1
|
Sturges CI, Jain S, Velasquez M, Gedamu H, Komarovsky J, McDonald J, Harris-Tryon T. Cutaneous Hormone Sampling and Analysis for Dermatologic Research. J Invest Dermatol 2025:S0022-202X(25)00530-5. [PMID: 40515749 DOI: 10.1016/j.jid.2025.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 04/18/2025] [Accepted: 05/05/2025] [Indexed: 06/16/2025]
Abstract
The skin can generate hormones through de novo steroid hormone synthesis. These hormones have been shown to play a significant role in inflammatory skin conditions through the regulation of skin immunity, sebum production, and skin barrier function. Although there is growing interest in understanding the composition and function of skin hormones throughout the human lifespan and in various pathologies, there remains a need to standardize sampling and quantification methods. In this article, we discuss an emerging noninvasive approach in skin hormone quantification through adhesive sebum collection tape followed by analysis through mass spectrometry or hormone-specific immunoassays. This approach is highly adaptable, allowing for repetitive sampling over time and across diverse study populations.
Collapse
Affiliation(s)
- Camille I Sturges
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shivani Jain
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mauricio Velasquez
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hanna Gedamu
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jessica Komarovsky
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jeffrey McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tamia Harris-Tryon
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
2
|
Slominski RM, Raman C, Jetten AM, Slominski AT. Neuro-immuno-endocrinology of the skin: how environment regulates body homeostasis. Nat Rev Endocrinol 2025:10.1038/s41574-025-01107-x. [PMID: 40263492 DOI: 10.1038/s41574-025-01107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
The skin, including the hypodermis, is the largest organ of the body. The epidermis, the uppermost layer, is in direct contact with the environment and is exposed to environmental stressors, including solar radiation and biological, chemical and physical factors. These environmental factors trigger local responses within the skin that modulate homeostasis on both the cutaneous and systemic levels. Using mediators in common with brain pathways, immune and neuroendocrine systems within the skin regulate these responses to activate various signal transduction pathways and influence the systemic endocrine and immune systems in a context-dependent manner. This skin neuro-immuno-endocrine system is compartmentalized through the formation of epidermal, dermal, hypodermal and adnexal regulatory units. These units can act separately or in concert to preserve skin integrity, allow for adaptation to a changing environment and prevent the development of pathological processes. Through activation of peripheral nerve endings, the release of neurotransmitters, hormones, neuropeptides, and cytokines and/or chemokines into the circulation, or by priming circulating and resident immune cells, this system affects central coordinating centres and global homeostasis, thus adjusting the body's homeostasis and allostasis to optimally respond to the changing environment.
Collapse
Affiliation(s)
- Radomir M Slominski
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, USA.
- Veteran Administration Medical Center, Birmingham, AL, USA.
| |
Collapse
|
3
|
Fukuda K, Ito Y, Amagai M. Barrier Integrity and Immunity: Exploring the Cutaneous Front Line in Health and Disease. Annu Rev Immunol 2025; 43:219-252. [PMID: 40279307 DOI: 10.1146/annurev-immunol-082323-030832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Immune responses are influenced by not only immune cells but also the tissue microenvironment where these cells reside. Recent advancements in understanding the underlying molecular mechanisms and structures of the epidermal tight junctions (TJs) and stratum corneum (SC) have significantly enhanced our knowledge of skin barrier functions. TJs, located in the granular layer of the epidermis, are crucial boundary elements in the differentiation process, particularly in the transition from living cells to dead cells. The SC forms from dead keratinocytes via corneoptosis and features three distinct pH zones critical for barrier function and homeostasis. Additionally, the SC-skin microbiota interactions are crucial for modulating immune responses and protecting against pathogens. In this review, we explore how these components contribute both to healthy and disease states. By targeting the skin barrier in therapeutic strategies, we can enhance its integrity, modulate immune responses, and ultimately improve outcomes for patients with inflammatory skin conditions.
Collapse
Affiliation(s)
- Keitaro Fukuda
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan;
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan;
| | - Yoshihiro Ito
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan;
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan;
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan;
| |
Collapse
|
4
|
Schmitter-Sánchez AD, Park S. Immune-Epithelial Cell Interactions during Epidermal Regeneration, Repair, and Inflammatory Diseases. Int J Stem Cells 2025; 18:1-11. [PMID: 38191522 PMCID: PMC11867906 DOI: 10.15283/ijsc23107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
The multiple layers of the skin cover and protect our entire body. Among the skin layers, the epidermis is in direct contact with the outer environment and serves as the first line of defense. The epidermis functions as a physical and immunological barrier. To maintain barrier function, the epidermis continually regenerates and repairs itself when injured. Interactions between tissue-resident immune cells and epithelial cells are essential to sustain epidermal regeneration and repair. In this review, we will dissect the crosstalk between epithelial cells and specific immune cell populations located in the epidermis during homeostasis and wound repair. In addition, we will analyze the contribution of dysregulated immune-epithelial interactions in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Axel D. Schmitter-Sánchez
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Cell and Molecular Biology Program, College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Sangbum Park
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Quadros V, Inman B, McDonnell N, Williams K, Romero LM, Woodhams DC. Dermal glucocorticoids are uncoupled from stress physiology and infection. CONSERVATION PHYSIOLOGY 2025; 13:coaf005. [PMID: 39944680 PMCID: PMC11821355 DOI: 10.1093/conphys/coaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 02/19/2025]
Abstract
Ongoing amphibian population declines are caused by factors such as climate change, habitat destruction, pollution and infectious diseases not limited to chytridiomycosis. Unfortunately, action is taken against these factors once population collapses are underway. To avoid these post hoc responses, wildlife endocrinology aims to analyse physiological mediators that predict future population declines to inform wildlife management. Mediators typically investigated are stress hormones known as glucocorticoids, which are produced by the Hypothalamus-Pituitary-Interrenal axis (HPI axis). The HPI axis is the part of the endocrine system that helps amphibians cope with stress. Chronic increases in glucocorticoids due to stress can lead to immune dysfunction, which makes amphibians more susceptible to infectious diseases. Despite this predictive potential of glucocorticoids, interpretation of glucocorticoid data is confounded by sampling design and type. Glucocorticoid monitoring classically involves blood sampling, which is not widely applicable in amphibians as some are too small or delicate to sample, and repeated samples are often valued. To address this, we tried to validate skin swabbing via corticosterone (CORT) and adrenocorticotropin hormone (ACTH) injections in adults of two amphibian species: Eastern red-spotted newts, Notophthalmus viridescens viridescens, with natural skin infections with Batrachochytrium dendrobatidis (Bd) upon collection in the field, and Northern leopard frogs, Rana (Lithobates) pipiens, raised in captivity and naïve to Bd exposure. Further, we determined the predictive potential of skin glucocorticoids on Bd load in the field via correlations in Eastern red-spotted newts. We found that hormones present in the skin are not related to the HPI axis and poorly predict infection load; however, skin hormone levels strongly predicted survival in captivity. Although skin swabbing is not a valid method to monitor HPI axis function in these species, the hormones present in the skin still play important roles in organismal physiology under stressful conditions relevant to wildlife managers.
Collapse
Affiliation(s)
- Victor Quadros
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Brady Inman
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Nina McDonnell
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Kaitlyn Williams
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - L Michael Romero
- Department of Biology, Tufts University, Robinson Hall, Rm 369200 College Ave., Medford, MA 02155, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| |
Collapse
|
6
|
Yu S, Gan C, Li W, Zhang Q, Cai Y, Xu J, Huang R, Yao S, Cheng L, Cheng H. Depression decreases immunity and PD-L1 inhibitor efficacy via the hypothalamic-pituitary-adrenal (HPA) axis in triple-negative breast cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167581. [PMID: 39579799 DOI: 10.1016/j.bbadis.2024.167581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Depression weakens antitumor immunity, yet the underlying mechanisms linking depression and tumor growth remain unclear. This study examines the influence of depression on the hypothalamic-pituitary-adrenal (HPA) axis, immunological function, and effectiveness of immunotherapy in triple-negative breast cancer (TNBC) patients. METHODS A mouse model of comorbid TNBC and depression was established via chronic restraint stress (CRS) and 4T1 tumor transplantation. A programmed cell death ligand 1 (PD-L1) inhibitor was used to manage mice with TNBC, and the ability of metyrapone to reverse the immune system changes induced by HPA axis activation in depression was evaluated. Mouse peripheral blood was used to measure HPA axis activity, immune cell numbers and cytokine levels. RESULTS Depression activates the HPA axis, leading to increased levels of glucocorticoids. Depression led to an increase in the B-cell number and a reduction in the CD4+ T-cell and CD8+ T-cell numbers, without a statistically significant difference in the regulatory T (Treg) cell number. Furthermore, depression increased the levels of the cytokines interferon-gamma (IFN-γ), interleukin (IL)-1β, IL-4, IL-6, IL-8, and tumor necrosis factor (TNF)-α while decreasing the levels of IL-2 and IL-10. Similar results were observed in the context of PD-L1 inhibitor therapy. The depressed mice presented an increased tumor burden and a poor response to the PD-L1 inhibitor. The application of metyrapone during PD-L1 inhibitor treatment resulted in partial restoration of these depression-related alterations. CONCLUSIONS Depression reduces the effectiveness of PD-L1 inhibitors by altering the number of immune cells and the levels of cytokines through activation of the HPA axis. TRANSLATIONAL RELEVANCE Depression is common in breast cancer patients and is associated with reduced antitumor immunity. There is limited knowledge regarding the specific mechanisms through which depression impairs antitumor immunity. Immunotherapy, which promotes the restoration of antitumor immunity, represents a promising treatment strategy for TNBC patients. However, the efficacy of immunotherapy can be compromised by depressive symptoms and the administration of glucocorticoids during treatment. It is still uncertain whether increasing glucocorticoid levels can reduce the efficacy of immunotherapy in patients with depression. The potential benefits of combining immunotherapy with glucocorticoid inhibitors compared with immunotherapy alone need to be evaluated for TNBC patients with concurrent depressive symptoms. Therefore, further clarification of the specific mechanisms by which depression impairs antitumor immunity is needed to inform future optimization of immunotherapy strategies.
Collapse
Affiliation(s)
- Sheng Yu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450000, China; Department of Oncology, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Chen Gan
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Wen Li
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Qianqian Zhang
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Yinlian Cai
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Jian Xu
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Runze Huang
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Senbang Yao
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Ling Cheng
- Department of Intensive Care Unit, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui, China; Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518000, Guangdong, People's Republic of China.
| | - Huaidong Cheng
- Shenzhen Clinical Medical School of Southern Medical University, China; Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen 518000, Guangdong, China.
| |
Collapse
|
7
|
Nakanishi M, Tamagawa-Mineoka R, Nishigaki H, Arakawa Y, Ohtsuka S, Katoh N. Role of Siglec-E in MC903-Induced Atopic Dermatitis. Exp Dermatol 2025; 34:e70064. [PMID: 39967561 DOI: 10.1111/exd.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
Atopic dermatitis (AD) is a common skin disease. Although AD pathogenesis has been widely researched, inhibitory mechanisms in AD are still unclear. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of receptors recognising sialic acids; most Siglecs work as inhibitory receptors. Among Siglecs, Siglec-E is expressed on dendritic cells (DCs) and eosinophils, important immune cells in AD. Although Siglec-E inhibits Type 1 inflammatory diseases, how it influences AD is unknown. Thus, we investigated the role of Siglec-E in AD mouse model by using Siglec-E knockout (KO) mice. We demonstrated that Siglec-E attenuated AD-like inflammation of mice caused by topical application of MC903 on ear skin (MC903-induced AD). To reveal the role of Siglec-E in MC903-induced AD, we focused on Siglec-E on DCs and eosinophils. We first showed that Sigle-E was expressed on cutaneous DCs and migratory DCs of draining lymph nodes. Moreover, OX40L expression on cutaneous DCs was reduced in the presence of Siglec-E. In vitro experiments using cultured spleen DCs (SpDCs), highly expressing Siglec-E, revealed that IL-33 was involved in the induction of Siglec-E and confirmed that Siglec-E inhibited OX40L expression on SpDCs induced by IL-33. Moreover, CD4+ T cell-SpDC coculture revealed that Siglec-E inhibited Th2 polarisation under IL-33 stimulation. We finally revealed that Siglec-E was expressed on eosinophils and reduced the eosinophils infiltration to the MC903-treated ear skin with the suppression of CD49d, a necessary integrin for eosinophil migration to skin tissue [1], expression on eosinophils. These findings elucidated the inhibitory role of Siglec-E in MC903-induced AD.
Collapse
MESH Headings
- Animals
- Dermatitis, Atopic/chemically induced
- Dermatitis, Atopic/metabolism
- Dermatitis, Atopic/immunology
- Mice
- Eosinophils/metabolism
- Mice, Knockout
- Dendritic Cells/metabolism
- Disease Models, Animal
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Mice, Inbred C57BL
- Skin
- Interleukin-33/metabolism
Collapse
Affiliation(s)
- Mari Nakanishi
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Risa Tamagawa-Mineoka
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiromi Nishigaki
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukiyasu Arakawa
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Ohtsuka
- Laboratory for Experimental Animals, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Norito Katoh
- North Campus, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
8
|
Wang X, Xu G, Zhang F, Wei Y, Deng J, Mu L, He J, He D, Yin M, Dal Pra I, Liu X, Cai W, Yang L, Han C, Huang G, Wu J. eIF6 modulates skin wound healing by upregulating keratin 6B. Stem Cells Transl Med 2024; 13:1101-1112. [PMID: 39406496 PMCID: PMC11555475 DOI: 10.1093/stcltm/szae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/08/2024] [Indexed: 11/13/2024] Open
Abstract
Eukaryotic translation initiation factor 6 (eIF6) plays a crucial role in 60S ribosome biogenesis and protein translation, as well as in hypertrophic scar formation, but its potential role in epithelialization is still poorly understood. Herein, we found that eIF6 negatively correlated with the wound healing process. Mice with genetically knockdown eIF6 (eIF6+/-) showed faster re-epithelization as shown by the longer tongue of the newly formed epidermis. Furthermore, eIF6 ablation accelerated the wound healing process by targeting basal keratinocytes in the eIF6 keratinocyte-conditional knockout (eIF6f/+; Krt5-Cre+) mice. Mechanistically, keratin 6B, an important wound-activated protein, was significantly upregulated in eIF6f/+; Krt5-Cre+ mice skin as proved by RNA-seq, western immunoblots, and immunofluorescence staining. Moreover, an elevated level of KRT6B and accelerated proliferative capacity were also observed in stable knockdown eIF6 HaCaT cells. Taken together, eIF6 downregulation could accelerate epithelialization by upregulating KRT6B expression and promoting keratinocyte proliferation. Our results for the first time indicate that eIF6 might be a novel target to regulate re-epithelialization.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
- Department of Burn and Wound Repair Surgery, Guangdong Provincial People’s Hospital, Guangzhou 510080, People’s Republic of China
| | - Guangchao Xu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People’s Republic of China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, People’s Republic of China
| | - Fangyingnan Zhang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Yating Wei
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Jiawen Deng
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Lan Mu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Jinqing He
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Dehua He
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Meifang Yin
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Ilaria Dal Pra
- Section of Human Histology & Embryology, Department of Surgery, Dentistry, Paediatrics & Obstetrics, University of Verona, Verona, Venetia, Italy
| | - Xiaofang Liu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Weichao Cai
- Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 317000, People’s Republic of China
| | - Linjing Yang
- Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 317000, People’s Republic of China
| | - Chunmao Han
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, People’s Republic of China
| | - Guangtao Huang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Jun Wu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
- Section of Human Histology & Embryology, Department of Surgery, Dentistry, Paediatrics & Obstetrics, University of Verona, Verona, Venetia, Italy
| |
Collapse
|
9
|
Zhang H, Liu A, Bo W, Zhang M, Wang H, Feng X, Wu Y. Upregulation of HSD11B1 promotes cortisol production and inhibits NK cell activation in pancreatic adenocarcinoma. Mol Immunol 2024; 175:10-19. [PMID: 39276709 DOI: 10.1016/j.molimm.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
Cortisol is a glucocorticoid hormone that has immunosuppressive function. Elevated basal cortisol levels are present in patients with some kinds of cancers, but its role in the microenvironment of pancreatic adenocarcinoma (PAAD) remains unclear. This study analyzed the expression of genes involved in cortisol generation by using high-throughput sequencing data from TCGA portal and found HSD11B1 was significantly upregulated in patients with PAAD. The correlations between HSD11B1 level and the expression of 23 immunosuppressive receptors were analyzed by Spearman's correlation analysis. The function of HSD11B1 was examined in primary NK cells and PAAD cell lines. The levels of cortisol in medium and cell lysates were detected by ELISA. In vitro killing assay was used to evaluate the cytotoxicity of NK cells. Cell surface levels of CD96, Tim-3, PD-1, TIGIT, CTLA-4, NKp46, NKp30, NKD2G and LFA-1A, and intracellular levels of CD107a and IFN-γ were examined by flow cytometry. We observed that patients with higher HSD11B1 level had shorter survival time. HSD11B1 is positively correlated with the mRNA levels of 11 immunosuppressive receptors in PAAD. Higher HSD11B1 level relates to reduced abundance of activated NK cells in the tumors. HSD11B1 overexpressed NK cells exhibit exhausted phenotype with increased cortisol production, reduced viability, and reduced cytotoxicity against cancer cells. Overexpression of HSD11B1 did not change the viability of tumor cells but upregulated cortisol production. Targeting HSD11B1 by a specific inhibitor improved the NK cells responsiveness. In conclusion, HSD11B1 is upregulated in patients with PAAD, and higher HSD11B1 level is related to poor prognosis. Upregulation of HSD11B1 in NK and tumor cells increased the production and secretion of cortisol and induces NK cell exhaustion.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Aixiang Liu
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mingyi Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Haiqing Wang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xielin Feng
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Wu
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China; Department of Medical Oncology, Daytime Medical Treatment Area, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
10
|
Gallegos Espadas D, Martínez-Ortega JI, Garcia Hernandez DA, Sánchez Mendieta CP, Fernández-Reyna I. Unmasking Tinea Incognito: Case Study, Insights Into the Pathogenesis, and Recommendations. Cureus 2024; 16:e72042. [PMID: 39569254 PMCID: PMC11578387 DOI: 10.7759/cureus.72042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
Tinea incognito (TI) is a dermatophyte infection that often presents atypically due to the inappropriate use of corticosteroids or other immunosuppressive treatments, complicating its diagnosis and management. This case report describes a 29-year-old American Indian (Maya) female from Yucatán, Mexico, initially diagnosed with inverse psoriasis and treated with topical corticosteroids. Over several months, her condition deteriorated, with lesions spreading and worsening, ultimately revealing TI. The misdiagnosis was attributed to the masking effects of corticosteroids, which suppressed the immune response and facilitated fungal dissemination. The case underscores the diagnostic difficulties of TI, particularly when treatments exacerbate rather than alleviate the condition. Key to diagnosis is the combination of patient history, mycological testing, and clinical examination. The study also highlights the role of chronic glucocorticoid use in impairing antifungal immunity by reducing crucial cytokines like IL-17 and IFN-γ, leading to persistent fungal infections. Furthermore, addressing underlying conditions such as obesity, insulin resistance, and diabetes is essential for effective management. Timely and accurate identification of TI, coupled with appropriate treatment, is critical to prevent complications and improve patient outcomes.
Collapse
Affiliation(s)
- Diana Gallegos Espadas
- Internal Medicine, Hospital Regional Elvia Carrillo Puerto, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mérida, MEX
- Internal Medicine, Facultad de Medicina de la Universidad Autónoma de Yucatán, Mérida, MEX
| | - Jesús Iván Martínez-Ortega
- Dermatology, Dermatology Institute of Jalisco, Zapopan, MEX
- Histology, Autonomous University of Nuevo León, Monterrey, MEX
| | | | - Cynthia P Sánchez Mendieta
- Internal Medicine, Hospital Regional Elvia Carrillo Puerto, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mérida, MEX
- Internal Medicine, Facultad de Medicina de la Universidad Autónoma de Yucatán, Mérida, MEX
| | | |
Collapse
|
11
|
Pyle HJ, Evans JC, Artami M, Raj P, Sridharan S, Arana C, Eckert KM, McDonald JG, Harris-Tryon TA, Mauskar MM. Assessment of the Cutaneous Hormone Landscapes and Microbiomes in Vulvar Lichen Sclerosus. J Invest Dermatol 2024; 144:1808-1816.e11. [PMID: 38368928 DOI: 10.1016/j.jid.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
Vulvar lichen sclerosus (VLS) is a progressive skin disease of unknown etiology. In this longitudinal case-control exploratory study, we evaluated the hormonal and microbial landscapes in 18 postmenopausal females (mean [SD] age: 64.4 [8.4] years) with VLS and controls. We reevaluated the patients with VLS after 10-14 weeks of daily topical class I steroid. We found that groin cutaneous estrone was lower in VLS than in controls (-22.33, 95% confidence interval [CI] = -36.96 to -7.70; P = .006); cutaneous progesterone was higher (5.73, 95% CI = 3.74-7.73; P < .0001). Forehead 11-deoxycortisol (-0.24, 95% CI = -0.42 to -0.06; P = .01) and testosterone (-7.22, 95% CI = -12.83 to -1.62; P = .02) were lower in disease. With treatment, cutaneous estrone (-7.88, 95% CI = -44.07 to 28.31; P = .62), progesterone (2.02, 95% CI = -2.08 to 6.11; P = .29), and 11-deoxycortisol (-0.13, 95% CI = -0.32 to 0.05; P = .15) normalized; testosterone remained suppressed (-7.41, 95% CI = -13.38 to -1.43; P = .02). 16S ribosomal RNA V1-V3 and ITS1 amplicon sequencing revealed bacterial and fungal microbiome alterations in disease. Findings suggest that cutaneous sex hormone and bacterial microbiome alterations may be associated with VLS in postmenopausal females.
Collapse
Affiliation(s)
- Hunter J Pyle
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jessica C Evans
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Methinee Artami
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Prithvi Raj
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Srisha Sridharan
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Carlos Arana
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kaitlyn M Eckert
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tamia A Harris-Tryon
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Melissa M Mauskar
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
12
|
Sevilla LM, Pons-Alonso O, Gallego A, Azkargorta M, Elortza F, Pérez P. Glucocorticoid receptor controls atopic dermatitis inflammation via functional interactions with P63 and autocrine signaling in epidermal keratinocytes. Cell Death Dis 2024; 15:535. [PMID: 39069531 DOI: 10.1038/s41419-024-06926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Atopic dermatitis (AD), a prevalent chronic inflammatory disease with multifactorial etiology, features epidermal barrier defects and immune overactivation. Synthetic glucocorticoids (GCs) are widely prescribed for treating AD due to their anti-inflammatory actions; however, mechanisms are incompletely understood. Defective local GC signaling due to decreased production of endogenous ligand and/or GC receptor (GR) levels was reported in prevalent inflammatory skin disorders; whether this is a consequence or contributing factor to AD pathology is unclear. To identify the chromatin-bound cell-type-specific GR protein interactome in keratinocytes, we used rapid immunoprecipitation of endogenous proteins and mass spectrometry identifying 145 interactors that increased upon dexamethasone treatment. GR-interacting proteins were enriched in p53/p63 signaling, including epidermal transcription factors with critical roles in AD pathology. Previous analyses indicating mirrored AD-like phenotypes between P63 overexpression and GR loss in epidermis, and our data show an intricate relationship between these transcription factors in human keratinocytes, identifying TP63 as a direct GR target. Dexamethasone treatment counteracted transcriptional up-regulation of inflammatory markers by IL4/IL13, known to mimic AD, causing opposite shifts in GR and P63 genomic binding. Indeed, IL4/IL13 decreased GR and increased P63 levels in cultured keratinocytes and human epidermal equivalents (HEE), consistent with GR down-regulation and increased P63 expression in AD lesions vs normal skin. Moreover, GR knockdown (GRKD) resulted in constitutive increases in P63, phospho-P38 and S100A9, IL6, and IL33. Also, GRKD culture supernatants showed increased autocrine production of TH2-/TH1-/TH17-TH22-associated factors including IL4, CXCL10, CXCL11, and CXCL8. GRKD HEEs showed AD-like features including hyperplasia and abnormal differentiation, resembling phenotypes observed with GR antagonist or IL4/IL13 treatment. The simultaneous GR/P63 knockdown partially reversed constitutive up-regulation of inflammatory genes in GRKD. In summary, our data support a causative role for GR loss in AD pathogenesis via functional interactions with P63 and autocrine signaling in epidermal keratinocytes.
Collapse
Affiliation(s)
- Lisa M Sevilla
- Instituto de Biomedicina de Valencia (IBV-CSIC), Department of Pathology and Molecular and Cell Therapy, Valencia, Spain
| | - Omar Pons-Alonso
- Instituto de Biomedicina de Valencia (IBV-CSIC), Department of Pathology and Molecular and Cell Therapy, Valencia, Spain
| | - Andrea Gallego
- Instituto de Biomedicina de Valencia (IBV-CSIC), Department of Pathology and Molecular and Cell Therapy, Valencia, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Science and Technology Park of Bizkaia, Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Science and Technology Park of Bizkaia, Derio, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV-CSIC), Department of Pathology and Molecular and Cell Therapy, Valencia, Spain.
| |
Collapse
|
13
|
Lambrecht R, Delgado ME, Gloe V, Schuetz K, Plazzo AP, Franke B, San Phan T, Fleming J, Mayans O, Brunner T. Liver receptor homolog-1 (NR5A2) orchestrates hepatic inflammation and TNF-induced cell death. Cell Rep 2023; 42:113513. [PMID: 38039134 DOI: 10.1016/j.celrep.2023.113513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/09/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
The nuclear receptor liver receptor homolog-1 (LRH-1) has been shown to promote apoptosis resistance in various tissues and disease contexts; however, its role in liver cell death remains unexplored. Hepatocyte-specific deletion of LRH-1 causes mild steatosis and inflammation but unexpectedly shields female mice from tumor necrosis factor (TNF)-induced hepatocyte apoptosis and associated hepatitis. LRH-1-deficient hepatocytes show markedly attenuated estrogen receptor alpha and elevated nuclear factor κB (NF-κB) activity, while LRH-1 overexpression inhibits NF-κB activity. This inhibition relies on direct physical interaction of LRH-1's ligand-binding domain and the Rel homology domain of NF-κB subunit RelA. Mechanistically, increased transcription of anti-apoptotic NF-κB target genes and the proteasomal degradation of pro-apoptotic BCL-2 interacting mediator of cell death prevent mitochondrial apoptosis and ultimately protect mice from TNF-induced liver damage. Collectively, our study emphasizes LRH-1 as a critical, sex-dependent regulator of cell death and inflammation in the healthy and diseased liver.
Collapse
Affiliation(s)
- Rebekka Lambrecht
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - M Eugenia Delgado
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Vincent Gloe
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Karina Schuetz
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Anna Pia Plazzo
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Barbara Franke
- Biophysics and Structural Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Truong San Phan
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Jennifer Fleming
- Biophysics and Structural Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Olga Mayans
- Biophysics and Structural Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany.
| |
Collapse
|
14
|
Cirillo N. Biosynthesis of glucocorticoids in tumors. J Clin Invest 2023; 133:e174686. [PMID: 37909338 PMCID: PMC10617764 DOI: 10.1172/jci174686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
|
15
|
Merk VM, Phan TS, Wiedmann A, Hardy RS, Lavery GG, Brunner T. Local glucocorticoid synthesis regulates house dust mite-induced airway hypersensitivity in mice. Front Immunol 2023; 14:1252874. [PMID: 37936704 PMCID: PMC10626452 DOI: 10.3389/fimmu.2023.1252874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Background Extra-adrenal glucocorticoid (GC) synthesis at epithelial barriers, such as skin and intestine, has been shown to be important in the local regulation of inflammation. However, the role of local GC synthesis in the lung is less well studied. Based on previous studies and the uncontentious efficacy of corticosteroid therapy in asthma patients, we here investigated the role of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1/Hsd11b1)-dependent local GC reactivation in the regulation of allergic airway inflammation. Methods Airway inflammation in Hsd11b1-deficient and C57BL/6 wild type mice was analyzed after injection of lipopolysaccharide (LPS) and anti-CD3 antibody, and in acute and chronic models of airway hypersensitivity induced by house dust mite (HDM) extract. The role of 11β-HSD1 in normal and inflammatory conditions was assessed by high dimensional flow cytometry, histological staining, RT-qPCR analysis, ex vivo tissue cultures, GC-bioassays and protein detection by ELISA and immunoblotting. Results Here we show that lung tissue from Hsd11b1-deficient mice synthesized significantly less GC ex vivo compared with wild type animals in response to immune cell stimulation. We further observed a drastically aggravated phenotype in Hsd11b1-deficient mice treated with HDM extract compared to wild type animals. Besides eosinophilic infiltration, Hsd11b1-deficient mice exhibited aggravated neutrophilic infiltration caused by a strong Th17-type immune response. Conclusion We propose an important role of 11β-HSD1 and local GC in regulating Th17-type rather than Th2-type immune responses in HDM-induced airway hypersensitivity in mice by potentially controlling Toll-like receptor 4 (TLR4) signaling and cytokine/chemokine secretion by airway epithelial cells.
Collapse
Affiliation(s)
- Verena M. Merk
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Truong San Phan
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Alice Wiedmann
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Rowan S. Hardy
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gareth G. Lavery
- Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Thomas Brunner
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
16
|
Taves MD, Otsuka S, Taylor MA, Donahue KM, Meyer TJ, Cam MC, Ashwell JD. Tumors produce glucocorticoids by metabolite recycling, not synthesis, and activate Tregs to promote growth. J Clin Invest 2023; 133:e164599. [PMID: 37471141 PMCID: PMC10503810 DOI: 10.1172/jci164599] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 07/18/2023] [Indexed: 07/22/2023] Open
Abstract
Glucocorticoids are steroid hormones with potent immunosuppressive properties. Their primary source is the adrenals, where they are generated via de novo synthesis from cholesterol. In addition, many tissues have a recycling pathway in which glucocorticoids are regenerated from inactive metabolites by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1, encoded by Hsd11b1). Here, we find that multiple tumor types express Hsd11b1 and produce active glucocorticoids. Genetic ablation of Hsd11b1 in such cells had no effect on in vitro growth, but reduced in vivo tumor progression, which corresponded with increased frequencies of CD8+ tumor-infiltrating lymphocytes (TILs) expressing activation markers and producing effector cytokines. Tumor-derived glucocorticoids were found to promote signatures of Treg activation and suppress signatures of conventional T cell activation in tumor-infiltrating Tregs. Indeed, CD8+ T cell activation was restored and tumor growth reduced in mice with Treg-specific glucocorticoid receptor deficiency. Importantly, pharmacologic inhibition of 11β-HSD1 reduced tumor growth to the same degree as gene knockout and rendered immunotherapy-resistant tumors susceptible to PD-1 blockade. Given that HSD11B1 expression is upregulated in many human tumors and that inhibition of 11β-HSD1 is well tolerated in clinical studies, these data suggest that targeting 11β-HSD1 may be a beneficial adjunct in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Margaret C. Cam
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
17
|
Merk VM, Renzulli P, Vrugt B, Fleischmann A, Brunner T. Glucocorticoids are differentially synthesized along the murine and human respiratory tree. Allergy 2023; 78:2428-2440. [PMID: 37171450 DOI: 10.1111/all.15765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/27/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Synthetic glucocorticoids (GC) are effective in the treatment of inflammatory diseases of the lung. However, long-term use leads to severe side effects. Endogenous GC can be synthesized locally, either de novo from cholesterol in a 11β-hydroxylase (Cyp11b1)-dependent manner, or by reactivation from 11-dehydrocorticosterone/cortisone by 11β-hydroxysteroid dehydrogenase 1 (Hsd11b1). We aimed to define the molecular pathways of endogenous GC synthesis along the respiratory tree to provide a basis for understanding how local GC synthesis contributes to tissue homeostasis. METHODS Expression of steroidogenic enzymes in murine lung epithelium was analyzed by macroscopic and laser capture microdissection, followed by RT-qPCR. Flow cytometry analysis was performed to identify the cellular source of steroidogenic enzymes. Additionally, the induction of steroidogenic enzyme expression in the lung was analyzed after lipopolysaccharide (LPS) injection. mRNA and protein expression of steroidogenic enzymes was confirmed in human lung tissue by RT-qPCR and immunohistochemistry. Furthermore, GC synthesis was examined in ex vivo cultures of fresh tissue from mice and human lobectomy patients. RESULTS We observed that the murine and human lung tissue differentially expresses synthesis pathway-determining enzymes along the respiratory tree. We detected Hsd11b1 expression in bronchial, alveolar, club and basal epithelial cells, whereas Cyp11b1 expression was detectable only in tracheal epithelial cells of mice. Accordingly, de novo synthesis of bioactive GC occurred in the large conducting airways, whereas reactivation occurred everywhere along the respiratory tree. Strikingly, Cyp11b1 but not Hsd11b1 expression was enhanced in the trachea upon LPS injection in mice. CONCLUSION We report here the differential synthesis of bioactive GC along the murine and human respiratory tree. Thus, extra-adrenal de novo GC synthesis and reactivation may differentially contribute to the regulation of immunological and inflammatory processes in the lung.
Collapse
Affiliation(s)
- Verena M Merk
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Pietro Renzulli
- Department of Surgery, Cantonal Hospital Münsterlingen, Münsterlingen, Switzerland
| | - Bart Vrugt
- Institute of Pathology, Cantonal Hospital Münsterlingen, Münsterlingen, Switzerland
| | - Achim Fleischmann
- Institute of Pathology, Cantonal Hospital Münsterlingen, Münsterlingen, Switzerland
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
18
|
Taves MD, Donahue KM, Bian J, Cam MC, Ashwell JD. Aire drives steroid hormone biosynthesis by medullary thymic epithelial cells. Sci Immunol 2023; 8:eabo7975. [PMID: 37595021 PMCID: PMC10732315 DOI: 10.1126/sciimmunol.abo7975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/25/2023] [Indexed: 08/20/2023]
Abstract
Thymic epithelial cells (TECs) produce glucocorticoids, which antagonize negative selection of autoreactive thymocytes and promote a competent T cell antigen-specific repertoire. To characterize their source, we generated a knock-in reporter mouse in which endogenous Cyp11b1, the final enzyme in de novo production of active glucocorticoids, was fluorescently tagged with mScarlet. Here, we find that Cyp11b1 is expressed in medullary TECs (mTECs) but not cortical TECs or other cells in the thymus. A distinct characteristic of mTECs is the presence of Aire, a transcription factor that drives expression of tissue-restricted antigens (TRAs) important for establishing immune tolerance. Cyp11b1 expression was highest in Aire+ mTECs, lower in post-Aire mTECs, and absent in mTECs of Aire-deficient mice. Transcriptomic analyses found that multiple enzymatic biosynthetic pathways are expressed specifically in mTECs and are also Aire dependent. In particular, we found that the thymus expresses messenger RNA for enzymes that catalyze production of many bioactive steroids and that glucocorticoids and sex steroids were secreted by cultured thymi. Expression of the transcripts for these genes and production of their final steroid products were markedly reduced in the absence of Aire. Thus, in addition to its well-established role in inducing TRAs that promote negative selection, Aire has an additional and contrary function of inducing glucocorticoids that antagonize negative selection, which together may expand and enhance the TCR repertoire. Furthermore, because Aire drives expression of multiple enzymes responsible for production of other non-gene-encoded bioactive molecules, it might have yet other roles in thymus development and function.
Collapse
Affiliation(s)
- Matthew D. Taves
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Kaitlynn M. Donahue
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jing Bian
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, Bethesda, MD 20892, USA
| | - Margaret C. Cam
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, Bethesda, MD 20892, USA
| | - Jonathan D. Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Yang X, Cai M. New Insights into the Mutual Promotion of Rosacea, Anxiety, and Depression from Neuroendocrine Immune Aspects. Clin Cosmet Investig Dermatol 2023; 16:1363-1371. [PMID: 37275216 PMCID: PMC10238710 DOI: 10.2147/ccid.s413237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Rosacea is a common chronic inflammatory skin disease with a complex etiology and undefined pathogenesis, and there is still a lack of targeted clinical treatment. Patients with rosacea are at a higher risk of anxiety and depression compared to the healthy population. Compared to skin conditions such as acne and psoriasis, rosacea has been much less studied in relation to multiple-etiology psychiatric disorders such as anxiety and depression. In contrast to the mainstream belief that the causal association between rosacea and psychiatric disorders is that rosacea increases the psychological burden of patients and thus triggers psychiatric disorders simply by altering their facial appearance, this review outlines the possible common mechanisms between rosacea and anxiety and depression disorders, starting from the pathophysiological mechanisms of transient receptor potential family cation channels, HPA axis, and Th1/Th17 cell polarization. It envisages the possibility of the neuroendocrine-immune interplay between rosacea and anxiety and depression, and new ideas on the complex causal relationship between rosacea and psychiatric disorders, offering more orientations to open up new therapeutic approaches for rosacea.
Collapse
Affiliation(s)
- Xiaoting Yang
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, People’s Republic of China
| | - Mei Cai
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, People’s Republic of China
| |
Collapse
|
20
|
Takeda Y, Demura M, Kometani M, Karashima S, Yoneda T, Takeda Y. Molecular and Epigenetic Control of Aldosterone Synthase, CYP11B2 and 11-Hydroxylase, CYP11B1. Int J Mol Sci 2023; 24:ijms24065782. [PMID: 36982850 PMCID: PMC10054571 DOI: 10.3390/ijms24065782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Aldosterone and cortisol serve important roles in the pathogenesis of cardiovascular diseases and metabolic disorders. Epigenetics is a mechanism to control enzyme expression by genes without changing the gene sequence. Steroid hormone synthase gene expression is regulated by transcription factors specific to each gene, and methylation has been reported to be involved in steroid hormone production and disease. Angiotensin II or potassium regulates the aldosterone synthase gene, CYP11B2. The adrenocorticotropic hormone controls the 11b-hydroxylase, CYP11B1. DNA methylation negatively controls the CYP11B2 and CYP11B1 expression and dynamically changes the expression responsive to continuous stimulation of the promoter gene. Hypomethylation status of the CYP11B2 promoter region is seen in aldosterone-producing adenomas. Methylation of recognition sites of transcription factors, including cyclic AMP responsive element binding protein 1 or nerve growth factor-induced clone B, diminish their DNA-binding activity. A methyl-CpG-binding protein 2 cooperates directly with the methylated CpG dinucleotides of CYP11B2. A low-salt diet, treatment with angiotensin II, and potassium increase the CYP11B2 mRNA levels and induce DNA hypomethylation in the adrenal gland. A close association between a low DNA methylation ratio and an increased CYP11B1 expression is seen in Cushing's adenoma and aldosterone-producing adenoma with autonomous cortisol secretion. Epigenetic control of CYP11B2 or CYP11B1 plays an important role in autonomic aldosterone or cortisol synthesis.
Collapse
Affiliation(s)
- Yoshimichi Takeda
- Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa 920-8641, Japan
- Department of Hygiene, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masashi Demura
- Department of Hygiene, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Mitsuhiro Kometani
- Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa 920-8641, Japan
| | - Shigehiro Karashima
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takashi Yoneda
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yoshiyu Takeda
- Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa 920-8641, Japan
- Endocrine and Diabetes Center, Asanogawa General Hospital, Kanazawa 920-0811, Japan
| |
Collapse
|
21
|
Salazar A, von Hagen J. Circadian Oscillations in Skin and Their Interconnection with the Cycle of Life. Int J Mol Sci 2023; 24:ijms24065635. [PMID: 36982706 PMCID: PMC10051430 DOI: 10.3390/ijms24065635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Periodically oscillating biological processes, such as circadian rhythms, are carefully concerted events that are only beginning to be understood in the context of tissue pathology and organismal health, as well as the molecular mechanisms underlying these interactions. Recent reports indicate that light can independently entrain peripheral circadian clocks, challenging the currently prevalent hierarchical model. Despite the recent progress that has been made, a comprehensive overview of these periodic processes in skin is lacking in the literature. In this review, molecular circadian clock machinery and the factors that govern it have been highlighted. Circadian rhythm is closely linked to immunological processes and skin homeostasis, and its desynchrony can be linked to the perturbation of the skin. The interplay between circadian rhythm and annual, seasonal oscillations, as well as the impact of these periodic events on the skin, is described. Finally, the changes that occur in the skin over a lifespan are presented. This work encourages further research into the oscillating biological processes occurring in the skin and lays the foundation for future strategies to combat the adverse effects of desynchrony, which would likely have implications in other tissues influenced by periodic oscillatory processes.
Collapse
Affiliation(s)
- Andrew Salazar
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
- Correspondence:
| | - Jörg von Hagen
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
- Department of Life Science Engineering, University Applied Sciences, Wiesenstrasse 14, 35390 Gießen, Germany
- ryon—GreenTech Accelerator Gernsheim GmbH, Mainzer Str. 41, 64579 Gernsheim, Germany
| |
Collapse
|
22
|
Trompette A, Ubags ND. Skin barrier immunology from early life to adulthood. Mucosal Immunol 2023; 16:194-207. [PMID: 36868478 DOI: 10.1016/j.mucimm.2023.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Our skin has a unique barrier function, which is imperative for the body's protection against external pathogens and environmental insults. Although interacting closely and sharing many similarities with key mucosal barrier sites, such as the gut and the lung, the skin also provides protection for internal tissues and organs and has a distinct lipid and chemical composition. Skin immunity develops over time and is influenced by a multiplicity of different factors, including lifestyle, genetics, and environmental exposures. Alterations in early life skin immune and structural development may have long-term consequences for skin health. In this review, we summarize the current knowledge on cutaneous barrier and immune development from early life to adulthood, with an overview of skin physiology and immune responses. We specifically highlight the influence of the skin microenvironment and other host intrinsic, host extrinsic (e.g. skin microbiome), and environmental factors on early life cutaneous immunity.
Collapse
Affiliation(s)
- Aurélien Trompette
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Niki D Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
23
|
Ahmed A, Reinhold C, Breunig E, Phan TS, Dietrich L, Kostadinova F, Urwyler C, Merk VM, Noti M, Toja da Silva I, Bode K, Nahle F, Plazzo AP, Koerner J, Stuber R, Menche C, Karamitopoulou E, Farin HF, Gollob KJ, Brunner T. Immune escape of colorectal tumours via local LRH-1/Cyp11b1-mediated synthesis of immunosuppressive glucocorticoids. Mol Oncol 2023. [PMID: 36861295 PMCID: PMC10399709 DOI: 10.1002/1878-0261.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/28/2023] [Indexed: 03/03/2023] Open
Abstract
Control of tumour development and growth by the immune system critically defines patient fate and survival. What regulates the escape of colorectal tumours from destruction by the immune system remains currently unclear. Here, we investigated the role of intestinal synthesis of glucocorticoids in the tumour development during an inflammation-induced mouse model of colorectal cancer. We demonstrate that the local synthesis of immunoregulatory glucocorticoids has dual roles in the regulation of intestinal inflammation and tumour development. In the inflammation phase, LRH-1/Nr5A2-regulated and Cyp11b1-mediated intestinal glucocorticoid synthesis prevents tumour development and growth. In established tumours, however, tumour-autonomous Cyp11b1-mediated glucocorticoid synthesis suppresses anti-tumour immune responses and promotes immune escape. Transplantation of glucocorticoid synthesis-proficient colorectal tumour organoids into immunocompetent recipient mice resulted in rapid tumour growth, whereas transplantation of Cyp11b1-deleted and glucocorticoid synthesis-deficient tumour organoids was characterized by reduced tumour growth and increased immune cell infiltration. In human colorectal tumours, high expression of steroidogenic enzymes correlated with the expression of other immune checkpoints and suppressive cytokines, and negatively correlated with overall patients' survival. Thus, LRH-1-regulated tumour-specific glucocorticoid synthesis contributes to tumour immune escape and represents a novel potential therapeutic target.
Collapse
Affiliation(s)
- Asma Ahmed
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany.,Department of Pharmacology, Faculty of Medicine, University of Khartoum, Sudan
| | - Cindy Reinhold
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Eileen Breunig
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Truong San Phan
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Lea Dietrich
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Feodora Kostadinova
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Corinne Urwyler
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
| | - Verena M Merk
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Mario Noti
- Institute of Pathology, University of Bern, Switzerland
| | - Israel Toja da Silva
- International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil.,National Institute for Science and Technology - Oncogenomics and Therapeutic Innovation (INCT-INOTE), São Paulo, Brazil
| | - Konstantin Bode
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Fatima Nahle
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Anna Pia Plazzo
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Julia Koerner
- Division of Immunology, Department of Biology, University of Konstanz, Germany
| | - Regula Stuber
- Institute of Pathology, University of Bern, Switzerland
| | - Constantin Menche
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | | | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Kenneth J Gollob
- International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil.,National Institute for Science and Technology - Oncogenomics and Therapeutic Innovation (INCT-INOTE), São Paulo, Brazil.,Albert Einstein Israelite Hospital, São Paulo, Brazil
| | - Thomas Brunner
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| |
Collapse
|
24
|
Human lung carcinomas synthesize immunoregulatory glucocorticoids. Genes Immun 2023; 24:52-56. [PMID: 36653475 PMCID: PMC9935384 DOI: 10.1038/s41435-023-00194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
The need for new options in lung cancer treatment inevitably leads back to basic research. The tumor itself and the tumor environment especially the interaction with the immune system need to be better understood to develop targeted therapies. In the context of lung cancer glucocorticoids (GC) are mainly known as a combination drug to attenuate side-effects of chemotherapies. However, endogenous extra-adrenal GC have been shown to substantially regulate local immune responses within various tissues, including the lung. In this study we investigated whether primary lung tumors have maintained the capacity to synthesize GC and may thereby regulate anti-tumor immune responses. We show that several non-small cell lung carcinoma (NSCLC) and small cell lung carcinoma (SCLC) cell lines express key steroidogenic enzymes and synthesize bioactive GC under steady state conditions. We also show that tumor-derived GC can inhibit splenic T cell activation, thus demonstrating their immunoregulatory potential. Moreover, steroidogenic enzymes were detected by quantitative RT-PCR and immunohistochemistry in tissue sections of different human lung tumors, further strengthening the idea that human lung carcinomas regulate their microenvironment by releasing immunoregulatory GC, which potentially contributes to immune evasion and treatment resistance.
Collapse
|
25
|
Slominski AT, Slominski RM, Raman C, Chen JY, Athar M, Elmets C. Neuroendocrine signaling in the skin with a special focus on the epidermal neuropeptides. Am J Physiol Cell Physiol 2022; 323:C1757-C1776. [PMID: 36317800 PMCID: PMC9744652 DOI: 10.1152/ajpcell.00147.2022] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
The skin, which is comprised of the epidermis, dermis, and subcutaneous tissue, is the largest organ in the human body and it plays a crucial role in the regulation of the body's homeostasis. These functions are regulated by local neuroendocrine and immune systems with a plethora of signaling molecules produced by resident and immune cells. In addition, neurotransmitters, endocrine factors, neuropeptides, and cytokines released from nerve endings play a central role in the skin's responses to stress. These molecules act on the corresponding receptors in an intra-, juxta-, para-, or autocrine fashion. The epidermis as the outer most component of skin forms a barrier directly protecting against environmental stressors. This protection is assured by an intrinsic keratinocyte differentiation program, pigmentary system, and local nervous, immune, endocrine, and microbiome elements. These constituents communicate cross-functionally among themselves and with corresponding systems in the dermis and hypodermis to secure the basic epidermal functions to maintain local (skin) and global (systemic) homeostasis. The neurohormonal mediators and cytokines used in these communications regulate physiological skin functions separately or in concert. Disturbances in the functions in these systems lead to cutaneous pathology that includes inflammatory (i.e., psoriasis, allergic, or atopic dermatitis, etc.) and keratinocytic hyperproliferative disorders (i.e., seborrheic and solar keratoses), dysfunction of adnexal structure (i.e., hair follicles, eccrine, and sebaceous glands), hypersensitivity reactions, pigmentary disorders (vitiligo, melasma, and hypo- or hyperpigmentary responses), premature aging, and malignancies (melanoma and nonmelanoma skin cancers). These cellular, molecular, and neural components preserve skin integrity and protect against skin pathologies and can act as "messengers of the skin" to the central organs, all to preserve organismal survival.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| | - Radomir M Slominski
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jake Y Chen
- Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| | - Craig Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| |
Collapse
|
26
|
Chen YY, Liu LP, Zhou H, Zheng YW, Li YM. Recognition of Melanocytes in Immuno-Neuroendocrinology and Circadian Rhythms: Beyond the Conventional Melanin Synthesis. Cells 2022; 11:2082. [PMID: 35805166 PMCID: PMC9266247 DOI: 10.3390/cells11132082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Melanocytes produce melanin to protect the skin from UV-B radiation. Notwithstanding, the spectrum of their functions extends far beyond their well-known role as melanin production factories. Melanocytes have been considered as sensory and computational cells. The neurotransmitters, neuropeptides, and other hormones produced by melanocytes make them part of the skin's well-orchestrated and complex neuroendocrine network, counteracting environmental stressors. Melanocytes can also actively mediate the epidermal immune response. Melanocytes are equipped with ectopic sensory systems similar to the eye and nose and can sense light and odor. The ubiquitous inner circadian rhythm controls the body's basic physiological processes. Light not only affects skin photoaging, but also regulates inner circadian rhythms and communicates with the local neuroendocrine system. Do melanocytes "see" light and play a unique role in photoentrainment of the local circadian clock system? Why, then, are melanocytes responsible for so many mysterious functions? Do these complex functional devices work to maintain homeostasis locally and throughout the body? In addition, melanocytes have also been shown to be localized in internal sites such as the inner ear, brain, and heart, locations not stimulated by sunlight. Thus, what can the observation of extracutaneous melanocytes tell us about the "secret identity" of melanocytes? While the answers to some of these intriguing questions remain to be discovered, here we summarize and weave a thread around available data to explore the established and potential roles of melanocytes in the biological communication of skin and systemic homeostasis, and elaborate on important open issues and propose ways forward.
Collapse
Affiliation(s)
- Yan-Yan Chen
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Li-Ping Liu
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Hang Zhou
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
- School of Medicine, Yokohama City University, Yokohama 234-0006, Japan
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yu-Mei Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| |
Collapse
|
27
|
Jin R, Luo L, Zheng J. The Trinity of Skin: Skin Homeostasis as a Neuro-Endocrine-Immune Organ. Life (Basel) 2022; 12:725. [PMID: 35629392 PMCID: PMC9144330 DOI: 10.3390/life12050725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022] Open
Abstract
For a long time, skin was thought to be no more than the barrier of our body. However, in the last few decades, studies into the idea of skin as an independent functional organ have gradually deepened our understanding of skin and its functions. In this review, we gathered evidence that presented skin as a "trinity" of neuro-endocrine-immune function. From a neuro perspective, skin communicates through nerves and receptors, releasing neurotrophins and neuropeptides; from an endocrine perspective, skin is able to receive and secrete most hormones and has the cutaneous equivalent of the hypothalamic-pituitary-adrenal (HPA) axis; from an immune perspective, skin is protected not only by its physical barrier, but also immune cells and molecules, which can also cause inflammation. Together as an organ, skin works bidirectionally by operating peripheral neuro-endocrine-immune function and being regulated by the central nervous system, endocrine system and immune system at the same time, maintaining homeostasis. Additionally, to further explain the "trinity" of cutaneous neuro-endocrine-immune function and how it works in disease pathophysiology, a disease model of rosacea is presented.
Collapse
Affiliation(s)
- Rong Jin
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Lan Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Jie Zheng
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| |
Collapse
|
28
|
Ortiz-Lopez LI, Choudhary V, Bollag WB. Updated Perspectives on Keratinocytes and Psoriasis: Keratinocytes are More Than Innocent Bystanders. PSORIASIS (AUCKLAND, N.Z.) 2022; 12:73-87. [PMID: 35529056 PMCID: PMC9075909 DOI: 10.2147/ptt.s327310] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/08/2022] [Indexed: 02/02/2023]
Abstract
Psoriasis is a complex disease triggered by genetic, immunologic, and environmental stimuli. Many genes have been linked to psoriasis, like the psoriasis susceptibility genes, some of which are critical in keratinocyte biology and epidermal barrier function. Still, the exact pathogenesis of psoriasis is unknown. In the disease, the balance between the proliferative and differentiative processes of keratinocytes becomes altered. Multiple studies have highlighted the role of dysregulated immune cells in provoking the inflammatory responses seen in psoriasis. In addition to immune cells, accumulating evidence shows that keratinocytes are involved in psoriasis pathogenesis, as discussed in this review. Although certain immune cell-derived factors stimulate keratinocyte hyperproliferation, activated keratinocytes can also produce anti-microbial peptides, cytokines, and chemokines that can promote their proliferation, as well as recruit immune cells to help initiate and reinforce inflammatory feedback loops. Psoriatic keratinocytes also show intrinsic differences from normal keratinocytes even after removal from the in vivo inflammatory environment; thus, psoriatic keratinocytes have been found to exhibit abnormal calcium metabolism and possible epigenetic changes that contribute to psoriasis. The Koebner phenomenon, in which injury promotes the development of psoriatic lesions, also provides evidence for keratinocytes' contributions to disease pathogenesis. Furthermore, transgenic mouse studies have confirmed the importance of keratinocytes in the etiology of psoriasis. Finally, in addition to immune cells and keratinocytes, data in the literature support roles for other cell types, tissues, and systems in psoriasis development. These other contributors are all potential targets for therapies, suggesting the importance of a holistic approach when treating psoriasis.
Collapse
Affiliation(s)
- Laura I Ortiz-Lopez
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Vivek Choudhary
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Wendy B Bollag
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
- Department of Dermatology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
29
|
Gomez-Sanchez CE, Gomez-Sanchez EP. Extra-adrenal Glucocorticoid and Mineralocorticoid Biosynthesis. Endocrinology 2022; 163:6527269. [PMID: 35148380 PMCID: PMC8900687 DOI: 10.1210/endocr/bqac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Celso E Gomez-Sanchez
- Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, USA
- Department of Pharmacology and Toxicology, and Medicine, University of Mississippi Medical Center, Jackson, MS, USA
- Correspondence: Celso E. Gomez-Sanchez, MD, 2500 N State St, Jackson, MS 39216, USA.
| | - Elise P Gomez-Sanchez
- Department of Pharmacology and Toxicology, and Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
30
|
Skin immunity: dissecting the complex biology of our body's outer barrier. Mucosal Immunol 2022; 15:551-561. [PMID: 35361906 DOI: 10.1038/s41385-022-00505-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023]
Abstract
Our skin contributes critically to health via its role as a barrier tissue, carefully regulating passage of key substrates while also providing defense against exogenous threats. Immunological processes are integral to almost every skin function and paramount to our ability to live symbiotically with skin commensal microbes and other environmental stimuli. While many parallels can be drawn to immunobiology at other mucosal sites, skin immunity demonstrates unique features that relate to its distinct topography, chemical composition and microbial ecology. Here we provide an overview of skin as an immune organ, with reference to the broader context of mucosal immunology. We review paradigms of innate as well as adaptive immune function and highlight how skin-specific structures such as hair follicles and sebaceous glands interact and contribute to these processes. Finally, we highlight for the mucosal immunology community a few emerging areas of interest for the skin immunity field moving forward.
Collapse
|
31
|
Slominski AT, Mahata B, Raman C, Bereshchenko O. Editorial: Steroids and Secosteroids in the Modulation of Inflammation and Immunity. Front Immunol 2021; 12:825577. [PMID: 34987528 PMCID: PMC8720852 DOI: 10.3389/fimmu.2021.825577] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
- Pathology Laboratory Service, Veteran Administration Medical Center, Birmingham, AL, United States
- *Correspondence: Andrzej T. Slominski, ; Bidesh Mahata, ; Chander Raman, ; Oxana Bereshchenko,
| | - Bidesh Mahata
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Andrzej T. Slominski, ; Bidesh Mahata, ; Chander Raman, ; Oxana Bereshchenko,
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Andrzej T. Slominski, ; Bidesh Mahata, ; Chander Raman, ; Oxana Bereshchenko,
| | - Oxana Bereshchenko
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
- *Correspondence: Andrzej T. Slominski, ; Bidesh Mahata, ; Chander Raman, ; Oxana Bereshchenko,
| |
Collapse
|
32
|
Keratinocytes Regulate the Threshold of Inflammation by Inhibiting T Cell Effector Functions. Cells 2021; 10:cells10071606. [PMID: 34206914 PMCID: PMC8306889 DOI: 10.3390/cells10071606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Whilst the importance of keratinocytes as a first-line defense has been widely investigated, little is known about their interactions with non-resident immune cells. In this study, the impact of human keratinocytes on T cell effector functions was analyzed in an antigen-specific in vitro model of allergic contact dermatitis (ACD) to nickel sulfate. Keratinocytes partially inhibited T cell proliferation and cytokine production. This effect was dependent on the keratinocyte/T cell ratio and was partially reversible by increasing the number of autologous dendritic cells. The inhibition of T cell proliferation by keratinocytes was independent of the T cell subtype and antigen presentation by different professional antigen-presenting cells. Autologous and heterologous keratinocytes showed comparable effects, while the fixation of keratinocytes with paraformaldehyde abrogated the immunosuppressive effect. The separation of keratinocytes and T cells by a transwell chamber, as well as a cell-free keratinocyte supernatant, inhibited T cell effector functions to the same amount as directly co-cultured keratinocytes, thus proving that soluble factor/s account for the observed suppressive effects. In conclusion, keratinocytes critically control the threshold of inflammatory processes in the skin by inhibiting T cell proliferation and cytokine production.
Collapse
|
33
|
Slominski RM, Raman C, Elmets C, Jetten AM, Slominski AT, Tuckey RC. The significance of CYP11A1 expression in skin physiology and pathology. Mol Cell Endocrinol 2021; 530:111238. [PMID: 33716049 PMCID: PMC8205265 DOI: 10.1016/j.mce.2021.111238] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022]
Abstract
CYP11A1, a member of the cytochrome P450 family, plays several key roles in the human body. It catalyzes the first and rate-limiting step in steroidogenesis, converting cholesterol to pregnenolone. Aside from the classical steroidogenic tissues such as the adrenals, gonads and placenta, CYP11A1 has also been found in the brain, gastrointestinal tract, immune systems, and finally the skin. CYP11A1 activity in the skin is regulated predominately by StAR protein and hence cholesterol levels in the mitochondria. However, UVB, UVC, CRH, ACTH, cAMP, and cytokines IL-1, IL-6 and TNFα can also regulate its expression and activity. Indeed, CYP11A1 plays several critical roles in the skin through its initiation of local steroidogenesis and specific metabolism of vitamin D, lumisterol, and 7-dehydrocholesterol. Products of these pathways regulate the protective barrier and skin immune functions in a context-dependent fashion through interactions with a number of receptors. Disturbances in CYP11A1 activity can lead to skin pathology.
Collapse
Affiliation(s)
- R M Slominski
- Department of Medicine, Division of Rheumatology, USA; Department of Dermatology, USA
| | - C Raman
- Department of Medicine, Division of Rheumatology, USA; Department of Dermatology, USA
| | - C Elmets
- Department of Dermatology, USA; Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, USA
| | - A M Jetten
- Cell Biology Section, Immunity, Inflammation, Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - A T Slominski
- Department of Dermatology, USA; VA Medical Center, Birmingham, AL, USA.
| | - R C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
34
|
Merk VM, Phan TS, Brunner T. Regulation of Tissue Immune Responses by Local Glucocorticoids at Epithelial Barriers and Their Impact on Interorgan Crosstalk. Front Immunol 2021; 12:672808. [PMID: 34012456 PMCID: PMC8127840 DOI: 10.3389/fimmu.2021.672808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
The anti-inflammatory role of extra-adrenal glucocorticoid (GC) synthesis at epithelial barriers is of increasing interest with regard to the search for alternatives to synthetic corticosteroids in the therapy of inflammatory disorders. Despite being very effective in many situations the use of synthetic corticosteroids is often controversial, as exemplified in the treatment of influenza patients and only recently in the current COVID-19 pandemic. Exploring the regulatory capacity of locally produced GCs in balancing immune responses in barrier tissues and in pathogenic disorders that lead to symptoms in multiple organs, could provide new perspectives for drug development. Intestine, skin and lung represent the first contact zones between potentially harmful pathogens or substances and the body, and are therefore important sites of immunoregulatory mechanisms. Here, we review the role of locally produced GCs in the regulation of type 2 immune responses, like asthma, atopic dermatitis and ulcerative colitis, as well as type 1 and type 3 infectious, inflammatory and autoimmune diseases, like influenza infection, psoriasis and Crohn’s disease. In particular, we focus on the role of locally produced GCs in the interorgan communication, referred to as gut-skin axis, gut-lung axis or lung-skin axis, all of which are interconnected in the pathogenic crosstalk atopic march.
Collapse
Affiliation(s)
- Verena M Merk
- Department of Biology, Chair of Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | - Truong San Phan
- Department of Biology, Chair of Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | - Thomas Brunner
- Department of Biology, Chair of Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| |
Collapse
|