells, we found out that their scores changed compared to swimming in an infinite medium, as is the case with in vitro fertilization. Thus, the interactions of abnormal sperm cells and the complicated geometry and dynamics of the uterus are significant factors in the filtering of abnormal sperm cells until they reach the oocyte site. Our study provides an advanced tool for sperm analysis and selection criteria for fertility treatments.
Collapse
Affiliation(s)
| | | | - Natan T. Shaked
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
20
|
Nixon B, Schjenken JE, Burke ND, Skerrett-Byrne DA, Hart HM, De Iuliis GN, Martin JH, Lord T, Bromfield EG. New horizons in human sperm selection for assisted reproduction. Front Endocrinol (Lausanne) 2023; 14:1145533. [PMID: 36909306 PMCID: PMC9992892 DOI: 10.3389/fendo.2023.1145533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Male infertility is a commonly encountered pathology that is estimated to be a contributory factor in approximately 50% of couples seeking recourse to assisted reproductive technologies. Upon clinical presentation, such males are commonly subjected to conventional diagnostic andrological practices that rely on descriptive criteria to define their fertility based on the number of morphologically normal, motile spermatozoa encountered within their ejaculate. Despite the virtual ubiquitous adoption of such diagnostic practices, they are not without their limitations and accordingly, there is now increasing awareness of the importance of assessing sperm quality in order to more accurately predict a male's fertility status. This realization raises the important question of which characteristics signify a high-quality, fertilization competent sperm cell. In this review, we reflect on recent advances in our mechanistic understanding of sperm biology and function, which are contributing to a growing armory of innovative approaches to diagnose and treat male infertility. In particular we review progress toward the implementation of precision medicine; the robust clinical adoption of which in the setting of fertility, currently lags well behind that of other fields of medicine. Despite this, research shows that the application of advanced technology platforms such as whole exome sequencing and proteomic analyses hold considerable promise in optimizing outcomes for the management of male infertility by uncovering and expanding our inventory of candidate infertility biomarkers, as well as those associated with recurrent pregnancy loss. Similarly, the development of advanced imaging technologies in tandem with machine learning artificial intelligence are poised to disrupt the fertility care paradigm by advancing our understanding of the molecular and biological causes of infertility to provide novel avenues for future diagnostics and treatments.
Collapse
Affiliation(s)
- Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Brett Nixon,
| | - John E. Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Nathan D. Burke
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - David A. Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Hanah M. Hart
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Geoffry N. De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jacinta H. Martin
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tessa Lord
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Elizabeth G. Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
21
|
Pirone D, Lim J, Merola F, Miccio L, Mugnano M, Bianco V, Cimmino F, Visconte F, Montella A, Capasso M, Iolascon A, Memmolo P, Psaltis D, Ferraro P. Stain-free identification of cell nuclei using tomographic phase microscopy in flow cytometry. NATURE PHOTONICS 2022; 16:851-859. [PMID: 36451849 PMCID: PMC7613862 DOI: 10.1038/s41566-022-01096-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/03/2022] [Indexed: 05/12/2023]
Abstract
Quantitative Phase Imaging (QPI) has gained popularity in bioimaging because it can avoid the need for cell staining, which in some cases is difficult or impossible. However, as a result, QPI does not provide labelling of various specific intracellular structures. Here we show a novel computational segmentation method based on statistical inference that makes it possible for QPI techniques to identify the cell nucleus. We demonstrate the approach with refractive index tomograms of stain-free cells reconstructed through the tomographic phase microscopy in flow cytometry mode. In particular, by means of numerical simulations and two cancer cell lines, we demonstrate that the nucleus can be accurately distinguished within the stain-free tomograms. We show that our experimental results are consistent with confocal fluorescence microscopy (FM) data and microfluidic cytofluorimeter outputs. This is a significant step towards extracting specific three-dimensional intracellular structures directly from the phase-contrast data in a typical flow cytometry configuration.
Collapse
Affiliation(s)
- Daniele Pirone
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
- DIETI, Department of Electrical Engineering and Information Technologies, University of Naples “Federico II”, Via Claudio 21, 80125 Napoli, Italy
| | - Joowon Lim
- EPFL, Ecole Polytechnique Fédérale de Lausanne, Optics Laboratory, CH-1015 Lausanne, Switzerland
| | - Francesco Merola
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Lisa Miccio
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Martina Mugnano
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Vittorio Bianco
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Flora Cimmino
- CEINGE - Advanced Biotechnologies, Via Gaetano Salvatore 486, 80131 Napoli, Italy
| | - Feliciano Visconte
- CEINGE - Advanced Biotechnologies, Via Gaetano Salvatore 486, 80131 Napoli, Italy
| | - Annalaura Montella
- CEINGE - Advanced Biotechnologies, Via Gaetano Salvatore 486, 80131 Napoli, Italy
- DMMBM, Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Napoli, Italy
| | - Mario Capasso
- CEINGE - Advanced Biotechnologies, Via Gaetano Salvatore 486, 80131 Napoli, Italy
- DMMBM, Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Napoli, Italy
| | - Achille Iolascon
- CEINGE - Advanced Biotechnologies, Via Gaetano Salvatore 486, 80131 Napoli, Italy
- DMMBM, Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Napoli, Italy
| | - Pasquale Memmolo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Demetri Psaltis
- EPFL, Ecole Polytechnique Fédérale de Lausanne, Optics Laboratory, CH-1015 Lausanne, Switzerland
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| |
Collapse
|
22
|
Liu G, Shi H, Zhang H, Zhou Y, Sun Y, Li W, Huang X, Jiang Y, Fang Y, Yang G. Fast Noninvasive Morphometric Characterization of Free Human Sperms Using Deep Learning. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-13. [PMID: 35748406 DOI: 10.1017/s1431927622012132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The selection of high-quality sperms is critical to intracytoplasmic sperm injection, which accounts for 70–80% of in vitro fertilization (IVF) treatments. So far, sperm screening is usually performed manually by clinicians. However, the performance of manual screening is limited in its objectivity, consistency, and efficiency. To overcome these limitations, we have developed a fast and noninvasive three-stage method to characterize morphology of freely swimming human sperms in bright-field microscopy images using deep learning models. Specifically, we use an object detection model to identify sperm heads, a classification model to select in-focus images, and a segmentation model to extract geometry of sperm heads and vacuoles. The models achieve an F1-score of 0.951 in sperm head detection, a z-position estimation error within ±1.5 μm in in-focus image selection, and a Dice score of 0.948 in sperm head segmentation, respectively. Customized lightweight architectures are used for the models to achieve real-time analysis of 200 frames per second. Comprehensive morphological parameters are calculated from sperm head geometry extracted by image segmentation. Overall, our method provides a reliable and efficient tool to assist clinicians in selecting high-quality sperms for successful IVF. It also demonstrates the effectiveness of deep learning in real-time analysis of live bright-field microscopy images.
Collapse
Affiliation(s)
- Guole Liu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Shi
- Sperm Capturer (Beijing) Biotechnology Co. Ltd., Beijing 100070, China
| | - Huan Zhang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang 325000, China
| | - Yating Zhou
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yujiao Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Xuefeng Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang 325000, China
| | - Yuqiang Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaliang Fang
- Sperm Capturer (Beijing) Biotechnology Co. Ltd., Beijing 100070, China
| | - Ge Yang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
23
|
Wiesehöfer C, Wiesehöfer M, Dankert JT, Chung JJ, von Ostau NE, Singer BB, Wennemuth G. CatSper and its CaM-like Ca 2+ sensor EFCAB9 are necessary for the path chirality of sperm. FASEB J 2022; 36:e22288. [PMID: 35438819 PMCID: PMC9835897 DOI: 10.1096/fj.202101656rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 01/14/2023]
Abstract
Successful fertilization depends on sperm motility adaptation. Ejaculated and activated sperm beat symmetrically in high frequency, move linearly, and swim with clockwise chirality. After capacitation, sperm beat asymmetrically with lower amplitude and a high lateral head excursion. This motility change called hyperactivation requires CatSper activation and an increase in intracellular Ca2+ . However, whether CatSper-mediated Ca2+ influx participates in controlling the swim path chirality is unknown. In this study, we show that the clockwise path chirality is preserved in mouse sperm regardless of capacitation state but is lost in the sperm either lacking the entire CatSper channel or its Ca2+ sensor EFCAB9. Pharmacological inhibition of CatSper with either mibefradil or NNC 55-0396 leads to the same loss in swim path chirality. Exposure of sperm to the recombinant N-terminal part of the zona pellucida protein 2 randomizes chirality in capacitated cells, but not in non-capacitated ones. We conclude that Ca2+ sensitive regulation of CatSper activity orchestrates clockwise swim path chirality of sperm and any substantial change, such as the physiological stimulus of zona pellucida glycoproteins, results in a loss of chirality.
Collapse
Affiliation(s)
| | - Marc Wiesehöfer
- Department of Anatomy, University Duisburg-Essen, D-45147 Essen, Germany
| | | | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nicola Edith von Ostau
- Department of Anatomy, University Duisburg-Essen, D-45147 Essen, Germany,Department of Urology, University Hospital Essen, D-45147 Essen, Germany
| | | | - Gunther Wennemuth
- Department of Anatomy, University Duisburg-Essen, D-45147 Essen, Germany,Correspondence to
| |
Collapse
|
24
|
Nassir M, Levi M, Dardikman-Yoffe G, Mirsky SK, Shaked NT. Prediction of Sperm Progression in Three Dimensions Using Rapid Optical Imaging and Dynamic Mechanical Modeling. Cells 2022; 11:cells11081319. [PMID: 35455999 PMCID: PMC9030059 DOI: 10.3390/cells11081319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
We present a multidisciplinary approach for predicting how sperm cells with various morphologies swim in three-dimensions (3D), from milliseconds to much longer time scales at spatial resolutions of less than half a micron. We created the sperm 3D geometry and built a numerical mechanical model using the experimentally acquired dynamic 3D refractive-index profiles of sperm cells swimming in vitro as imaged by high-resolution optical diffraction tomography. By controlling parameters in the model, such as the size and shape of the sperm head and tail, we can then predict how different sperm cells, normal or abnormal, would swim in 3D, in the short or long term. We quantified various 3D structural factor effects on the sperm long-term motility. We found that some abnormal sperm cells swim faster than normal sperm cells, in contrast to the commonly used sperm selection assumption during in vitro fertilization (IVF), according to which sperm cells should mainly be chosen based on their progressive motion. We thus establish a new tool for sperm analysis and male-infertility diagnosis, as well as sperm selection criteria for fertility treatments.
Collapse
|
25
|
Powar S, Parast FY, Nandagiri A, Gaikwad AS, Potter DL, O'Bryan MK, Prabhakar R, Soria J, Nosrati R. Unraveling the Kinematics of Sperm Motion by Reconstructing the Flagellar Wave Motion in 3D. SMALL METHODS 2022; 6:e2101089. [PMID: 35138044 DOI: 10.1002/smtd.202101089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Sperm swim through the female reproductive tract by propagating a 3D flagellar wave that is self-regulatory in nature and driven by dynein motors. Traditional microscopy methods fail to capture the full dynamics of sperm flagellar activity as they only image and analyze sperm motility in 2D. Here, an automated platform to analyze sperm swimming behavior in 3D by using thin-lens approximation and high-speed dark field microscopy to reconstruct the flagellar waveform in 3D is presented. It is found that head-tethered mouse sperm exhibit a rolling beating behavior in 3D with the beating frequency of 6.2 Hz using spectral analysis. The flagellar waveform bends in 3D, particularly in the distal regions, but is only weakly nonplanar and ambidextrous in nature, with the local helicity along the flagellum fluctuating between clockwise and counterclockwise handedness. These findings suggest a nonpersistent flagellar helicity. This method provides new opportunities for the accurate measurement of the full motion of eukaryotic flagella and cilia which is essential for a biophysical understanding of their activation by dynein motors.
Collapse
Affiliation(s)
- Sushant Powar
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Farin Yazdan Parast
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Ashwin Nandagiri
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Avinash S Gaikwad
- School of BioSciences, Faculty of Science, University of Melbourne, Parkville, Victoria, 3010, Australia
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - David L Potter
- Monash Micro-Imaging, Monash University, Clayton, Victoria, 3800, Australia
| | - Moira K O'Bryan
- School of BioSciences, Faculty of Science, University of Melbourne, Parkville, Victoria, 3010, Australia
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Ranganathan Prabhakar
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Julio Soria
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, 3800, Australia
- Laboratory for Turbulence Research in Aerospace & Combustion (LTRAC), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Reza Nosrati
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
26
|
Edrei E, Weiss A, Engelberg J, Zektzer R, Mazurski N, Levy U. Spectrally Gated Microscopy (SGM) with Meta Optics for Parallel Three-Dimensional Imaging. ACS NANO 2021; 15:17375-17383. [PMID: 34633801 DOI: 10.1021/acsnano.1c06646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Volumetric imaging with high spatiotemporal resolution is of utmost importance for various applications ranging from aerospace and defense to real-time imaging of dynamic biological processes. To facilitate three-dimensional sectioning, current technology relies on mechanisms to reject light from adjacent out-of-focus planes either spatially or by other means. Yet, the combination of rapid acquisition time and high axial resolution is still elusive, motivating a persistent pursuit for emerging imaging approaches. Here we introduce and experimentally demonstrate a concept named spectrally gated microscopy (SGM), which enables a single-shot interrogation over the full axial dimension while maintaining a submicron sectioning resolution. SGM utilizes two important features enabled by flat optics (i.e., metalenses or diffractive lenses), namely, a short focal length and strong chromatic aberrations. Using SGM we demonstrate three-dimensional imaging of millimeter-scale samples while scanning only the lateral dimension, presenting a significant advantage over state-of-the-art technology.
Collapse
Affiliation(s)
- Eitan Edrei
- Department of Applied Physics, The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Aharon Weiss
- Department of Applied Physics, The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Jacob Engelberg
- Department of Applied Physics, The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Roy Zektzer
- Department of Applied Physics, The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Noa Mazurski
- Department of Applied Physics, The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Uriel Levy
- Department of Applied Physics, The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
27
|
Abstract
Sperm selection in the female reproductive tract (FRT) is sophisticated. Only about 1,000 sperm out of millions in an ejaculate reach the fallopian tube and thus have a chance of fertilizing an oocyte. In assisted reproduction techniques, sperm are usually selected using their density or motility, characteristics that do not reflect their fertilization competence and, therefore, might result in failure to fertilize the oocyte. Although sperm processing in in vitro fertilization (IVF) and intrauterine insemination (IUI) bypasses many of the selection processes in the FRT, selection by the cumulus mass and the zona pellucida remain intact. By contrast, the direct injection of a sperm into an oocyte in intracytoplasmic sperm injection (ICSI) bypasses all natural selection barriers and, therefore, increases the risk of transferring paternal defects such as fragmented DNA and genomic abnormalities in sperm to the resulting child. Research into surrogate markers of fertilization potential and into simulating the natural sperm selection processes has progressed. However, methods of sperm isolation - such as hyaluronic acid-based selection and microfluidic isolation based on sperm tactic responses - use only one or two parameters and are not comparable with the multistep sperm selection processes naturally occurring within the FRT. Fertilization-competent sperm require a panel of molecules, including zona pellucida-binding proteins and ion channel proteins, that enable them to progress through the FRT to achieve fertilization. The optimal artificial sperm selection method will, therefore, probably need to use a multiparameter tool that incorporates the molecular signature of sperm with high fertilization potential, and their responses to external cues, within a microfluidic system that can replicate the physiological processes of the FRT in vitro.
Collapse
|
28
|
Wang Z, Bianco V, Pirone D, Memmolo P, Villone MM, Maffettone PL, Ferraro P. Dehydration of plant cells shoves nuclei rotation allowing for 3D phase-contrast tomography. LIGHT, SCIENCE & APPLICATIONS 2021; 10:187. [PMID: 34526484 PMCID: PMC8443563 DOI: 10.1038/s41377-021-00626-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/15/2021] [Accepted: 08/27/2021] [Indexed: 05/07/2023]
Abstract
Single-cell phase-contrast tomography promises to become decisive for studying 3D intracellular structures in biology. It involves probing cells with light at wide angles, which unfortunately requires complex systems. Here we show an intriguing concept based on an inherent natural process for plants biology, i.e., dehydration, allowing us to easily obtain 3D-tomography of onion-epidermal cells' nuclei. In fact, the loss of water reduces the turgor pressure and we recognize it induces significant rotation of cells' nuclei. Thanks to the holographic focusing flexibility and an ad-hoc angles' tracking algorithm, we combine different phase-contrast views of the nuclei to retrieve their 3D refractive index distribution. Nucleolus identification capability and a strategy for measuring morphology, dry mass, biovolume, and refractive index statistics are reported and discussed. This new concept could revolutionize the investigation in plant biology by enabling dynamic 3D quantitative and label-free analysis at sub-nuclear level using a conventional holographic setup.
Collapse
Affiliation(s)
- Zhe Wang
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125, Napoli, Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems, Joint Research Center CNR - Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Vittorio Bianco
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems, Joint Research Center CNR - Università degli Studi di Napoli "Federico II", Napoli, Italy
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Daniele Pirone
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Università degli Studi di Napoli "Federico II", via Claudio 21, 80125, Napoli, Italy
| | - Pasquale Memmolo
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems, Joint Research Center CNR - Università degli Studi di Napoli "Federico II", Napoli, Italy.
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Massimiliano Maria Villone
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125, Napoli, Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems, Joint Research Center CNR - Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Pier Luca Maffettone
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125, Napoli, Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems, Joint Research Center CNR - Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Pietro Ferraro
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems, Joint Research Center CNR - Università degli Studi di Napoli "Federico II", Napoli, Italy.
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| |
Collapse
|
29
|
Hansen JN, Gong A, Wachten D, Pascal R, Turpin A, Jikeli JF, Kaupp UB, Alvarez L. Multifocal imaging for precise, label-free tracking of fast biological processes in 3D. Nat Commun 2021; 12:4574. [PMID: 34321468 PMCID: PMC8319204 DOI: 10.1038/s41467-021-24768-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/06/2021] [Indexed: 11/22/2022] Open
Abstract
Many biological processes happen on a nano- to millimeter scale and within milliseconds. Established methods such as confocal microscopy are suitable for precise 3D recordings but lack the temporal or spatial resolution to resolve fast 3D processes and require labeled samples. Multifocal imaging (MFI) allows high-speed 3D imaging but is limited by the compromise between high spatial resolution and large field-of-view (FOV), and the requirement for bright fluorescent labels. Here, we provide an open-source 3D reconstruction algorithm for multi-focal images that allows using MFI for fast, precise, label-free tracking spherical and filamentous structures in a large FOV and across a high depth. We characterize fluid flow and flagellar beating of human and sea urchin sperm with a z-precision of 0.15 µm, in a volume of 240 × 260 × 21 µm, and at high speed (500 Hz). The sampling volume allowed to follow sperm trajectories while simultaneously recording their flagellar beat. Our MFI concept is cost-effective, can be easily implemented, and does not rely on object labeling, which renders it broadly applicable.
Collapse
Affiliation(s)
- Jan N Hansen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany.
| | - An Gong
- Center of Advanced European Studies and Research (caesar), Molecular Sensory Systems, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - René Pascal
- Center of Advanced European Studies and Research (caesar), Molecular Sensory Systems, Bonn, Germany
| | - Alex Turpin
- School of Computing Science, University of Glasgow, Glasgow, UK
| | - Jan F Jikeli
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research (caesar), Molecular Sensory Systems, Bonn, Germany
- Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Luis Alvarez
- Center of Advanced European Studies and Research (caesar), Molecular Sensory Systems, Bonn, Germany.
| |
Collapse
|
30
|
Gong A, Rode S, Gompper G, Kaupp UB, Elgeti J, Friedrich BM, Alvarez L. Reconstruction of the three-dimensional beat pattern underlying swimming behaviors of sperm. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:87. [PMID: 34196906 PMCID: PMC8249298 DOI: 10.1140/epje/s10189-021-00076-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/06/2021] [Indexed: 05/09/2023]
Abstract
The eukaryotic flagellum propels sperm cells and simultaneously detects physical and chemical cues that modulate the waveform of the flagellar beat. Most previous studies have characterized the flagellar beat and swimming trajectories in two space dimensions (2D) at a water/glass interface. Here, using refined holographic imaging methods, we report high-quality recordings of three-dimensional (3D) flagellar bending waves. As predicted by theory, we observed that an asymmetric and planar flagellar beat results in a circular swimming path, whereas a symmetric and non-planar flagellar beat results in a twisted-ribbon swimming path. During swimming in 3D, human sperm flagella exhibit torsion waves characterized by maxima at the low curvature regions of the flagellar wave. We suggest that these torsion waves are common in nature and that they are an intrinsic property of beating axonemes. We discuss how 3D beat patterns result in twisted-ribbon swimming paths. This study provides new insight into the axoneme dynamics, the 3D flagellar beat, and the resulting swimming behavior.
Collapse
Affiliation(s)
- A Gong
- Center of Advanced European Studies and Research (caesar), Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - S Rode
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - G Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - U B Kaupp
- Center of Advanced European Studies and Research (caesar), Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| | - J Elgeti
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - B M Friedrich
- Biological Algorithms Group, TU Dresden, Cluster of Excellence 'Physics of Life' and Center for Advancing Electronics Dresden (cfaed), Helmholtzstr. 18, 01069, Dresden, Germany
| | - L Alvarez
- Center of Advanced European Studies and Research (caesar), Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
31
|
You JB, McCallum C, Wang Y, Riordon J, Nosrati R, Sinton D. Machine learning for sperm selection. Nat Rev Urol 2021; 18:387-403. [PMID: 34002070 DOI: 10.1038/s41585-021-00465-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/04/2023]
Abstract
Infertility rates and the number of couples seeking fertility care have increased worldwide over the past few decades. Over 2.5 million cycles of assisted reproductive technologies are being performed globally every year, but the success rate has remained at ~33%. Machine learning, an automated method of data analysis based on patterns and inference, is increasingly being deployed within the health-care sector to improve diagnostics and therapeutics. This technique is already aiding embryo selection in some fertility clinics, and has also been applied in research laboratories to improve sperm analysis and selection. Tremendous opportunities exist for machine learning to advance male fertility treatments. The fundamental challenge of sperm selection - selecting the most promising candidate from 108 gametes - presents a challenge that is uniquely well-suited to the high-throughput capabilities of machine learning algorithms paired with modern data processing capabilities.
Collapse
Affiliation(s)
- Jae Bem You
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada.,Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Christopher McCallum
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Yihe Wang
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Jason Riordon
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Reza Nosrati
- Department of Mechanical & Aerospace Engineering, Monash University, Clayton, VIC, Australia
| | - David Sinton
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
32
|
Kandel ME, Kim E, Lee YJ, Tracy G, Chung HJ, Popescu G. Multiscale Assay of Unlabeled Neurite Dynamics Using Phase Imaging with Computational Specificity. ACS Sens 2021; 6:1864-1874. [PMID: 33882232 PMCID: PMC8815662 DOI: 10.1021/acssensors.1c00100] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Primary neuronal cultures have been widely used to study neuronal morphology, neurophysiology, neurodegenerative processes, and molecular mechanism of synaptic plasticity underlying learning and memory. However, the unique behavioral properties of neurons make them challenging to study, with phenotypic differences expressed as subtle changes in neuronal arborization rather than easy-to-assay features such as cell count. The need to analyze morphology, growth, and intracellular transport has motivated the development of increasingly sophisticated microscopes and image analysis techniques. Due to its high-contrast, high-specificity output, many assays rely on confocal fluorescence microscopy, genetic methods, or antibody staining techniques. These approaches often limit the ability to measure quantitatively dynamic activity such as intracellular transport and growth. In this work, we describe a method for label-free live-cell cell imaging with antibody staining specificity by estimating the associated fluorescence signals via quantitative phase imaging and deep convolutional neural networks. This computationally inferred fluorescence image is then used to generate a semantic segmentation map, annotating subcellular compartments of live unlabeled neural cultures. These synthetic fluorescence maps were further applied to study the time-lapse development of hippocampal neurons, highlighting the relationships between the cellular dry mass production and the dynamic transport activity within the nucleus and neurites. Our implementation provides a high-throughput strategy to analyze neural network arborization dynamically, with high specificity and without the typical phototoxicity and photobleaching limitations associated with fluorescent markers.
Collapse
Affiliation(s)
- Mikhail E Kandel
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Eunjae Kim
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Young Jae Lee
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Gregory Tracy
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Hee Jung Chung
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Gabriel Popescu
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
33
|
Nandagiri A, Gaikwad AS, Potter DL, Nosrati R, Soria J, O'Bryan MK, Jadhav S, Prabhakar R. Flagellar energetics from high-resolution imaging of beating patterns in tethered mouse sperm. eLife 2021; 10:62524. [PMID: 33929317 PMCID: PMC8159377 DOI: 10.7554/elife.62524] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 04/29/2021] [Indexed: 01/07/2023] Open
Abstract
We demonstrate a technique for investigating the energetics of flagella or cilia. We record the planar beating of tethered mouse sperm at high resolution. Beating waveforms are reconstructed using proper orthogonal decomposition of the centerline tangent-angle profiles. Energy conservation is employed to obtain the mechanical power exerted by the dynein motors from the observed kinematics. A large proportion of the mechanical power exerted by the dynein motors is dissipated internally by the motors themselves. There could also be significant dissipation within the passive structures of the flagellum. The total internal dissipation is considerably greater than the hydrodynamic dissipation in the aqueous medium outside. The net power input from the dynein motors in sperm from Crisp2-knockout mice is significantly smaller than in wildtype samples, indicating that ion-channel regulation by cysteine-rich secretory proteins controls energy flows powering the axoneme.
Collapse
Affiliation(s)
- Ashwin Nandagiri
- IITB-Monash Research Academy, Mumbai, India.,Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India.,Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia
| | | | - David L Potter
- Monash Micro-Imaging, Monash University, Clayton, Australia
| | - Reza Nosrati
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia
| | - Julio Soria
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia
| | - Moira K O'Bryan
- School of BioSciences, University of Melbourne, Parkville, Australia
| | - Sameer Jadhav
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ranganathan Prabhakar
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia
| |
Collapse
|
34
|
Guo R, Barnea I, Shaked NT. Limited-angle tomographic phase microscopy utilizing confocal scanning fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:1869-1881. [PMID: 33996204 PMCID: PMC8086471 DOI: 10.1364/boe.419598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 05/03/2023]
Abstract
We present a multimodal imaging technique, combining tomographic phase microscopy with limited angular projection range and number, and two-channel spinning-disk confocal scanning fluorescence microscopy. This technique allows high-accuracy 3D refractive index (RI) profiling of live cells in spite of the missing projections. The cellular outer shape and its interior organelles measured by the confocal fluorescence imaging not only specify the cell in molecular levels, but also provide the 3D distributions of the whole cell as well as its organelles. We take these additional 3D morphological details as constraints in Gerchberg-Papoulis-based optical diffraction tomography algorithm. We then obtain an accurate 3D RI tomogram, even with a sparse angular range having a small number of perspective projections, otherwise providing low-accuracy RI reconstruction. Then, we obtain both cellular molecular specificity and inner RI values of the cell and its organelles. We compare the reconstructed 3D RI profiles of various samples, demonstrating the superiority of the proposed technique.
Collapse
|
35
|
Hansen JN, Rassmann S, Stüven B, Jurisch-Yaksi N, Wachten D. CiliaQ: a simple, open-source software for automated quantification of ciliary morphology and fluorescence in 2D, 3D, and 4D images. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:18. [PMID: 33683488 PMCID: PMC7940315 DOI: 10.1140/epje/s10189-021-00031-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/01/2021] [Indexed: 05/16/2023]
Abstract
Cilia are hair-like membrane protrusions that emanate from the surface of most vertebrate cells and are classified into motile and primary cilia. Motile cilia move fluid flow or propel cells, while also fulfill sensory functions. Primary cilia are immotile and act as a cellular antenna, translating environmental cues into cellular responses. Ciliary dysfunction leads to severe diseases, commonly termed ciliopathies. The molecular details underlying ciliopathies and ciliary function are, however, not well understood. Since cilia are small subcellular compartments, imaging-based approaches have been used to study them. However, tools to comprehensively analyze images are lacking. Automatic analysis approaches require commercial software and are limited to 2D analysis and only a few parameters. The widely used manual analysis approaches are time consuming, user-biased, and difficult to compare. Here, we present CiliaQ, a package of open-source, freely available, and easy-to-use ImageJ plugins. CiliaQ allows high-throughput analysis of 2D and 3D, static or time-lapse images from fluorescence microscopy of cilia in cell culture or tissues, and outputs a comprehensive list of parameters for ciliary morphology, length, bending, orientation, and fluorescence intensity, making it broadly applicable. We envision CiliaQ as a resource and platform for reproducible and comprehensive analysis of ciliary function in health and disease.
Collapse
Affiliation(s)
- Jan Niklas Hansen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
| | - Sebastian Rassmann
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Birthe Stüven
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, The Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Trondheim, Norway
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
| |
Collapse
|
36
|
Zheng C, Jin D, He Y, Lin H, Hu J, Yaqoob Z, So PTC, Zhou R. High spatial and temporal resolution synthetic aperture phase microscopy. ADVANCED PHOTONICS 2020; 2:065002. [PMID: 33870104 PMCID: PMC8049284 DOI: 10.1117/1.ap.2.6.065002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A new optical microscopy technique, termed high spatial and temporal resolution synthetic aperture phase microscopy (HISTR-SAPM), is proposed to improve the lateral resolution of wide-field coherent imaging. Under plane wave illumination, the resolution is increased by twofold to around 260 nm, while achieving millisecond-level temporal resolution. In HISTR-SAPM, digital micromirror devices are used to actively change the sample illumination beam angle at high speed with high stability. An off-axis interferometer is used to measure the sample scattered complex fields, which are then processed to reconstruct high-resolution phase images. Using HISTR-SAPM, we are able to map the height profiles of subwavelength photonic structures and resolve the period structures that have 198 nm linewidth and 132 nm gap (i.e., a full pitch of 330 nm). As the reconstruction averages out laser speckle noise while maintaining high temporal resolution, HISTR-SAPM further enables imaging and quantification of nanoscale dynamics of live cells, such as red blood cell membrane fluctuations and subcellular structure dynamics within nucleated cells. We envision that HISTR-SAPM will broadly benefit research in material science and biology.
Collapse
Affiliation(s)
- Cheng Zheng
- The Chinese University of Hong Kong, Department of Biomedical Engineering, Hong Kong, China
- Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, Massachusetts, United States
| | - Di Jin
- Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts, United States
| | - Yanping He
- The Chinese University of Hong Kong, Department of Biomedical Engineering, Hong Kong, China
| | - Hongtao Lin
- Zhejiang University, College of Information Science and Electronic Engineering, Hangzhou, China
| | - Juejun Hu
- Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, Massachusetts, United States
| | - Zahid Yaqoob
- Massachusetts Institute of Technology, Laser Biomedical Research Center, Cambridge, Massachusetts, United States
| | - Peter T. C So
- Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, Massachusetts, United States
- Massachusetts Institute of Technology, Laser Biomedical Research Center, Cambridge, Massachusetts, United States
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, Massachusetts, United States
| | - Renjie Zhou
- The Chinese University of Hong Kong, Department of Biomedical Engineering, Hong Kong, China
- The Chinese University of Hong Kong, Shun Hing Institute of Advanced Engineering, Hong Kong, China
- Address all correspondence to Renjie Zhou,
| |
Collapse
|
37
|
Polarization-Sensitive Digital Holographic Imaging for Characterization of Microscopic Samples: Recent Advances and Perspectives. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10134520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polarization-sensitive digital holographic imaging (PS-DHI) is a recent imaging technique based on interference among several polarized optical beams. PS-DHI allows simultaneous quantitative three-dimensional reconstruction and quantitative evaluation of polarization properties of a given sample with micrometer scale resolution. Since this technique is very fast and does not require labels/markers, it finds application in several fields, from biology to microelectronics and micro-photonics. In this paper, a comprehensive review of the state-of-the-art of PS-DHI techniques, the theoretical principles, and important applications are reported.
Collapse
|