1
|
Liu J, Yang J, Liao A, Huang K, Zheng C. Field preconcentration and preservation of sulfide with MOF paper prior to microplasma assisted oxidation gas phase molecular fluorescence spectrometric analysis. Talanta 2025; 293:128070. [PMID: 40187286 DOI: 10.1016/j.talanta.2025.128070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/17/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The inherent instability of dissolved sulfide, leading to volatilization and oxidation during transport and storage, significantly compromises the accuracy of its detection. To address this limitation, the highly efficient extraction and preservation of sulfide in the field are essential. Herein, a simple field preconcentration and preservation method using ZIF-8 paper as a monolithic adsorbent coupling to a new dielectric barrier discharge microplasma assisted oxidation gas molecular fluorescence spectrometry was developed for highly sensitive detection of sulfide in environmental samples. The ZIF-8 paper was constructed as a monolithic adsorbent material through the in-situ growth of ZIF-8 on a carboxymethylated filter paper, which facilitates the straightforward and efficient adsorption and desorption of sulfide, offering excellent capability for the field extraction and long-term preservation of sulfide up to five days. The sensitive dielectric barrier discharge microplasma-molecular fluorescence spectrometry detection of sulfide was accomplished with a 3D-printed chemical vapor generation and dielectric barrier discharge microplasma assisted oxidation system. The system was not only employed to convert desorbed sulfide into H2S gas, but also used to further oxidize it to SO2 prior to its introduction to molecular fluorescence spectrometry. Under optimal conditions, the method achieved a limit of detection (LOD) of 0.1 μM and a relative standard deviation (RSD, n = 11) of 5.0 % at 20 μM of sulfide. The accuracy of this method was validated by two certified reference materials and several real environmental water samples. By coupling ZIF-8 paper preconcentration with chemical vapor generation-dielectric barrier discharge microplasma-molecular fluorescence spectrometry, this approach provides enhanced sensitivity, exceptional reliability, and robust performance for sulfide detection in complex environmental water matrices.
Collapse
Affiliation(s)
- Jie Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Jiahui Yang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Anheyu Liao
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China.
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
2
|
Song Y, Wang L, Peng T, Shan L, Wan B, Tang M, Luan Y, Jiang Y, He W. Brain-targeting biomimetic nanozyme enhances neuroprotection in ischemic stroke by remodeling the neurovascular unit. J Control Release 2025; 382:113750. [PMID: 40254137 DOI: 10.1016/j.jconrel.2025.113750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Dysfunction of the neurovascular unit significantly impacts the prognostic outcomes of ischemic stroke. However, effective strategies to comprehensively modulate the neurovascular unit have yet to be developed. In this work, we introduce a brain-targeting biomimetic nanozyme, A@HPB@THSA, designed to mitigate neurovascular unit dysfunction following ischemia/reperfusion. Specifically, aspirin is encapsulated within a hollow Prussian blue nanozyme, which is subsequently modified with brain-targeting T7 peptide-conjugated human serum albumin, ultimately forming the composite A@HPB@THSA. The overexpression of transferrin receptors on cerebral vascular endothelial cells, along with compromised blood-brain barrier (BBB) permeability, facilitates the accumulation of A@HPB@THSA at cerebral ischemic lesions. The hollow Prussian blue nanozyme component effectively scavenges reactive oxygen species in ischemia/reperfusion-affected brain cells, while the aspirin component inhibits platelet aggregation and neutrophil infiltration, thereby preventing microvascular "no-reflow" and preserving the integrity of the BBB. In rat models of transient middle cerebral artery occlusion, A@HPB@THSA demonstrated comprehensive modulation of the neurovascular unit, including reduced BBB permeability, promoted microglia polarization toward an anti-inflammatory phenotype, and enhanced neuronal survival. This work provides a promising platform to reverse dysfunctional neurovascular unit for ischemic stroke treatment.
Collapse
Affiliation(s)
- Yan Song
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Luyao Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tingting Peng
- Departent of Pharmacy, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China
| | - Lingling Shan
- Departent of Pharmacy, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China
| | - Bo Wan
- Departent of Pharmacy, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China
| | - Mingtan Tang
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yuxia Luan
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yue Jiang
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Wenxiu He
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
3
|
Feng C, Yang T, Zhou J, Wang C, Chu Z, Zhang Y, Zhang J, Wong YK, Liu C, Gao P, Ma A, Tang H, Wang J. Cerium oxide nanoparticles as potent inhibitors of ferroptosis: role of antioxidant activity and protein regulation. J Mol Med (Berl) 2025:10.1007/s00109-025-02554-9. [PMID: 40448735 DOI: 10.1007/s00109-025-02554-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/20/2025] [Accepted: 05/05/2025] [Indexed: 06/02/2025]
Abstract
Ferroptosis has been closely linked to the pathological processes of various diseases, making it a promising target for therapeutic intervention. Understanding the regulatory mechanisms underlying ferroptosis and developing effective pharmacological strategies is essential. Nanomedicine, particularly the use of nanozymes, offers a potential approach for regulating ferroptosis. In this study, we investigated the inhibitory activity of ultra-small, biocompatible cerium oxide nanoparticles (CeO2 NPs) on ferroptosis and explored the underlying molecular mechanisms. CeO2 NPs exhibited potent superoxide dismutase (SOD) and catalase (CAT) activities, efficiently scavenging multiple free radicals and lipid peroxidation products both intracellularly and extracellularly. These activities effectively prevented or alleviated ferroptosis in RSL3-induced cells. Proteomic analysis revealed that CeO2 NPs significantly altered the expression of numerous proteins, including a reduction in pro-inflammatory cytokines. Mechanistically, CeO2 NPs specifically regulated the expression of key proteins involved in ferroptosis-related metabolic processes, reducing iron accumulation and lipid peroxidation, and thereby decreasing cellular susceptibility to ferroptosis. Our findings demonstrate that CeO2 NPs synergistically inhibit ferroptosis by both scavenging reactive oxygen species (ROS) and modulating the expression of ferroptosis-regulating proteins. In conclusion, this study highlights the potential of CeO2 NPs as a promising nanozymes for ferroptosis inhibition, offering novel insights into the design of CeO2 NPs-based therapies for ferroptosis-related diseases.
Collapse
Affiliation(s)
- Chenran Feng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tong Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jie Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chen Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zheng Chu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ying Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yin Kwan Wong
- Department of Physiology, National University of Singapore, Singapore, 117543, Singapore
| | - Cui Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Peng Gao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ang Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
4
|
Du ZW, Li YS, Jiang XC, Gao JQ. Nanoparticles Designed Based on the Blood-Brain Barrier for the Treatment of Cerebral Ischemia-Reperfusion Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410404. [PMID: 40042407 DOI: 10.1002/smll.202410404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/11/2025] [Indexed: 05/13/2025]
Abstract
Cerebral ischemia-reperfusion injury (CI/RI) is currently considered a significant factor affecting the prognosis of ischemic stroke. The blood-brain barrier (BBB) plays multiple roles in the treatment ofCI/RI. BBB leakage allows bloodborne toxins to exacerbate the stroke pathology. Yet as the physiological barrier that separates the blood from the brain, BBB also poses a significant obstacle to therapeutic drug delivery. Therefore, it is essential to consider both crossing and repairing the BBB in the process of the treatment of CI/RI. Leveraging the exceptional benefits of nanoparticles (NPs) for BBB penetration and targeted repair, numerous NPs are developed as promising drug delivery platforms. Considering the complex role of the BBB in CI/RI, this review delves into the strategies for designing NPs to cross the BBB, focusing on peptide-modified NPs, cell-mediated NPs, cell membrane-derived NPs, and BBB-modulating NPs. Additionally, it summarizes design strategies of NPs targeting endothelial cells (ECs), astrocytes, and those aimed at regulating the microenvironment to repair the BBB. On this basis, it reveals the prospects and challenges of NPs designed around the BBB in CI/RI treatment. And it highlights the need to combine BBB permeability promotion and BBB repair in nanoparticle strategies designed based on the BBB to achieve more effective treatment.
Collapse
Affiliation(s)
- Zhi-Wei Du
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yao-Sheng Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Xin-Chi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jian-Qing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
5
|
Abdi S, Shirzad M, Ghasemi-Kasman M, Nadalinezhad L, Ghasemi S, Zabihi E, Rajabzadeh A. Zeolite Imidazole Framework-8 Exacerbates Astrocyte Activation and Oxidative Stress in the Brain of Rats. ENVIRONMENTAL TOXICOLOGY 2025; 40:787-801. [PMID: 39777998 DOI: 10.1002/tox.24467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/02/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
Metal-organic frameworks (MOFs) have been gaining significant attention due to their potential application in medicine. Here, we investigated the effect of zeolite imidazole framework-8 (ZIF-8) on neuro-behavioral parameters, histopathology, inflammation, and oxidative stress levels of rats' brain samples. Forty-eight male Wistar rats were injected by four injections of saline or ZIF-8 at different doses of 5, 10, or 20 mg/kg via the caudal vein. Y-Maze, Morris-Water Maze (MWM), and three chamber tests were conducted to explore working memory, spatial learning and memory, and social interactions, respectively. Histological staining and immunohistochemistry were used to evaluate pathological changes and astrocyte activation levels. The inflammation levels were measured using quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). The total antioxidant capacity (TAC) and oxidative stress production were assessed by biochemical assays. The results showed that ZIF-8 induces neuromotor impairment dose-dependently. Although histopathological studies indicated increased neuronal loss, inflammatory changes, and elevated active astrocytes in the hippocampus, the expression levels of IL-1β and TNF-α were not significantly increased in ZIF-8-treated rats. The TAC level significantly reduced and the malondialdehyde (MDA) level remarkably increased in the brain tissues. Our findings suggest that administration of ZIF-8 induce neuromotor impairment, probably through amplified inflammation and oxidative stress.
Collapse
Affiliation(s)
- Sadaf Abdi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Moein Shirzad
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Leyla Nadalinezhad
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Shahram Ghasemi
- Department of Applied Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Aliakbar Rajabzadeh
- Department of Anatomy, Embryology, and Histology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
6
|
Gao Z, Wang X, Mei Q, Shen T, Wang J, Liu C. Sulfated chitosan directs the recovery of ischemic stroke by attenuating the inflammatory cascade. Theranostics 2025; 15:5870-5889. [PMID: 40365292 PMCID: PMC12068298 DOI: 10.7150/thno.111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/03/2025] [Indexed: 05/15/2025] Open
Abstract
Background: Ischemic stroke is considered a fatal ischemic disease with high mortality and morbidity. Acute ischemic stroke is a cascade of inflammatory reactions, which not only causes vascular degeneration but also leads to neurological disorders. During this period, the rapid response of neutrophil-dominated granulocytes releases cytokines and chemokines to affect tissue repair. Thus, effective regulation of neutrophils appears to be the key in treating major organ injuries associated with inflammation. Methods: This study developed a semisynthetic sulfated chitosan (SCS) associated with the functional sulfated groups. The immunoregulatory effects of SCS on neutrophils were tested by Real-Time Quantitative Reverse Transcription (RT-PCR), ELISA and immunofluorescence staining at gene and protein levels in vitro. Flow cytometry, WB and PCR were used to study the effect of neutrophils on macrophages, indicating the regulation of the inflammatory cascade by SCS. Acute ischemic stroke model was established to verify the effectiveness and the regulation of inflammatory cascade of SCS. Finally, the lower limb ischemia model was used to verify the universality of SCS in the treatment of ischemic diseases, especially with regard to acute inflammatory-related major organ damage. Results: SCS can not only promote neutrophil apoptosis, but also enable neutrophils to produce vascular-related subsets to regulate immunity and promote angiogenesis. Neutrophil stimulated by SCS mediated macrophage polarization via IL-10-induced Stat3 signaling pathway to weaken the inflammatory cascade. In animal models of ischemic hind limb and ischemic stroke, SCS had demonstrated its ability to shorten the acute inflammatory period, as indicated by neutrophil, and accelerate the subsequent repair period characterized by the presence of M2 macrophages. Additionally, SCS effectively inhibits the expression of MMP-9 to provide a favorable environment for rapid extracellular matrix reconstruction. Encouragingly, treatment with SCS had been shown to reduce the expansion of the infarct volume by approximately 20% in our experiments. Conclusion: This study underscores the effect of SCS in regulating the heterogeneity of neutrophils in order to suppress the initiation of inflammation to treat ischemic stroke. Crucially, our approach relies on non-exogenous growth factors and cells, highlighting its remarkable potential for clinical translatability in the treatment of major organ injuries.
Collapse
Affiliation(s)
- Zehua Gao
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Xuanlin Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Qiyong Mei
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Tong Shen
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Xu C, Liu Y, Pan Y, Zhang H, Sun Y, Li J, Wu A, Bian L. Neutrophil-like cell membrane-coated molybdenum-based nanoclusters for reduced oxidative stress and enhanced neurological recovery after intracerebral hemorrhage. Acta Biomater 2025:S1742-7061(25)00286-7. [PMID: 40254230 DOI: 10.1016/j.actbio.2025.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Excessive reactive oxygen species (ROS) are detrimental to the brain that can result in neurological impairment and inhibiting neurological functionals recovery after intracerebral hemorrhage (ICH). However, there is still a lack of effective treatment for ICH, either with medicine or neurosurgery. Nanozymes with excellent superoxide dismutase and catalase properties can scavenge ROS and may provide therapeutic opportunities for ICH patients. However, the ability of nanozymes to non-invasively target cerebral hemorrhage lesions and further antioxidation effect are still unknown. Herein, neutrophile membrane-disguised molybdenum-based polyoxometalate nanozymes (POM@Mem) were developed to alleviate oxidative stress after ICH. Coating with neutrophil membrane allowed POM to target the hemorrhage sites and further inhibit ROS generation. POM@Mem can improve neuroinflammatory microenvironment and promote behavioral improvement of ICH mouse. Combining neutrophile membrane and nanozymes for targeting brain hemorrhage sites provides an effective strategy for the treatment of ICH. STATEMENT OF SIGNIFICANCE: Excessive reactive oxygen species (ROS) are detrimental to the brain and can lead to neurological impairment, hindering the recovery of neurological functions after intracerebral hemorrhage (ICH). Despite this, effective treatments for ICH, whether pharmaceuticals or neurosurgery, remain scarce. In this study, we developed neutrophil membrane-disguised molybdenum-based polyoxometalate nanozymes (POM@Mem) as a novel approach to alleviate oxidative stress following ICH. The neutrophil membrane coating enabled the POM nanozymes to specifically target hemorrhagic sites, thereby inhibiting ROS production. Additionally, POM@Mem improved the neuroinflammatory microenvironment and facilitated behavioral recovery in ICH mice. The combination of neutrophil membranes and nanozymes for targeted delivery to brain hemorrhage sites offers a promising strategy for the treatment of ICH.
Collapse
Affiliation(s)
- Canxin Xu
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China; Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yikui Liu
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yuanbo Pan
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Hongchi Zhang
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yuhao Sun
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China.
| | - Liuguan Bian
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| |
Collapse
|
8
|
Yang W, Wang X, Zheng D, Feng J, Kong W, Li Y, Ma G, Wei W, Tao Y. Catalytic neural stem cell exosomes for multi-stage targeting and synergistical therapy of retinal ischemia-reperfusion injury. Cell Rep Med 2025; 6:102052. [PMID: 40239632 PMCID: PMC12047469 DOI: 10.1016/j.xcrm.2025.102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Accepted: 03/10/2025] [Indexed: 04/18/2025]
Abstract
Neuronal damage of the retina is a leading cause of visual impairment in patients with retinal ischemia-reperfusion injury (RIRI). Building on our clinical and experimental findings, the substantial decrease in catalase activity correlates with increased hydrogen peroxide (H2O2)-mediated oxidative stress that is primarily localized to the outer nuclear layer (ONL) situated in the posterior segment of the retina. Accordingly, we design a neural stem cell exosome with polylysine (K10) decoration and catalase expression, named CataKNexo, which reaches the ONL and exerts synergistic antioxidant and neuroprotective therapy. Utilizing an in vitro retinal model recapitulating the layered architecture of the retina, we confirm that CataKNexo reaches the ONL through K10-mediated transcytosis. In RIRI model mice, CataKNexo prevents the retina from H2O2-induced cell death, exerts neuroprotection, and restores vision function to near-normal levels. Moreover, CataKNexo shows promising antioxidative, neuroprotective, and safety profiles in RIRI model Bama miniature pigs, highlighting its potential for clinical translation.
Collapse
Affiliation(s)
- Weiqiang Yang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China; Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China; Joint laboratory of Drug Delivery & Innovative Therapy built by Beijing Chaoyang Hospital & State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Xiaojun Wang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China; Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China; Joint laboratory of Drug Delivery & Innovative Therapy built by Beijing Chaoyang Hospital & State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China.
| | - Diwei Zheng
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Jing Feng
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China; Joint laboratory of Drug Delivery & Innovative Therapy built by Beijing Chaoyang Hospital & State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Wenjun Kong
- Department of Ophthalmology, Beijing You'an Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Yue Li
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Guanghui Ma
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China; Joint laboratory of Drug Delivery & Innovative Therapy built by Beijing Chaoyang Hospital & State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| | - Wei Wei
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China; Joint laboratory of Drug Delivery & Innovative Therapy built by Beijing Chaoyang Hospital & State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China; Joint laboratory of Drug Delivery & Innovative Therapy built by Beijing Chaoyang Hospital & State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China; National Engineering Research Center for Ophthalmology, Beijing, P.R. China; Engineering Research Center of Ophthalmic Equipment and Materials, Ministry of Education, Beijjing, P.R. China.
| |
Collapse
|
9
|
Zhu Z, Jin L, Wang Q, Shi H, Cheng K, Mao Z. Inhalable Ce Nanozyme-Backpacked Phage Aims at Ischemic Cerebral Injury by M1-Microglia Hitchhiking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2419903. [PMID: 40231579 DOI: 10.1002/adma.202419903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/03/2025] [Indexed: 04/16/2025]
Abstract
There is a desperate need for precise nanomedications to treat ischemic cerebral injury. Yet, the drawbacks of poor delivery efficiency and off-target toxicity in pathologic parenchyma for traditional antioxidants against ischemic stroke result in inadequate brain accumulation. M13 bacteriophages are highly phagocytosed by M1-polarized microglia and can be carried toward the neuroinflammatory sites. Here, a bio-active, inhalable, Ce0.9Zr0.1O2-backpacked-M13 phage (abbreviated as CZM) is developed and demonstrates how M13 bacteriophages are taken up by different phenotypes' microglia. With the M1 microglia's proliferating and migrating, CZM can be extensively and specifically delivered to the site of the ischemic core and penumbra, where the surviving nerve cells need to be shielded from secondary oxidative stress and inflammatory cascade initiated by reactive oxygen species (ROS). With non-invasive administration, CZM effectively alleviates oxidative damage and apoptosis of neurons by eliminating ROS generated by hyperactive M1-polarized microglia. Here, a secure and effective strategy for the targeted therapy of neuroinflammatory maladies is offered by this research.
Collapse
Affiliation(s)
- Zhixin Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qiaoxuan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Haifei Shi
- Department of Orthopedics, 1st Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 31000, China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| |
Collapse
|
10
|
Chen L, Wang Y, Huang X, Han L, Huang Z, Guo L, Chen K, Tan G. Maltodextrin-driven MOF Nano-antibacterial system for effective targeted bacteria and enhancing photodynamic therapy in bacterial keratitis. J Control Release 2025; 380:1164-1183. [PMID: 39955037 DOI: 10.1016/j.jconrel.2025.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
The occurrence of bacterial keratitis (BK) presents a significant threat to ocular health, often leading to visual impairment. Currently, conventional antibiotic therapies tend to promote bacterial resistance and lack biocompatibility. Therefore, it is of great significance to develop an alternative product with safe and efficient antimicrobial properties. In this study, we developed a novel smart pH-responsive nano-antibacterial system (PM/Ag-Ce6@ZIF-8) based on a metal-organic framework (MOF), enabling specific bacterial targeting and photodynamic therapy. By utilizing bacteria-specific maltodextrin transport pathway, the intelligent nano-antibacterial modified with maltotriose can accurately discriminate between bacterial infection and normal tissue, specifically target the site of infection, and efficiently accumulate at the infection site to enhance safety and efficacy. Furthermore, the incorporation of silver nanoparticles enhances the effectiveness of MOF photodynamic therapy by effectively eradicating bacteria. The nano-antibacterial system exhibits potent inhibition of biofilm formation as well as antibacterial activity while demonstrating excellent in vitro and in vivo biocompatibility. In an animal model of bacterial keratitis, PM/Ag-Ce6@ZIF-8 exhibits superior antibacterial activity compared to Levofloxacin (LVFX) eye drops, significantly improving therapeutic outcomes for bacterial keratitis in mice. Hence, this intelligent nano-antibacterial platform holds promising potential for clinical applications in treating keratitis.
Collapse
Affiliation(s)
- Lifang Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yao Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiuqing Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Lifang Han
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Zhengwei Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Ling Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Kai Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Guoxin Tan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| |
Collapse
|
11
|
Zhu L, Zhong W, Meng X, Lv X, Deng T, Mei Z, Liu X, Meng F, Tian Y, Hu L, Xiang H, Chen Y, Li Y. Clusterzyme-Enabled Oxidative Stress Alleviation and Microglial Polarization Modulation for Efficient Ischemic Stroke Treatment. Adv Healthc Mater 2025; 14:e2404268. [PMID: 39998259 DOI: 10.1002/adhm.202404268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/27/2025] [Indexed: 02/26/2025]
Abstract
Ischemic stroke (IS) presents a significant challenge to global health, as conventional reperfusion strategies aimed at restoring cerebral circulation paradoxically exacerbate neurological damage. This injury primarily results from the excessive production of reactive oxygen species (ROS) and the initiation of a widespread neuroinflammatory response. In this study, mercaptosuccinic acid (MSA)-coated bimetallic clusterzymes, containing an optimized ratio of Au7Ag1 nanoclusters (NCs), are developed for the targeted treatment of IS reperfusion injury. The ultrafine particle size of bimetallic nanoclusters facilitates the penetration across the blood-brain barrier (BBB) and enhances catalytic capacity and enzymatic activity through synergistic effects. Comprehensive in vitro and in vivo studies demonstrate that Au7Ag1 NCs provide neuroprotection by efficiently scavenging ROS and modulating microglial polarization, alleviating oxidative stress-induced injury. Furthermore, Au7Ag1 NCs play a crucial role in reducing brain tissue damage following reperfusion and promoting long-term neurological function recovery. Notably, RNA sequencing reveals that Au7Ag1 NCs impact key molecular pathways linked to apoptosis and inflammation. In summary, this study demonstrates the potential of Au7Ag1 NCs as a novel therapeutic approach for IS reperfusion injury and highlights a promising pathway for nanomedicine-based interventions targeting ischemic cerebral disorders.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Weijie Zhong
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xuchen Meng
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xin Lv
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Tanjun Deng
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zixian Mei
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xinru Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Fanying Meng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Yayuan Tian
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lan Hu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, 215200, China
| | - Huijing Xiang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yi Li
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
12
|
Wang X, Liu JJ, Zheng XR, Zhou ZJ, Duan JQ, Liu HY, Shao YY, Hou RG. (+)-Borneol enhances the protective effect of edaravone against cerebral ischemia/reperfusion injury by targeting OAT3/P-gp transporters for drug delivery into the brain. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156521. [PMID: 39986230 DOI: 10.1016/j.phymed.2025.156521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/27/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
OBJECTIVES Cerebral ischemia-reperfusion (CI/R) injury is a severe neurological condition associated with significant morbidity and mortality. Edaravone-dexborneol is a promising neuroprotective agent for alleviating CI/R injury, which composed of edaravone and (+)-borneol. Several studies have confirmed that combining edaravone with (+)-borneol can exert synergistic effects when compared to using edaravone alone. However, whether the synergistic effect is achieved through the enhanced cerebral delivery of edaravone facilitated by (+)-borneol remains unclear, and the potential binding targets need to be further explored. METHODS Middle cerebral artery obstruction reperfusion (MCAO/R) rats and an oxygen-glucose deprivation/reoxygenation (OGD/R) treated bEnd.3 cells were used to evaluate the synergistic effects between edaravone and (+)-borneol. The cerebral exposure of edaravone was detected using a rapid HPLC-MS/MS method. Then, we examined whether the mechanism by which (+)-borneol increases the cerebral concentration of edaravone occurs via paracellular or transcellular pathways, and we explored potential binding targets. RESULTS The combined administration of edaravone and (+)-borneol significantly attenuating CI/R injury both in vivo and in vitro. What captured our interest was that the co-administration of (+)-borneol increased the exposure of edaravone in cerebral infarction area. We found that the combination of (+)-borneol contributed to the maintenance of BBB integrity. The increased expressions of tight junction proteins indicated that paracellular pathway plays a limited role in the elevated cerebral edaravone concentrations. Furthermore, we found that the co-administration of (+)-borneol up-regulated the expressions of influx transporters (OAT1 and OAT3) and down-regulated the expressions of efflux transporters (P-gp and MRP1). Inhibitor experiments further confirmed that the involvement of P-gp and OAT1/3 in the transcellular transport of edaravone across BBB. Finally, we verified that (+)-borneol could directly bind to P-gp and OAT3, facilitating the entry of edaravone into brain and reducing its efflux. CONCLUSION This study demonstrated for the first time that (+)-borneol could enhance the concentration of edaravone in the infarcted region under conditions of CI/R. The underlying mechanisms may involve the enhancement of trans-BBB delivery of edaravone by (+)-borneol through OAT3/P-gp-mediated transcellular transport.
Collapse
Affiliation(s)
- Xin Wang
- School of Pharmacy, Shanxi Medical University, Shanxi 030000, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China
| | - Jun-Jin Liu
- School of Pharmacy, Shanxi Medical University, Shanxi 030000, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China; State Key Laboratory of Neurology and Oncology Drug Development, China
| | - Xin-Ru Zheng
- School of Pharmacy, Shanxi Medical University, Shanxi 030000, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China
| | - Ze-Jia Zhou
- School of Pharmacy, Shanxi Medical University, Shanxi 030000, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China
| | - Jia-Qi Duan
- School of Pharmacy, Shanxi Medical University, Shanxi 030000, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China
| | - Hai-Yu Liu
- School of Pharmacy, Shanxi Medical University, Shanxi 030000, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China
| | - Yun-Yun Shao
- School of Pharmacy, Shanxi Medical University, Shanxi 030000, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China; Medical Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030000, China.
| | - Rui-Gang Hou
- School of Pharmacy, Shanxi Medical University, Shanxi 030000, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China; Medical Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030000, China; State Key Laboratory of Neurology and Oncology Drug Development, China.
| |
Collapse
|
13
|
Khulood MT, Jijith US, Naseef PP, Kallungal SM, Geetha VS, Pramod K. Advances in metal-organic framework-based drug delivery systems. Int J Pharm 2025; 673:125380. [PMID: 39988215 DOI: 10.1016/j.ijpharm.2025.125380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/20/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Metal-organic frameworks (MOFs) are emerging crystalline porous materials with significant potential in biomedical applications, particularly as drug delivery systems (DDS). MOFs, composed of metal ions or clusters linked by organic ligands, feature large surface areas, adjustable pores, and diverse functionalities. This review comprehensively examines MOFs as advanced DDS, detailing their structures, synthesis, and drug loading mechanisms. We highlight high drug loading capacity and controlled release capabilities of MOF. Developments of design strategies for MOF-based DDS, namely, surface functionalization for targeted delivery and stimuli-responsive MOFs for controlled release, have been discussed and explored. The use of MOFs for delivering therapeutic agents such as small molecules, peptides, proteins, nucleic acids, and cancer drugs is discussed. Challenges addressed include stability, degradation in biological environments, potential toxicity, and scalability. Advances in hybrid MOF-based DDS, integrating MOFs with polymers, lipids, or nanoparticles for improved delivery, are also examined.
Collapse
Affiliation(s)
- M T Khulood
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008 Kerala, India; Kerala University of Health Sciences, Medical College P.O., Thrissur 680596 Kerala, India
| | - U S Jijith
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008 Kerala, India
| | - P P Naseef
- Department of Pharmaceutics, Moulana College of Pharmacy, Perinthalmanna, Malappuram 679321 Kerala, India
| | - Sirajudheen M Kallungal
- Department of Pharmaceutics, Jamia Salafiya Pharmacy College, Pulikkal, Malappuram 673637 Kerala, India
| | - V S Geetha
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008 Kerala, India
| | - K Pramod
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008 Kerala, India.
| |
Collapse
|
14
|
Das RC, Chaki Borrás ML, Kim JH, Carolan M, Sluyter R, Lerch M, Konstantinov K. Quantum-Dot Ceramic Composites for Oxidative Stress Mitigation under Broad-Spectrum Radiation Exposure. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18096-18107. [PMID: 40091176 DOI: 10.1021/acsami.4c22795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Nanomaterials offer a promising approach to mitigating radiation-induced oxidative stress by scavenging reactive oxygen species (ROS). However, developing a nanomaterial that provides protection across a wide range of radiation conditions is challenging due to the photoelectric effects linked to the atomic number (Z) of the materials. Quantum dots (QDs) in a composite system, owing to their small size and when used at low concentrations, minimize photoelectric effects and secondary electron generation. In this study, cerium oxide (CeO2) QDs were combined with low-Z yttrium oxide (Y2O3) to create a nanocomposite (NC) (henceforth CeO2 QDs-Y2O3) that exploits the synergistic effects of both materials, providing protection across a broader spectrum of radiation. CeO2 QDs-Y2O3 demonstrated superior ROS scavenging than individual CeO2 and Y2O3 under nonradiative conditions, particularly for hydroxyl radicals (•OH) and hydrogen peroxide (H2O2), two primary ROS generated under radiation. This improved performance, due to increased oxygen vacancies and a higher Ce3+/Ce4+ ratio, indicates that these properties could help protect cells from oxidative stress during radiation exposure. Radioprotection analysis using the linear-quadratic (LQ) model revealed that the NC provided effective protection at both 150 kVp and 10 MV radiation energies. At 150 kVp, the obtained protection enhancement ratio (PER) values at 10% cell survival for CeO2 QDs-Y2O3, Y2O3, and CeO2 were 1.07, 1.16, and 0.89, respectively, suggesting that the radioprotection afforded by Y2O3 in the NC outweighed the radiosensitization of the encrusted CeO2 QDs. Additionally, despite the higher PER of Y2O3, the NC displayed increased biocompatibility toward the human keratinocyte HaCaT cell line in the absence of radiation compared to Y2O3. At 10 MV, where photoelectric effects are minimal, the NC outperformed both individual components, yielding a PER of 1.28, or a 28% dose enhancement compared to 12% for Y2O3 alone and 19% for CeO2. This study highlights the potential of CeO2 QDs-Y2O3 as a broad-spectrum radioprotective agent, offering enhanced biocompatibility and effective protection against radiation-induced oxidative stress across broad-ranging radiation conditions.
Collapse
Affiliation(s)
- Rajib Chandra Das
- Institute for Superconducting & Electronic Materials (ISEM), School of Physics, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Marcela L Chaki Borrás
- Institute for Superconducting & Electronic Materials (ISEM), School of Physics, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Jung Ho Kim
- Institute for Superconducting & Electronic Materials (ISEM), School of Physics, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Martin Carolan
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, New South Wales 2500, Australia
| | - Ronald Sluyter
- School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics (CMRP), Faculty of Engineering and Information Science, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Konstantin Konstantinov
- Institute for Superconducting & Electronic Materials (ISEM), School of Physics, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
15
|
Cheng Z, Shao W, Wei C, Zhang Y, Xiao R, Zhang S, Zhang J, She Y, Pan C, Liu Q, Wang Q. Cascade-Type Microglial Pyroptosis Inhibitors for Enhanced Treatment of Cerebral Ischemia-Reperfusion Injury. ACS NANO 2025; 19:10529-10548. [PMID: 40047143 DOI: 10.1021/acsnano.5c01434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Neuroinflammation is a critical factor in the progression of cerebral ischemia-reperfusion injury (CIRI). Pyroptosis, which is an inflammatory form of programmed cell death, greatly amplifies neuroinflammatory processes. It does so by promoting the release of various inflammatory contents that intensify the overall inflammatory response within the central nervous system. Therefore, targeting pyroptosis represents a promising therapeutic strategy for the treatment of CIRI. Excessive generation of reactive oxygen species (ROS) by overactivated microglia is considered to serve as the signal molecule that triggers NLRP3 inflammasome-mediated pyroptosis. However, current pyroptosis inhibitors that solely focus on eliminating existing ROS or inhibiting the NLRP3 inflammasome are not optimal. Here, by coating nanothylakoids (NTs) coengineered with fibrin-binding peptide and MG1 peptide onto dihydrotanshinone I (DT)-loaded nanocarriers, we have developed a cascade-type pyroptosis inhibitor (MDN-MC) that comprehensively regulates the ROS/NLRP3/pyroptosis axis. The incorporation of catalase on the surface of MDN-MC, along with the release of DT, facilitated cascade inhibition of pyroptosis by scavenging existing ROS and suppressing the expression of NLRP3. In the rat model of transient middle cerebral artery occlusion, enhanced behavioral recovery and facilitated neuronal repair were achieved through cascade targeting of inflammatory microglia at the lesion site and implementation of interventions to inhibit pyroptosis, thereby demonstrating promising therapeutic effects. Overall, this work emphasizes the importance of cascade-regulated pyroptosis in reducing neuroinflammation, offering an important mechanistic understanding and possible therapeutic approaches for CIRI.
Collapse
Affiliation(s)
- Zhifei Cheng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui 230012, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui 230012, China
| | - Wei Shao
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Chaoqi Wei
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yaru Zhang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Ru Xiao
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Shuai Zhang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Jingyi Zhang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yunfei She
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Chenglin Pan
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Qi Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qi Wang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui 230012, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui 230012, China
| |
Collapse
|
16
|
Yang Y, Liang K, Zhou Z, Tu Y, Li M, Wang Z, Deng Y, Li J. Photoresponsive Bio-Heterojunctions Eliciting Immunogenicity to Prevent Infection Recurrence and Accelerating Chronic Wound Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410522. [PMID: 40035640 DOI: 10.1002/smll.202410522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/21/2024] [Indexed: 03/06/2025]
Abstract
Dynamic therapy utilizes reactive oxygen species (ROS) to antibacterial and enhance the innate immune system to treat bacterial infections. If ROS levels are too low, the elimination of pathogens and the enhancement of innate immunity cannot be achieved. However, excess accumulation of ROS may impact intracellular glutathione (GSH) levels, hindering T cell maturation and the establishment of immune memory. Herein, a multifunctional nanofiber membrane is designed, consisting of a polymer scaffold, MXene/CeO2 bio-heterojunctions (MX@Ce bio-HJs), and lactate oxidase (Lox) to balance the production of ROS, for the treatment of recurrent bacterial infections. In this system, MX@Ce bio-HJs upon near-infrared ray (NIR) generate photodynamic therapy, while Lox responds to the wound microenvironment exert chemodynamic therapy, synergistically produce ROS to rapidly eradicate bacteria, amplify the ability of dendritic cells to recognize and present antigens of bacterial fragments, and enhance innate immunity. Without NIR, MX@Ce bio-HJs showcase catalase-like and superoxide dismutase-like activities, scavenging subsequent ROS accumulation, promoting T cell maturation to form acquired immune memory, and combating recurrent bacterial infection. Such work highlights the potential to combat in situ bacterial infections and recurrent bacterial infections and inspires the development of future antibacterial therapies.
Collapse
Affiliation(s)
- Yingming Yang
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu, 610041, China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu, 610041, China
| | - Zilin Zhou
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu, 610041, China
| | - Yuanyuan Tu
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu, 610041, China
| | - Meng Li
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu, 610041, China
| | - Ziyou Wang
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu, 610041, China
| | - Yi Deng
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu, 610041, China
| |
Collapse
|
17
|
Jia Y, Kong X, Li R, Wang H, Li C, Cheng S, Duan W, Xiao Y, Mai Y, Deng W, Liu Y. Enhanced nasal-to-brain drug delivery by multivalent bioadhesive nanoparticle clusters for cerebral ischemic reperfusion injury protection. Acta Biomater 2025; 194:411-427. [PMID: 39870153 DOI: 10.1016/j.actbio.2025.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Following cerebral ischemia, reperfusion injury can worsen ischemia-induced functional, metabolic disturbances, and pathological damage upon blood flow restoration, potentially leading to irreversible harm. Yet, there's a dearth of advanced, localized drug delivery systems ensuring active pharmaceutical ingredient (API) efficacy in cerebral protection during ischemia-reperfusion. This study introduces a multivalent bioadhesive nanoparticle-cluster, merging bioadhesive nanoparticles (BNPs) with dendritic polyamidoamine (PAMAM), enhancing nose-to-brain delivery and brain protection efficacy against cerebral ischemia-reperfusion injuries (CIRI). The BNPs-PAMAM cluster exhibits superior adhesion within the rat nasal cavity, prolonged retention, enabling sustained drug release, cerebral transportation, and accumulation, resulting in enhanced intracerebral pharmacokinetic profile. Intranasal administration circumvents systemic delivery challenges, ensuring CIRI protection drugs reach ischemic areas pre-reperfusion, overcoming thrombus-related delays. Administering BNPs-PAMAM loaded with dexmedetomidine (DEX) pre-reperfusion effectively prevents neuron apoptosis by α2-adrenoceptor activation, modulating the ischemic microenvironment, exerting triple neuroprotective effects against cerebral reperfusion injury. Importantly, only therapeutic DEX releases and accumulates in the nasal cavity, averting brain nanomaterial toxicity, promising for repeat administrations. This study presents a translational platform for nasal-to-brain drug delivery in CNS disease treatment. STATEMENT OF SIGNIFICANCE: Innovative Drug Delivery System: This study introduces a multivalent bioadhesive nanoparticle-cluster (BNPs-PAMAM) to enhance nasal-to-brain drug delivery for cerebral ischemia-reperfusion injury (CIRI) treatment. Enhanced Retention and Efficacy: The BNPs-PAMAM system significantly improves drug retention in the nasal cavity and ensures sustained release, thereby enhancing the therapeutic efficacy of the neuroprotective agent dexmedetomidine (DEX). Blood-Brain Barrier Circumvention: By leveraging intranasal administration, the system bypasses the blood-brain barrier, delivering DEX directly to ischemic brain regions before reperfusion and minimizing systemic side effects. Triple Neuroprotective Effects for CIRI protection: DEX delivered via BNPs-PAMAM effectively reduces oxidative stress and inflammation while enhancing mitochondrial autophagy, providing comprehensive protection against neuronal damage.
Collapse
Affiliation(s)
- Yizhen Jia
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaohan Kong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Rui Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Han Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Chujie Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shihong Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Wei Duan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yan Xiao
- Laboratory Animal Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yang Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
18
|
Lei L, Chen X, Long X, Tu Q, Zhao L, Huang D, Song L, Wang J, Zhai S, Chen X, Zhang C. Z/Ce@hemin enzymes with enhanced peroxidase activity for monitoring and screening the oxidative stress models of Parkinson's disease. NPJ Parkinsons Dis 2025; 11:37. [PMID: 40025049 PMCID: PMC11873119 DOI: 10.1038/s41531-025-00875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/27/2025] [Indexed: 03/04/2025] Open
Abstract
Inspired by natural enzymes, artificial enzymes have garnered significant interest due to their simplicity of production, robustness under harsh conditions, and enhanced stability. This study introduces, for the first time, a novel Z/Ce@hemin composite enzyme, constructed by anchoring hemin onto zeolitic imidazolate framework-8 (ZIF-8)-encapsulated ceria (CeO2) nanoparticles. This innovative design overcomes the challenges of hemin dimerization, enhances substrate affinity, and accelerates mass transport, leading to significantly improved peroxidase-like activity. The enzyme also demonstrates remarkable stability and resistance to environmental interference. Utilizing this Z/Ce@hemin composite, a sensitive and selective colorimetric detection system was developed for rapid and accurate quantification of hydrogen peroxide (H2O2), a key oxidative stress marker. This approach was successfully applied in cellular models and Caenorhabditis elegans models of Parkinson's disease, enabling precise monitoring of H2O2. The study provides a groundbreaking platform for oxidative stress modeling and expands possibilities in neurodegenerative disease research and therapeutic screening.
Collapse
Affiliation(s)
- Li Lei
- Engineering Research Center for Molecular Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Xiuli Chen
- Engineering Research Center for Molecular Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Xincheng Long
- Engineering Research Center for Molecular Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Qiuxia Tu
- Engineering Research Center for Molecular Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Liping Zhao
- Engineering Research Center for Molecular Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Dan Huang
- Engineering Research Center for Molecular Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Lingli Song
- Engineering Research Center for Molecular Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Jiaojiao Wang
- Engineering Research Center for Molecular Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Suzhen Zhai
- Engineering Research Center for Molecular Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Xiaozhong Chen
- The Jinyang Hospital Affiliated to Guizhou Medical University: The Second People's Hospital of Guiyang, Guiyang, 550025, China.
| | - Chunlin Zhang
- Engineering Research Center for Molecular Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
19
|
Gong L, Zhao H, Chen L, Liu Y, Wu H, Liu C, Feng J, Liu C, Xiao C, Wang Q, Jin M, Gao Z, Huang W, Guan Y. Novel Peptide-Modified Zeolitic Imidazolate Framework-8 Nanoparticles with pH-Sensitive Release of Doxorubicin for Targeted Treatment of Colorectal Cancer. Pharmaceutics 2025; 17:246. [PMID: 40006613 PMCID: PMC11858906 DOI: 10.3390/pharmaceutics17020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/30/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Colorectal cancer (CRC) is one of the common malignant tumors. Chemotherapeutic agents represented by doxorubicin (DOX) are common adjuvant therapies for patients with advanced CRC. However, DOX suffers from dose-dependent cardiotoxicity and myelosuppression due to a lack of targeting and specificity, which severely limits its clinical application. Methods: Herein, we constructed a zeolitic imidazolate framework-8 (ZIF-8) modified by a novel peptide (LT peptide) to deliver the chemotherapeutic drug doxorubicin (DOX) for the targeted treatment of CRC. Results: In this study, LT-PEG@DOX@ZIF-8 nanoparticles were prepared by a simple method with suitable particle size and zeta potential, which were also capable of pH-responsive drug release. In vitro assays exhibited that LT-PEG@DOX@ZIF-8 nanoparticles were effectively taken up by C26 cells, significantly inhibited cell proliferation, and induced apoptosis. Furthermore, in mice models with colorectal tumors, LT-PEG@DOX@ZIF-8 nanoparticles also displayed specific tumor aggregation and exerted anti-tumor effects to prolong the survival of the mice. Conclusions: In conclusion, LT-PEG@DOX@ZIF-8 provides a promising strategy for the delivery of DOX to effectively treat CRC.
Collapse
Affiliation(s)
- Liming Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Heming Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hao Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chenfei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Congcong Xiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qiming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Youyan Guan
- Department of Urology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
20
|
Zhang X, Zhang K, Liu K, Yu S, Fu X, Yuan Q, Zhu C, Lin D, Fan Z. A novel supramolecular nanodrugs for improving the cognitive function of schizophrenia by protecting active lactone of arecoline. Biomed Pharmacother 2025; 183:117845. [PMID: 39826356 DOI: 10.1016/j.biopha.2025.117845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Over 30 % of patients with schizophrenia experience treatment resistance and severe side effects. The limited efficacy of antipsychotic therapies poses a challenge, partly due to the blood-brain barrier (BBB) and the non-selective targeting of these drugs. Herein, we report on arecoline (ARE), a water soluble natural small molecule, which was successfully constructed a phospholipid complex by noncovalent interactions. Most striking, this arecoline-phospholipid complex nanoplatforms (ARE-PC NPs) could prevent the hydrolyzation of its ester group by carboxylesterases, which showed sustained release, superior physiological stability and long circulatory capability. Both in vitro cells and in vivo mice speculated that this ARE-PC NPs might has a high cellular uptake and stronger penetration ability of the BBB. Additionally, our results demonstrated that this phospholipid complex might facilitate ARE delivery to the brain tissue and obviously improve the schizophrenia-like behavior in cuprizone induced animal models. This study highlights ARE-PC NPs as a promising antipsychotic nanodrug for the therapy of schizophrenia.
Collapse
Affiliation(s)
- Xianhua Zhang
- Department of Pharmacy, The Third Hospital of Xiamen, Xiamen 361020, China
| | - Kaining Zhang
- Department of Geriatric Psychiatry, Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 102200, China
| | - Kejun Liu
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated with Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen 361012, China
| | - Shujie Yu
- School of Pharmaceutical Sciences, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Xu Fu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Qianfa Yuan
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated with Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen 361012, China
| | - Chuan'an Zhu
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated with Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen 361012, China
| | - Duoduo Lin
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated with Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen 361012, China.
| | - Zhongxiong Fan
- School of Pharmaceutical Sciences, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|
21
|
Zhao Z, Song H, Qi M, Liu Y, Zhang Y, Li S, Zhang H, Sun Y, Sun Y, Gao Z. Brain targeted polymeric micelles as drug carriers for ischaemic stroke treatment. J Drug Target 2025; 33:232-248. [PMID: 39403962 DOI: 10.1080/1061186x.2024.2417190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Ischaemic stroke is a central nervous system disease with high morbidity, recurrence and mortality rates. Thrombolytic and neuroprotective therapies are the main therapeutic strategies for ischaemic stroke, however, the poor delivery efficiency of thrombolytic and neuroprotective drugs to the brain limits their clinical application. So far, the development of nanomedicine has brought opportunities for the above challenges, which can not only realise the effective accumulation of drugs in the target site, but also improve the pharmacokinetic behaviour of the drugs. Among the most rapidly developing nanoparticles, micelles gradually emerging as an effective strategy for ischaemic stroke treatment due to their own unique advantages. This review provided an overview of targeted and response-release micelles based on the physicochemical properties of the ischaemic stroke microenvironment, summarised the targeting strategies for delivering micellar formulations to the thrombus, blood-brain barrier, and brain parenchyma, and finally described the potentials and challenges of polymeric micelles in the treatment of ischaemic stroke.
Collapse
Affiliation(s)
- Zirui Zhao
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Huijia Song
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Mengge Qi
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yurong Liu
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yanchao Zhang
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Shuo Li
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Huimin Zhang
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yongjun Sun
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yanping Sun
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Zibin Gao
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
22
|
Gong Z, Chen Z, Li D, Lu X, Wu J, Sun H, Wang X, Liu S, Xia X, Lu F, Jiang J, Sun C, Wang H, Zeng F, Ma X. Hydrogel loaded with cerium-manganese nanoparticles and nerve growth factor enhances spinal cord injury repair by modulating immune microenvironment and promoting neuronal regeneration. J Nanobiotechnology 2025; 23:29. [PMID: 39833803 PMCID: PMC11748312 DOI: 10.1186/s12951-025-03098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Spinal cord injury (SCI) treatment remains a formidable challenge, as current therapeutic approaches provide only marginal relief and fail to reverse the underlying tissue damage. This study aims to develop a novel composite material combining enzymatic nanoparticles and nerve growth factor (NGF) to modulate the immune microenvironment and enhance SCI repair. METHODS CeMn nanoparticles (NP) and CeMn NP-polyethylene glycol (PEG) nanozymes were synthesized via sol-gel reaction and DSPE-mPEG modification. Transmission Electron Microscopy, Selected-Area Electron Diffraction, X-ray Diffraction and X-ray Photoelectron Spectroscopy confirmed their crystalline structure, mixed-valence states, and redox properties. Size uniformity, biocompatibility, and catalytic activity were assessed via hydrodynamic diameter, zeta potential, and elemental analysis. The Lightgel/NGF/CeMn NP-PEG composite was synthesized and characterized via electron microscopy, compression testing, rheological analysis, NGF release kinetics, and 30-day degradation studies. Both in vitro and in vivo experiments were conducted to evaluate the therapeutic effects of the composite on SCI. RESULTS The Lightgel/NGF/CeMn NP-PEG composite was successfully synthesized, exhibiting favorable physical properties. At a CeMn NP-PEG concentration of 4 µg/mL, the composite maintained cell viability and demonstrated enhanced biological activity. It also showed superior mechanical properties and an effective NGF release profile. Notably, the composite significantly upregulated the expression of nerve growth-associated proteins, reduced inflammatory cytokines, scavenged reactive oxygen species (ROS), and promoted M2 macrophage polarization by inhibiting the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. In a rat SCI model, it facilitated functional recovery and attenuated inflammation. CONCLUSION The Lightgel/NGF/CeMn NP-PEG composite shows significant therapeutic promise for SCI, effectively eliminating ROS, promoting M2 macrophage polarization, reducing pro-inflammatory cytokines, and supporting neuronal regeneration. These effects substantially enhance motor function in SCI rats, positioning it as a promising candidate for future clinical applications.
Collapse
Affiliation(s)
- Zhaoyang Gong
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Zhenhao Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Dachuan Li
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Xiao Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Jianwei Wu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Hanqiu Sun
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Ximeng Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Siyang Liu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Xinlei Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Feizhou Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Chi Sun
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| | - Hongli Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| | - Feng Zeng
- Artemisinin Research Center, Institute of Science and Technology, The First Affiliated Hospital, The First Clinical Medical School, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510450, China.
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| |
Collapse
|
23
|
Yadav VK, Gupta R, Assiri AA, Uddin J, Ishaqui AA, Kumar P, Orayj KM, Tahira S, Patel A, Choudhary N. Role of Nanotechnology in Ischemic Stroke: Advancements in Targeted Therapies and Diagnostics for Enhanced Clinical Outcomes. J Funct Biomater 2025; 16:8. [PMID: 39852564 PMCID: PMC11766075 DOI: 10.3390/jfb16010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Each year, the number of cases of strokes and deaths due to this is increasing around the world. This could be due to work stress, lifestyles, unhealthy food habits, and several other reasons. Currently, there are several traditional methods like thrombolysis and mechanical thrombectomy for managing strokes. The current approach has several limitations, like delayed diagnosis, limited therapeutic delivery, and risks of secondary injuries. So, there is a need for some effective and reliable methods for the management of strokes, which could help in early diagnosis followed by the treatment of strokes. Nanotechnology has played an immense role in managing strokes, and recently, it has emerged as a transformative solution offering innovative diagnostic tools and therapeutic strategies. Nanoparticles (NPs) belonging to several classes, including metallic (metallic and metal oxide), organic (lipids, liposome), and carbon, can cross the blood-brain barrier and may exhibit immense potential for managing various strokes. Moreover, these NPs have exhibited promise in improving imaging specificity and therapeutic delivery by precise drug delivery and real-time monitoring of treatment efficacy. Nanomaterials like cerium oxide (CeO2) and liposome-encapsulated agents have neuroprotective properties that reduce oxidative stress and promote neuroregeneration. In the present article, the authors have emphasized the significant advancements in the nanomedicine management of stroke, including NPs-based drug delivery systems, neuroprotective and neuroregenerative therapies, and multimodal imaging advancements.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot 360003, Gujarat, India
| | - Rachna Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382021, Gujarat, India;
| | - Abdullah A. Assiri
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia; (A.A.A.); (A.A.I.); (K.M.O.)
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia;
| | - Azfar A. Ishaqui
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia; (A.A.A.); (A.A.I.); (K.M.O.)
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, Gujarat, India;
| | - Khalid M. Orayj
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia; (A.A.A.); (A.A.I.); (K.M.O.)
| | - Shazia Tahira
- Institute of Professional Psychology, Bahria University Karachi Campus, Karachi 75260, Pakistan;
- Department of Psychiatry, Jinnah Postgraduate Medical Centre, Karachi 75510, Pakistan
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India;
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India;
- Department of Lifesciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, Gujarat, India
| |
Collapse
|
24
|
Peng B, Mohammed FS, Tang X, Liu J, Sheth KN, Zhou J. Nanotechnology approaches to drug delivery for the treatment of ischemic stroke. Bioact Mater 2025; 43:145-161. [PMID: 39386225 PMCID: PMC11462157 DOI: 10.1016/j.bioactmat.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Ischemic stroke is a major global public health concern that lacks effective treatment options. A significant challenge lies in delivering therapeutic agents to the brain due to the restrictive nature of the blood-brain barrier (BBB). The BBB's selectivity hampers the delivery of therapeutically relevant quantities of agents to the brain, resulting in a lack of FDA-approved pharmacotherapies for stroke. In this article, we review therapeutic agents that have been evaluated in clinical trials or are currently undergoing clinical trials. Subsequently, we survey strategies for synthesizing and engineering nanoparticles (NPs) for drug delivery to the ischemic brain. We then provide insights into the potential clinical translation of nanomedicine, offering a perspective on its transformative role in advancing stroke treatment strategies. In summary, existing literature suggests that drug delivery represents a major barrier for clinical translation of stroke pharmacotherapies. While nanotechnology has shown significant promise in addressing this challenge, further advancements aimed at improving delivery efficiency and simplifying formulations are necessary for successful clinical translation.
Collapse
Affiliation(s)
- Bin Peng
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Farrah S. Mohammed
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, New Haven, CT, 06510, USA
| | - Xiangjun Tang
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Neurosurgery, Taihe Hospital, Hubei, 442000, PR China
| | - Jia Liu
- Department of Neurosurgery, New Haven, CT, 06510, USA
| | - Kevin N. Sheth
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Neurology, Yale University, New Haven, CT, 06510, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, New Haven, CT, 06510, USA
| |
Collapse
|
25
|
He Y, Peng E, Ba X, Wu J, Deng W, Huang Q, Tong Y, Shang H, Zhong Z, Liu X, Zhang Y, Ye T, Yang X, Wang K, Xie Y, Jiang K, Xia D, Chen Z, Tang K. ROS Responsive Cerium Oxide Biomimetic Nanoparticles Alleviates Calcium Oxalate Crystals Induced Kidney Injury via Suppressing Oxidative Stress and M1 Macrophage Polarization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405417. [PMID: 39629501 DOI: 10.1002/smll.202405417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/16/2024] [Indexed: 01/23/2025]
Abstract
Emerging studies have demonstrated that M1 macrophage polarization and oxidative stress play important roles in calcium oxalate (CaOx) induced kidney injury, which leads to increased crystals deposition. ROS scavenging nanozymes and kidney-targeted nanoparticles for antioxidant drugs delivery have emerged as an arisen methodology for kidney injury therapy. However, cell membrane biomimetic-modified nanozymes as anti-inflammatory drug delivery systems for the treatment of kidney injury is rarely reported. Herein, the ROS responsive red blood cell-membrane-coated resatorvid-loaded cerium oxide nanoparticles (RBCM@CeO2/TAK-242) are constructed to suppress CaOx induced kidney injury and crystals deposition. In vitro, RBCM@CeO2/TAK-242 shows effective internalization by renal tubular epithelial cells, along with demonstrated antioxidative, anti-inflammatory, and macrophage reprogramming effects. Glyoxalate(Gly)-induced renal CaOx crystals mouse model is established, RBCM@CeO2/TAK-242 shows excellent injured kidney targeting and biosafety, and could effectively suppress CaOx induced kidney injury and crystals deposition. RBCM@CeO2/TAK-242 has a dual protective effect by both inhibiting oxidative stress and modulating macrophage polarization in vivo. In addition, RNA seq analysis reveals that RBCM@CeO2/TAK-242 protects against CaOx induced kidney injury via suppressing the TLR4/NF-κB pathway. This study provides an innovative strategy for RBCM@CeO2/TAK-242 as injured kidney targeting and dual protective effects for the treatment of CaOx induced kidney injury and crystals deposition.
Collapse
Affiliation(s)
- Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zichen Zhong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Liu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yanlong Zhang
- Medical College of Guizhou University, Guiyang, 550025, China
| | - Tao Ye
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kangyang Wang
- Department of Urology, Wenchang People's Hospital, Wenchang, 571300, China
| | - Yabin Xie
- Department of Urology, Wenchang People's Hospital, Wenchang, 571300, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| |
Collapse
|
26
|
Zhou S, Cai H, Tang Z, Lu S. Carbon dots encapsulated zeolitic imidazolate framework-8 as an enhanced multi-antioxidant for efficient cytoprotection to HK-2 cells. J Colloid Interface Sci 2024; 676:726-738. [PMID: 39059279 DOI: 10.1016/j.jcis.2024.07.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Excessive reactive oxygen species (ROS) can lead to the imbalance of antioxidant system in the body and cause oxidative damage to cells. It is imperative to rationally design nanomaterials with high catalytic activity and multiple antioxidant activities. Here, line peppers-derived carbon dots (CDs) is encapsulated into zeolitic imidazolate framework-8 (CDs@ZIF-8) to achieve enhanced antioxidant activities for improved protective effect on cells. This nanosystem has a broad spectrum of antioxidant properties, which can effectively remove a variety of intracellular ROS and protect cells from ROS-induced death and cytoskeleton damage. In addition, CDs@ZIF-8 can reduce malondialdehyde (MDA) level and increase the enzyme activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), as well as the level of glutathione (GSH) in human kidney proximal tubular epithelial cells (HK-2) cells. Mechanism studies demonstrated that CDs@ZIF-8 can up-regulate the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), allowing the regulation of antioxidant enzymes to further achieve antioxidant effect. Besides, CDs@ZIF-8 inhibited the secretion of proinflammatory cytokines. This work demonstrates that the constructed CDs@ZIF-8 with multi-antioxidant activity can act as a highly efficient intracellular ROS scavenger and provide potential for the application in related oxidative stress-induced diseases.
Collapse
Affiliation(s)
- Shuwen Zhou
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Huijuan Cai
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Siyu Lu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
27
|
Liu M, Liu S, Bai Y, Zhang M, Zhang D, Sun R, Wang G, Ma Y. Res@LDH: A Novel Nanohybrid Therapeutic for Ischemia-Reperfusion Injury with Dual Reactive Oxygen Species Scavenging Efficiency. Biomater Res 2024; 28:0108. [PMID: 39628470 PMCID: PMC11612122 DOI: 10.34133/bmr.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
Ischemic stroke poses a global health challenge, necessitating effective therapeutic interventions given the limited time window for thrombolytic therapy. Here, we present Res@LDH, a novel nanohybrid therapeutic agent boasting a dual reactive oxygen species scavenging efficiency of approximately 90%. Comprising Ge-containing layered double hydroxide nanosheets (Ge-LDH) as a drug nanocarrier and resveratrol as a neuroprotective agent, Res@LDH demonstrates enhanced permeability across the blood-brain barrier, ensuring high biocompatibility and stability. We explored the potential of Res@LDH in mitigating oxidative stress injury induced by middle cerebral artery occlusion and reperfusion in mice, as well as H2O2-induced cytotoxicity in HT22 cells. Our experiments unveil Res@LDH's capacity to ameliorate neurological deficits, reduce the infarction volume, mitigate blood-brain barrier disruption, exhibit a robust antioxidant activity, and dampen the release of proinflammatory cytokines. Moreover, Res@LDH treatment markedly attenuates microglial and astrocytic activation. Leveraging a pioneering synthetic approach harnessing Ge-LDH and resveratrol, Res@LDH emerges as a promising strategy for addressing ischemia-reperfusion injury, offering a concise solution to current therapeutic challenges.
Collapse
Affiliation(s)
- Min Liu
- Department of Anesthesiology, Beijing Tongren Hospital,
Capital Medical University, Beijing 100730, China
| | - Siyuan Liu
- Department of Anesthesiology,
Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yafan Bai
- Department of Anesthesiology, Beijing Tongren Hospital,
Capital Medical University, Beijing 100730, China
| | - Mingru Zhang
- Department of Anesthesiology, Beijing Tongren Hospital,
Capital Medical University, Beijing 100730, China
| | - Duo Zhang
- School of Science,
China University of Geosciences, Beijing (CUGB), Beijing 100083, China
| | - Ruijin Sun
- School of Science,
China University of Geosciences, Beijing (CUGB), Beijing 100083, China
| | - Guyan Wang
- Department of Anesthesiology, Beijing Tongren Hospital,
Capital Medical University, Beijing 100730, China
| | - Yulong Ma
- Department of Anesthesiology,
The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
28
|
Li Y, Chen W, Yin J, Xia S, Jiang Y, Ge Q, Liu J, Wang M, Hou Z, Bai Y, Shi P. Biomineralized ZIF-8 Encapsulating SOD from Hydrogenobacter Thermophilus: Maintaining Activity in the Intestine and Alleviating Intestinal Oxidative Stress. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402812. [PMID: 39350464 DOI: 10.1002/smll.202402812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/17/2024] [Indexed: 12/13/2024]
Abstract
Oxidative stress is a major factor leading to inflammation and disease occurrence, and superoxide dismutase (SOD) is a crucial antioxidative metalloenzyme capable of alleviating oxidative stress. In this study, a novel thermostable SOD gene is obtained from the Hydrogenobacter thermophilus strain (HtSOD), transformed and efficiently expressed in Escherichia coli with an activity of 3438 U mg-1, exhibiting excellent thermal stability suitable for scalable production. However, the activity of HtSOD is reduced to less than 10% under the acidic environment. To address the acid resistance and gastrointestinal stability issues, a biomimetic mineralization approach is employed to encapsulate HtSOD within the ZIF-8 (HtSOD@ZIF-8). Gastrointestinal simulation results show that HtSOD@ZIF-8 maintained 70% activity in simulated gastric fluid for 2 h, subsequently recovering to 97% activity in simulated intestinal fluid. Cell and in vivo experiments indicated that HtSOD@ZIF-8 exhibited no cytotoxicity and do not impair growth performance. Furthermore, HtSOD@ZIF-8 increased the relative abundance of beneficial microbiota such as Dubosiella and Alistipes, mitigated oxonic stress and intestinal injury by reducing mitochondrial and total reactive oxygen species (ROS) levels in diquat-induced. Together, HtSOD@ZIF-8 maintains and elucidates activity in the intestine and biocompatibility, providing insights into alleviating oxidative stress in hosts and paving the way for scalable production.
Collapse
Affiliation(s)
- Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
| | - Weihua Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410000, China
| | - Siting Xia
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410000, China
| | - Yayun Jiang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410000, China
| | - Qianqian Ge
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410000, China
| | - Jinping Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410000, China
| | - Mansheng Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
| | - Zhenping Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Pengjun Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
| |
Collapse
|
29
|
Hao L, Wang H, Liu C, Wu Z, Yi J, Bian K, Zhang Y, Liu D, Yang W, Zhang B. Spatiotemporal Proximity-Enhanced Biocatalytic Cascades Within Metal-Organic Frameworks for Wearable and Theranostic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2414050. [PMID: 39523759 DOI: 10.1002/adma.202414050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Enzymatic catalysis, particularly multi-enzyme cascade catalytic, is often limited by the spatial and temporal separation of enzymes and their signal substrates. Herein, a facile method for producing a spatiotemporal proximity-enhanced biocatalytic cascade system is introduced by encasing enzymes within metal-organic frameworks (MOFs) that are modulated with sulfonic acid-functionalized signal substrates. The modulated behavior relies on the sulfonic acid groups coordinated with Zn2+. As a proof of concept, by utilizing 2,2'-Azinobis (3-ethylbenzothiazoline-6-sulfonic acid ammonium salt) (ABTS), a widely-used signal substrate for horseradish peroxidase, two-enzyme/substrate, and three-enzyme/substrate MOFs, which demonstrated a 7.4- and 10.2-fold increase in biocatalytic efficiency over free systems are successfully synthesized. Incorporating the synthesized MOFs into homemade wearable patches and in vivo settings, noninvasive sweat glucose colorimetric detection and photoacoustic imaging-guided photothermal tumor therapy are enabled, respectively. This advancement stems from the newly established coordinative bonds between Zn2+ centers and substrates' sulfonic acid groups, which negates the need for additional signal substrates, thereby not only enhancing but also streamlining bioapplication processes.
Collapse
Affiliation(s)
- Liangwen Hao
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Hui Wang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Chang Liu
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Zhuoyao Wu
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jinyan Yi
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Kexin Bian
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yu Zhang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Dinghua Liu
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Weitao Yang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Bingbo Zhang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| |
Collapse
|
30
|
Luo M, Zhao FK, Wang YM, Luo Y. Nanomotors as Therapeutic Agents: Advancing Treatment Strategies for Inflammation-Related Diseases. CHEM REC 2024; 24:e202400162. [PMID: 39499104 DOI: 10.1002/tcr.202400162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/22/2024] [Indexed: 11/07/2024]
Abstract
Inflammation is a physiological response of the body to harmful stimuli such as pathogens, damaged cells, or irritants, involving a series of cellular and molecular events. It is associated with various diseases including neurodegenerative disorders, cancer, and atherosclerosis, and is a leading cause of global mortality. Key inflammatory factors, such as Tumor Necrosis Factor-alpha (TNF-α), Interleukin-1 (IL-1), Interleukin-6 (IL-6), Monocyte Chemoattractant Protein-1 (MCP-1/CCL2), RANTES (CCL5), and prostaglandins, play central roles in inflammation and disease progression. Traditional treatments such as NSAIDs, steroids, biologic agents, and antioxidants have limitations. Recent advancements in nanomaterials present promising solutions for treating inflammation-related diseases. Unlike nanomaterials that rely on passive targeting and face challenges in precise drug delivery, nanomotors, driven by chemical or optical stimuli, offer a more dynamic approach by actively navigating to inflammation sites, thereby enhancing drug delivery efficiency and therapeutic outcomes. Nanomotors allow for controlled drug release in response to specific environmental changes, such as pH and inflammatory factors, ensuring effective drug concentrations at disease sites. This active targeting capability enables the use of smaller drug doses, which reduces overall drug usage, costs, and potential side effects compared to traditional treatments. By improving precision and efficiency, nanomotors address the limitations of conventional therapies and represent a significant advancement in the treatment of inflammation-related diseases. This review summarizes the latest research on nanomotor-mediated treatment of inflammation-related diseases and discusses the challenges and future directions for optimizing their clinical translation.
Collapse
Affiliation(s)
- Min Luo
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Fu-Kun Zhao
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Yuan-Min Wang
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Yong Luo
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| |
Collapse
|
31
|
Shao L, Wang C, Xu G, Tu Z, Yu X, Weng C, Liu J, Jian Z. Utilizing reactive oxygen species-scavenging nanoparticles for targeting oxidative stress in the treatment of ischemic stroke: A review. Open Med (Wars) 2024; 19:20241041. [PMID: 39588390 PMCID: PMC11587925 DOI: 10.1515/med-2024-1041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 11/27/2024] Open
Abstract
Ischemic stroke, which accounts for the majority of stroke cases, triggers a complex series of pathophysiological events, prominently characterized by acute oxidative stress due to excessive production of reactive oxygen species (ROS). Oxidative stress plays a crucial role in driving cell death and inflammation in ischemic stroke, making it a significant target for therapeutic intervention. Nanomedicine presents an innovative approach to directly mitigate oxidative damage. This review consolidates existing knowledge on the role of oxidative stress in ischemic stroke and assesses the potential of various ROS-scavenging nanoparticles (NPs) as therapeutic agents. We explore the properties and mechanisms of metal, metal-oxide, and carbon-based NPs, emphasizing their catalytic activity and biocompatibility in scavenging free radicals and facilitating the delivery of therapeutic agents across the blood-brain barrier. Additionally, we address the challenges such as cytotoxicity, immunogenicity, and biodistribution that need to be overcome to translate these nanotechnologies from bench to bedside. The future of NP-based therapies for ischemic stroke holds promise, with the potential to enhance outcomes through targeted modulation of oxidative stress.
Collapse
Affiliation(s)
- Lingmin Shao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Can Wang
- Department of Neurosurgery, Ezhou Central Hospital, Ezhou, 436000, Hubei, China
| | - Gang Xu
- Department of Neurosurgery, Xiantao First People’s Hospital, Xiantao, 433000, Hubei, China
| | - Zewei Tu
- Department of Neurosurgery, Yale School of Medicine, New Haven, 06510, CT, United States of America
| | - Xinyuan Yu
- Department of Anesthesiology, Duke University Medical Center, Durham, 27710, NC, United States of America
| | - Chao Weng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jia Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| |
Collapse
|
32
|
Bai M, Wang T, Xing Z, Huang H, Wu X, Adeli M, Wang M, Han X, Ye L, Cheng C. Electron-donable heterojunctions with synergetic Ru-Cu pair sites for biocatalytic microenvironment modulations in inflammatory mandible defects. Nat Commun 2024; 15:9592. [PMID: 39505847 PMCID: PMC11541594 DOI: 10.1038/s41467-024-53824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
The clinical treatments of maxillofacial bone defects pose significant challenges due to complex microenvironments, including severe inflammation, high levels of reactive oxygen species (ROS), and potential bacterial infection. Herein, we propose the de novo design of an efficient, versatile, and precise electron-donable heterojunction with synergetic Ru-Cu pair sites (Ru-Cu/EDHJ) for superior biocatalytic regeneration of inflammatory mandible defects and pH-controlled antibacterial therapies. Our studies demonstrate that the unique structure of Ru-Cu/EDHJ enhances the electron density of Ru atoms and optimizes the binding strength of oxygen species, thus improving enzyme-like catalytic performance. Strikingly, this biocompatible Ru-Cu/EDHJ can efficiently switch between ROS scavenging in neutral media and ROS generation in acidic media, thus simultaneously exhibiting superior repair functions and bioadaptive antibacterial properties in treating mandible defects in male mice. We believe synthesizing such biocatalytic heterojunctions with exceptional enzyme-like capabilities will offer a promising pathway for engineering ROS biocatalytic materials to treat trauma, tumors, or infection-caused maxillofacial bone defects.
Collapse
Grants
- 52161145402, 52173133, 52373148 National Natural Science Foundation of China (National Science Foundation of China)
- 82470962, 82001020 National Natural Science Foundation of China (National Science Foundation of China)
- U21A20368 National Natural Science Foundation of China (National Science Foundation of China)
- sklpme2021-4-02 State Key Laboratory of Polymer Materials Engineering
- National Key R&D Program of China (2021YFB3800700),Sichuan Science and Technology Program (2023YFH0008),the 1·3·5 Project for Disciplines of Excellence, West China Hospital, Sichuan University (ZYJC21047).
- Sichuan Science and Technology Program (2024NSFSC0672, 2021YFG0238),China Postdoctoral Science Foundation (2019M663525), Research Funding from West China School/Hospital of Stomatology Sichuan University (RCDWJS2023-16), and Research and Develop Program, West China Hospital of Stomatology Sichuan University (RD-02-202206).
- National Key R&D Program of China (2023YFC3605600), Sichuan Science and Technology Program (2023YFS0019), Med-X Innovation Programme of Med-X Center for Materials, Sichuan University (MCMGD202301)
Collapse
Affiliation(s)
- Mingru Bai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Zhenyu Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Haoju Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Mohsen Adeli
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Mao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Chong Cheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
33
|
Li Y, Chen W, Koo S, Liu H, Saiding Q, Xie A, Kong N, Cao Y, Abdi R, Serhan CN, Tao W. Innate immunity-modulating nanobiomaterials for controlling inflammation resolution. MATTER 2024; 7:3811-3844. [PMID: 40123651 PMCID: PMC11925551 DOI: 10.1016/j.matt.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The acute inflammatory response is an inherent protective mechanism, its unsuccessful resolution can contribute to disease pathogenesis and potentially lead to death. Innate immune cells are the first line of host defenders and play a substantial role in inflammation initiation, amplification, resolution, or subsequent disease progression. As the resolution of inflammation is an active and highly regulated process, modulating innate immune cells, including neutrophils, monocytes and macrophages, and endothelial cells, and their interactions offer opportunities to control excessive inflammation. Nanobiomaterials have shown superior therapeutic potential in inflammation-related diseases by manipulating inflammatory responses because nanobiomaterials can target and interact with innate immune cells. Versatile nanobiomaterials can be designed for targeted modulation of specific innate immune responses. Nanopro-resolving medicines have been prepared both with pro-resolving lipid mediators and peptides each demonstrated to active resolution of inflammation in animal disease models. Here, we review innovative nanobiomaterials for modulating innate immunity and alleviating inflammation. We summarise the strategies converging the design of nanobiomaterials and the nano-bio interaction in modulating innate immune profiles and propelling the advancement of nanobiomaterials for inflammatory disease treatments. We also propose the future perspectives and translational challenges of nanobiomaterials that need to be overcome in this swiftly rising field.
Collapse
Affiliation(s)
- Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- These authors contributed equally: Yongjiang Li, Wei Chen
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- These authors contributed equally: Yongjiang Li, Wei Chen
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Haijun Liu
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Angel Xie
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
34
|
Dong H, Zhao Y, Li S, Wang Q, Li M, Zhao K, Zhang Z, Shi J, Zhao X, Liu J. An inhalable nanoparticle enabling virulence factor elimination and antibiotics delivery for pneumococcal pneumonia therapy. J Control Release 2024; 375:698-711. [PMID: 39313100 DOI: 10.1016/j.jconrel.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Streptococcus pneumoniae (S. pneumoniae) is a major cause of community-acquired pneumonia. Current standard clinical therapies mainly focus on combating S. pneumoniae through antibiotics. However, the limited delivery of antibiotics and the undetoxified hydrogen peroxide (H2O2) virulence factor secreted by S. pneumoniae impede the therapeutic outcomes. Here we report an inhalable catalase (CAT)-tannic acid (TA) nanoassembly for local antibiotic (levofloxacin) delivery and simultaneously neutralizing the secreted H2O2 virulence factors to treat pneumococcal pneumonia. After aerosol inhalation, the inhalable formulation (denoted as CT@LVX) effectively accumulates in lung tissues through TA-mediated mucoadhesion. CAT can reduce alveolar epithelial cells apoptosis by catalyzing the decomposition of accumulated H2O2 in the infected lung tissues. In synergy with antibiotic LVX-mediated S. pneumoniae elimination, CT@LVX significantly decreases lung injury companied with reduced inflammatory, resulting in 100 % survival of mice with pneumonia. In a clinically isolated S. pneumoniae strain-induced pneumonia mouse model, CT@LVX also shows superior outcomes compared to the traditional antibiotic treatment, highlighting its potential clinical application prospects.
Collapse
Affiliation(s)
- Huiyue Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuxin Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shihong Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Qiongwei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengli Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kaikai Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiu Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
35
|
Jiang Y, Feng X, Qiao X, Li Y, Li X, Yang J, Han L. Plant-inspired visible-light-driven bioenergetic hydrogels for chronic wound healing. Bioact Mater 2024; 41:523-536. [PMID: 39210966 PMCID: PMC11359762 DOI: 10.1016/j.bioactmat.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Chronic bioenergetic imbalances and inflammation caused by hyperglycemia are obstacles that delay diabetic wound healing. However, it is difficult to directly deliver energy and metabolites to regulate intracellular energy metabolism using biomaterials. Herein, we propose a light-driven bioenergetic and oxygen-releasing hydrogel (PTKM@HG) that integrates the thylakoid membrane-encapsulated polyphenol nanoparticles (PTKM NPs) to regulate the energy metabolism and inflammatory response in diabetic wounds. Upon red light irradiation, the PTKM NPs exhibited oxygen generation and H2O2 deletion capacity through a photosynthetic effect to restore hypoxia-induced mitochondrial dysfunction. Meanwhile, the PTKM NPs could produce exogenous ATP and NADPH to enhance mitochondrial function and facilitate cellular anabolism by regulating the leucine-activated mTOR signaling pathway. Furthermore, the PTKM NPs inherited antioxidative and anti-inflammatory ability from polyphenol. Finally, the red light irradiated PTKM@HG hydrogel augmented the survival and migration of cells keratinocytes, and then accelerated angiogenesis and re-epithelialization of diabetic wounds. In short, this study provides possibilities for effectively treating diseases by delivering key metabolites and energy based on such a light-driven bioenergetic hydrogel.
Collapse
Affiliation(s)
- Yuping Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xiaomin Feng
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xin Qiao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yufeng Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xiaozhuang Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Lu Han
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| |
Collapse
|
36
|
Ji P, Xu Q, Li J, Wang Z, Mao W, Yan P. Advances in nanoparticle-based therapeutics for ischemic stroke: Enhancing drug delivery and efficacy. Biomed Pharmacother 2024; 180:117564. [PMID: 39405899 DOI: 10.1016/j.biopha.2024.117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Ischemic stroke, characterized by vascular occlusion, has recently emerged as one of the primary causes of mortality and disability worldwide. Conventional treatment modalities, such as thrombolytic and neuroprotective therapies, face numerous challenges, including limited bioavailability, significant neurotoxicity, suboptimal targeting, short half-life, and poor blood-brain barrier (BBB) penetration. Nanoparticle-based drug delivery systems present distinct advantages, such as small size, enhanced lipophilicity, and modifiability, which can potentially address these limitations. Utilizing nanoparticles for drug delivery in ischemic stroke therapy offers improved drug bioavailability, reduced neurotoxicity, enhanced targeted delivery, prolonged drug half-life, and better dissolution kinetics. This review aims to provide a comprehensive overview of current strategies in preclinical studies for managing or preventing ischemic stroke from a nanomaterial perspective, highlighting the advantages and limitations of each approach.
Collapse
Affiliation(s)
- Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Qingqing Xu
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Jiahui Li
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Zihan Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Wanyi Mao
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Peng Yan
- Taizhou Second People's Hospital Affiliated to Yangzhou University, Taizhou 225300, China.
| |
Collapse
|
37
|
Chen Q, Wang J, Xiong X, Chen J, Wang B, Yang H, Zhou J, Deng H, Gu L, Tian J. Blood-Brain Barrier-Penetrating Metal-Organic Framework Antioxidant Nanozymes for Targeted Ischemic Stroke Therapy. Adv Healthc Mater 2024:e2402376. [PMID: 39373278 DOI: 10.1002/adhm.202402376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Indexed: 10/08/2024]
Abstract
Overproduction of reactive oxygen species (ROS) during reperfusion in ischemic stroke (IS) severely impedes neuronal survival and results in high rates of morbidity and disability. The effective blood-brain barrier (BBB) penetration and brain delivery of antioxidative agents remain the biggest challenge in treating ischemic reperfusion-induced cerebrovascular and neural injury. In this study, a metal-organic framework (MOF) nanozyme (MIL-101-NH2(Fe/Cu)) with ROS scavenging activities to encapsulate neuroprotective agent rapamycin is fabricated and decorating the exterior with BBB-targeting protein ligands (transferrin), thereby realizing enhanced drug retention and controlled release within ischemic lesions for the synergistic treatment of IS. Through the receptor-mediated transcellular pathway, the transferrin-coated MOF nanoparticles achieved efficient transport across the BBB and targeted accumulation at the cerebral ischemic injury site of mice with middle cerebral artery occlusion/reperfusion (MCAO/R), wherein the nanocarrier exhibited catalytic activities of ROS decomposition into O2 and H2O2-responsive rapamycin release. By its BBB-targeting, antioxidative, anti-inflammatory, and antiapoptotic properties, the MOF nanosystem addressed multiple pathological factors of IS and realized remarkable neuroprotective effects, leading to the substantial reduction of cerebral infarction volume and accelerated recovery of nerve functions in the MCAO/R mouse model. This MOF-based nanomedicine provides valuable design principles for effective IS therapy with multi-mechanism synergies.
Collapse
Affiliation(s)
- Qing Chen
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jin Wang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Junyang Chen
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Bo Wang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Haixia Yang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jianliang Zhou
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Hongping Deng
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jian Tian
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
38
|
Bulog A, Pavelic K, Šutić I, Kraljevic Pavelic S. PMA-Zeolite: Chemistry and Diverse Medical Applications. J Funct Biomater 2024; 15:296. [PMID: 39452594 PMCID: PMC11509060 DOI: 10.3390/jfb15100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Numerous scientific studies have been conducted in recent decades with the aim to study targeted application of zeolites in various industries, ecology, agronomy and medicine. The biggest advances, however, have been documented in medical and veterinary research of the natural zeolite, clinoptilolite. Although the exact biological mechanisms of action of the zeolite clinoptilolite are not completely elucidated, obtained results point to its antioxidative, immunomodulatory and detoxifying effects, the latter partially based on release of soluble and bioavailable silica forms from the surface material. The studied zeolite clinoptilolite materials have different geographical origins which confer to the physicochemical differences in the material. In addition, the production process of the material for oral applications differs between different producers which also accounts for different properties of the surface upon mechanical activation. Recently, a well-characterized zeolite clinoptilolite material, namely the PMA-zeolite, has been tested in different clinical applications and has shown potential as supportive therapy in inflammatory conditions, osteoporosis as well as during tumor chemotherapy. We accordingly present a comprehensive review of the PMA-zeolite effects in the clinical applications and discuss its probable mechanisms of effect in vivo.
Collapse
Affiliation(s)
- Aleksandar Bulog
- Teaching Institute for Public Health of Primorsko-Goranska County, Krešimirova ulica 52, 51000 Rijeka, Croatia; (A.B.); (I.Š.)
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Kresimir Pavelic
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia;
- International Academy of Sciences and Arts in Bosnia and Herzegovina (IANUBIH), Radnička Cesta 34, 71000 Sarajevo, Bosnia and Herzegovina
| | - Ivana Šutić
- Teaching Institute for Public Health of Primorsko-Goranska County, Krešimirova ulica 52, 51000 Rijeka, Croatia; (A.B.); (I.Š.)
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Sandra Kraljevic Pavelic
- Faculty of Health Studies, University of Rijeka, Ulica Viktora Cara Emina 5, 51000 Rijeka, Croatia
| |
Collapse
|
39
|
Zhang K, Liang F, Wu Y, Wang X, Hou X, Zhang Z, Yu Y, Wang Y, Han R. Associations of arterial oxygen partial pressure with all‑cause mortality in critically ill ischemic stroke patients: a retrospective cohort study from MIMIC IV 2.2. BMC Anesthesiol 2024; 24:355. [PMID: 39367296 PMCID: PMC11451185 DOI: 10.1186/s12871-024-02750-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND As a supportive treatment, the effectiveness of oxygen therapy in ischemic stroke (IS) patients remains unclear. This study aimed to evaluate the relationships between arterial partial pressure of oxygen (PaO2) and both consciousness at discharge and all-cause mortality risk in ICU IS patients. METHODS Blood gas measurements for all patients diagnosed with IS were extracted from the MIMIC-IV database. Patients were classified into four groups based on their average PaO2 during the first ICU day: hypoxemia (PaO2 < 80 mmHg), normoxemia (PaO2 80-120 mmHg), mild hyperoxemia (PaO2 121-199 mmHg), and moderate/severe hyperoxemia (PaO2 ≥ 200 mmHg). The primary endpoint was 90-day all-cause mortality. Secondary outcomes included the level of consciousness at discharge, assessed by the Glasgow Coma Scale (GCS), and 30-day all-cause mortality. Multivariate Cox regression and Restricted cubic spline (RCS) analysis were used to investigate the relationship between mean PaO2 and mortality, and to assess the nonlinear association between exposure and outcomes. RESULTS This study included a total of 946 IS patients. The cumulative incidence of 30-day and 90-day all-cause mortality increased with decreasing PaO2 levels. RCS analysis revealed a nonlinear relationship between PaO2 and the risk of 30-day all-cause mortality (nonlinear P < 0.0001, overall P < 0.0001), as well as a nonlinear association between PaO2 and 90-day all-cause mortality (nonlinear P < 0.0001, overall P < 0.0001). The results remained consistent after excluding the small subset of patients who received reperfusion therapy. Sensitivity analysis indicated that the favorable impact on survival tends to increase with the extended duration of elevated PaO2. CONCLUSIONS For IS patients who do not receive reperfusion therapy or whose recanalization status is unknown, a lower PaO2 early during ICU admission is considered an independent risk factor for short-term and recent mortality. Adjusting respiratory parameters to maintain supraphysiological levels of PaO2 appears to be beneficial for survival, although this finding requires further validation through additional studies. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Kangda Zhang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, PR China
| | - Fa Liang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, PR China
| | - Youxuan Wu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, PR China
| | - Xinyan Wang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, PR China
| | - Xuan Hou
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, PR China
| | - Zihui Zhang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, PR China
| | - Yun Yu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, PR China
| | - Yunzhen Wang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, PR China
| | - Ruquan Han
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, PR China.
| |
Collapse
|
40
|
Wang A, Walden M, Ettlinger R, Kiessling F, Gassensmith JJ, Lammers T, Wuttke S, Peña Q. Biomedical Metal-Organic Framework Materials: Perspectives and Challenges. ADVANCED FUNCTIONAL MATERIALS 2024; 34:adfm.202308589. [PMID: 39726715 PMCID: PMC7617264 DOI: 10.1002/adfm.202308589] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 12/28/2024]
Abstract
Metal-organic framework (MOF) materials are gaining significant interest in biomedical research, owing to their high porosity, crystallinity, and structural and compositional diversity. Their versatile hybrid organic/inorganic chemistry endows MOFs with the capacity to retain organic (drug) molecules, metals, and gases, to effectively channel electrons and photons, to survive harsh physiological conditions such as low pH, and even to protect sensitive biomolecules. Extensive preclinical research has been carried out with MOFs to treat several pathologies and, recently, their integration with other biomedical materials such as stents and implants has demonstrated promising performance in regenerative medicine. However, there remains a significant gap between MOF preclinical research and translation into clinically and societally relevant medicinal products. Here, we outline the intrinsic features of MOFs and discuss how these are suited to specific biomedical applications like detoxification, drug and gas delivery, or as (combination) therapy platforms. We furthermore describe relevant examples of how MOFs have been engineered and evaluated in different medical indications, including cancer, microbial, and inflammatory diseases. Finally, we critically examine the challenges facing their translation into the clinic, with the goal of establishing promising research directions and more realistic approaches that can bridge the translational gap of MOFs and MOF-containing (nano)materials.
Collapse
Affiliation(s)
- Alec Wang
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Madeline Walden
- BCMaterials (Basque Centre for Materials, Applications & Nanostructures), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940Leioa, Spain
| | - Romy Ettlinger
- EastChem School of Chemistry, University of St Andrews, North Haugh, St AndrewsKY16 9ST, UK
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Jeremiah J. Gassensmith
- Department of Chemistry and Biochemistry & Biomedical Engineering, University of Texas at Dallas, Richardson, TX75080-3021
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Stefan Wuttke
- BCMaterials (Basque Centre for Materials, Applications & Nanostructures), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
| | - Quim Peña
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| |
Collapse
|
41
|
Chaki Borrás ML, Das RC, Barker PJ, Sluyter R, Konstantinov K. Silica Nanoparticles Decorated with Ceria Quantum Dots Modulate Intra- and Extracellular Reactive Oxygen Species Formation and Selectively Reduce Human A375 Melanoma Cell Proliferation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50430-50441. [PMID: 39283758 DOI: 10.1021/acsami.4c11483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Nanomaterials show great promise for cancer treatment. Nonetheless, most nanomaterials lack selectivity for cancer cells, damaging healthy ones. Cerium dioxide (ceria, CeO2) nanoparticles have been shown to exert selective toxicity toward cancer cells due to the redox modulating properties they display as their size decreases. However, these particles suffer from poor suspension stability. The efficacy of CeO2 nanoparticles for cancer treatment is hampered by their innate high surface energy, which leads to particle agglomeration and, consequently, reactivity loss. This effect increases as particle size decreases; as such, quantum dots (QDs) suffer most from this phenomenon. In this study, it is proposed that silicon dioxide (silica, SiO2) nanoparticles can provide an inert platform for surface encrusted CeO2 QDs and that the resulting nanocomposite (hereafter QDCeO2/SiO2) not only will exhibit negligible agglomeration compared with CeO2 alone but also will improve the modulation of reactive oxygen species (ROS) leading to selective reduction of human A375 melanoma cell proliferation. The SiO2 nanoparticles had a bimodal size distribution with median particle size of 66 and 168 nm, while the CeO2 quantum dots encrusted on their surface had a size of 3.2 nm. An elevated Ce3+/Ce4+ ratio led to the QDCeO2/SiO2 nanocomposite displaying synergistic superoxide dismutase- and catalase-like activity, favoring the accumulation of ROS at pH 6.5 which translated into QDCeO2/SiO2 exerting selective oxidative stress in, and toward, the melanoma cells. Treatment with 50 μg mL-1 QDCeO2/SiO2 significantly reduced cell proliferation by 27% compared to untreated control cells in the colony formation assay. Treatment with either SiO2 or CeO2 alone did not affect the cell proliferation. These results highlight the benefit of dispersing CeO2 QDs on the surface of core nanoparticles and the resulting enhancement of selective redox reactivity and proliferation arrest when compared to CeO2 nanoparticles alone. Furthermore, the method employed here to encrust CeO2 QDs could lead to the facile synthesis of new nanocomposites with enhanced control of ROS activity, not only for in vitro studies using other cancer cell lines of interest but also in animal models and perhaps leading to clinical trials in melanoma patients.
Collapse
Affiliation(s)
- Marcela L Chaki Borrás
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, 2500 North Wollongong, New South Wales, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, 2500 North Wollongong, New South Wales, Australia
- School of Physics, Faculty of Engineering and Information Sciences, University of Wollongong, 2500 North Wollongong, New South Wales, Australia
| | - Rajib Chandra Das
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, 2500 North Wollongong, New South Wales, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, 2500 North Wollongong, New South Wales, Australia
| | - Philip J Barker
- School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, 2500 North Wollongong, New South Wales, Australia
| | - Ronald Sluyter
- School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, 2500 North Wollongong, New South Wales, Australia
- Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, 2500 North Wollongong, New South Wales, Australia
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, 2500 North Wollongong, New South Wales, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, 2500 North Wollongong, New South Wales, Australia
| |
Collapse
|
42
|
Wu F, Zhang Z, Ma S, He Y, He Y, Ma L, Lei N, Deng W, Wang F. Microenvironment-responsive nanosystems for ischemic stroke therapy. Theranostics 2024; 14:5571-5595. [PMID: 39310102 PMCID: PMC11413776 DOI: 10.7150/thno.99822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Ischemic stroke, a common neurological disorder caused by impaired blood supply to the brain, presents a therapeutic challenge. Conventional treatments like thrombolysis and neuroprotection drugs lack ideal drug delivery systems, limiting their effectiveness. Selectively delivering therapies to the ischemic cerebral tissue holds great potential for preventing and/or treating ischemia-related pathological symptoms. The unique pathological microenvironment of the brain after ischemic stroke, characterized by hypoxia, acidity, and inflammation, offers new possibilities for targeted drug delivery. Pathological microenvironment-responsive nanosystems, extensively investigated in tumors with hypoxia-responsive systems as an example, could also respond to the ischemic cerebral microenvironment and achieve brain-targeted drug delivery and release. These emerging nanosystems are gaining traction for ischemic stroke treatment. In this review, we expound on the cerebral pathological microenvironment and clinical treatment strategies of ischemic stroke, highlight various stimulus-responsive materials employed in constructing ischemic stroke microenvironment-responsive nano delivery systems, and discuss the application of these microenvironment-responsive nanosystems in microenvironment regulation for ischemic stroke treatment.
Collapse
Affiliation(s)
- Fang Wu
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhijian Zhang
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shengnan Ma
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, 450052, Henan, China
| | - Yanyan He
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuxi He
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lixia Ma
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ningjing Lei
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjing Deng
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fazhan Wang
- Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
43
|
Liu H, Xing F, Yu P, Shakya S, Peng K, Liu M, Xiang Z, Ritz U. Integrated design and application of stimuli-responsive metal-organic frameworks in biomedicine: current status and future perspectives. J Mater Chem B 2024; 12:8235-8266. [PMID: 39058314 DOI: 10.1039/d4tb00768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In recent years, metal-organic frameworks (MOFs) have garnered widespread attention due to their distinctive attributes, such as high surface area, tunable properties, biodegradability, extremely low density, high loading capacity, diverse chemical functionalities, thermal stability, well-defined pore sizes, and molecular dimensions. Increasingly, biomedical researchers have turned their focus towards their multifaceted development. Among these, stimuli-responsive MOFs, with their unique advantages, have captured greater interest from researchers. This review will delve into the merits and drawbacks of both endogenous and exogenous stimuli-responsive MOFs, along with their application directions. Furthermore, it will outline the characteristics of different synthesis routes of MOFs, exploring various design schemes and modification strategies and their impacts on the properties of MOF products, as well as how to control them. Additionally, we will survey different types of stimuli-responsive MOFs, discussing the significance of various MOF products reported in biomedical applications. We will categorically summarize different strategies such as anticancer therapy, antibacterial treatment, tissue repair, and biomedical imaging, as well as insights into the development of novel MOFs nanomaterials in the future. Finally, this review will conclude by summarizing the challenges in the development of stimuli-responsive MOFs in the field of biomedicine and providing prospects for future research endeavors.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
| | - Fei Xing
- Department of Pediatric Surgery, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Sujan Shakya
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
| | - Kun Peng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiang Xi, China
| | - Ming Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
| | - Zhou Xiang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
- Department of Orthopedics, Sanya People's Hospital, 572000 Sanya, Hainan, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
44
|
Nabipour H, Rohani S. Metal-Organic Frameworks for Overcoming the Blood-Brain Barrier in the Treatment of Brain Diseases: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1379. [PMID: 39269041 PMCID: PMC11397546 DOI: 10.3390/nano14171379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
The blood-brain barrier (BBB) plays a vital role in safeguarding the central nervous system by selectively controlling the movement of substances between the bloodstream and the brain, presenting a substantial obstacle for the administration of therapeutic agents to the brain. Recent breakthroughs in nanoparticle-based delivery systems, particularly metal-organic frameworks (MOFs), provide promising solutions for addressing the BBB. MOFs have become valuable tools in delivering medications to the brain with their ability to efficiently load drugs, release them over time, and modify their surface properties. This review focuses on the recent advancements in molecular-based approaches for treating brain disorders, such as glioblastoma multiforme, stroke, Parkinson's disease, and Alzheimer's disease. This paper highlights the significant impact of MOFs in overcoming the shortcomings of conventional brain drug delivery techniques and provides valuable insights for future research in the field of neurotherapeutics.
Collapse
Affiliation(s)
- Hafezeh Nabipour
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Sohrab Rohani
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
45
|
Li Y, Liu T, Zheng R, Lai J, Su J, Li J, Zhu B, Chen T. Translational selenium nanoparticles boost GPx1 activation to reverse HAdV-14 virus-induced oxidative damage. Bioact Mater 2024; 38:276-291. [PMID: 38745588 PMCID: PMC11091461 DOI: 10.1016/j.bioactmat.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Human adenovirus (HAdV) can cause severe respiratory infections in immunocompromised patients, but its clinical treatment is seriously limited by side effects of drugs such as poor efficacy, low bioavailability and severe nephrotoxicity. Trace element selenium (Se) has been found will affect the disease progression of pneumonia, but its antivirus efficacy could be improved by speciation optimization. Therefore, herein we performed anti-HAdV effects of different Se speciation and found that lentinan (LNT)-decorated selenium nanoparticles (SeNPs) exhibited low cytotoxicity and excellent anti-HAdV antiviral activity. Furthermore, SeNPs@LNT reduced the HAdV infection-induced mitochondrial damage and excessive production of reactive oxygen species (ROS). It was also involved in the repair of host cell DNA damage and inhibition of viral DNA replication. SeNPs@LNT inhibited HAdV-induced apoptosis mainly by modulating the p53/Bcl-2 apoptosis signaling pathway. In vivo, SeNPs@LNT replenished Se by targeting the infected site through the circulatory system and was involved in the synthesis of Glutathione peroxidase 1 (GPx1). More importantly, GPx1 played an antioxidant and immunomodulatory role in alleviating HAdV-induced inflammatory cytokine storm and alleviating adenovirus pneumonia in Se-deficient mice. Collectively, this study provides a Se speciation of SeNPs@LNT with anti-HAdV activity, and demonstrate that SeNPs@LNT is a promising pharmaceutical candidate for the treatment of HAdV.
Collapse
Affiliation(s)
- Yinghua Li
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ting Liu
- Department of Chemistry, Jinan University, China
| | - Ruilin Zheng
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jia Lai
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jingyao Su
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiali Li
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, China
| |
Collapse
|
46
|
Wang Z, Zhang X, Zhang G, Zheng YJ, Zhao A, Jiang X, Gan J. Astrocyte modulation in cerebral ischemia-reperfusion injury: A promising therapeutic strategy. Exp Neurol 2024; 378:114814. [PMID: 38762094 DOI: 10.1016/j.expneurol.2024.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) poses significant challenges for drug development due to its complex pathogenesis. Astrocyte involvement in CIRI pathogenesis has led to the development of novel astrocyte-targeting drug strategies. To comprehensively review the current literature, we conducted a thorough analysis from January 2012 to December 2023, identifying 82 drugs aimed at preventing and treating CIRI. These drugs target astrocytes to exert potential benefits in CIRI, and their primary actions include modulation of relevant signaling pathways to inhibit neuroinflammation and oxidative stress, reduce cerebral edema, restore blood-brain barrier integrity, suppress excitotoxicity, and regulate autophagy. Notably, active components from traditional Chinese medicines (TCM) such as Salvia miltiorrhiza, Ginkgo, and Ginseng exhibit these important pharmacological properties and show promise in the treatment of CIRI. This review highlights the potential of astrocyte-targeted drugs to ameliorate CIRI and categorizes them based on their mechanisms of action, underscoring their therapeutic potential in targeting astrocytes.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Jia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
47
|
Zhang J, Guo M, He Q, Zhang Z, Wu B, Wu H, Li R, Zhang Q, Tang Y, Lin Y, Jin Y. Precise Control of Metal Active Sites of Metal-Organic Framework Nanozymes for Achieving Excellent Enzyme-Like Activity and Efficient Pancreatitis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310675. [PMID: 38488710 DOI: 10.1002/smll.202310675] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/28/2024] [Indexed: 08/09/2024]
Abstract
Acute pancreatitis (AP) is a potentially life-threatening inflammatory disease that can lead to the development of systemic inflammatory response syndrome and its progression to severe acute pancreatitis. Hence, there is an urgent need for the rational design of highly efficient antioxidants to treat AP. Herein, an optimized Cu-based metal-organic framework (MOF) nanozyme with exceptional antioxidant activity is introduced, designed to effectively alleviate AP, by engineering the metal coordination centers in MN2Cl2 (M = Co, Ni, Cu). Specifically, the Cu MOF, which benefits from a Cu active center similar to that of natural superoxide dismutase (SOD), exhibited at least four times higher SOD-like activity than the Ni/Co MOF. Theoretical analyses further demonstrate that the CuN2Cl2 site not only has a moderate adsorption effect on the substrate molecule •OOH but also reduces the dissociation energy of the product H2O2. Additionally, the Cu MOF nanozyme possesses the excellent catalase-like activity and •OH removal ability. Consequently, the Cu MOF with broad-spectrum antioxidant activity can efficiently scavenge reactive oxygen species to alleviate arginine-induced AP. More importantly, it can also mitigate apoptosis and necrosis of acinar cells by activating the PINK1/PARK2-mediated mitophagy pathway. This study highlights the distinctive functions of tunable MOF nanozymes and their potential bio-applications.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Meilin Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Qikuan He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Zhisen Zhang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China
| | - Boda Wu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Hongji Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Rizhao Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Qiyu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Yonghua Tang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China
| | - Youhui Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China
| | - Yuepeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| |
Collapse
|
48
|
Chen Y, Xu W, Tian H, Gao J, Ye Y, Qin H, Wang H, Song Y, Shao C, Peng F, Tu Y. NIR-II Light-Actuated Nanomotors for Enhanced Photoimmunotherapy Toward Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39051-39063. [PMID: 39028802 DOI: 10.1021/acsami.4c06994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Light-propelled nanomotors, which can convert external light into mechanical motion, have shown considerable potential in the construction of a new generation of drug delivery systems. However, the therapeutic efficacy of light-driven nanomotors is always unsatisfactory due to the limited penetration depth of near-infrared-I (NIR-I) light and the inherent biocompatibility of the motor itself. Herein, an asymmetric nanomotor (Pd@ZIF-8/R848@M JNMs) with efficient motion capability is successfully constructed for enhanced photoimmunotherapy toward hepatocellular carcinoma. Under near-infrared-II (NIR-II) irradiation, Pd@ZIF-8/R848@M JNMs convert light energy into heat energy, exhibiting self-thermophoretic locomotion to penetrate deeper into tumor tissues to achieve photothermal therapy. At the same time, functionalized with an immune-activated agent Resiquimod (R848), our nanomotors could convert a "cold tumor" into a "hot tumor", transforming the immunosuppressive microenvironment into an immune-activated state, thus achieving immunotherapy. Dual photoimmunotherapy of the as-developed NIR-II light-driven Pd@ZIF-8/R848@M JNMs demonstrates considerable tumor inhibition effects, offering a promising therapeutic approach in the field of anticancer therapy.
Collapse
Affiliation(s)
- Yichi Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Wenxin Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huimin Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Junbin Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yicheng Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanfeng Qin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hong Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanzhen Song
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chuxiao Shao
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, Central Laboratory of Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang 323000, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
49
|
Zou B, Xiong Z, Yu Y, Shi S, Li X, Chen T. Rapid Selenoprotein Activation by Selenium Nanoparticles to Suppresses Osteoclastogenesis and Pathological Bone Loss. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401620. [PMID: 38621414 DOI: 10.1002/adma.202401620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Indexed: 04/17/2024]
Abstract
Osteoclast hyperactivation stands as a significant pathological factor contributing to the emergence of bone disorders driven by heightened oxidative stress levels. The modulation of the redox balance to scavenge reactive oxygen species emerges as a viable approach to addressing this concern. Selenoproteins, characterized by selenocysteine (SeCys2) as the active center, are crucial for selenium-based antioxidative stress therapy for inflammatory diseases. This study reveals that surface-active elemental selenium (Se) nanoparticles, particularly lentinan-Se (LNT-Se), exhibit enhanced cellular accumulation and accelerated metabolism to SeCys2, the primary active Se form in biological systems. Consequently, LNT-Se demonstrates significant inhibition of osteoclastogenesis. Furthermore, in vivo studies underscore the superior therapeutic efficacy of LNT-Se over SeCys2, potentially attributable to the enhanced stability and safety profile of LNT-Se. Specifically, LNT-Se effectively modulates the expression of the selenoprotein GPx1, thereby exerting regulatory control over osteoclastogenesis inhibition, and the prevention of osteolysis. In summary, these results suggest that the prompt activation of selenoproteins by Se nanoparticles serves to suppress osteoclastogenesis and pathological bone loss by upregulating GPx1. Moreover, the utilization of bioactive Se species presents a promising avenue for effectively managing bone disorders.
Collapse
Affiliation(s)
- Binhua Zou
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Zushuang Xiong
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yanzi Yu
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Sujiang Shi
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Laboratory of Viral Pathogenesis & Infection Prevention and Control of Ministry of Education, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
50
|
Liu W, Li Y, Wang Y, Feng Y. Bioactive Metal-Organic Frameworks as a Distinctive Platform to Diagnosis and Treat Vascular Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310249. [PMID: 38312082 DOI: 10.1002/smll.202310249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Indexed: 02/06/2024]
Abstract
Vascular diseases (VDs) pose the leading threat worldwide due to high morbidity and mortality. The detection of VDs is commonly dependent on individual signs, which limits the accuracy and timeliness of therapies, especially for asymptomatic patients in clinical management. Therefore, more effective early diagnosis and lesion-targeted treatments remain a pressing clinical need. Metal-organic frameworks (MOFs) are porous crystalline materials formed by the coordination of inorganic metal ions and organic ligands. Due to their unique high specific surface area, structural flexibility, and functional versatility, MOFs are recognized as highly promising candidates for diagnostic and therapeutic applications in the field of VDs. In this review, the potential of MOFs to act as biosensors, contrast agents, artificial nanozymes, and multifunctional therapeutic agents in the diagnosis and treatment of VDs from the clinical perspective, highlighting the integration between clinical methods with MOFs is generalized. At the same time, multidisciplinary cooperation from chemistry, physics, biology, and medicine to promote the substantial commercial transformation of MOFs in tackling VDs is called for.
Collapse
Affiliation(s)
- Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Ying Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Yuanchao Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, P. R. China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| |
Collapse
|