1
|
Aguirre-Gutiérrez J, Rifai SW, Deng X, Ter Steege H, Thomson E, Corral-Rivas JJ, Guimaraes AF, Muller S, Klipel J, Fauset S, Resende AF, Wallin G, Joly CA, Abernethy K, Adu-Bredu S, Alexandre Silva C, de Oliveira EA, Almeida DRA, Alvarez-Davila E, Asner GP, Baker TR, Benchimol M, Bentley LP, Berenguer E, Blanc L, Bonal D, Bordin K, Borges de Lima R, Both S, Cabezas Duarte J, Cardoso D, de Lima HC, Cavalheiro L, Cernusak LA, Dos Santos Prestes NCC, da Silva Zanzini AC, da Silva RJ, Dos Santos Alves da Silva R, de Andrade Iguatemy M, De Sousa Oliveira TC, Dechant B, Derroire G, Dexter KG, Rodrigues DJ, Espírito-Santo M, Silva LF, Domingues TF, Ferreira J, Simon MF, Girardin CAJ, Hérault B, Jeffery KJ, Kalpuzha Ashtamoorthy S, Kavidapadinjattathil Sivadasan A, Klitgaard B, Laurance WF, Dan ML, Magnusson WE, Campos-Filho EM, Manoel Dos Santos R, Manzatto AG, Silveira M, Marimon-Junior BH, Martin RE, Vieira DLM, Metzker T, Milliken W, Moonlight P, Moraes de Seixas MM, Morandi PS, Muscarella R, Nava-Miranda MG, Nyirambangutse B, Silva JO, Oliveras Menor I, Francisco Pena Rodrigues PJ, Pereira de Oliveira C, Pereira Zanzini L, Peres CA, Punjayil V, Quesada CA, Réjou-Méchain M, Riutta T, Rivas-Torres G, Rosa C, Salinas N, Bergamin RS, Marimon BS, Shenkin A, Silva Rodrigues PM, Figueiredo AES, Garcia QS, Spósito T, Storck-Tonon D, Sullivan MJP, Svátek M, Vieira Santiago WT, Arn Teh Y, Theruvil Parambil Sivan P, Nascimento MT, et alAguirre-Gutiérrez J, Rifai SW, Deng X, Ter Steege H, Thomson E, Corral-Rivas JJ, Guimaraes AF, Muller S, Klipel J, Fauset S, Resende AF, Wallin G, Joly CA, Abernethy K, Adu-Bredu S, Alexandre Silva C, de Oliveira EA, Almeida DRA, Alvarez-Davila E, Asner GP, Baker TR, Benchimol M, Bentley LP, Berenguer E, Blanc L, Bonal D, Bordin K, Borges de Lima R, Both S, Cabezas Duarte J, Cardoso D, de Lima HC, Cavalheiro L, Cernusak LA, Dos Santos Prestes NCC, da Silva Zanzini AC, da Silva RJ, Dos Santos Alves da Silva R, de Andrade Iguatemy M, De Sousa Oliveira TC, Dechant B, Derroire G, Dexter KG, Rodrigues DJ, Espírito-Santo M, Silva LF, Domingues TF, Ferreira J, Simon MF, Girardin CAJ, Hérault B, Jeffery KJ, Kalpuzha Ashtamoorthy S, Kavidapadinjattathil Sivadasan A, Klitgaard B, Laurance WF, Dan ML, Magnusson WE, Campos-Filho EM, Manoel Dos Santos R, Manzatto AG, Silveira M, Marimon-Junior BH, Martin RE, Vieira DLM, Metzker T, Milliken W, Moonlight P, Moraes de Seixas MM, Morandi PS, Muscarella R, Nava-Miranda MG, Nyirambangutse B, Silva JO, Oliveras Menor I, Francisco Pena Rodrigues PJ, Pereira de Oliveira C, Pereira Zanzini L, Peres CA, Punjayil V, Quesada CA, Réjou-Méchain M, Riutta T, Rivas-Torres G, Rosa C, Salinas N, Bergamin RS, Marimon BS, Shenkin A, Silva Rodrigues PM, Figueiredo AES, Garcia QS, Spósito T, Storck-Tonon D, Sullivan MJP, Svátek M, Vieira Santiago WT, Arn Teh Y, Theruvil Parambil Sivan P, Nascimento MT, Veenendaal E, Zo-Bi IC, Dago MR, Traoré S, Patacca M, Badouard V, de Padua Chaves E Carvalho S, White LJT, Zhang-Zheng H, Zibera E, Zwerts JA, Burslem DFRP, Silman M, Chave J, Enquist BJ, Barlow J, Phillips OL, Coomes DA, Malhi Y. Canopy functional trait variation across Earth's tropical forests. Nature 2025; 641:129-136. [PMID: 40044867 PMCID: PMC12043511 DOI: 10.1038/s41586-025-08663-2] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/16/2025] [Indexed: 04/13/2025]
Abstract
Tropical forest canopies are the biosphere's most concentrated atmospheric interface for carbon, water and energy1,2. However, in most Earth System Models, the diverse and heterogeneous tropical forest biome is represented as a largely uniform ecosystem with either a singular or a small number of fixed canopy ecophysiological properties3. This situation arises, in part, from a lack of understanding about how and why the functional properties of tropical forest canopies vary geographically4. Here, by combining field-collected data from more than 1,800 vegetation plots and tree traits with satellite remote-sensing, terrain, climate and soil data, we predict variation across 13 morphological, structural and chemical functional traits of trees, and use this to compute and map the functional diversity of tropical forests. Our findings reveal that the tropical Americas, Africa and Asia tend to occupy different portions of the total functional trait space available across tropical forests. Tropical American forests are predicted to have 40% greater functional richness than tropical African and Asian forests. Meanwhile, African forests have the highest functional divergence-32% and 7% higher than that of tropical American and Asian forests, respectively. An uncertainty analysis highlights priority regions for further data collection, which would refine and improve these maps. Our predictions represent a ground-based and remotely enabled global analysis of how and why the functional traits of tropical forest canopies vary across space.
Collapse
Affiliation(s)
- Jesús Aguirre-Gutiérrez
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK.
- Leverhulme Centre for Nature Recovery, University of Oxford, Oxford, UK.
| | - Sami W Rifai
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Xiongjie Deng
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Hans Ter Steege
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Quantitative Biodiversity Dynamics, Utrecht University, Utrecht, The Netherlands
| | - Eleanor Thomson
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Jose Javier Corral-Rivas
- Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Durango, Mexico
| | | | - Sandra Muller
- Plant Ecology Lab, Ecology Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Joice Klipel
- Plant Ecology Lab, Ecology Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Sophie Fauset
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
| | - Angelica F Resende
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo (USP/ESALQ), Piracicaba, Brazil
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | - Göran Wallin
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Carlos A Joly
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Brazilian Platform on Biodiversity and Ecosystem Services (BPBES), Campinas, Brazil
| | - Katharine Abernethy
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
- Institut de Recherche en Écologie Tropicale, Libreville, Gabon
| | - Stephen Adu-Bredu
- CSIR-Forestry Research Institute of Ghana, Kumasi, Ghana
- Department of Natural Resources Management, CSIR College of Science and Technology, Kumasi, Ghana
| | | | | | - Danilo R A Almeida
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo (USP/ESALQ), Piracicaba, Brazil
| | - Esteban Alvarez-Davila
- Escuela de Ciencias Agrícolas, Pecuarias y Ambientales - ECAPMA, Universidad Nacional Abierta y a Distancia, Bogota, Colombia
| | - Gregory P Asner
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USA
| | | | - Maíra Benchimol
- Laboratório de Ecologia Aplicada à Conservacão, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | - Erika Berenguer
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Lilian Blanc
- Forêts et Sociétés, Université de Montpellier, CIRAD, Montpellier, France
| | - Damien Bonal
- INRAE, Université de Lorraine, AgroParisTech, UMR Silva, Nancy, France
| | - Kauane Bordin
- Department of Ecology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Sabine Both
- Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Jaime Cabezas Duarte
- Jardín Botánico de Bogotá, Bogotá, Colombia
- Universidad de los Andes, Bogotá, Colombia
| | - Domingos Cardoso
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Haroldo C de Lima
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | | | | | | | | | - Mariana de Andrade Iguatemy
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Internacional para Sustentabilidade, Rio de Janeiro, Brazil
| | - Tony César De Sousa Oliveira
- Institute of Biogeosciences, IBG2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Faculty of Communication and Environment, Hochschule Rhein-Waal, Kamp-Lintfort, Germany
| | - Benjamin Dechant
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | - Géraldine Derroire
- Forêts et Sociétés, Université de Montpellier, CIRAD, Montpellier, France
- Cirad, UMR EcoFoG (AgroParistech, CNRS, INRAE, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French Guiana
| | - Kyle G Dexter
- Royal Botanic Garden Edinburgh, Edinburgh, UK
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | | - Mário Espírito-Santo
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros, Brazil
| | - Letícia Fernandes Silva
- Universidade Paulista, Polo Rio Branco, Brazil
- Universidade Federal do Acre, Rio Branco, Brazil
| | - Tomas Ferreira Domingues
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Ribeirão Preto, Brazil
- Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Cécile A J Girardin
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Bruno Hérault
- Forêts et Sociétés, Université de Montpellier, CIRAD, Montpellier, France
| | - Kathryn J Jeffery
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | | | | | - Bente Klitgaard
- Department for Accelerated Taxonomy, Royal Botanic Gardens, Kew, Richmond, UK
| | - William F Laurance
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Maurício Lima Dan
- Centro de Pesquisa, Desenvolvimento e Inovação Sul, Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, Cachoeiro de Itapemirim, Brazil
| | - William E Magnusson
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | | | - Rubens Manoel Dos Santos
- Laboratório de Fitogeografia e Ecologia Evolutiva, Departamento de Ciências Florestais, Universidade Federal de Lavras, Lavras, Brazil
| | | | - Marcos Silveira
- Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Brazil
| | - Ben Hur Marimon-Junior
- Laboratório de Ecologia Vegetal (LABEV), Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Roberta E Martin
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USA
| | | | - Thiago Metzker
- IBAM-Instituto Bem Ambiental, Belo Horizonte, Brazil
- Myr Projetos Sustentáveis, Belo Horizonte, Brazil
| | | | - Peter Moonlight
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | | | - Paulo S Morandi
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Robert Muscarella
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - María Guadalupe Nava-Miranda
- Colegio de Ciencias y Humanidades, Universidad Juárez del Estado de Durango, Durango, Mexico
- Escuela Politécnica Superior de Ingeniería, Universidad de Santiago de Compostela, Campus Terra, Lugo, España
| | - Brigitte Nyirambangutse
- Global Green Growth Institute, Rwanda Program, Kigali, Rwanda
- University of Rwanda, Kigali, Rwanda
| | - Jhonathan Oliveira Silva
- Colegiado de Ecologia, Universidade Federal do Vale do São Francisco (UNIVASF), Senhor do Bonfim, Brazil
| | - Imma Oliveras Menor
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- AMAP, Université de Montpellier, IRD, CNRS, CIRAD INRAE, Montpellier, France
| | | | | | - Lucas Pereira Zanzini
- Departamento de Engenharia Florestal, Universidade do Estado de Mato Grosso, Caceres, Brazil
| | - Carlos A Peres
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Vignesh Punjayil
- Forest Ecology Department, KSCSTE-Kerala Forest Research Institute, Kerala, India
| | - Carlos A Quesada
- Coordenação de Dinâmica Ambiental, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | | | - Terhi Riutta
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Department of Geography, University of Exeter, Exeter, UK
| | - Gonzalo Rivas-Torres
- Estación de Biodiversidad Tiputini, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Clarissa Rosa
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Norma Salinas
- Institute for Nature Earth and Energy, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Rodrigo Scarton Bergamin
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
- Birmingham Institute of Forest Research (BIFoR), University of Birmingham, Birmingham, UK
| | - Beatriz Schwantes Marimon
- Laboratório de Ecologia Vegetal (LABEV), Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Alexander Shenkin
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | | | | | - Queila Souza Garcia
- Instituto de Ciências Biológicas, Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Danielle Storck-Tonon
- Programa de Pós-graduação em Ambiente e Sistemas de Produção Agrícola, Universidade do Estado de Mato Grosso, Tangará da Serra, Brazil
| | - Martin J P Sullivan
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Martin Svátek
- Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Wagner Tadeu Vieira Santiago
- CESAM-Centro de Estudos do Ambiente e do Mar, Departamento de Biologia, Pesquisador Colaborador, Universidade de Aveiro, Aveiro, Portugal
| | - Yit Arn Teh
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Marcelo Trindade Nascimento
- Laboratório de Ciências Ambientais, CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Elmar Veenendaal
- Plant Ecology and Nature Conservation Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Irie Casimir Zo-Bi
- UMRI SAPT (Sciences Agronomiques et Procédés de Transformation), Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| | - Marie Ruth Dago
- UMRI SAPT (Sciences Agronomiques et Procédés de Transformation), Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| | - Soulemane Traoré
- UMRI SAPT (Sciences Agronomiques et Procédés de Transformation), Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
- Ministry of Water and Forests, Abidjan, Côte d'Ivoire
| | - Marco Patacca
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Vincyane Badouard
- Cirad, UMR EcoFoG (AgroParistech, CNRS, INRAE, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French Guiana
- AMAP, Université de Montpellier, IRD, CNRS, CIRAD INRAE, Montpellier, France
- UMRI SAPT (Sciences Agronomiques et Procédés de Transformation), Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| | | | - Lee J T White
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
- Institut de Recherche en Écologie Tropicale, Libreville, Gabon
| | - Huanyuan Zhang-Zheng
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Leverhulme Centre for Nature Recovery, University of Oxford, Oxford, UK
| | - Etienne Zibera
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- School of Forestry and Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | | | | | - Miles Silman
- Center for Energy, Environment, and Sustainability, Wake Forest University, Winston-Salem, NC, USA
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | - Jérôme Chave
- Centre de Recherche Biodiversité Environnement, CNRS, UPS, IRD, Université de Toulouse, INPT, Toulouse, France
| | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- The Santa Fe Institute, Santa Fe, USA
| | - Jos Barlow
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | - David A Coomes
- Conservation Research Institute and Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Leverhulme Centre for Nature Recovery, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Smallegange IM, Guenther A. A development-centric perspective on pace-of-life syndromes. Evol Lett 2025; 9:172-183. [PMID: 40191411 PMCID: PMC11968188 DOI: 10.1093/evlett/qrae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/14/2024] [Accepted: 12/09/2024] [Indexed: 04/09/2025] Open
Abstract
Organism responses to environmental change require coordinated changes across correlated traits, so-called syndromes. For example, animals differ in their "pace-of-life syndrome" (POLS); suites of correlated life-history, behavioral and physiological traits. But standard "gene-centric" evolutionary theory cannot explain why POLSs exist because it assumes that the expression of phenotypic traits of animals is determined by genotype-specified reaction norms; it ignores that developmental processes can bias the direction of evolution so that phenotypes no longer match genotype-by-environment interactions. Here we apply a development-centric perspective to derive new POLS hypotheses that can resolve the conflict that current POLS predictions fail to explain which species/populations are resilient to environmental change.
Collapse
Affiliation(s)
- Isabel M Smallegange
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anja Guenther
- Research Group Behavioural Ecology of Individual Differences, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
3
|
Daru BH. Tracking hidden dimensions of plant biogeography from herbaria. THE NEW PHYTOLOGIST 2025; 246:61-77. [PMID: 39953672 DOI: 10.1111/nph.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/08/2025] [Indexed: 02/17/2025]
Abstract
Plants are diverse, but investigating their ecology and evolution in nature across geographic and temporal scales to predict how species will respond to global change is challenging. With their geographic and temporal breadth, herbarium data provide physical evidence of the existence of a species in a place and time. The remarkable size of herbarium collections along with growing digitization efforts around the world and the possibility of extracting functional traits and geographic data from preserved plant specimens makes them invaluable resources for advancing our understanding of changing species distributions over time, functional biogeography, and conserving plant communities. Here, I synthesize core aspects of plant biogeography that can be gleaned from herbaria along changing distributions, attributes (functional biogeography), and conservation biogeography across the globe. I advocate for a collaborative, multisite, and multispecies research to harness the full potential of these collections while addressing the inherent challenges of using herbarium data for biogeography and macroecological investigations. Ultimately, these data present untapped resources and opportunities to enable predictions of plant species' responses to global change and inform effective conservation planning.
Collapse
Affiliation(s)
- Barnabas H Daru
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 94305, USA
| |
Collapse
|
4
|
Coutant O, Lopes-Lima M, Murienne J, Pellissier L, Quartarollo G, Valentini A, Prié V, Brosse S. No attenuation of fish and mammal biodiversity declines in the Guiana Shield. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 971:179021. [PMID: 40081079 DOI: 10.1016/j.scitotenv.2025.179021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/30/2025] [Accepted: 02/27/2025] [Indexed: 03/15/2025]
Abstract
Real-time biodiversity monitoring should provide more resolved data to quantify shifts in ecological communities progressively altered by anthropogenic disturbances. Identifying biodiversity trends requires a rapid and efficient inventory method that enables the collection and delivery of high-resolution data within short intervals. Using aquatic environmental DNA (eDNA), we investigated spatiotemporal changes in fish and mammal communities along the Maroni River in French Guiana. We compared spatial biodiversity trends between two years, separated by a four-year interval, during which an increase in anthropogenic disturbances was observed. To evaluate biodiversity changes, we examined the impact of these disturbances on both taxonomic and functional diversity. Our findings revealed that, while the increase in disturbances did not result in major biodiversity decline, it continued to drive alterations in community taxonomic and functional richness. Communities underwent changes in their functional structure, with mammal communities experiencing a decline in extreme functional traits, while fish communities lost functional redundancy in generalist functions and experienced a reduction in extreme functional strategies. In a context of small-scale anthropogenic disturbances, these changes highlight the necessity of long-term, short-interval monitoring to capture rapid reorganisation of ecological communities under stress.
Collapse
Affiliation(s)
- Opale Coutant
- Centre de Recherches sur la Biodiversité et l'Environnement, CRBE UMR5300, Université de Toulouse, IRD, CNRS, INP 118 route de Narbonne, 31062 Toulouse, France.
| | - Manuel Lopes-Lima
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, at the Universidade do Porto, in Vairão, Portugal
| | - Jérôme Murienne
- Centre de Recherches sur la Biodiversité et l'Environnement, CRBE UMR5300, Université de Toulouse, IRD, CNRS, INP 118 route de Narbonne, 31062 Toulouse, France.
| | - Loic Pellissier
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland; Land Change Science Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland.
| | - Grégory Quartarollo
- HYDRECO, Laboratoire Environnement de Petit Saut, Kourou, French Guiana; Guyane Wild Fish, Cayenne, French Guiana.
| | | | | | - Sébastien Brosse
- Centre de Recherches sur la Biodiversité et l'Environnement, CRBE UMR5300, Université de Toulouse, IRD, CNRS, INP 118 route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
5
|
He P, Ye Q, Yu K, Liu X, Liu H, Liang X, Zhu S, Wang H, Yan J, Wang YP, Wright IJ. Relationship between wind speed and plant hydraulics at the global scale. Nat Ecol Evol 2025; 9:273-281. [PMID: 39747479 DOI: 10.1038/s41559-024-02603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025]
Abstract
Wind is an important ecological factor for plants as it can increase evapotranspiration and cause dehydration. However, the impact of wind on plant hydraulics at a global scale remains unclear. Here we compiled plant key hydraulic traits, including water potential at 50% loss of hydraulic conductivity (P50), xylem-specific hydraulic conductivity (KS), leaf area to sapwood area ratio (AL/AS) and conduit diameter (D) with 2,786 species-at-site combinations across 1,922 woody species at 469 sites worldwide and analysed their correlations with wind speed. Even with other climatic factors controlled (for example, moisture index, temperature and vapour pressure deficit), wind speed clearly affected plant hydraulics; for example, on average, species from windier sites constructed sapwood with smaller D and lower KS that was more resilient to drought (more negative P50), deploying less leaf total area for a given sapwood cross-section. Species with these traits may be at an advantage under future climates with higher wind speeds.
Collapse
Affiliation(s)
- Pengcheng He
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Qing Ye
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- College of Life Sciences, Gannan Normal University, Ganzhou, China.
| | - Kailiang Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
| | - Xiaorong Liu
- Sichuan University of Arts and Science, Dazhou, China
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xingyun Liang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shidan Zhu
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning, China
| | - Han Wang
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China
| | - Junhua Yan
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ying-Ping Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- CSIRO Environment, Clayton South, Victoria, Australia
| | - Ian J Wright
- ARC Centre for Plant Success in Nature & Agriculture, Hawkesbury Institute for the Environment, Western Sydney University, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Alfaro-Lucas JM, Chapman ASA, Tunnicliffe V, Bates AE. High functional vulnerability across the world's deep-sea hydrothermal vent communities. Proc Natl Acad Sci U S A 2024; 121:e2403899121. [PMID: 39467128 PMCID: PMC11551373 DOI: 10.1073/pnas.2403899121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/05/2024] [Indexed: 10/30/2024] Open
Abstract
At the nearly pristine hydrothermal vents of the deep sea, highly endemic animals depend upon bacteria nourished by hydrothermal fluids that emerge as outflows from the seafloor. These animals are remarkable in tolerating extreme conditions, including high heat, toxic reduced sulfide, and low oxygen. Here, we test whether the extreme vent environment has selected for functionally similar species across the world's deep ocean, despite well-established global geographic patterns of high phylogenetic distinctness. High functional redundancy in species pools within regions suggests that the extreme environments select for species with specific traits. Yet, some regions emerge as functional hotspots where species pools with distinct functional trait compositions may represent geological idiosyncrasies of the habitats. Moreover, many species are functionally unique, an outcome of low species richness in a system where the species pool is small at all scales. Given the high proportion of functionally unique species, simulated species extinctions indicate that species losses would rapidly translate to the elimination of functionally irreplaceable species and could tip vent systems to functional collapse. Ocean changes and human-induced threats are expected to significantly impact many vent species as human activities expand in the remote deep sea. The opportunity exists now to take precautionary actions to limit the rates of extinction now ubiquitous in more accessible areas of Earth.
Collapse
Affiliation(s)
| | - Abbie S. A. Chapman
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, LondonWC1H 0NN, United Kingdom
| | - Verena Tunnicliffe
- Department of Biology, University of Victoria, Victoria, BCV8P 5C2, Canada
- School of Earth & Ocean Sciences, University of Victoria, Victoria, BCV8P 5C2, Canada
| | - Amanda E. Bates
- Department of Biology, University of Victoria, Victoria, BCV8P 5C2, Canada
| |
Collapse
|
7
|
de Sousa HC, Malvasio A, Colli GR, Salguero-Gómez R. Severe fire regimes decrease resilience of ectothermic populations. J Anim Ecol 2024; 93:1656-1669. [PMID: 39308046 DOI: 10.1111/1365-2656.14188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/04/2024] [Indexed: 11/07/2024]
Abstract
Understanding populations' responses to environmental change is crucial for mitigating human-induced disturbances. Here, we test hypotheses regarding how three essential components of demographic resilience (resistance, compensation and recovery) co-vary along the distinct life histories of three lizard species exposed to variable, prescribed fire regimes. Using a Bayesian hierarchical framework, we estimate vital rates (survival, growth and reproduction) with 14 years of monthly individual-level data and mark-recapture models to parameterize stochastic integral projection models from five sites in Brazilian savannas, each historically subjected to different fire regimes. With these models, we investigate how weather, microclimate and ecophysiological traits of each species influence their vital rates, emergent life history traits and demographic resilience components in varying fire regimes. Overall, weather and microclimate are better predictors of the species' vital rates, rather than their ecophysiological traits. Our findings reveal that severe fire regimes increase populations' resistance but decrease compensation or recovery abilities. Instead, populations have higher compensatory and recovery abilities at intermediate degrees of fire severity. Additionally, we identify generation time and reproductive output as predictors of resilience trends across fire regimes and climate. Our analyses demonstrate that the probability and quantity of monthly reproduction are the proximal drivers of demographic resilience across the three species. Our findings suggest that populations surpass a tipping point in severe fire regimes and achieve an alternative stable state to persist. Thus, higher heterogeneity in fire regimes can increase the reproductive aspects and resilience of different populations and avoid high-severity regimes that homogenize the environment. Despite being more resistant, species with long generation times and low reproductive output take longer to recover and cannot compensate as much as species with faster paces of life. We emphasize how reproductive constraints, such as viviparity and fixed clutch sizes, impact the ability of ectothermic populations to benefit and recover from disturbances, underscoring their relevance in conservation assessments.
Collapse
Affiliation(s)
| | - Adriana Malvasio
- Universidade Federal do Tocantins-UFT, Palmas, Tocantins, Brazil
| | - Guarino Rinaldi Colli
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília-UnB, Brasília, Distrito Federal, Brazil
| | - Roberto Salguero-Gómez
- Department of Zoology, University of Oxford, Oxford, UK
- Evolutionary Demography Laboratory, Max Planck Institute for Demographic Research, Rostock, Germany
| |
Collapse
|
8
|
Flach H, Pfeffer S, Dietmann P, Kühl M, Kühl SJ. Glyphosate formulations cause mortality and diverse sublethal defects during embryonic development of the amphibian Xenopuslaevis. CHEMOSPHERE 2024; 367:143624. [PMID: 39461437 DOI: 10.1016/j.chemosphere.2024.143624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
The human impact on environmental landscapes, such as land use, climate change or pollution, is threatening global biodiversity and ecosystems maintenance. Pesticides like the herbicide glyphosate have garnered considerable attention due to their well-documented harmful effects on non-target species. During application, the active ingredient glyphosate is utilized in various formulations, each containing different additive adjuvants. However, the possible effects of these formulations on amphibians - the group with the highest decline rates among vertebrates - remain largely unknown. Therefore, the present study investigated the effects of four glyphosate formulations (Glyphosat TF, Durano TF, Helosate 450 TF, Kyleo) on the embryonic development of the model organism Xenopus laevis (South African clawed frog). Embryos at the 2-cell stage were exposed to various concentrations of glyphosate formulations (glyphosate: 0.01-100 mg/L), and mortality as well as sublethal effects on different organs and tissues were analyzed. The results indicated that the formulations had different effects, particularly on the mortality of Xenopus laevis embryos. At sublethal concentrations, the formulations altered the embryos' external appearance, leading to malformations such as reduced eye and head size. In addition, exposure to formulations impaired heart morphology and function, and the expression of heart-specific genes was altered at a molecular level. Our results confirmed that glyphosate formulations had a stronger effect on Xenopus laevis embryogenesis than pure glyphosate. Therefore, it is crucial to evaluate the active ingredient and the co-formulations independently, as well as the combined, commercially available products, during pesticide risk assessments and renewal procedures of agrochemicals. The severe global decline of amphibians, partly due to herbicide use, highlights the need for strict and efficient monitoring of environmental pesticide loads and application areas.
Collapse
Affiliation(s)
- Hannah Flach
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sarah Pfeffer
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
9
|
Matthews TJ, Triantis KA, Wayman JP, Martin TE, Hume JP, Cardoso P, Faurby S, Mendenhall CD, Dufour P, Rigal F, Cooke R, Whittaker RJ, Pigot AL, Thébaud C, Jørgensen MW, Benavides E, Soares FC, Ulrich W, Kubota Y, Sadler JP, Tobias JA, Sayol F. The global loss of avian functional and phylogenetic diversity from anthropogenic extinctions. Science 2024; 386:55-60. [PMID: 39361743 DOI: 10.1126/science.adk7898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/15/2024] [Accepted: 08/08/2024] [Indexed: 10/05/2024]
Abstract
Humans have been driving a global erosion of species richness for millennia, but the consequences of past extinctions for other dimensions of biodiversity-functional and phylogenetic diversity-are poorly understood. In this work, we show that, since the Late Pleistocene, the extinction of 610 bird species has caused a disproportionate loss of the global avian functional space along with ~3 billion years of unique evolutionary history. For island endemics, proportional losses have been even greater. Projected future extinctions of more than 1000 species over the next two centuries will incur further substantial reductions in functional and phylogenetic diversity. These results highlight the severe consequences of the ongoing biodiversity crisis and the urgent need to identify the ecological functions being lost through extinction.
Collapse
Affiliation(s)
- Thomas J Matthews
- School of Geography, Earth and Environmental Sciences (GEES) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
- Centre for Ecology, Evolution and Environmental Changes (CE3C), Azorean Biodiversity Group, CHANGE - Global Change and Sustainability Institute, and Faculty of Agricultural Sciences and Environment, Universidade dos Açores, Angra do Heroísmo, Açores, Portugal
| | - Kostas A Triantis
- Department of Ecology and Taxonomy, Faculty of Biology, National and Kapodistrian University of Athens, Athens GR-15784, Greece
| | - Joseph P Wayman
- School of Geography, Earth and Environmental Sciences (GEES) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Thomas E Martin
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, UK
- Operation Wallacea, Wallace House, Old Bolingbroke, Lincolnshire, UK
| | - Julian P Hume
- Bird Group, Life Sciences, Natural History Museum, Tring, UK
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus, University of Helsinki, Helsinki, Finland
- CE3C, CHANGE - Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Søren Faurby
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Chase D Mendenhall
- Physician Assistant Studies, Slippery Rock University, Slippery Rock, PA 16057, USA
| | - Paul Dufour
- Center for Functional and Evolutionary Ecology (CEFE), Université de Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
- Station Biologique de la Tour du Valat, Arles, France
| | - François Rigal
- Centre for Ecology, Evolution and Environmental Changes (CE3C), Azorean Biodiversity Group, CHANGE - Global Change and Sustainability Institute, and Faculty of Agricultural Sciences and Environment, Universidade dos Açores, Angra do Heroísmo, Açores, Portugal
- CNRS - Université de Pau et des Pays de l'Adour - E2S UPPA, Institut Des Sciences Analytiques et de Physico Chimie pour l'Environnement et les Materiaux, UMR5254, Pau, France
| | - Rob Cooke
- UK Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford, Oxfordshire, UK
| | - Robert J Whittaker
- School of Geography and the Environment, University of Oxford, Oxford, UK
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alex L Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Christophe Thébaud
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300 Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Paul Sabatier (Toulouse III), Toulouse Cedex 9, France
| | - Maria Wagner Jørgensen
- School of Geography, Earth and Environmental Sciences (GEES) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Eva Benavides
- School of Geography, Earth and Environmental Sciences (GEES) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Filipa C Soares
- CE3C, Departamento de Biologia Animal, CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Werner Ulrich
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Toruń, Poland
| | - Yasuhiro Kubota
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Jon P Sadler
- School of Geography, Earth and Environmental Sciences (GEES) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | - Ferran Sayol
- CREAF, Edifici C Campus UAB, E08193 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
10
|
Ostwald M, Gonzalez V, Chang C, Vitale N, Lucia M, Seltmann K. Toward a Functional Trait Approach to Bee Ecology. Ecol Evol 2024; 14:e70465. [PMID: 39429800 PMCID: PMC11487340 DOI: 10.1002/ece3.70465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/03/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
Functional traits offer an informative framework for understanding ecosystem functioning and responses to global change. Trait data are abundant in the literature, yet many communities of practice lack data standards for trait measurement and data sharing, hindering data reuse that could reveal large-scale patterns in functional and evolutionary ecology. Here, we present a roadmap toward community data standards for trait-based research on bees, including a protocol for effective trait data sharing. We also review the state of bee functional trait research, highlighting common measurement approaches and knowledge gaps. These studies were overwhelmingly situated in agroecosystems and focused predominantly on morphological and behavioral traits, while phenological and physiological traits were infrequently measured. Studies investigating climate change effects were also uncommon. Along with our review, we present an aggregated morphological trait dataset compiled from our focal studies, representing more than 1600 bee species globally and serving as a template for standardized bee trait data presentation. We highlight obstacles to harmonizing this trait data, especially ambiguity in trait classes, methodology, and sampling metadata. Our framework for trait data sharing leverages common data standards to resolve these ambiguities and ensure interoperability between datasets, promoting accessibility and usability of trait data to advance bee ecological research.
Collapse
Affiliation(s)
- Madeleine M. Ostwald
- Cheadle Center for Biodiversity & Ecological RestorationUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Victor H. Gonzalez
- Undergraduate Biology Program and Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | - Carrie Chang
- Cheadle Center for Biodiversity & Ecological RestorationUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Nydia Vitale
- Instituto Argentino de Investigaciones de Las Zonas Áridas, CONICETMendozaArgentina
| | - Mariano Lucia
- División Entomología, Laboratorio Anexo Museo de La PlataUniversidad Nacional de La Plata, CONICETLa PlataArgentina
| | - Katja C. Seltmann
- Cheadle Center for Biodiversity & Ecological RestorationUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| |
Collapse
|
11
|
Affleck S, McGeoch MA. Global Avian Functional Diversity Depends on the World's Most Widespread and Distinct Birds. Ecol Lett 2024; 27:e14552. [PMID: 39422176 DOI: 10.1111/ele.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024]
Abstract
The relationship between global trait distinctiveness and geographic range size is an emerging pattern of interest in macroecology. Early observations suggested that the relationship was positive, implying that globally widespread species hold the rarest combinations of traits. Here, we formally describe and test the relationship in the world's birds and consider its implications for global functional diversity and redundancy. We demonstrate that the relationship is best described as triangular with a positive upper boundary, with its linear model significance lost when including phylogenetic effects. The triangular relationship is formed by groups of phylogenetically related widespread species with moderate and high trait distinctiveness. Decomposing the relationship further using quantile regression highlights the unique traits of these widespread birds. Overall, the triangular relationship emphasises that while not all widespread species have rare trait combinations, those that do should not be overlooked in conservation efforts, regardless of their current threat status.
Collapse
Affiliation(s)
- Saxbee Affleck
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Melodie A McGeoch
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Securing Antarctica's Environmental Future, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
12
|
Laine AL, Tylianakis JM. The coevolutionary consequences of biodiversity change. Trends Ecol Evol 2024; 39:745-756. [PMID: 38705768 DOI: 10.1016/j.tree.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
Coevolutionary selection is a powerful process shaping species interactions and biodiversity. Anthropogenic global environmental change is reshaping planetary biodiversity, including by altering the structure and intensity of interspecific interactions. However, remarkably little is understood of how coevolutionary selection is changing in the process. Here, we outline three interrelated pathways - change in evolutionary potential, change in community composition, and shifts in interaction trait distributions - that are expected to redirect coevolutionary selection under biodiversity change. Assessing how both ecological and evolutionary rules governing species interactions are disrupted under anthropogenic global change is of paramount importance to understand the past, present, and future of Earth's biodiversity.
Collapse
Affiliation(s)
- Anna-Liisa Laine
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikinkaari 1 (PO Box 65), University of Helsinki, FI-00014 Helsinki, Finland.
| | - Jason M Tylianakis
- Bioprotection Aotearoa, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
13
|
Gross N, Maestre FT, Liancourt P, Berdugo M, Martin R, Gozalo B, Ochoa V, Delgado-Baquerizo M, Maire V, Saiz H, Soliveres S, Valencia E, Eldridge DJ, Guirado E, Jabot F, Asensio S, Gaitán JJ, García-Gómez M, Martínez P, Martínez-Valderrama J, Mendoza BJ, Moreno-Jiménez E, Pescador DS, Plaza C, Pijuan IS, Abedi M, Ahumada RJ, Amghar F, Arroyo AI, Bahalkeh K, Bailey L, Ben Salem F, Blaum N, Boldgiv B, Bowker MA, Branquinho C, van den Brink L, Bu C, Canessa R, Castillo-Monroy ADP, Castro H, Castro P, Chibani R, Conceição AA, Darrouzet-Nardi A, Davila YC, Deák B, Donoso DA, Durán J, Espinosa C, Fajardo A, Farzam M, Ferrante D, Franzese J, Fraser L, Gonzalez S, Gusman-Montalvan E, Hernández-Hernández RM, Hölzel N, Huber-Sannwald E, Jadan O, Jeltsch F, Jentsch A, Ju M, Kaseke KF, Kindermann L, le Roux P, Linstädter A, Louw MA, Mabaso M, Maggs-Kölling G, Makhalanyane TP, Issa OM, Manzaneda AJ, Marais E, Margerie P, Hughes FM, Messeder JVS, Mora JP, Moreno G, Munson SM, Nunes A, Oliva G, Oñatibia GR, Peter G, Pueyo Y, Quiroga RE, Ramírez-Iglesias E, Reed SC, Rey PJ, Reyes Gómez VM, Rodríguez A, Rolo V, Rubalcaba JG, Ruppert JC, Sala O, Salah A, Sebei PJ, Stavi I, Stephens C, et alGross N, Maestre FT, Liancourt P, Berdugo M, Martin R, Gozalo B, Ochoa V, Delgado-Baquerizo M, Maire V, Saiz H, Soliveres S, Valencia E, Eldridge DJ, Guirado E, Jabot F, Asensio S, Gaitán JJ, García-Gómez M, Martínez P, Martínez-Valderrama J, Mendoza BJ, Moreno-Jiménez E, Pescador DS, Plaza C, Pijuan IS, Abedi M, Ahumada RJ, Amghar F, Arroyo AI, Bahalkeh K, Bailey L, Ben Salem F, Blaum N, Boldgiv B, Bowker MA, Branquinho C, van den Brink L, Bu C, Canessa R, Castillo-Monroy ADP, Castro H, Castro P, Chibani R, Conceição AA, Darrouzet-Nardi A, Davila YC, Deák B, Donoso DA, Durán J, Espinosa C, Fajardo A, Farzam M, Ferrante D, Franzese J, Fraser L, Gonzalez S, Gusman-Montalvan E, Hernández-Hernández RM, Hölzel N, Huber-Sannwald E, Jadan O, Jeltsch F, Jentsch A, Ju M, Kaseke KF, Kindermann L, le Roux P, Linstädter A, Louw MA, Mabaso M, Maggs-Kölling G, Makhalanyane TP, Issa OM, Manzaneda AJ, Marais E, Margerie P, Hughes FM, Messeder JVS, Mora JP, Moreno G, Munson SM, Nunes A, Oliva G, Oñatibia GR, Peter G, Pueyo Y, Quiroga RE, Ramírez-Iglesias E, Reed SC, Rey PJ, Reyes Gómez VM, Rodríguez A, Rolo V, Rubalcaba JG, Ruppert JC, Sala O, Salah A, Sebei PJ, Stavi I, Stephens C, Teixido AL, Thomas AD, Throop HL, Tielbörger K, Travers S, Undrakhbold S, Val J, Valkó O, Velbert F, Wamiti W, Wang L, Wang D, Wardle GM, Wolff P, Yahdjian L, Yari R, Zaady E, Zeberio JM, Zhang Y, Zhou X, Le Bagousse-Pinguet Y. Unforeseen plant phenotypic diversity in a dry and grazed world. Nature 2024; 632:808-814. [PMID: 39112697 DOI: 10.1038/s41586-024-07731-3] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/18/2024] [Indexed: 08/17/2024]
Abstract
Earth harbours an extraordinary plant phenotypic diversity1 that is at risk from ongoing global changes2,3. However, it remains unknown how increasing aridity and livestock grazing pressure-two major drivers of global change4-6-shape the trait covariation that underlies plant phenotypic diversity1,7. Here we assessed how covariation among 20 chemical and morphological traits responds to aridity and grazing pressure within global drylands. Our analysis involved 133,769 trait measurements spanning 1,347 observations of 301 perennial plant species surveyed across 326 plots from 6 continents. Crossing an aridity threshold of approximately 0.7 (close to the transition between semi-arid and arid zones) led to an unexpected 88% increase in trait diversity. This threshold appeared in the presence of grazers, and moved toward lower aridity levels with increasing grazing pressure. Moreover, 57% of observed trait diversity occurred only in the most arid and grazed drylands, highlighting the phenotypic uniqueness of these extreme environments. Our work indicates that drylands act as a global reservoir of plant phenotypic diversity and challenge the pervasive view that harsh environmental conditions reduce plant trait diversity8-10. They also highlight that many alternative strategies may enable plants to cope with increases in environmental stress induced by climate change and land-use intensification.
Collapse
Affiliation(s)
- Nicolas Gross
- Université Clermont Auvergne, INRAE, VetAgro Sup, Unité Mixte de Recherche Ecosystème Prairial, Clermont-Ferrand, France.
| | - Fernando T Maestre
- Environmental Sciences and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Pierre Liancourt
- Botany Department, State Museum of Natural History Stuttgart, Stuttgart, Germany
- Plant Ecology Group, University of Tübingen, Tübingen, Germany
| | - Miguel Berdugo
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Raphaël Martin
- Université Clermont Auvergne, INRAE, VetAgro Sup, Unité Mixte de Recherche Ecosystème Prairial, Clermont-Ferrand, France
| | - Beatriz Gozalo
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Alicante, Spain
| | - Victoria Ochoa
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Alicante, Spain
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Vincent Maire
- Département des Sciences de l'Environnement, Université du Québec à Trois-Rivières, Trois Rivières, Quebec, Canada
| | - Hugo Saiz
- Departamento de Ciencias Agrarias y Medio Natural, Escuela Politécnica Superior, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Huesca, Spain
| | - Santiago Soliveres
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Alicante, Spain
- Departamento de Ecología, Universidad de Alicante, Alicante, Spain
| | - Enrique Valencia
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Emilio Guirado
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Alicante, Spain
| | - Franck Jabot
- Université Clermont Auvergne, INRAE, VetAgro Sup, Unité Mixte de Recherche Ecosystème Prairial, Clermont-Ferrand, France
| | - Sergio Asensio
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Alicante, Spain
| | - Juan J Gaitán
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Suelos-CNIA, Buenos Aires, Argentina
- Departamento de Tecnología, Universidad Nacional de Luján, Luján, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Buenos Aires, Argentina
| | - Miguel García-Gómez
- Departamento de Ingeniería y Morfología del Terreno, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Paloma Martínez
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jaime Martínez-Valderrama
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Alicante, Spain
| | - Betty J Mendoza
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Eduardo Moreno-Jiménez
- Department of Agricultural and Food Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - David S Pescador
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - César Plaza
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ivan Santaolaria Pijuan
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Alicante, Spain
| | - Mehdi Abedi
- Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran
| | - Rodrigo J Ahumada
- Estación Experimental Agropecuaria Catamarca, Instituto Nacional de Tecnología Agropecuaria, Catamarca, Argentina
| | - Fateh Amghar
- Laboratoire de Recherche: Biodiversité, Biotechnologie, Environnement et Développement Durable (BioDev), Faculté des Sciences, Université M'hamed Bougara de Boumerdès, Boumerdès, Algérie
| | | | - Khadijeh Bahalkeh
- Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran
| | - Lydia Bailey
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Farah Ben Salem
- Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, Institut des Régions Arides (IRA) Médenine, University of Gabes, Zrig Eddakhlania, Tunisia
| | - Niels Blaum
- Plant Ecology and Nature Conservation, University of Potsdam, Potsdam, Germany
| | - Bazartseren Boldgiv
- Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Matthew A Bowker
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Cristina Branquinho
- cE3c - Centre for Ecology, Evolution and Environmental Changes and CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Liesbeth van den Brink
- Plant Ecology Group, University of Tübingen, Tübingen, Germany
- ECOBIOSIS, Departmento of Botánica, Universidad de Concepción, Concepción, Chile
| | - Chongfeng Bu
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Rafaella Canessa
- Plant Ecology Group, University of Tübingen, Tübingen, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institut für Biologie, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | - Helena Castro
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | - Patricio Castro
- Facultad de Ciencias Agropecuarias, Carrera de Ingeniería Agronómica, Grupo de Agroforestería, Manejo y Conservación del Paisaje, Universidad de Cuenca, Cuenca, Ecuador
| | - Roukaya Chibani
- Laboratory of Eremology and Combating Desertification, Institut des Régions Arides (IRA) Médenine, University of Gabes, Zrig Eddakhlania, Tunisia
| | - Abel Augusto Conceição
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, Brasil
| | | | - Yvonne C Davila
- Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Balázs Deák
- Lendület Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| | - David A Donoso
- Departamento de Biología, Escuela Politécnica Nacional, Quito, Ecuador
| | - Jorge Durán
- Misión Biolóxica de Galicia, CSIC, Pontevedra, Spain
| | - Carlos Espinosa
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Alex Fajardo
- Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Talca, Chile
- Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
- Limits of Life (LiLi), Instituto Milenio, Valdivia, Chile
| | - Mohammad Farzam
- Department of Range and Watershed Management, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Daniela Ferrante
- Instituto Nacional de Tecnología Agropecuaria EEA Santa Cruz, Río Gallegos, Argentina
- Universidad Nacional de la Patagonia Austral, Río Gallegos, Argentina
| | - Jorgelina Franzese
- Instituto de Investigaciones en Biodiversidad y Medioambiente, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Comahue, Neuquen, Argentina
| | - Lauchlan Fraser
- Department of Natural Resource Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Sofía Gonzalez
- Instituto de Investigaciones en Biodiversidad y Medioambiente, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Comahue, Neuquen, Argentina
| | - Elizabeth Gusman-Montalvan
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Rosa Mary Hernández-Hernández
- Instituto de Estudios Científicos y Tecnológicos (IDECYT); Centro de Estudios de Agroecología Tropical (CEDAT), Universidad Nacional Experimental Simón Rodríguez (UNESR), Miranda, Venezuela
| | - Norbert Hölzel
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| | | | - Oswaldo Jadan
- Facultad de Ciencias Agropecuarias, Carrera de Ingeniería Agronómica, Grupo de Agroforestería, Manejo y Conservación del Paisaje, Universidad de Cuenca, Cuenca, Ecuador
| | - Florian Jeltsch
- Plant Ecology and Nature Conservation, University of Potsdam, Potsdam, Germany
| | - Anke Jentsch
- Department of Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Mengchen Ju
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Kudzai F Kaseke
- Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Liana Kindermann
- Biodiversity Research, Systematic Botany Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Peter le Roux
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Anja Linstädter
- Biodiversity Research, Systematic Botany Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Michelle A Louw
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Mancha Mabaso
- Department of Biochemistry, Genetics and Microbiology, DSI/NRF SARChI in Marine Microbiomics, University of Pretoria, Pretoria, South Africa
| | | | - Thulani P Makhalanyane
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Oumarou Malam Issa
- Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES-Paris), Sorbonne Université, IRD, CNRS, INRAE, Université Paris Est Creteil, Université de Paris, Centre IRD de France Nord, Bondy, France
| | - Antonio J Manzaneda
- Departamento Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, Spain
| | - Eugene Marais
- Gobabeb, Namib Research Institute, Walvis Bay, Namibia
| | - Pierre Margerie
- Normandie Universite, UNIROUEN, INRAE, ECODIV, Rouen, France
| | - Frederic Mendes Hughes
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, Brasil
- Programa de Pós-Graduação em Zoologia and Conselho de Curadores das Coleções Científicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Pampulha, Brazil
| | - João Vitor S Messeder
- Biology Department and Ecology Program, The Pennsylvania State University, University Park, PA, USA
| | - Juan P Mora
- Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Talca, Chile
| | - Gerardo Moreno
- Forestry School, INDEHESA, Universidad de Extremadura, Plasencia, Spain
| | - Seth M Munson
- Southwest Biological Science Center, US Geological Survey, Flagstaff, AZ, USA
| | - Alice Nunes
- cE3c - Centre for Ecology, Evolution and Environmental Changes and CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Gabriel Oliva
- Instituto Nacional de Tecnología Agropecuaria EEA Santa Cruz, Río Gallegos, Argentina
- Universidad Nacional de la Patagonia Austral, Río Gallegos, Argentina
| | - Gaston R Oñatibia
- Cátedra de Ecología, Facultad de Agronomía Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guadalupe Peter
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Buenos Aires, Argentina
- CEANPa, Universidad Nacional de Río Negro, Sede Atlántica, Río Negro, Argentina
| | - Yolanda Pueyo
- Instituto Pirenaico de Ecología (IPE CSIC), Zaragoza, Spain
| | - R Emiliano Quiroga
- Estación Experimental Agropecuaria Catamarca, Instituto Nacional de Tecnología Agropecuaria, Catamarca, Argentina
- Cátedra de Manejo de Pastizales Naturales, Facultad de Ciencias Agrarias, Universidad Nacional de Catamarca, Catamarca, Argentina
| | | | - Sasha C Reed
- US Geological Survey, Southwest Biological Science Center, Moab, UT, USA
| | - Pedro J Rey
- Instituto Interuniversitario de Investigación del Sistema Tierra de Andalucía, Universidad de Jaén, Jaén, Spain
| | | | | | - Victor Rolo
- Forestry School, INDEHESA, Universidad de Extremadura, Plasencia, Spain
| | - Juan G Rubalcaba
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Jan C Ruppert
- Plant Ecology Group, University of Tübingen, Tübingen, Germany
| | - Osvaldo Sala
- Global Drylands Center,School of Life Sciences and School of Sustainability, Arizona State University, Tempe, AZ, USA
| | | | - Phokgedi Julius Sebei
- Mara Research Station, Limpopo Department of Agriculture and Rural Development, Polokwane, South Africa
| | - Ilan Stavi
- Dead Sea and Arava Science Center, Yotvata, Israel
| | - Colton Stephens
- Department of Natural Resource Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Alberto L Teixido
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Andrew D Thomas
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK
| | - Heather L Throop
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Samantha Travers
- Department of Planning and Environment, Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sainbileg Undrakhbold
- Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - James Val
- Department of Planning and Environment, Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Orsolya Valkó
- Lendület Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| | - Frederike Velbert
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - Wanyoike Wamiti
- Zoology Department, National Museums of Kenya, Nairobi, Kenya
| | - Lixin Wang
- Department of Earth and Environmental Sciences, Indiana University Indianapolis (IUI), Indianapolis, IN, USA
| | - Deli Wang
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Glenda M Wardle
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter Wolff
- Department of Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Laura Yahdjian
- Cátedra de Ecología, Facultad de Agronomía Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Reza Yari
- Forest and Rangeland Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran
| | - Eli Zaady
- Gilat Research Center, Department of Natural Resources, Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion, Israel
| | - Juan Manuel Zeberio
- CEANPa, Universidad Nacional de Río Negro, Sede Atlántica, Río Negro, Argentina
| | - Yuanling Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
14
|
Moura MR, Ceron K, Guedes JJM, Chen-Zhao R, Sica YV, Hart J, Dorman W, Portmann JM, González-del-Pliego P, Ranipeta A, Catenazzi A, Werneck FP, Toledo LF, Upham NS, Tonini JFR, Colston TJ, Guralnick R, Bowie RCK, Pyron RA, Jetz W. A phylogeny-informed characterisation of global tetrapod traits addresses data gaps and biases. PLoS Biol 2024; 22:e3002658. [PMID: 38991106 PMCID: PMC11239118 DOI: 10.1371/journal.pbio.3002658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/03/2024] [Indexed: 07/13/2024] Open
Abstract
Tetrapods (amphibians, reptiles, birds, and mammals) are model systems for global biodiversity science, but continuing data gaps, limited data standardisation, and ongoing flux in taxonomic nomenclature constrain integrative research on this group and potentially cause biased inference. We combined and harmonised taxonomic, spatial, phylogenetic, and attribute data with phylogeny-based multiple imputation to provide a comprehensive data resource (TetrapodTraits 1.0.0) that includes values, predictions, and sources for body size, activity time, micro- and macrohabitat, ecosystem, threat status, biogeography, insularity, environmental preferences, and human influence, for all 33,281 tetrapod species covered in recent fully sampled phylogenies. We assess gaps and biases across taxa and space, finding that shared data missing in attribute values increased with taxon-level completeness and richness across clades. Prediction of missing attribute values using multiple imputation revealed substantial changes in estimated macroecological patterns. These results highlight biases incurred by nonrandom missingness and strategies to best address them. While there is an obvious need for further data collection and updates, our phylogeny-informed database of tetrapod traits can support a more comprehensive representation of tetrapod species and their attributes in ecology, evolution, and conservation research.
Collapse
Affiliation(s)
- Mario R. Moura
- Departamento de Biologia Animal, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Departamento de Biociências, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, United States of America
| | - Karoline Ceron
- Departamento de Biologia, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Jhonny J. M. Guedes
- Programa de Pós-Graduação em Ecologia e Evolução, Departamento de Ecologia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Rosana Chen-Zhao
- Departamento de Biologia Animal, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Yanina V. Sica
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, United States of America
| | - Julie Hart
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, United States of America
- New York Natural Heritage Program, State University of New York College of Environmental Science and Forestry, Albany, New York, United States of America
| | - Wendy Dorman
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, United States of America
- Department of Natural Resources and Environmental Sciences (NRES), University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Julia M. Portmann
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, United States of America
| | - Pamela González-del-Pliego
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, United States of America
- Rui Nabeiro Biodiversity Chair, MED Institute, Universidade de Évora, Évora, Portugal
| | - Ajay Ranipeta
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, United States of America
| | - Alessandro Catenazzi
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
| | - Fernanda P. Werneck
- Programa de Coleções Científicas Biológicas, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus Amazonas, Brazil
| | - Luís Felipe Toledo
- Departamento de Biologia Animal, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Nathan S. Upham
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - João F. R. Tonini
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Timothy J. Colston
- Biology Department, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico
| | - Robert Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America
| | - Rauri C. K. Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - R. Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington DC, United States of America
| | - Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
15
|
Llorente-Culebras S, Carmona CP, Carvalho WD, Menegotto A, Molina-Venegas R, Ladle RJ, Santos AMC. Island biodiversity in peril: Anticipating a loss of mammals' functional diversity with future species extinctions. GLOBAL CHANGE BIOLOGY 2024; 30:e17375. [PMID: 38895806 DOI: 10.1111/gcb.17375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
Islands are biodiversity hotspots that host unique assemblages. However, a substantial proportion of island species are threatened and their long-term survival is uncertain. Identifying and preserving vulnerable species has become a priority, but it is also essential to combine this information with other facets of biodiversity like functional diversity, to understand how future extinctions might affect ecosystem stability and functioning. Focusing on mammals, we (i) assessed how much functional space would be lost if threatened species go extinct, (ii) determined the minimum number of extinctions that would cause a significant functional loss, (iii) identified the characteristics (e.g., biotic, climatic, geographic, or orographic) of the islands most vulnerable to future changes in the functional space, and (iv) quantified how much of that potential functional loss would be offset by introduced species. Using trait information for 1474 mammal species occurring in 318 islands worldwide, we built trait probability density functions to quantify changes in functional richness and functional redundancy in each island if the mammals categorized by IUCN as threatened disappeared. We found that the extinction of threatened mammals would reduce the functional space in 63% of the assessed islands, although these extinctions in general would cause a reduction of less than 15% of their overall functional space. Also, on most islands, the extinction of just a few species would be sufficient to cause a significant loss of functional diversity. The potential functional loss would be higher on small, isolated, and/or species-rich islands, and, in general, the functional space lost would not be offset by introduced species. Our results show that the preservation of native species and their ecological roles remains crucial for maintaining the current functioning of island ecosystems. Therefore, conservation measures considering functional diversity are imperative to safeguard the unique functional roles of threatened mammal species on islands.
Collapse
Affiliation(s)
- Sonia Llorente-Culebras
- Terrestrial Ecology Group (TEG-UAM), Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos P Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - William D Carvalho
- Terrestrial Ecology Group (TEG-UAM), Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
- Programa de Pós-Graduação em Biodiversidade Tropical, Universidade Federal do Amapá, Macapá, Brazil
| | - André Menegotto
- Terrestrial Ecology Group (TEG-UAM), Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael Molina-Venegas
- Terrestrial Ecology Group (TEG-UAM), Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Richard J Ladle
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Ana M C Santos
- Terrestrial Ecology Group (TEG-UAM), Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
16
|
Coulon N, Pilet S, Lizé A, Lacoue-Labarthe T, Sturbois A, Toussaint A, Feunteun E, Carpentier A. Shark critical life stage vulnerability to monthly temperature variations under climate change. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106531. [PMID: 38696933 DOI: 10.1016/j.marenvres.2024.106531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
In a 10-month experimental study, we assessed the combined impact of warming and acidification on critical life stages of small-spotted catshark (Scyliorhinus canicula). Using recently developed frameworks, we disentangled individual and group responses to two climate scenarios projected for 2100 (SSP2-4.5: Middle of the road and SSP5-8.5: Fossil-fueled Development). Seasonal temperature fluctuations revealed the acute vulnerability of embryos to summer temperatures, with hatching success ranging from 82% for the control and SSP2-4.5 treatments to only 11% for the SSP5-8.5 treatment. The death of embryos was preceded by distinct individual growth trajectories between the treatments, and also revealed inter-individual variations within treatments. Embryos with the lowest hatching success had lower yolk consumption rates, and growth rates associated with a lower energy assimilation, and almost all of them failed to transition to internal gills. Within 6 months after hatching, no additional mortality was observed due to cooler temperatures.
Collapse
Affiliation(s)
- Noémie Coulon
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Station Marine de Dinard, Dinard, France.
| | - Stanislas Pilet
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Station Marine de Dinard, Dinard, France
| | - Anne Lizé
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Station Marine de Dinard, Dinard, France; School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Thomas Lacoue-Labarthe
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, La Rochelle, France
| | - Anthony Sturbois
- VivArmor Nature, Réserve Naturelle Nationale de la Baie de Saint-Brieuc, Laboratoire des Sciences de l'environnement Marin (LEMAR), UMR 6539, France
| | - Aurèle Toussaint
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300 - UPS-CNRS-IRD-INP, Université Paul-Sabatier - Toulouse 3, Toulouse, France
| | - Eric Feunteun
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Station Marine de Dinard, Dinard, France; Centre de GéoEcologie Littorale (CGEL, EPHE-PSL), Dinard, France
| | - Alexandre Carpentier
- Université de Rennes, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Campus de Beaulieu, Rennes, France
| |
Collapse
|
17
|
Cui Y, Carmona CP, Wang Z. Identifying global conservation priorities for terrestrial vertebrates based on multiple dimensions of biodiversity. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14205. [PMID: 37855155 DOI: 10.1111/cobi.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 11/28/2022] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
The Kunming-Montreal Global Biodiversity Framework of the Convention on Biological Diversity calls for an expansion of the current protected areas (PAs) to cover at least 30% of global land and water areas by 2030 (i.e., the 30×30 target). Efficient spatial planning for PA expansion is an urgent need for global conservation practice. A spatial prioritization framework considering multiple dimensions of biodiversity is critical for improving the efficiency of the spatial planning of PAs, yet it remains a challenge. We developed an index for the identification of priority areas based on functionally rare, evolutionarily distinct, and globally endangered species (FREDGE) and applied it to 21,536 terrestrial vertebrates. We determined species distributions, conservation status (global endangerment), molecular phylogenies (evolutionary distinctiveness), and life-history traits (functional rarity). Madagascar, Central America, and the Andes were of high priority for the conservation of multiple dimensions of terrestrial vertebrate biodiversity. However, 68.8% of grid cells in these priority areas had <17% of their area covered by PAs, and these priority areas were under intense anthropogenic and climate change threats. These results highlight the difficulties of conserving multiple dimensions of biodiversity. Our global analyses of the geographical patterns of multiple dimensions of terrestrial vertebrate biodiversity demonstrate the insufficiency of the conservation of different biodiversity dimensions, and our index, based on multiple dimensions of biodiversity, provides a useful tool for guiding future spatial prioritization of PA expansion to achieve the 30×30 target under serious pressures.
Collapse
Affiliation(s)
- Yu Cui
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | | | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
18
|
Quimbayo JP, Murphy SJ, Jarzyna MA. Functional reorganization of North American wintering avifauna. Ecol Lett 2024; 27:e14430. [PMID: 38714364 DOI: 10.1111/ele.14430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 05/09/2024]
Abstract
Wintering birds serve as vital climate sentinels, yet they are often overlooked in studies of avian diversity change. Here, we provide a continental-scale characterization of change in multifaceted wintering avifauna and examine the effects of climate change on these dynamics. We reveal a strong functional reorganization of wintering bird communities marked by a north-south gradient in functional diversity change, along with a superimposed mild east-west gradient in trait composition change. Assemblages in the northern United States saw contractions of the functional space and increases in functional evenness and originality, while the southern United States saw smaller contractions of the functional space and stasis in evenness and originality. Shifts in functional diversity were underlined by significant reshuffling in trait composition, particularly pronounced in the western and northern United States. Finally, we find strong contributions of climate change to this functional reorganization, underscoring the importance of wintering birds in tracking climate change impacts on biodiversity.
Collapse
Affiliation(s)
- Juan P Quimbayo
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
| | - Stephen J Murphy
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
| | - Marta A Jarzyna
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
19
|
Beccari E, Capdevila P, Salguero-Gómez R, Carmona CP. Worldwide diversity in mammalian life histories: Environmental realms and evolutionary adaptations. Ecol Lett 2024; 27:e14445. [PMID: 38783648 DOI: 10.1111/ele.14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
Mammalian life history strategies can be characterised by a few axes of variation, conforming a space where species are positioned based on the life history strategies favoured in the environment they exploit. Yet, we still lack global descriptions of the diversity of realised mammalian life history and how this diversity is shaped by the environment. We used six life history traits to build a life history space covering worldwide mammalian adaptation, and we explored how environmental realms (land, air, water) influence mammalian life history strategies. We demonstrate that realms are tightly linked to distinct life history strategies. Aquatic and aerial species predominantly adhere to slower life history strategies, while terrestrial species exhibit faster life histories. Highly encephalised terrestrial species are a notable exception to these patterns. Furthermore, we show that different mode of life may play a significant role in expanding the set of strategies exploitable in the terrestrial realm. Additionally, species transitioning between terrestrial and aquatic realms, such as seals, exhibit intermediate life history strategies. Our results provide compelling evidence of the link between environmental realms and the life history diversity of mammals, highlighting the importance of differences in mode of life to expand life history diversity.
Collapse
Affiliation(s)
- E Beccari
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - P Capdevila
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - R Salguero-Gómez
- Department of Biology, University of Oxford, Oxford, UK
- Evolutionary Demography Laboratory, Max Plank Institute for Demographic Research, Rostock, Germany
| | - C P Carmona
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
20
|
Carroll D, Ahola MP, Carlsson AM, Sköld M, Harding KC. 120-years of ecological monitoring data shows that the risk of overhunting is increased by environmental degradation for an isolated marine mammal population: The Baltic grey seal. J Anim Ecol 2024; 93:525-539. [PMID: 38532307 DOI: 10.1111/1365-2656.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 02/08/2024] [Indexed: 03/28/2024]
Abstract
The Baltic Sea is home to a genetically isolated and morphologically distinct grey seal population. This population has been the subject of 120-years of careful documentation, from detailed records of bounty statistics to annual monitoring of health and abundance. It has also been exposed to a range of well-documented stressors, including hunting, pollution and climate change. To investigate the vulnerability of marine mammal populations to multiple stressors, data series relating to the Baltic grey seal population size, hunt and health were compiled, vital demographic rates were estimated, and a detailed population model was constructed. The Baltic grey seal population fell from approximately 90,000 to as few as 3000 individuals during the 1900s as the result of hunting and pollution. Subsequently, the population has recovered to approximately 55,000 individuals. Fertility levels for mature females have increased from 9% in the 1970s to 86% at present. The recovery of the population has led to demands for increased hunting, resulting in a sudden increase in annual quotas from a few hundred to 3550 in 2020. Simultaneously, environmental changes, such as warmer winters and reduced prey availability due to overfishing, are likely impacting fecundity and health. Future population development is projected for a range of hunting and environmental stress scenarios, illustrating how hunting, in combination with environmental degradation, can lead to population collapse. The current combined hunting quotas of all Baltic Nations caused a 10% population decline within three generations in 100% of simulations. To enable continued recovery of the population, combined annual quotas of less than 1900 are needed, although this quota should be re-evaluated annually as monitoring of population size and seal health continues. Sustainable management of long-lived slowly growing species requires an understanding of the drivers of population growth and the repercussions of management decisions over many decades. The case of the Baltic grey seal illustrates how long-term ecological time series are pivotal in establishing historical baselines in population abundance and demography to inform sustainable management.
Collapse
Affiliation(s)
- Daire Carroll
- Department of Biology and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Markus P Ahola
- Department of Population Analysis and Monitoring, Swedish Museum of Natural History, Stockholm, Sweden
| | - Anja M Carlsson
- Department of Population Analysis and Monitoring, Swedish Museum of Natural History, Stockholm, Sweden
| | - Martin Sköld
- Department of Population Analysis and Monitoring, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Mathematics, Stockholm University, Stockholm, Sweden
| | - Karin C Harding
- Department of Biology and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
21
|
Liu M, Yang C, Miao L, Xiao Y, Wang Q, Wang M. Rare and common species contribute disproportionately to alpine meadow community construction and functional variation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24881-24893. [PMID: 38460039 DOI: 10.1007/s11356-024-32834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
It is widely accepted that rare species are the first species to become extinct after human-induced disturbances. However, the functional importance of rare species still needs to be better understood, especially in alpine meadow communities with harsher habitats, where the extinction rate of rare species may be higher. This study established a 1.85 × 105 m2 permanent research sample plot on the eastern Tibetan Plateau. We investigated data from 162 plots at 6 different sampling scales in alpine meadows to determine the contribution of rare and common species to alpine meadow communities' structural and functional variability. The results showed that (1) Asteraceae (Compositae) was the dominant family in the surveyed localities. The trends of species diversity indices were the same, and all of them increased with the increase of sampling scale, and the plant community showed apparent scale effects. (2) The community construction of rare species at small scales with high occupancy transitioned from neutral processes to ecological niche processes, while the community construction of common species at different sampling scales was all dominated by ecological niche processes. (3) The trait values of rare species at different sampling scales were different from those of common species, and their distribution in FEs (functional entities) was also different, indicating that they contributed differently to the ecological functions of the communities. Rare species with lower abundance in the surveyed communities had a higher proportion of FEs, indicating that rare species had a more significant proportion of contribution to FEs. The functional redundancy (FR) of rare species was lower than that of common species, and the functional vulnerability (FV) was higher than that of common species. Therefore, the loss of rare species is more likely to cause the loss of community ecological functions, affecting the function and resilience of alpine meadow ecosystems.
Collapse
Affiliation(s)
- Minxia Liu
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China.
| | - Chunliang Yang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
| | - Lele Miao
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
| | - Yindi Xiao
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
| | - Qianyue Wang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
| | - Min Wang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
| |
Collapse
|
22
|
Shipley BR, McGuire JL. The environmental conditions of endemism hotspots shape the functional traits of mammalian assemblages. Proc Biol Sci 2024; 291:20232773. [PMID: 38471553 PMCID: PMC10932720 DOI: 10.1098/rspb.2023.2773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Endemic (small-ranged) species are distributed non-randomly across the globe. Regions of high topography and stable climates have higher endemism than flat, climatically unstable regions. However, it is unclear how these environmental conditions interact with and filter mammalian traits. Here, we characterize the functional traits of highly endemic mammalian assemblages in multiple ways, testing the hypothesis that these assemblages are trait-filtered (less functionally diverse) and dominated by species with traits associated with small range sizes. Compiling trait data for more than 5000 mammal species, we calculated assemblage means and multidimensional functional metrics to evaluate the distribution of traits across each assemblage. We then related these metrics to the endemism of global World Wildlife Fund ecoregions using linear models and phylogenetic fourth-corner regression. Highly endemic mammalian assemblages had small average body masses, low fecundity, short lifespans and specialized habitats. These traits relate to the stable climate and rough topography of endemism hotspots and to mammals' ability to expand their ranges, suggesting that the environmental conditions of endemism hotspots allowed their survival. Furthermore, species living in endemism hotspots clustered near the edges of their communities' functional spaces, indicating that abiotic trait filtering and biotic interactions act in tandem to shape these communities.
Collapse
Affiliation(s)
- Benjamin R. Shipley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jenny L. McGuire
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
23
|
Chaudhary A, Hertel T. Recent Developments and Challenges in Projecting the Impact of Crop Productivity Growth on Biodiversity Considering Market-Mediated Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2627-2635. [PMID: 38285505 DOI: 10.1021/acs.est.3c05137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The effect of an increase in crop productivity (output per unit of inputs) on biodiversity is hitherto poorly understood. This is because increased productivity of a crop in particular regions leads to increased profit that can encourage expansion of its cultivated area causing land use change and ultimately biodiversity loss, a phenomenon also known as "Jevons paradox" or the "rebound effect". Modeling such consequences in an interconnected and globalized world considering such rebound effects is challenging. Here, we discuss the use of computable general equilibrium (CGE) and other economic models in combination with ecological models to project consequences of crop productivity improvements for biodiversity globally. While these economic models have the advantage of taking into account market-mediated responses, resource constraints, endogenous price responses, and dynamic bilateral patterns of trade, there remain a number of important research and data gaps in these models which must be addressed to improve their performance in assessment of the link between local crop productivity changes and global biodiversity. To this end, we call for breaking the silos and building interdisciplinary networks across the globe to facilitate data sharing and knowledge exchange in order to improve global-to-local-to-global analysis of land, biodiversity, and ecosystem sustainability.
Collapse
Affiliation(s)
- Abhishek Chaudhary
- Department of Civil Engineering, Indian Institute of Technology (IIT) Kanpur, Kanpur 208016, India
| | - Thomas Hertel
- Department of Agricultural Economics, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
24
|
Jing H, Xiong X, Jiang F, Pu X, Ma W, Li D, Liu Z, Wang Z. Climate change filtered out resource-acquisitive plants in a temperate grassland in Inner Mongolia, China. SCIENCE CHINA. LIFE SCIENCES 2024; 67:403-413. [PMID: 37606847 DOI: 10.1007/s11427-022-2338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/23/2023] [Indexed: 08/23/2023]
Abstract
Global climate change has led to the decline of species and functional diversity in ecosystems, changing community composition and ecosystem functions. However, we still know little about how species with different resource-use strategies (different types of resource usage and plant growth of plants as indicated by the spectrum of plant economic traits, including acquisitive resource-use strategy and conservative resource-use strategy) would change in response to climate change, and how the changes in the diversity of species with different resource-use strategies may influence community-level productivity. Here, using long-term (1982-2017) observatory data in a temperate grassland in Inner Mongolia, we investigated how climate change had affected the species richness (SR) and functional richness (FRic) for the whole community and for species with different resource-use strategies. Specifically, based on data for four traits representing leaf economics spectrum (leaf carbon concentration, leaf nitrogen concentration, leaf phosphorus concentration, and specific leaf area), we divided 81 plant species appearing in the grassland community into three plant functional types representing resource-acquisitive, medium, and resource-conservative species. We then analyzed the changes in community-level productivity in response to the decline of SR and FRic at the community level and for different resource-use strategies. We found that community-level SR and FRic decreased with drying climate, which was largely driven by the decline of diversity for resource-acquisitive species. However, community-level productivity remained stable because resource-conservative species dominating this grassland were barely affected by climate change. Our study revealed distinctive responses of species with different resource-use strategies to climate change and provided a new approach based on species functional traits for predicting the magnitude and direction of climate change effects on ecosystem functions.
Collapse
Affiliation(s)
- Heying Jing
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xingshuo Xiong
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Feng Jiang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xucai Pu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Wenhong Ma
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Daijiang Li
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Zhongling Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
25
|
Toussaint A, Pärtel M, Carmona CP. Contrasting impacts of non-native and threatened species on morphological, life history, and phylogenetic diversity in bird assemblages. Ecol Lett 2024; 27:e14373. [PMID: 38344890 DOI: 10.1111/ele.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/11/2023] [Accepted: 01/04/2024] [Indexed: 02/15/2024]
Abstract
Human activities have altered the species composition of assemblages through introductions and extinctions, but it remains unclear how those changes can affect the different facets of biodiversity. Here we assessed the impact of changes in species composition on taxonomic, functional, and phylogenetic diversity across 281 bird assemblages worldwide. To provide a more nuanced understanding of functional diversity, we distinguished morphological from life-history traits. We showed that shifts in species composition could trigger a global decline in avian biodiversity due to the high number of potential extinctions. Moreover, these extinctions were not random but unique in terms of function and phylogeny at the regional level. Our findings demonstrated that non-native species cannot compensate for these losses, as they are both morphologically and phylogenetically close to the native fauna. In the context of the ongoing biodiversity crisis, such alterations in the functional and phylogenetic structure of bird assemblages could heighten ecosystem vulnerability.
Collapse
Affiliation(s)
- Aurele Toussaint
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Carlos P Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
26
|
Coulon N, Elliott S, Teichert N, Auber A, McLean M, Barreau T, Feunteun E, Carpentier A. Northeast Atlantic elasmobranch community on the move: Functional reorganization in response to climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17157. [PMID: 38273525 DOI: 10.1111/gcb.17157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024]
Abstract
While spatial distribution shifts have been documented in many marine fishes under global change, the responses of elasmobranchs have rarely been studied, which may have led to an underestimation of their potential additional threats. Given their irreplaceable role in ecosystems and their high extinction risk, we used a 24-year time series (1997-2020) of scientific bottom trawl surveys to examine the effects of climate change on the spatial distribution of nine elasmobranch species within Northeast Atlantic waters. Using a hierarchical modeling of species communities, belonging to the joint species distribution models, we found that suitable habitats for four species increased on average by a factor of 1.6 and, for six species, shifted north-eastwards and/or to deeper waters over the past two decades. By integrating species traits, we showed changes in habitat suitability led to changes in the elasmobranchs trait composition. Moreover, communities shifted to deeper waters and their mean trophic level decreased. We also note an increase in the mean community size at maturity concurrent with a decrease in fecundity. Because skates and sharks are functionally unique and dangerously vulnerable to both climate change and fishing, we advocate for urgent considerations of species traits in management measures. Their use would make it better to identify species whose loss could have irreversible impacts in face of the myriad of anthropogenic threats.
Collapse
Affiliation(s)
- Noémie Coulon
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS, IRD, SU, UCN, UA, Dinard, France
| | - Sophie Elliott
- Salmon & Trout Research Centre, Game & Wildlife Conservation Trust, Wareham, UK
| | - Nils Teichert
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS, IRD, SU, UCN, UA, Dinard, France
| | - Arnaud Auber
- Unité Halieutique Manche Mer du Nord, Laboratoire Ressources Halieutiques, IFREMER, Boulogne-sur-Mer, France
| | - Matthew McLean
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Thomas Barreau
- Service des Stations Marine, Station Marine de Dinard, Dinard, France
| | - Eric Feunteun
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS, IRD, SU, UCN, UA, Dinard, France
| | - Alexandre Carpentier
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS, IRD, SU, UCN, UA, Campus de Beaulieu, Université de Rennes, Rennes, France
| |
Collapse
|
27
|
Mammola S, Falaschi M, Ficetola GF. Biodiversity communication in the digital era through the Emoji tree of life. iScience 2023; 26:108569. [PMID: 38187190 PMCID: PMC10767230 DOI: 10.1016/j.isci.2023.108569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/03/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024] Open
Abstract
Emojis enable direct expressions of ideas and emotions in digital communication, also contributing to discussions on biodiversity conservation. Nevertheless, the ability of emojis to represent the Earth's tree of life remains unexplored. Here, we quantified the taxonomic comprehensiveness of currently available nature-related emojis and tested whether the expanding availability of emojis enables a better coverage of extant biodiversity. Currently available emojis encompass a broad range of animal species, while plants, fungi, and microorganisms are underrepresented. Within animals, vertebrates are significantly overrepresented compared to their actual richness, while arthropods are underrepresented. Notwithstanding these taxonomic disparities, animal taxa represented by emojis more than doubled from 2015 to 2022, allowing an improved representation of both taxonomic and phylogenetic diversity, driven by the recent addition of cnidarians and annelids. Creating an inclusive emoji set is essential to ensure a fair representation of biodiversity in digital communication and showcase its importance for biosphere functioning.
Collapse
Affiliation(s)
- Stefano Mammola
- Molecular Ecology Group (MEG), Water Research Institute, National Research Council (CNR-IRSA), Verbania Pallanza, Italy
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, Finland
- National Biodiversity Future Center, Palermo, Italy
| | - Mattia Falaschi
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, LECA, Laboratoire d’Écologie Alpine, 38000 Grenoble, France
| |
Collapse
|
28
|
Cox DTC, Gaston KJ. Global erosion of terrestrial environmental space by artificial light at night. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166701. [PMID: 37652384 DOI: 10.1016/j.scitotenv.2023.166701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Artificial light at night (ALAN) disrupts natural light cycles, with biological impacts that span from behaviour of individual organisms to ecosystem functions, and across bacteria, fungi, plants and animals. Global consequences have almost invariably been inferred from the geographic distribution of ALAN. How ALAN is distributed in environmental space, and the extent to which combinations of environmental conditions with natural light cycles have been lost, is also key. Globally (between 60°N and 56°S), we ordinated four bioclimatic variables at 1.61 * 1.21 km resolution to map the position and density of terrestrial pixels within nighttime environmental space. We then used the Black Marble Nighttime Lights product to determine where direct ALAN emissions were present in environmental space in 2012 and how these had expanded in environmental space by 2022. Finally, we used the World Atlas of Artificial Sky Brightness to determine the proportion of environmental space that is unaffected by ALAN across its spatial distribution. We found that by 2012 direct ALAN emissions occurred across 71.9 % of possible nighttime terrestrial environmental conditions, with temperate nighttime environments and highly modified habitats disproportionately impacted. From 2012 to 2022 direct ALAN emissions primarily grew within 34.4 % of environmental space where it was already present, with this growth concentrated in tropical environments. Additionally considering skyglow, just 13.2 % of environmental space now only experiences natural light cycles throughout its distribution. With opportunities to maintain much of environmental space under such cycles fast disappearing, the removal, reduction and amelioration of ALAN from areas of environmental space in which it is already widespread is critical.
Collapse
Affiliation(s)
- Daniel T C Cox
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK.
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
29
|
Moura MR, Oliveira GA, Paglia AP, Pires MM, Santos BA. Climate change should drive mammal defaunation in tropical dry forests. GLOBAL CHANGE BIOLOGY 2023; 29:6931-6944. [PMID: 37846595 DOI: 10.1111/gcb.16979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Human-induced climate change has intensified negative impacts on socioeconomic factors, the environment, and biodiversity, including changes in rainfall patterns and an increase in global average temperatures. Drylands are particularly at risk, with projections suggesting they will become hotter, drier, and less suitable for a significant portion of their species, potentially leading to mammal defaunation. We use ecological niche modelling and community ecology biodiversity metrics to examine potential geographical range shifts of non-volant mammal species in the largest Neotropical dryland, the Caatinga, and evaluate impacts of climate change on mammal assemblages. According to projections, 85% of the mammal species will lose suitable habitats, with one quarter of species projected to completely lose suitable habitats by 2060. This will result in a decrease in species richness for more than 90% of assemblages and an increase in compositional similarity to nearby assemblages (i.e., reduction in spatial beta diversity) for 70% of the assemblages. Small-sized mammals will be the most impacted and lose most of their suitable habitats, especially in highlands. The scenario is even worse in the eastern half of Caatinga where habitat destruction already prevails, compounding the threats faced by species there. While species-specific responses can vary with respect to dispersal, behavior, and energy requirements, our findings indicate that climate change can drive mammal assemblages to biotic homogenization and species loss, with drastic changes in assemblage trophic structure. For successful long-term socioenvironmental policy and conservation planning, it is critical that findings from biodiversity forecasts are considered.
Collapse
Affiliation(s)
- Mario R Moura
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Ciências Biológicas, Universidade Federal da Paraíba, Areia, Brazil
| | - Gibran A Oliveira
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Adriano P Paglia
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mathias M Pires
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Bráulio A Santos
- Departamento de Ciências Biológicas, Universidade Federal da Paraíba, Areia, Brazil
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| |
Collapse
|
30
|
Torgersen KT, Bouton BJ, Hebert AR, Kleyla NJ, Plasencia X, Rolfe GL, Tagliacollo VA, Albert JS. Phylogenetic structure of body shape in a diverse inland ichthyofauna. Sci Rep 2023; 13:20758. [PMID: 38007528 PMCID: PMC10676429 DOI: 10.1038/s41598-023-48086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023] Open
Abstract
Body shape is a fundamental metric of animal diversity affecting critical behavioral and ecological dynamics and conservation status, yet previously available methods capture only a fraction of total body-shape variance. Here we use structure-from-motion (SFM) 3D photogrammetry to generate digital 3D models of adult fishes from the Lower Mississippi Basin, one of the most diverse temperate-zone freshwater faunas on Earth, and 3D geometric morphometrics to capture morphologically distinct shape variables, interpreting principal components as growth fields. The mean body shape in this fauna resembles plesiomorphic teleost fishes, and the major dimensions of body-shape disparity are similar to those of other fish faunas worldwide. Major patterns of body-shape disparity are structured by phylogeny, with nested clades occupying distinct portions of the morphospace, most of the morphospace occupied by multiple distinct clades, and one clade (Acanthomorpha) accounting for over half of the total body shape variance. In contrast to previous studies, variance in body depth (59.4%) structures overall body-shape disparity more than does length (31.1%), while width accounts for a non-trivial (9.5%) amount of the total body-shape disparity.
Collapse
Affiliation(s)
| | | | - Alyx R Hebert
- Department of Biology, University of Louisiana, Lafayette, USA
| | - Noah J Kleyla
- Department of Biology, University of Louisiana, Lafayette, USA
| | | | - Garrett L Rolfe
- Department of Biology, University of Louisiana, Lafayette, USA
| | | | - James S Albert
- Department of Biology, University of Louisiana, Lafayette, USA
| |
Collapse
|
31
|
Pimiento C, Albouy C, Silvestro D, Mouton TL, Velez L, Mouillot D, Judah AB, Griffin JN, Leprieur F. Functional diversity of sharks and rays is highly vulnerable and supported by unique species and locations worldwide. Nat Commun 2023; 14:7691. [PMID: 38001077 PMCID: PMC10673927 DOI: 10.1038/s41467-023-43212-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Elasmobranchs (sharks, rays and skates) are among the most threatened marine vertebrates, yet their global functional diversity remains largely unknown. Here, we use a trait dataset of >1000 species to assess elasmobranch functional diversity and compare it against other previously studied biodiversity facets (taxonomic and phylogenetic), to identify species- and spatial- conservation priorities. We show that threatened species encompass the full extent of functional space and disproportionately include functionally distinct species. Applying the conservation metric FUSE (Functionally Unique, Specialised, and Endangered) reveals that most top-ranking species differ from the top Evolutionarily Distinct and Globally Endangered (EDGE) list. Spatial analyses further show that elasmobranch functional richness is concentrated along continental shelves and around oceanic islands, with 18 distinguishable hotspots. These hotspots only marginally overlap with those of other biodiversity facets, reflecting a distinct spatial fingerprint of functional diversity. Elasmobranch biodiversity facets converge with fishing pressure along the coast of China, which emerges as a critical frontier in conservation. Meanwhile, several components of elasmobranch functional diversity fall in high seas and/or outside the global network of marine protected areas. Overall, our results highlight acute vulnerability of the world's elasmobranchs' functional diversity and reveal global priorities for elasmobranch functional biodiversity previously overlooked.
Collapse
Affiliation(s)
- Catalina Pimiento
- Department of Paleontology, University of Zurich, Zurich, Switzerland.
- Department of Biosciences, Swansea University, Swansea, UK.
- Smithsonian Tropical Research Institute, Balboa, Panama.
| | - Camille Albouy
- Ecosystem and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Daniele Silvestro
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Théophile L Mouton
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- International Union for Conservation of Nature Species Survival Commission Shark Specialist Group, P.O. Box 29588, Dubai, United Arab Emirates
| | - Laure Velez
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Aaron B Judah
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - John N Griffin
- Department of Biosciences, Swansea University, Swansea, UK
| | - Fabien Leprieur
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| |
Collapse
|
32
|
Carmona CP. Harnessing traits for ecology: a counter perspective. Trends Ecol Evol 2023; 38:1012-1013. [PMID: 37474447 DOI: 10.1016/j.tree.2023.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Affiliation(s)
- Carlos P Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Juhan Liivi 2, 50409 Tartu, Estonia.
| |
Collapse
|
33
|
Wang Y, Zhang C, Qiu L, Yang B, Dai Q. Gaps in mammal conservation in China: An analysis with a framework based on minimum area requirements. GLOBAL CHANGE BIOLOGY 2023; 29:5224-5239. [PMID: 37430455 DOI: 10.1111/gcb.16843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/12/2023]
Abstract
Climate change, habitat loss, and human disturbance are major threats to biodiversity. Protecting habitats plays a pivotal role in biodiversity conservation, and there is a global imperative to establish an effective system of protected areas (PAs) to implement habitat conservation and halt biodiversity decline. However, the protected patch size of habitat for a species is just as important for biodiversity conservation as the expansion of areas already under protection. In China, conservation management is often carried out based on administrative divisions. Therefore, here, an analytical conservation management framework was developed based on administrative divisions to assess whether the current network of PAs can effectively meet species' conservation needs using the minimum area requirements (MARs) of species as criteria for medium and large-sized mammals in China. This study found that the MAR of medium and large-sized mammals was larger in the northwest and smaller in the southeast, while taking the Hu line as the dividing line. Precipitation seasonality, elevation, annual mean temperature, and annual precipitation are the main environmental factors driving the distribution of a species MAR. Compared with MAR for each species, the maximum protected patch size of habitat is severely undersized in most provinces where those species primarily distribute, and this is particularly true for large carnivores and threatened species. The densely populated provinces of eastern China are particularly affected by this. The present study's framework can identify the provinces needing to expand PAs or implement other effective area-based conservation measures and habitat restoration. This analytical framework is also relevant for biodiversity conservation in different taxa and regions around the globe.
Collapse
Affiliation(s)
- Yihong Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chengcheng Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lan Qiu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Biao Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, China
| | - Qiang Dai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Darimont CT, Cooke R, Bourbonnais ML, Bryan HM, Carlson SM, Estes JA, Galetti M, Levi T, MacLean JL, McKechnie I, Paquet PC, Worm B. Humanity's diverse predatory niche and its ecological consequences. Commun Biol 2023; 6:609. [PMID: 37386144 PMCID: PMC10310721 DOI: 10.1038/s42003-023-04940-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
Although humans have long been predators with enduring nutritive and cultural relationships with their prey, seldom have conservation ecologists considered the divergent predatory behavior of contemporary, industrialized humans. Recognizing that the number, strength and diversity of predator-prey relationships can profoundly influence biodiversity, here we analyze humanity's modern day predatory interactions with vertebrates and estimate their ecological consequences. Analysing IUCN 'use and trade' data for ~47,000 species, we show that fishers, hunters and other animal collectors prey on more than a third (~15,000 species) of Earth's vertebrates. Assessed over equivalent ranges, humans exploit up to 300 times more species than comparable non-human predators. Exploitation for the pet trade, medicine, and other uses now affects almost as many species as those targeted for food consumption, and almost 40% of exploited species are threatened by human use. Trait space analyses show that birds and mammals threatened by exploitation occupy a disproportionally large and unique region of ecological trait space, now at risk of loss. These patterns suggest far more species are subject to human-imposed ecological (e.g., landscapes of fear) and evolutionary (e.g., harvest selection) processes than previously considered. Moreover, continued overexploitation will likely bear profound consequences for biodiversity and ecosystem function.
Collapse
Affiliation(s)
- Chris T Darimont
- Department of Geography, University of Victoria, Victoria, BC, Canada.
- Raincoast Conservation Foundation, Sidney, BC, Canada.
| | - Rob Cooke
- UK Centre for Ecology & Hydrology, Wallingford, UK.
| | - Mathieu L Bourbonnais
- Department of Earth, Environmental, and Geographic Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Heather M Bryan
- Raincoast Conservation Foundation, Sidney, BC, Canada
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, BC, Canada
| | - Stephanie M Carlson
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - James A Estes
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Mauro Galetti
- São Paulo State University (UNESP), Department of Biodiversity, Rio Claro, São Paulo, Brazil
- Kimberly Green Latin American and Caribbean Center, Florida International University (FIU), Miami, FL, USA
| | - Taal Levi
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR, USA
| | - Jessica L MacLean
- Department of Geography, University of Victoria, Victoria, BC, Canada
- Raincoast Conservation Foundation, Sidney, BC, Canada
| | - Iain McKechnie
- Department of Anthropology, University of Victoria, Victoria, BC, Canada
- Hakai Institute, Heriot Bay, Quadra Island, BC, Canada
| | - Paul C Paquet
- Department of Geography, University of Victoria, Victoria, BC, Canada
- Raincoast Conservation Foundation, Sidney, BC, Canada
| | - Boris Worm
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Ocean Frontier Institute, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
35
|
Tripathi R, Reza A, Mertel A, Su G, Calabrese JM. A network-based approach to identifying correlations between phylogeny, morphological traits and occurrence of fish species in US river basins. PLoS One 2023; 18:e0287482. [PMID: 37352314 PMCID: PMC10289417 DOI: 10.1371/journal.pone.0287482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023] Open
Abstract
The complex network framework has been successfully used to model interactions between entities in Complex Systems in the Biological Sciences such as Proteomics, Genomics, Neuroscience, and Ecology. Networks of organisms at different spatial scales and in different ecosystems have provided insights into community assembly patterns and emergent properties of ecological systems. In the present work, we investigate two questions pertaining to fish species assembly rules in US river basins, a) if morphologically similar fish species also tend to be phylogenetically closer, and b) to what extent are co-occurring species that are phylogenetically close also morphologically similar? For the first question, we construct a network of Hydrologic Unit Code 8 (HUC8) regions as nodes with interaction strengths (edges) governed by the number of common species. For each of the modules of this network, which are found to be geographically separated, there is differential yet significant evidence that phylogenetic distance predicts morphological distance. For the second question, we construct and analyze nearest neighbor directed networks of species based on their morphological distances and phylogenetic distances. Through module detection on these networks and comparing the module-level mean phylogenetic distance and mean morphological distance with the number of basins of common occurrence of species in modules, we find that both phylogeny and morphology of species have significant roles in governing species co-occurrence, i.e. phylogenetically and morphologically distant species tend to co-exist more. In addition, between the two quantities (morphological distance and phylogentic distance), we find that morphological distance is a stronger determinant of species co-occurrences.
Collapse
Affiliation(s)
- Richa Tripathi
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Görlitz, Germany
| | - Amit Reza
- Nikhef, Amsterdam, The Netherlands
- Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, CC Utrecht, The Netherlands
| | - Adam Mertel
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Görlitz, Germany
| | - Guohuan Su
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Görlitz, Germany
| | - Justin M. Calabrese
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Görlitz, Germany
- Dept. of Ecological Modelling, UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
- Dept. of Biology, University of Maryland, College Park, MD, United States of America
| |
Collapse
|
36
|
Daru BH, Rodriguez J. Mass production of unvouchered records fails to represent global biodiversity patterns. Nat Ecol Evol 2023:10.1038/s41559-023-02047-3. [PMID: 37127769 DOI: 10.1038/s41559-023-02047-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/26/2023] [Indexed: 05/03/2023]
Abstract
The ever-increasing human footprint even in very remote places on Earth has inspired efforts to document biodiversity vigorously in case organisms go extinct. However, the data commonly gathered come from either primary voucher specimens in a natural history collection or from direct field observations that are not traceable to tangible material in a museum or herbarium. Although both datasets are crucial for assessing how anthropogenic drivers affect biodiversity, they have widespread coverage gaps and biases that may render them inefficient in representing patterns of biodiversity. Using a large global dataset of around 1.9 billion occurrence records of terrestrial plants, butterflies, amphibians, birds, reptiles and mammals, we quantify coverage and biases of expected biodiversity patterns by voucher and observation records. We show that the mass production of observation records does not lead to higher coverage of expected biodiversity patterns but is disproportionately biased toward certain regions, clades, functional traits and time periods. Such coverage patterns are driven by the ease of accessibility to air and ground transportation, level of security and extent of human modification at each sampling site. Conversely, voucher records are vastly infrequent in occurrence data but in the few places where they are sampled, showed relative congruence with expected biodiversity patterns for all dimensions. The differences in coverage and bias by voucher and observation records have important implications on the utility of these records for research in ecology, evolution and conservation research.
Collapse
Affiliation(s)
- Barnabas H Daru
- Department of Biology, Stanford University, Stanford, CA, USA.
| | - Jordan Rodriguez
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
37
|
Su G, Mertel A, Brosse S, Calabrese JM. Species invasiveness and community invasibility of North American freshwater fish fauna revealed via trait-based analysis. Nat Commun 2023; 14:2332. [PMID: 37087448 PMCID: PMC10122662 DOI: 10.1038/s41467-023-38107-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/14/2023] [Indexed: 04/24/2023] Open
Abstract
While biological invasions are recognized as a major threat to global biodiversity, determining non-native species' abilities to establish in new areas (species invasiveness) and the vulnerability of those areas to invasions (community invasibility) is challenging. Here, we use trait-based analysis to profile invasive species and quantify the community invasibility for >1,800 North American freshwater fish communities. We show that, in addition to effects attributed to propagule pressure caused by human intervention, species with higher fecundity, longer lifespan and larger size tend to be more invasive. Community invasibility peaks when the functional distance among native species was high, leaving unoccupied functional space for the establishment of potential invaders. Our findings illustrate how the functional traits of non-native species determining their invasiveness, and the functional characteristics of the invaded community determining its invasibility, may be identified. Considering those two determinants together will enable better predictions of invasions.
Collapse
Affiliation(s)
- Guohuan Su
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Görlitz, Germany.
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Adam Mertel
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Görlitz, Germany
| | - Sébastien Brosse
- Laboratoire Evolution et Diversité Biologique (EDB), Université de Toulouse, CNRS, IRD, UPS, Toulouse, France
| | - Justin M Calabrese
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Görlitz, Germany
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
38
|
Sobral M, Schleuning M, Martínez Cortizas A. Trait diversity shapes the carbon cycle. Trends Ecol Evol 2023:S0169-5347(23)00061-7. [PMID: 37045717 DOI: 10.1016/j.tree.2023.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
Trait evolution is shaped by carbon economics at the organismal level. Here, we expand this idea to the ecosystem level and show how the trait diversity of ecological communities influences the carbon cycle. Systematic shifts in trait diversity will likely trigger changes in the carbon cycle.
Collapse
Affiliation(s)
- Mar Sobral
- CRETUS, EcoPast (GI-1553), Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Antonio Martínez Cortizas
- CRETUS, EcoPast (GI-1553), Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
39
|
Paź‐Dyderska S, Jagodziński AM. In search of a perfect trait set: A workflow presentation based on the conservation status assessment of Poland's dendroflora. Ecol Evol 2023; 13:e9979. [PMID: 37038519 PMCID: PMC10082170 DOI: 10.1002/ece3.9979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 04/12/2023] Open
Abstract
Considering the dynamically changing environment, we cannot be sure whether we are using the best possible plant functional traits to explain ecological mechanisms. We provide a quantitative comparison of 13 trait sets to determine the availability of functional traits representing different plant organs, assess the trait sets with the highest explanatory potential, and check whether including a higher number of traits in a model increases its accuracy. We evaluated the trait sets by preparing 13 models using similar methodology and responding to a research question: How do models with different sets of functional traits predict the conservation status of species? We used the dataset covering all woody species from Poland (N = 387), with 23 functional traits. Our findings indicate that what matters most for a trait set of high explanatory power is the precise selection of those traits. The best fit model was based on the findings of Díaz et al. (2016; The global spectrum of plant form and function, Nature, 529, 167-171) and included only six traits. Importantly, traits representing different plant organs should be included whenever possible: Three of the four best models from our comparison were the ones that included traits of various plant organs.
Collapse
Affiliation(s)
| | - Andrzej M. Jagodziński
- Institute of DendrologyPolish Academy of SciencesKórnikPoland
- Department of Game Management and Forest Protection, Faculty of Forestry and Wood TechnologyPoznań University of Life SciencesPoznańPoland
| |
Collapse
|
40
|
Rodríguez-Caro RC, Graciá E, Blomberg SP, Cayuela H, Grace M, Carmona CP, Pérez-Mendoza HA, Giménez A, Salguero-Gómez R. Anthropogenic impacts on threatened species erode functional diversity in chelonians and crocodilians. Nat Commun 2023; 14:1542. [PMID: 36977697 PMCID: PMC10050202 DOI: 10.1038/s41467-023-37089-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
The Anthropocene is tightly associated with a drastic loss of species worldwide and the disappearance of their key ecosystem functions. The orders Testudines (turtles and tortoises) and Crocodilia (crocodiles, alligators, and gharials) contain numerous threatened, long-lived species for which the functional diversity and potential erosion by anthropogenic impacts remains unknown. Here, we examine 259 (69%) of the existing 375 species of Testudines and Crocodilia, quantifying their life history strategies (i.e., trade-offs in survival, development, and reproduction) from open-access data on demography, ancestry, and threats. We find that the loss of functional diversity in simulated extinction scenarios of threatened species is greater than expected by chance. Moreover, the effects of unsustainable local consumption, diseases, and pollution are associated with life history strategies. In contrast, climate change, habitat disturbance, and global trade affect species independent of their life history strategy. Importantly, the loss of functional diversity for threatened species by habitat degradation is twice that for all other threats. Our findings highlight the importance of conservation programmes focused on preserving the functional diversity of life history strategies jointly with the phylogenetic representativity of these highly threatened groups.
Collapse
Affiliation(s)
- R C Rodríguez-Caro
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
- Departamento de Biología Aplicada, Universidad Miguel Hernández, Elche, 03202, Alicante, Spain.
- Departamento de Ecología, Universidad de Alicante, San Vicent del Raspeig, 03690, Alicante, Spain.
| | - E Graciá
- Departamento de Biología Aplicada, Universidad Miguel Hernández, Elche, 03202, Alicante, Spain
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312, Orihuela, Spain
| | - S P Blomberg
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - H Cayuela
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, F-769622, Villeurbanne, France
| | - M Grace
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - C P Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, 50409, Tartu, Estonia
| | - H A Pérez-Mendoza
- Facultad de Estudios Superiores Iztacala, Universidad Autónoma de México, 54090, Tlalnepantla, México
| | - A Giménez
- Departamento de Biología Aplicada, Universidad Miguel Hernández, Elche, 03202, Alicante, Spain
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312, Orihuela, Spain
| | - R Salguero-Gómez
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
- Max Plank Institute for Demographic Research, Konrad-Zuße Straße 1, 18057, Rostock, Germany.
| |
Collapse
|
41
|
Rocha-Santos L, Faria D, Mariano-Neto E, Andrade E, Bomfim J, Talora D, Pessoa M, Cazetta E. Taxonomic, phylogenetic and functional responses of plant communities in different life-stages to forest cover loss. Perspect Ecol Conserv 2023. [DOI: 10.1016/j.pecon.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
42
|
Smith FA, Elliott Smith EA, Hedberg CP, Lyons SK, Pardi MI, Tomé CP. After the mammoths: The ecological legacy of late Pleistocene megafauna extinctions. CAMBRIDGE PRISMS. EXTINCTION 2023; 1:e9. [PMID: 40078685 PMCID: PMC11895754 DOI: 10.1017/ext.2023.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/05/2023] [Accepted: 02/08/2023] [Indexed: 03/14/2025]
Abstract
The significant extinctions in Earth history have largely been unpredictable in terms of what species perish and what traits make species susceptible. The extinctions occurring during the late Pleistocene are unusual in this regard, because they were strongly size-selective and targeted exclusively large-bodied animals (i.e., megafauna, >1 ton) and disproportionately, large-bodied herbivores. Because these animals are also at particular risk today, the aftermath of the late Pleistocene extinctions can provide insights into how the loss or decline of contemporary large-bodied animals may influence ecosystems. Here, we review the ecological consequences of the late Pleistocene extinctions on major aspects of the environment, on communities and ecosystems, as well as on the diet, distribution and behavior of surviving mammals. We find the consequences of the loss of megafauna were pervasive and left legacies detectable in all parts of the Earth system. Furthermore, we find that the ecological roles that extinct and modern megafauna play in the Earth system are not replicated by smaller-bodied animals. Our review highlights the important perspectives that paleoecology can provide for modern conservation efforts.
Collapse
Affiliation(s)
- Felisa A. Smith
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Emma A. Elliott Smith
- Department of Anthropology, United States National Museum of Natural History, Washington, DC, USA
| | - Carson P. Hedberg
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - S. Kathleen Lyons
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Melissa I. Pardi
- Research and Collections Center, Illinois State Museum, Springfield, IL, USA
| | | |
Collapse
|
43
|
Germain RR, Feng S, Buffan L, Carmona CP, Chen G, Graves GR, Tobias JA, Rahbek C, Lei F, Fjeldså J, Hosner PA, Gilbert MTP, Zhang G, Nogués-Bravo D. Changes in the functional diversity of modern bird species over the last million years. Proc Natl Acad Sci U S A 2023; 120:e2201945119. [PMID: 36745783 PMCID: PMC9963860 DOI: 10.1073/pnas.2201945119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/28/2022] [Indexed: 02/08/2023] Open
Abstract
Despite evidence of declining biosphere integrity, we currently lack understanding of how the functional diversity associated with changes in abundance among ecological communities has varied over time and before widespread human disturbances. We combine morphological, ecological, and life-history trait data for >260 extant bird species with genomic-based estimates of changing effective population size (Ne) to quantify demographic-based shifts in avian functional diversity over the past million years and under pre-anthropogenic climate warming. We show that functional diversity was relatively stable over this period, but underwent significant changes in some key areas of trait space due to changing species abundances. Our results suggest that patterns of population decline over the Pleistocene have been concentrated in particular regions of trait space associated with extreme reproductive strategies and low dispersal ability, consistent with an overall erosion of functional diversity. Further, species most sensitive to climate warming occupied a relatively narrow region of functional space, indicating that the largest potential population increases and decreases under climate change will occur among species with relatively similar trait sets. Overall, our results identify fluctuations in functional space of extant species over evolutionary timescales and represent the demographic-based vulnerability of different regions of functional space among these taxa. The integration of paleodemographic dynamics with functional trait data enhances our ability to quantify losses of biosphere integrity before anthropogenic disturbances and attribute contemporary biodiversity loss to different drivers over time.
Collapse
Affiliation(s)
- Ryan R. Germain
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen2100, Denmark
| | - Shaohong Feng
- BGI-Shenzhen, Shenzhen518083, China
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou311121, China
| | - Lucas Buffan
- Département de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon69342 Cedex 07, France
| | - Carlos P. Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 51005, Estonia
| | - Guangii Chen
- BGI-Shenzhen, Shenzhen518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100101, China
| | - Gary R. Graves
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Department of Vertebrate Zoology, National Museum of Natural History Smithsonian Institution, Washington20560, DC
| | - Joseph A. Tobias
- Department of Life Sciences, Imperial College London, AscotSL5 7PY, UK
| | - Carsten Rahbek
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Institute of Ecology, Peking University, Beijing100871, China
- Danish Institute for Advanced Study, University of Southern Denmark, Odense5230, Denmark
| | - Fumin Lei
- Institute of Zoology, Key Laboratory of Zoological Systematics and Evolution, Chinese Academy of Sciences, Beijing100101, China
| | - Jon Fjeldså
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen2100, Denmark
| | - Peter A. Hosner
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen2100, Denmark
| | - M. Thomas P. Gilbert
- Center for Evolutionary Hologenomics, Globe Institute University of Copenhagen, Copenhagen1353, Denmark
- Department of Natural History, University Museum, Norwegian University of Science and Technology, Trondheim7491, Norway
| | - Guojie Zhang
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen2100, Denmark
- BGI-Shenzhen, Shenzhen518083, China
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou311121, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650223, China
| | - David Nogués-Bravo
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
| |
Collapse
|
44
|
Arce AN, Cantwell-Jones A, Tansley M, Barnes I, Brace S, Mullin VE, Notton D, Ollerton J, Eatough E, Rhodes MW, Bian X, Hogan J, Hunter T, Jackson S, Whiffin A, Blagoderov V, Broad G, Judd S, Kokkini P, Livermore L, Dixit MK, Pearse WD, Gill RJ. Signatures of increasing environmental stress in bumblebee wings over the past century: Insights from museum specimens. J Anim Ecol 2023; 92:297-309. [PMID: 35978494 PMCID: PMC10086799 DOI: 10.1111/1365-2656.13788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
Determining when animal populations have experienced stress in the past is fundamental to understanding how risk factors drive contemporary and future species' responses to environmental change. For insects, quantifying stress and associating it with environmental factors has been challenging due to a paucity of time-series data and because detectable population-level responses can show varying lag effects. One solution is to leverage historic entomological specimens to detect morphological proxies of stress experienced at the time stressors emerged, allowing us to more accurately determine population responses. Here we studied specimens of four bumblebee species, an invaluable group of insect pollinators, from five museums collected across Britain over the 20th century. We calculated the degree of fluctuating asymmetry (FA; random deviations from bilateral symmetry) between the right and left forewings as a potential proxy of developmental stress. We: (a) investigated whether baseline FA levels vary between species, and how this compares between the first and second half of the century; (b) determined the extent of FA change over the century in the four bumblebee species, and whether this followed a linear or nonlinear trend; (c) tested which annual climatic conditions correlated with increased FA in bumblebees. Species differed in their baseline FA, with FA being higher in the two species that have recently expanded their ranges in Britain. Overall, FA significantly increased over the century but followed a nonlinear trend, with the increase starting c. 1925. We found relatively warm and wet years were associated with higher FA. Collectively our findings show that FA in bumblebees increased over the 20th century and under weather conditions that will likely increase in frequency with climate change. By plotting FA trends and quantifying the contribution of annual climate conditions on past populations, we provide an important step towards improving our understanding of how environmental factors could impact future populations of wild beneficial insects.
Collapse
Affiliation(s)
- Andres N Arce
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK.,School of Engineering, Arts, Science & Technology, University of Suffolk, Ipswich, UK
| | - Aoife Cantwell-Jones
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK
| | - Michael Tansley
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | - Ian Barnes
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Selina Brace
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Victoria E Mullin
- Department of Earth Sciences, Natural History Museum, London, UK.,Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - David Notton
- Department of Earth Sciences, Natural History Museum, London, UK.,National Museum Scotland, Edinburgh, UK
| | - Jeff Ollerton
- Faculty of Arts, Science and Technology, University of Northampton, Northampton, UK
| | - Emma Eatough
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK
| | - Marcus W Rhodes
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK
| | - Xueni Bian
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK.,Department of Earth Sciences, Natural History Museum, London, UK
| | - James Hogan
- Oxford University Museum of Natural History, Oxford, UK
| | | | - Simon Jackson
- Tullie House Museum and Art Gallery Trust, Cumbria, UK.,Ipswich Museum (Colchester and Ipswich Museums), Ipswich, UK
| | | | | | - Gavin Broad
- Department of Earth Sciences, Natural History Museum, London, UK
| | | | - Phaedra Kokkini
- Department of Earth Sciences, Natural History Museum, London, UK
| | | | - Mahika K Dixit
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK
| | - William D Pearse
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK
| | - Richard J Gill
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK
| |
Collapse
|
45
|
Wan H, Liu X, Shi Q, Chen Y, Jiang M, Zhang J, Cui B, Hou J, Wei Z, Hossain MA, Liu F. Biochar amendment alters root morphology of maize plant: Its implications in enhancing nutrient uptake and shoot growth under reduced irrigation regimes. FRONTIERS IN PLANT SCIENCE 2023; 14:1122742. [PMID: 36743482 PMCID: PMC9895779 DOI: 10.3389/fpls.2023.1122742] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 06/16/2023]
Abstract
Introduction Biochar amendment provides multiple benefits in enhancing crop productivity and soil nutrient availability. However, whether biochar addition affects root morphology and alters plant nutrient uptake and shoot growth under different irrigation regimes remain largely unknown. Methods A split-root pot experiment with maize (Zea mays L.) was conducted on clay loam soil mixed with 2% (w/w) of wheat-straw (WSP) and softwood (SWP) biochar. The plants were subjected to full (FI), deficit (DI), and alternate partial root-zone drying (PRD) irrigation from the fourth leaf to the grain-filling stage. Results and discussion The results showed that, compared to plants grown in unamended soils, plants grown in the biochar-amended soils possessed greater total root length, area, diameter, volume, tips, forks, crossings, and root length density, which were further amplified by PRD. Despite a negative effect on soil available phosphorus (P) pool, WSP addition improved soil available nitrogen (N), potassium (K), and calcium (Ca) pool and cation exchange capacity under reduced irrigation. Even though biochar negatively affected nutrient concentrations in shoots as exemplified by lowered N, P, K (except leaf), and Ca concentration, it dramatically enhanced plant total N, P, K, Ca uptake, and biomass. Principal component analysis (PCA) revealed that the modified root morphology and increased soil available nutrient pools, and consequently, the higher plant total nutrient uptake might have facilitated the enhanced shoot growth and yield of maize plants in biochar-added soils. Biochar amendment further lowered specific leaf area but increased leaf N concentration per area-to-root N concentration per length ratio. All these effects were evident upon WSP amendment. Moreover, PRD outperformed DI in increasing root area-to-leaf area ratio. Overall, these findings suggest that WSP combined with PRD could be a promising strategy to improve the growth and nutrient uptake of maize plants.
Collapse
Affiliation(s)
- Heng Wan
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi, China
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuezhi Liu
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, China
| | - Qimiao Shi
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi, China
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiting Chen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Miao Jiang
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi, China
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiarui Zhang
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi, China
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Bingjing Cui
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi, China
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingxiang Hou
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi, China
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Zhenhua Wei
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi, China
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
46
|
Trindade DPF, Carmona CP, Reitalu T, Pärtel M. Observed and dark diversity dynamics over millennial time scales: fast life-history traits linked to expansion lags of plants in northern Europe. Proc Biol Sci 2023; 290:20221904. [PMID: 36629107 PMCID: PMC9832556 DOI: 10.1098/rspb.2022.1904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Global change drivers (e.g. climate and land use) affect the species and functional traits observed in a local site but also its dark diversity-the set of species and traits locally suitable but absent. Dark diversity links regional and local scales and, over time, reveals taxa under expansion lags by depicting the potential biodiversity that remains suitable but is absent locally. Since global change effects on biodiversity are both spatially and temporally scale dependent, examining long-term temporal dynamics in observed and dark diversity would be relevant to assessing and foreseeing biodiversity change. Here, we used sedimentary pollen data to examine how both taxonomic and functional observed and dark diversity changed over the past 14 500 years in northern Europe. We found that taxonomic and functional observed and dark diversity increased over time, especially after the Late Glacial and during the Late Holocene. However, dark diversity dynamics revealed expansion lags related to species' functional characteristics (dispersal limitation and stress intolerance) and an extensive functional redundancy when compared to taxa in observed diversity. We highlight that assessing observed and dark diversity dynamics is a promising tool to examine biodiversity change across spatial scales, its possible causes, and functional consequences.
Collapse
Affiliation(s)
- Diego P. F. Trindade
- Institute of Ecology and Earth Sciences, University of Tartu, Juhan Liivi 2, 50409 Tartu, Estonia
| | - Carlos P. Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Juhan Liivi 2, 50409 Tartu, Estonia
| | - Triin Reitalu
- Institute of Ecology and Earth Sciences, University of Tartu, Juhan Liivi 2, 50409 Tartu, Estonia
- Institute of Geology, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Juhan Liivi 2, 50409 Tartu, Estonia
| |
Collapse
|
47
|
Schleuning M, García D, Tobias JA. Animal functional traits: Towards a trait‐based ecology for whole ecosystems. Funct Ecol 2023. [DOI: 10.1111/1365-2435.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F) Frankfurt (Main) Germany
| | - Daniel García
- Departamento Biología de Organismos y Sistemas (Universidad de Oviedo) and Instituto Mixto de Investigación en Biodiversidad (Universidad de Oviedo‐CSIC‐Principado de Asturias) Oviedo Spain
| | - Joseph A. Tobias
- Department of Life Sciences Imperial College London Silwood Park Ascot UK
| |
Collapse
|
48
|
Ali JR, Blonder BW, Pigot AL, Tobias JA. Bird extinctions threaten to cause disproportionate reductions of functional diversity and uniqueness. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Jarome R. Ali
- Department of Life Sciences Imperial College London Ascot UK
- Department of Ecology and Evolutionary Biology Princeton University Princeton New Jersey USA
| | - Benjamin W. Blonder
- Department of Environmental Science, Policy, and Management University of California Berkeley California USA
- Environmental Change Institute, School of Geography and the Environment University of Oxford Oxford UK
| | - Alex L. Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment University College London London UK
| | | |
Collapse
|
49
|
Cox DTC, Gardner AS, Gaston KJ. Global and regional erosion of mammalian functional diversity across the diel cycle. SCIENCE ADVANCES 2022; 8:eabn6008. [PMID: 35960803 PMCID: PMC9374345 DOI: 10.1126/sciadv.abn6008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/28/2022] [Indexed: 06/08/2023]
Abstract
Biodiversity is declining worldwide. When species are physically active (i.e., their diel niche) may influence their risk of becoming functionally extinct. It may also affect how species losses affect ecosystems. For 5033 terrestrial mammals, we predict future changes to diel global and local functional diversity through a gradient of progressive functional extinction scenarios of threatened species. Across scenarios, diurnal species were at greater risk of becoming functionally extinct than nocturnal, crepuscular, and cathemeral species, resulting in deep functional losses in global diurnal trait space. Redundancy (species with similar roles) will buffer global nocturnal functional diversity; however, across the land surface, losses will mostly occur among functionally dispersed species (species with distinct roles). Functional extinctions will constrict boundaries of cathemeral trait space as megaherbivores, and arboreal foragers are lost. Variation in the erosion of functional diversity across the daily cycle will likely profoundly affect the partitioning of ecosystem functioning between night and day.
Collapse
|
50
|
Penjor U, Cushman SA, Kaszta ŻM, Sherub S, Macdonald DW. Effects of land use and climate change on functional and phylogenetic diversity of terrestrial vertebrates in a Himalayan biodiversity hotspot. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ugyen Penjor
- Wildlife Conservation Research Unit, The Recanati‐Kaplan Centre Abingdon UK
- Department of Forests and Park Services Nature Conservation Division Thimphu Bhutan
| | - Samuel A. Cushman
- Wildlife Conservation Research Unit, The Recanati‐Kaplan Centre Abingdon UK
- USDA, Rocky Mountain Research Station Flagstaff Arizona USA
| | - Żaneta M. Kaszta
- Wildlife Conservation Research Unit, The Recanati‐Kaplan Centre Abingdon UK
| | - Sherub Sherub
- Department of Forests and Park Services Ugyen Wangchuck Institute for Conservation and Environmental Research Bumthang Bhutan
| | - David W. Macdonald
- Wildlife Conservation Research Unit, The Recanati‐Kaplan Centre Abingdon UK
| |
Collapse
|