1
|
Timbrell L, Clark J, Linares-Matás G, Boisard S, Arous EB, Blinkhorn J, Grove M, Scerri EML. Climate seasonality and predictability during the middle stone age and implications for technological diversification in early Homo sapiens. Sci Rep 2025; 15:11645. [PMID: 40185845 PMCID: PMC11971293 DOI: 10.1038/s41598-025-95573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
Regionalisation is considered to be a hallmark of the Middle Stone Age (MSA) compared to the Early Stone Age. Yet what drove diversification around a shared technological substrate that persisted across Africa for hundreds of thousands of years remains debated. Non-mutually exclusive hypotheses include region-specific styles in manufacture, social signalling, cultural drift between geographically isolated populations, and diverse environmental adaptations, as well as the impacts of unequal research histories and intensities. We explore the potential ecological bases of behavioural diversity during the MSA between two well-studied and diverse areas: eastern and northwestern Africa. We utilise a set of standardised bioclimatic simulations, as well as a time series decomposition algorithm, to determine the nature and extent of regional differences in terms of environmental productivity, seasonality and predictability at MSA sites through time. Our results highlight that, compared to human occupations of eastern Africa, northwestern African MSA occupations are associated with colder, drier and less productive environments, albeit colder, but wetter and more productive compared to surrounding areas, with higher temperature seasonality and more predictable climates across millennia. We then theoretically consider the implications of our results for technological diversification between these two regions during the Middle to Late Pleistocene, such as for the investment in specific risk mitigation strategies for dealing with seasonally mobile resources in northern localities, and the diversification of MSA toolkits in tropical eastern Africa.
Collapse
Affiliation(s)
- Lucy Timbrell
- Human Palaeosystems Group, Max Planck Institute of Geoanthropology, Jena, Germany.
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK.
| | - James Clark
- Corpus Christi College, University of Cambridge, Cambridge, UK
| | | | - Solène Boisard
- Department of Anthropology, University of Montreal, Montreal, QC, Canada
| | - Eslem Ben Arous
- Human Palaeosystems Group, Max Planck Institute of Geoanthropology, Jena, Germany
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
- Muséum national d'Histoire naturelle, Histoire Naturelle des Humanités Préhistoriques, CNRS- MNHN-UPVD, Paris, France
| | - James Blinkhorn
- Human Palaeosystems Group, Max Planck Institute of Geoanthropology, Jena, Germany
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - Matt Grove
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - Eleanor M L Scerri
- Human Palaeosystems Group, Max Planck Institute of Geoanthropology, Jena, Germany
- Department of Classics and Archaeology, University of Malta, Valletta, Malta
- Department of Prehistoric Archaeology, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Caley T, Souron A, Uno KT, Macho GA. Climate and Human Evolution: Insights from Marine Records. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:23-53. [PMID: 38986033 DOI: 10.1146/annurev-marine-032223-031306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The relationship between climate and human evolution is complex, and the causal mechanisms remain unknown. Here, we review and synthesize what is currently known about climate forcings on African landscapes, focusing mainly on the last 4 million years. We use information derived from marine sediment archives and data-numerical climate model comparisons and integration. There exists a heterogeneity in pan-African hydroclimate changes, forced by a combination of orbitally paced, low-latitude fluctuations in insolation; polar ice volume changes; tropical sea surface temperature gradients linked to the Walker circulation; and possibly greenhouse gases. Pan-African vegetation changes do not follow the same pattern, which is suggestive of additional influences, such as CO2 and temperature. We caution against reliance on temporal correlations between global or regional climate, environmental changes, and human evolution and briefly proffer some ideas on how pan-African climate trends could help create novel conceptual frameworks to determine the causal mechanisms of associations between climate/habitat change and hominin evolution.
Collapse
Affiliation(s)
- Thibaut Caley
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac, France;
| | - Antoine Souron
- Univ. Bordeaux, CNRS, Ministère de la Culture, PACEA, UMR 5199, Pessac, France;
| | - Kevin T Uno
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Gabriele A Macho
- Senckenberg Society for Nature Research, Frankfurt, Germany;
- Department of Earth Sciences, University College London, London, United Kingdom
| |
Collapse
|
3
|
Zan J, Louys J, Dennell R, Petraglia M, Ning W, Fang X, Zhang W, Hu Z. Mid-Pleistocene aridity and landscape shifts promoted Palearctic hominin dispersals. Nat Commun 2024; 15:10279. [PMID: 39604451 PMCID: PMC11603339 DOI: 10.1038/s41467-024-54767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Population expansions and contractions out of and into Africa since the early Pleistocene have influenced the course of human evolution. While local- and regional-scale investigations have provided insights into the drivers of Eurasian hominin dispersals, a continental-scale and integrated study of hominin-environmental interactions across Palearctic Eurasia has been lacking. Here, we report high-resolution (up to ∼5-10 kyr sample interval) carbon isotope time series of loess deposits in Central Asia and northwest China, a region dominated by westerly winds, providing unique paleoecological and paleoclimatic records for over ~3.6 Ma. These data, combined with further syntheses of Pleistocene paleontological and archaeological records and spatio-temporal distributions of Eurasian eolian deposits and river terraces, demonstrate a pronounced transformation of landscapes around the Mid-Pleistocene Climate Transition. Increased climate amplitude and aridity fluctuations over this period led to the widespread formation of more open habitats, river terraces, and desert-loess landscapes, pushing hominins to range more widely and find solutions to increasingly challenging environments. Mid-Pleistocene climatic and ecological transitions, and the formation of modern desert and loess landscapes and river networks, emerge as critical events during the dispersal of early hominins in Palearctic Eurasia.
Collapse
Affiliation(s)
- Jinbo Zan
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Julien Louys
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, Queensland, Australia.
| | - Robin Dennell
- Department of Archaeology, University of Exeter, Exeter, UK
| | - Michael Petraglia
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, Queensland, Australia
- School of Social Science, University of Queensland, Brisbane, Queensland, Australia
- Human Origins Program, Smithsonian Institution, Washington, DC, USA
| | - Wenxiao Ning
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomin Fang
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weilin Zhang
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Hu
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Barr WA, Wood B. Spatial sampling bias influences our understanding of early hominin evolution in eastern Africa. Nat Ecol Evol 2024; 8:2113-2120. [PMID: 39164591 DOI: 10.1038/s41559-024-02522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024]
Abstract
The eastern branch of the Eastern African Rift System (EARS) is the source of a large proportion of the early hominin fossil record, but it covers a tiny fraction (ca. 1%) of the continent. Here we investigate how this mismatch between where fossils are preserved and where hominins probably lived may influence our ability to understand early hominin evolution, using extant mammals as analogues. We show that the eastern branch of the EARS is not an environmentally representative sample of the full species range for nearly all extant rift-dwelling mammals. Likewise, when we investigate published morphometric datasets for extant cercopithecine primates, evidence from the eastern branch alone fails to capture major portions of continental-scale cercopithecine cranial morphospace. We suggest that extant rift-dwelling species should be used as analogues to place confidence intervals on hominin habitat reconstructions. Furthermore, given the north-south orientation of the eastern branch of the EARS, morphoclines that are not aligned along this major north-south axis are likely to be poorly sampled by sites in the eastern branch. There is a pressing need for research on the geography of early hominin morphoclines to estimate how morphologically representative the hominin fossil sample from the eastern branch may be.
Collapse
Affiliation(s)
- W Andrew Barr
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington DC, USA.
| | - Bernard Wood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington DC, USA
| |
Collapse
|
5
|
Ramírez-Pedraza I, Tornero C, Aouraghe H, Rivals F, Patalano R, Haddoumi H, Expósito I, Rodríguez-Hidalgo A, Mischke S, van der Made J, Piñero P, Blain HA, Roberts P, Jha DK, Agustí J, Sánchez-Bandera C, Lemjidi A, Benito-Calvo A, Moreno-Ribas E, Oujaa A, Mhamdi H, Souhir M, Aissa AM, Chacón MG, Sala-Ramos R. Arid, mosaic environments during the Plio-Pleistocene transition and early hominin dispersals in northern Africa. Nat Commun 2024; 15:8393. [PMID: 39366927 PMCID: PMC11452666 DOI: 10.1038/s41467-024-52672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
The earliest archaeological evidence from northern Africa dates to ca. 2.44 Ma. Nevertheless, the palaeoenvironmental setting of hominins living in this part of the continent at the Plio-Pleistocene transition remains poorly documented, particularly in comparison to eastern and southern Africa. The Guefaït-4 fossil site in eastern Morocco sheds light on our knowledge of palaeoenvironments in northern Africa. Our study reveals the oldest known presence of C4 plants in the northern part of the continent in a mosaic landscape that includes open grasslands, forested areas, wetlands, and seasonal aridity. This diverse landscape and resource availability likely facilitated the occupation of the region by mammals, including potentially hominins. Our regional-scale study provides a complementary perspective to global-scale studies and highlights the importance of considering the diversity of microhabitats within a given region when studying species-dispersal dynamics.
Collapse
Affiliation(s)
- Iván Ramírez-Pedraza
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, Spain.
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili (URV), Tarragona, Spain.
- isoTROPIC Research Group, Max Planck Institute of Geoanthropology, Jena, Germany.
| | - Carlos Tornero
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, Spain
- Department of Prehistory, Autonomous University of Barcelona (UAB), Bellaterra, Spain
| | - Hassan Aouraghe
- Faculté des Sciences, Département de Géologie, Université Mohammed Premier, Oujda, Morocco
| | - Florent Rivals
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, Spain
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili (URV), Tarragona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Robert Patalano
- isoTROPIC Research Group, Max Planck Institute of Geoanthropology, Jena, Germany
- Department of Biological and Biomedical Sciences, School of Health and Behavioral Sciences, Bryant University, Smithfield, USA
| | - Hamid Haddoumi
- Faculté des Sciences, Département de Géologie, Université Mohammed Premier, Oujda, Morocco
| | - Isabel Expósito
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, Spain
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Antonio Rodríguez-Hidalgo
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, Spain
- Consejo Superior de Investigaciones Científicas, Instituto de Arqueología (CSIC-Junta de Extremadura), Mérida, Spain
| | - Steffen Mischke
- Institute of Earth Sciences, University of Iceland, Reykjavík, Iceland
| | - Jan van der Made
- Consejo Superior de Investigaciones Científicas (CSIC), Museo Nacional de Ciencias Naturales, Departamento de Paleobiología, Madrid, Spain
| | - Pedro Piñero
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, Spain
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Hugues-Alexandre Blain
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, Spain
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Patrick Roberts
- isoTROPIC Research Group, Max Planck Institute of Geoanthropology, Jena, Germany
- Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
- School of Archaeology, University of Philippines, Diliman, Quezon City, Philippines
| | - Deepak Kumar Jha
- Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
| | - Jordi Agustí
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, Spain
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili (URV), Tarragona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Christian Sánchez-Bandera
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, Spain
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Abdelkhalek Lemjidi
- Institut National des Sciences de l'Archéologie et du Patrimoine (INSAP), Rabat, Morocco
| | - Alfonso Benito-Calvo
- Centro Nacional de Investigación Sobre la Evolución Humana (CENIEH), Burgos, Spain
| | - Elena Moreno-Ribas
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, Spain
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Aïcha Oujaa
- Institut National des Sciences de l'Archéologie et du Patrimoine (INSAP), Rabat, Morocco
| | - Hicham Mhamdi
- Faculté des Sciences, Département de Géologie, Université Mohammed Premier, Oujda, Morocco
| | - Mohamed Souhir
- Faculté des Sciences, Département de Géologie, Université Mohammed Premier, Oujda, Morocco
| | - Al Mahdi Aissa
- Faculté des Sciences, Département de Géologie, Université Mohammed Premier, Oujda, Morocco
| | - M Gema Chacón
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, Spain
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili (URV), Tarragona, Spain
- UMR 7194-Histoire Naturelle de l'Homme Préhistorique (MNHN/CNRS/UPVD), Paris, France
| | - Robert Sala-Ramos
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, Spain
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili (URV), Tarragona, Spain
| |
Collapse
|
6
|
Khan P, Ali S, Jan R, Kim KM. Lignin Nanoparticles: Transforming Environmental Remediation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1541. [PMID: 39330697 PMCID: PMC11435067 DOI: 10.3390/nano14181541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
In the face of escalating environmental challenges driven by human activities, the quest for innovative solutions to counter pollution, contamination, and ecological degradation has gained paramount importance. Traditional approaches to environmental remediation often fall short in addressing the complexity and scale of modern-day environmental problems. As industries transition towards sustainable paradigms, the exploration of novel materials and technologies becomes crucial. Lignin nanoparticles have emerged as a promising avenue of exploration in this context. Once considered a mere byproduct, lignin's unique properties and versatile functional groups have propelled it to the forefront of environmental remediation research. This review paper delves into the resurgence of lignin from an environmental perspective, examining its pivotal role in carbon cycling and its potential to address various environmental challenges. The paper extensively discusses the synthesis, properties, and applications of lignin nanoparticles in diverse fields such as water purification and soil remediation. Moreover, it highlights the challenges associated with nanoparticle deployment, ranging from Eco toxicological assessments to scalability issues. Multidisciplinary collaboration and integration of research findings with real-world applications are emphasized as critical factors for unlocking the transformative potential of lignin nanoparticles. Ultimately, this review underscores lignin nanoparticles as beacons of hope in the pursuit of cleaner, healthier, and more harmonious coexistence between humanity and nature through innovative environmental remediation strategies.
Collapse
Affiliation(s)
- Pirzada Khan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rahmatullah Jan
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
7
|
Anil D, Devi M, Jha G, Khan Z, Mahesh V, Ajithprasad P, Chauhan N. Deep-rooted Indian Middle Palaeolithic: Terminal Middle Pleistocene lithic assemblage from Retlapalle, Andhra Pradesh, India. PLoS One 2024; 19:e0302580. [PMID: 39190629 PMCID: PMC11349113 DOI: 10.1371/journal.pone.0302580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/28/2024] [Indexed: 08/29/2024] Open
Abstract
The Indian Middle Palaeolithic has been recognized as crucial evidence for understanding the complex behavioural dynamics of hominins and is also seen as a behavioural marker of early Homo sapiens in the region. Recent research has pushed back the timeline of the Middle Palaeolithic to the Middle Pleistocene epoch, indicating a potential in-situ emergence from the earlier Late Acheulian culture. The long-lasting Middle Palaeolithic culture in India evolve over multiple glacial-interglacial cycle, showing signs of behavioural resilience to bigger climatic upheaval like ~74 ka Toba super-eruption. This has added to the complexity of our understanding of the Middle Palaeolithic in the region and emphasizes the need for further research. This study focuses upon the investigation of Middle Palaeolithic artefacts found in the Retlapalle area within the upper Gundlakamma river basin, Andhra Pradesh. The dating of the artefact-bearing layer was carried out using the p-IR-IRSL method, which revealed a burial age of 139±17 thousand years. The Retlapalle assemblage is characterized by a diverse range of Levallois core reductions, various retouched artefacts, with a dominance of pointed tools, and a few blade components. The study provides a valuable addition to the existing body of data concerning Palaeolithic sites dating back to the Middle Pleistocene, a period that remains relatively underexplored.
Collapse
Affiliation(s)
- Devara Anil
- Department of Archaeology and Ancient History, Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Monika Devi
- Luminescence Laboratory, AMOPH Division, Physical Research Laboratory, Ahmedabad, Gujarat, India
- Indian Institute of Technology, Gandhinagar, Gujarat, India
| | - Gopesh Jha
- Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
- Institute for Archaeological Sciences, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Zakir Khan
- School of Studies in Ancient Indian History, Culture, and Archaeology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Vrushab Mahesh
- Department of Archaeology and Ancient History, Maharaja Sayajirao University of Baroda, Vadodara, India
| | - P. Ajithprasad
- Department of Archaeology and Ancient History, Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Naveen Chauhan
- Luminescence Laboratory, AMOPH Division, Physical Research Laboratory, Ahmedabad, Gujarat, India
| |
Collapse
|
8
|
Toffolo MB. Pleistocene archaeology and environments of the Free State, South Africa. AZANIA 2024; 59:317-351. [PMID: 39411576 PMCID: PMC11473054 DOI: 10.1080/0067270x.2024.2379724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/10/2024] [Indexed: 10/19/2024]
Abstract
Pleistocene climate variability is often seen as a major cause of much of the evidence observed in the archaeological and palaeontological record of Africa. While continent-wide climate systems play an important role when testing pan-African human evolutionary processes, a more focused perspective centred on specific ecosystems at a regional level allows a detailed assessment of the different spatiotemporal scales of the proxies used to reconstruct past environments and the ways humans adapted to their change over time. Recent research in the arid interior of South Africa has provided insights into the availability of freshwater in the open landscape, which is a fundamental factor for human survival and the spatiotemporal distribution of which may have had a major influence on adaptive strategies. This article reviews the Pleistocene archaeological and environmental evidence of the Free State province of South Africa, which has produced major localities such as Cornelia-Uitzoek, Florisbad and Rose Cottage Cave, with the aim of providing a starting point for the discussion over freshwater availability with regard to southern Africa's Grassland Biome. Particular emphasis is given to the description of multi-proxy approaches including the analysis of sediments, faunal remains, enamel stable isotopes, pollens and phytoliths and absolute dating based on trapped-charge methods. The picture that emerges highlights the paucity of Pleistocene datasets in the Free State and the necessity to expand research at open-air sites and improve the chronological resolution of human occupations and palaeoenvironmental proxies.
Collapse
Affiliation(s)
- Michael B. Toffolo
- Geochronology and Geology Programme, Spanish National Research Centre for Human Evolution (CENIEH), Paseo Sierra de Atapuerca 3, 09002Burgos, Spain
| |
Collapse
|
9
|
Luppi AI, Rosas FE, Noonan MP, Mediano PAM, Kringelbach ML, Carhart-Harris RL, Stamatakis EA, Vernon AC, Turkheimer FE. Oxygen and the Spark of Human Brain Evolution: Complex Interactions of Metabolism and Cortical Expansion across Development and Evolution. Neuroscientist 2024; 30:173-198. [PMID: 36476177 DOI: 10.1177/10738584221138032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Scientific theories on the functioning and dysfunction of the human brain require an understanding of its development-before and after birth and through maturation to adulthood-and its evolution. Here we bring together several accounts of human brain evolution by focusing on the central role of oxygen and brain metabolism. We argue that evolutionary expansion of human transmodal association cortices exceeded the capacity of oxygen delivery by the vascular system, which led these brain tissues to rely on nonoxidative glycolysis for additional energy supply. We draw a link between the resulting lower oxygen tension and its effect on cytoarchitecture, which we posit as a key driver of genetic developmental programs for the human brain-favoring lower intracortical myelination and the presence of biosynthetic materials for synapse turnover. Across biological and temporal scales, this protracted capacity for neural plasticity sets the conditions for cognitive flexibility and ongoing learning, supporting complex group dynamics and intergenerational learning that in turn enabled improved nutrition to fuel the metabolic costs of further cortical expansion. Our proposed model delineates explicit mechanistic links among metabolism, molecular and cellular brain heterogeneity, and behavior, which may lead toward a clearer understanding of brain development and its disorders.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
- Centre for Complexity Science, Imperial College London, London, UK
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - MaryAnn P Noonan
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychology, Queen Mary University of London, London, UK
- Department of Computing, Imperial College London, London, UK
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
10
|
Pascual-Garrido A, Carvalho S, Almeida-Warren K. Primate archaeology 3.0. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24835. [PMID: 37671610 DOI: 10.1002/ajpa.24835] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023]
Abstract
The new field of primate archaeology investigates the technological behavior and material record of nonhuman primates, providing valuable comparative data on our understanding of human technological evolution. Yet, paralleling hominin archaeology, the field is largely biased toward the analysis of lithic artifacts. While valuable comparative data have been gained through an examination of extant nonhuman primate tool use and its archaeological record, focusing on this one single aspect provides limited insights. It is therefore necessary to explore to what extent other non-technological activities, such as non-tool aided feeding, traveling, social behaviors or ritual displays, leave traces that could be detected in the archaeological record. Here we propose four new areas of investigation which we believe have been largely overlooked by primate archaeology and that are crucial to uncovering the full archaeological potential of the primate behavioral repertoire, including that of our own: (1) Plant technology; (2) Archaeology beyond technology; (3) Landscape archaeology; and (4) Primate cultural heritage. We discuss each theme in the context of the latest developments and challenges, as well as propose future directions. Developing a more "inclusive" primate archaeology will not only benefit the study of primate evolution in its own right but will aid conservation efforts by increasing our understanding of changes in primate-environment interactions over time.
Collapse
Affiliation(s)
- Alejandra Pascual-Garrido
- Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, University of Oxford, Oxford, UK
| | - Susana Carvalho
- Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, University of Oxford, Oxford, UK
- Interdisciplinary Centre for Archaeology and the Evolution of Human Behaviour, University of Algarve, Faro, Portugal
- Gorongosa National Park, Sofala, Mozambique
| | - Katarina Almeida-Warren
- Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, University of Oxford, Oxford, UK
- Interdisciplinary Centre for Archaeology and the Evolution of Human Behaviour, University of Algarve, Faro, Portugal
| |
Collapse
|
11
|
Gannon C, Hill RA, Lameira AR. Open plains are not a level playing field for hominid consonant-like versus vowel-like calls. Sci Rep 2023; 13:21138. [PMID: 38129443 PMCID: PMC10739746 DOI: 10.1038/s41598-023-48165-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Africa's paleo-climate change represents an "ecological black-box" along the evolutionary timeline of spoken language; a vocal hominid went in and, millions of years later, out came a verbal human. It is unknown whether or how a shift from forested, dense habitats towards drier, open ones affected hominid vocal communication, potentially setting stage for speech evolution. To recreate how arboreal proto-vowels and proto-consonants would have interacted with a new ecology at ground level, we assessed how a series of orangutan voiceless consonant-like and voiced vowel-like calls travelled across the savannah. Vowel-like calls performed poorly in comparison to their counterparts. Only consonant-like calls afforded effective perceptibility beyond 100 m distance without requiring repetition, as is characteristic of loud calling behaviour in nonhuman primates, typically composed by vowel-like calls. Results show that proto-consonants in human ancestors may have enhanced reliability of distance vocal communication across a canopy-to-ground ecotone. The ecological settings and soundscapes experienced by human ancestors may have had a more profound impact on the emergence and shape of spoken language than previously recognized.
Collapse
Affiliation(s)
| | - Russell A Hill
- Department of Anthropology, Durham University, Durham, UK
- Primate and Predator Project, Soutpansberg Mountains, Thohoyandou, South Africa
- Department of Biological Sciences, University of Venda, Thohoyandou, South Africa
| | | |
Collapse
|
12
|
Beverly EJ. Using climate to model ancient human migration. Science 2023; 381:605-606. [PMID: 37561860 DOI: 10.1126/science.adj4631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Modeling fills gaps in the fossil record of early hominin movement from Africa.
Collapse
Affiliation(s)
- Emily J Beverly
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
| |
Collapse
|
13
|
Carhart-Harris RL, Chandaria S, Erritzoe DE, Gazzaley A, Girn M, Kettner H, Mediano PAM, Nutt DJ, Rosas FE, Roseman L, Timmermann C, Weiss B, Zeifman RJ, Friston KJ. Canalization and plasticity in psychopathology. Neuropharmacology 2023; 226:109398. [PMID: 36584883 DOI: 10.1016/j.neuropharm.2022.109398] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
This theoretical article revives a classical bridging construct, canalization, to describe a new model of a general factor of psychopathology. To achieve this, we have distinguished between two types of plasticity, an early one that we call 'TEMP' for 'Temperature or Entropy Mediated Plasticity', and another, we call 'canalization', which is close to Hebbian plasticity. These two forms of plasticity can be most easily distinguished by their relationship to 'precision' or inverse variance; TEMP relates to increased model variance or decreased precision, whereas the opposite is true for canalization. TEMP also subsumes increased learning rate, (Ising) temperature and entropy. Dictionary definitions of 'plasticity' describe it as the property of being easily shaped or molded; TEMP is the better match for this. Importantly, we propose that 'pathological' phenotypes develop via mechanisms of canalization or increased model precision, as a defensive response to adversity and associated distress or dysphoria. Our model states that canalization entrenches in psychopathology, narrowing the phenotypic state-space as the agent develops expertise in their pathology. We suggest that TEMP - combined with gently guiding psychological support - can counter canalization. We address questions of whether and when canalization is adaptive versus maladaptive, furnish our model with references to basic and human neuroscience, and offer concrete experiments and measures to test its main hypotheses and implications. This article is part of the Special Issue on "National Institutes of Health Psilocybin Research Speaker Series".
Collapse
Affiliation(s)
- R L Carhart-Harris
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA; Centre for Psychedelic Research, Imperial College London, UK.
| | - S Chandaria
- Centre for Psychedelic Research, Imperial College London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK; Institute of Philosophy, School of Advanced Study, University of London, UK
| | - D E Erritzoe
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - A Gazzaley
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA
| | - M Girn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - H Kettner
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA; Centre for Psychedelic Research, Imperial College London, UK
| | - P A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, UK
| | - D J Nutt
- Centre for Psychedelic Research, Imperial College London, UK
| | - F E Rosas
- Centre for Psychedelic Research, Imperial College London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK; Department of Informatics, University of Sussex, UK; Centre for Complexity Science, Imperial College London, UK
| | - L Roseman
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - C Timmermann
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - B Weiss
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - R J Zeifman
- Centre for Psychedelic Research, Imperial College London, UK; NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, USA
| | - K J Friston
- Wellcome Centre for Human Neuroimaging, University College London, UK
| |
Collapse
|
14
|
Boeckx C. What made us "hunter-gatherers of words". Front Neurosci 2023; 17:1080861. [PMID: 36845441 PMCID: PMC9947416 DOI: 10.3389/fnins.2023.1080861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
This paper makes three interconnected claims: (i) the "human condition" cannot be captured by evolutionary narratives that reduce it to a recent 'cognitive modernity', nor by narratives that eliminates all cognitive differences between us and out closest extinct relatives, (ii) signals from paleogenomics, especially coming from deserts of introgression but also from signatures of positive selection, point to the importance of mutations that impact neurodevelopment, plausibly leading to temperamental differences, which may impact cultural evolutionary trajectories in specific ways, and (iii) these trajectories are expected to affect the language phenotypes, modifying what is being learned and how it is put to use. In particular, I hypothesize that these different trajectories influence the development of symbolic systems, the flexible ways in which symbols combine, and the size and configurations of the communities in which these systems are put to use.
Collapse
Affiliation(s)
- Cedric Boeckx
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- Institute of Complex Systems, Universitat de Barcelona, Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
15
|
Picin A, Wedage O, Blinkhorn J, Amano N, Deraniyagala S, Boivin N, Roberts P, Petraglia M. Homo sapiens lithic technology and microlithization in the South Asian rainforest at Kitulgala Beli-lena (c. 45 - 8,000 years ago). PLoS One 2022; 17:e0273450. [PMID: 36227910 PMCID: PMC9560501 DOI: 10.1371/journal.pone.0273450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Recent archaeological investigations in Sri Lanka have reported evidence for the exploitation and settlement of tropical rainforests by Homo sapiens since c. 48,000 BP. Information on technological approaches used by human populations in rainforest habitats is restricted to two cave sites, Batadomba-lena and Fa-Hien Lena. Here, we provide detailed study of the lithic assemblages of Kitulgala Beli-lena, a recently excavated rockshelter preserving a sedimentary sequence from the Late Pleistocene to the Holocene. Our analysis indicates in situ lithic production and the recurrent use of the bipolar method for the production of microliths. Stone tool analyses demonstrate long-term technological stability from c. 45,000 to 8,000 years BP, a pattern documented in other rainforest locations. Foraging behaviour is characterised by the use of lithic bipolar by-products together with osseous projectile points for the consistent targeting of semi-arboreal/arboreal species, allowing for the widespread and recurrent settlement of the wet zone of Sri Lanka.
Collapse
Affiliation(s)
- Andrea Picin
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Bereich für Ur- und Frühgeschichtliche Archäologie, Friedrich Schiller Universität Jena, Jena, Germany
- * E-mail: (AP); (OW); (PR); (MP)
| | - Oshan Wedage
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Department of History and Archaeology, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
- * E-mail: (AP); (OW); (PR); (MP)
| | - James Blinkhorn
- Pan-African Evolution Research Group, Max Planck Institute for the Science of Human History, Jena, Germany
- Department of Geography, Royal Holloway, University of London, London, United Kingdom
| | - Noel Amano
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | | | - Nicole Boivin
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- School of Social Science, The University of Queensland, Brisbane, Australia
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- School of Social Science, The University of Queensland, Brisbane, Australia
- * E-mail: (AP); (OW); (PR); (MP)
| | - Michael Petraglia
- School of Social Science, The University of Queensland, Brisbane, Australia
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, Australia
- * E-mail: (AP); (OW); (PR); (MP)
| |
Collapse
|
16
|
Foerster V, Asrat A, Bronk Ramsey C, Brown ET, Chapot MS, Deino A, Duesing W, Grove M, Hahn A, Junginger A, Kaboth-Bahr S, Lane CS, Opitz S, Noren A, Roberts HM, Stockhecke M, Tiedemann R, Vidal CM, Vogelsang R, Cohen AS, Lamb HF, Schaebitz F, Trauth MH. Pleistocene climate variability in eastern Africa influenced hominin evolution. NATURE GEOSCIENCE 2022; 15:805-811. [PMID: 36254302 PMCID: PMC9560894 DOI: 10.1038/s41561-022-01032-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/18/2022] [Indexed: 05/26/2023]
Abstract
Despite more than half a century of hominin fossil discoveries in eastern Africa, the regional environmental context of hominin evolution and dispersal is not well established due to the lack of continuous palaeoenvironmental records from one of the proven habitats of early human populations, particularly for the Pleistocene epoch. Here we present a 620,000-year environmental record from Chew Bahir, southern Ethiopia, which is proximal to key fossil sites. Our record documents the potential influence of different episodes of climatic variability on hominin biological and cultural transformation. The appearance of high anatomical diversity in hominin groups coincides with long-lasting and relatively stable humid conditions from ~620,000 to 275,000 years bp (episodes 1-6), interrupted by several abrupt and extreme hydroclimate perturbations. A pattern of pronounced climatic cyclicity transformed habitats during episodes 7-9 (~275,000-60,000 years bp), a crucial phase encompassing the gradual transition from Acheulean to Middle Stone Age technologies, the emergence of Homo sapiens in eastern Africa and key human social and cultural innovations. Those accumulative innovations plus the alignment of humid pulses between northeastern Africa and the eastern Mediterranean during high-frequency climate oscillations of episodes 10-12 (~60,000-10,000 years bp) could have facilitated the global dispersal of H. sapiens.
Collapse
Affiliation(s)
- Verena Foerster
- Institute of Geography Education, University of Cologne, Cologne, Germany
| | - Asfawossen Asrat
- Department of Mining and Geological Engineering, Botswana International University of Science and Technology, Palapye, Botswana
- School of Earth Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Erik T. Brown
- Large Lakes Observatory and Department of Earth & Environmental Sciences, University of Minnesota Duluth, Duluth, MN USA
| | - Melissa S. Chapot
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK
| | - Alan Deino
- Berkeley Geochronology Center, Berkeley, CA USA
| | - Walter Duesing
- Institute of Geosciences, University of Potsdam, Potsdam, Germany
| | - Matthew Grove
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - Annette Hahn
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Annett Junginger
- Department of Geoscience, Eberhard Karls Universität Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | | | | | - Stephan Opitz
- Institute for Geography, University of Cologne, Cologne, Germany
| | - Anders Noren
- LacCore/CSDCO, Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN USA
| | - Helen M. Roberts
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK
| | - Mona Stockhecke
- Large Lakes Observatory and Department of Earth & Environmental Sciences, University of Minnesota Duluth, Duluth, MN USA
| | - Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic Zoology, University of Potsdam, Potsdam, Germany
| | - Céline M. Vidal
- Department of Geography, University of Cambridge, Cambridge, UK
| | - Ralf Vogelsang
- Institute of Prehistoric Archaeology, University of Cologne, Cologne, Germany
| | - Andrew S. Cohen
- Department of Geosciences, University of Arizona, Tucson, AZ USA
| | - Henry F. Lamb
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK
- Department of Botany, School of Natural Sciences, Trinity College, University of Dublin, Dublin, Ireland
| | - Frank Schaebitz
- Institute of Geography Education, University of Cologne, Cologne, Germany
| | - Martin H. Trauth
- Institute of Geosciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
17
|
Holocene bidirectional river system along the Kenya Rift and its influence on East African faunal exchange and diversity gradients. Proc Natl Acad Sci U S A 2022; 119:e2121388119. [PMID: 35759654 PMCID: PMC9282390 DOI: 10.1073/pnas.2121388119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although biodiversity in East Africa is overall extremely high, species richness is not geographically uniform for fishes and mammals. We investigated the biogeographic relevance of past river activity in the Kenya Rift. We show that during a humid period 12,000 to 8,000 years ago, a river system connected currently isolated rift lakes and was partly connected to the Nile. While this river system formed pathways for the dispersal of fishes between lakes, it also acted as a barrier to the range expansion of forest mammals. This fairly recent hydrological connectivity between lakes has been a key driver of modern biodiversity patterns in East Africa. Climate-driven changes in drainage networks on multimillennial timescales are an important hypothesis in biodiversity research. East Africa is a global biodiversity hotspot and exhibits distinct longitudinal diversity gradients from west to east in freshwater fishes and forest mammals. The assembly of this exceptional biodiversity and the drivers behind diversity gradients remain poorly understood, with diversification often studied at local scales and less attention paid to biotic exchange between Afrotropical regions. Here, we reconstruct a river system that existed for several millennia along the now semiarid Kenya Rift Valley during the humid early Holocene and show how this river system influenced postglacial dispersal of fishes and mammals due to its dual role as a dispersal corridor and barrier. Using geomorphological, geochronological, isotopic, and fossil analyses and a synthesis of radiocarbon dates, we find that the overflow of Kenyan rift lakes between 12 and 8 ka before present formed a bidirectional river system consisting of a “Northern River” connected to the Nile Basin and a “Southern River,” a closed basin. The drainage divide between these rivers represented the only viable terrestrial dispersal corridor across the rift. The degree and duration of past hydrological connectivity between adjacent river basins determined spatial diversity gradients for East African fishes. Our reconstruction explains the isolated distribution of Nilotic fish species in modern Kenyan rift lakes, Guineo-Congolian mammal species in forests east of the Kenya Rift, and recent incipient vertebrate speciation and local endemism in this region. Climate-driven rearrangements of drainage networks unrelated to tectonic activity contributed significantly to the assembly of species diversity and modern faunas in the East African biodiversity hotspot.
Collapse
|
18
|
Almeida-Warren K, Camara HD, Matsuzawa T, Carvalho S. Landscaping the Behavioural Ecology of Primate Stone Tool Use. INT J PRIMATOL 2022. [DOI: 10.1007/s10764-022-00305-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractEcology is fundamental in the development, transmission, and perpetuity of primate technology. Previous studies on tool site selection have addressed the relevance of targeted resources and raw materials for tools, but few have considered the broader foraging landscape. In this landscape-scale study of the ecological contexts of wild chimpanzee (Pan troglodytes verus) tool use, we investigated the conditions required for nut-cracking to occur and persist in discrete locations at the long-term field site of Bossou, Guinea. We examined this at three levels: selection, frequency of use, and inactivity. We collected data on plant foods, nut trees, and raw materials using transect and quadrat methods, and conducted forest-wide surveys to map the location of nests and watercourses. We analysed data at the quadrat level (n = 82) using generalised linear models and descriptive statistics. We found that, further to the presence of a nut tree and availability of raw materials, abundance of food-providing trees as well as proximity to nest sites were significant predictors of nut-cracking occurrence. This suggests that the spatial distribution of nut-cracking sites is mediated by the broader behavioural landscape and is influenced by non-extractive foraging of perennial resources and non-foraging activities. Additionally, the number of functional tools was greater at sites with higher nut-cracking frequency, and was negatively correlated with site inactivity. Our research indicates that the technological landscape of Bossou chimpanzees shares affinities with the ‘favoured places’ model of hominin site formation, providing a comparative framework for reconstructing landscape-scale patterns of ancient human behaviour. A French translation of this abstract is provided in theelectronic supplementary information: EMS 2.
Collapse
|
19
|
Andirkó A, Moriano J, Vitriolo A, Kuhlwilm M, Testa G, Boeckx C. Temporal mapping of derived high-frequency gene variants supports the mosaic nature of the evolution of Homo sapiens. Sci Rep 2022; 12:9937. [PMID: 35705575 PMCID: PMC9200848 DOI: 10.1038/s41598-022-13589-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
Large-scale estimations of the time of emergence of variants are essential to examine hypotheses concerning human evolution with precision. Using an open repository of genetic variant age estimations, we offer here a temporal evaluation of various evolutionarily relevant datasets, such as Homo sapiens-specific variants, high-frequency variants found in genetic windows under positive selection, introgressed variants from extinct human species, as well as putative regulatory variants specific to various brain regions. We find a recurrent bimodal distribution of high-frequency variants, but also evidence for specific enrichments of gene categories in distinct time windows, pointing to different periods of phenotypic changes, resulting in a mosaic. With a temporal classification of genetic mutations in hand, we then applied a machine learning tool to predict what genes have changed more in certain time windows, and which tissues these genes may have impacted more. Overall, we provide a fine-grained temporal mapping of derived variants in Homo sapiens that helps to illuminate the intricate evolutionary history of our species.
Collapse
Affiliation(s)
- Alejandro Andirkó
- Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
| | - Juan Moriano
- Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
| | - Alessandro Vitriolo
- University of Milan, Milan, Italy
- European Institute of Oncology (IEO), Milan, Italy
- Human Technopole, Milan, Italy
| | - Martin Kuhlwilm
- University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Giuseppe Testa
- University of Milan, Milan, Italy
- European Institute of Oncology (IEO), Milan, Italy
- Human Technopole, Milan, Italy
| | - Cedric Boeckx
- Universitat de Barcelona, Barcelona, Spain.
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain.
- Catalan Institute for Research and Advanced Studies (ICREA), Catalonia, Spain.
| |
Collapse
|
20
|
Gosling WD, Scerri EML, Kaboth-Bahr S. The climate and vegetation backdrop to hominin evolution in Africa. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200483. [PMID: 35249389 PMCID: PMC8899624 DOI: 10.1098/rstb.2020.0483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The most profound shift in the African hydroclimate of the last 1 million years occurred around 300 thousand years (ka) ago. This change in African hydroclimate is manifest as an east-west change in moisture balance that cannot be fully explained through linkages to high latitude climate systems. The east-west shift is, instead, probably driven by a shift in the tropical Walker Circulation related to sea surface temperature change driven by orbital forcing. Comparing records of past vegetation change, and hominin evolution and development, with this breakpoint in the climate system is challenging owing to the paucity of study sites available and uncertainties regarding the dating of records. Notwithstanding these uncertainties we find that, broadly speaking, both vegetation and hominins change around 300 ka. The vegetative backdrop suggests that relative abundance of vegetative resources shifted from western to eastern Africa, although resources would have persisted across the continent. The climatic and vegetation changes probably provided challenges for hominins and are broadly coincident with the appearance of Homo sapiens (ca 315 ka) and the emergence of Middle Stone Age technology. The concomitant changes in climate, vegetation and hominin evolution suggest that these factors are closely intertwined. This article is part of the theme issue 'Tropical forests in the deep human past'.
Collapse
Affiliation(s)
- William D Gosling
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleanor M L Scerri
- Max Planck Institute for the Science of Human History, Jena, Germany.,Department of Classics and Archaeology, University of Malta, Msida, Malta.,Department of Prehistoric Archaeology, University of Cologne, 50931 Cologne, Germany
| | | |
Collapse
|
21
|
Plio-Pleistocene environmental variability in Africa and its implications for mammalian evolution. Proc Natl Acad Sci U S A 2022; 119:e2107393119. [PMID: 35412903 PMCID: PMC9169865 DOI: 10.1073/pnas.2107393119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We have developed an Africa-wide synthesis of paleoenvironmental variability over the Plio-Pleistocene. We show that there is strong evidence for orbital forcing of variability during this time that is superimposed on a longer trend of increasing environmental variability, supporting a combination of both low- and high-latitude drivers of variability. We combine these results with robust estimates of mammalian speciation and extinction rates and find that variability is not significantly correlated with these rates. These findings do not currently support a link between environmental variability and turnover and thus fail to corroborate predictions derived from the variability selection hypothesis. Understanding the climatic drivers of environmental variability (EV) during the Plio-Pleistocene and EV’s influence on mammalian macroevolution are two outstanding foci of research in African paleoclimatology and evolutionary biology. The potential effects of EV are especially relevant for testing the variability selection hypothesis, which predicts a positive relationship between EV and speciation and extinction rates in fossil mammals. Addressing these questions is stymied, however, by 1) a lack of multiple comparable EV records of sufficient temporal resolution and duration, and 2) the incompleteness of the mammalian fossil record. Here, we first compile a composite history of Pan-African EV spanning the Plio-Pleistocene, which allows us to explore which climatic variables influenced EV. We find that EV exhibits 1) a long-term trend of increasing variability since ∼3.7 Ma, coincident with rising variability in global ice volume and sea surface temperatures around Africa, and 2) a 400-ky frequency correlated with seasonal insolation variability. We then estimate speciation and extinction rates for fossil mammals from eastern Africa using a method that accounts for sampling variation. We find no statistically significant relationship between EV and estimated speciation or extinction rates across multiple spatial scales. These findings are inconsistent with the variability selection hypothesis as applied to macroevolutionary processes.
Collapse
|
22
|
Timmermann A, Yun KS, Raia P, Ruan J, Mondanaro A, Zeller E, Zollikofer C, Ponce de León M, Lemmon D, Willeit M, Ganopolski A. Climate effects on archaic human habitats and species successions. Nature 2022; 604:495-501. [PMID: 35418680 PMCID: PMC9021022 DOI: 10.1038/s41586-022-04600-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 03/01/2022] [Indexed: 01/02/2023]
Abstract
It has long been believed that climate shifts during the last 2 million years had a pivotal role in the evolution of our genus Homo1–3. However, given the limited number of representative palaeo-climate datasets from regions of anthropological interest, it has remained challenging to quantify this linkage. Here, we use an unprecedented transient Pleistocene coupled general circulation model simulation in combination with an extensive compilation of fossil and archaeological records to study the spatiotemporal habitat suitability for five hominin species over the past 2 million years. We show that astronomically forced changes in temperature, rainfall and terrestrial net primary production had a major impact on the observed distributions of these species. During the Early Pleistocene, hominins settled primarily in environments with weak orbital-scale climate variability. This behaviour changed substantially after the mid-Pleistocene transition, when archaic humans became global wanderers who adapted to a wide range of spatial climatic gradients. Analysis of the simulated hominin habitat overlap from approximately 300–400 thousand years ago further suggests that antiphased climate disruptions in southern Africa and Eurasia contributed to the evolutionary transformation of Homo heidelbergensis populations into Homo sapiens and Neanderthals, respectively. Our robust numerical simulations of climate-induced habitat changes provide a framework to test hypotheses on our human origin. A new model simulation of climate change during the past 2 million years indicates that the appearances and disappearances of hominin species correlate with long-term climatic anomalies.
Collapse
Affiliation(s)
- Axel Timmermann
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea. .,Pusan National University, Busan, South Korea.
| | - Kyung-Sook Yun
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea.,Pusan National University, Busan, South Korea
| | - Pasquale Raia
- DiSTAR, Università di Napoli Federico II, Monte Sant'Angelo, Naples, Italy
| | - Jiaoyang Ruan
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea.,Pusan National University, Busan, South Korea
| | | | - Elke Zeller
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea.,Pusan National University, Busan, South Korea
| | | | | | - Danielle Lemmon
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea.,Pusan National University, Busan, South Korea
| | - Matteo Willeit
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | | |
Collapse
|
23
|
Cancellieri E, Bel Hadj Brahim H, Ben Nasr J, Ben Fraj T, Boussoffara R, Di Matteo M, Mercier N, Marnaoui M, Monaco A, Richard M, Mariani GS, Scancarello O, Zerboni A, di Lernia S. A late Middle Pleistocene Middle Stone Age sequence identified at Wadi Lazalim in southern Tunisia. Sci Rep 2022; 12:3996. [PMID: 35304482 PMCID: PMC8933421 DOI: 10.1038/s41598-022-07816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/23/2022] [Indexed: 11/18/2022] Open
Abstract
The late Middle Pleistocene, starting at around 300 ka, witnessed large-scale biological and cultural dynamics in hominin evolution across Africa including the onset of the Middle Stone Age that is closely associated with the evolution of our species—Homo sapiens. However, archaeological and geochronological data of its earliest appearance are scarce. Here we report on the late Middle Pleistocene sequence of Wadi Lazalim, in the Sahara of Southern Tunisia, which has yielded evidence for human occupations bracketed between ca. 300–130 ka. Wadi Lazalim contributes valuable information on the spread of early MSA technocomplexes across North Africa, that likely were an expression of large-scale diffusion processes.
Collapse
Affiliation(s)
- Emanuele Cancellieri
- Dipartimento di Scienze dell'Antichità, Sapienza University of Rome, Rome, Italy.
| | | | - Jaafar Ben Nasr
- Faculté des Lettres et des Sciences Humaines, Université de Kairouan, Kairouan, Tunisia
| | - Tarek Ben Fraj
- Faculté des Lettres et des Sciences Humaines, Université de Sousse, Sousse, Tunisia.,Laboratoire de Cartographie Géomorphologique des Milieux, des Environnements et des Dynamiques (CGMED), Université de Tunis, Tunis, Tunisia
| | | | - Martina Di Matteo
- Dipartimento di Scienze dell'Antichità, Sapienza University of Rome, Rome, Italy
| | - Norbert Mercier
- Archéosciences-Bordeaux, UMR 6034 CNRS-Université Bordeaux Montaigne, Pessac, France
| | - Marwa Marnaoui
- Faculté des Lettres et des Sciences Humaines, Université de Kairouan, Kairouan, Tunisia
| | - Andrea Monaco
- Dipartimento di Scienze dell'Antichità, Sapienza University of Rome, Rome, Italy
| | - Maïlys Richard
- Archéosciences-Bordeaux, UMR 6034 CNRS-Université Bordeaux Montaigne, Pessac, France.,Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
| | - Guido S Mariani
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cagliari, Italy
| | - Olivier Scancarello
- Dipartimento di Scienze dell'Antichità, Sapienza University of Rome, Rome, Italy
| | - Andrea Zerboni
- Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, Milano, Italy
| | - Savino di Lernia
- Dipartimento di Scienze dell'Antichità, Sapienza University of Rome, Rome, Italy.,School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
24
|
Timbrell L, Grove M, Manica A, Rucina S, Blinkhorn J. A spatiotemporally explicit paleoenvironmental framework for the Middle Stone Age of eastern Africa. Sci Rep 2022; 12:3689. [PMID: 35256702 PMCID: PMC8901736 DOI: 10.1038/s41598-022-07742-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
Eastern Africa has played a prominent role in debates about human evolution and dispersal due to the presence of rich archaeological, palaeoanthropological and palaeoenvironmental records. However, substantial disconnects occur between the spatial and temporal resolutions of these data that complicate their integration. Here, we apply high-resolution climatic simulations of two key parameters, mean annual temperature and precipitation, and a biome model, to produce a highly refined characterisation of the environments inhabited during the eastern African Middle Stone Age. Occupations are typically found in sub-humid climates and landscapes dominated by or including tropical xerophytic shrubland. Marked expansions from these core landscapes include movement into hotter, low-altitude landscapes in Marine Isotope Stage 5 and cooler, high-altitude landscapes in Marine Isotope Stage 3, with the recurrent inhabitation of ecotones between open and forested habitats. Through our use of high-resolution climate models, we demonstrate a significant independent relationship between past precipitation and patterns of Middle Stone Age stone tool production modes overlooked by previous studies. Engagement with these models not only enables spatiotemporally explicit examination of climatic variability across Middle Stone Age occupations in eastern Africa but enables clearer characterisation of the habitats early human populations were adapted to, and how they changed through time.
Collapse
|
25
|
Coe D, Barham L, Gardiner J, Crompton R. A biomechanical investigation of the efficiency hypothesis of hafted tool technology. J R Soc Interface 2022; 19:20210660. [PMID: 35291833 PMCID: PMC8923818 DOI: 10.1098/rsif.2021.0660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transition from hand-held to hafted tool technology marked a significant shift in conceptualizing the construction and function of tools. Among other benefits, hafting is thought to have given users a significant biomechanical and physiological advantage in undertaking basic subsistence tasks compared with hand-held tools. It is assumed that addition of a handle improved the (bio)mechanical properties of a tool and upper limb by offering greater amounts of leverage, force and precision. This controlled laboratory study compares upper limb kinematics, electromyography and physiological performance during two subsistence tasks (chopping, scraping) using hafted and hand-held tools. Results show that hafted tool use elicits greater ranges of motion, greater muscle activity and greater net energy expenditure (EE) compared with hand-held equivalents. Importantly, however, these strategies resulted in reduced relative EE compared with the hand-held condition in both tasks. More specifically, the hafted axe prompted use of two well-known biomechanical strategies that help produce larger velocities at the distal end of the limb without requiring heavy muscular effort, thus improving the tool's functional efficiency and relative energy use. The energetic and biomechanical benefits of hafting arguably contributed to both the invention and spread of this technology.
Collapse
Affiliation(s)
- Dominic Coe
- School of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, L69 7WZ, UK
| | - Larry Barham
- School of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, L69 7WZ, UK
| | - James Gardiner
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - Robin Crompton
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| |
Collapse
|
26
|
Nine Levels of Explanation : A Proposed Expansion of Tinbergen's Four-Level Framework for Understanding the Causes of Behavior. HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE 2021; 32:748-793. [PMID: 34739657 DOI: 10.1007/s12110-021-09414-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 01/16/2023]
Abstract
Tinbergen's classic "On Aims and Methods of Ethology" (Zeitschrift für Tierpsychologie, 20, 1963) proposed four levels of explanation of behavior, which he thought would soon apply to humans. This paper discusses the need for multilevel explanation; Huxley and Mayr's prior models, and others that followed; Tinbergen's differences with Lorenz on "the innate"; and Mayr's ultimate/proximate distinction. It synthesizes these approaches with nine levels of explanation in three categories: phylogeny, natural selection, and genomics (ultimate causes); maturation, sensitive period effects, and routine environmental effects (intermediate causes); and hormonal/metabolic processes, neural circuitry, and eliciting stimuli (proximate causes), as a respectful extension of Tinbergen's levels. The proposed classification supports and builds on Tinbergen's multilevel model and Mayr's ultimate/proximate continuum, adding intermediate causes in accord with Tinbergen's emphasis on ontogeny. It requires no modification of Standard Evolutionary Theory or The Modern Synthesis, but shows that much that critics claim was missing was in fact part of Neo-Darwinian theory (so named by J. Mark Baldwin in The American Naturalist in 1896) all along, notably reciprocal causation in ontogeny, niche construction, cultural evolution, and multilevel selection. Updates of classical examples in ethology are offered at each of the nine levels, including the neuroethological and genomic findings Tinbergen foresaw. Finally, human examples are supplied at each level, fulfilling his hope of human applications as part of the biology of behavior. This broad ethological framework empowers us to explain human behavior-eventually completely-and vindicates the idea of human nature, and of humans as a part of nature.
Collapse
|
27
|
Saitou M, Resendez S, Pradhan AJ, Wu F, Lie NC, Hall NJ, Zhu Q, Reinholdt L, Satta Y, Speidel L, Nakagome S, Hanchard NA, Churchill G, Lee C, Atilla-Gokcumen GE, Mu X, Gokcumen O. Sex-specific phenotypic effects and evolutionary history of an ancient polymorphic deletion of the human growth hormone receptor. SCIENCE ADVANCES 2021; 7:eabi4476. [PMID: 34559564 PMCID: PMC8462886 DOI: 10.1126/sciadv.abi4476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The common deletion of the third exon of the growth hormone receptor gene (GHRd3) in humans is associated with birth weight, growth after birth, and time of puberty. However, its evolutionary history and the molecular mechanisms through which it affects phenotypes remain unresolved. We present evidence that this deletion was nearly fixed in the ancestral population of anatomically modern humans and Neanderthals but underwent a recent adaptive reduction in frequency in East Asia. We documented that GHRd3 is associated with protection from severe malnutrition. Using a novel mouse model, we found that, under calorie restriction, Ghrd3 leads to the female-like gene expression in male livers and the disappearance of sexual dimorphism in weight. The sex- and diet-dependent effects of GHRd3 in our mouse model are consistent with a model in which the allele frequency of GHRd3 varies throughout human evolution as a response to fluctuations in resource availability.
Collapse
Affiliation(s)
- Marie Saitou
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Skyler Resendez
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | | | - Fuguo Wu
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Natasha C. Lie
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Nancy J. Hall
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Qihui Zhu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, SOKENDAI (Graduate University for Advanced Studies), Kanagawa Prefecture, Japan
| | - Leo Speidel
- University College London, Genetics Institute, London, UK
- The Francis Crick Institute, London, UK
| | | | - Neil A. Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi, People’s Republic of China
| | | | - Xiuqian Mu
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
28
|
Lupien RL, Russell JM, Subramanian A, Kinyanjui R, Beverly EJ, Uno KT, de Menocal P, Dommain R, Potts R. Eastern African environmental variation and its role in the evolution and cultural change of Homo over the last 1 million years. J Hum Evol 2021; 157:103028. [PMID: 34216947 DOI: 10.1016/j.jhevol.2021.103028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Characterizing eastern African environmental variability on orbital timescales is crucial to evaluating the hominin evolutionary response to past climate changes. However, there is a dearth of high-resolution, well-dated records of ecosystem dynamics from eastern Africa that cover long time intervals. In the last 1 Myr, there were significant anatomical and cultural developments in Homo, including the origin of Homo sapiens. There were also major changes in global climatic boundary conditions that may have affected eastern African environments, yet potential linkages remain poorly understood. We developed carbon isotopic records from plant waxes (δ13Cwax) and bulk organic matter (δ13COM) from a well-dated sediment core spanning the last ∼1 Myr extracted from the Koora Basin, located south of the Olorgesailie Basin, in the southern Kenya rift. Our record characterizes the climatic and environmental context for evolutionary events and technological advances recorded in the adjacent Olorgesailie Basin, such as the transition from Acheulean to Middle Stone Age tools by 320 ka. A significant shift toward more C4-dominated ecosystems and arid conditions occurred near the end of the mid-Pleistocene Transition, which indicates a link between equatorial eastern African and high-latitude northern hemisphere climate. Environmental variability increases throughout the mid- to late-Pleistocene, superimposed by precession-paced packets of variability modulated by eccentricity. An interval of particularly high-amplitude climate and environmental variability occurred from ∼275 ka to ∼180 ka, synchronous with evidence for the first H. sapiens fossils in eastern Africa. These results support the 'variability selection hypothesis' that increased environmental variability selected for adaptable traits, behaviors, and technology in our hominin ancestors.
Collapse
Affiliation(s)
- Rachel L Lupien
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI 02906, USA; Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, Palisades, NY 10964, USA.
| | - James M Russell
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI 02906, USA
| | - Avinash Subramanian
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI 02906, USA
| | - Rahab Kinyanjui
- Department of Earth Sciences, National Museums of Kenya, Nairobi 00100, Kenya
| | - Emily J Beverly
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA
| | - Kevin T Uno
- Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, Palisades, NY 10964, USA
| | - Peter de Menocal
- Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, Palisades, NY 10964, USA
| | - René Dommain
- Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany; Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Richard Potts
- Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA; Department of Earth Sciences, National Museums of Kenya, Nairobi 00100, Kenya
| |
Collapse
|
29
|
Faith JT, Du A, Behrensmeyer AK, Davies B, Patterson DB, Rowan J, Wood B. Rethinking the ecological drivers of hominin evolution. Trends Ecol Evol 2021; 36:797-807. [PMID: 34059368 DOI: 10.1016/j.tree.2021.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
A central goal of paleoanthropology is understanding the role of ecological change in hominin evolution. Over the past several decades researchers have expanded the hominin fossil record and assembled detailed late Cenozoic paleoclimatic, paleoenvironmental, and paleoecological archives. However, effective use of these data is precluded by the limitations of pattern-matching strategies for inferring causal relationships between ecological and evolutionary change. We examine several obstacles that have hindered progress, and highlight recent research that is addressing them by (i) confronting an incomplete fossil record, (ii) contending with datasets spanning varied spatiotemporal scales, and (iii) using theoretical frameworks to build stronger inferences. Expanding on this work promises to transform challenges into opportunities and set the stage for a new phase of paleoanthropological research.
Collapse
Affiliation(s)
- J Tyler Faith
- Natural History Museum of Utah, University of Utah, Salt Lake City, UT 84108, USA; Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA.
| | - Andrew Du
- Department of Anthropology and Geography, Colorado State University, Fort Collins, CO 80523, USA
| | - Anna K Behrensmeyer
- Department of Paleobiology, National Museum of Natural History, Washington, DC 20013, USA
| | - Benjamin Davies
- Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA
| | - David B Patterson
- Department of Biology, University of North Georgia, Dahlonega, GA 30597, USA
| | - John Rowan
- Department of Anthropology, University at Albany, Albany, NY 12222, USA
| | - Bernard Wood
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
30
|
Ben-Dor M, Sirtoli R, Barkai R. The evolution of the human trophic level during the Pleistocene. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175 Suppl 72:27-56. [PMID: 33675083 DOI: 10.1002/ajpa.24247] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/07/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
The human trophic level (HTL) during the Pleistocene and its degree of variability serve, explicitly or tacitly, as the basis of many explanations for human evolution, behavior, and culture. Previous attempts to reconstruct the HTL have relied heavily on an analogy with recent hunter-gatherer groups' diets. In addition to technological differences, recent findings of substantial ecological differences between the Pleistocene and the Anthropocene cast doubt regarding that analogy's validity. Surprisingly little systematic evolution-guided evidence served to reconstruct HTL. Here, we reconstruct the HTL during the Pleistocene by reviewing evidence for the impact of the HTL on the biological, ecological, and behavioral systems derived from various existing studies. We adapt a paleobiological and paleoecological approach, including evidence from human physiology and genetics, archaeology, paleontology, and zoology, and identified 25 sources of evidence in total. The evidence shows that the trophic level of the Homo lineage that most probably led to modern humans evolved from a low base to a high, carnivorous position during the Pleistocene, beginning with Homo habilis and peaking in Homo erectus. A reversal of that trend appears in the Upper Paleolithic, strengthening in the Mesolithic/Epipaleolithic and Neolithic, and culminating with the advent of agriculture. We conclude that it is possible to reach a credible reconstruction of the HTL without relying on a simple analogy with recent hunter-gatherers' diets. The memory of an adaptation to a trophic level that is embedded in modern humans' biology in the form of genetics, metabolism, and morphology is a fruitful line of investigation of past HTLs, whose potential we have only started to explore.
Collapse
Affiliation(s)
- Miki Ben-Dor
- Department of Archaeology, Tel Aviv University, Tel Aviv, Israel
| | | | - Ran Barkai
- Department of Archaeology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|