1
|
Vatsyayan A, Mathur P, Bhoyar RC, Imran M, Senthivel V, Divakar MK, Mishra A, Jolly B, Sivasubbu S, Scaria V. Understanding the genetic epidemiology of hereditary breast cancer in India using whole genome data from 1029 healthy individuals. Cancer Causes Control 2025; 36:673-682. [PMID: 40024972 DOI: 10.1007/s10552-025-01974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/11/2025] [Indexed: 03/04/2025]
Abstract
Breast cancer is the most highly reported cancer in India. Genetic testing could help tackle the increasing cancer burden by enabling carriers obtain early diagnosis through increased surveillance, and help guide treatment. However, accurate interpretation of variant pathogenicity must be established in a population-specific manner to ensure effective use of genetic testing. Here we query IndiGen data obtained from sequencing 1029 Indian individuals, and perform variant classification of all reported BRCA variants using gold-standard ACMG & AMP guidelines to establish disease epidemiology. To address the high number of VUS variants thus obtained, we further utilize the brca-NOVUS ML tool to obtain pathogenicity predictions in a manner close to ACMG guidelines at scale. Through the manual application of ACMG & AMP guidelines, we determined the genetic prevalence to be the following: 1 in 342 carriers of BRCA1, and 1 in 256 carriers of BRCA2 pathogenic/likely pathogenic variants bear a significant lifetime risk of developing breast / ovarian cancer in India. The high population prevalence and unique variant landscape emphasizes a need for population-scale studies of causative variants to enable effective screening. We advise cautious clinical interpretation, given incomplete penetrance and other complex factors that result in cancer disease. To the best of our knowledge, this is the first and most comprehensive population-scale genetic epidemiological study of BRCA-linked breast cancer variants reported from India.
Collapse
Affiliation(s)
- Aastha Vatsyayan
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prerika Mathur
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Rahul C Bhoyar
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
| | - Mohamed Imran
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vigneshwar Senthivel
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohit Kumar Divakar
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anushree Mishra
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
| | - Bani Jolly
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Karkinos Healthcare Private Limited, B 702, Neelkanth Business Park Kirol Village, Mumbai, 400086, India
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Karkinos Healthcare Private Limited, B 702, Neelkanth Business Park Kirol Village, Mumbai, 400086, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Karkinos Healthcare Private Limited, B 702, Neelkanth Business Park Kirol Village, Mumbai, 400086, India.
- Gangwal School of Medical Science and Technology, IIT Kanpur, Kanpur, India.
- Dr. D. Y. Patil Medical College, Hospital & Research Centre, Pune, India.
| |
Collapse
|
2
|
Jeon Y, Kwon Y, Kim YJ, Jeon S, Ryu H, An K, Kim BC, Kim W, Lee SY, Bae JW, Hwang JY, Kang MG, Kang Y, Bhak J, Shin ES. Epigenetic Modulation of Vascular Smooth Muscle Cell Phenotype Switching in Early-Onset Acute Myocardial Infarction. Arterioscler Thromb Vasc Biol 2025; 45:e217-e230. [PMID: 40242870 DOI: 10.1161/atvbaha.125.322503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND The epigenetic mechanisms underlying early-onset acute myocardial infarction (AMI) remain insufficiently characterized. The present study aims to elucidate the pathophysiology of early-onset AMI by investigating its epigenetic features as molecular indicators. METHODS A comparative differential methylation analysis was performed on whole blood samples from 298 patients with early-onset AMI with clinical follow-up and 247 controls using targeted bisulfite sequencing. Clusters of differentially methylated sites (CDMSs) were defined to highlight regions of concentrated methylation changes in patients with early-onset AMI. Cox proportional hazards regression was conducted to evaluate the prognostic significance of the methylation biomarkers. RESULTS A total of 692 differentially methylated sites (DMSs) were identified as biomarkers associated with early-onset AMI. Among these, 396 DMSs were grouped into 147 CDMSs. Notably, the UHRF1 and STIMATE genes, which regulate synthetic and osteoblast-like vascular smooth muscle cell phenotypes, respectively, contained CDMSs with the highest number of significant DMSs. UHRF1 demonstrated a CDMS with 10 significant DMSs within a 117-bp region, while STIMATE included a 264-bp CDMS with 10 significant DMSs. Both regions also exhibited consistent methylation patterns in coronary tissues, comparing human coronary plaque to normal coronary artery samples. Additionally, the HIPK3 gene, which modulates STAT3 (signal transducer and activator of transcription 3) expression, thereby promoting osteoblast-like transformation in vascular smooth muscle cells, showed a CDMS with 5 significant DMSs within a 123-bp region, with further validation in the corresponding tissues. Furthermore, over 66% biomarkers demonstrated significant associations with mortality in patients with early-onset AMI, providing evidence of the impact of these biomarkers on the pathophysiology of the disease. CONCLUSIONS This innovative epigenomic study into early-onset AMI not only identifies biomarkers associated with the disease and its mortality but also highlights the critical role of vascular smooth muscle cell phenotype regulation in early-onset AMI pathogenesis. Our findings suggest that changes in vascular smooth muscle cell phenotypes toward synthetic and osteoblast-like states play a crucial role in early-onset AMI.
Collapse
Affiliation(s)
- Yeonsu Jeon
- Clinomics Inc., Osong, Republic of Korea (Y.J., Y.J.K., S.J., H.R., B.-C.K., Y. Kang, J.B.)
| | - Yoonsung Kwon
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea (Y. Kwon, K.A., J.B.)
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea (Y. Kwon, K.A., J.B.)
| | - Yeo Jin Kim
- Clinomics Inc., Osong, Republic of Korea (Y.J., Y.J.K., S.J., H.R., B.-C.K., Y. Kang, J.B.)
| | - Sungwon Jeon
- Clinomics Inc., Osong, Republic of Korea (Y.J., Y.J.K., S.J., H.R., B.-C.K., Y. Kang, J.B.)
| | - Hyojung Ryu
- Clinomics Inc., Osong, Republic of Korea (Y.J., Y.J.K., S.J., H.R., B.-C.K., Y. Kang, J.B.)
| | - Kyungwhan An
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea (Y. Kwon, K.A., J.B.)
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea (Y. Kwon, K.A., J.B.)
| | - Byoung-Chul Kim
- Clinomics Inc., Osong, Republic of Korea (Y.J., Y.J.K., S.J., H.R., B.-C.K., Y. Kang, J.B.)
| | - Weon Kim
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea (W.K.)
| | - Sang Yeub Lee
- Division of Cardiology, Department of Internal Medicine, Chung-Ang University College of Medicine, Chung-Ang University Gwangmyeong Hospital, Republic of Korea (S.Y.L.)
| | - Jang-Whan Bae
- Department of Internal Medicine, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea (J.-W.B.)
| | - Jin-Yong Hwang
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea (J.-Y.H., M.G.K.)
| | - Min Gyu Kang
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea (J.-Y.H., M.G.K.)
| | - Younghui Kang
- Clinomics Inc., Osong, Republic of Korea (Y.J., Y.J.K., S.J., H.R., B.-C.K., Y. Kang, J.B.)
| | - Jong Bhak
- Clinomics Inc., Osong, Republic of Korea (Y.J., Y.J.K., S.J., H.R., B.-C.K., Y. Kang, J.B.)
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea (Y. Kwon, K.A., J.B.)
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea (Y. Kwon, K.A., J.B.)
- Personal Genomics Institute, Genome Research Foundation, Osong, Republic of Korea (J.B.)
| | - Eun-Seok Shin
- Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea (E.-S.S.)
| |
Collapse
|
3
|
Kim SH, Choi Y, Choi YC, Kim SW, Shin HY, Park HJ. Estimating the Prevalence of Autosomal Recessive Neuromuscular Diseases in the Korean Population. J Korean Med Sci 2025; 40:e68. [PMID: 40390582 PMCID: PMC12089688 DOI: 10.3346/jkms.2025.40.e68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/08/2024] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Genetic neuromuscular diseases (NMDs) are a heterogeneous group of conditions that primarily affect the peripheral nerves, muscles, and neuromuscular junctions. This study was performed to identify pathogenic or likely pathogenic variants (PLPVs), calculate carrier frequencies, and predict the genetic prevalence of autosomal recessive-NMDs (AR-NMDs) in a Korean population. METHODS In total, 267 genes were associated with AR-NMDs. We analyzed genetic variants from 984 Korean whole genomes and identified PLPVs to assess the carrier frequency and genetic prevalence of the variants. RESULTS We identified 165 PLPVs, including 75 literature verified and 90 manually verified variants. Most PLPVs in AR-NMD genes were frameshifts (61, 37.0%), followed by nonsense (36, 21.8%), missense (35, 21.2%), and splice variants (28, 17.0%). The carrier frequency of the AR-NMDs was 27.1%. DYSF exhibited the highest carrier frequency (1.63%), followed by GAA (1.55%), HEXB (1.53%), PREPL (0.76%), NEB (0.66%), ADSS1 (0.65%), ALPK3 (0.65%), and CHRNG (0.65%). The predicted genetic prevalence of AR-NMDs in the Korean population was 38.0 cases per 100,000 individuals. DYSF (6.7 cases per 100,000 individuals) showed the highest genetic prevalence. The variant with the highest allele frequency was c.1250C>T in HEXB at 0.00764, followed by c.[752T>C; c.761C>T] in GAA at 0.00505, and c.2055+2T>G in DYSF at 0.00437. CONCLUSION Our study suggests that 27.1% of the Korean population are healthy carriers of at least one AR-NMD causing PLPV, revealing the genetic prevalence of NMDs in the Korean population.
Collapse
Affiliation(s)
- Soo-Hyun Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yunjung Choi
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Chul Choi
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Woo Kim
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ha Young Shin
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung Jun Park
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Rehabilitation Institute of Neuromuscular Disease, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Aguilar-Gómez D, Bejder J, Graae J, Ko Y, Vaughn A, Clement K, Tristani-Firouzi M, Lee JY, Nordsborg NB, Nielsen R, Ilardo M. Genetic and training adaptations in the Haenyeo divers of Jeju, Korea. Cell Rep 2025:115577. [PMID: 40318638 DOI: 10.1016/j.celrep.2025.115577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 02/04/2025] [Accepted: 03/27/2025] [Indexed: 05/07/2025] Open
Abstract
Natural selection and relative isolation have shaped the genetics and physiology of unique human populations from Greenland to Tibet. Another such population is the Haenyeo, the all-female Korean divers renowned for their remarkable diving abilities in frigid waters. Apnea diving induces considerable physiological strain, particularly in females diving throughout pregnancy. In this study, we explore the hypothesis that breath-hold diving has shaped physiological and genetic traits in the Haenyeo. We identified pronounced bradycardia during diving, a likely training effect. We paired natural selection and genetic association analyses to investigate adaptive genetic variation that may mitigate the effects of diving on pregnancy through an associated reduction of diastolic blood pressure. Finally, we identified positively selected variation in a gene previously associated with cold water tolerance, which may contribute to reduced hypothermia susceptibility. These findings highlight the importance of traditional diving populations for understanding genetic and physiological adaptation.
Collapse
Affiliation(s)
- Diana Aguilar-Gómez
- Ecology and Evolutionary Biology, University of California, Los Angeles, 612 Charles E. Young Drive South, Los Angeles, CA 90095, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jacob Bejder
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Nørre Allé 51, 2200 Copenhagen, Denmark
| | - Jonathan Graae
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Nørre Allé 51, 2200 Copenhagen, Denmark
| | - Yelin Ko
- Department of Human-Centered Design, Cornell University, Ithaca, NY 14850, USA
| | - Andrew Vaughn
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kendell Clement
- Department of Biomedical Informatics, University of Utah, 421 Wakara Way #140, Salt Lake City, UT 84108, USA
| | - Martin Tristani-Firouzi
- Division of Pediatric Cardiology, Department of Pediatrics, University of Utah, 81 Mario Capecchi Dr., Salt Lake City, UT, USA; Nora Eccles Harrison CVRTI Cardiovascular Research Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Joo-Young Lee
- Research Institute for Human Ecology, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea; Graphene Research Center for Convergence Technology, Advanced Institute of Convergence Technology, Suwon 16229, Republic of Korea
| | - Nikolai B Nordsborg
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Nørre Allé 51, 2200 Copenhagen, Denmark
| | - Rasmus Nielsen
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Melissa Ilardo
- Department of Biomedical Informatics, University of Utah, 421 Wakara Way #140, Salt Lake City, UT 84108, USA; Nora Eccles Harrison CVRTI Cardiovascular Research Training Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
5
|
Rami FZ, Seo H, Kang C, Park S, Li L, Le TH, Kim SW, Won SH, Chung W, Chung YC. Associations of polygenic risk score, environmental factors, and their interactions with the risk of schizophrenia spectrum disorders. Psychol Med 2025; 55:e111. [PMID: 40211091 DOI: 10.1017/s0033291725000753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
BACKGROUND Emerging evidence indicates that gene-environment interactions (GEIs) are important underlying mechanisms for the development of schizophrenia (SZ). We investigated the associations of polygenic risk score for SZ (PRS-SZ), environmental measures, and their interactions with case-control status and clinical phenotypes among patients with schizophrenia spectrum disorders (SSDs). METHODS The PRS-SZ for 717 SSD patients and 356 healthy controls (HCs) were calculated using the LDpred model. The Korea-Polyenvironmental Risk Score-I (K-PERS-I) and Early Trauma Inventory-Self Report (ETI-SR) were utilized as environmental measures. Logistic and linear regression analyses were performed to identify the associations of PRS-SZ and two environmental measures with case-control status and clinical phenotypes. RESULTS The PRS-SZ explained 8.7% of SZ risk. We found greater associations of PRS-SZ and total scores of the K-PERS-I with case-control status compared to the ETI-SR total score. A significant additive interaction was found between PRS-SZ and K-PERS-I. With the subdomains of the K-PERS-I and ETI-SR, we identified significant multiplicative or additive interactions of PRS-SZ and parental socioeconomic status (pSES), childhood adversity, and recent life events in association with case-control status. For clinical phenotypes, significant interactions were observed between PRS-SZ and the ETI-SR total score for negative-self and between PRS-SZ and obstetric complications within the K-PERS-I for negative-others. CONCLUSIONS Our findings suggest that the use of aggregate scores for genetic and environmental measures, PRS-SZ and K-PERS-I, can more accurately predict case-control status, and specific environmental measures may be more suitable for the exploration of GEIs.
Collapse
Affiliation(s)
- Fatima Zahra Rami
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Hyungwoo Seo
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, South Korea
| | - Chaeyeong Kang
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Seunghwan Park
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, South Korea
| | - Ling Li
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Thi-Hung Le
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, South Korea
| | - Seung-Hee Won
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Wonil Chung
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, South Korea
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Young-Chul Chung
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, South Korea
| |
Collapse
|
6
|
Lee JE, Cho S, So MH, Lee HY. DNA methylation-based semen age prediction using the markers identified in Koreans and Europeans. Forensic Sci Int Genet 2025; 77:103243. [PMID: 40023960 DOI: 10.1016/j.fsigen.2025.103243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
In the forensic field, sexual assaults have consistently been the important issue, with semen frequently serving as the primary evidence. When the suspect is unidentified, estimating the perpetrator's age using investigating semen can provide important information. The VISAGE consortium conducted research on the semen age prediction focused on European semen samples, but the age prediction model has remained undisclosed. Additionally, several studies have reported methylation differences across populations, indicating that the European semen age prediction model might not be broadly applicable to other groups. A study did explore semen age prediction in Koreans using Illumina's Infinium Methylation450K BeadChip array, however recent developments in technology could enhance this approach. To address this, we conducted a study on Korean males aged 18-70 years. We initially analyzed 49 samples utilizing Illumina's Infinium MethylationEPIC BeadChip array to identify age-related CpG sites. From this analysis, we identified 9 age-related CpG markers, excluding one due to difficulties in locus-specific analysis. As a result, we used 11 markers including 8 newly identified CpGs from the EPIC array and 3 CpG markers from previous research utilizing the SNaPshot assay. Furthermore, we incorporated 13 CpG markers from the European study to analyze a total of 159 semen samples using the Illumina Nextera MPS system. This approach enabled us to test age-related markers identified in Europeans within the Korean population and to construct a more accurate age prediction model using markers from both Korean and European sources.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Sohee Cho
- Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, South Korea
| | - Moon Hyun So
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hwan Young Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea; Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
7
|
Lee H, Kim W, Kwon N, Kim C, Kim S, An JY. Lessons from national biobank projects utilizing whole-genome sequencing for population-scale genomics. Genomics Inform 2025; 23:8. [PMID: 40050991 PMCID: PMC11887102 DOI: 10.1186/s44342-025-00040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025] Open
Abstract
Large-scale national biobank projects utilizing whole-genome sequencing have emerged as transformative resources for understanding human genetic variation and its relationship to health and disease. These initiatives, which include the UK Biobank, All of Us Research Program, Singapore's PRECISE, Biobank Japan, and the National Project of Bio-Big Data of Korea, are generating unprecedented volumes of high-resolution genomic data integrated with comprehensive phenotypic, environmental, and clinical information. This review examines the methodologies, contributions, and challenges of major WGS-based national genome projects worldwide. We first discuss the landscape of national biobank initiatives, highlighting their distinct approaches to data collection, participant recruitment, and phenotype characterization. We then introduce recent technological advances that enable efficient processing and analysis of large-scale WGS data, including improvements in variant calling algorithms, innovative methods for creating multi-sample VCFs, optimized data storage formats, and cloud-based computing solutions. The review synthesizes key discoveries from these projects, particularly in identifying expression quantitative trait loci and rare variants associated with complex diseases. Our review introduces the latest findings from the National Project of Bio-Big Data of Korea, which has advanced our understanding of population-specific genetic variation and rare diseases in Korean and East Asian populations. Finally, we discuss future directions and challenges in maximizing the impact of these resources on precision medicine and global health equity. This comprehensive examination demonstrates how large-scale national genome projects are revolutionizing genetic research and healthcare delivery while highlighting the importance of continued investment in diverse, population-specific genomic resources.
Collapse
Affiliation(s)
- Hyeji Lee
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Wooheon Kim
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Nahyeon Kwon
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Chanhee Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Sungmin Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, 28159, Republic of Korea
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea.
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea.
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
8
|
Yoon JG, Lee S, Park S, Jang SS, Cho J, Kim MJ, Kim SY, Kim WJ, Lee JS, Chae JH. Identification of a novel non-coding deletion in Allan-Herndon-Dudley syndrome by long-read HiFi genome sequencing. BMC Med Genomics 2025; 18:41. [PMID: 40033291 PMCID: PMC11877835 DOI: 10.1186/s12920-024-02058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/27/2024] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Allan-Herndon-Dudley syndrome (AHDS) is an X-linked disorder caused by pathogenic variants in the SLC16A2 gene. Although most reported variants are found in protein-coding regions or adjacent junctions, structural variations (SVs) within non-coding regions have not been previously reported. METHODS We investigated two male siblings with severe neurodevelopmental disorders and spasticity, who had remained undiagnosed for over a decade and were negative from exome sequencing, utilizing long-read HiFi genome sequencing. We conducted a comprehensive analysis including short-tandem repeats (STRs) and SVs to identify the genetic cause in this familial case. RESULTS While coding variant and STR analyses yielded negative results, SV analysis revealed a novel hemizygous deletion in intron 1 of the SLC16A2 gene (chrX:74,460,691 - 74,463,566; 2,876 bp), inherited from their carrier mother and shared by the siblings. Determination of the breakpoints indicates that the deletion probably resulted from Alu/Alu-mediated rearrangements between homologous AluY pairs. The deleted region is predicted to include multiple transcription factor binding sites, such as Stat2, Zic1, Zic2, and FOXD3, which are crucial for the neurodevelopmental process, as well as a regulatory element including an eQTL (rs1263181) that is implicated in the tissue-specific regulation of SLC16A2 expression, notably in skeletal muscle and thyroid tissues. CONCLUSIONS This report, to our knowledge, is the first to describe a non-coding deletion associated with AHDS, demonstrating the potential utility of long-read sequencing for undiagnosed patients. Although interpreting variants in non-coding regions remains challenging, our study highlights this region as a high priority for future investigation and functional studies.
Collapse
Affiliation(s)
- Jihoon G Yoon
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seungbok Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soojin Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Se Song Jang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jaeso Cho
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Man Jin Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soo Yeon Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woo Joong Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Sook Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong-Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Yu JW, Yoon JG, Han C, Noh SH, Shin DM, Yang YM, Kim YO, Shim KW, Lee MG. Digenic impairments of haploinsufficient genes in patients with craniosynostosis. JCI Insight 2025; 10:e176985. [PMID: 39989454 PMCID: PMC11949007 DOI: 10.1172/jci.insight.176985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/02/2025] [Indexed: 02/25/2025] Open
Abstract
Craniosynostosis (CRS) is characterized by the development of abnormal cranial suture ossification and premature fusion. Despite the identification of several associated genetic disorders, the genetic determinants of CRS remain poorly understood. In this study, we conducted integrative analyses on 225 exomes, comprising 121 CRS probands and 104 parental exomes (52 trios). These analyses encompassed de novo and pathogenic variants, and digenic combinations within haploinsufficient genes harboring rare variants. Our analysis unveils a shared molecular network between genes associated with CRS and those linked to skeletal and neurodevelopmental disorders, with a notable enrichment of deleterious variants within haploinsufficient genes. Additionally, we identified a unique digenic pair (IL6ST and TRPS1) within haploinsufficient genes that was present in 2 patients with nonsyndromic CRS but absent in parents or 1,048 population controls. In vitro experiments provided evidence that the identified missense variants were hypomorphs, and accelerated bone mineralization could result from the additive effects of diminished IL6ST and TRPS1 activities in osteoblasts. Overall, our study underscores the important role of rare variations in haploinsufficient genes and suggests that in a subset of undiagnosed patients, the CRS phenotype may arise from multiple genetic variations.
Collapse
Affiliation(s)
- Jung Woo Yu
- Department of Pharmacology, Graduate School of Medical Science Brain Korea 21 Project
- Department of Pediatric Neurosurgery, Craniofacial Reforming and Reconstruction Clinic
| | - Jihoon G. Yoon
- Department of Pharmacology, Graduate School of Medical Science Brain Korea 21 Project
- Department of Laboratory Medicine, Gangnam Severance Hospital, and
| | - Chaerim Han
- Department of Pharmacology, Graduate School of Medical Science Brain Korea 21 Project
| | - Shin Hye Noh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong Min Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Yu-Mi Yang
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Yong Oock Kim
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Won Shim
- Department of Pediatric Neurosurgery, Craniofacial Reforming and Reconstruction Clinic
| | - Min Goo Lee
- Department of Pharmacology, Graduate School of Medical Science Brain Korea 21 Project
| |
Collapse
|
10
|
Kwon Y, Blazyte A, Jeon Y, Kim YJ, An K, Jeon S, Ryu H, Shin DH, Ahn J, Um H, Kang Y, Bak H, Kim BC, Lee S, Jung HT, Shin ES, Bhak J. Identification of 17 novel epigenetic biomarkers associated with anxiety disorders using differential methylation analysis followed by machine learning-based validation. Clin Epigenetics 2025; 17:24. [PMID: 39962544 PMCID: PMC11831770 DOI: 10.1186/s13148-025-01819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND The changes in DNA methylation patterns may reflect both physical and mental well-being, the latter being a relatively unexplored avenue in terms of clinical utility for psychiatric disorders. In this study, our objective was to identify the methylation-based biomarkers for anxiety disorders and subsequently validate their reliability. METHODS A comparative differential methylation analysis was performed on whole blood samples from 94 anxiety disorder patients and 296 control samples using targeted bisulfite sequencing. Subsequent validation of identified biomarkers employed an artificial intelligence-based risk prediction models: a linear calculation-based methylation risk score model and two tree-based machine learning models: Random Forest and XGBoost. RESULTS Seventeen novel epigenetic methylation biomarkers were identified to be associated with anxiety disorders. These biomarkers were predominantly localized near CpG islands, and they were associated with two distinct biological processes: 1) cell apoptosis and mitochondrial dysfunction and 2) the regulation of neurosignaling. We further developed a robust diagnostic risk prediction system to classify anxiety disorders from healthy controls using the 17 biomarkers. Machine learning validation confirmed the robustness of our biomarker set, with XGBoost as the best-performing algorithm, an area under the curve of 0.876. CONCLUSION Our findings support the potential of blood liquid biopsy in enhancing the clinical utility of anxiety disorder diagnostics. This unique set of epigenetic biomarkers holds the potential for early diagnosis, prediction of treatment efficacy, continuous monitoring, health screening, and the delivery of personalized therapeutic interventions for individuals affected by anxiety disorders.
Collapse
Affiliation(s)
- Yoonsung Kwon
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Asta Blazyte
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea
| | - Yeonsu Jeon
- Clinomics Inc, Osong, 66819, Republic of Korea
| | - Yeo Jin Kim
- Clinomics Inc, Osong, 66819, Republic of Korea
| | - Kyungwhan An
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sungwon Jeon
- Clinomics Inc, Osong, 66819, Republic of Korea
- AgingLab, Ulsan 44919, Republic of Korea
- Geromics Inc., Suwon 16226, Republic of Korea
| | - Hyojung Ryu
- Clinomics Inc, Osong, 66819, Republic of Korea
| | - Dong-Hyun Shin
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jihye Ahn
- Clinomics Inc, Osong, 66819, Republic of Korea
| | - Hyojin Um
- Clinomics Inc, Osong, 66819, Republic of Korea
| | | | - Hyebin Bak
- Clinomics Inc, Osong, 66819, Republic of Korea
| | | | - Semin Lee
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyung-Tae Jung
- Department of Psychiatry, Ulsan Medical Center, Ulsan, 44686, Republic of Korea.
| | - Eun-Seok Shin
- Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 44033, Republic of Korea.
| | - Jong Bhak
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Clinomics Inc, Osong, 66819, Republic of Korea.
- AgingLab, Ulsan 44919, Republic of Korea.
| |
Collapse
|
11
|
Yang MY, Zhong JD, Li X, Tian G, Bai WY, Fang YH, Qiu MC, Yuan CD, Yu CF, Li N, Yang JJ, Liu YH, Yu SH, Zhao WW, Liu JQ, Sun Y, Cong PK, Khederzadeh S, Zhao PP, Qian Y, Guan PL, Gu JX, Gai SR, Yi XJ, Tao JG, Chen X, Miao MM, Lei LX, Xu L, Xie SY, Li JC, Guo JF, Karasik D, Yang L, Tang BS, Huang F, Zheng HF. SEAD reference panel with 22,134 haplotypes boosts rare variant imputation and genome-wide association analysis in Asian populations. Nat Commun 2024; 15:10839. [PMID: 39738056 PMCID: PMC11686012 DOI: 10.1038/s41467-024-55147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Limited whole genome sequencing (WGS) studies in Asian populations result in a lack of representative reference panels, thus hindering the discovery of ancestry-specific variants. Here, we present the South and East Asian reference Database (SEAD) panel ( https://imputationserver.westlake.edu.cn/ ), which integrates WGS data for 11,067 individuals from various sources across 17 Asian countries. The SEAD panel, comprising 22,134 haplotypes and 88,294,957 variants, demonstrates improved imputation accuracy for South Asian populations compared to 1000 Genomes Project, TOPMed, and ChinaMAP panels, with a higher proportion of well-imputed rare variants. For East Asian populations, SEAD shows concordance comparable to ChinaMAP, but outperforming TOPMed. Additionally, we apply the SEAD panel to conduct a genome-wide association study for total hip (Hip) and femoral neck (FN) bone mineral density (BMD) traits in 5369 genotyped Chinese samples. The single-variant test suggests that rare variants near SNTG1 are associated with Hip BMD (rs60103302, MAF = 0.0092, P = 1.67 × 10-7), and variant-set analysis further supports the association (Pslide_window = 9.08 × 10-9, Pgene_centric = 5.27 × 10-8). This association was not reported previously and can only be detected by using Asian reference panels. Preliminary in vitro experiments for one of the rare variants identified provide evidence that it upregulates SNTG1 expression, which could in turn inhibit the proliferation and differentiation of preosteoblasts.
Collapse
Affiliation(s)
- Meng-Yuan Yang
- School of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jia-Dong Zhong
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xin Li
- School of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Geng Tian
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Wei-Yang Bai
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yi-Hu Fang
- WBBC Jiangxi Center, Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Mo-Chang Qiu
- WBBC Jiangxi Center, Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Cheng-Da Yuan
- Department of Dermatology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Chun-Fu Yu
- Department of Orthopedic Surgery, Shangrao Municipal Hospital, Shangrao, Jiangxi, China
| | - Nan Li
- The High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Ji-Jian Yang
- The High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Yu-Heng Liu
- The High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Shi-Hui Yu
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd, Guangzhou, Guangdong, China
| | - Wei-Wei Zhao
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd, Guangzhou, Guangdong, China
| | - Jun-Quan Liu
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd, Guangzhou, Guangdong, China
| | - Yi Sun
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd, Guangzhou, Guangdong, China
| | - Pei-Kuan Cong
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Saber Khederzadeh
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Pian-Pian Zhao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yu Qian
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Peng-Lin Guan
- School of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jia-Xuan Gu
- School of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Si-Rui Gai
- School of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xiang-Jiao Yi
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jian-Guo Tao
- School of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xiang Chen
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Mao-Mao Miao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Lan-Xin Lei
- Medical Biosciences, Imperial College London, London, United Kingdom
| | - Lin Xu
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Shu-Yang Xie
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Jin-Chen Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ji-Feng Guo
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bei-Sha Tang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Fei Huang
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Hou-Feng Zheng
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Vatsyayan A, Imran M, Bhardwaj J, Vr A, Agrawal SJ, Saikia BJ, Senthivel V, Pandhare K, Bhoyar RC, Divakar MK, Mishra A, Jolly B, Trehan S, Sivasubbu S, Scaria V. Understanding the variant landscape, and genetic epidemiology of Multiple Endocrine Neoplasia in India. Endocrine 2024; 86:1178-1187. [PMID: 39112918 DOI: 10.1007/s12020-024-03982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/24/2024] [Indexed: 11/12/2024]
Abstract
PURPOSE Multiple Endocrine Neoplasia (MEN) is a group of familial cancer syndromes that encompasses several types of endocrine tumors differentiated by genetic mutations in RET, MEN1 and CDKN1B genes. Accurate diagnosis of MEN subtypes can thus be performed through genetic testing. However, MEN variants remain largely understudied in Indian populations. Additionally, few dedicated resources to understand these disorders currently exist. METHODS Using the gold-standard ACMG/AMP guidelines, we systematically classified variants reported across the three genes in the IndiGen dataset, and established the genetic epidemiology of MEN in the Indian population. We further classified ClinVar and Mastermind variants and compiled all into a database. Finally, we designed a multiplex primer panel for rapid variant identification. RESULTS We have established the genetic prevalence of MEN as the following: 1 in 1026 individuals is likely to be afflicted with MEN linked with pathogenic RET mutations. We have further created the MAPVar database containing 3280 ACMG-classified variants freely accessible at: https://clingen.igib.res.in/MAPVar/ . Finally, our NGS primer panel covers 33 exonic regions across two pools through 38 amplicons with a total amplified region of 65 kb. CONCLUSION Our work establishes that MEN is a prevalent disorder in India. The rare nature of Indian variants underscores the need of genomic and functional studies to establish a more comprehensive variant landscape. Additionally, our panel offers a means of cost-effective genetic testing, and the MAPVar database a ready reference to aid in a better understanding of variant pathogenicity in clinical as well as research settings.
Collapse
Affiliation(s)
- Aastha Vatsyayan
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohamed Imran
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Juhi Bhardwaj
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arvinden Vr
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Srashti Jyoti Agrawal
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhaskar Jyoti Saikia
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vigneshwar Senthivel
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kavita Pandhare
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul C Bhoyar
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
| | - Mohit Kumar Divakar
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anushree Mishra
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
| | - Bani Jolly
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suruchi Trehan
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Vishwanath Cancer Care Foundation, B 702, Neelkanth Business Park Kirol Village, Mumbai, 400086, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Dr. D. Y. Patil Medical College, Hospital & Research Centre, Pune, India.
- Vishwanath Cancer Care Foundation, B 702, Neelkanth Business Park Kirol Village, Mumbai, 400086, India.
| |
Collapse
|
13
|
Fang J, Yang X, Ni J. RNF213 in moyamoya disease: Genotype-phenotype association and the underlying mechanism. Chin Med J (Engl) 2024; 137:2552-2560. [PMID: 38243713 PMCID: PMC11557053 DOI: 10.1097/cm9.0000000000002985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 01/21/2024] Open
Abstract
ABSTRACT Moyamoya disease (MMD) is a cerebrovascular disorder characterized by a steno-occlusive internal carotid artery and compensatory vascular network formation. Although the precise pathogenic mechanism remains elusive, genetic association studies have identified RNF213 as the principal susceptibility gene for MMD, with the single nucleotide polymorphism p.R4810K recognized as the founder variant predominantly in the Asian populations. Distinct genotype-phenotype correlations are observable in RNF213 -related MMD. The clinical manifestations linked to p.R4810K bear commonalities within Asian cohort, including familial predisposition, earlier age of onset, ischemic episodes, and involvement of the posterior cerebral artery (PCA). However, despite these shared phenotypic characteristics, there is significant heterogeneity in RNF213 -related MMD presentations. This diversity manifests as variations across ethnic groups, inconsistent clinical symptoms and prognosis, and occurrence of other vasculopathies involving RNF213 . This heterogeneity, in conjunction with the observed low disease penetrance of RNF213 mutations, suggests that the presence of these mutations may not be sufficient to cause MMD, underscoring the potential influence of other genetic or environmental factors. Although the current research might not have fully identified these additional contributors, experimental evidence points toward the involvement of RNF213 in angiogenesis, lipid metabolism, and the immune response. Future research is required to unveil the molecular mechanisms and identify the factors that synergize with RNF213 in the pathogenesis of MMD.
Collapse
Affiliation(s)
- Jianxun Fang
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xinzhuang Yang
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jun Ni
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
14
|
Kim S, Kim JS, Lee SH, Kim JM, Na S, Choi JH, Kim HJ. Intellectual Disability in Episodic Ataxia Type 2: Beyond Paroxysmal Vertigo and Ataxia. J Clin Neurol 2024; 20:563-570. [PMID: 39505308 PMCID: PMC11543395 DOI: 10.3988/jcn.2024.0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND AND PURPOSE Episodic ataxia type 2 (EA2) is characterized by recurrent vertigo and ataxia due to mutations in CACNA1A that encodes the α1A-subunit of the P/Q-type voltage-gated calcium channel. This study aimed to determine intellectual function in EA2. METHODS During 2019-2023, 13 patients (6 males, age range=10-52 years, median age=29 years) with a genetically confirmed diagnosis of EA2 had their intellectual function evaluated using the Korean versions of the Wechsler Intelligence Scales (version IV) for adults or children in 3 referral-based university hospitals in South Korea. RESULTS The full-scale intelligence quotients (FSIQs) among the 13 patients were below the average (90-109) in 11, low average (80-89) in 5 (38.5%), borderline (70-79) in 1 (7.7%), and indicated intellectual disability (≤69) in 5 (38.5%). These patterns of cognitive impairments were observed in all four of the following subtests: verbal comprehension, perceptual reasoning, working memory, and processing speed. The FSIQ was not correlated with the ages at onset for vertigo and ataxia (Pearson correlation: p=0.40). CONCLUSIONS Patients with EA2 may have hidden intellectual disabilities even without a history of epilepsy or administration of antiepileptic drugs, and should be considered for genetic counseling and therapeutic interventions. Given the availability of medication to control episodic vertigo and ataxia, early diagnosis and management are important in preventing irreversible brain dysfunction in EA2.
Collapse
Affiliation(s)
- Seoyeon Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Ji-Soo Kim
- Department of Neurology, College of Medicine, Seoul National University, Seoul, Korea
- Department of Neurology, Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seung-Han Lee
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Jae-Myung Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Seunghee Na
- Department of Neurology, Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon, Korea
| | - Jae-Hwan Choi
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hyo-Jung Kim
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Korea.
| |
Collapse
|
15
|
Park Y, Kim Y, Koh I, Lee JY. Whole-Exome Sequencing Improves Understanding of Inherited Retinal Dystrophies in Korean Patients. Curr Issues Mol Biol 2024; 46:11021-11030. [PMID: 39451534 PMCID: PMC11506058 DOI: 10.3390/cimb46100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Retinitis pigmentosa (RP) encompasses a diverse range of hereditary, degenerative retinal ailments, presenting notable obstacles to molecular genetic diagnoses due to the intricate array of variants in different genes involved. This study enrolled 21 probands and their families who have been diagnosed with nonsyndromic RP but without a previous molecular diagnosis. We employed whole-exome sequencing (WES) to detect possible harmful gene variations in individuals with unknown-cause RP at the molecular level. WES allowed the identification of ten potential disease-causing variants in eight different genes. In 8 out of the total 21 patients, this method successfully identified the underlying molecular causes, such as putative pathogenic variants in genes including CRB1, KLHL7, PDE6B, RDH12, RP1, RPE65, USH2A, and RHO. A novel variant was identified in one of these genes, specifically PDE6B, providing valuable information on prospective targets for future enhanced gene therapeutic approaches.
Collapse
Affiliation(s)
- Youngchan Park
- Department of Biomedical Informatics, Hanyang University, Seoul 04763, Republic of Korea;
- Division of Bio Bigdata, Department of Precision Medicine, Korea National Institution of Health, KCDC, Cheongju 28159, Republic of Korea
| | - Youngjin Kim
- Elite Eye Hospital, Seoul 03779, Republic of Korea;
| | - Insong Koh
- Department of Biomedical Informatics, Hanyang University, Seoul 04763, Republic of Korea;
| | | |
Collapse
|
16
|
Seo ES, Lee JW, Lim J, Shin S, Cho HW, Ju HY, Yoo KH, Sung KW, Park WY. Germline functional variants contribute to somatic mutation and outcomes in neuroblastoma. Nat Commun 2024; 15:8360. [PMID: 39333105 PMCID: PMC11437149 DOI: 10.1038/s41467-024-52128-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/27/2024] [Indexed: 09/29/2024] Open
Abstract
Germline genetic context may play a significant role in the development and evolution of cancer, particularly in childhood cancers such as neuroblastoma. This study investigates the role of putatively functional germline variants in neuroblastoma, even if they do not directly increase disease risk. Our whole-exome sequencing analysis of 125 patients with neuroblastoma reveals a positive correlation between germline variant burden and somatic mutations. Moreover, patients with higher germline variant burden exhibit worse outcomes. Similar findings are observed in the independent neuroblastoma cohort where a higher germline variant burden correlates with a higher somatic mutational burden and a worse overall survival outcome. However, contrasting results emerge in adult-onset cancer, emphasizing the importance of germline genetics in neuroblastoma. The enrichment of putatively functional germline variants in cancer predisposition genes is borderline significant when compared to healthy populations (P = 0.077; Odds Ratio, 1.45; 95% confidence intervals, 0.94-2.21) and significantly more pronounced against adult-onset cancers (P = 0.016; Odds Ratio, 2.13; 95% confidence intervals, 1.10-3.91). Additionally, the presence of these variants proves to have prognostic significance in neuroblastoma (log-rank P < 0.001), and combining germline with clinical risk factors notably improves survival predictions.
Collapse
Affiliation(s)
- Eun Seop Seo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Digital Health, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, South Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jinyeong Lim
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Sunghwan Shin
- Department of Laboratory Medicine, Inje University Ilsan Paik Hospital, Goyang, South Korea
| | - Hee Won Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hee Young Ju
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Woong-Yang Park
- Department of Digital Health, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, South Korea.
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea.
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea.
| |
Collapse
|
17
|
Bouwman HB, Guchelaar HJ. The efficacy and safety of eculizumab in patients and the role of C5 polymorphisms. Drug Discov Today 2024; 29:104134. [PMID: 39111540 DOI: 10.1016/j.drudis.2024.104134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Eculizumab is an orphan drug with indications for extremely rare autoimmune disorders. It is primarily prescribed for use in patients with paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome; but is also highly effective in the treatment of myasthenia gravis, among others. By binding to the C5 protein in the complement system, eculizumab effectively inhibits cellular hemolysis and autoimmune reactions. Despite this effective treatment, some patients reported no improvement in symptoms. Genetic sequencing revealed three distinct C5 mutations in the non-responders and these polymorphisms appeared to be most prevalent among Japanese, Korean and African populations. Here, we present an overview of the current and potential future applications of eculizumab, as well as the disadvantages of eculizumab treatment in patients with C5 polymorphisms.
Collapse
Affiliation(s)
| | - Henk-Jan Guchelaar
- Clinical Pharmacy and Toxicology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, the Netherlands.
| |
Collapse
|
18
|
Ryu H, Kim JH, Kim YJ, Jeon H, Kim BC, Jeon Y, Kim Y, Bak H, Kang Y, Kim C, Um H, Ahn JH, Hyun H, Kim BC, Song I, Jeon S, Bhak J, Han EC. Quantification method of ctDNA using cell-free DNA methylation profile for noninvasive screening and monitoring of colon cancer. Clin Epigenetics 2024; 16:95. [PMID: 39030645 PMCID: PMC11264732 DOI: 10.1186/s13148-024-01708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Colon cancer ranks as the second most lethal form of cancer globally. In recent years, there has been active investigation into using the methylation profile of circulating tumor DNA (ctDNA), derived from blood, as a promising indicator for diagnosing and monitoring colon cancer. RESULTS We propose a liquid biopsy-based epigenetic method developed by utilizing 49 patients and 260 healthy controls methylation profile data to screen and monitor colon cancer. Our method initially identified 901 colon cancer-specific hypermethylated (CaSH) regions in the tissues of the 49 cancer patients. We then used these CaSH regions to accurately quantify the amount of circulating tumor DNA (ctDNA) in the blood samples of these same patients, utilizing cell-free DNA methylation profiles. Notably, the methylation profiles of ctDNA in the blood exhibited high sensitivity (82%) and specificity (93%) in distinguishing patients with colon cancer from the control group, with an area under the curve of 0.903. Furthermore, we confirm that our method for ctDNA quantification is effective for monitoring cancer patients and can serve as a valuable tool for postoperative prognosis. CONCLUSIONS This study demonstrated a successful application of the quantification of ctDNA among cfDNA using the original cancer tissue-derived CaSH region for screening and monitoring colon cancer.
Collapse
Affiliation(s)
- Hyojung Ryu
- Clinomics, Inc., Ulsan, 44919, Republic of Korea
| | - Ji-Hoon Kim
- Clinomics, Inc., Ulsan, 44919, Republic of Korea
- GenomeLab, Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yeo Jin Kim
- Clinomics, Inc., Ulsan, 44919, Republic of Korea
| | - Hahyeon Jeon
- Clinomics, Inc., Ulsan, 44919, Republic of Korea
| | | | - Yeonsu Jeon
- Clinomics, Inc., Ulsan, 44919, Republic of Korea
| | | | - Hyebin Bak
- Clinomics, Inc., Ulsan, 44919, Republic of Korea
| | | | - Changjae Kim
- Clinomics, Inc., Ulsan, 44919, Republic of Korea
| | - Hyojin Um
- Clinomics, Inc., Ulsan, 44919, Republic of Korea
| | - Ji-Hye Ahn
- Clinomics, Inc., Ulsan, 44919, Republic of Korea
| | - Hwi Hyun
- Clinomics, Inc., Ulsan, 44919, Republic of Korea
| | | | - Inho Song
- Division of Colorectal Surgery, Department of Surgery, Dongnam Institute of Radiological and Medical Sciences, Busan, 46033, Republic of Korea
| | - Sungwon Jeon
- Clinomics, Inc., Ulsan, 44919, Republic of Korea.
- Geromics Inc., Suwon, 16229, Republic of Korea.
| | - Jong Bhak
- Clinomics, Inc., Ulsan, 44919, Republic of Korea.
- GenomeLab, Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Geromics Inc., Suwon, 16229, Republic of Korea.
- Personal Genomics Institute (PGI), Genome Research Foundation (GRF), Cheongju, 28160, Republic of Korea.
| | - Eon Chul Han
- Division of Colorectal Surgery, Department of Surgery, Dongnam Institute of Radiological and Medical Sciences, Busan, 46033, Republic of Korea.
| |
Collapse
|
19
|
Lee T, Lee H, Kim S, Park KJ, An JY, Kim HW. Brief Report: Risk Variants Could Inform Early Neurodevelopmental Outcome in Children with Developmental Disabilities. J Autism Dev Disord 2024; 54:2777-2783. [PMID: 36071318 DOI: 10.1007/s10803-022-05735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 11/30/2022]
Abstract
The aim of this study was to examine genetic variations underlying the early neurodevelopmental outcome of developmental disabilities (DDs). The study cohort consisted of 191 children with DDs. Diagnosis was assessed at baseline and at the index age (72-84 months). Exome sequencing was conducted and putative risk variants were identified. According to the diagnostic improvement, children were categorized into the improvement group (n = 19) and the non-improvement group (n = 172). Compared to the non-improvement group, the improvement group had lower number of risk variants in known DD genes and haploinsufficient genes, and lower number of overall putative risk variants. Our results may serve as a preliminary basis for developing a model that informs clinical outcome by sequencing analysis.
Collapse
Affiliation(s)
- Taeyeop Lee
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hyeji Lee
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
| | - Soowhee Kim
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Kee Jeong Park
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Joon-Yong An
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea.
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul, Republic of Korea.
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Republic of Korea.
| | - Hyo-Won Kim
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
20
|
Choi Y, Choi SA, Koh EJ, Yun I, Park S, Jeon S, Kim Y, Park S, Woo D, Phi JH, Park SH, Kim DS, Kim SH, Choi JW, Lee JW, Jung TY, Bhak J, Lee S, Kim SK. Comprehensive multiomics analysis reveals distinct differences between pediatric choroid plexus papilloma and carcinoma. Acta Neuropathol Commun 2024; 12:93. [PMID: 38867333 PMCID: PMC11167863 DOI: 10.1186/s40478-024-01814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024] Open
Abstract
Choroid plexus tumors (CPTs) are intraventricular tumors derived from the choroid plexus epithelium and occur frequently in children. The aim of this study was to investigate the genomic and epigenomic characteristics of CPT and identify the differences between choroid plexus papilloma (CPP) and choroid plexus carcinoma (CPC). We conducted multiomics analyses of 20 CPT patients including CPP and CPC. Multiomics analysis included whole-genome sequencing, whole-transcriptome sequencing, and methylation sequencing. Mutually exclusive TP53 and EPHA7 point mutations, coupled with the amplification of chromosome 1, were exclusively identified in CPC. In contrast, amplification of chromosome 9 was specific to CPP. Differential gene expression analysis uncovered a significant overexpression of genes related to cell cycle regulation and epithelial-mesenchymal transition pathways in CPC compared to CPP. Overexpression of genes associated with tumor metastasis and progression was observed in the CPC subgroup with leptomeningeal dissemination. Furthermore, methylation profiling unveiled hypomethylation in major repeat regions, including long interspersed nuclear elements, short interspersed nuclear elements, long terminal repeats, and retrotransposons in CPC compared to CPP, implying that the loss of epigenetic silencing of transposable elements may play a role in tumorigenesis of CPC. Finally, the differential expression of AK1, regulated by both genomic and epigenomic factors, emerged as a potential contributing factor to the histological difference of CPP against CPC. Our results suggest pronounced genomic and epigenomic disparities between CPP and CPC, providing insights into the pathogenesis of CPT at the molecular level.
Collapse
Affiliation(s)
- Yeonsong Choi
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Seung Ah Choi
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, Republic of Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun Jung Koh
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, Republic of Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ilsun Yun
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Suhyun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | | | | | - Sangbeen Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Donggeon Woo
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, Republic of Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Seok Kim
- Department of Pediatric Neurosurgery, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Won Choi
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Tae-Young Jung
- Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Jong Bhak
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
- Clinomics Inc., Ulsan, Republic of Korea
| | - Semin Lee
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea.
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, Republic of Korea.
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Lee JY, Moon J, Hu HJ, Ryu CS, Ko EJ, Ahn EH, Kim YR, Kim JH, Kim NK. Discovery of Pathogenic Variants Associated with Idiopathic Recurrent Pregnancy Loss Using Whole-Exome Sequencing. Int J Mol Sci 2024; 25:5447. [PMID: 38791485 PMCID: PMC11121708 DOI: 10.3390/ijms25105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Idiopathic recurrent pregnancy loss (RPL) is defined as at least two pregnancy losses before 20 weeks of gestation. Approximately 5% of pregnant couples experience idiopathic RPL, which is a heterogeneous disease with various causes including hormonal, chromosomal, and intrauterine abnormalities. Although how pregnancy loss occurs is still unknown, numerous biological factors are associated with the incidence of pregnancy loss, including genetic variants. Whole-exome sequencing (WES) was conducted on blood samples from 56 Korean patients with RPL and 40 healthy controls. The WES data were aligned by means of bioinformatic analysis, and the detected variants were annotated using machine learning tools to predict the pathogenicity of protein alterations. Each indicated variant was confirmed using Sanger sequencing. A replication study was also conducted in 112 patients and 114 controls. The Variant Effect Scoring Tool, Combined Annotation Dependent Depletion tool, Sorting Intolerant from Tolerant annotation tool, and various databases detected 10 potential variants previously associated with spontaneous abortion genes in patients by means of a bioinformatic analysis of WES data. Several variants were detected in more than one patient. Interestingly, several of the detected genes were functionally clustered, including some with a secretory function (mucin 4; MUC4; rs200737893 G>A and hyaluronan-binding protein 2; HABP2; rs542838125 G>T), in which growth arrest-specific 2 Like 2 (GAS2L2; rs140842796 C>T) and dynamin 2 (DNM2; rs763894364 G>A) are functionally associated with cell protrusion and the cytoskeleton. ATP Binding Cassette Subfamily C Member 6 (ABCC6) was the only gene with two variants. HABP2 (rs542838125 G>T), MUC4 (rs200737893 G>A), and GAS2L2 (rs140842796 C>T) were detected in only the patient group in the replication study. The combination of WES and machine learning tools is a useful method to detect potential variants associated with RPL. Using bioinformatic tools, we found 10 potential variants in 9 genes. WES data from patients are needed to better understand the causes of RPL.
Collapse
Affiliation(s)
- Jeong Yong Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.Y.L.); (C.S.R.); (E.J.K.)
| | - JaeWoo Moon
- Endomics, Inc., Seongnam-si 13595, Republic of Korea; (J.M.); (H.-J.H.)
| | - Hae-Jin Hu
- Endomics, Inc., Seongnam-si 13595, Republic of Korea; (J.M.); (H.-J.H.)
| | - Chang Soo Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.Y.L.); (C.S.R.); (E.J.K.)
| | - Eun Ju Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.Y.L.); (C.S.R.); (E.J.K.)
| | - Eun Hee Ahn
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13596, Republic of Korea; (E.H.A.); (Y.R.K.)
| | - Young Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13596, Republic of Korea; (E.H.A.); (Y.R.K.)
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13596, Republic of Korea; (E.H.A.); (Y.R.K.)
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.Y.L.); (C.S.R.); (E.J.K.)
| |
Collapse
|
22
|
Wu Z, Li T, Jiang Z, Zheng J, Gu Y, Liu Y, Liu Y, Xie Z. Human pangenome analysis of sequences missing from the reference genome reveals their widespread evolutionary, phenotypic, and functional roles. Nucleic Acids Res 2024; 52:2212-2230. [PMID: 38364871 PMCID: PMC10954445 DOI: 10.1093/nar/gkae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/18/2024] Open
Abstract
Nonreference sequences (NRSs) are DNA sequences present in global populations but absent in the current human reference genome. However, the extent and functional significance of NRSs in the human genomes and populations remains unclear. Here, we de novo assembled 539 genomes from five genetically divergent human populations using long-read sequencing technology, resulting in the identification of 5.1 million NRSs. These were merged into 45284 unique NRSs, with 29.7% being novel discoveries. Among these NRSs, 38.7% were common across the five populations, and 35.6% were population specific. The use of a graph-based pangenome approach allowed for the detection of 565 transcript expression quantitative trait loci on NRSs, with 426 of these being novel findings. Moreover, 26 NRS candidates displayed evidence of adaptive selection within human populations. Genes situated in close proximity to or intersecting with these candidates may be associated with metabolism and type 2 diabetes. Genome-wide association studies revealed 14 NRSs to be significantly associated with eight phenotypes. Additionally, 154 NRSs were found to be in strong linkage disequilibrium with 258 phenotype-associated SNPs in the GWAS catalogue. Our work expands the understanding of human NRSs and provides novel insights into their functions, facilitating evolutionary and biomedical researches.
Collapse
Affiliation(s)
- Zhikun Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Tong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zehang Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingjing Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhou Gu
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China
- University of Wisconsin-Madison, WI, USA
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Yoon JG, Jang DG, Cho SG, Lee C, Noh SH, Seo SK, Yu JW, Chung HW, Han K, Kwon SS, Han DH, Oh J, Jang IJ, Kim SH, Jee YK, Lee H, Park DW, Sohn JW, Yoon HJ, Kim CH, Lee JM, Kim SH, Lee MG. Synergistic toxicity with copper contributes to NAT2-associated isoniazid toxicity. Exp Mol Med 2024; 56:570-582. [PMID: 38424191 PMCID: PMC10984958 DOI: 10.1038/s12276-024-01172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 03/02/2024] Open
Abstract
Anti-tuberculosis (AT) medications, including isoniazid (INH), can cause drug-induced liver injury (DILI), but the underlying mechanism remains unclear. In this study, we aimed to identify genetic factors that may increase the susceptibility of individuals to AT-DILI and to examine genetic interactions that may lead to isoniazid (INH)-induced hepatotoxicity. We performed a targeted sequencing analysis of 380 pharmacogenes in a discovery cohort of 112 patients (35 AT-DILI patients and 77 controls) receiving AT treatment for active tuberculosis. Pharmacogenome-wide association analysis was also conducted using 1048 population controls (Korea1K). NAT2 and ATP7B genotypes were analyzed in a replication cohort of 165 patients (37 AT-DILI patients and 128 controls) to validate the effects of both risk genotypes. NAT2 ultraslow acetylators (UAs) were found to have a greater risk of AT-DILI than other genotypes (odds ratio [OR] 5.6 [95% confidence interval; 2.5-13.2], P = 7.2 × 10-6). The presence of ATP7B gene 832R/R homozygosity (rs1061472) was found to co-occur with NAT2 UA in AT-DILI patients (P = 0.017) and to amplify the risk in NAT2 UA (OR 32.5 [4.5-1423], P = 7.5 × 10-6). In vitro experiments using human liver-derived cell lines (HepG2 and SNU387 cells) revealed toxic synergism between INH and Cu, which were strongly augmented in cells with defective NAT2 and ATP7B activity, leading to increased mitochondrial reactive oxygen species generation, mitochondrial dysfunction, DNA damage, and apoptosis. These findings link the co-occurrence of ATP7B and NAT2 genotypes to the risk of INH-induced hepatotoxicity, providing novel mechanistic insight into individual AT-DILI susceptibility. Yoon et al. showed that individuals who carry NAT2 UAs and ATP7B 832R/R genotypes are at increased risk of developing isoniazid hepatotoxicity, primarily due to the increased synergistic toxicity between isoniazid and copper, which exacerbates mitochondrial dysfunction-related apoptosis.
Collapse
Affiliation(s)
- Jihoon G Yoon
- Department of Pharmacology, BK21 Project of Yonsei Advanced Medical Science, Woo Choo Lee Institute for Precision Drug Development, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Geon Jang
- Department of Pharmacology, BK21 Project of Yonsei Advanced Medical Science, Woo Choo Lee Institute for Precision Drug Development, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Gyu Cho
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chaeyoung Lee
- Department of Pharmacology, BK21 Project of Yonsei Advanced Medical Science, Woo Choo Lee Institute for Precision Drug Development, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Shin Hye Noh
- Department of Pharmacology, BK21 Project of Yonsei Advanced Medical Science, Woo Choo Lee Institute for Precision Drug Development, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soo Kyung Seo
- Department of Pharmacology, BK21 Project of Yonsei Advanced Medical Science, Woo Choo Lee Institute for Precision Drug Development, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Woo Yu
- Department of Pharmacology, BK21 Project of Yonsei Advanced Medical Science, Woo Choo Lee Institute for Precision Drug Development, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeon Woo Chung
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - KyeoRe Han
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soon Sung Kwon
- Department of Pharmacology, BK21 Project of Yonsei Advanced Medical Science, Woo Choo Lee Institute for Precision Drug Development, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dai Hoon Han
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jaeseong Oh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Sang-Hoon Kim
- Department of Internal Medicine, Eulji University School of Medicine, Seoul, Republic of Korea
| | - Young-Koo Jee
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Hyun Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Dong Won Park
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jang Won Sohn
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Ho Joo Yoon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Chul Hoon Kim
- Department of Pharmacology, BK21 Project of Yonsei Advanced Medical Science, Woo Choo Lee Institute for Precision Drug Development, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Myun Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Sang-Heon Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea.
| | - Min Goo Lee
- Department of Pharmacology, BK21 Project of Yonsei Advanced Medical Science, Woo Choo Lee Institute for Precision Drug Development, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Jeon S, Choi H, Jeon Y, Choi WH, Choi H, An K, Ryu H, Bhak J, Lee H, Kwon Y, Ha S, Kim YJ, Blazyte A, Kim C, Kim Y, Kang Y, Woo YJ, Lee C, Seo J, Yoon C, Bolser D, Biro O, Shin ES, Kim BC, Kim SY, Park JH, Jeon J, Jung D, Lee S, Bhak J. Korea4K: whole genome sequences of 4,157 Koreans with 107 phenotypes derived from extensive health check-ups. Gigascience 2024; 13:giae014. [PMID: 38626723 PMCID: PMC11020240 DOI: 10.1093/gigascience/giae014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/28/2023] [Accepted: 03/15/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND Phenome-wide association studies (PheWASs) have been conducted on Asian populations, including Koreans, but many were based on chip or exome genotyping data. Such studies have limitations regarding whole genome-wide association analysis, making it crucial to have genome-to-phenome association information with the largest possible whole genome and matched phenome data to conduct further population-genome studies and develop health care services based on population genomics. RESULTS Here, we present 4,157 whole genome sequences (Korea4K) coupled with 107 health check-up parameters as the largest genomic resource of the Korean Genome Project. It encompasses most of the variants with allele frequency >0.001 in Koreans, indicating that it sufficiently covered most of the common and rare genetic variants with commonly measured phenotypes for Koreans. Korea4K provides 45,537,252 variants, and half of them were not present in Korea1K (1,094 samples). We also identified 1,356 new genotype-phenotype associations that were not found by the Korea1K dataset. Phenomics analyses further revealed 24 significant genetic correlations, 14 pleiotropic associations, and 127 causal relationships based on Mendelian randomization among 37 traits. In addition, the Korea4K imputation reference panel, the largest Korean variants reference to date, showed a superior imputation performance to Korea1K across all allele frequency categories. CONCLUSIONS Collectively, Korea4K provides not only the largest Korean genome data but also corresponding health check-up parameters and novel genome-phenome associations. The large-scale pathological whole genome-wide omics data will become a powerful set for genome-phenome level association studies to discover causal markers for the prediction and diagnosis of health conditions in future studies.
Collapse
Affiliation(s)
- Sungwon Jeon
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Clinomics, Inc., Ulsan 44919, Republic of Korea
| | - Hansol Choi
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yeonsu Jeon
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Clinomics, Inc., Ulsan 44919, Republic of Korea
| | - Whan-Hyuk Choi
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Mathematics, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyunjoo Choi
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyungwhan An
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyojung Ryu
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Clinomics, Inc., Ulsan 44919, Republic of Korea
| | - Jihun Bhak
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyeonjae Lee
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yoonsung Kwon
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sukyeon Ha
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Computer Science & Engineering (CSE), College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yeo Jin Kim
- Clinomics, Inc., Ulsan 44919, Republic of Korea
| | - Asta Blazyte
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | | | | | - Younghui Kang
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Clinomics, Inc., Ulsan 44919, Republic of Korea
| | | | - Chanyoung Lee
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeongwoo Seo
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Changhan Yoon
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dan Bolser
- Geromics Ltd., Cambridge CB1 3NF, United Kingdom
| | | | - Eun-Seok Shin
- Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Republic of Korea
| | | | - Seon-Young Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Ji-Hwan Park
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jongbum Jeon
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Dooyoung Jung
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Semin Lee
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jong Bhak
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Clinomics, Inc., Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Personal Genomics Institute (PGI), Genome Research Foundation (GRF), Osong 28160, Republic of Korea
| |
Collapse
|
25
|
Kang JI, Seo JH, Park CI, Kim ST, Kim YK, Jang JK, Kwon CO, Jeon S, Kim HW, Kim SJ. Microbiome analysis of circulating bacterial extracellular vesicles in obsessive-compulsive disorder. Psychiatry Clin Neurosci 2023; 77:646-652. [PMID: 37646189 DOI: 10.1111/pcn.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
AIM The present study examined the microbiome abundance and composition of drug-naive or drug-free patients with obsessive-compulsive disorder (OCD) compared with healthy controls. In addition, in the OCD group, the microbiome composition was compared between early-onset and late-onset OCD. METHODS Serum samples were collected from 89 patients with OCD and 107 age- and sex-matched healthy controls. Bacterial DNA was isolated from bacteria-derived extracellular vesicles in serum and then amplified and quantified using primers specific to the V3-V4 hypervariable region of the 16S ribosomal RNA gene. The 16S ribosomal DNA gene amplicon sequencing was performed. RESULTS The pooled estimate showed that α-diversity was significantly reduced in patients with OCD compared with that in healthy controls (PShannon = 0.00015). In addition, a statistically significant difference was observed in β-diversity between patients with OCD and healthy controls at the order (P = 0.012), family (P = 0.003), genus (P < 0.001), and species (P = 0.005) levels. In the microbiome composition, Pseudomonas, Caulobacteraceae (f), Streptococcus, Novosphingobium, and Enhydrobacter at the genus level were significantly less prevalent in patients with OCD than in controls. In addition, among patients with OCD, the microbial composition in the early-onset versus late-onset types was significantly different with respect to the genera Corynebacterium and Pelomonas. CONCLUSION The present study showed an aberrant microbiome in patients with OCD, suggesting a role of the microbiota-brain interaction in the pathophysiology of OCD. Further longitudinal studies with larger sample sizes adjusting for various confounders are warranted.
Collapse
Affiliation(s)
- Jee In Kang
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Ho Seo
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Chun Il Park
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Shin Tae Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | - Sumoa Jeon
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hae Won Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medical Education, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Joo Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
26
|
Shi M, Tanikawa C, Munter HM, Akiyama M, Koyama S, Tomizuka K, Matsuda K, Lathrop GM, Terao C, Koido M, Kamatani Y. Genotype imputation accuracy and the quality metrics of the minor ancestry in multi-ancestry reference panels. Brief Bioinform 2023; 25:bbad509. [PMID: 38221906 PMCID: PMC10788679 DOI: 10.1093/bib/bbad509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
Large-scale imputation reference panels are currently available and have contributed to efficient genome-wide association studies through genotype imputation. However, whether large-size multi-ancestry or small-size population-specific reference panels are the optimal choices for under-represented populations continues to be debated. We imputed genotypes of East Asian (180k Japanese) subjects using the Trans-Omics for Precision Medicine reference panel and found that the standard imputation quality metric (Rsq) overestimated dosage r2 (squared correlation between imputed dosage and true genotype) particularly in marginal-quality bins. Variance component analysis of Rsq revealed that the increased imputed-genotype certainty (dosages closer to 0, 1 or 2) caused upward bias, indicating some systemic bias in the imputation. Through systematic simulations using different template switching rates (θ value) in the hidden Markov model, we revealed that the lower θ value increased the imputed-genotype certainty and Rsq; however, dosage r2 was insensitive to the θ value, thereby causing a deviation. In simulated reference panels with different sizes and ancestral diversities, the θ value estimates from Minimac decreased with the size of a single ancestry and increased with the ancestral diversity. Thus, Rsq could be deviated from dosage r2 for a subpopulation in the multi-ancestry panel, and the deviation represents different imputed-dosage distributions. Finally, despite the impact of the θ value, distant ancestries in the reference panel contributed only a few additional variants passing a predefined Rsq threshold. We conclude that the θ value substantially impacts the imputed dosage and the imputation quality metric value.
Collapse
Affiliation(s)
- Mingyang Shi
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Chizu Tanikawa
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Hans Markus Munter
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Québec, Canada
| | - Masato Akiyama
- Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Koyama
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kohei Tomizuka
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Gregory Mark Lathrop
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Québec, Canada
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masaru Koido
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
27
|
Cho Y, Lin K, Lee SH, Yu C, Valle DS, Avery D, Lv J, Jung K, Li L, Smith GD, China Kadoorie Biobank Collaborative Group, Sun D, Chen Z, Millwood IY, Hemani G, Walters RG. Genetic influences on alcohol flushing in East Asian populations. BMC Genomics 2023; 24:638. [PMID: 37875790 PMCID: PMC10594868 DOI: 10.1186/s12864-023-09721-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Although it is known that variation in the aldehyde dehydrogenase 2 (ALDH2) gene family influences the East Asian alcohol flushing response, knowledge about other genetic variants that affect flushing symptoms is limited. METHODS We performed a genome-wide association study meta-analysis and heritability analysis of alcohol flushing in 15,105 males of East Asian ancestry (Koreans and Chinese) to identify genetic associations with alcohol flushing. We also evaluated whether self-reported flushing can be used as an instrumental variable for alcohol intake. RESULTS We identified variants in the region of ALDH2 strongly associated with alcohol flushing, replicating previous studies conducted in East Asian populations. Additionally, we identified variants in the alcohol dehydrogenase 1B (ADH1B) gene region associated with alcohol flushing. Several novel variants were identified after adjustment for the lead variants (ALDH2-rs671 and ADH1B-rs1229984), which need to be confirmed in larger studies. The estimated SNP-heritability on the liability scale was 13% (S.E. = 4%) for flushing, but the heritability estimate decreased to 6% (S.E. = 4%) when the effects of the lead variants were controlled for. Genetic instrumentation of higher alcohol intake using these variants recapitulated known associations of alcohol intake with hypertension. Using self-reported alcohol flushing as an instrument gave a similar association pattern of higher alcohol intake and cardiovascular disease-related traits (e.g. stroke). CONCLUSION This study confirms that ALDH2-rs671 and ADH1B-rs1229984 are associated with alcohol flushing in East Asian populations. Our findings also suggest that self-reported alcohol flushing can be used as an instrumental variable in future studies of alcohol consumption.
Collapse
Affiliation(s)
- Yoonsu Cho
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, UK
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Su-Hyun Lee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Canqing Yu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, 100191, China
| | - Dan Schmidt Valle
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Daniel Avery
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jun Lv
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, 100191, China
| | - Keumji Jung
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Liming Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, 100191, China
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, UK
| | | | - Dianjianyi Sun
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, 100191, China
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- MRC Population Health Research Unit, University of Oxford, Oxford, UK.
| | - Gibran Hemani
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, UK.
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- MRC Population Health Research Unit, University of Oxford, Oxford, UK.
| |
Collapse
|
28
|
Koh Y, Kim H, Joo SY, Song S, Choi YH, Kim HR, Moon B, Byun J, Hong J, Shin DY, Park S, Lee KH, Lee KT, Lee JK, Park D, Lee SH, Jang JY, Lee H, Kim JA, Yoon SS, Park JK. Genetic assessment of pathogenic germline alterations in lysosomal genes among Asian patients with pancreatic ductal adenocarcinoma. J Transl Med 2023; 21:730. [PMID: 37848935 PMCID: PMC10580633 DOI: 10.1186/s12967-023-04549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Lysosomes are closely linked to autophagic activity, which plays a vital role in pancreatic ductal adenocarcinoma (PDAC) biology. The survival of PDAC patients is still poor, and the identification of novel genetic factors for prognosis and treatment is highly required to prevent PDAC-related deaths. This study investigated the germline variants related to lysosomal dysfunction in patients with PDAC and to analyze whether they contribute to the development of PDAC. METHODS The germline putative pathogenic variants (PPV) in genes involved in lysosomal storage disease (LSD) was compared between patients with PDAC (n = 418) and healthy controls (n = 845) using targeted panel and whole-exome sequencing. Furthermore, pancreatic organoids from wild-type and KrasG12D mice were used to evaluate the effect of lysosomal dysfunction on PDAC development. RNA sequencing (RNA-seq) analysis was performed with established PDAC patient-derived organoids (PDOs) according to the PPV status. RESULTS The PPV in LSD-related genes was higher in patients with PDAC than in healthy controls (8.13 vs. 4.26%, Log2 OR = 1.65, P = 3.08 × 10-3). The PPV carriers of LSD-related genes with PDAC were significantly younger than the non-carriers (mean age 61.5 vs. 65.3 years, P = 0.031). We further studied a variant of the lysosomal enzyme, galactosylceramidase (GALC), which was the most frequently detected LSD variant in our cohort. Autophagolysosomal activity was hampered when GALC was downregulated, which was accompanied by paradoxically elevated autophagic flux. Furthermore, the number of proliferating Ki-67+ cells increased significantly in pancreatic organoids derived from Galc knockout KrasG12D mice. Moreover, GALC PPV carriers tended to show drug resistance in both PDAC cell line and PDAC PDO, and RNA-seq analysis revealed that various metabolism and gene repair pathways were upregulated in PDAC PDOs harboring a GALC variant. CONCLUSIONS Genetically defined lysosomal dysfunction is frequently observed in patients with young-onset PDAC. This might contribute to PDAC development by altering metabolism and impairing autophagolysosomal activity, which could be potentially implicated in therapeutic applications for PDAC.
Collapse
Affiliation(s)
- Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyemin Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - So Young Joo
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Seulki Song
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Hoon Choi
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyung Rae Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Byul Moon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jamin Byun
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junshik Hong
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Solip Park
- Structural Biology Department, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Kwang Hyuck Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyu Taek Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong Kyun Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Daechan Park
- Department of Molecular Science and Technology, Department of Biological Sciences, Ajou University, Suwon, Republic of Korea
| | - Se-Hoon Lee
- Department of Hematology/Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin-Young Jang
- Departments of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Hyunsook Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.
| | - Jung-Ae Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Republic of Korea.
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University School of Medicine, Seoul, Republic of Korea.
| | - Joo Kyung Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Yang C, Zhou Y, Song Y, Wu D, Zeng Y, Nie L, Liu P, Zhang S, Chen G, Xu J, Zhou H, Zhou L, Qian X, Liu C, Tan S, Zhou C, Dai W, Xu M, Qi Y, Wang X, Guo L, Fan G, Wang A, Deng Y, Zhang Y, Jin J, He Y, Guo C, Guo G, Zhou Q, Xu X, Yang H, Wang J, Xu S, Mao Y, Jin X, Ruan J, Zhang G. The complete and fully-phased diploid genome of a male Han Chinese. Cell Res 2023; 33:745-761. [PMID: 37452091 PMCID: PMC10542383 DOI: 10.1038/s41422-023-00849-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Since the release of the complete human genome, the priority of human genomic study has now been shifting towards closing gaps in ethnic diversity. Here, we present a fully phased and well-annotated diploid human genome from a Han Chinese male individual (CN1), in which the assemblies of both haploids achieve the telomere-to-telomere (T2T) level. Comparison of this diploid genome with the CHM13 haploid T2T genome revealed significant variations in the centromere. Outside the centromere, we discovered 11,413 structural variations, including numerous novel ones. We also detected thousands of CN1 alleles that have accumulated high substitution rates and a few that have been under positive selection in the East Asian population. Further, we found that CN1 outperforms CHM13 as a reference genome in mapping and variant calling for the East Asian population owing to the distinct structural variants of the two references. Comparison of SNP calling for a large cohort of 8869 Chinese genomes using CN1 and CHM13 as reference respectively showed that the reference bias profoundly impacts rare SNP calling, with nearly 2 million rare SNPs miss-called with different reference genomes. Finally, applying the CN1 as a reference, we discovered 5.80 Mb and 4.21 Mb putative introgression sequences from Neanderthal and Denisovan, respectively, including many East Asian specific ones undetected using CHM13 as the reference. Our analyses reveal the advances of using CN1 as a reference for population genomic studies and paleo-genomic studies. This complete genome will serve as an alternative reference for future genomic studies on the East Asian population.
Collapse
Affiliation(s)
- Chentao Yang
- Center for Genomic Research, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Center for Evolutionary & Organismal Biology, & Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Yang Zhou
- BGI-Shenzhen, Shenzhen, Guangdong, China
- BGI Research-Wuhan, BGI, Wuhan, Hubei, China
| | - Yanni Song
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Dongya Wu
- Center for Genomic Research, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Center for Evolutionary & Organismal Biology, & Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Zeng
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Lei Nie
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | | | - Shilong Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Guangji Chen
- BGI-Shenzhen, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinjin Xu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Hongling Zhou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Long Zhou
- Center for Evolutionary & Organismal Biology, & Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaobo Qian
- BGI-Shenzhen, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chenlu Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | - Wei Dai
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Mengyang Xu
- BGI-Shenzhen, Shenzhen, Guangdong, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong, China
| | - Yanwei Qi
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong, China
| | - Xiaobo Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Lidong Guo
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong, China
| | - Aijun Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong, China
| | - Yuan Deng
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Yong Zhang
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | | | - Yunqiu He
- Center for Genomic Research, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Center for Evolutionary & Organismal Biology, & Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chunxue Guo
- BGI-Shenzhen, Shenzhen, Guangdong, China
- BGI-Hangzhou, Hangzhou, Zhejiang, China
| | - Guoji Guo
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qing Zhou
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | | | - Jian Wang
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, International Joint Center of Genomics of Jiangsu Province School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Jue Ruan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
| | - Guojie Zhang
- Center for Genomic Research, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
- Center for Evolutionary & Organismal Biology, & Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, Zhejiang, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
30
|
Ryoo SB, Heo S, Lim Y, Lee W, Cho SH, Ahn J, Kang JK, Kim SY, Kim HP, Bang D, Kang SB, Yu CS, Oh ST, Park JW, Jeong SY, Kim YJ, Park KJ, Han SW, Kim TY. Personalised circulating tumour DNA assay with large-scale mutation coverage for sensitive minimal residual disease detection in colorectal cancer. Br J Cancer 2023; 129:374-381. [PMID: 37280413 PMCID: PMC10338477 DOI: 10.1038/s41416-023-02300-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Postoperative minimal residual disease (MRD) detection using circulating-tumour DNA (ctDNA) requires a highly sensitive analysis platform. We have developed a tumour-informed, hybrid-capture ctDNA sequencing MRD assay. METHODS Personalised target-capture panels for ctDNA detection were designed using individual variants identified in tumour whole-exome sequencing of each patient. MRD status was determined using ultra-high-depth sequencing data of plasma cell-free DNA. The MRD positivity and its association with clinical outcome were analysed in Stage II or III colorectal cancer (CRC). RESULTS In 98 CRC patients, personalised panels for ctDNA sequencing were built from tumour data, including a median of 185 variants per patient. In silico simulation showed that increasing the number of target variants increases MRD detection sensitivity in low fractions (<0.01%). At postoperative 3-week, 21.4% of patients were positive for MRD by ctDNA. Postoperative positive MRD was strongly associated with poor disease-free survival (DFS) (adjusted hazard ratio 8.40, 95% confidence interval 3.49-20.2). Patients with a negative conversion of MRD after adjuvant therapy showed significantly better DFS (P < 0.001). CONCLUSION Tumour-informed, hybrid-capture-based ctDNA assay monitoring a large number of patient-specific mutations is a sensitive strategy for MRD detection to predict recurrence in CRC.
Collapse
Affiliation(s)
- Seung-Bum Ryoo
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | - Jongseong Ahn
- IMBdx, Seoul, Korea
- Department of Chemistry, Yonsei University, Seoul, Korea
| | | | | | | | - Duhee Bang
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Sung-Bum Kang
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Chang Sik Yu
- Department of Surgery, Asan Medical Center, Seoul, Korea
| | - Seong Taek Oh
- Department of Surgery, The Catholic University of Korea Uijeongbu St. Mary's Hospital, Uijeongbu, Korea
| | - Ji Won Park
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Seung-Yong Jeong
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Young-Joon Kim
- Department of Biochemistry, Yonsei University, Seoul, Korea
| | - Kyu Joo Park
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Sae-Won Han
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.
- Cancer Research Institute, Seoul National University, Seoul, Korea.
| | - Tae-You Kim
- IMBdx, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
31
|
Jeon Y, Jeon S, An K, Kim YJ, Kim BC, Ryu H, Choi WH, Choi H, Kim W, Lee SY, Bae JW, Hwang JY, Kang MG, An S, Kim Y, Kang Y, Kim BC, Bhak J, Shin ES. Identification and validation of six acute myocardial infarction-associated variants, including a novel prognostic marker for cardiac mortality. Front Cardiovasc Med 2023; 10:1226971. [PMID: 37465449 PMCID: PMC10350496 DOI: 10.3389/fcvm.2023.1226971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Background Acute myocardial infarction (AMI) is one of the leading causes of death worldwide, and approximately half of AMI-related deaths occur before the affected individual reaches the hospital. The present study aimed to identify and validate genetic variants associated with AMI and their role as prognostic markers. Materials and methods We conducted a replication study of 29 previously identified novel loci containing 85 genetic variants associated with early-onset AMI using a new independent set of 2,920 Koreans [88 patients with early- and 1,085 patients with late-onset AMI, who underwent percutaneous coronary intervention (PCI), and 1,747 healthy controls]. Results Of the 85 previously reported early-onset variants, six were confirmed in our genome-wide association study with a false discovery rate of less than 0.05. Notably, rs12639023, a cis-eQTL located in the intergenic region between LINC02005 and CNTN3, significantly increased longitudinal cardiac mortality and recurrent AMI. CNTN3 is known to play a role in altering vascular permeability. Another variant, rs78631167, located upstream of PLAUR and known to function in fibrinolysis, was moderately replicated in this study. By surveying the nearby genomic region around rs78631167, we identified a significant novel locus (rs8109584) located 13 bp downstream of rs78631167. The present study showed that six of the early-onset variants of AMI are applicable to both early- and late-onset cases. Conclusion Our results confirm markers that can potentially be utilized to predict, screen, prevent, and treat candidate patients with AMI and highlight the potential of rs12639023 as a prognostic marker for cardiac mortality in AMI.
Collapse
Affiliation(s)
- Yeonsu Jeon
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Clinomics Inc., Ulsan, Republic of Korea
| | | | - Kyungwhan An
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | | | | | | | - Whan-Hyuk Choi
- Department of Mathematics, Kangwon National University, ChunCheon, Republic of Korea
| | - HyunJoo Choi
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Weon Kim
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Sang Yeub Lee
- Division of Cardiology, Department of Internal Medicine, Chung-Ang University College of Medicine, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Republic of Korea
| | - Jang-Whan Bae
- Department of Internal Medicine, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Jin-Yong Hwang
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Min Gyu Kang
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Seolbin An
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | | | | | | | - Jong Bhak
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Clinomics Inc., Ulsan, Republic of Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Personal Genomics Institute (PGI), Genome Research Foundation (GRF), Osong, Republic of Korea
| | - Eun-Seok Shin
- Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| |
Collapse
|
32
|
Kim JY, Park S, Cho EY, Lee JE, Jung HH, Chae BJ, Kim SW, Nam SJ, Cho SY, Park YH, Ahn JS, Lee S, Im YH. Genomic characteristics of triple negative apocrine carcinoma: a comparison to triple negative breast cancer. Exp Mol Med 2023; 55:1451-1461. [PMID: 37394589 PMCID: PMC10394068 DOI: 10.1038/s12276-023-01030-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/15/2023] [Accepted: 04/06/2023] [Indexed: 07/04/2023] Open
Abstract
Apocrine carcinoma is a rare breast cancer subtype. As such, the genomic characteristics of apocrine carcinoma with triple negative immunohistochemical results (TNAC), which has been treated as triple negative breast cancer (TNBC), have not been revealed. In this study, we evaluated the genomic characteristics of TNAC compared to TNBC with low Ki-67 (LK-TNBC). In the genetic analysis of 73 TNACs and 32 LK-TNBCs, the most frequently mutated driver gene in TNAC was TP53 (16/56, 28.6%), followed by PIK3CA (9/56, 16.1%), ZNF717 (8/56, 14.3%), and PIK3R1 (6/56, 10.71%). Mutational signature analysis showed enrichment of defective DNA mismatch repair (MMR)-related signatures (SBS6 and SBS21) and the SBS5 signature in TNAC, whereas an APOBEC activity-associated mutational signature (SBS13) was more prominent in LK-TNBC (Student's t test, p < 0.05). In intrinsic subtyping, 38.4% of TNACs were classified as luminal A, 27.4% as luminal B, 26.0% as HER2-enriched (HER2-E), 2.7% as basal, and 5.5% as normal-like. The basal subtype was the most dominant subtype (43.8%) in LK-TNBC (p < 0.001), followed by luminal B (21.9%), HER2-E (21.9%), and luminal A (12.5%). In the survival analysis, TNAC had a five-year disease-free survival (DFS) rate of 92.2% compared to 59.1% for LK-TNBC (P = 0.001) and a five-year overall survival (OS) rate of 95.3% compared to 74.6% for LK-TNBC (P = 0.0099). TNAC has different genetic characteristics and better survival outcomes than LK-TNBC. In particular, normal-like and luminal A subtypes in TNAC have much better DFS and OS than other intrinsic subtypes. Our findings are expected to impact medical practice for patients diagnosed with TNAC.
Collapse
Affiliation(s)
- Ji-Yeon Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
- Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, 06351, Republic of Korea.
| | - Sabin Park
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Eun Yoon Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jeong Eon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, 06351, Republic of Korea
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Hae Hyun Jung
- Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, 06351, Republic of Korea
| | - Byung Joo Chae
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Seok Won Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Seok Jin Nam
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Soo Youn Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, 06351, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Semin Lee
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| | - Young-Hyuck Im
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
- Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, 06351, Republic of Korea.
| |
Collapse
|
33
|
Sung C, An J, Lee S, Park J, Lee KS, Kim IH, Han JY, Park YH, Kim JH, Kang EJ, Hong MH, Kim TY, Lee JC, Lee JL, Yoon S, Choi CM, Lee DH, Yoo C, Kim SW, Jeong JH, Seo S, Kim SY, Kong SY, Choi JK, Park SR. Integrative analysis of risk factors for immune-related adverse events of checkpoint blockade therapy in cancer. NATURE CANCER 2023; 4:844-859. [PMID: 37308678 DOI: 10.1038/s43018-023-00572-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/05/2023] [Indexed: 06/14/2023]
Abstract
Immune-related adverse events (irAEs) induced by checkpoint inhibitors involve a multitude of different risk factors. Here, to interrogate the multifaceted underlying mechanisms, we compiled germline exomes and blood transcriptomes with clinical data, before and after checkpoint inhibitor treatment, from 672 patients with cancer. Overall, irAE samples showed a substantially lower contribution of neutrophils in terms of baseline and on-therapy cell counts and gene expression markers related to neutrophil function. Allelic variation of HLA-B correlated with overall irAE risk. Analysis of germline coding variants identified a nonsense mutation in an immunoglobulin superfamily protein, TMEM162. In our cohort and the Cancer Genome Atlas (TCGA) data, TMEM162 alteration was associated with higher peripheral and tumor-infiltrating B cell counts and suppression of regulatory T cells in response to therapy. We developed machine learning models for irAE prediction, validated using additional data from 169 patients. Our results provide valuable insights into risk factors of irAE and their clinical utility.
Collapse
Affiliation(s)
- Changhwan Sung
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jinhyeon An
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Soohyeon Lee
- Division of Oncology-Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jaesoon Park
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Kang Seon Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Il-Hwan Kim
- Department of Oncology, Haeundae Paik Hospital, Cancer Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Ji-Youn Han
- Center for Lung Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jee Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Eun Joo Kang
- Division of Oncology, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Yong Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Lyun Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Shinkyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang-Min Choi
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dae Ho Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-We Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Ho Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seyoung Seo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun Young Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun-Young Kong
- Targeted Therapy Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea
- Department of Laboratory Medicine, Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea.
- Penta Medix Co., Ltd., Seongnam, Republic of Korea.
| | - Sook Ryun Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Shin U, Choi Y, Ko HS, Myung K, Lee S, Cheon CK, Lee Y. A heterozygous mutation in UBE2H in a patient with developmental delay leads to an aberrant brain development in zebrafish. Hum Genomics 2023; 17:44. [PMID: 37208785 DOI: 10.1186/s40246-023-00491-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Ubiquitin-related rare diseases are generally characterized by developmental delays and mental retardation, but the exact incidence or prevalence is not yet fully understood. The clinical application of next-generation sequencing for pediatric seizures and developmental delay of unknown causes has become common in studies aimed at identification of a causal gene in patients with ubiquitin-related rare diseases that cannot be diagnosed using conventional fluorescence in situ hybridization or chromosome microarray tests. Our study aimed to investigate the effects of ubiquitin-proteasome system on ultra-rare neurodevelopmental diseases, through functional identification of candidate genes and variants. METHODS In our present work, we carried out genome analysis of a patient with clinical phenotypes of developmental delay and intractable convulsion, to identify causal mutations. Further characterization of the candidate gene was performed using zebrafish, through gene knockdown approaches. Transcriptomic analysis using whole embryos of zebrafish knockdown morphants and additional functional studies identified downstream pathways of the candidate gene affecting neurogenesis. RESULTS Through trio-based whole-genome sequencing analysis, we identified a de novo missense variant of the ubiquitin system-related gene UBE2H (c.449C>T; p.Thr150Met) in the proband. Using zebrafish, we found that Ube2h is required for normal brain development. Differential gene expression analysis revealed activation of the ATM-p53 signaling pathway in the absence of Ube2h. Moreover, depletion of ube2h led to induction of apoptosis, specifically in the differentiated neural cells. Finally, we found that a missense mutation in zebrafish, ube2h (c.449C>T; p.Thr150Met), which mimics a variant identified in a patient with neurodevelopmental defects, causes aberrant Ube2h function in zebrafish embryos. CONCLUSION A de novo heterozygous variant in the UBE2H c.449C>T (p.Thr150Met) has been identified in a pediatric patient with global developmental delay and UBE2H is essential for normal neurogenesis in the brain.
Collapse
Affiliation(s)
- Unbeom Shin
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yeonsong Choi
- Department of Biomedical Engineering, UNIST, Ulsan, 44919, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, 44919, Republic of Korea
| | - Hwa Soo Ko
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Kyungjae Myung
- Department of Biomedical Engineering, UNIST, Ulsan, 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Semin Lee
- Department of Biomedical Engineering, UNIST, Ulsan, 44919, Republic of Korea.
- Korean Genomics Center, UNIST, Ulsan, 44919, Republic of Korea.
| | - Chong Kun Cheon
- Division of Medical Genetics and Metabolism Department of Paediatrics, Pusan National University School of Medicine, Pusan National University Children's Hospital, Yangsan, 50612, Republic of Korea.
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, 50612, Republic of Korea.
| | - Yoonsung Lee
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, 05278, Republic of Korea.
| |
Collapse
|
35
|
Joo SM, Kwon YL, Moon MH, Shin KJ. Genetic investigation of 124 SNPs in a Myanmar population using the Precision ID Identity Panel and the Illumina MiSeq. Leg Med (Tokyo) 2023; 63:102256. [PMID: 37058993 DOI: 10.1016/j.legalmed.2023.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023]
Abstract
Single nucleotide polymorphisms (SNPs) have become popular in forensic genetics as an alternative to short tandem repeats (STRs). The Precision ID Identity Panel (Thermo Fisher Scientific), consisting of 90 autosomal SNPs and 34 Y-chromosomal SNPs, enabled human identification studies on global populations through next-generation sequencing (NGS). However, most previous studies on the panel have used the Ion Torrent platform, and there are few reports on the Southeast Asian population. Here, a total of 96 unrelated males from Myanmar (Yangon) were analyzed with the Precision ID Identity Panel on a MiSeq (Illumina) using an in-house TruSeq compatible universal adapter and a custom variant caller, Visual SNP. The sequencing performance evaluated by locus balance and heterozygote balance was comparable to that of the Ion Torrent platform. For 90 autosomal SNPs, the combined match probability (CMP) was 6.994 × 10-34, lower than that of 22 PowerPlex Fusion autosomal STRs (3.130 × 10-26). For 34 Y-SNPs, 14 Y-haplogroups (mostly O2 and O1b) were observed. We found 51 cryptic variations (42 haplotypes) around target SNPs, of which haplotypes corresponding to 33 autosomal SNPs decreased CMP. Interpopulation analysis revealed that the Myanmar population is genetically closer to the East and Southeast Asian populations. In conclusion, the Precision ID Identity Panel can be successfully analyzed on the Illumina MiSeq and provides high discrimination power for human identification in the Myanmar population. This study broadened the accessibility of the NGS-based SNP panel by expanding the available NGS platforms and adopting a robust NGS data analysis tool.
Collapse
Affiliation(s)
- Su Min Joo
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ye-Lim Kwon
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Mi Hyeon Moon
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyoung-Jin Shin
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
36
|
Jung S, Park YC, Lee D, Kim S, Kim SM, Kim Y, Lee D, Hyun J, Koh I, Lee JY. Exome sequencing identified five novel USH2A variants in Korean patients with retinitis pigmentosa. Ophthalmic Genet 2023; 44:163-170. [PMID: 36314366 DOI: 10.1080/13816810.2022.2138456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Retinitis pigmentosa (RP) is an inherited disorder that causes progressive loss of vision. This study aimed to describe the possible causative variants of the USH2A gene in Korean RP families and their associated phenotypes. MATERIALS AND METHODS We recruited 94 RP families (220 subjects, including 94 probands and 126 family members) in a Korean cohort, and analyzed USH2A gene variants through whole-exome sequencing. The pathogenicity of the variants was classified according to American College of Medical Genetics and Genomics and Association for Molecular Pathology guidelines. RESULTS We found 14 USH2A disease-causing variants, including 5 novel variants. Disease causing variants were identified in 10 probands with RP, accounting for 10.6% (10/94) of the Korean RPs in the cohort. To visually represent the structural changes induced by novel variants, we modeled the three-dimensional structures of the wild-type and mutant proteins. CONCLUSIONS This study expands the spectrum of USH2A variants and provides information for future therapeutic strategies for RP.
Collapse
Affiliation(s)
- SeungHee Jung
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
| | - Young Chan Park
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
- Oneomics Co, Ltd, Gyeonggi-do, Korea
| | - DongHee Lee
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
- Oneomics Co, Ltd, Gyeonggi-do, Korea
| | - SiYeon Kim
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
| | | | | | | | | | - InSong Koh
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
| | | |
Collapse
|
37
|
Oh JH, Jo S, Park KW, Lee EJ, Lee SH, Hwang YS, Jeon HR, Ryu Y, Yoon HJ, Chun SM, Kim CJ, Kim TW, Sung CO, Chae S, Chung SJ. Whole-genome sequencing reveals an association between small genomic deletions and an increased risk of developing Parkinson's disease. Exp Mol Med 2023; 55:555-564. [PMID: 36869069 PMCID: PMC10073127 DOI: 10.1038/s12276-023-00952-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 03/05/2023] Open
Abstract
Single-nucleotide variants (SNVs) associated with Parkinson's disease (PD) have been investigated mainly through genome-wide association studies. However, other genomic alterations, including copy number variations, remain less explored. In this study, we conducted whole-genome sequencing of primary (310 PD patients and 100 healthy individuals) and independent (100 PD patients and 100 healthy individuals) cohorts from the Korean population to identify high-resolution small genomic deletions, gains, and SNVs. Global small genomic deletions and gains were found to be associated with an increased and decreased risk of PD development, respectively. Thirty significant locus deletions were identified in PD, with most being associated with an increased PD risk in both cohorts. Small genomic deletions in clustered loci located in the GPR27 region had high enhancer signals and showed the closest association with PD. GPR27 was found to be expressed specifically in brain tissue, and GPR27 copy number loss was associated with upregulated SNCA expression and downregulated dopamine neurotransmitter pathways. Clustering of small genomic deletions on chr20 in exon 1 of the GNAS isoform was detected. In addition, we found several PD-associated SNVs, including one in the enhancer region of the TCF7L2 intron, which exhibited a cis-acting regulatory mode and an association with the beta-catenin signaling pathway. These findings provide a global, whole-genome view of PD and suggest that small genomic deletions in regulatory domains contribute to the risk of PD development.
Collapse
Affiliation(s)
- Ji-Hye Oh
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sungyang Jo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kye Won Park
- Department of Neurology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si, Gyeonggi-do, Republic of Korea
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Hyun Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yun Su Hwang
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ha Ra Jeon
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yeonjin Ryu
- Korea Brain Bank, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hee Jeong Yoon
- Korea Brain Bank, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Sung-Min Chun
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chong Jai Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tae Won Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang Ohk Sung
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea. .,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Sehyun Chae
- Korea Brain Bank, Korea Brain Research Institute, Daegu, Republic of Korea.
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Yang G, Mishra M, Perera MA. Multi-Omics Studies in Historically Excluded Populations: The Road to Equity. Clin Pharmacol Ther 2023; 113:541-556. [PMID: 36495075 PMCID: PMC10323857 DOI: 10.1002/cpt.2818] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Over the past few decades, genomewide association studies (GWASs) have identified the specific genetics variants contributing to many complex diseases by testing millions of genetic variations across the human genome against a variety of phenotypes. However, GWASs are limited in their ability to uncover mechanistic insight given that most significant associations are found in non-coding region of the genome. Furthermore, the lack of diversity in studies has stymied the advance of precision medicine for many historically excluded populations. In this review, we summarize most popular multi-omics approaches (genomics, transcriptomics, proteomics, and metabolomics) related to precision medicine and highlight if diverse populations have been included and how their findings have advance biological understanding of disease and drug response. New methods that incorporate local ancestry have been to improve the power of GWASs for admixed populations (such as African Americans and Latinx). Because most signals from GWAS are in the non-coding region, other machine learning and omics approaches have been developed to identify the potential causative single-nucleotide polymorphisms and genes that explain these phenotypes. These include polygenic risk scores, expression quantitative trait locus mapping, and transcriptome-wide association studies. Analogous protein methods, such as proteins quantitative trait locus mapping, proteome-wide association studies, and metabolomic approaches provide insight into the consequences of genetic variation on protein abundance. Whereas, integrated multi-omics studies have improved our understanding of the mechanisms for genetic association, we still lack the datasets and cohorts for historically excluded populations to provide equity in precision medicine and pharmacogenomics.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mrinal Mishra
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Minoli A. Perera
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
39
|
Genome-wide analyses of early-onset acute myocardial infarction identify 29 novel loci by whole genome sequencing. Hum Genet 2023; 142:231-243. [PMID: 36336746 DOI: 10.1007/s00439-022-02495-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/09/2022] [Indexed: 11/08/2022]
Abstract
Early-onset acute myocardial infarction (AMI) may have a higher genetic predisposition than late-onset AMI. The present study aimed to identify and characterize germline variants that affect early-onset AMI using whole-genome sequencing (WGS). We performed a genome-wide association study based on the WGS of 1239 Koreans, including 596 early-onset AMI patients and 643 healthy individuals. Patients with AMI who underwent percutaneous coronary intervention (PCI) caused by atherothrombotic occlusive lesions were included in the study. A total of 29 novel loci were found to be associated with early-onset AMI. These loci are involved in thrombosis, fibrinolysis, inflammation, and lipid metabolism. One of the associated single nucleotide variants (SNVs), rs1614576, located upstream of PRKCB, is known to be associated with thrombus formation. Additionally, the results revealed a novel locus, rs78631167, located upstream of PLAUR which plays a critical role in regulating plasminogen activation and is related to fibrinolysis. The association between early-onset AMI and rs9357455, which is located upstream of PHACTR1 and regulates inflammation in AMI, was found. Moreover, we identified a lipid metabolism related genetic risk locus, rs5072, in the APOA1-AS gene. This study provides new evidence supporting the genetic association between early-onset AMI and thrombosis and fibrinolysis, as well as inflammation and lipid metabolism, by analyzing the whole-genome of 596 patients with early-onset AMI who have been treated with PCI. Our findings highlight potential genetic markers for the prediction and management of AMI, as well as for understanding the etiology of AMI.
Collapse
|
40
|
Hori M, Takahashi A, Hosoda K, Ogura M, Harada-Shiba M. A Low-Frequency APOB p.(Pro955Ser) Variant Contributes to the Severity of/Variability in Familial Hypercholesterolemia. J Clin Endocrinol Metab 2023; 108:422-432. [PMID: 36190978 DOI: 10.1210/clinem/dgac572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/28/2022] [Indexed: 01/20/2023]
Abstract
CONTEXT Heterozygous familial hypercholesterolemia (HeFH) is caused by a rare pathogenic variant in the LDLR, APOB, and PCSK9 genes. However, the causative variants in these genes have not been identified in approximately 40% of HeFH patients. OBJECTIVE Our aim was to identify novel (or additional) genes/variants that contribute to HeFH. METHODS Whole-exome sequencing was performed for 215 family members from 122 families with HeFH without pathogenic variants in the LDLR or PCSK9 genes. RESULTS We could not find novel causative familial hypercholesterolemia (FH) genes/variants by family analysis. Next, we examined all APOB variants. Twenty-four nonsynonymous APOB variants were identified. The allele frequencies of the c.2863C > T:p.(Pro955Ser) variant in the HeFH probands and the general Japanese population were 0.15 and 0.034, respectively [odds ratio 4.9 (95% CI 3.4-7.1); P = 6.9 × 10-13]. The patients harboring the c.2863C > T:p.(Pro955Ser) variant accounted for 9.8% (n = 63) of unrelated patients with HeFH (n = 645). The penetrance of the c.2863C > T:p.(Pro955Ser) variant was low in the pedigree-based genetic analysis. In an in vitro assay, low-density lipoprotein (LDL) uptake from patients with the homozygous c.2863C > T:p.(Pro955Ser) variant was 44% of the LDL uptake from control subjects, and it was similar to that of the LDL uptake from patients with the known pathogenic heterozygous p.(Arg3527Gln) variant. CONCLUSIONS The low-frequency APOB c.2863C > T:p.(Pro955Ser) variant is not an FH-causative variant, but it has a moderate effect size in HeFH. These findings suggest that the combination of the APOB c.2863C > T:p.(Pro955Ser) variant and age, environmental factors, or other genetic factors contributes to the severity of or variability in the HeFH phenotype.
Collapse
Affiliation(s)
- Mika Hori
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Endocrinology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Atsushi Takahashi
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Kiminori Hosoda
- Laboratory of Clinical Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Department of Diabetes and Lipid Metabolism, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Masatsune Ogura
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| |
Collapse
|
41
|
Lee J, Lee J, Jeon S, Lee J, Jang I, Yang JO, Park S, Lee B, Choi J, Choi BO, Gee HY, Oh J, Jang IJ, Lee S, Baek D, Koh Y, Yoon SS, Kim YJ, Chae JH, Park WY, Bhak JH, Choi M. A database of 5305 healthy Korean individuals reveals genetic and clinical implications for an East Asian population. Exp Mol Med 2022; 54:1862-1871. [PMID: 36323850 PMCID: PMC9628380 DOI: 10.1038/s12276-022-00871-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
Despite substantial advances in disease genetics, studies to date have largely focused on individuals of European descent. This limits further discoveries of novel functional genetic variants in other ethnic groups. To alleviate the paucity of East Asian population genome resources, we established the Korean Variant Archive 2 (KOVA 2), which is composed of 1896 whole-genome sequences and 3409 whole-exome sequences from healthy individuals of Korean ethnicity. This is the largest genome database from the ethnic Korean population to date, surpassing the 1909 Korean individuals deposited in gnomAD. The variants in KOVA 2 displayed all the known genetic features of those from previous genome databases, and we compiled data from Korean-specific runs of homozygosity, positively selected intervals, and structural variants. In doing so, we found loci, such as the loci of ADH1A/1B and UHRF1BP1, that are strongly selected in the Korean population relative to other East Asian populations. Our analysis of allele ages revealed a correlation between variant functionality and evolutionary age. The data can be browsed and downloaded from a public website ( https://www.kobic.re.kr/kova/ ). We anticipate that KOVA 2 will serve as a valuable resource for genetic studies involving East Asian populations.
Collapse
Affiliation(s)
- Jeongeun Lee
- grid.31501.360000 0004 0470 5905Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, 03080 Republic of Korea
| | - Jean Lee
- grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Sungwon Jeon
- grid.42687.3f0000 0004 0381 814XDepartment of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Jeongha Lee
- grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Insu Jang
- grid.249967.70000 0004 0636 3099Korea BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
| | - Jin Ok Yang
- grid.249967.70000 0004 0636 3099Korea BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea ,grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Soojin Park
- grid.31501.360000 0004 0470 5905Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Byungwook Lee
- grid.249967.70000 0004 0636 3099Korea BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
| | - Jinwook Choi
- grid.31501.360000 0004 0470 5905Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Byung-Ok Choi
- grid.264381.a0000 0001 2181 989XDepartment of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351 Republic of Korea
| | - Heon Yung Gee
- grid.15444.300000 0004 0470 5454Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Jaeseong Oh
- grid.31501.360000 0004 0470 5905Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, 03080 Republic of Korea
| | - In-Jin Jang
- grid.31501.360000 0004 0470 5905Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, 03080 Republic of Korea
| | - Sanghyuk Lee
- grid.255649.90000 0001 2171 7754Department of Bio-Information Science, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Daehyun Baek
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Youngil Koh
- grid.412484.f0000 0001 0302 820XDepartment of Internal Medicine, Seoul National University Hospital, Seoul, 03080 Republic of Korea
| | - Sung-Soo Yoon
- grid.412484.f0000 0001 0302 820XDepartment of Internal Medicine, Seoul National University Hospital, Seoul, 03080 Republic of Korea
| | - Young-Joon Kim
- grid.15444.300000 0004 0470 5454Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Jong-Hee Chae
- grid.31501.360000 0004 0470 5905Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea ,grid.412484.f0000 0001 0302 820XDepartment of Genomic Medicine, Seoul National University Hospital, Seoul, 03080 Republic of Korea
| | - Woong-Yang Park
- grid.414964.a0000 0001 0640 5613Samsung Genome Institute, Samsung Medical Center, Seoul, 06351 Republic of Korea
| | - Jong Hwa Bhak
- grid.42687.3f0000 0004 0381 814XDepartment of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Murim Choi
- grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| |
Collapse
|
42
|
Kim J, Choi JP, Kim MS, Bhak J. PharmaKoVariome database for supporting genetic testing. Database (Oxford) 2022; 2022:6762639. [PMID: 36255213 PMCID: PMC9578302 DOI: 10.1093/database/baac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Pharmacogenomics (PGx) provides information about routine precision medicine, based on the patient's genotype. However, many of the available information about human allele frequencies, and about clinical drug-gene interactions, is based on American and European populations. PharmaKoVariome database was constructed to support genetic testing for safe prescription and drug development. It consolidated and stored 2507 diseases, 11 459 drugs and 61 627 drug-target or druggable genes from public databases. PharmaKoVariome precomputed ethnic-specific abundant variants for approximately 120 M single-nucleotide variants of drug-target or druggable genes. A user can search by gene symbol, drug name, disease and reference SNP ID number (rsID) to statistically analyse the frequency of ethnical variations, such as odds ratio and P-values for related genes. In an example study, we observed five Korean-enriched variants in the CYP2B6 and CYP2D6 genes, one of which (rs1065852) is known to be incapable of metabolizing drug. It is also shown that 4-6% of North and East Asians have risk factors for drugs metabolized by the CYP2D6 gene. Therefore, PharmaKoVariome is a useful database for pharmaceutical or diagnostic companies for developing diagnostic technologies that can be applied in the Asian PGx industry. Database URL: http://www.pharmakovariome.com/.
Collapse
Affiliation(s)
- Jungeun Kim
- Personal Genomics Institute (PGI), Genome Research Foundation (GRF), Cheongju 28190, Republic of Korea
| | - Jae-Pil Choi
- Personal Genomics Institute (PGI), Genome Research Foundation (GRF), Cheongju 28190, Republic of Korea
| | - Min Sun Kim
- Personal Genomics Institute (PGI), Genome Research Foundation (GRF), Cheongju 28190, Republic of Korea
| | - Jong Bhak
- *Corresponding author: Tel: +82 (0)10 4644 6754; Fax: +82 (0)43 235 8688;
| |
Collapse
|
43
|
Katsonis P, Wilhelm K, Williams A, Lichtarge O. Genome interpretation using in silico predictors of variant impact. Hum Genet 2022; 141:1549-1577. [PMID: 35488922 PMCID: PMC9055222 DOI: 10.1007/s00439-022-02457-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/17/2022] [Indexed: 02/06/2023]
Abstract
Estimating the effects of variants found in disease driver genes opens the door to personalized therapeutic opportunities. Clinical associations and laboratory experiments can only characterize a tiny fraction of all the available variants, leaving the majority as variants of unknown significance (VUS). In silico methods bridge this gap by providing instant estimates on a large scale, most often based on the numerous genetic differences between species. Despite concerns that these methods may lack reliability in individual subjects, their numerous practical applications over cohorts suggest they are already helpful and have a role to play in genome interpretation when used at the proper scale and context. In this review, we aim to gain insights into the training and validation of these variant effect predicting methods and illustrate representative types of experimental and clinical applications. Objective performance assessments using various datasets that are not yet published indicate the strengths and limitations of each method. These show that cautious use of in silico variant impact predictors is essential for addressing genome interpretation challenges.
Collapse
Affiliation(s)
- Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Kevin Wilhelm
- Graduate School of Biomedical Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amanda Williams
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Biochemistry, Human Genetics and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
44
|
Precision Oncology in Canada: Converting Vision to Reality with Lessons from International Programs. Curr Oncol 2022; 29:7257-7271. [PMID: 36290849 PMCID: PMC9600134 DOI: 10.3390/curroncol29100572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Canada's healthcare system, like others worldwide, is immersed in a process of evolution, attempting to adapt conventional frameworks of health technology assessment (HTA) and funding models to a new landscape of precision medicine in oncology. In particular, the need for real-world evidence in Canada is not matched by the necessary infrastructure and technologies required to integrate genomic and clinical data. Since healthcare systems in many developed nations face similar challenges, we adopted a solutions-based approach and conducted a search of worldwide programs in personalized medicine, with an emphasis on precision oncology. This search strategy included review articles published between 1 January 2016 and 1 March 2021 and hand-searches of their reference lists for relevant publications back to 1 December 2005. Thirty-nine initiatives across 37 countries in Europe, Australasia, Africa, and the Americas had the potential to lead to real-world data (RWD) on the clinical utility of oncology biomarkers. We highlight four initiatives with helpful lessons for Canada: Genomic Medicine France 2025, UNICANCER, the German Medical Informatics Initiative, and CANCER-ID. Among the 35 other programs evaluated, the main themes included the need for collaboration and systems to support data harmonization across multiple jurisdictions. In order to generate RWD in precision oncology that will prove acceptable to HTA bodies, Canada must take a national approach to biomarker strategy and unite all stakeholders at the highest level to overcome jurisdictional and technological barriers.
Collapse
|
45
|
Wang R, Wang CC. Human genetics: The dual origin of Three Kingdoms period Koreans. Curr Biol 2022; 32:R844-R847. [PMID: 35944486 DOI: 10.1016/j.cub.2022.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The genetic history of Koreans remains poorly understood due to a lack of ancient DNA. A new paleo-genomic study shows that population stratification in 4th-5th century South Korean populations was linked to a varied proportion of indigenous Jomon-related ancestry, which does not survive in present-day Koreans.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
46
|
Jang Y, Kwak E, An JY, Jung JH. Infantile esotropia in a family with TUBB3 mutation associated congenital fibrosis of extraocular muscles. Ophthalmic Genet 2022; 43:716-719. [PMID: 35765833 DOI: 10.1080/13816810.2022.2092753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND The TUBB3 gene has been reported to be associated with type 3 congenital fibrosis of the extraocular muscles (CFEOM). The clinical features of CFEOM3 that are linked to TUBB3 mutations are diverse, ranging from mild ptosis and limitation of extraocular movement to severe ocular motility problems and central nervous system abnormalities. MATERIALS AND METHODS This was a single retrospective case report. RESULT This case report describes a patient with infantile esotropia, who had a heterozygous variant in TUBB3 c.904 G > A (p.A302T) known to cause CFEOM3 and her family members, who presented with manifestations associated with CFEOM3. CONCLUSION Given the diverse clinical features of CFEOM3, the possibility of the occurrence of CFEOM3 should be considered when there is a congenital abnormality of extraocular muscle movement and a positive family history.
Collapse
Affiliation(s)
- Yeonji Jang
- Department of Ophthalmology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Gyeonggi-do, Republic of Korea
| | - Eunseo Kwak
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, Republic of Korea
| | - Joon-Yong An
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, Republic of Korea
| | - Jae Ho Jung
- Department of Ophthalmology, Seoul National University Hospital, and Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
47
|
Gelabert P, Blazyte A, Chang Y, Fernandes DM, Jeon S, Hong JG, Yoon J, Ko Y, Oberreiter V, Cheronet O, Özdoğan KT, Sawyer S, Yang S, Greytak EM, Choi H, Kim J, Kim JI, Jeong C, Bae K, Bhak J, Pinhasi R. Northeastern Asian and Jomon-related genetic structure in the Three Kingdoms period of Gimhae, Korea. Curr Biol 2022; 32:3232-3244.e6. [PMID: 35732180 DOI: 10.1016/j.cub.2022.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/05/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022]
Abstract
The genetic history of prehistoric and protohistoric Korean populations is not well understood because only a small number of ancient genomes are available. Here, we report the first paleogenomic data from the Korean Three Kingdoms period, a crucial point in the cultural and historic formation of Korea. These data comprise eight shotgun-sequenced genomes from ancient Korea (0.7×-6.1× coverage). They were derived from two archeological sites in Gimhae: the Yuha-ri shell mound and the Daesung-dong tumuli, the latter being the most important funerary complex of the Gaya confederacy. All individuals are from between the 4th and 5th century CE and are best modeled as an admixture between a northern China Bronze Age genetic source and a source of Jomon-related ancestry that shares similarities with the present-day genomes from Japan. The observed substructure and proportion of Jomon-related ancestry suggest the presence of two genetic groups within the population and diversity among the Gaya population. We could not correlate the genomic differences between these two groups with either social status or sex. All the ancient individuals' genomic profiles, including phenotypically relevant SNPs associated with hair and eye color, facial morphology, and myopia, imply strong genetic and phenotypic continuity with modern Koreans for the last 1,700 years.
Collapse
Affiliation(s)
- Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| | - Asta Blazyte
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Yongjoon Chang
- Daegu National Museum, 321 Cheongho-ro, Suseong-gu, Daegu 42111, Republic of Korea
| | - Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; CIAS, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Sungwon Jeon
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea; Clinomics Inc., UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Jin Geun Hong
- Jeonju National Museum, 249 Ssukgogae-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 55070, Republic of Korea
| | - Jiyeon Yoon
- Gongju National Museum, 34 Gwangwangdanji-gil, Gongju-si, Chungcheongnam-do 32535, Republic of Korea
| | - Youngmin Ko
- National Museum of Korea, 137 Seobinggo-ro, Yongsan-gu, Seoul 04383, Republic of Korea
| | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Kadir T Özdoğan
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Songhyok Yang
- National Museum of Korea, 137 Seobinggo-ro, Yongsan-gu, Seoul 04383, Republic of Korea
| | | | - Hansol Choi
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Jungeun Kim
- Personal Genomics Institute (PGI), Genome Research Foundation (GRF), Cheongju 28160, Republic of Korea
| | - Jong-Il Kim
- Department of Archaeology and Art History, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Choongwon Jeong
- Seoul National University, School of Biological Sciences, 599 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kidong Bae
- National Museum of Korea, 137 Seobinggo-ro, Yongsan-gu, Seoul 04383, Republic of Korea.
| | - Jong Bhak
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea; Clinomics Inc., UNIST-gil 50, Ulsan 44919, Republic of Korea.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| |
Collapse
|
48
|
Chen L, Zhou Z, Zhang Y, Xu H, Wang S. EASplex: A panel of 308 AISNPs for East Asian ancestry inference using next generation sequencing. Forensic Sci Int Genet 2022; 60:102739. [PMID: 35709629 DOI: 10.1016/j.fsigen.2022.102739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
Ancestry inference is useful in many scientific fields, such as forensic genetics, medical genetics, and molecular archaeology. Various ancestry inferring methods have been released for major continental populations. However, few reports refer to sub-populations within the East Asian population using hundreds of ancestry informative SNPs (AISNPs). In this study, we developed a 308-AISNP panel (EASplex NGS DNA panel) using multiplex PCR and next generation sequencing (NGS). This panel included 56 SNPs relevant for the continent-level ancestry inference and 252 Japanese-, Korean-, and/or Han Chinese-specific AISNPs to address the ancestry inference of global populations and regional populations among Japanese (JPT), Korean minority (CHK), and Han Chinese (CHH). A total of 87 CHK and 59 CHH samples were used to check the performance of the EASplex NGS DNA panel. By analyzing 146 profiles of samples with JPT and CHH data from Beijing and South China in 1000 genomes project, the following results were obtained: (1) the 146 tested samples were correctly assigned to the East Asian group; (2) the paired population assignment rate was 99.73% for JPT and CHH, 95% for JPT and CHK, and 90.11% for CHK and CHH; and (3) the whole population assignment was 92.14% for the JPT, CHK, and CHH data. Overall, the EASplex NGS DNA panel displayed informativeness for continental ancestry inference and regional ancestry inference among JPT, CHH, and CHK and has the potential for use in forensic and genetic population studies.
Collapse
Affiliation(s)
- Lu Chen
- Beijing Institute of Microbiology and Epidemiology, 27 Taiping Road, Beijing 100850, PR China
| | - Zhe Zhou
- Beijing Institute of Microbiology and Epidemiology, 27 Taiping Road, Beijing 100850, PR China.
| | - Yongji Zhang
- Department of Pathology and Forensic Medicine, College of Medicine, Yanbian University, No. 977 Park Road, Jilin 133002, PR China
| | - Hao Xu
- Beijing Institute of Microbiology and Epidemiology, 27 Taiping Road, Beijing 100850, PR China
| | - Shengqi Wang
- Beijing Institute of Microbiology and Epidemiology, 27 Taiping Road, Beijing 100850, PR China.
| |
Collapse
|
49
|
Gu J, Zhao H, Guo X, Sun H, Xu J, Wei Y. A high‐performance SNP panel developed by machine‐learning approaches for characterizing genetic differences of Southern and Northern Han Chinese, Korean, and Japanese individuals. Electrophoresis 2022; 43:1183-1192. [DOI: 10.1002/elps.202100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/21/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Jia‐Qi Gu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics School of Life Sciences Jiangsu Normal University Xuzhou Jiangsu P. R. China
| | - Hui Zhao
- National Engineering Laboratory for Forensic Science Key Laboratory of Forensic Genetics of Ministry of Public Security Beijing Engineering Research Center of Crime Scene Evidence Examination Institute of Forensic Science Beijing P. R. China
| | - Xiao‐Yuan Guo
- Department of Forensic Genetics School of Forensic Science Shanxi Medical University Taiyuan Shanxi P. R. China
| | - Hao‐Yun Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics School of Life Sciences Jiangsu Normal University Xuzhou Jiangsu P. R. China
| | - Jing‐Yi Xu
- Department of Biochemistry and Molecular Biology Tianjin Key Laboratory of Medical Epigenetics School of Basic Medical Sciences Tianjin Medical University Tianjin P. R. China
| | - Yi‐Liang Wei
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics School of Life Sciences Jiangsu Normal University Xuzhou Jiangsu P. R. China
| |
Collapse
|
50
|
Cong PK, Bai WY, Li JC, Yang MY, Khederzadeh S, Gai SR, Li N, Liu YH, Yu SH, Zhao WW, Liu JQ, Sun Y, Zhu XW, Zhao PP, Xia JW, Guan PL, Qian Y, Tao JG, Xu L, Tian G, Wang PY, Xie SY, Qiu MC, Liu KQ, Tang BS, Zheng HF. Genomic analyses of 10,376 individuals in the Westlake BioBank for Chinese (WBBC) pilot project. Nat Commun 2022; 13:2939. [PMID: 35618720 PMCID: PMC9135724 DOI: 10.1038/s41467-022-30526-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 05/05/2022] [Indexed: 01/04/2023] Open
Abstract
We initiate the Westlake BioBank for Chinese (WBBC) pilot project with 4,535 whole-genome sequencing (WGS) individuals and 5,841 high-density genotyping individuals, and identify 81.5 million SNPs and INDELs, of which 38.5% are absent in dbSNP Build 151. We provide a population-specific reference panel and an online imputation server ( https://wbbc.westlake.edu.cn/ ) which could yield substantial improvement of imputation performance in Chinese population, especially for low-frequency and rare variants. By analyzing the singleton density of the WGS data, we find selection signatures in SNX29, DNAH1 and WDR1 genes, and the derived alleles of the alcohol metabolism genes (ADH1A and ADH1B) emerge around 7,000 years ago and tend to be more common from 4,000 years ago in East Asia. Genetic evidence supports the corresponding geographical boundaries of the Qinling-Huaihe Line and Nanling Mountains, which separate the Han Chinese into subgroups, and we reveal that North Han was more homogeneous than South Han.
Collapse
Affiliation(s)
- Pei-Kuan Cong
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Wei-Yang Bai
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jin-Chen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Meng-Yuan Yang
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Saber Khederzadeh
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Si-Rui Gai
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Nan Li
- The High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Yu-Heng Liu
- The High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Shi-Hui Yu
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd., Guangzhou, Guangdong, China
| | - Wei-Wei Zhao
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd., Guangzhou, Guangdong, China
| | - Jun-Quan Liu
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd., Guangzhou, Guangdong, China
| | - Yi Sun
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd., Guangzhou, Guangdong, China
| | - Xiao-Wei Zhu
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Pian-Pian Zhao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jiang-Wei Xia
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Peng-Lin Guan
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yu Qian
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jian-Guo Tao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lin Xu
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Geng Tian
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Ping-Yu Wang
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Shu-Yang Xie
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Mo-Chang Qiu
- WBBC Jiangxi Center, Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Ke-Qi Liu
- WBBC Jiangxi Center, Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Hou-Feng Zheng
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|