1
|
Zhong Y, Yue S, Liang J, Yuan L, Xia Y, Tian Y, Zheng Y, Zhang Y, Du W, Li D, Chen S, Pan A, Liu X. Twist Angle-Dependent Exciton Mobility in WS 2 Bilayers. NANO LETTERS 2025; 25:5274-5282. [PMID: 40033831 DOI: 10.1021/acs.nanolett.5c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Bilayer WS2 shows exceptional promise for excitonic devices due to its defect tolerance, high carrier density, and angle-tunable electronic properties. However, fundamental understanding of twist angle-dependent exciton transport remains limited due to challenges in sample preparation and interplays between interlayer coupling and moiré potential. Using transient reflection microscopy (TRM), we systematically studied exciton mobility in chemical vapor deposition-grown (CVD-grown) bilayer WS2 with different twist angles. At 0°, strong interlayer coupling without moiré potential effects yielded the highest exciton mobility (87.3 cm2/V s)- 10-fold greater than monolayer WS2-with a 1.06 μm diffusion length, while the 25° sample showed reduced mobility (44.5 cm2/(V s)) and shorter diffusion length (0.88 μm) due to weakened coupling and moiré potential effects, and the 60° case exhibited intermediate characteristics. This work demonstrates that interlayer coupling and moiré potential modulation critically determine exciton transport dynamics in layered two-dimensional semiconductors, providing essential guidelines for device engineering.
Collapse
Affiliation(s)
- Yangguang Zhong
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometriscs and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Shuai Yue
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieyuan Liang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometriscs and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- Electronic Information Engineering College, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Long Yuan
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230052, China
| | - Yuexing Xia
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yubo Tian
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuanyuan Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuyang Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenna Du
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometriscs and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Shula Chen
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometriscs and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometriscs and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Deng S, Park H, Reimann J, Peterson JM, Blach DD, Sun MJ, Yan T, Sun D, Taniguchi T, Watanabe K, Xu X, Kennes DM, Huang L. Frozen non-equilibrium dynamics of exciton Mott insulators in moiré superlattices. NATURE MATERIALS 2025; 24:527-534. [PMID: 40033108 DOI: 10.1038/s41563-025-02135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 01/09/2025] [Indexed: 03/05/2025]
Abstract
Moiré superlattices, such as those formed from transition metal dichalcogenide heterostructures, have emerged as an exciting platform for exploring quantum many-body physics. They have the potential to serve as solid-state analogues to ultracold gases for quantum simulations. A key open question is the coherence and dynamics of the quantum phases arising from photoexcited moiré excitons, particularly amid dissipation. Here we use transient photoluminescence and ultrafast reflectance microscopy to image non-equilibrium exciton phase transitions. Counterintuitively, experimental results and theoretical simulations indicate that strong long-range dipolar repulsion freezes the motion of the Mott insulator phase for over 70 ns. In mixed electron-exciton lattices, reduced dipolar interactions lead to diminished freezing dynamics. These findings challenge the prevailing notion that repulsion disperses particles, whereas attraction binds them. The observed phenomenon of frozen dynamics due to strong repulsive interactions is characteristic of highly coherent systems, a feature previously realized exclusively in ultracold gases.
Collapse
Affiliation(s)
- Shibin Deng
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, People's Republic of China
| | - Heonjoon Park
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Jonas Reimann
- Institut für Theorie der Statistischen Physik, RWTH Aachen University, Aachen, Germany
| | - Jonas M Peterson
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Daria D Blach
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Meng-Jia Sun
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Tengfei Yan
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Dewei Sun
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Xiaodong Xu
- Department of Physics, University of Washington, Seattle, WA, USA.
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA.
| | - Dante M Kennes
- Institut für Theorie der Statistischen Physik, RWTH Aachen University, Aachen, Germany.
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Hamburg, Germany.
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Ray A, Ollis T, Sethuraj K, Vamivakas AN. Diffusion of Valley-Coherent Dark Excitons in a Large-Angle Incommensurate Moiré Homobilayer. NANO LETTERS 2025; 25:4995-5002. [PMID: 40085498 PMCID: PMC11951149 DOI: 10.1021/acs.nanolett.5c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Recent research in twistronics, particularly in small-angle twisted bilayers of transition metal dichalcogenides, has uncovered exciting phenomena like periodic arrays of excitonic quantum emitters, exotic many-body states, and long-lived interlayer excitons. However, less explored has been the physics of large-angle, incommensurate bilayers, where periodicity breaks down. In this study, we demonstrate the emergence of a brightened dark intralayer exciton in a twisted n-doped molybdenum diselenide homobilayer. This dark exciton diffuses more efficiently than bright excitons or trions, with diffusion lengths over 4 μm. Temperature-dependent spectra show a brightened dark trion, and we observe a robust valley coherence. This unique behavior is attributed to a small mixing of spin-resolved conduction bands, caused by a lack of out-of-plane reflection symmetry and strong dielectric contrast. Our findings open new possibilities for valleytronic devices using valley-robust "mixed" dark excitons.
Collapse
Affiliation(s)
- Arnab
Barman Ray
- The
Institute of Optics, University of Rochester, 480 Intercampus Dr, Rochester, New York 14627, United States
| | - Trevor Ollis
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United States
| | - K.R. Sethuraj
- The
Institute of Optics, University of Rochester, 480 Intercampus Dr, Rochester, New York 14627, United States
- Center
for coherence and quantum optics, Department of Physics, University of Rochester, 480 Intercampus Dr, Rochester, New York 14627, United States
| | - Anthony Nickolas Vamivakas
- The
Institute of Optics, University of Rochester, 480 Intercampus Dr, Rochester, New York 14627, United States
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United States
- Center
for coherence and quantum optics, Department of Physics, University of Rochester, 480 Intercampus Dr, Rochester, New York 14627, United States
- Materials
Science, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
4
|
Kim H, Wang H, Wang Y, Shinokita K, Watanabe K, Taniguchi T, Konabe S, Matsuda K. Identification of Two-Dimensional Interlayer Excitons and Their Valley Polarization in MoSe 2/WSe 2 Heterostructure with h-BN Spacer Layer. ACS NANO 2025; 19:322-330. [PMID: 39810375 DOI: 10.1021/acsnano.4c05963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Interlayer excitons (IXs) in the heterostructure of monolayer transition metal dichalcogenides (TMDs) are considered as a promising platform to study fundamental exciton physics and for potential applications of next generation optoelectronic devices. The IXs trapped in the moiré potential in a twisted monolayer TMD heterostructure such as MoSe2/WSe2 form zero-dimensional (0D) moiré excitons. Introducing an atomically thin insulating layer between TMD monolayers in a twisted heterostructure would modulate the moiré potential landscape, thereby tuning 0D IXs into 2D IXs. However, the optical characteristics of IXs have not been elucidated. Here, we have experimentally investigated the significant optical characteristics arising from IXs in a MoSe2/h-BN/WSe2 heterostructure by optical spectroscopy. The experimental results of time-resolved photoluminescence spectroscopy combined with phenomenological rate equation analysis reveal that the radiative decay rate of IXs in the MoSe2/h-BN/WSe2 heterostructure changes as a function of temperature, which strongly suggests the emergence of 2D IXs by the modulation of potential. Moreover, we demonstrate the valley polarization arising from the prolonged valley relaxation lifetime of 2D IXs reaching 100 ns at low temperature, which is dominated by electron-hole exchange interactions. These findings provide us with an effective strategy to tailor the dimensionality of IXs and elucidate the desired optoelectronic response of IXs in monolayer semiconductor heterostructures.
Collapse
Affiliation(s)
- Heejun Kim
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Haonan Wang
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yanlin Wang
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Keisuke Shinokita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Satoru Konabe
- Department of Chemical Science and Technology, Hosei University, 3-7-2 Kajinocho, Koganei, Tokyo 184-8584, Japan
| | - Kazunari Matsuda
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
5
|
Zhang X, Long Y, Lu N, Jian F, Zhang X, Liang Z, He L, Tang H. Moiré Superlattice in Two-Dimensional Materials: Fundamentals, Applications, and Recent Developments. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68724-68748. [PMID: 39565834 DOI: 10.1021/acsami.4c13135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Moiré superlattices, arising from the periodic Moiré patterns formed by two-dimensional (2D) materials stacked with a slight lattice mismatch, have attracted significant attention due to their unique electronic and optical performances. This review provides an overview of recent advances in Moiré superlattices, highlighting their formation mechanisms, structural characteristics, and emergent phenomena. First, we discuss the theoretical basis and experimental techniques employed in fabricating Moiré superlattices. Then we outline various characterization methods that enable the investigation of the structural and electronic performance of Moiré superlattices at the atomic scale. Afterward, we review the diverse range of emergent phenomena exhibited in Moiré superlattices. These phenomena include the appearance of electronic band engineering, unconventional superconductivity, and topologically nontrivial state. We explore how these phenomena arise from the interplay between the original electronic properties of the constituent materials and the Moiré pattern-induced modifications. Furthermore, we examine the potential applications of Moiré superlattices in fields such as electronics, optoelectronics, and quantum technologies. Finally, we summarize the challenges and directions in Moiré superlattice research, which include exploring more complex Moiré patterns, understanding the role of twist angle and strain engineering, and developing theoretical frameworks to describe the behaviors of Moiré systems. This review aims to provide a comprehensive understanding of the recent progress in Moiré superlattices, shedding light on their formation, performance, and potential applications. The insights gained from this research are expected to pave the way for the design and development of next-generation functional Moiré superlattices.
Collapse
Affiliation(s)
- Xinglong Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China
| | - Yihao Long
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Ning Lu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Feiyu Jian
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Xiaoyang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Zhiqiang Liang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Liang He
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hui Tang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| |
Collapse
|
6
|
Wu R, Zhang H, Ma H, Zhao B, Li W, Chen Y, Liu J, Liang J, Qin Q, Qi W, Chen L, Li J, Li B, Duan X. Synthesis, Modulation, and Application of Two-Dimensional TMD Heterostructures. Chem Rev 2024; 124:10112-10191. [PMID: 39189449 DOI: 10.1021/acs.chemrev.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have attracted a lot of attention due to their rich material diversity and stack geometry, precise controllability of structure and properties, and potential practical applications. These heterostructures not only overcome the inherent limitations of individual materials but also enable the realization of new properties through appropriate combinations, establishing a platform to explore new physical and chemical properties at micro-nano-pico scales. In this review, we systematically summarize the latest research progress in the synthesis, modulation, and application of 2D TMD heterostructures. We first introduce the latest techniques for fabricating 2D TMD heterostructures, examining the rationale, mechanisms, advantages, and disadvantages of each strategy. Furthermore, we emphasize the importance of characteristic modulation in 2D TMD heterostructures and discuss some approaches to achieve novel functionalities. Then, we summarize the representative applications of 2D TMD heterostructures. Finally, we highlight the challenges and future perspectives in the synthesis and device fabrication of 2D TMD heterostructures and provide some feasible solutions.
Collapse
Affiliation(s)
- Ruixia Wu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hongmei Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huifang Ma
- Innovation Center for Gallium Oxide Semiconductor (IC-GAO), National and Local Joint Engineering Laboratory for RF Integration and Micro-Assembly Technologies, College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- School of Flexible Electronics (Future Technologies) Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing 211189, China
| | - Wei Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianteng Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jingyi Liang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qiuyin Qin
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weixu Qi
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Li
- Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
7
|
Zhang S, Jin L, Lu Y, Zhang L, Yang J, Zhao Q, Sun D, Thompson JJP, Yuan B, Ma K, Akriti, Park JY, Lee YH, Wei Z, Finkenauer BP, Blach DD, Kumar S, Peng H, Mannodi-Kanakkithodi A, Yu Y, Malic E, Lu G, Dou L, Huang L. Moiré superlattices in twisted two-dimensional halide perovskites. NATURE MATERIALS 2024; 23:1222-1229. [PMID: 38906993 DOI: 10.1038/s41563-024-01921-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Moiré superlattices have emerged as a new platform for studying strongly correlated quantum phenomena, but these systems have been largely limited to van der Waals layer two-dimensional materials. Here we introduce moiré superlattices leveraging ultrathin, ligand-free halide perovskites, facilitated by ionic interactions. Square moiré superlattices with varying periodic lengths are clearly visualized through high-resolution transmission electron microscopy. Twist-angle-dependent transient photoluminescence microscopy and electrical characterizations indicate the emergence of localized bright excitons and trapped charge carriers near a twist angle of ~10°. The localized excitons are accompanied by enhanced exciton emission, attributed to an increased oscillator strength by a theoretically predicted flat band. This research showcases the promise of two-dimensional perovskites as unique room-temperature moiré materials.
Collapse
Affiliation(s)
- Shuchen Zhang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
- Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Linrui Jin
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Yuan Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Linghai Zhang
- School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Jiaqi Yang
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA
| | - Qiuchen Zhao
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Dewei Sun
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | - Biao Yuan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ke Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Akriti
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jee Yung Park
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yoon Ho Lee
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Zitang Wei
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Blake P Finkenauer
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Daria D Blach
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Sarath Kumar
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ermin Malic
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA, USA
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
8
|
Brotons-Gisbert M, Gerardot BD, Holleitner AW, Wurstbauer U. Interlayer and Moiré excitons in atomically thin double layers: From individual quantum emitters to degenerate ensembles. MRS BULLETIN 2024; 49:914-931. [PMID: 39247683 PMCID: PMC11379794 DOI: 10.1557/s43577-024-00772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 09/10/2024]
Abstract
Abstract Interlayer excitons (IXs), composed of electron and hole states localized in different layers, excel in bilayers composed of atomically thin van der Waals materials such as semiconducting transition-metal dichalcogenides (TMDs) due to drastically enlarged exciton binding energies, exciting spin-valley properties, elongated lifetimes, and large permanent dipoles. The latter allows modification by electric fields and the study of thermalized bosonic quasiparticles, from the single particle level to interacting degenerate dense ensembles. Additionally, the freedom to combine bilayers of different van der Waals materials without lattice or relative twist-angle constraints leads to layer-hybridized and Moiré excitons, which can be widely engineered. This article covers fundamental aspects of IXs, including correlation phenomena as well as the consequence of Moiré superlattices with a strong focus on TMD homo- and heterobilayers. Graphical abstract
Collapse
Affiliation(s)
- Mauro Brotons-Gisbert
- Institute of Photonics and Quantum Sciences, SUPA, Heriot-Watt University, Edinburgh, UK
| | - Brian D Gerardot
- Institute of Photonics and Quantum Sciences, SUPA, Heriot-Watt University, Edinburgh, UK
| | - Alexander W Holleitner
- Walter Schottky Institute and Physics Department, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
9
|
Joe AY, Mier Valdivia AM, Jauregui LA, Pistunova K, Ding D, Zhou Y, Scuri G, De Greve K, Sushko A, Kim B, Taniguchi T, Watanabe K, Hone JC, Lukin MD, Park H, Kim P. Controlled interlayer exciton ionization in an electrostatic trap in atomically thin heterostructures. Nat Commun 2024; 15:6743. [PMID: 39112505 PMCID: PMC11306233 DOI: 10.1038/s41467-024-51128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Atomically thin semiconductor heterostructures provide a two-dimensional (2D) device platform for creating high densities of cold, controllable excitons. Interlayer excitons (IEs), bound electrons and holes localized to separate 2D quantum well layers, have permanent out-of-plane dipole moments and long lifetimes, allowing their spatial distribution to be tuned on demand. Here, we employ electrostatic gates to trap IEs and control their density. By electrically modulating the IE Stark shift, electron-hole pair concentrations above 2 × 1012 cm-2 can be achieved. At this high IE density, we observe an exponentially increasing linewidth broadening indicative of an IE ionization transition, independent of the trap depth. This runaway threshold remains constant at low temperatures, but increases above 20 K, consistent with the quantum dissociation of a degenerate IE gas. Our demonstration of the IE ionization in a tunable electrostatic trap represents an important step towards the realization of dipolar exciton condensates in solid-state optoelectronic devices.
Collapse
Affiliation(s)
- Andrew Y Joe
- Department of Physics, Harvard University, Cambridge, MA, USA
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | - Andrés M Mier Valdivia
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Luis A Jauregui
- Department of Physics, University of California, Irvine, CA, USA
| | | | - Dapeng Ding
- Department of Physics, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - You Zhou
- Department of Physics, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Giovanni Scuri
- Department of Physics, Harvard University, Cambridge, MA, USA
- E. L. Ginzton Laboratory, Stanford University, Stanford, CA, USA
| | - Kristiaan De Greve
- Department of Physics, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Andrey Sushko
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Bumho Kim
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Japan
| | - James C Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Mikhail D Lukin
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Hongkun Park
- Department of Physics, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Philip Kim
- Department of Physics, Harvard University, Cambridge, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
10
|
Poudyal S, Deka M, Adhikary P, D R, Barman PK, Yadav R, Biswal B, Rajarapu R, Mukherjee S, Nanda BRK, Singh A, Misra A. Room Temperature, Twist Angle Independent, Momentum Direct Interlayer Excitons in van der Waals Heterostructures with Wide Spectral Tunability. NANO LETTERS 2024; 24:9575-9582. [PMID: 39051155 DOI: 10.1021/acs.nanolett.4c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Interlayer excitons (IXs) in van der Waals heterostructures with static out of plane dipole moment and long lifetime show promise in the development of exciton based optoelectronic devices and the exploration of many body physics. However, these IXs are not always observed, as the emission is very sensitive to lattice mismatch and twist angle between the constituent materials. Moreover, their emission intensity is very weak compared to that of corresponding intralayer excitons at room temperature. Here we report the room-temperature realization of twist angle independent momentum direct IX in the heterostructures of bulk PbI2 and bilayer WS2. Momentum conserving transitions combined with the large band offsets between the constituent materials enable intense IX emission at room temperature. A long lifetime (∼100 ns), noticeable Stark shift, and tunability of IX emission from 1.70 to 1.45 eV by varying the number of WS2 layers make these heterostructures promising to develop room temperature exciton based optoelectronic devices.
Collapse
Affiliation(s)
- Saroj Poudyal
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for 2D Materials Research and Innovation, IIT Madras, Chennai 600036, India
| | - Mrinal Deka
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for 2D Materials Research and Innovation, IIT Madras, Chennai 600036, India
| | - Priyo Adhikary
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ranju D
- Department of Physics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Prahalad Kanti Barman
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for 2D Materials Research and Innovation, IIT Madras, Chennai 600036, India
| | - Renu Yadav
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for 2D Materials Research and Innovation, IIT Madras, Chennai 600036, India
| | - Bubunu Biswal
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for 2D Materials Research and Innovation, IIT Madras, Chennai 600036, India
- Center for Atomistic Modelling and Materials Design, IIT Madras, Chennai 600036, India
| | - Ramesh Rajarapu
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for 2D Materials Research and Innovation, IIT Madras, Chennai 600036, India
| | - Shantanu Mukherjee
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Birabar Ranjit Kumar Nanda
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for Atomistic Modelling and Materials Design, IIT Madras, Chennai 600036, India
| | - Akshay Singh
- Department of Physics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Abhishek Misra
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for 2D Materials Research and Innovation, IIT Madras, Chennai 600036, India
| |
Collapse
|
11
|
Chen D, Dini K, Rasmita A, Huang Z, Tan Q, Cai H, He R, Miao Y, Liew TCH, Gao W. Spatial Filtering of Interlayer Exciton Ground State in WSe 2/MoS 2 Heterobilayer. NANO LETTERS 2024; 24:8795-8800. [PMID: 38985646 DOI: 10.1021/acs.nanolett.4c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Long-life interlayer excitons (IXs) in transition metal dichalcogenide (TMD) heterostructure are promising for realizing excitonic condensates at high temperatures. Critical to this objective is to separate the IX ground state (the lowest energy of IX state) emission from other states' emissions. Filtering the IX ground state is also essential in uncovering the dynamics of correlated excitonic states, such as the excitonic Mott insulator. Here, we show that the IX ground state in the WSe2/MoS2 heterobilayer can be separated from other states by its spatial profile. The emissions from different moiré IX modes are identified by their different energies and spatial distributions, which fits well with the rate-diffusion model for cascading emission. Our results show spatial filtering of the ground state mode and enrich the toolbox to realize correlated states at elevated temperatures.
Collapse
Affiliation(s)
- Disheng Chen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
| | - Kevin Dini
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Abdullah Rasmita
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zumeng Huang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Qinghai Tan
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
| | - Hongbing Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
| | - Ruihua He
- Institute For Digital Molecular Analytics and Science, Nanyang Technological University, Singapore 636921, Singapore
| | - Yansong Miao
- Institute For Digital Molecular Analytics and Science, Nanyang Technological University, Singapore 636921, Singapore
| | - Timothy C H Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- MajuLab, International Joint Research Unit UMI 3654, CNRS, Université Côte d'Azur, Sorbonne Université, National University of Singapore, Nanyang Technological University, Singapore 637371, Singapore
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
- MajuLab, International Joint Research Unit UMI 3654, CNRS, Université Côte d'Azur, Sorbonne Université, National University of Singapore, Nanyang Technological University, Singapore 637371, Singapore
- Centre for Quantum Technologies, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
12
|
Rossi A, Zipfel J, Maity I, Lorenzon M, Dandu M, Barré E, Francaviglia L, Regan EC, Zhang Z, Nie JH, Barnard ES, Watanabe K, Taniguchi T, Rotenberg E, Wang F, Lischner J, Raja A, Weber-Bargioni A. Anomalous Interlayer Exciton Diffusion in WS 2/WSe 2 Moiré Heterostructure. ACS NANO 2024; 18:18202-18210. [PMID: 38950893 PMCID: PMC11256890 DOI: 10.1021/acsnano.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024]
Abstract
Stacking van der Waals crystals allows for the on-demand creation of a periodic potential landscape to tailor the transport of quasiparticle excitations. We investigate the diffusion of photoexcited electron-hole pairs, or excitons, at the interface of WS2/WSe2 van der Waals heterostructure over a wide range of temperatures. We observe the appearance of distinct interlayer excitons for parallel and antiparallel stacking and track their diffusion through spatially and temporally resolved photoluminescence spectroscopy from 30 to 250 K. While the measured exciton diffusivity decreases with temperature, it surprisingly plateaus below 90 K. Our observations cannot be explained by classical models like hopping in the moiré potential. A combination of ab initio theory and molecular dynamics simulations suggests that low-energy phonons arising from the mismatched lattices of moiré heterostructures, also known as phasons, play a key role in describing and understanding this anomalous behavior of exciton diffusion. Our observations indicate that the moiré potential landscape is dynamic down to very low temperatures and that the phason modes can enable efficient transport of energy in the form of excitons.
Collapse
Affiliation(s)
- Antonio Rossi
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Center
for Nanotechnology Innovation @ NEST, Instituto
Italiano di Tecnologia, 56127 Pisa, Italy
| | - Jonas Zipfel
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Indrajit Maity
- Imperial
College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Monica Lorenzon
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Medha Dandu
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Elyse Barré
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Luca Francaviglia
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Emma C. Regan
- Department
of Physics, University of California at
Berkeley, Berkeley, California 94720, United States
| | - Zuocheng Zhang
- Department
of Physics, University of California at
Berkeley, Berkeley, California 94720, United States
| | - Jacob H. Nie
- Department
of Physics, University of California at
Berkeley, Berkeley, California 94720, United States
- Department
of Physics, University of California at
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Edward S. Barnard
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0047, Japan
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0047, Japan
| | - Eli Rotenberg
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Feng Wang
- Department
of Physics, University of California at
Berkeley, Berkeley, California 94720, United States
| | - Johannes Lischner
- Imperial
College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Archana Raja
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Alexander Weber-Bargioni
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Liu Y, Dai F, Bai H, Fan X, Wang R, Zheng X, Xiong Z, Sun H, Liang Z, Kang Z, Zhang Y. Exciton Localization Modulated by Ultradeep Moiré Potential in Twisted Bilayer γ-Graphdiyne. J Am Chem Soc 2024; 146:14593-14599. [PMID: 38718194 DOI: 10.1021/jacs.4c01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Twisted moiré superlattice is featured with its moiré potential energy, the depth of which renders an effective approach to strengthening the exciton-exciton interaction and exciton localization toward high-performance quantum photonic devices. However, it remains as a long-standing challenge to further push the limit of moiré potential depth. Herein, owing to the pz orbital induced band edge states enabled by the unique sp-C in bilayer γ-graphdiyne (GDY), an ultradeep moiré potential of ∼289 meV is yielded. After being twisted into the hole-to-hole layer stacking configuration, the interlayer coupling is substantially intensified to augment the lattice potential of bilayer GDY up to 475%. The presence of lateral constrained moiré potential shifts the spatial distribution of electrons and holes in excitons from the regular alternating mode to their respective separated and localized mode. According to the well-established wave function distribution of electrons contained in excitons, the AA-stacked site is identified to serve for exciton localization. This work extends the materials systems available for moiré superlattice design further to serial carbon allotropes featured with benzene ring-alkyne chain coupling, unlocking tremendous potential for twistronic-based quantum device applications.
Collapse
Affiliation(s)
- Yingcong Liu
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Fulong Dai
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Haokun Bai
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Xiayue Fan
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Ruiqi Wang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Xuzhi Zheng
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Zhaozhao Xiong
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Haochun Sun
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Zhuojian Liang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Zhuo Kang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| |
Collapse
|
14
|
Zhang L, Gu L, Ni R, Xie M, Park S, Jang H, Ma R, Taniguchi T, Watanabe K, Zhou Y. Electrical Control and Transport of Tightly Bound Interlayer Excitons in a MoSe_{2}/hBN/MoSe_{2} Heterostructure. PHYSICAL REVIEW LETTERS 2024; 132:216903. [PMID: 38856288 DOI: 10.1103/physrevlett.132.216903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/11/2024] [Accepted: 04/15/2024] [Indexed: 06/11/2024]
Abstract
Controlling interlayer excitons in Van der Waals heterostructures holds promise for exploring Bose-Einstein condensates and developing novel optoelectronic applications, such as excitonic integrated circuits. Despite intensive studies, several key fundamental properties of interlayer excitons, such as their binding energies and interactions with charges, remain not well understood. Here we report the formation of momentum-direct interlayer excitons in a high-quality MoSe_{2}/hBN/MoSe_{2} heterostructure under an electric field, characterized by bright photoluminescence (PL) emission with high quantum yield and a narrow linewidth of less than 4 meV. These interlayer excitons show electrically tunable emission energy spanning ∼180 meV through the Stark effect, and exhibit a sizable binding energy of ∼81 meV in the intrinsic regime, along with trion binding energies of a few millielectronvolts. Remarkably, we demonstrate the long-range transport of interlayer excitons with a characteristic diffusion length exceeding 10 μm, which can be attributed, in part, to their dipolar repulsive interactions. Spatially and polarization-resolved spectroscopic studies reveal rich exciton physics in the system, such as valley polarization, local trapping, and the possible existence of dark interlayer excitons. The formation and transport of tightly bound interlayer excitons with narrow linewidth, coupled with the ability to electrically manipulate their properties, open exciting new avenues for exploring quantum many-body physics, including excitonic condensate and superfluidity, and for developing novel optoelectronic devices, such as exciton and photon routers.
Collapse
Affiliation(s)
- Lifu Zhang
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Liuxin Gu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Ruihao Ni
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Ming Xie
- Condensed Matter Theory Center, University of Maryland, College Park, Maryland 20742, USA
| | - Suji Park
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Houk Jang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Rundong Ma
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Takashi Taniguchi
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - You Zhou
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
- Maryland Quantum Materials Center, College Park, Maryland 20742, USA
| |
Collapse
|
15
|
Cai CS, Lai WY, Liu PH, Chou TC, Liu RY, Lin CM, Gwo S, Hsu WT. Ultralow Auger-Assisted Interlayer Exciton Annihilation in WS 2/WSe 2 Moiré Heterobilayers. NANO LETTERS 2024; 24:2773-2781. [PMID: 38285707 PMCID: PMC10921466 DOI: 10.1021/acs.nanolett.3c04688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
Transition metal dichalcogenide (TMD) heterobilayers have emerged as a promising platform for exploring solid-state quantum simulators and many-body quantum phenomena. Their type II band alignment, combined with the moiré superlattice, inevitably leads to nontrivial exciton interactions and dynamics. Here, we unveil the distinct Auger annihilation processes for delocalized interlayer excitons in WS2/WSe2 moiré heterobilayers. By fitting the characteristic efficiency droop and bimolecular recombination rate, we quantitatively determine an ultralow Auger coefficient of 1.3 × 10-5 cm2 s-1, which is >100-fold smaller than that of excitons in TMD monolayers. In addition, we reveal selective exciton upconversion into the WSe2 layer, which highlights the significance of intralayer electron Coulomb interactions in dictating the microscopic scattering pathways. The distinct Auger processes arising from spatial electron-hole separation have important implications for TMD heterobilayers while endowing interlayer excitons and their strongly correlated states with unique layer degrees of freedom.
Collapse
Affiliation(s)
- Cheng-Syuan Cai
- Department
of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Wei-Yan Lai
- Department
of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Po-Hsuan Liu
- Department
of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tzu-Chieh Chou
- Department
of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ro-Ya Liu
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chih-Ming Lin
- Department
of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shangjr Gwo
- Department
of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-Ting Hsu
- Department
of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Research
Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
16
|
Sun X, Suriyage M, Khan AR, Gao M, Zhao J, Liu B, Hasan MM, Rahman S, Chen RS, Lam PK, Lu Y. Twisted van der Waals Quantum Materials: Fundamentals, Tunability, and Applications. Chem Rev 2024; 124:1992-2079. [PMID: 38335114 DOI: 10.1021/acs.chemrev.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Twisted van der Waals (vdW) quantum materials have emerged as a rapidly developing field of two-dimensional (2D) semiconductors. These materials establish a new central research area and provide a promising platform for studying quantum phenomena and investigating the engineering of novel optoelectronic properties such as single photon emission, nonlinear optical response, magnon physics, and topological superconductivity. These captivating electronic and optical properties result from, and can be tailored by, the interlayer coupling using moiré patterns formed by vertically stacking atomic layers with controlled angle misorientation or lattice mismatch. Their outstanding properties and the high degree of tunability position them as compelling building blocks for both compact quantum-enabled devices and classical optoelectronics. This paper offers a comprehensive review of recent advancements in the understanding and manipulation of twisted van der Waals structures and presents a survey of the state-of-the-art research on moiré superlattices, encompassing interdisciplinary interests. It delves into fundamental theories, synthesis and fabrication, and visualization techniques, and the wide range of novel physical phenomena exhibited by these structures, with a focus on their potential for practical device integration in applications ranging from quantum information to biosensors, and including classical optoelectronics such as modulators, light emitting diodes, lasers, and photodetectors. It highlights the unique ability of moiré superlattices to connect multiple disciplines, covering chemistry, electronics, optics, photonics, magnetism, topological and quantum physics. This comprehensive review provides a valuable resource for researchers interested in moiré superlattices, shedding light on their fundamental characteristics and their potential for transformative applications in various fields.
Collapse
Affiliation(s)
- Xueqian Sun
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Manuka Suriyage
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ahmed Raza Khan
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Department of Industrial and Manufacturing Engineering, University of Engineering and Technology (Rachna College Campus), Gujranwala, Lahore 54700, Pakistan
| | - Mingyuan Gao
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- College of Engineering and Technology, Southwest University, Chongqing 400716, China
| | - Jie Zhao
- Department of Quantum Science & Technology, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Boqing Liu
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Md Mehedi Hasan
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Sharidya Rahman
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence in Exciton Science, Monash University, Clayton, Victoria 3800, Australia
| | - Ruo-Si Chen
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ping Koy Lam
- Department of Quantum Science & Technology, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yuerui Lu
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
17
|
Liu H, Zhang Z, Zhang C, Li X, Zhang C, Xu F, Wu Y, Wu Z, Kang J. Simultaneously Regulated Highly Polarized and Long-Lived Valley Excitons in WSe 2/GaN Heterostructures. NANO LETTERS 2024; 24:1851-1858. [PMID: 38315876 DOI: 10.1021/acs.nanolett.3c03494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Interlayer excitons, with prolonged lifetimes and tunability, hold potential for advanced optoelectronics. Previous research on the interlayer excitons has been dominated by two-dimensional heterostructures. Here, we construct WSe2/GaN composite heterostructures, in which the doping concentration of GaN and the twist angle of bilayer WSe2 are employed as two ingredients for the manipulation of exciton behaviors and polarizations. The exciton energies in monolayer WSe2/GaN can be regulated continuously by the doping levels of the GaN substrate, and a remarkable increase in the valley polarizations is achieved. Especially in a heterostructure with 4°-twisted bilayer WSe2, a maximum polarization of 38.9% with a long lifetime is achieved for the interlayer exciton. Theoretical calculations reveal that the large polarization and long lifetime are attributed to the high exciton binding energy and large spin flipping energy during depolarization in bilayer WSe2/GaN. This work introduces a distinctive member of the interlayer exciton with a high degree of polarization and a long lifetime.
Collapse
Affiliation(s)
- Haiyang Liu
- Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China
- School of Physical Science and Technology, Wuhan University, Wuhan 430072, P. R. China
| | - Zongnan Zhang
- Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China
| | - Chenhao Zhang
- Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China
| | - Xu Li
- Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China
| | - Chunmiao Zhang
- Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China
| | - Feiya Xu
- Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China
| | - Yaping Wu
- Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China
| | - Zhiming Wu
- Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China
| | - Junyong Kang
- Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
18
|
Ge A, Ge X, Sun L, Lu X, Ma L, Zhao X, Yao B, Zhang X, Zhang T, Jing W, Zhou X, Shen X, Lu W. Unraveling the strain tuning mechanism of interlayer excitons in WSe 2/MoSe 2heterostructure. NANOTECHNOLOGY 2024; 35:175207. [PMID: 38266306 DOI: 10.1088/1361-6528/ad2232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
Atomically thin transition metal dichalcogenides (TMDs) exhibit rich excitonic physics, due to reduced dielectric screening and strong Coulomb interactions. Especially, some attractive topics in modern condensed matter physics, such as correlated insulator, superconductivity, topological excitons bands, are recently reported in stacking two monolayer (ML) TMDs. Here, we clearly reveal the tuning mechanism of tensile strain on interlayer excitons (IEXs) and intralayer excitons (IAXs) in WSe2/MoSe2heterostructure (HS) at low temperature. We utilize the cryogenic tensile strain platform to stretch the HS, and measure by micro-photoluminescence (μ-PL). The PL peaks redshifts of IEXs and IAXs in WSe2/MoSe2HS under tensile strain are well observed. The first-principles calculations by using density functional theory reveals the PL peaks redshifts of IEXs and IAXs origin from bandgap shrinkage. The calculation results also show the Mo-4d states dominating conduction band minimum shifts of the ML MoSe2plays a dominant role in the redshifts of IEXs. This work provides new insights into understanding the tuning mechanism of tensile strain on IEXs and IAXs in two-dimensional (2D) HS, and paves a way to the development of flexible optoelectronic devices based on 2D materials.
Collapse
Affiliation(s)
- Anping Ge
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xun Ge
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
| | - Liaoxin Sun
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xinle Lu
- Key Laboratory of Polar Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Lei Ma
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China
| | - Xinchao Zhao
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Bimu Yao
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin Zhang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- Department of Physics, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wenji Jing
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaohao Zhou
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
| | - Xuechu Shen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
| | - Wei Lu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
| |
Collapse
|
19
|
Wietek E, Florian M, Göser J, Taniguchi T, Watanabe K, Högele A, Glazov MM, Steinhoff A, Chernikov A. Nonlinear and Negative Effective Diffusivity of Interlayer Excitons in Moiré-Free Heterobilayers. PHYSICAL REVIEW LETTERS 2024; 132:016202. [PMID: 38242648 DOI: 10.1103/physrevlett.132.016202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/10/2023] [Indexed: 01/21/2024]
Abstract
Interlayer exciton diffusion is studied in atomically reconstructed MoSe_{2}/WSe_{2} heterobilayers with suppressed disorder. Local atomic registry is confirmed by characteristic optical absorption, circularly polarized photoluminescence, and g-factor measurements. Using transient microscopy we observe propagation properties of interlayer excitons that are independent from trapping at moiré- or disorder-induced local potentials. Confirmed by characteristic temperature dependence for free particles, linear diffusion coefficients of interlayer excitons at liquid helium temperature and low excitation densities are almost 1000 times higher than in previous observations. We further show that exciton-exciton repulsion and annihilation contribute nearly equally to nonlinear propagation by disentangling the two processes in the experiment and simulations. Finally, we demonstrate effective shrinking of the light emission area over time across several hundreds of picoseconds at the transition from exciton- to the plasma-dominated regimes. Supported by microscopic calculations for band gap renormalization to identify the Mott threshold, this indicates transient crossing between rapidly expanding, short-lived electron-hole plasma and slower, long-lived exciton populations.
Collapse
Affiliation(s)
- Edith Wietek
- Institute of Applied Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| | - Matthias Florian
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jonas Göser
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Alexander Högele
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539 München, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 München, Germany
| | | | - Alexander Steinhoff
- Institut für Theoretische Physik, Universität Bremen, 28334 Bremen, Germany
- Bremen Center for Computational Materials Science, Universität Bremen, 28334 Bremen, Germany
| | - Alexey Chernikov
- Institute of Applied Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
20
|
Chen Y, Chou TC, Fang CH, Lu CY, Hsiao CN, Hsu WT, Chen CC. Direct observation of single-atom defects in monolayer two-dimensional materials by using electron ptychography at 200 kV acceleration voltage. Sci Rep 2024; 14:277. [PMID: 38167628 PMCID: PMC10761697 DOI: 10.1038/s41598-023-50784-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
Electron ptychography has emerged as a popular technology for high-resolution imaging by combining the high coherence of electron sources with the ultra-fast scanning electron coil. However, the limitations of conventional pixelated detectors, including poor dynamic range and slow data readout speeds, have posed restrictions in the past on conducting electron ptychography experiments. We used the Gatan STELA pixelated detector to capture sequential diffraction data of monolayer two-dimensional (2D) materials for ptychographic reconstruction. By using the pixelated detector and electron ptychography, we demonstrate the observation of the radiation damage at atomic resolution in Transition Metal Dichalcogenides (TMDs).
Collapse
Affiliation(s)
- Ying Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Tzu-Chieh Chou
- Department of Physics, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ching-Hsing Fang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Cheng-Yi Lu
- Department of Physics, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chien-Nan Hsiao
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, 300092, Taiwan
| | - Wei-Ting Hsu
- Department of Physics, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chien-Chun Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300044, Taiwan.
| |
Collapse
|
21
|
Qian W, Qi P, Dai Y, Shi B, Tao G, Liu H, Zhang X, Xiang D, Fang Z, Liu W. Strongly Localized Moiré Exciton in Twisted Homobilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305200. [PMID: 37649150 DOI: 10.1002/smll.202305200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Indexed: 09/01/2023]
Abstract
Artificially molding exciton flux is the cornerstone for developing promising excitonic devices. In the emerging hetero/homobilayers, the spatial separated charges prolong exciton lifetimes and create out-plane dipoles, facilitating electrically control exciton flux on a large scale, and the nanoscale periodic moiré potentials arising from twist-angle or/and lattice mismatch can substantially alter exciton dynamics, which are mainly proved in the heterostructures. However, the spatially indirect excitons dynamics in homobilayers without lattice mismatch remain elusive. Here the nonequilibrium dynamics of indirect exciton in homobilayers are systematically investigated. The homobilayers with slightly twist-angle can induce a deep moiré potential (>50 meV) in the energy landscape of indirect excitons, resulting in a strongly localized moiré excitons insulating the transport dynamics from phonons and disorder. These findings provide insights into the exciton dynamics and many-body physics in moiré superlattices modulated energy landscape, with implications for designing excitonic devices operating at room temperature.
Collapse
Affiliation(s)
- Wenqi Qian
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Pengfei Qi
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Yuchen Dai
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing, 100871, China
| | - Beibei Shi
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing, 100871, China
| | - Guangyi Tao
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing, 100871, China
| | - Haiyi Liu
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Xubin Zhang
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Dong Xiang
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Zheyu Fang
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing, 100871, China
| | - Weiwei Liu
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| |
Collapse
|
22
|
Kim DS, Dominguez RC, Mayorga-Luna R, Ye D, Embley J, Tan T, Ni Y, Liu Z, Ford M, Gao FY, Arash S, Watanabe K, Taniguchi T, Kim S, Shih CK, Lai K, Yao W, Yang L, Li X, Miyahara Y. Electrostatic moiré potential from twisted hexagonal boron nitride layers. NATURE MATERIALS 2024; 23:65-70. [PMID: 37563291 DOI: 10.1038/s41563-023-01637-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Moiré superlattices host a rich variety of correlated electronic phases. However, the moiré potential is fixed by interlayer coupling, and it is dependent on the nature of carriers and valleys. In contrast, it has been predicted that twisted hexagonal boron nitride (hBN) layers can impose a periodic electrostatic potential capable of engineering the properties of adjacent functional layers. Here, we show that this potential is described by a theory of electric polarization originating from the interfacial charge redistribution, validated by its dependence on supercell sizes and distance from the twisted interfaces. This enables controllability of the potential depth and profile by controlling the twist angles between the two interfaces. Employing this approach, we further demonstrate how the electrostatic potential from a twisted hBN substrate impedes exciton diffusion in semiconductor monolayers, suggesting opportunities for engineering the properties of adjacent functional layers using the surface potential of a twisted hBN substrate.
Collapse
Affiliation(s)
- Dong Seob Kim
- Department of Physics and Center for Complex Quantum Systems, The University of Texas at Austin, Austin, TX, USA
- Center for Dynamics and Control of Materials and Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA
| | - Roy C Dominguez
- Department of Physics, Texas State University, San Marcos, TX, USA
| | | | - Dingyi Ye
- Department of Physics, Washington University in St Louis, St Louis, MO, USA
| | - Jacob Embley
- Department of Physics and Center for Complex Quantum Systems, The University of Texas at Austin, Austin, TX, USA
- Center for Dynamics and Control of Materials and Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA
| | - Tixuan Tan
- Department of Physics, and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China
| | - Yue Ni
- Department of Physics and Center for Complex Quantum Systems, The University of Texas at Austin, Austin, TX, USA
- Center for Dynamics and Control of Materials and Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA
| | - Zhida Liu
- Department of Physics and Center for Complex Quantum Systems, The University of Texas at Austin, Austin, TX, USA
- Center for Dynamics and Control of Materials and Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA
| | - Mitchell Ford
- Department of Physics, Texas State University, San Marcos, TX, USA
| | - Frank Y Gao
- Department of Physics and Center for Complex Quantum Systems, The University of Texas at Austin, Austin, TX, USA
- Center for Dynamics and Control of Materials and Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA
| | - Saba Arash
- Department of Physics and Center for Complex Quantum Systems, The University of Texas at Austin, Austin, TX, USA
- Center for Dynamics and Control of Materials and Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Suenne Kim
- Department of Photonics and Nanoelectronics, Hanyang University, Ansan, South Korea
| | - Chih-Kang Shih
- Department of Physics and Center for Complex Quantum Systems, The University of Texas at Austin, Austin, TX, USA
- Center for Dynamics and Control of Materials and Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA
| | - Keji Lai
- Department of Physics and Center for Complex Quantum Systems, The University of Texas at Austin, Austin, TX, USA
- Center for Dynamics and Control of Materials and Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA
| | - Wang Yao
- Department of Physics, and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China
| | - Li Yang
- Department of Physics, Washington University in St Louis, St Louis, MO, USA
| | - Xiaoqin Li
- Department of Physics and Center for Complex Quantum Systems, The University of Texas at Austin, Austin, TX, USA.
- Center for Dynamics and Control of Materials and Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
| | - Yoichi Miyahara
- Department of Physics, Texas State University, San Marcos, TX, USA.
- Materials Science, Engineering and Commercialization Program (MSEC), Texas State University, San Marcos, TX, USA.
| |
Collapse
|
23
|
Molino L, Aggarwal L, Maity I, Plumadore R, Lischner J, Luican-Mayer A. Influence of Atomic Relaxations on the Moiré Flat Band Wave Functions in Antiparallel Twisted Bilayer WS 2. NANO LETTERS 2023; 23:11778-11784. [PMID: 38054731 DOI: 10.1021/acs.nanolett.3c03735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Twisting bilayers of transition metal dichalcogenides gives rise to a moiré potential resulting in flat bands with localized wave functions and enhanced correlation effects. In this work, scanning tunneling microscopy is used to image a WS2 bilayer twisted approximately 3° off the antiparallel alignment. Scanning tunneling spectroscopy reveals localized states in the vicinity of the valence band onset, which is observed to occur first in regions with S-on-S Bernal stacking. In contrast, density functional theory calculations on twisted bilayers that have been relaxed in vacuum predict the highest-lying flat valence band to be localized in regions of AA' stacking. However, agreement with experiment is recovered when the calculations are performed on bilayers in which the atomic displacements from the unrelaxed positions have been reduced, reflecting the influence of the substrate and finite temperature. This demonstrates the delicate interplay of atomic relaxations and the electronic structure of twisted bilayer materials.
Collapse
Affiliation(s)
- Laurent Molino
- Department of Physics, University of Ottawa, Ottawa K1N 6X3, Canada
| | - Leena Aggarwal
- Department of Physics, University of Ottawa, Ottawa K1N 6X3, Canada
| | - Indrajit Maity
- Department of Materials, Imperial College London, and Thomas Young Centre for Theory and Simulation of Materials, London SW7 2BP, U.K
| | - Ryan Plumadore
- Department of Physics, University of Ottawa, Ottawa K1N 6X3, Canada
| | - Johannes Lischner
- Department of Materials, Imperial College London, and Thomas Young Centre for Theory and Simulation of Materials, London SW7 2BP, U.K
| | | |
Collapse
|
24
|
Lee H, Kim YB, Ryu JW, Kim S, Bae J, Koo Y, Jang D, Park KD. Recent progress of exciton transport in two-dimensional semiconductors. NANO CONVERGENCE 2023; 10:57. [PMID: 38102309 PMCID: PMC10724105 DOI: 10.1186/s40580-023-00404-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
Spatial manipulation of excitonic quasiparticles, such as neutral excitons, charged excitons, and interlayer excitons, in two-dimensional semiconductors offers unique capabilities for a broad range of optoelectronic applications, encompassing photovoltaics, exciton-integrated circuits, and quantum light-emitting systems. Nonetheless, their practical implementation is significantly restricted by the absence of electrical controllability for neutral excitons, short lifetime of charged excitons, and low exciton funneling efficiency at room temperature, which remain a challenge in exciton transport. In this comprehensive review, we present the latest advancements in controlling exciton currents by harnessing the advanced techniques and the unique properties of various excitonic quasiparticles. We primarily focus on four distinct control parameters inducing the exciton current: electric fields, strain gradients, surface plasmon polaritons, and photonic cavities. For each approach, the underlying principles are introduced in conjunction with its progression through recent studies, gradually expanding their accessibility, efficiency, and functionality. Finally, we outline the prevailing challenges to fully harness the potential of excitonic quasiparticles and implement practical exciton-based optoelectronic devices.
Collapse
Affiliation(s)
- Hyeongwoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yong Bin Kim
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jae Won Ryu
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sujeong Kim
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jinhyuk Bae
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yeonjeong Koo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Donghoon Jang
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kyoung-Duck Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
25
|
Wang A, Yao W, Yang Z, Zheng D, Li S, Shi Y, Li D, Wang F. Probing the interlayer excitation dynamics in WS 2/WSe 2 heterostructures with broadly tunable pump and probe energies. NANOSCALE 2023. [PMID: 38050459 DOI: 10.1039/d3nr04878k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
van der Waals heterostructures based on transition metal dichalcogenides (TMDs) provide a fascinating platform for exploring new physical phenomena and novel optoelectronic functionalities. Revealing the energy-dependence of photocarrier population dynamics in heterostructures is key for developing optoelectronic or valleytronic devices. Here, the broadband transient dynamics of interlayer excitation of a nearly-aligned WS2/WSe2 heterostructure is investigated by using energy-dependent pump-probe spectroscopy at cryogenic temperatures. Interestingly, WS2/WSe2 interlayer excitation, herein comprising a mixture of intra- and inter-layer excitons, exhibits largely constant lifetimes of a few hundred picoseconds across a broad energy range, in stark contrast to the salient energy-dependent dynamics of intralayer excitons in monolayer WSe2. While the PL emission of the WS2/WSe2 heterostructure is found to be strongly affected by electrostatic doping, the lifetimes of interlayer excitation show negligible changes. Our work elaborates the signatures of ultrafast dynamics introduced by intra- and interlayer co-existing excitonic species and enriches the understanding of interlayer couplings in van der Waals heterostructures.
Collapse
Affiliation(s)
- Anran Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China.
| | - Wendian Yao
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zidi Yang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dingqi Zheng
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China.
| | - Songlin Li
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China.
| | - Yi Shi
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China.
| | - Dehui Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fengqiu Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
26
|
Jiao C, Pei S, Wu S, Wang Z, Xia J. Tuning and exploiting interlayer coupling in two-dimensional van der Waals heterostructures. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:114503. [PMID: 37774692 DOI: 10.1088/1361-6633/acfe89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 09/29/2023] [Indexed: 10/01/2023]
Abstract
Two-dimensional (2D) layered materials can stack into new material systems, with van der Waals (vdW) interaction between the adjacent constituent layers. This stacking process of 2D atomic layers creates a new degree of freedom-interlayer interface between two adjacent layers-that can be independently studied and tuned from the intralayer degree of freedom. In such heterostructures (HSs), the physical properties are largely determined by the vdW interaction between the individual layers,i.e.interlayer coupling, which can be effectively tuned by a number of means. In this review, we summarize and discuss a number of such approaches, including stacking order, electric field, intercalation, and pressure, with both their experimental demonstrations and theoretical predictions. A comprehensive overview of the modulation on structural, optical, electrical, and magnetic properties by these four approaches are also presented. We conclude this review by discussing several prospective research directions in 2D HSs field, including fundamental physics study, property tuning techniques, and future applications.
Collapse
Affiliation(s)
- Chenyin Jiao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Shenghai Pei
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Song Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Zenghui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Juan Xia
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| |
Collapse
|
27
|
Yu L, Pistunova K, Hu J, Watanabe K, Taniguchi T, Heinz TF. Observation of quadrupolar and dipolar excitons in a semiconductor heterotrilayer. NATURE MATERIALS 2023:10.1038/s41563-023-01678-y. [PMID: 37857888 DOI: 10.1038/s41563-023-01678-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
Van der Waals (vdW) materials have opened up many avenues for discovery through layer assembly, as epitomized by interlayer dipolar excitons that exhibit electrically tunable luminescence, lasing and exciton condensation. Extending interlayer excitons to more vdW layers, however, raises fundamental questions concerning coherence within excitons and coupling between moiré superlattices at multiple interfaces. Here, by assembling angle-aligned WSe2/WS2/WSe2 heterotrilayers, we demonstrate the emergence of quadrupolar excitons. We confirm the exciton's quadrupolar nature by the decrease in its energy of 12 meV from coherent hole tunnelling between the two outer layers, its tunable static dipole moment under an external electric field and the reduced exciton-exciton interactions. At high exciton density, we also see signatures of a phase of oppositely aligned dipolar excitons, consistent with a staggered dipolar phase predicted to be driven by attractive dipolar interactions. Our demonstration paves the way for discovering emergent exciton orderings for three vdW layers and beyond.
Collapse
Affiliation(s)
- Leo Yu
- E. L. Ginzton Laboratory, Stanford University, Stanford, CA, USA.
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| | - Kateryna Pistunova
- E. L. Ginzton Laboratory, Stanford University, Stanford, CA, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Jenny Hu
- E. L. Ginzton Laboratory, Stanford University, Stanford, CA, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Tony F Heinz
- E. L. Ginzton Laboratory, Stanford University, Stanford, CA, USA.
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
28
|
Zhu Y, Prezhdo OV, Long R, Fang WH. Twist Angle-Dependent Intervalley Charge Carrier Transfer and Recombination in Bilayer WS 2. J Am Chem Soc 2023; 145:22826-22835. [PMID: 37796526 DOI: 10.1021/jacs.3c09170] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
A twist angle at a van der Waals junction provides a handle to tune its optoelectronic properties for a variety of applications, and a comprehensive understanding of how the twist modulates electronic structure, interlayer coupling, and carrier dynamics is needed. We employ time-dependent density functional theory and nonadiabatic molecular dynamics to elucidate angle-dependent intervalley carrier transfer and recombination in bilayer WS2. Repulsion between S atoms in twisted configurations weakens interlayer coupling, increases the interlayer distance, and softens layer breathing modes. Twisting has a minor influence on K valleys while it lowers Γ valleys and raises Q valleys because their wave functions are delocalized between layers. Consequently, the reduced energy gaps between the K and Γ valleys accelerate the hole transfer in the twisted structures. Intervalley electron transfer proceeds nearly an order of magnitude faster than hole transfer. The more localized wave functions at K than Q values and larger bandgaps result in smaller nonadiabatic couplings for intervalley recombination, making it 3-4 times slower in twisted than high-symmetry structures. B2g breathing, E2g in-plane, and A1g out-of-plane modes are most active during intervalley carrier transfer and recombination. The faster intervalley transfer and extended carrier lifetimes in twisted junctions are favorable for optoelectronic device performance.
Collapse
Affiliation(s)
- Yonghao Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P.R. China
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P.R. China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
29
|
Kim H, Dong D, Okamura Y, Shinokita K, Watanabe K, Taniguchi T, Matsuda K. Dynamics of Moiré Trion and Its Valley Polarization in a Microfabricated WSe 2/MoSe 2 Heterobilayer. ACS NANO 2023. [PMID: 37450661 DOI: 10.1021/acsnano.3c02952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The moiré potential, induced by stacking two monolayer semiconductors with slightly different lattice mismatches, acts as periodic quantum confinement for optically generated excitons, resulting in spatially ordered zero-dimensional quantum systems. However, there are limitations to exploring intrinsic optical properties of moiré excitons due to ensemble emissions and broadened emissions from many peaks caused by the inhomogeneity of the moiré potential. In this study, we proposed a microfabrication technique based on focused Ga+ ion beams, which enables us to control the number of peaks originating from the moiré potential and thus explore unknown moiré optical characteristics of WSe2/MoSe2 heterobilayer. By taking advantage of this approach, we reveal emissions from a single moiré exciton and charged moiré exciton (trion) under electrostatic doping conditions. We show the momentum dark moiré trion state above the bright trion state with a splitting energy of approximately 4 meV and clarify that the dynamics are determined by the initial trion population in the bright state. Furthermore, the degree of negative circularly polarized emissions and their valley dynamics of moiré trions are dominated by a very long valley relaxation process lasting ∼700 ns. Our findings on microfabricated heterobilayer could be viewed as an extension of our groundbreaking efforts in the field of quantum optics application using moiré superlattices.
Collapse
Affiliation(s)
- Heejun Kim
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Duanfei Dong
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yuki Okamura
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Keisuke Shinokita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kazunari Matsuda
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
30
|
Erkensten D, Brem S, Perea-Causín R, Hagel J, Tagarelli F, Lopriore E, Kis A, Malic E. Electrically tunable dipolar interactions between layer-hybridized excitons. NANOSCALE 2023; 15:11064-11071. [PMID: 37309577 PMCID: PMC10324325 DOI: 10.1039/d3nr01049j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
Abstract
Transition-metal dichalcogenide bilayers exhibit a rich exciton landscape including layer-hybridized excitons, i.e. excitons which are of partly intra- and interlayer nature. In this work, we study hybrid exciton-exciton interactions in naturally stacked WSe2 homobilayers. In these materials, the exciton landscape is electrically tunable such that the low-energy states can be rendered more or less interlayer-like depending on the strength of the external electric field. Based on a microscopic and material-specific many-particle theory, we reveal two intriguing interaction regimes: a low-dipole regime at small electric fields and a high-dipole regime at larger fields, involving interactions between hybrid excitons with a substantially different intra- and interlayer composition in the two regimes. While the low-dipole regime is characterized by weak inter-excitonic interactions between intralayer-like excitons, the high-dipole regime involves mostly interlayer-like excitons which display a strong dipole-dipole repulsion and give rise to large spectral blue-shifts and a highly anomalous diffusion. Overall, our microscopic study sheds light on the remarkable electrical tunability of hybrid exciton-exciton interactions in atomically thin semiconductors and can guide future experimental studies in this growing field of research.
Collapse
Affiliation(s)
- Daniel Erkensten
- Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden.
| | - Samuel Brem
- Department of Physics, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Raül Perea-Causín
- Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden.
| | - Joakim Hagel
- Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden.
| | - Fedele Tagarelli
- Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Edoardo Lopriore
- Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Andras Kis
- Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ermin Malic
- Department of Physics, Philipps-Universität Marburg, 35037 Marburg, Germany
- Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden.
| |
Collapse
|
31
|
Malic E, Perea-Causin R, Rosati R, Erkensten D, Brem S. Exciton transport in atomically thin semiconductors. Nat Commun 2023; 14:3430. [PMID: 37301820 PMCID: PMC10257678 DOI: 10.1038/s41467-023-38556-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
In this Comment, the authors discuss the current status, the challenges, and potential technological impact of exciton transport in transition metal dichalcogenide (TMD) monolayers, lateral and vertical heterostructures as well as moiré excitons in twisted TMD heterostacks.
Collapse
Affiliation(s)
- Ermin Malic
- Department of Physics, Philipps-Universität Marburg, 35032, Marburg, Germany.
| | - Raül Perea-Causin
- Department of Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Roberto Rosati
- Department of Physics, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Daniel Erkensten
- Department of Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Samuel Brem
- Department of Physics, Philipps-Universität Marburg, 35032, Marburg, Germany
| |
Collapse
|
32
|
Abstract
In superlattices of twisted semiconductor monolayers, tunable moiré potentials emerge, trapping excitons into periodic arrays. In particular, spatially separated interlayer excitons are subject to a deep potential landscape and they exhibit a permanent dipole providing a unique opportunity to study interacting bosonic lattices. Recent experiments have demonstrated density-dependent transport properties of moiré excitons, which could play a key role for technological applications. However, the intriguing interplay between exciton-exciton interactions and moiré trapping has not been well understood yet. In this work, we develop a microscopic theory of interacting excitons in external potentials allowing us to tackle this highly challenging problem. We find that interactions between moiré excitons lead to a delocalization at intermediate densities, and we show how this transition can be tuned via twist angle and temperature. The delocalization is accompanied by a modification of optical moiré resonances, which gradually merge into a single free exciton peak.
Collapse
Affiliation(s)
- Samuel Brem
- Department of Physics, Philipps University, 35037 Marburg, Germany
| | - Ermin Malic
- Department of Physics, Philipps University, 35037 Marburg, Germany
| |
Collapse
|
33
|
Choi J, Embley J, Blach DD, Perea-Causín R, Erkensten D, Kim DS, Yuan L, Yoon WY, Taniguchi T, Watanabe K, Ueno K, Tutuc E, Brem S, Malic E, Li X, Huang L. Fermi Pressure and Coulomb Repulsion Driven Rapid Hot Plasma Expansion in a van der Waals Heterostructure. NANO LETTERS 2023; 23:4399-4405. [PMID: 37154560 DOI: 10.1021/acs.nanolett.3c00678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Transition metal dichalcogenide heterostructures provide a versatile platform to explore electronic and excitonic phases. As the excitation density exceeds the critical Mott density, interlayer excitons are ionized into an electron-hole plasma phase. The transport of the highly non-equilibrium plasma is relevant for high-power optoelectronic devices but has not been carefully investigated previously. Here, we employ spatially resolved pump-probe microscopy to investigate the spatial-temporal dynamics of interlayer excitons and hot-plasma phase in a MoSe2/WSe2 twisted bilayer. At the excitation density of ∼1014 cm-2, well exceeding the Mott density, we find a surprisingly rapid initial expansion of hot plasma to a few microns away from the excitation source within ∼0.2 ps. Microscopic theory reveals that this rapid expansion is mainly driven by Fermi pressure and Coulomb repulsion, while the hot carrier effect has only a minor effect in the plasma phase.
Collapse
Affiliation(s)
- Junho Choi
- Department of Physics and Center for Complex Quantum Systems, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jacob Embley
- Department of Physics and Center for Complex Quantum Systems, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Daria D Blach
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2050, United States
| | - Raül Perea-Causín
- Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Daniel Erkensten
- Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Dong Seob Kim
- Department of Physics and Center for Complex Quantum Systems, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Long Yuan
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2050, United States
| | - Woo Young Yoon
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Keiji Ueno
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Emanuel Tutuc
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Samuel Brem
- Department of Physics, Philipps University of Marburg, 35037 Marburg, Germany
| | - Ermin Malic
- Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden
- Department of Physics, Philipps University of Marburg, 35037 Marburg, Germany
| | - Xiaoqin Li
- Department of Physics and Center for Complex Quantum Systems, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2050, United States
| |
Collapse
|
34
|
Li Z, Tabataba-Vakili F, Zhao S, Rupp A, Bilgin I, Herdegen Z, März B, Watanabe K, Taniguchi T, Schleder GR, Baimuratov AS, Kaxiras E, Müller-Caspary K, Högele A. Lattice Reconstruction in MoSe 2-WSe 2 Heterobilayers Synthesized by Chemical Vapor Deposition. NANO LETTERS 2023; 23:4160-4166. [PMID: 37141148 DOI: 10.1021/acs.nanolett.2c05094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Vertical van der Waals heterostructures of semiconducting transition metal dichalcogenides realize moiré systems with rich correlated electron phases and moiré exciton phenomena. For material combinations with small lattice mismatch and twist angles as in MoSe2-WSe2, however, lattice reconstruction eliminates the canonical moiré pattern and instead gives rise to arrays of periodically reconstructed nanoscale domains and mesoscopically extended areas of one atomic registry. Here, we elucidate the role of atomic reconstruction in MoSe2-WSe2 heterostructures synthesized by chemical vapor deposition. With complementary imaging down to the atomic scale, simulations, and optical spectroscopy methods, we identify the coexistence of moiré-type cores and extended moiré-free regions in heterostacks with parallel and antiparallel alignment. Our work highlights the potential of chemical vapor deposition for applications requiring laterally extended heterosystems of one atomic registry or exciton-confining heterostack arrays.
Collapse
Affiliation(s)
- Zhijie Li
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Farsane Tabataba-Vakili
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingtraße 4, 80799 München, Germany
| | - Shen Zhao
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Anna Rupp
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Ismail Bilgin
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Ziria Herdegen
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstraße 11, 81377 München, Germany
| | - Benjamin März
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstraße 11, 81377 München, Germany
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Gabriel Ravanhani Schleder
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Anvar S Baimuratov
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Efthimios Kaxiras
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Knut Müller-Caspary
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstraße 11, 81377 München, Germany
| | - Alexander Högele
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingtraße 4, 80799 München, Germany
| |
Collapse
|
35
|
Rodríguez Á, Varillas J, Haider G, Kalbáč M, Frank O. Complex Strain Scapes in Reconstructed Transition-Metal Dichalcogenide Moiré Superlattices. ACS NANO 2023; 17:7787-7796. [PMID: 37022987 PMCID: PMC10134736 DOI: 10.1021/acsnano.3c00609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
We investigate the intrinsic strain associated with the coupling of twisted MoS2/MoSe2 heterobilayers by combining experiments and molecular dynamics simulations. Our study reveals that small twist angles (between 0 and 2°) give rise to considerable atomic reconstructions, large moiré periodicities, and high levels of local strain (with an average value of ∼1%). Moreover, the formation of moiré superlattices is assisted by specific reconstructions of stacking domains. This process leads to a complex strain distribution characterized by a combined deformation state of uniaxial, biaxial, and shear components. Lattice reconstruction is hindered with larger twist angles (>10°) that produce moiré patterns of small periodicity and negligible strains. Polarization-dependent Raman experiments also evidence the presence of an intricate strain distribution in heterobilayers with near-0° twist angles through the splitting of the E2g1 mode of the top (MoS2) layer due to atomic reconstruction. Detailed analyses of moiré patterns measured by AFM unveil varying degrees of anisotropy in the moiré superlattices due to the heterostrain induced during the stacking of monolayers.
Collapse
Affiliation(s)
- Álvaro Rodríguez
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
- Materials
Science Factory, Instituto de Ciencia de
Materiales de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Javier Varillas
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
- Institute
of Thermomechanics, Czech Academy of Sciences, Dolejškova 1402/5, 182 00 Prague 8, Czech Republic
| | - Golam Haider
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Martin Kalbáč
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Otakar Frank
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
| |
Collapse
|
36
|
Tagarelli F, Lopriore E, Erkensten D, Perea-Causín R, Brem S, Hagel J, Sun Z, Pasquale G, Watanabe K, Taniguchi T, Malic E, Kis A. Electrical control of hybrid exciton transport in a van der Waals heterostructure. NATURE PHOTONICS 2023; 17:615-621. [PMID: 37426431 PMCID: PMC10322698 DOI: 10.1038/s41566-023-01198-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/10/2023] [Indexed: 07/11/2023]
Abstract
Interactions between out-of-plane dipoles in bosonic gases enable the long-range propagation of excitons. The lack of direct control over collective dipolar properties has so far limited the degrees of tunability and the microscopic understanding of exciton transport. In this work we modulate the layer hybridization and interplay between many-body interactions of excitons in a van der Waals heterostructure with an applied vertical electric field. By performing spatiotemporally resolved measurements supported by microscopic theory, we uncover the dipole-dependent properties and transport of excitons with different degrees of hybridization. Moreover, we find constant emission quantum yields of the transporting species as a function of excitation power with radiative decay mechanisms dominating over nonradiative ones, a fundamental requirement for efficient excitonic devices. Our findings provide a complete picture of the many-body effects in the transport of dilute exciton gases, and have crucial implications for studying emerging states of matter such as Bose-Einstein condensation and optoelectronic applications based on exciton propagation.
Collapse
Affiliation(s)
- Fedele Tagarelli
- Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Edoardo Lopriore
- Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Daniel Erkensten
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Raül Perea-Causín
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Samuel Brem
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Joakim Hagel
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Zhe Sun
- Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gabriele Pasquale
- Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Ermin Malic
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Andras Kis
- Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
37
|
Giri A, Park G, Jeong U. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chem Rev 2023; 123:3329-3442. [PMID: 36719999 PMCID: PMC10103142 DOI: 10.1021/acs.chemrev.2c00455] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.
Collapse
Affiliation(s)
- Anupam Giri
- Department
of Chemistry, Faculty of Science, University
of Allahabad, Prayagraj, UP-211002, India
| | - Gyeongbae Park
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
- Functional
Materials and Components R&D Group, Korea Institute of Industrial Technology, Gwahakdanji-ro 137-41, Sacheon-myeon, Gangneung, Gangwon-do25440, Republic of Korea
| | - Unyong Jeong
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
| |
Collapse
|
38
|
Nie X, Wu X, Wang Y, Ban S, Lei Z, Yi J, Liu Y, Liu Y. Surface acoustic wave induced phenomena in two-dimensional materials. NANOSCALE HORIZONS 2023; 8:158-175. [PMID: 36448884 DOI: 10.1039/d2nh00458e] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface acoustic wave (SAW)-matter interaction provides a fascinating key for inducing and manipulating novel phenomena and functionalities in two-dimensional (2D) materials. The dynamic strain field and piezo-electric field associated with propagating SAWs determine the coherent manipulation and transduction between 2D excitons and phonons. Over the past decade, many intriguing acoustic-induced effects, including the acousto-electric effect, acousto-galvanic effect, acoustic Stark effect, acoustic Hall effect and acoustic exciton transport, have been reported experimentally. However, many more phenomena, such as the valley acousto-electric effect, valley acousto-electric Hall effect and acoustic spin Hall effect, were only theoretically proposed, the experimental verification of which are yet to be achieved. In this minireview, we attempt to overview the recent breakthrough of SAW-induced phenomena covering acoustic charge transport, acoustic exciton transport and modulation, and coherent acoustic phonons. Perspectives on the opportunities of the proposed SAW-induced phenomena, as well as open experimental challenges, are also discussed, attempting to offer some guidelines for experimentalists and theorists to explore the desired exotic properties and boost practical applications of 2D materials.
Collapse
Affiliation(s)
- Xuchen Nie
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Xiaoyue Wu
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Yang Wang
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Siyuan Ban
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Zhihao Lei
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Ying Liu
- College of Jincheng, Nanjing University of Aeronautics and Astronautics, Nanjing 211156, China.
| | - Yanpeng Liu
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| |
Collapse
|
39
|
Zheng W, Xiang L, de Quesada FA, Augustin M, Lu Z, Wilson M, Sood A, Wu F, Shcherbakov D, Memaran S, Baumbach RE, McCandless GT, Chan JY, Liu S, Edgar JH, Lau CN, Lui CH, Santos EJG, Lindenberg A, Smirnov D, Balicas L. Thickness- and Twist-Angle-Dependent Interlayer Excitons in Metal Monochalcogenide Heterostructures. ACS NANO 2022; 16:18695-18707. [PMID: 36257051 DOI: 10.1021/acsnano.2c07394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Interlayer excitons, or bound electron-hole pairs whose constituent quasiparticles are located in distinct stacked semiconducting layers, are being intensively studied in heterobilayers of two-dimensional semiconductors. They owe their existence to an intrinsic type-II band alignment between both layers that convert these into p-n junctions. Here, we unveil a pronounced interlayer exciton (IX) in heterobilayers of metal monochalcogenides, namely, γ-InSe on ε-GaSe, whose pronounced emission is adjustable just by varying their thicknesses given their number of layers dependent direct band gaps. Time-dependent photoluminescense spectroscopy unveils considerably longer interlayer exciton lifetimes with respect to intralayer ones, thus confirming their nature. The linear Stark effect yields a bound electron-hole pair whose separation d is just (3.6 ± 0.1) Å with d being very close to dSe = 3.4 Å which is the calculated interfacial Se separation. The envelope of IX is twist-angle-dependent and describable by superimposed emissions that are nearly equally spaced in energy, as if quantized due to localization induced by the small moiré periodicity. These heterostacks are characterized by extremely flat interfacial valence bands making them prime candidates for the observation of magnetism or other correlated electronic phases upon carrier doping.
Collapse
Affiliation(s)
- Wenkai Zheng
- National High Magnetic Field Laboratory, Tallahassee, Florida32310, United States
- Department of Physics, Florida State University, Tallahassee, Florida32306, United States
| | - Li Xiang
- National High Magnetic Field Laboratory, Tallahassee, Florida32310, United States
- Department of Physics, Florida State University, Tallahassee, Florida32306, United States
| | - Felipe A de Quesada
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California94305, United States
| | - Mathias Augustin
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, EdinburghEH9 3FD, United Kingdom
- Higgs Centre for Theoretical Physics, The University of Edinburgh, EdinburghEH9 3FD, United Kingdom
| | - Zhengguang Lu
- National High Magnetic Field Laboratory, Tallahassee, Florida32310, United States
- Department of Physics, Florida State University, Tallahassee, Florida32306, United States
| | - Matthew Wilson
- Department of Physics and Astronomy, University of California, Riverside, California92521, United States
| | - Aditya Sood
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California94305, United States
| | - Fengcheng Wu
- School of Physics and Technology, Wuhan University, Wuhan, 430072China
| | - Dmitry Shcherbakov
- Department of Physics, The Ohio State University, Columbus, Ohio43210, United States
| | - Shahriar Memaran
- National High Magnetic Field Laboratory, Tallahassee, Florida32310, United States
- Department of Physics, Florida State University, Tallahassee, Florida32306, United States
| | - Ryan E Baumbach
- National High Magnetic Field Laboratory, Tallahassee, Florida32310, United States
- Department of Physics, Florida State University, Tallahassee, Florida32306, United States
| | - Gregory T McCandless
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas76798, United States
| | - Julia Y Chan
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas76798, United States
| | - Song Liu
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas66506, United States
| | - James H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas66506, United States
| | - Chun Ning Lau
- Department of Physics, The Ohio State University, Columbus, Ohio43210, United States
| | - Chun Hung Lui
- Department of Physics and Astronomy, University of California, Riverside, California92521, United States
| | - Elton J G Santos
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, EdinburghEH9 3FD, United Kingdom
- Higgs Centre for Theoretical Physics, The University of Edinburgh, EdinburghEH9 3FD, United Kingdom
- Donostia International Physics Centre, 20018Donostia-San Sebastian, Spain
| | - Aaron Lindenberg
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California94305, United States
| | - Dmitry Smirnov
- National High Magnetic Field Laboratory, Tallahassee, Florida32310, United States
| | - Luis Balicas
- National High Magnetic Field Laboratory, Tallahassee, Florida32310, United States
- Department of Physics, Florida State University, Tallahassee, Florida32306, United States
| |
Collapse
|
40
|
Sun X, Zhu Y, Qin H, Liu B, Tang Y, Lü T, Rahman S, Yildirim T, Lu Y. Enhanced interactions of interlayer excitons in free-standing heterobilayers. Nature 2022; 610:478-484. [PMID: 36224395 DOI: 10.1038/s41586-022-05193-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/04/2022] [Indexed: 11/09/2022]
Abstract
Strong, long-range dipole-dipole interactions between interlayer excitons (IXs) can lead to new multiparticle correlation regimes1,2, which drive the system into distinct quantum and classical phases2-5, including dipolar liquids, crystals and superfluids. Both repulsive and attractive dipole-dipole interactions have been theoretically predicted between IXs in a semiconductor bilayer2,6-8, but only repulsive interactions have been reported experimentally so far3,9-16. This study investigated free-standing, twisted (51°, 53°, 45°) tungsten diselenide/tungsten disulfide (WSe2/WS2) heterobilayers, in which we observed a transition in the nature of dipolar interactions among IXs, from repulsive to attractive. This was caused by quantum-exchange-correlation effects, leading to the appearance of a robust interlayer biexciton phase (formed by two IXs), which has been theoretically predicted6-8 but never observed before in experiments. The reduced dielectric screening in a free-standing heterobilayer not only resulted in a much higher formation efficiency of IXs, but also led to strongly enhanced dipole-dipole interactions, which enabled us to observe the many-body correlations of pristine IXs at the two-dimensional quantum limit. In addition, we firstly observed several emission peaks from moiré-trapped IXs at room temperature in a well-aligned, free-standing WSe2/WS2 heterobilayer. Our findings open avenues for exploring new quantum phases with potential for applications in non-linear optics.
Collapse
Affiliation(s)
- Xueqian Sun
- School of Engineering, College of Engineering and Computer Science, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yi Zhu
- School of Engineering, College of Engineering and Computer Science, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Hao Qin
- School of Engineering, College of Engineering and Computer Science, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Boqing Liu
- School of Engineering, College of Engineering and Computer Science, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yilin Tang
- School of Engineering, College of Engineering and Computer Science, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Tieyu Lü
- Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, China
| | - Sharidya Rahman
- School of Engineering, College of Engineering and Computer Science, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Tanju Yildirim
- Center for Functional Sensor and Actuator, Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, Japan
| | - Yuerui Lu
- School of Engineering, College of Engineering and Computer Science, the Australian National University, Canberra, Australian Capital Territory, Australia. .,Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, the Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
41
|
Shanks DN, Mahdikhanysarvejahany F, Stanfill TG, Koehler MR, Mandrus DG, Taniguchi T, Watanabe K, LeRoy BJ, Schaibley JR. Interlayer Exciton Diode and Transistor. NANO LETTERS 2022; 22:6599-6605. [PMID: 35969812 DOI: 10.1021/acs.nanolett.2c01905] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Controlling the flow of charge neutral interlayer exciton (IX) quasiparticles can potentially lead to low loss excitonic circuits. Here, we report unidirectional transport of IXs along nanoscale electrostatically defined channels in an MoSe2-WSe2 heterostructure. These results are enabled by a lithographically defined triangular etch in a graphene gate to create a potential energy "slide". By performing spatially and temporally resolved photoluminescence measurements, we measure smoothly varying IX energy along the structure and high speed exciton flow with a drift velocity up to 2 × 106 cm/s, an order of magnitude larger than previous experiments. Furthermore, exciton flow can be controlled by saturating exciton population in the channel using a second laser pulse, demonstrating an optically gated excitonic transistor. Our work paves the way toward low loss excitonic circuits, the study of bosonic transport in one-dimensional channels, and custom potential energy landscapes for excitons in van der Waals heterostructures.
Collapse
Affiliation(s)
- Daniel N Shanks
- Department of Physics, University of Arizona, Tucson, Arizona 85721, United States
| | | | - Trevor G Stanfill
- Department of Physics, University of Arizona, Tucson, Arizona 85721, United States
| | - Michael R Koehler
- IAMM Diffraction Facility, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37920, United States
| | - David G Mandrus
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Brian J LeRoy
- Department of Physics, University of Arizona, Tucson, Arizona 85721, United States
| | - John R Schaibley
- Department of Physics, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
42
|
Fitzgerald JM, Thompson JJP, Malic E. Twist Angle Tuning of Moiré Exciton Polaritons in van der Waals Heterostructures. NANO LETTERS 2022; 22:4468-4474. [PMID: 35594200 PMCID: PMC9185750 DOI: 10.1021/acs.nanolett.2c01175] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/16/2022] [Indexed: 06/01/2023]
Abstract
Twisted atomically thin semiconductors are characterized by moiré excitons. Their optical signatures and selection rules are well understood. However, their hybridization with photons in the strong coupling regime for heterostructures integrated in an optical cavity has not been the focus of research yet. Here, we combine an excitonic density matrix formalism with a Hopfield approach to provide microscopic insights into moiré exciton polaritons. In particular, we show that exciton-light coupling, polariton energy, and even the number of polariton branches can be controlled via the twist angle. We find that these new hybrid light-exciton states become delocalized relative to the constituent excitons due to the mixing with light and higher-energy excitons. The system can be interpreted as a natural quantum metamaterial with a periodicity that can be engineered via the twist angle. Our study presents a significant advance in microscopic understanding and control of moiré exciton polaritons in twisted atomically thin semiconductors.
Collapse
Affiliation(s)
- Jamie M. Fitzgerald
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | | | - Ermin Malic
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Department
of Physics, Philipps University, 35037 Marburg, Germany
| |
Collapse
|
43
|
Liu Y, Elbanna A, Gao W, Pan J, Shen Z, Teng J. Interlayer Excitons in Transition Metal Dichalcogenide Semiconductors for 2D Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107138. [PMID: 34700359 DOI: 10.1002/adma.202107138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Optoelectronic materials that allow on-chip integrated light signal emitting, routing, modulation, and detection are crucial for the development of high-speed and high-throughput optical communication and computing technologies. Interlayer excitons in 2D van der Waals heterostructures, where electrons and holes are bounded by Coulomb interaction but spatially localized in different 2D layers, have recently attracted intense attention for their enticing properties and huge potential in device applications. Here, a general view of these 2D-confined hydrogen-like bosonic particles and the state-of-the-art developments with respect to the frontier concepts and prototypes is presented. Staggered type-II band alignment enables expansion of the interlayer direct bandgap from the intrinsic visible in monolayers up to the near- or even mid-infrared spectrum. Owing to large exciton binding energy, together with ultralong lifetime, room-temperature exciton devices and observation of quantum behaviors are demonstrated. With the rapid advances, it can be anticipated that future studies of interlayer excitons will not only allow the construction of all-exciton information processing circuits but will also continue to enrich the panoply of ideas on quantum phenomena.
Collapse
Affiliation(s)
- Yuanda Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Ahmed Elbanna
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 637371, Singapore
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 637371, Singapore
- The Photonics Institute and Center for Disruptive Photonic Technologies, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jisheng Pan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Zexiang Shen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 637371, Singapore
- The Photonics Institute and Center for Disruptive Photonic Technologies, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jinghua Teng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| |
Collapse
|
44
|
Twist Angle-Dependent Interlayer Exciton in MoS2 Bilayers Revealed by Room-Temperature Reflectance. CRYSTALS 2022. [DOI: 10.3390/cryst12060761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In 2H stacking bilayer MoS2, the exciton with an interlayer nature has been evidenced due to the hybridization of hole states among both layers. The transition energy of this interlayer exciton is located between the A and B excitons. In this work, we investigate the evolution of optical properties in stacking MoS2 bilayers with the twisted angles ranging from 0° to 60°, especially focusing on the interlayer exciton. The clear modulations of the exciton responses are observed by the room-temperature reflectance. The interlayer exciton transition is observed in the artificial stacking bilayer MoS2 with the twisted angle around 60°. We found that the interlayer exciton is very sensitive to the twisted angle. Once the stacking angle deviates the 2H stacking by a few degrees, the interlayer transition is quenched. This is due to the bilayer symmetry and interlayer coupling of this unique system.
Collapse
|
45
|
Bieniek M, Sadecka K, Szulakowska L, Hawrylak P. Theory of Excitons in Atomically Thin Semiconductors: Tight-Binding Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1582. [PMID: 35564291 PMCID: PMC9104105 DOI: 10.3390/nano12091582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023]
Abstract
Atomically thin semiconductors from the transition metal dichalcogenide family are materials in which the optical response is dominated by strongly bound excitonic complexes. Here, we present a theory of excitons in two-dimensional semiconductors using a tight-binding model of the electronic structure. In the first part, we review extensive literature on 2D van der Waals materials, with particular focus on their optical response from both experimental and theoretical points of view. In the second part, we discuss our ab initio calculations of the electronic structure of MoS2, representative of a wide class of materials, and review our minimal tight-binding model, which reproduces low-energy physics around the Fermi level and, at the same time, allows for the understanding of their electronic structure. Next, we describe how electron-hole pair excitations from the mean-field-level ground state are constructed. The electron-electron interactions mix the electron-hole pair excitations, resulting in excitonic wave functions and energies obtained by solving the Bethe-Salpeter equation. This is enabled by the efficient computation of the Coulomb matrix elements optimized for two-dimensional crystals. Next, we discuss non-local screening in various geometries usually used in experiments. We conclude with a discussion of the fine structure and excited excitonic spectra. In particular, we discuss the effect of band nesting on the exciton fine structure; Coulomb interactions; and the topology of the wave functions, screening and dielectric environment. Finally, we follow by adding another layer and discuss excitons in heterostructures built from two-dimensional semiconductors.
Collapse
Affiliation(s)
- Maciej Bieniek
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
- Department of Theoretical Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074 Würzburg, Germany
| | - Katarzyna Sadecka
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
- Department of Theoretical Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ludmiła Szulakowska
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
| | - Paweł Hawrylak
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
| |
Collapse
|
46
|
Chuang MH, Chen CA, Liu PY, Zhang XQ, Yeh NY, Shih HJ, Lee YH. Scalable Moiré Lattice with Oriented TMD Monolayers. NANOSCALE RESEARCH LETTERS 2022; 17:34. [PMID: 35286495 PMCID: PMC8921411 DOI: 10.1186/s11671-022-03670-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Moiré lattice in artificially stacked monolayers of two-dimensional (2D) materials effectively modulates the electronic structures of materials, which is widely highlighted. Formation of the electronic Moiré superlattice promises the prospect of uniformity among different moiré cells across the lattice, enabling a new platform for novel properties, such as unconventional superconductivity, and scalable quantum emitters. Recently, epitaxial growth of the monolayer transition metal dichalcogenide (TMD) is achieved on the sapphire substrate by chemical vapor deposition (CVD) to realize scalable growth of highly-oriented monolayers. However, fabrication of the scalable Moiré lattice remains challenging due to the lack of essential manipulation of the well-aligned monolayers for clean interface quality and precise twisting angle control. Here, scalable and highly-oriented monolayers of TMD are realized on the sapphire substrates by using the customized CVD process. Controlled growth of the epitaxial monolayers is achieved by promoting the rotation of the nuclei-like domains in the initial growth stage, enabling aligned domains for further grain growth in the steady-state stage. A full coverage and distribution of the highly-oriented domains are verified by second-harmonic generation (SHG) microscopy. By developing the method for clean monolayer manipulation, hetero-stacked bilayer (epi-WS2/epi-MoS2) is fabricated with the specific angular alignment of the two major oriented monolayers at the edge direction of 0°/ ± 60°. On account of the optimization for scalable Moiré lattice with a high-quality interface, the observation of interlayer exciton at low temperature illustrates the feasibility of scalable Moiré superlattice based on the oriented monolayers.
Collapse
Affiliation(s)
- Meng-Hsi Chuang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chun-An Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Po-Yen Liu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Xin-Quan Zhang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Nai-Yu Yeh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hao-Jen Shih
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Hsien Lee
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
47
|
Chakraborty SK, Kundu B, Nayak B, Dash SP, Sahoo PK. Challenges and opportunities in 2D heterostructures for electronic and optoelectronic devices. iScience 2022; 25:103942. [PMID: 35265814 PMCID: PMC8898921 DOI: 10.1016/j.isci.2022.103942] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
48
|
Huang D, Choi J, Shih CK, Li X. Excitons in semiconductor moiré superlattices. NATURE NANOTECHNOLOGY 2022; 17:227-238. [PMID: 35288673 DOI: 10.1038/s41565-021-01068-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Semiconductor moiré superlattices represent a rapidly developing area of engineered photonic materials and a new platform to explore correlated electron states and quantum simulation. In this Review, we briefly introduce early experiments that identified new exciton resonances in transition metal dichalcogenide heterobilayers and discuss several topics including two types of transition metal dichalcogenide moiré superlattice, new optical selection rules, early evidence of moiré excitons, and how the resonant energy, dynamics and diffusion properties of moiré excitons can be controlled via the twist angle. To interpret optical spectra, it is important to measure the energy modulation within a moiré supercell. In this context, we describe a few scanning tunnelling microscopy experiments that measure the moiré potential landscape directly. Finally, we review a few recent experiments that applied excitonic optical spectroscopy to probe correlated electron phenomena in transition metal dichalcogenide moiré superlattices.
Collapse
Affiliation(s)
- Di Huang
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA.
| | - Junho Choi
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA
- Texas Materials Institute and Center for Dynamics and Control of Materials, The University of Texas-Austin, Austin, TX, USA
| | - Chih-Kang Shih
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA
- Texas Materials Institute and Center for Dynamics and Control of Materials, The University of Texas-Austin, Austin, TX, USA
| | - Xiaoqin Li
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA.
- Texas Materials Institute and Center for Dynamics and Control of Materials, The University of Texas-Austin, Austin, TX, USA.
| |
Collapse
|
49
|
Sun Z, Ciarrocchi A, Tagarelli F, Marin JFG, Watanabe K, Taniguchi T, Kis A. Excitonic transport driven by repulsive dipolar interaction in a van der Waals heterostructure. NATURE PHOTONICS 2022; 16:79-85. [PMID: 34992677 PMCID: PMC7612161 DOI: 10.1038/s41566-021-00908-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Dipolar bosonic gases are currently the focus of intensive research due to their interesting many-body physics in the quantum regime. Their experimental embodiments range from Rydberg atoms to GaAs double quantum wells and van der Waals heterostructures built from transition metal dichalcogenides. Although quantum gases are very dilute, mutual interactions between particles could lead to exotic many-body phenomena such as Bose-Einstein condensation and high-temperature superfluidity. Here, we report the effect of repulsive dipolar interactions on the dynamics of interlayer excitons in the dilute regime. By using spatial and time-resolved photoluminescence imaging, we observe the dynamics of exciton transport, enabling a direct estimation of the exciton mobility. The presence of interactions significantly modifies the diffusive transport of excitons, effectively acting as a source of drift force and enhancing the diffusion coefficient by one order of magnitude. The repulsive dipolar interactions combined with the electrical control of interlayer excitons opens up appealing new perspectives for excitonic devices.
Collapse
Affiliation(s)
- Zhe Sun
- Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Correspondence should be addressed to: Zhe Sun () and Andras Kis ()
| | - Alberto Ciarrocchi
- Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Fedele Tagarelli
- Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Juan Francisco Gonzalez Marin
- Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Andras Kis
- Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Correspondence should be addressed to: Zhe Sun () and Andras Kis ()
| |
Collapse
|
50
|
Lopriore E, Marin EG, Fiori G. An ultrafast photodetector driven by interlayer exciton dissociation in a van der Waals heterostructure. NANOSCALE HORIZONS 2021; 7:41-50. [PMID: 34877960 DOI: 10.1039/d1nh00396h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ultrafast photodetectors based on two-dimensional materials suffer from low responsivities and high dark currents. Interlayer exciton dissociation in type-II vertical heterojunctions of transition metal dichalcogenides is a viable mechanism for achieving higher responsivities with picosecond response times. Here, we propose a novel device concept based on these structures, with potential for self-powered photodetector applications characterized by an unprecedented trade-off between speed and responsivity with zero dark current. In order to assess the realistic performance to be expected in the proposed device, we have purposely devised a simulation approach able to provide a detailed investigation of the physics at play, while showing excellent predictive capabilities when compared with experiments on interlayer exciton transport available in the literature. The proposed high-performance photodetectors with tunable responsivities are at reach with available fabrication techniques and could help in paving the way towards monolithically integrated artificial neural networks for ultrafast machine vision in speed sensitive applications.
Collapse
Affiliation(s)
- Edoardo Lopriore
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Enrique G Marin
- Departamento de Electrónica y Tecnología de Computadores, Universidad de Granada, Granada, Spain
| | - Gianluca Fiori
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| |
Collapse
|